sched/numa: Fix period_slot recalculation
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
325static inline int
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
329 return 1;
330
331 return 0;
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339/* return depth at which a sched entity is present in the hierarchy */
340static inline int depth_se(struct sched_entity *se)
341{
342 int depth = 0;
343
344 for_each_sched_entity(se)
345 depth++;
346
347 return depth;
348}
349
350static void
351find_matching_se(struct sched_entity **se, struct sched_entity **pse)
352{
353 int se_depth, pse_depth;
354
355 /*
356 * preemption test can be made between sibling entities who are in the
357 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
358 * both tasks until we find their ancestors who are siblings of common
359 * parent.
360 */
361
362 /* First walk up until both entities are at same depth */
363 se_depth = depth_se(*se);
364 pse_depth = depth_se(*pse);
365
366 while (se_depth > pse_depth) {
367 se_depth--;
368 *se = parent_entity(*se);
369 }
370
371 while (pse_depth > se_depth) {
372 pse_depth--;
373 *pse = parent_entity(*pse);
374 }
375
376 while (!is_same_group(*se, *pse)) {
377 *se = parent_entity(*se);
378 *pse = parent_entity(*pse);
379 }
380}
381
8f48894f
PZ
382#else /* !CONFIG_FAIR_GROUP_SCHED */
383
384static inline struct task_struct *task_of(struct sched_entity *se)
385{
386 return container_of(se, struct task_struct, se);
387}
bf0f6f24 388
62160e3f
IM
389static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
390{
391 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
392}
393
394#define entity_is_task(se) 1
395
b758149c
PZ
396#define for_each_sched_entity(se) \
397 for (; se; se = NULL)
bf0f6f24 398
b758149c 399static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 400{
b758149c 401 return &task_rq(p)->cfs;
bf0f6f24
IM
402}
403
b758149c
PZ
404static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
405{
406 struct task_struct *p = task_of(se);
407 struct rq *rq = task_rq(p);
408
409 return &rq->cfs;
410}
411
412/* runqueue "owned" by this group */
413static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
414{
415 return NULL;
416}
417
3d4b47b4
PZ
418static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
419{
420}
421
422static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
423{
424}
425
b758149c
PZ
426#define for_each_leaf_cfs_rq(rq, cfs_rq) \
427 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
428
429static inline int
430is_same_group(struct sched_entity *se, struct sched_entity *pse)
431{
432 return 1;
433}
434
435static inline struct sched_entity *parent_entity(struct sched_entity *se)
436{
437 return NULL;
438}
439
464b7527
PZ
440static inline void
441find_matching_se(struct sched_entity **se, struct sched_entity **pse)
442{
443}
444
b758149c
PZ
445#endif /* CONFIG_FAIR_GROUP_SCHED */
446
6c16a6dc 447static __always_inline
9dbdb155 448void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
449
450/**************************************************************
451 * Scheduling class tree data structure manipulation methods:
452 */
453
1bf08230 454static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 455{
1bf08230 456 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 457 if (delta > 0)
1bf08230 458 max_vruntime = vruntime;
02e0431a 459
1bf08230 460 return max_vruntime;
02e0431a
PZ
461}
462
0702e3eb 463static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
464{
465 s64 delta = (s64)(vruntime - min_vruntime);
466 if (delta < 0)
467 min_vruntime = vruntime;
468
469 return min_vruntime;
470}
471
54fdc581
FC
472static inline int entity_before(struct sched_entity *a,
473 struct sched_entity *b)
474{
475 return (s64)(a->vruntime - b->vruntime) < 0;
476}
477
1af5f730
PZ
478static void update_min_vruntime(struct cfs_rq *cfs_rq)
479{
480 u64 vruntime = cfs_rq->min_vruntime;
481
482 if (cfs_rq->curr)
483 vruntime = cfs_rq->curr->vruntime;
484
485 if (cfs_rq->rb_leftmost) {
486 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
487 struct sched_entity,
488 run_node);
489
e17036da 490 if (!cfs_rq->curr)
1af5f730
PZ
491 vruntime = se->vruntime;
492 else
493 vruntime = min_vruntime(vruntime, se->vruntime);
494 }
495
1bf08230 496 /* ensure we never gain time by being placed backwards. */
1af5f730 497 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
498#ifndef CONFIG_64BIT
499 smp_wmb();
500 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
501#endif
1af5f730
PZ
502}
503
bf0f6f24
IM
504/*
505 * Enqueue an entity into the rb-tree:
506 */
0702e3eb 507static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
508{
509 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
510 struct rb_node *parent = NULL;
511 struct sched_entity *entry;
bf0f6f24
IM
512 int leftmost = 1;
513
514 /*
515 * Find the right place in the rbtree:
516 */
517 while (*link) {
518 parent = *link;
519 entry = rb_entry(parent, struct sched_entity, run_node);
520 /*
521 * We dont care about collisions. Nodes with
522 * the same key stay together.
523 */
2bd2d6f2 524 if (entity_before(se, entry)) {
bf0f6f24
IM
525 link = &parent->rb_left;
526 } else {
527 link = &parent->rb_right;
528 leftmost = 0;
529 }
530 }
531
532 /*
533 * Maintain a cache of leftmost tree entries (it is frequently
534 * used):
535 */
1af5f730 536 if (leftmost)
57cb499d 537 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
538
539 rb_link_node(&se->run_node, parent, link);
540 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
541}
542
0702e3eb 543static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 544{
3fe69747
PZ
545 if (cfs_rq->rb_leftmost == &se->run_node) {
546 struct rb_node *next_node;
3fe69747
PZ
547
548 next_node = rb_next(&se->run_node);
549 cfs_rq->rb_leftmost = next_node;
3fe69747 550 }
e9acbff6 551
bf0f6f24 552 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
553}
554
029632fb 555struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 556{
f4b6755f
PZ
557 struct rb_node *left = cfs_rq->rb_leftmost;
558
559 if (!left)
560 return NULL;
561
562 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
563}
564
ac53db59
RR
565static struct sched_entity *__pick_next_entity(struct sched_entity *se)
566{
567 struct rb_node *next = rb_next(&se->run_node);
568
569 if (!next)
570 return NULL;
571
572 return rb_entry(next, struct sched_entity, run_node);
573}
574
575#ifdef CONFIG_SCHED_DEBUG
029632fb 576struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 577{
7eee3e67 578 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 579
70eee74b
BS
580 if (!last)
581 return NULL;
7eee3e67
IM
582
583 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
584}
585
bf0f6f24
IM
586/**************************************************************
587 * Scheduling class statistics methods:
588 */
589
acb4a848 590int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 591 void __user *buffer, size_t *lenp,
b2be5e96
PZ
592 loff_t *ppos)
593{
8d65af78 594 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 595 int factor = get_update_sysctl_factor();
b2be5e96
PZ
596
597 if (ret || !write)
598 return ret;
599
600 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
601 sysctl_sched_min_granularity);
602
acb4a848
CE
603#define WRT_SYSCTL(name) \
604 (normalized_sysctl_##name = sysctl_##name / (factor))
605 WRT_SYSCTL(sched_min_granularity);
606 WRT_SYSCTL(sched_latency);
607 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
608#undef WRT_SYSCTL
609
b2be5e96
PZ
610 return 0;
611}
612#endif
647e7cac 613
a7be37ac 614/*
f9c0b095 615 * delta /= w
a7be37ac 616 */
9dbdb155 617static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 618{
f9c0b095 619 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 620 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
621
622 return delta;
623}
624
647e7cac
IM
625/*
626 * The idea is to set a period in which each task runs once.
627 *
532b1858 628 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
629 * this period because otherwise the slices get too small.
630 *
631 * p = (nr <= nl) ? l : l*nr/nl
632 */
4d78e7b6
PZ
633static u64 __sched_period(unsigned long nr_running)
634{
635 u64 period = sysctl_sched_latency;
b2be5e96 636 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
637
638 if (unlikely(nr_running > nr_latency)) {
4bf0b771 639 period = sysctl_sched_min_granularity;
4d78e7b6 640 period *= nr_running;
4d78e7b6
PZ
641 }
642
643 return period;
644}
645
647e7cac
IM
646/*
647 * We calculate the wall-time slice from the period by taking a part
648 * proportional to the weight.
649 *
f9c0b095 650 * s = p*P[w/rw]
647e7cac 651 */
6d0f0ebd 652static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 653{
0a582440 654 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 655
0a582440 656 for_each_sched_entity(se) {
6272d68c 657 struct load_weight *load;
3104bf03 658 struct load_weight lw;
6272d68c
LM
659
660 cfs_rq = cfs_rq_of(se);
661 load = &cfs_rq->load;
f9c0b095 662
0a582440 663 if (unlikely(!se->on_rq)) {
3104bf03 664 lw = cfs_rq->load;
0a582440
MG
665
666 update_load_add(&lw, se->load.weight);
667 load = &lw;
668 }
9dbdb155 669 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
670 }
671 return slice;
bf0f6f24
IM
672}
673
647e7cac 674/*
660cc00f 675 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 676 *
f9c0b095 677 * vs = s/w
647e7cac 678 */
f9c0b095 679static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 680{
f9c0b095 681 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
682}
683
a75cdaa9 684#ifdef CONFIG_SMP
fb13c7ee
MG
685static unsigned long task_h_load(struct task_struct *p);
686
a75cdaa9
AS
687static inline void __update_task_entity_contrib(struct sched_entity *se);
688
689/* Give new task start runnable values to heavy its load in infant time */
690void init_task_runnable_average(struct task_struct *p)
691{
692 u32 slice;
693
694 p->se.avg.decay_count = 0;
695 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
696 p->se.avg.runnable_avg_sum = slice;
697 p->se.avg.runnable_avg_period = slice;
698 __update_task_entity_contrib(&p->se);
699}
700#else
701void init_task_runnable_average(struct task_struct *p)
702{
703}
704#endif
705
bf0f6f24 706/*
9dbdb155 707 * Update the current task's runtime statistics.
bf0f6f24 708 */
b7cc0896 709static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 710{
429d43bc 711 struct sched_entity *curr = cfs_rq->curr;
78becc27 712 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 713 u64 delta_exec;
bf0f6f24
IM
714
715 if (unlikely(!curr))
716 return;
717
9dbdb155
PZ
718 delta_exec = now - curr->exec_start;
719 if (unlikely((s64)delta_exec <= 0))
34f28ecd 720 return;
bf0f6f24 721
8ebc91d9 722 curr->exec_start = now;
d842de87 723
9dbdb155
PZ
724 schedstat_set(curr->statistics.exec_max,
725 max(delta_exec, curr->statistics.exec_max));
726
727 curr->sum_exec_runtime += delta_exec;
728 schedstat_add(cfs_rq, exec_clock, delta_exec);
729
730 curr->vruntime += calc_delta_fair(delta_exec, curr);
731 update_min_vruntime(cfs_rq);
732
d842de87
SV
733 if (entity_is_task(curr)) {
734 struct task_struct *curtask = task_of(curr);
735
f977bb49 736 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 737 cpuacct_charge(curtask, delta_exec);
f06febc9 738 account_group_exec_runtime(curtask, delta_exec);
d842de87 739 }
ec12cb7f
PT
740
741 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
742}
743
744static inline void
5870db5b 745update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 746{
78becc27 747 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
748}
749
bf0f6f24
IM
750/*
751 * Task is being enqueued - update stats:
752 */
d2417e5a 753static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
bf0f6f24
IM
755 /*
756 * Are we enqueueing a waiting task? (for current tasks
757 * a dequeue/enqueue event is a NOP)
758 */
429d43bc 759 if (se != cfs_rq->curr)
5870db5b 760 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
761}
762
bf0f6f24 763static void
9ef0a961 764update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
41acab88 766 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
768 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
769 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
771#ifdef CONFIG_SCHEDSTATS
772 if (entity_is_task(se)) {
773 trace_sched_stat_wait(task_of(se),
78becc27 774 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
775 }
776#endif
41acab88 777 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
778}
779
780static inline void
19b6a2e3 781update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 782{
bf0f6f24
IM
783 /*
784 * Mark the end of the wait period if dequeueing a
785 * waiting task:
786 */
429d43bc 787 if (se != cfs_rq->curr)
9ef0a961 788 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
789}
790
791/*
792 * We are picking a new current task - update its stats:
793 */
794static inline void
79303e9e 795update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
796{
797 /*
798 * We are starting a new run period:
799 */
78becc27 800 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
801}
802
bf0f6f24
IM
803/**************************************************
804 * Scheduling class queueing methods:
805 */
806
cbee9f88
PZ
807#ifdef CONFIG_NUMA_BALANCING
808/*
598f0ec0
MG
809 * Approximate time to scan a full NUMA task in ms. The task scan period is
810 * calculated based on the tasks virtual memory size and
811 * numa_balancing_scan_size.
cbee9f88 812 */
598f0ec0
MG
813unsigned int sysctl_numa_balancing_scan_period_min = 1000;
814unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
815
816/* Portion of address space to scan in MB */
817unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 818
4b96a29b
PZ
819/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
820unsigned int sysctl_numa_balancing_scan_delay = 1000;
821
de1c9ce6
RR
822/*
823 * After skipping a page migration on a shared page, skip N more numa page
824 * migrations unconditionally. This reduces the number of NUMA migrations
825 * in shared memory workloads, and has the effect of pulling tasks towards
826 * where their memory lives, over pulling the memory towards the task.
827 */
828unsigned int sysctl_numa_balancing_migrate_deferred = 16;
829
598f0ec0
MG
830static unsigned int task_nr_scan_windows(struct task_struct *p)
831{
832 unsigned long rss = 0;
833 unsigned long nr_scan_pages;
834
835 /*
836 * Calculations based on RSS as non-present and empty pages are skipped
837 * by the PTE scanner and NUMA hinting faults should be trapped based
838 * on resident pages
839 */
840 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
841 rss = get_mm_rss(p->mm);
842 if (!rss)
843 rss = nr_scan_pages;
844
845 rss = round_up(rss, nr_scan_pages);
846 return rss / nr_scan_pages;
847}
848
849/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
850#define MAX_SCAN_WINDOW 2560
851
852static unsigned int task_scan_min(struct task_struct *p)
853{
854 unsigned int scan, floor;
855 unsigned int windows = 1;
856
857 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
858 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
859 floor = 1000 / windows;
860
861 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
862 return max_t(unsigned int, floor, scan);
863}
864
865static unsigned int task_scan_max(struct task_struct *p)
866{
867 unsigned int smin = task_scan_min(p);
868 unsigned int smax;
869
870 /* Watch for min being lower than max due to floor calculations */
871 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
872 return max(smin, smax);
873}
874
0ec8aa00
PZ
875static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
876{
877 rq->nr_numa_running += (p->numa_preferred_nid != -1);
878 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
879}
880
881static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
882{
883 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
884 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
885}
886
8c8a743c
PZ
887struct numa_group {
888 atomic_t refcount;
889
890 spinlock_t lock; /* nr_tasks, tasks */
891 int nr_tasks;
e29cf08b 892 pid_t gid;
8c8a743c
PZ
893 struct list_head task_list;
894
895 struct rcu_head rcu;
989348b5
MG
896 unsigned long total_faults;
897 unsigned long faults[0];
8c8a743c
PZ
898};
899
e29cf08b
MG
900pid_t task_numa_group_id(struct task_struct *p)
901{
902 return p->numa_group ? p->numa_group->gid : 0;
903}
904
ac8e895b
MG
905static inline int task_faults_idx(int nid, int priv)
906{
907 return 2 * nid + priv;
908}
909
910static inline unsigned long task_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_faults)
913 return 0;
914
915 return p->numa_faults[task_faults_idx(nid, 0)] +
916 p->numa_faults[task_faults_idx(nid, 1)];
917}
918
83e1d2cd
MG
919static inline unsigned long group_faults(struct task_struct *p, int nid)
920{
921 if (!p->numa_group)
922 return 0;
923
82897b4f
WL
924 return p->numa_group->faults[task_faults_idx(nid, 0)] +
925 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
926}
927
928/*
929 * These return the fraction of accesses done by a particular task, or
930 * task group, on a particular numa node. The group weight is given a
931 * larger multiplier, in order to group tasks together that are almost
932 * evenly spread out between numa nodes.
933 */
934static inline unsigned long task_weight(struct task_struct *p, int nid)
935{
936 unsigned long total_faults;
937
938 if (!p->numa_faults)
939 return 0;
940
941 total_faults = p->total_numa_faults;
942
943 if (!total_faults)
944 return 0;
945
946 return 1000 * task_faults(p, nid) / total_faults;
947}
948
949static inline unsigned long group_weight(struct task_struct *p, int nid)
950{
989348b5 951 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
952 return 0;
953
989348b5 954 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
955}
956
e6628d5b 957static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
958static unsigned long source_load(int cpu, int type);
959static unsigned long target_load(int cpu, int type);
960static unsigned long power_of(int cpu);
961static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
962
fb13c7ee 963/* Cached statistics for all CPUs within a node */
58d081b5 964struct numa_stats {
fb13c7ee 965 unsigned long nr_running;
58d081b5 966 unsigned long load;
fb13c7ee
MG
967
968 /* Total compute capacity of CPUs on a node */
969 unsigned long power;
970
971 /* Approximate capacity in terms of runnable tasks on a node */
972 unsigned long capacity;
973 int has_capacity;
58d081b5 974};
e6628d5b 975
fb13c7ee
MG
976/*
977 * XXX borrowed from update_sg_lb_stats
978 */
979static void update_numa_stats(struct numa_stats *ns, int nid)
980{
5eca82a9 981 int cpu, cpus = 0;
fb13c7ee
MG
982
983 memset(ns, 0, sizeof(*ns));
984 for_each_cpu(cpu, cpumask_of_node(nid)) {
985 struct rq *rq = cpu_rq(cpu);
986
987 ns->nr_running += rq->nr_running;
988 ns->load += weighted_cpuload(cpu);
989 ns->power += power_of(cpu);
5eca82a9
PZ
990
991 cpus++;
fb13c7ee
MG
992 }
993
5eca82a9
PZ
994 /*
995 * If we raced with hotplug and there are no CPUs left in our mask
996 * the @ns structure is NULL'ed and task_numa_compare() will
997 * not find this node attractive.
998 *
999 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1000 * and bail there.
1001 */
1002 if (!cpus)
1003 return;
1004
fb13c7ee
MG
1005 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1006 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1007 ns->has_capacity = (ns->nr_running < ns->capacity);
1008}
1009
58d081b5
MG
1010struct task_numa_env {
1011 struct task_struct *p;
e6628d5b 1012
58d081b5
MG
1013 int src_cpu, src_nid;
1014 int dst_cpu, dst_nid;
e6628d5b 1015
58d081b5 1016 struct numa_stats src_stats, dst_stats;
e6628d5b 1017
40ea2b42 1018 int imbalance_pct;
fb13c7ee
MG
1019
1020 struct task_struct *best_task;
1021 long best_imp;
58d081b5
MG
1022 int best_cpu;
1023};
1024
fb13c7ee
MG
1025static void task_numa_assign(struct task_numa_env *env,
1026 struct task_struct *p, long imp)
1027{
1028 if (env->best_task)
1029 put_task_struct(env->best_task);
1030 if (p)
1031 get_task_struct(p);
1032
1033 env->best_task = p;
1034 env->best_imp = imp;
1035 env->best_cpu = env->dst_cpu;
1036}
1037
1038/*
1039 * This checks if the overall compute and NUMA accesses of the system would
1040 * be improved if the source tasks was migrated to the target dst_cpu taking
1041 * into account that it might be best if task running on the dst_cpu should
1042 * be exchanged with the source task
1043 */
887c290e
RR
1044static void task_numa_compare(struct task_numa_env *env,
1045 long taskimp, long groupimp)
fb13c7ee
MG
1046{
1047 struct rq *src_rq = cpu_rq(env->src_cpu);
1048 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1049 struct task_struct *cur;
1050 long dst_load, src_load;
1051 long load;
887c290e 1052 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1053
1054 rcu_read_lock();
1055 cur = ACCESS_ONCE(dst_rq->curr);
1056 if (cur->pid == 0) /* idle */
1057 cur = NULL;
1058
1059 /*
1060 * "imp" is the fault differential for the source task between the
1061 * source and destination node. Calculate the total differential for
1062 * the source task and potential destination task. The more negative
1063 * the value is, the more rmeote accesses that would be expected to
1064 * be incurred if the tasks were swapped.
1065 */
1066 if (cur) {
1067 /* Skip this swap candidate if cannot move to the source cpu */
1068 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1069 goto unlock;
1070
887c290e
RR
1071 /*
1072 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1073 * in any group then look only at task weights.
887c290e 1074 */
ca28aa53 1075 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1076 imp = taskimp + task_weight(cur, env->src_nid) -
1077 task_weight(cur, env->dst_nid);
ca28aa53
RR
1078 /*
1079 * Add some hysteresis to prevent swapping the
1080 * tasks within a group over tiny differences.
1081 */
1082 if (cur->numa_group)
1083 imp -= imp/16;
887c290e 1084 } else {
ca28aa53
RR
1085 /*
1086 * Compare the group weights. If a task is all by
1087 * itself (not part of a group), use the task weight
1088 * instead.
1089 */
1090 if (env->p->numa_group)
1091 imp = groupimp;
1092 else
1093 imp = taskimp;
1094
1095 if (cur->numa_group)
1096 imp += group_weight(cur, env->src_nid) -
1097 group_weight(cur, env->dst_nid);
1098 else
1099 imp += task_weight(cur, env->src_nid) -
1100 task_weight(cur, env->dst_nid);
887c290e 1101 }
fb13c7ee
MG
1102 }
1103
1104 if (imp < env->best_imp)
1105 goto unlock;
1106
1107 if (!cur) {
1108 /* Is there capacity at our destination? */
1109 if (env->src_stats.has_capacity &&
1110 !env->dst_stats.has_capacity)
1111 goto unlock;
1112
1113 goto balance;
1114 }
1115
1116 /* Balance doesn't matter much if we're running a task per cpu */
1117 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1118 goto assign;
1119
1120 /*
1121 * In the overloaded case, try and keep the load balanced.
1122 */
1123balance:
1124 dst_load = env->dst_stats.load;
1125 src_load = env->src_stats.load;
1126
1127 /* XXX missing power terms */
1128 load = task_h_load(env->p);
1129 dst_load += load;
1130 src_load -= load;
1131
1132 if (cur) {
1133 load = task_h_load(cur);
1134 dst_load -= load;
1135 src_load += load;
1136 }
1137
1138 /* make src_load the smaller */
1139 if (dst_load < src_load)
1140 swap(dst_load, src_load);
1141
1142 if (src_load * env->imbalance_pct < dst_load * 100)
1143 goto unlock;
1144
1145assign:
1146 task_numa_assign(env, cur, imp);
1147unlock:
1148 rcu_read_unlock();
1149}
1150
887c290e
RR
1151static void task_numa_find_cpu(struct task_numa_env *env,
1152 long taskimp, long groupimp)
2c8a50aa
MG
1153{
1154 int cpu;
1155
1156 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1157 /* Skip this CPU if the source task cannot migrate */
1158 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1159 continue;
1160
1161 env->dst_cpu = cpu;
887c290e 1162 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1163 }
1164}
1165
58d081b5
MG
1166static int task_numa_migrate(struct task_struct *p)
1167{
58d081b5
MG
1168 struct task_numa_env env = {
1169 .p = p,
fb13c7ee 1170
58d081b5 1171 .src_cpu = task_cpu(p),
b32e86b4 1172 .src_nid = task_node(p),
fb13c7ee
MG
1173
1174 .imbalance_pct = 112,
1175
1176 .best_task = NULL,
1177 .best_imp = 0,
1178 .best_cpu = -1
58d081b5
MG
1179 };
1180 struct sched_domain *sd;
887c290e 1181 unsigned long taskweight, groupweight;
2c8a50aa 1182 int nid, ret;
887c290e 1183 long taskimp, groupimp;
e6628d5b 1184
58d081b5 1185 /*
fb13c7ee
MG
1186 * Pick the lowest SD_NUMA domain, as that would have the smallest
1187 * imbalance and would be the first to start moving tasks about.
1188 *
1189 * And we want to avoid any moving of tasks about, as that would create
1190 * random movement of tasks -- counter the numa conditions we're trying
1191 * to satisfy here.
58d081b5
MG
1192 */
1193 rcu_read_lock();
fb13c7ee 1194 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1195 if (sd)
1196 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1197 rcu_read_unlock();
1198
46a73e8a
RR
1199 /*
1200 * Cpusets can break the scheduler domain tree into smaller
1201 * balance domains, some of which do not cross NUMA boundaries.
1202 * Tasks that are "trapped" in such domains cannot be migrated
1203 * elsewhere, so there is no point in (re)trying.
1204 */
1205 if (unlikely(!sd)) {
de1b301a 1206 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1207 return -EINVAL;
1208 }
1209
887c290e
RR
1210 taskweight = task_weight(p, env.src_nid);
1211 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1212 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1213 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1214 taskimp = task_weight(p, env.dst_nid) - taskweight;
1215 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1216 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1217
e1dda8a7
RR
1218 /* If the preferred nid has capacity, try to use it. */
1219 if (env.dst_stats.has_capacity)
887c290e 1220 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1221
1222 /* No space available on the preferred nid. Look elsewhere. */
1223 if (env.best_cpu == -1) {
2c8a50aa
MG
1224 for_each_online_node(nid) {
1225 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1226 continue;
58d081b5 1227
83e1d2cd 1228 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1229 taskimp = task_weight(p, nid) - taskweight;
1230 groupimp = group_weight(p, nid) - groupweight;
1231 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1232 continue;
1233
2c8a50aa
MG
1234 env.dst_nid = nid;
1235 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1236 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1237 }
1238 }
1239
fb13c7ee
MG
1240 /* No better CPU than the current one was found. */
1241 if (env.best_cpu == -1)
1242 return -EAGAIN;
1243
0ec8aa00
PZ
1244 sched_setnuma(p, env.dst_nid);
1245
04bb2f94
RR
1246 /*
1247 * Reset the scan period if the task is being rescheduled on an
1248 * alternative node to recheck if the tasks is now properly placed.
1249 */
1250 p->numa_scan_period = task_scan_min(p);
1251
fb13c7ee
MG
1252 if (env.best_task == NULL) {
1253 int ret = migrate_task_to(p, env.best_cpu);
1254 return ret;
1255 }
1256
1257 ret = migrate_swap(p, env.best_task);
1258 put_task_struct(env.best_task);
1259 return ret;
e6628d5b
MG
1260}
1261
6b9a7460
MG
1262/* Attempt to migrate a task to a CPU on the preferred node. */
1263static void numa_migrate_preferred(struct task_struct *p)
1264{
2739d3ee
RR
1265 /* This task has no NUMA fault statistics yet */
1266 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1267 return;
1268
2739d3ee
RR
1269 /* Periodically retry migrating the task to the preferred node */
1270 p->numa_migrate_retry = jiffies + HZ;
1271
1272 /* Success if task is already running on preferred CPU */
de1b301a 1273 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1274 return;
1275
1276 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1277 task_numa_migrate(p);
6b9a7460
MG
1278}
1279
04bb2f94
RR
1280/*
1281 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1282 * increments. The more local the fault statistics are, the higher the scan
1283 * period will be for the next scan window. If local/remote ratio is below
1284 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1285 * scan period will decrease
1286 */
1287#define NUMA_PERIOD_SLOTS 10
1288#define NUMA_PERIOD_THRESHOLD 3
1289
1290/*
1291 * Increase the scan period (slow down scanning) if the majority of
1292 * our memory is already on our local node, or if the majority of
1293 * the page accesses are shared with other processes.
1294 * Otherwise, decrease the scan period.
1295 */
1296static void update_task_scan_period(struct task_struct *p,
1297 unsigned long shared, unsigned long private)
1298{
1299 unsigned int period_slot;
1300 int ratio;
1301 int diff;
1302
1303 unsigned long remote = p->numa_faults_locality[0];
1304 unsigned long local = p->numa_faults_locality[1];
1305
1306 /*
1307 * If there were no record hinting faults then either the task is
1308 * completely idle or all activity is areas that are not of interest
1309 * to automatic numa balancing. Scan slower
1310 */
1311 if (local + shared == 0) {
1312 p->numa_scan_period = min(p->numa_scan_period_max,
1313 p->numa_scan_period << 1);
1314
1315 p->mm->numa_next_scan = jiffies +
1316 msecs_to_jiffies(p->numa_scan_period);
1317
1318 return;
1319 }
1320
1321 /*
1322 * Prepare to scale scan period relative to the current period.
1323 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1324 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1325 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1326 */
1327 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1328 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1329 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1330 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1331 if (!slot)
1332 slot = 1;
1333 diff = slot * period_slot;
1334 } else {
1335 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1336
1337 /*
1338 * Scale scan rate increases based on sharing. There is an
1339 * inverse relationship between the degree of sharing and
1340 * the adjustment made to the scanning period. Broadly
1341 * speaking the intent is that there is little point
1342 * scanning faster if shared accesses dominate as it may
1343 * simply bounce migrations uselessly
1344 */
04bb2f94
RR
1345 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1346 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1347 }
1348
1349 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1350 task_scan_min(p), task_scan_max(p));
1351 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1352}
1353
cbee9f88
PZ
1354static void task_numa_placement(struct task_struct *p)
1355{
83e1d2cd
MG
1356 int seq, nid, max_nid = -1, max_group_nid = -1;
1357 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1358 unsigned long fault_types[2] = { 0, 0 };
7dbd13ed 1359 spinlock_t *group_lock = NULL;
cbee9f88 1360
2832bc19 1361 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1362 if (p->numa_scan_seq == seq)
1363 return;
1364 p->numa_scan_seq = seq;
598f0ec0 1365 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1366
7dbd13ed
MG
1367 /* If the task is part of a group prevent parallel updates to group stats */
1368 if (p->numa_group) {
1369 group_lock = &p->numa_group->lock;
1370 spin_lock(group_lock);
1371 }
1372
688b7585
MG
1373 /* Find the node with the highest number of faults */
1374 for_each_online_node(nid) {
83e1d2cd 1375 unsigned long faults = 0, group_faults = 0;
ac8e895b 1376 int priv, i;
745d6147 1377
ac8e895b 1378 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1379 long diff;
1380
ac8e895b 1381 i = task_faults_idx(nid, priv);
8c8a743c 1382 diff = -p->numa_faults[i];
745d6147 1383
ac8e895b
MG
1384 /* Decay existing window, copy faults since last scan */
1385 p->numa_faults[i] >>= 1;
1386 p->numa_faults[i] += p->numa_faults_buffer[i];
04bb2f94 1387 fault_types[priv] += p->numa_faults_buffer[i];
ac8e895b 1388 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1389
1390 faults += p->numa_faults[i];
8c8a743c 1391 diff += p->numa_faults[i];
83e1d2cd 1392 p->total_numa_faults += diff;
8c8a743c
PZ
1393 if (p->numa_group) {
1394 /* safe because we can only change our own group */
989348b5
MG
1395 p->numa_group->faults[i] += diff;
1396 p->numa_group->total_faults += diff;
1397 group_faults += p->numa_group->faults[i];
8c8a743c 1398 }
ac8e895b
MG
1399 }
1400
688b7585
MG
1401 if (faults > max_faults) {
1402 max_faults = faults;
1403 max_nid = nid;
1404 }
83e1d2cd
MG
1405
1406 if (group_faults > max_group_faults) {
1407 max_group_faults = group_faults;
1408 max_group_nid = nid;
1409 }
1410 }
1411
04bb2f94
RR
1412 update_task_scan_period(p, fault_types[0], fault_types[1]);
1413
7dbd13ed
MG
1414 if (p->numa_group) {
1415 /*
1416 * If the preferred task and group nids are different,
1417 * iterate over the nodes again to find the best place.
1418 */
1419 if (max_nid != max_group_nid) {
1420 unsigned long weight, max_weight = 0;
1421
1422 for_each_online_node(nid) {
1423 weight = task_weight(p, nid) + group_weight(p, nid);
1424 if (weight > max_weight) {
1425 max_weight = weight;
1426 max_nid = nid;
1427 }
83e1d2cd
MG
1428 }
1429 }
7dbd13ed
MG
1430
1431 spin_unlock(group_lock);
688b7585
MG
1432 }
1433
6b9a7460 1434 /* Preferred node as the node with the most faults */
3a7053b3 1435 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1436 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1437 sched_setnuma(p, max_nid);
6b9a7460 1438 numa_migrate_preferred(p);
3a7053b3 1439 }
cbee9f88
PZ
1440}
1441
8c8a743c
PZ
1442static inline int get_numa_group(struct numa_group *grp)
1443{
1444 return atomic_inc_not_zero(&grp->refcount);
1445}
1446
1447static inline void put_numa_group(struct numa_group *grp)
1448{
1449 if (atomic_dec_and_test(&grp->refcount))
1450 kfree_rcu(grp, rcu);
1451}
1452
3e6a9418
MG
1453static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1454 int *priv)
8c8a743c
PZ
1455{
1456 struct numa_group *grp, *my_grp;
1457 struct task_struct *tsk;
1458 bool join = false;
1459 int cpu = cpupid_to_cpu(cpupid);
1460 int i;
1461
1462 if (unlikely(!p->numa_group)) {
1463 unsigned int size = sizeof(struct numa_group) +
989348b5 1464 2*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1465
1466 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1467 if (!grp)
1468 return;
1469
1470 atomic_set(&grp->refcount, 1);
1471 spin_lock_init(&grp->lock);
1472 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1473 grp->gid = p->pid;
8c8a743c
PZ
1474
1475 for (i = 0; i < 2*nr_node_ids; i++)
989348b5 1476 grp->faults[i] = p->numa_faults[i];
8c8a743c 1477
989348b5 1478 grp->total_faults = p->total_numa_faults;
83e1d2cd 1479
8c8a743c
PZ
1480 list_add(&p->numa_entry, &grp->task_list);
1481 grp->nr_tasks++;
1482 rcu_assign_pointer(p->numa_group, grp);
1483 }
1484
1485 rcu_read_lock();
1486 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1487
1488 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1489 goto no_join;
8c8a743c
PZ
1490
1491 grp = rcu_dereference(tsk->numa_group);
1492 if (!grp)
3354781a 1493 goto no_join;
8c8a743c
PZ
1494
1495 my_grp = p->numa_group;
1496 if (grp == my_grp)
3354781a 1497 goto no_join;
8c8a743c
PZ
1498
1499 /*
1500 * Only join the other group if its bigger; if we're the bigger group,
1501 * the other task will join us.
1502 */
1503 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1504 goto no_join;
8c8a743c
PZ
1505
1506 /*
1507 * Tie-break on the grp address.
1508 */
1509 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1510 goto no_join;
8c8a743c 1511
dabe1d99
RR
1512 /* Always join threads in the same process. */
1513 if (tsk->mm == current->mm)
1514 join = true;
1515
1516 /* Simple filter to avoid false positives due to PID collisions */
1517 if (flags & TNF_SHARED)
1518 join = true;
8c8a743c 1519
3e6a9418
MG
1520 /* Update priv based on whether false sharing was detected */
1521 *priv = !join;
1522
dabe1d99 1523 if (join && !get_numa_group(grp))
3354781a 1524 goto no_join;
8c8a743c 1525
8c8a743c
PZ
1526 rcu_read_unlock();
1527
1528 if (!join)
1529 return;
1530
989348b5
MG
1531 double_lock(&my_grp->lock, &grp->lock);
1532
8c8a743c 1533 for (i = 0; i < 2*nr_node_ids; i++) {
989348b5
MG
1534 my_grp->faults[i] -= p->numa_faults[i];
1535 grp->faults[i] += p->numa_faults[i];
8c8a743c 1536 }
989348b5
MG
1537 my_grp->total_faults -= p->total_numa_faults;
1538 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1539
1540 list_move(&p->numa_entry, &grp->task_list);
1541 my_grp->nr_tasks--;
1542 grp->nr_tasks++;
1543
1544 spin_unlock(&my_grp->lock);
1545 spin_unlock(&grp->lock);
1546
1547 rcu_assign_pointer(p->numa_group, grp);
1548
1549 put_numa_group(my_grp);
3354781a
PZ
1550 return;
1551
1552no_join:
1553 rcu_read_unlock();
1554 return;
8c8a743c
PZ
1555}
1556
1557void task_numa_free(struct task_struct *p)
1558{
1559 struct numa_group *grp = p->numa_group;
1560 int i;
82727018 1561 void *numa_faults = p->numa_faults;
8c8a743c
PZ
1562
1563 if (grp) {
989348b5 1564 spin_lock(&grp->lock);
8c8a743c 1565 for (i = 0; i < 2*nr_node_ids; i++)
989348b5
MG
1566 grp->faults[i] -= p->numa_faults[i];
1567 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1568
8c8a743c
PZ
1569 list_del(&p->numa_entry);
1570 grp->nr_tasks--;
1571 spin_unlock(&grp->lock);
1572 rcu_assign_pointer(p->numa_group, NULL);
1573 put_numa_group(grp);
1574 }
1575
82727018
RR
1576 p->numa_faults = NULL;
1577 p->numa_faults_buffer = NULL;
1578 kfree(numa_faults);
8c8a743c
PZ
1579}
1580
cbee9f88
PZ
1581/*
1582 * Got a PROT_NONE fault for a page on @node.
1583 */
6688cc05 1584void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1585{
1586 struct task_struct *p = current;
6688cc05 1587 bool migrated = flags & TNF_MIGRATED;
ac8e895b 1588 int priv;
cbee9f88 1589
10e84b97 1590 if (!numabalancing_enabled)
1a687c2e
MG
1591 return;
1592
9ff1d9ff
MG
1593 /* for example, ksmd faulting in a user's mm */
1594 if (!p->mm)
1595 return;
1596
82727018
RR
1597 /* Do not worry about placement if exiting */
1598 if (p->state == TASK_DEAD)
1599 return;
1600
f809ca9a
MG
1601 /* Allocate buffer to track faults on a per-node basis */
1602 if (unlikely(!p->numa_faults)) {
ac8e895b 1603 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1604
745d6147
MG
1605 /* numa_faults and numa_faults_buffer share the allocation */
1606 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1607 if (!p->numa_faults)
1608 return;
745d6147
MG
1609
1610 BUG_ON(p->numa_faults_buffer);
ac8e895b 1611 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
83e1d2cd 1612 p->total_numa_faults = 0;
04bb2f94 1613 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1614 }
cbee9f88 1615
8c8a743c
PZ
1616 /*
1617 * First accesses are treated as private, otherwise consider accesses
1618 * to be private if the accessing pid has not changed
1619 */
1620 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1621 priv = 1;
1622 } else {
1623 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1624 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1625 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1626 }
1627
cbee9f88 1628 task_numa_placement(p);
f809ca9a 1629
2739d3ee
RR
1630 /*
1631 * Retry task to preferred node migration periodically, in case it
1632 * case it previously failed, or the scheduler moved us.
1633 */
1634 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1635 numa_migrate_preferred(p);
1636
b32e86b4
IM
1637 if (migrated)
1638 p->numa_pages_migrated += pages;
1639
ac8e895b 1640 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
04bb2f94 1641 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1642}
1643
6e5fb223
PZ
1644static void reset_ptenuma_scan(struct task_struct *p)
1645{
1646 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1647 p->mm->numa_scan_offset = 0;
1648}
1649
cbee9f88
PZ
1650/*
1651 * The expensive part of numa migration is done from task_work context.
1652 * Triggered from task_tick_numa().
1653 */
1654void task_numa_work(struct callback_head *work)
1655{
1656 unsigned long migrate, next_scan, now = jiffies;
1657 struct task_struct *p = current;
1658 struct mm_struct *mm = p->mm;
6e5fb223 1659 struct vm_area_struct *vma;
9f40604c 1660 unsigned long start, end;
598f0ec0 1661 unsigned long nr_pte_updates = 0;
9f40604c 1662 long pages;
cbee9f88
PZ
1663
1664 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1665
1666 work->next = work; /* protect against double add */
1667 /*
1668 * Who cares about NUMA placement when they're dying.
1669 *
1670 * NOTE: make sure not to dereference p->mm before this check,
1671 * exit_task_work() happens _after_ exit_mm() so we could be called
1672 * without p->mm even though we still had it when we enqueued this
1673 * work.
1674 */
1675 if (p->flags & PF_EXITING)
1676 return;
1677
930aa174 1678 if (!mm->numa_next_scan) {
7e8d16b6
MG
1679 mm->numa_next_scan = now +
1680 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1681 }
1682
cbee9f88
PZ
1683 /*
1684 * Enforce maximal scan/migration frequency..
1685 */
1686 migrate = mm->numa_next_scan;
1687 if (time_before(now, migrate))
1688 return;
1689
598f0ec0
MG
1690 if (p->numa_scan_period == 0) {
1691 p->numa_scan_period_max = task_scan_max(p);
1692 p->numa_scan_period = task_scan_min(p);
1693 }
cbee9f88 1694
fb003b80 1695 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1696 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1697 return;
1698
19a78d11
PZ
1699 /*
1700 * Delay this task enough that another task of this mm will likely win
1701 * the next time around.
1702 */
1703 p->node_stamp += 2 * TICK_NSEC;
1704
9f40604c
MG
1705 start = mm->numa_scan_offset;
1706 pages = sysctl_numa_balancing_scan_size;
1707 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1708 if (!pages)
1709 return;
cbee9f88 1710
6e5fb223 1711 down_read(&mm->mmap_sem);
9f40604c 1712 vma = find_vma(mm, start);
6e5fb223
PZ
1713 if (!vma) {
1714 reset_ptenuma_scan(p);
9f40604c 1715 start = 0;
6e5fb223
PZ
1716 vma = mm->mmap;
1717 }
9f40604c 1718 for (; vma; vma = vma->vm_next) {
fc314724 1719 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1720 continue;
1721
4591ce4f
MG
1722 /*
1723 * Shared library pages mapped by multiple processes are not
1724 * migrated as it is expected they are cache replicated. Avoid
1725 * hinting faults in read-only file-backed mappings or the vdso
1726 * as migrating the pages will be of marginal benefit.
1727 */
1728 if (!vma->vm_mm ||
1729 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1730 continue;
1731
9f40604c
MG
1732 do {
1733 start = max(start, vma->vm_start);
1734 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1735 end = min(end, vma->vm_end);
598f0ec0
MG
1736 nr_pte_updates += change_prot_numa(vma, start, end);
1737
1738 /*
1739 * Scan sysctl_numa_balancing_scan_size but ensure that
1740 * at least one PTE is updated so that unused virtual
1741 * address space is quickly skipped.
1742 */
1743 if (nr_pte_updates)
1744 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1745
9f40604c
MG
1746 start = end;
1747 if (pages <= 0)
1748 goto out;
1749 } while (end != vma->vm_end);
cbee9f88 1750 }
6e5fb223 1751
9f40604c 1752out:
6e5fb223 1753 /*
c69307d5
PZ
1754 * It is possible to reach the end of the VMA list but the last few
1755 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1756 * would find the !migratable VMA on the next scan but not reset the
1757 * scanner to the start so check it now.
6e5fb223
PZ
1758 */
1759 if (vma)
9f40604c 1760 mm->numa_scan_offset = start;
6e5fb223
PZ
1761 else
1762 reset_ptenuma_scan(p);
1763 up_read(&mm->mmap_sem);
cbee9f88
PZ
1764}
1765
1766/*
1767 * Drive the periodic memory faults..
1768 */
1769void task_tick_numa(struct rq *rq, struct task_struct *curr)
1770{
1771 struct callback_head *work = &curr->numa_work;
1772 u64 period, now;
1773
1774 /*
1775 * We don't care about NUMA placement if we don't have memory.
1776 */
1777 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1778 return;
1779
1780 /*
1781 * Using runtime rather than walltime has the dual advantage that
1782 * we (mostly) drive the selection from busy threads and that the
1783 * task needs to have done some actual work before we bother with
1784 * NUMA placement.
1785 */
1786 now = curr->se.sum_exec_runtime;
1787 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1788
1789 if (now - curr->node_stamp > period) {
4b96a29b 1790 if (!curr->node_stamp)
598f0ec0 1791 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1792 curr->node_stamp += period;
cbee9f88
PZ
1793
1794 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1795 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1796 task_work_add(curr, work, true);
1797 }
1798 }
1799}
1800#else
1801static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1802{
1803}
0ec8aa00
PZ
1804
1805static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1806{
1807}
1808
1809static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1810{
1811}
cbee9f88
PZ
1812#endif /* CONFIG_NUMA_BALANCING */
1813
30cfdcfc
DA
1814static void
1815account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1816{
1817 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1818 if (!parent_entity(se))
029632fb 1819 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1820#ifdef CONFIG_SMP
0ec8aa00
PZ
1821 if (entity_is_task(se)) {
1822 struct rq *rq = rq_of(cfs_rq);
1823
1824 account_numa_enqueue(rq, task_of(se));
1825 list_add(&se->group_node, &rq->cfs_tasks);
1826 }
367456c7 1827#endif
30cfdcfc 1828 cfs_rq->nr_running++;
30cfdcfc
DA
1829}
1830
1831static void
1832account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1833{
1834 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1835 if (!parent_entity(se))
029632fb 1836 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
1837 if (entity_is_task(se)) {
1838 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 1839 list_del_init(&se->group_node);
0ec8aa00 1840 }
30cfdcfc 1841 cfs_rq->nr_running--;
30cfdcfc
DA
1842}
1843
3ff6dcac
YZ
1844#ifdef CONFIG_FAIR_GROUP_SCHED
1845# ifdef CONFIG_SMP
cf5f0acf
PZ
1846static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1847{
1848 long tg_weight;
1849
1850 /*
1851 * Use this CPU's actual weight instead of the last load_contribution
1852 * to gain a more accurate current total weight. See
1853 * update_cfs_rq_load_contribution().
1854 */
bf5b986e 1855 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1856 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1857 tg_weight += cfs_rq->load.weight;
1858
1859 return tg_weight;
1860}
1861
6d5ab293 1862static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1863{
cf5f0acf 1864 long tg_weight, load, shares;
3ff6dcac 1865
cf5f0acf 1866 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1867 load = cfs_rq->load.weight;
3ff6dcac 1868
3ff6dcac 1869 shares = (tg->shares * load);
cf5f0acf
PZ
1870 if (tg_weight)
1871 shares /= tg_weight;
3ff6dcac
YZ
1872
1873 if (shares < MIN_SHARES)
1874 shares = MIN_SHARES;
1875 if (shares > tg->shares)
1876 shares = tg->shares;
1877
1878 return shares;
1879}
3ff6dcac 1880# else /* CONFIG_SMP */
6d5ab293 1881static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1882{
1883 return tg->shares;
1884}
3ff6dcac 1885# endif /* CONFIG_SMP */
2069dd75
PZ
1886static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1887 unsigned long weight)
1888{
19e5eebb
PT
1889 if (se->on_rq) {
1890 /* commit outstanding execution time */
1891 if (cfs_rq->curr == se)
1892 update_curr(cfs_rq);
2069dd75 1893 account_entity_dequeue(cfs_rq, se);
19e5eebb 1894 }
2069dd75
PZ
1895
1896 update_load_set(&se->load, weight);
1897
1898 if (se->on_rq)
1899 account_entity_enqueue(cfs_rq, se);
1900}
1901
82958366
PT
1902static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1903
6d5ab293 1904static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1905{
1906 struct task_group *tg;
1907 struct sched_entity *se;
3ff6dcac 1908 long shares;
2069dd75 1909
2069dd75
PZ
1910 tg = cfs_rq->tg;
1911 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1912 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1913 return;
3ff6dcac
YZ
1914#ifndef CONFIG_SMP
1915 if (likely(se->load.weight == tg->shares))
1916 return;
1917#endif
6d5ab293 1918 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1919
1920 reweight_entity(cfs_rq_of(se), se, shares);
1921}
1922#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1923static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1924{
1925}
1926#endif /* CONFIG_FAIR_GROUP_SCHED */
1927
141965c7 1928#ifdef CONFIG_SMP
5b51f2f8
PT
1929/*
1930 * We choose a half-life close to 1 scheduling period.
1931 * Note: The tables below are dependent on this value.
1932 */
1933#define LOAD_AVG_PERIOD 32
1934#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1935#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1936
1937/* Precomputed fixed inverse multiplies for multiplication by y^n */
1938static const u32 runnable_avg_yN_inv[] = {
1939 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1940 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1941 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1942 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1943 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1944 0x85aac367, 0x82cd8698,
1945};
1946
1947/*
1948 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1949 * over-estimates when re-combining.
1950 */
1951static const u32 runnable_avg_yN_sum[] = {
1952 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1953 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1954 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1955};
1956
9d85f21c
PT
1957/*
1958 * Approximate:
1959 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1960 */
1961static __always_inline u64 decay_load(u64 val, u64 n)
1962{
5b51f2f8
PT
1963 unsigned int local_n;
1964
1965 if (!n)
1966 return val;
1967 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1968 return 0;
1969
1970 /* after bounds checking we can collapse to 32-bit */
1971 local_n = n;
1972
1973 /*
1974 * As y^PERIOD = 1/2, we can combine
1975 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1976 * With a look-up table which covers k^n (n<PERIOD)
1977 *
1978 * To achieve constant time decay_load.
1979 */
1980 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1981 val >>= local_n / LOAD_AVG_PERIOD;
1982 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1983 }
1984
5b51f2f8
PT
1985 val *= runnable_avg_yN_inv[local_n];
1986 /* We don't use SRR here since we always want to round down. */
1987 return val >> 32;
1988}
1989
1990/*
1991 * For updates fully spanning n periods, the contribution to runnable
1992 * average will be: \Sum 1024*y^n
1993 *
1994 * We can compute this reasonably efficiently by combining:
1995 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1996 */
1997static u32 __compute_runnable_contrib(u64 n)
1998{
1999 u32 contrib = 0;
2000
2001 if (likely(n <= LOAD_AVG_PERIOD))
2002 return runnable_avg_yN_sum[n];
2003 else if (unlikely(n >= LOAD_AVG_MAX_N))
2004 return LOAD_AVG_MAX;
2005
2006 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2007 do {
2008 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2009 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2010
2011 n -= LOAD_AVG_PERIOD;
2012 } while (n > LOAD_AVG_PERIOD);
2013
2014 contrib = decay_load(contrib, n);
2015 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2016}
2017
2018/*
2019 * We can represent the historical contribution to runnable average as the
2020 * coefficients of a geometric series. To do this we sub-divide our runnable
2021 * history into segments of approximately 1ms (1024us); label the segment that
2022 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2023 *
2024 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2025 * p0 p1 p2
2026 * (now) (~1ms ago) (~2ms ago)
2027 *
2028 * Let u_i denote the fraction of p_i that the entity was runnable.
2029 *
2030 * We then designate the fractions u_i as our co-efficients, yielding the
2031 * following representation of historical load:
2032 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2033 *
2034 * We choose y based on the with of a reasonably scheduling period, fixing:
2035 * y^32 = 0.5
2036 *
2037 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2038 * approximately half as much as the contribution to load within the last ms
2039 * (u_0).
2040 *
2041 * When a period "rolls over" and we have new u_0`, multiplying the previous
2042 * sum again by y is sufficient to update:
2043 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2044 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2045 */
2046static __always_inline int __update_entity_runnable_avg(u64 now,
2047 struct sched_avg *sa,
2048 int runnable)
2049{
5b51f2f8
PT
2050 u64 delta, periods;
2051 u32 runnable_contrib;
9d85f21c
PT
2052 int delta_w, decayed = 0;
2053
2054 delta = now - sa->last_runnable_update;
2055 /*
2056 * This should only happen when time goes backwards, which it
2057 * unfortunately does during sched clock init when we swap over to TSC.
2058 */
2059 if ((s64)delta < 0) {
2060 sa->last_runnable_update = now;
2061 return 0;
2062 }
2063
2064 /*
2065 * Use 1024ns as the unit of measurement since it's a reasonable
2066 * approximation of 1us and fast to compute.
2067 */
2068 delta >>= 10;
2069 if (!delta)
2070 return 0;
2071 sa->last_runnable_update = now;
2072
2073 /* delta_w is the amount already accumulated against our next period */
2074 delta_w = sa->runnable_avg_period % 1024;
2075 if (delta + delta_w >= 1024) {
2076 /* period roll-over */
2077 decayed = 1;
2078
2079 /*
2080 * Now that we know we're crossing a period boundary, figure
2081 * out how much from delta we need to complete the current
2082 * period and accrue it.
2083 */
2084 delta_w = 1024 - delta_w;
5b51f2f8
PT
2085 if (runnable)
2086 sa->runnable_avg_sum += delta_w;
2087 sa->runnable_avg_period += delta_w;
2088
2089 delta -= delta_w;
2090
2091 /* Figure out how many additional periods this update spans */
2092 periods = delta / 1024;
2093 delta %= 1024;
2094
2095 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2096 periods + 1);
2097 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2098 periods + 1);
2099
2100 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2101 runnable_contrib = __compute_runnable_contrib(periods);
2102 if (runnable)
2103 sa->runnable_avg_sum += runnable_contrib;
2104 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2105 }
2106
2107 /* Remainder of delta accrued against u_0` */
2108 if (runnable)
2109 sa->runnable_avg_sum += delta;
2110 sa->runnable_avg_period += delta;
2111
2112 return decayed;
2113}
2114
9ee474f5 2115/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2116static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2117{
2118 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2119 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2120
2121 decays -= se->avg.decay_count;
2122 if (!decays)
aff3e498 2123 return 0;
9ee474f5
PT
2124
2125 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2126 se->avg.decay_count = 0;
aff3e498
PT
2127
2128 return decays;
9ee474f5
PT
2129}
2130
c566e8e9
PT
2131#ifdef CONFIG_FAIR_GROUP_SCHED
2132static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2133 int force_update)
2134{
2135 struct task_group *tg = cfs_rq->tg;
bf5b986e 2136 long tg_contrib;
c566e8e9
PT
2137
2138 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2139 tg_contrib -= cfs_rq->tg_load_contrib;
2140
bf5b986e
AS
2141 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2142 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2143 cfs_rq->tg_load_contrib += tg_contrib;
2144 }
2145}
8165e145 2146
bb17f655
PT
2147/*
2148 * Aggregate cfs_rq runnable averages into an equivalent task_group
2149 * representation for computing load contributions.
2150 */
2151static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2152 struct cfs_rq *cfs_rq)
2153{
2154 struct task_group *tg = cfs_rq->tg;
2155 long contrib;
2156
2157 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2158 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2159 sa->runnable_avg_period + 1);
2160 contrib -= cfs_rq->tg_runnable_contrib;
2161
2162 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2163 atomic_add(contrib, &tg->runnable_avg);
2164 cfs_rq->tg_runnable_contrib += contrib;
2165 }
2166}
2167
8165e145
PT
2168static inline void __update_group_entity_contrib(struct sched_entity *se)
2169{
2170 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2171 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2172 int runnable_avg;
2173
8165e145
PT
2174 u64 contrib;
2175
2176 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2177 se->avg.load_avg_contrib = div_u64(contrib,
2178 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2179
2180 /*
2181 * For group entities we need to compute a correction term in the case
2182 * that they are consuming <1 cpu so that we would contribute the same
2183 * load as a task of equal weight.
2184 *
2185 * Explicitly co-ordinating this measurement would be expensive, but
2186 * fortunately the sum of each cpus contribution forms a usable
2187 * lower-bound on the true value.
2188 *
2189 * Consider the aggregate of 2 contributions. Either they are disjoint
2190 * (and the sum represents true value) or they are disjoint and we are
2191 * understating by the aggregate of their overlap.
2192 *
2193 * Extending this to N cpus, for a given overlap, the maximum amount we
2194 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2195 * cpus that overlap for this interval and w_i is the interval width.
2196 *
2197 * On a small machine; the first term is well-bounded which bounds the
2198 * total error since w_i is a subset of the period. Whereas on a
2199 * larger machine, while this first term can be larger, if w_i is the
2200 * of consequential size guaranteed to see n_i*w_i quickly converge to
2201 * our upper bound of 1-cpu.
2202 */
2203 runnable_avg = atomic_read(&tg->runnable_avg);
2204 if (runnable_avg < NICE_0_LOAD) {
2205 se->avg.load_avg_contrib *= runnable_avg;
2206 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2207 }
8165e145 2208}
c566e8e9
PT
2209#else
2210static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2211 int force_update) {}
bb17f655
PT
2212static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2213 struct cfs_rq *cfs_rq) {}
8165e145 2214static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2215#endif
2216
8165e145
PT
2217static inline void __update_task_entity_contrib(struct sched_entity *se)
2218{
2219 u32 contrib;
2220
2221 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2222 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2223 contrib /= (se->avg.runnable_avg_period + 1);
2224 se->avg.load_avg_contrib = scale_load(contrib);
2225}
2226
2dac754e
PT
2227/* Compute the current contribution to load_avg by se, return any delta */
2228static long __update_entity_load_avg_contrib(struct sched_entity *se)
2229{
2230 long old_contrib = se->avg.load_avg_contrib;
2231
8165e145
PT
2232 if (entity_is_task(se)) {
2233 __update_task_entity_contrib(se);
2234 } else {
bb17f655 2235 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2236 __update_group_entity_contrib(se);
2237 }
2dac754e
PT
2238
2239 return se->avg.load_avg_contrib - old_contrib;
2240}
2241
9ee474f5
PT
2242static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2243 long load_contrib)
2244{
2245 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2246 cfs_rq->blocked_load_avg -= load_contrib;
2247 else
2248 cfs_rq->blocked_load_avg = 0;
2249}
2250
f1b17280
PT
2251static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2252
9d85f21c 2253/* Update a sched_entity's runnable average */
9ee474f5
PT
2254static inline void update_entity_load_avg(struct sched_entity *se,
2255 int update_cfs_rq)
9d85f21c 2256{
2dac754e
PT
2257 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2258 long contrib_delta;
f1b17280 2259 u64 now;
2dac754e 2260
f1b17280
PT
2261 /*
2262 * For a group entity we need to use their owned cfs_rq_clock_task() in
2263 * case they are the parent of a throttled hierarchy.
2264 */
2265 if (entity_is_task(se))
2266 now = cfs_rq_clock_task(cfs_rq);
2267 else
2268 now = cfs_rq_clock_task(group_cfs_rq(se));
2269
2270 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2271 return;
2272
2273 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2274
2275 if (!update_cfs_rq)
2276 return;
2277
2dac754e
PT
2278 if (se->on_rq)
2279 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2280 else
2281 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2282}
2283
2284/*
2285 * Decay the load contributed by all blocked children and account this so that
2286 * their contribution may appropriately discounted when they wake up.
2287 */
aff3e498 2288static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2289{
f1b17280 2290 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2291 u64 decays;
2292
2293 decays = now - cfs_rq->last_decay;
aff3e498 2294 if (!decays && !force_update)
9ee474f5
PT
2295 return;
2296
2509940f
AS
2297 if (atomic_long_read(&cfs_rq->removed_load)) {
2298 unsigned long removed_load;
2299 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2300 subtract_blocked_load_contrib(cfs_rq, removed_load);
2301 }
9ee474f5 2302
aff3e498
PT
2303 if (decays) {
2304 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2305 decays);
2306 atomic64_add(decays, &cfs_rq->decay_counter);
2307 cfs_rq->last_decay = now;
2308 }
c566e8e9
PT
2309
2310 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2311}
18bf2805
BS
2312
2313static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2314{
78becc27 2315 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2316 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2317}
2dac754e
PT
2318
2319/* Add the load generated by se into cfs_rq's child load-average */
2320static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2321 struct sched_entity *se,
2322 int wakeup)
2dac754e 2323{
aff3e498
PT
2324 /*
2325 * We track migrations using entity decay_count <= 0, on a wake-up
2326 * migration we use a negative decay count to track the remote decays
2327 * accumulated while sleeping.
a75cdaa9
AS
2328 *
2329 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2330 * are seen by enqueue_entity_load_avg() as a migration with an already
2331 * constructed load_avg_contrib.
aff3e498
PT
2332 */
2333 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2334 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2335 if (se->avg.decay_count) {
2336 /*
2337 * In a wake-up migration we have to approximate the
2338 * time sleeping. This is because we can't synchronize
2339 * clock_task between the two cpus, and it is not
2340 * guaranteed to be read-safe. Instead, we can
2341 * approximate this using our carried decays, which are
2342 * explicitly atomically readable.
2343 */
2344 se->avg.last_runnable_update -= (-se->avg.decay_count)
2345 << 20;
2346 update_entity_load_avg(se, 0);
2347 /* Indicate that we're now synchronized and on-rq */
2348 se->avg.decay_count = 0;
2349 }
9ee474f5
PT
2350 wakeup = 0;
2351 } else {
282cf499
AS
2352 /*
2353 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2354 * would have made count negative); we must be careful to avoid
2355 * double-accounting blocked time after synchronizing decays.
2356 */
2357 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2358 << 20;
9ee474f5
PT
2359 }
2360
aff3e498
PT
2361 /* migrated tasks did not contribute to our blocked load */
2362 if (wakeup) {
9ee474f5 2363 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2364 update_entity_load_avg(se, 0);
2365 }
9ee474f5 2366
2dac754e 2367 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2368 /* we force update consideration on load-balancer moves */
2369 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2370}
2371
9ee474f5
PT
2372/*
2373 * Remove se's load from this cfs_rq child load-average, if the entity is
2374 * transitioning to a blocked state we track its projected decay using
2375 * blocked_load_avg.
2376 */
2dac754e 2377static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2378 struct sched_entity *se,
2379 int sleep)
2dac754e 2380{
9ee474f5 2381 update_entity_load_avg(se, 1);
aff3e498
PT
2382 /* we force update consideration on load-balancer moves */
2383 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2384
2dac754e 2385 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2386 if (sleep) {
2387 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2388 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2389 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2390}
642dbc39
VG
2391
2392/*
2393 * Update the rq's load with the elapsed running time before entering
2394 * idle. if the last scheduled task is not a CFS task, idle_enter will
2395 * be the only way to update the runnable statistic.
2396 */
2397void idle_enter_fair(struct rq *this_rq)
2398{
2399 update_rq_runnable_avg(this_rq, 1);
2400}
2401
2402/*
2403 * Update the rq's load with the elapsed idle time before a task is
2404 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2405 * be the only way to update the runnable statistic.
2406 */
2407void idle_exit_fair(struct rq *this_rq)
2408{
2409 update_rq_runnable_avg(this_rq, 0);
2410}
2411
9d85f21c 2412#else
9ee474f5
PT
2413static inline void update_entity_load_avg(struct sched_entity *se,
2414 int update_cfs_rq) {}
18bf2805 2415static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2416static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2417 struct sched_entity *se,
2418 int wakeup) {}
2dac754e 2419static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2420 struct sched_entity *se,
2421 int sleep) {}
aff3e498
PT
2422static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2423 int force_update) {}
9d85f21c
PT
2424#endif
2425
2396af69 2426static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2427{
bf0f6f24 2428#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2429 struct task_struct *tsk = NULL;
2430
2431 if (entity_is_task(se))
2432 tsk = task_of(se);
2433
41acab88 2434 if (se->statistics.sleep_start) {
78becc27 2435 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2436
2437 if ((s64)delta < 0)
2438 delta = 0;
2439
41acab88
LDM
2440 if (unlikely(delta > se->statistics.sleep_max))
2441 se->statistics.sleep_max = delta;
bf0f6f24 2442
8c79a045 2443 se->statistics.sleep_start = 0;
41acab88 2444 se->statistics.sum_sleep_runtime += delta;
9745512c 2445
768d0c27 2446 if (tsk) {
e414314c 2447 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2448 trace_sched_stat_sleep(tsk, delta);
2449 }
bf0f6f24 2450 }
41acab88 2451 if (se->statistics.block_start) {
78becc27 2452 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2453
2454 if ((s64)delta < 0)
2455 delta = 0;
2456
41acab88
LDM
2457 if (unlikely(delta > se->statistics.block_max))
2458 se->statistics.block_max = delta;
bf0f6f24 2459
8c79a045 2460 se->statistics.block_start = 0;
41acab88 2461 se->statistics.sum_sleep_runtime += delta;
30084fbd 2462
e414314c 2463 if (tsk) {
8f0dfc34 2464 if (tsk->in_iowait) {
41acab88
LDM
2465 se->statistics.iowait_sum += delta;
2466 se->statistics.iowait_count++;
768d0c27 2467 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2468 }
2469
b781a602
AV
2470 trace_sched_stat_blocked(tsk, delta);
2471
e414314c
PZ
2472 /*
2473 * Blocking time is in units of nanosecs, so shift by
2474 * 20 to get a milliseconds-range estimation of the
2475 * amount of time that the task spent sleeping:
2476 */
2477 if (unlikely(prof_on == SLEEP_PROFILING)) {
2478 profile_hits(SLEEP_PROFILING,
2479 (void *)get_wchan(tsk),
2480 delta >> 20);
2481 }
2482 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2483 }
bf0f6f24
IM
2484 }
2485#endif
2486}
2487
ddc97297
PZ
2488static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2489{
2490#ifdef CONFIG_SCHED_DEBUG
2491 s64 d = se->vruntime - cfs_rq->min_vruntime;
2492
2493 if (d < 0)
2494 d = -d;
2495
2496 if (d > 3*sysctl_sched_latency)
2497 schedstat_inc(cfs_rq, nr_spread_over);
2498#endif
2499}
2500
aeb73b04
PZ
2501static void
2502place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2503{
1af5f730 2504 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2505
2cb8600e
PZ
2506 /*
2507 * The 'current' period is already promised to the current tasks,
2508 * however the extra weight of the new task will slow them down a
2509 * little, place the new task so that it fits in the slot that
2510 * stays open at the end.
2511 */
94dfb5e7 2512 if (initial && sched_feat(START_DEBIT))
f9c0b095 2513 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2514
a2e7a7eb 2515 /* sleeps up to a single latency don't count. */
5ca9880c 2516 if (!initial) {
a2e7a7eb 2517 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2518
a2e7a7eb
MG
2519 /*
2520 * Halve their sleep time's effect, to allow
2521 * for a gentler effect of sleepers:
2522 */
2523 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2524 thresh >>= 1;
51e0304c 2525
a2e7a7eb 2526 vruntime -= thresh;
aeb73b04
PZ
2527 }
2528
b5d9d734 2529 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2530 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2531}
2532
d3d9dc33
PT
2533static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2534
bf0f6f24 2535static void
88ec22d3 2536enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2537{
88ec22d3
PZ
2538 /*
2539 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2540 * through calling update_curr().
88ec22d3 2541 */
371fd7e7 2542 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2543 se->vruntime += cfs_rq->min_vruntime;
2544
bf0f6f24 2545 /*
a2a2d680 2546 * Update run-time statistics of the 'current'.
bf0f6f24 2547 */
b7cc0896 2548 update_curr(cfs_rq);
f269ae04 2549 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2550 account_entity_enqueue(cfs_rq, se);
2551 update_cfs_shares(cfs_rq);
bf0f6f24 2552
88ec22d3 2553 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2554 place_entity(cfs_rq, se, 0);
2396af69 2555 enqueue_sleeper(cfs_rq, se);
e9acbff6 2556 }
bf0f6f24 2557
d2417e5a 2558 update_stats_enqueue(cfs_rq, se);
ddc97297 2559 check_spread(cfs_rq, se);
83b699ed
SV
2560 if (se != cfs_rq->curr)
2561 __enqueue_entity(cfs_rq, se);
2069dd75 2562 se->on_rq = 1;
3d4b47b4 2563
d3d9dc33 2564 if (cfs_rq->nr_running == 1) {
3d4b47b4 2565 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2566 check_enqueue_throttle(cfs_rq);
2567 }
bf0f6f24
IM
2568}
2569
2c13c919 2570static void __clear_buddies_last(struct sched_entity *se)
2002c695 2571{
2c13c919
RR
2572 for_each_sched_entity(se) {
2573 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2574 if (cfs_rq->last == se)
2575 cfs_rq->last = NULL;
2576 else
2577 break;
2578 }
2579}
2002c695 2580
2c13c919
RR
2581static void __clear_buddies_next(struct sched_entity *se)
2582{
2583 for_each_sched_entity(se) {
2584 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2585 if (cfs_rq->next == se)
2586 cfs_rq->next = NULL;
2587 else
2588 break;
2589 }
2002c695
PZ
2590}
2591
ac53db59
RR
2592static void __clear_buddies_skip(struct sched_entity *se)
2593{
2594 for_each_sched_entity(se) {
2595 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2596 if (cfs_rq->skip == se)
2597 cfs_rq->skip = NULL;
2598 else
2599 break;
2600 }
2601}
2602
a571bbea
PZ
2603static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2604{
2c13c919
RR
2605 if (cfs_rq->last == se)
2606 __clear_buddies_last(se);
2607
2608 if (cfs_rq->next == se)
2609 __clear_buddies_next(se);
ac53db59
RR
2610
2611 if (cfs_rq->skip == se)
2612 __clear_buddies_skip(se);
a571bbea
PZ
2613}
2614
6c16a6dc 2615static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2616
bf0f6f24 2617static void
371fd7e7 2618dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2619{
a2a2d680
DA
2620 /*
2621 * Update run-time statistics of the 'current'.
2622 */
2623 update_curr(cfs_rq);
17bc14b7 2624 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2625
19b6a2e3 2626 update_stats_dequeue(cfs_rq, se);
371fd7e7 2627 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2628#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2629 if (entity_is_task(se)) {
2630 struct task_struct *tsk = task_of(se);
2631
2632 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2633 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2634 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2635 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2636 }
db36cc7d 2637#endif
67e9fb2a
PZ
2638 }
2639
2002c695 2640 clear_buddies(cfs_rq, se);
4793241b 2641
83b699ed 2642 if (se != cfs_rq->curr)
30cfdcfc 2643 __dequeue_entity(cfs_rq, se);
17bc14b7 2644 se->on_rq = 0;
30cfdcfc 2645 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2646
2647 /*
2648 * Normalize the entity after updating the min_vruntime because the
2649 * update can refer to the ->curr item and we need to reflect this
2650 * movement in our normalized position.
2651 */
371fd7e7 2652 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2653 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2654
d8b4986d
PT
2655 /* return excess runtime on last dequeue */
2656 return_cfs_rq_runtime(cfs_rq);
2657
1e876231 2658 update_min_vruntime(cfs_rq);
17bc14b7 2659 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2660}
2661
2662/*
2663 * Preempt the current task with a newly woken task if needed:
2664 */
7c92e54f 2665static void
2e09bf55 2666check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2667{
11697830 2668 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2669 struct sched_entity *se;
2670 s64 delta;
11697830 2671
6d0f0ebd 2672 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2673 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2674 if (delta_exec > ideal_runtime) {
bf0f6f24 2675 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2676 /*
2677 * The current task ran long enough, ensure it doesn't get
2678 * re-elected due to buddy favours.
2679 */
2680 clear_buddies(cfs_rq, curr);
f685ceac
MG
2681 return;
2682 }
2683
2684 /*
2685 * Ensure that a task that missed wakeup preemption by a
2686 * narrow margin doesn't have to wait for a full slice.
2687 * This also mitigates buddy induced latencies under load.
2688 */
f685ceac
MG
2689 if (delta_exec < sysctl_sched_min_granularity)
2690 return;
2691
f4cfb33e
WX
2692 se = __pick_first_entity(cfs_rq);
2693 delta = curr->vruntime - se->vruntime;
f685ceac 2694
f4cfb33e
WX
2695 if (delta < 0)
2696 return;
d7d82944 2697
f4cfb33e
WX
2698 if (delta > ideal_runtime)
2699 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2700}
2701
83b699ed 2702static void
8494f412 2703set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2704{
83b699ed
SV
2705 /* 'current' is not kept within the tree. */
2706 if (se->on_rq) {
2707 /*
2708 * Any task has to be enqueued before it get to execute on
2709 * a CPU. So account for the time it spent waiting on the
2710 * runqueue.
2711 */
2712 update_stats_wait_end(cfs_rq, se);
2713 __dequeue_entity(cfs_rq, se);
2714 }
2715
79303e9e 2716 update_stats_curr_start(cfs_rq, se);
429d43bc 2717 cfs_rq->curr = se;
eba1ed4b
IM
2718#ifdef CONFIG_SCHEDSTATS
2719 /*
2720 * Track our maximum slice length, if the CPU's load is at
2721 * least twice that of our own weight (i.e. dont track it
2722 * when there are only lesser-weight tasks around):
2723 */
495eca49 2724 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2725 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2726 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2727 }
2728#endif
4a55b450 2729 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2730}
2731
3f3a4904
PZ
2732static int
2733wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2734
ac53db59
RR
2735/*
2736 * Pick the next process, keeping these things in mind, in this order:
2737 * 1) keep things fair between processes/task groups
2738 * 2) pick the "next" process, since someone really wants that to run
2739 * 3) pick the "last" process, for cache locality
2740 * 4) do not run the "skip" process, if something else is available
2741 */
f4b6755f 2742static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2743{
ac53db59 2744 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2745 struct sched_entity *left = se;
f4b6755f 2746
ac53db59
RR
2747 /*
2748 * Avoid running the skip buddy, if running something else can
2749 * be done without getting too unfair.
2750 */
2751 if (cfs_rq->skip == se) {
2752 struct sched_entity *second = __pick_next_entity(se);
2753 if (second && wakeup_preempt_entity(second, left) < 1)
2754 se = second;
2755 }
aa2ac252 2756
f685ceac
MG
2757 /*
2758 * Prefer last buddy, try to return the CPU to a preempted task.
2759 */
2760 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2761 se = cfs_rq->last;
2762
ac53db59
RR
2763 /*
2764 * Someone really wants this to run. If it's not unfair, run it.
2765 */
2766 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2767 se = cfs_rq->next;
2768
f685ceac 2769 clear_buddies(cfs_rq, se);
4793241b
PZ
2770
2771 return se;
aa2ac252
PZ
2772}
2773
d3d9dc33
PT
2774static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2775
ab6cde26 2776static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2777{
2778 /*
2779 * If still on the runqueue then deactivate_task()
2780 * was not called and update_curr() has to be done:
2781 */
2782 if (prev->on_rq)
b7cc0896 2783 update_curr(cfs_rq);
bf0f6f24 2784
d3d9dc33
PT
2785 /* throttle cfs_rqs exceeding runtime */
2786 check_cfs_rq_runtime(cfs_rq);
2787
ddc97297 2788 check_spread(cfs_rq, prev);
30cfdcfc 2789 if (prev->on_rq) {
5870db5b 2790 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2791 /* Put 'current' back into the tree. */
2792 __enqueue_entity(cfs_rq, prev);
9d85f21c 2793 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2794 update_entity_load_avg(prev, 1);
30cfdcfc 2795 }
429d43bc 2796 cfs_rq->curr = NULL;
bf0f6f24
IM
2797}
2798
8f4d37ec
PZ
2799static void
2800entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2801{
bf0f6f24 2802 /*
30cfdcfc 2803 * Update run-time statistics of the 'current'.
bf0f6f24 2804 */
30cfdcfc 2805 update_curr(cfs_rq);
bf0f6f24 2806
9d85f21c
PT
2807 /*
2808 * Ensure that runnable average is periodically updated.
2809 */
9ee474f5 2810 update_entity_load_avg(curr, 1);
aff3e498 2811 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2812 update_cfs_shares(cfs_rq);
9d85f21c 2813
8f4d37ec
PZ
2814#ifdef CONFIG_SCHED_HRTICK
2815 /*
2816 * queued ticks are scheduled to match the slice, so don't bother
2817 * validating it and just reschedule.
2818 */
983ed7a6
HH
2819 if (queued) {
2820 resched_task(rq_of(cfs_rq)->curr);
2821 return;
2822 }
8f4d37ec
PZ
2823 /*
2824 * don't let the period tick interfere with the hrtick preemption
2825 */
2826 if (!sched_feat(DOUBLE_TICK) &&
2827 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2828 return;
2829#endif
2830
2c2efaed 2831 if (cfs_rq->nr_running > 1)
2e09bf55 2832 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2833}
2834
ab84d31e
PT
2835
2836/**************************************************
2837 * CFS bandwidth control machinery
2838 */
2839
2840#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2841
2842#ifdef HAVE_JUMP_LABEL
c5905afb 2843static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2844
2845static inline bool cfs_bandwidth_used(void)
2846{
c5905afb 2847 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2848}
2849
1ee14e6c 2850void cfs_bandwidth_usage_inc(void)
029632fb 2851{
1ee14e6c
BS
2852 static_key_slow_inc(&__cfs_bandwidth_used);
2853}
2854
2855void cfs_bandwidth_usage_dec(void)
2856{
2857 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2858}
2859#else /* HAVE_JUMP_LABEL */
2860static bool cfs_bandwidth_used(void)
2861{
2862 return true;
2863}
2864
1ee14e6c
BS
2865void cfs_bandwidth_usage_inc(void) {}
2866void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
2867#endif /* HAVE_JUMP_LABEL */
2868
ab84d31e
PT
2869/*
2870 * default period for cfs group bandwidth.
2871 * default: 0.1s, units: nanoseconds
2872 */
2873static inline u64 default_cfs_period(void)
2874{
2875 return 100000000ULL;
2876}
ec12cb7f
PT
2877
2878static inline u64 sched_cfs_bandwidth_slice(void)
2879{
2880 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2881}
2882
a9cf55b2
PT
2883/*
2884 * Replenish runtime according to assigned quota and update expiration time.
2885 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2886 * additional synchronization around rq->lock.
2887 *
2888 * requires cfs_b->lock
2889 */
029632fb 2890void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2891{
2892 u64 now;
2893
2894 if (cfs_b->quota == RUNTIME_INF)
2895 return;
2896
2897 now = sched_clock_cpu(smp_processor_id());
2898 cfs_b->runtime = cfs_b->quota;
2899 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2900}
2901
029632fb
PZ
2902static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2903{
2904 return &tg->cfs_bandwidth;
2905}
2906
f1b17280
PT
2907/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2908static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2909{
2910 if (unlikely(cfs_rq->throttle_count))
2911 return cfs_rq->throttled_clock_task;
2912
78becc27 2913 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2914}
2915
85dac906
PT
2916/* returns 0 on failure to allocate runtime */
2917static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2918{
2919 struct task_group *tg = cfs_rq->tg;
2920 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2921 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2922
2923 /* note: this is a positive sum as runtime_remaining <= 0 */
2924 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2925
2926 raw_spin_lock(&cfs_b->lock);
2927 if (cfs_b->quota == RUNTIME_INF)
2928 amount = min_amount;
58088ad0 2929 else {
a9cf55b2
PT
2930 /*
2931 * If the bandwidth pool has become inactive, then at least one
2932 * period must have elapsed since the last consumption.
2933 * Refresh the global state and ensure bandwidth timer becomes
2934 * active.
2935 */
2936 if (!cfs_b->timer_active) {
2937 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2938 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2939 }
58088ad0
PT
2940
2941 if (cfs_b->runtime > 0) {
2942 amount = min(cfs_b->runtime, min_amount);
2943 cfs_b->runtime -= amount;
2944 cfs_b->idle = 0;
2945 }
ec12cb7f 2946 }
a9cf55b2 2947 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2948 raw_spin_unlock(&cfs_b->lock);
2949
2950 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2951 /*
2952 * we may have advanced our local expiration to account for allowed
2953 * spread between our sched_clock and the one on which runtime was
2954 * issued.
2955 */
2956 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2957 cfs_rq->runtime_expires = expires;
85dac906
PT
2958
2959 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2960}
2961
a9cf55b2
PT
2962/*
2963 * Note: This depends on the synchronization provided by sched_clock and the
2964 * fact that rq->clock snapshots this value.
2965 */
2966static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2967{
a9cf55b2 2968 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2969
2970 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2971 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2972 return;
2973
a9cf55b2
PT
2974 if (cfs_rq->runtime_remaining < 0)
2975 return;
2976
2977 /*
2978 * If the local deadline has passed we have to consider the
2979 * possibility that our sched_clock is 'fast' and the global deadline
2980 * has not truly expired.
2981 *
2982 * Fortunately we can check determine whether this the case by checking
2983 * whether the global deadline has advanced.
2984 */
2985
2986 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2987 /* extend local deadline, drift is bounded above by 2 ticks */
2988 cfs_rq->runtime_expires += TICK_NSEC;
2989 } else {
2990 /* global deadline is ahead, expiration has passed */
2991 cfs_rq->runtime_remaining = 0;
2992 }
2993}
2994
9dbdb155 2995static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
2996{
2997 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2998 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2999 expire_cfs_rq_runtime(cfs_rq);
3000
3001 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3002 return;
3003
85dac906
PT
3004 /*
3005 * if we're unable to extend our runtime we resched so that the active
3006 * hierarchy can be throttled
3007 */
3008 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3009 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3010}
3011
6c16a6dc 3012static __always_inline
9dbdb155 3013void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3014{
56f570e5 3015 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3016 return;
3017
3018 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3019}
3020
85dac906
PT
3021static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3022{
56f570e5 3023 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3024}
3025
64660c86
PT
3026/* check whether cfs_rq, or any parent, is throttled */
3027static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3028{
56f570e5 3029 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3030}
3031
3032/*
3033 * Ensure that neither of the group entities corresponding to src_cpu or
3034 * dest_cpu are members of a throttled hierarchy when performing group
3035 * load-balance operations.
3036 */
3037static inline int throttled_lb_pair(struct task_group *tg,
3038 int src_cpu, int dest_cpu)
3039{
3040 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3041
3042 src_cfs_rq = tg->cfs_rq[src_cpu];
3043 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3044
3045 return throttled_hierarchy(src_cfs_rq) ||
3046 throttled_hierarchy(dest_cfs_rq);
3047}
3048
3049/* updated child weight may affect parent so we have to do this bottom up */
3050static int tg_unthrottle_up(struct task_group *tg, void *data)
3051{
3052 struct rq *rq = data;
3053 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3054
3055 cfs_rq->throttle_count--;
3056#ifdef CONFIG_SMP
3057 if (!cfs_rq->throttle_count) {
f1b17280 3058 /* adjust cfs_rq_clock_task() */
78becc27 3059 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3060 cfs_rq->throttled_clock_task;
64660c86
PT
3061 }
3062#endif
3063
3064 return 0;
3065}
3066
3067static int tg_throttle_down(struct task_group *tg, void *data)
3068{
3069 struct rq *rq = data;
3070 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3071
82958366
PT
3072 /* group is entering throttled state, stop time */
3073 if (!cfs_rq->throttle_count)
78becc27 3074 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3075 cfs_rq->throttle_count++;
3076
3077 return 0;
3078}
3079
d3d9dc33 3080static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3081{
3082 struct rq *rq = rq_of(cfs_rq);
3083 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3084 struct sched_entity *se;
3085 long task_delta, dequeue = 1;
3086
3087 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3088
f1b17280 3089 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3090 rcu_read_lock();
3091 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3092 rcu_read_unlock();
85dac906
PT
3093
3094 task_delta = cfs_rq->h_nr_running;
3095 for_each_sched_entity(se) {
3096 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3097 /* throttled entity or throttle-on-deactivate */
3098 if (!se->on_rq)
3099 break;
3100
3101 if (dequeue)
3102 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3103 qcfs_rq->h_nr_running -= task_delta;
3104
3105 if (qcfs_rq->load.weight)
3106 dequeue = 0;
3107 }
3108
3109 if (!se)
3110 rq->nr_running -= task_delta;
3111
3112 cfs_rq->throttled = 1;
78becc27 3113 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3114 raw_spin_lock(&cfs_b->lock);
3115 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3116 if (!cfs_b->timer_active)
3117 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3118 raw_spin_unlock(&cfs_b->lock);
3119}
3120
029632fb 3121void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3122{
3123 struct rq *rq = rq_of(cfs_rq);
3124 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3125 struct sched_entity *se;
3126 int enqueue = 1;
3127 long task_delta;
3128
22b958d8 3129 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3130
3131 cfs_rq->throttled = 0;
1a55af2e
FW
3132
3133 update_rq_clock(rq);
3134
671fd9da 3135 raw_spin_lock(&cfs_b->lock);
78becc27 3136 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3137 list_del_rcu(&cfs_rq->throttled_list);
3138 raw_spin_unlock(&cfs_b->lock);
3139
64660c86
PT
3140 /* update hierarchical throttle state */
3141 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3142
671fd9da
PT
3143 if (!cfs_rq->load.weight)
3144 return;
3145
3146 task_delta = cfs_rq->h_nr_running;
3147 for_each_sched_entity(se) {
3148 if (se->on_rq)
3149 enqueue = 0;
3150
3151 cfs_rq = cfs_rq_of(se);
3152 if (enqueue)
3153 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3154 cfs_rq->h_nr_running += task_delta;
3155
3156 if (cfs_rq_throttled(cfs_rq))
3157 break;
3158 }
3159
3160 if (!se)
3161 rq->nr_running += task_delta;
3162
3163 /* determine whether we need to wake up potentially idle cpu */
3164 if (rq->curr == rq->idle && rq->cfs.nr_running)
3165 resched_task(rq->curr);
3166}
3167
3168static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3169 u64 remaining, u64 expires)
3170{
3171 struct cfs_rq *cfs_rq;
3172 u64 runtime = remaining;
3173
3174 rcu_read_lock();
3175 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3176 throttled_list) {
3177 struct rq *rq = rq_of(cfs_rq);
3178
3179 raw_spin_lock(&rq->lock);
3180 if (!cfs_rq_throttled(cfs_rq))
3181 goto next;
3182
3183 runtime = -cfs_rq->runtime_remaining + 1;
3184 if (runtime > remaining)
3185 runtime = remaining;
3186 remaining -= runtime;
3187
3188 cfs_rq->runtime_remaining += runtime;
3189 cfs_rq->runtime_expires = expires;
3190
3191 /* we check whether we're throttled above */
3192 if (cfs_rq->runtime_remaining > 0)
3193 unthrottle_cfs_rq(cfs_rq);
3194
3195next:
3196 raw_spin_unlock(&rq->lock);
3197
3198 if (!remaining)
3199 break;
3200 }
3201 rcu_read_unlock();
3202
3203 return remaining;
3204}
3205
58088ad0
PT
3206/*
3207 * Responsible for refilling a task_group's bandwidth and unthrottling its
3208 * cfs_rqs as appropriate. If there has been no activity within the last
3209 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3210 * used to track this state.
3211 */
3212static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3213{
671fd9da
PT
3214 u64 runtime, runtime_expires;
3215 int idle = 1, throttled;
58088ad0
PT
3216
3217 raw_spin_lock(&cfs_b->lock);
3218 /* no need to continue the timer with no bandwidth constraint */
3219 if (cfs_b->quota == RUNTIME_INF)
3220 goto out_unlock;
3221
671fd9da
PT
3222 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3223 /* idle depends on !throttled (for the case of a large deficit) */
3224 idle = cfs_b->idle && !throttled;
e8da1b18 3225 cfs_b->nr_periods += overrun;
671fd9da 3226
a9cf55b2
PT
3227 /* if we're going inactive then everything else can be deferred */
3228 if (idle)
3229 goto out_unlock;
3230
927b54fc
BS
3231 /*
3232 * if we have relooped after returning idle once, we need to update our
3233 * status as actually running, so that other cpus doing
3234 * __start_cfs_bandwidth will stop trying to cancel us.
3235 */
3236 cfs_b->timer_active = 1;
3237
a9cf55b2
PT
3238 __refill_cfs_bandwidth_runtime(cfs_b);
3239
671fd9da
PT
3240 if (!throttled) {
3241 /* mark as potentially idle for the upcoming period */
3242 cfs_b->idle = 1;
3243 goto out_unlock;
3244 }
3245
e8da1b18
NR
3246 /* account preceding periods in which throttling occurred */
3247 cfs_b->nr_throttled += overrun;
3248
671fd9da
PT
3249 /*
3250 * There are throttled entities so we must first use the new bandwidth
3251 * to unthrottle them before making it generally available. This
3252 * ensures that all existing debts will be paid before a new cfs_rq is
3253 * allowed to run.
3254 */
3255 runtime = cfs_b->runtime;
3256 runtime_expires = cfs_b->runtime_expires;
3257 cfs_b->runtime = 0;
3258
3259 /*
3260 * This check is repeated as we are holding onto the new bandwidth
3261 * while we unthrottle. This can potentially race with an unthrottled
3262 * group trying to acquire new bandwidth from the global pool.
3263 */
3264 while (throttled && runtime > 0) {
3265 raw_spin_unlock(&cfs_b->lock);
3266 /* we can't nest cfs_b->lock while distributing bandwidth */
3267 runtime = distribute_cfs_runtime(cfs_b, runtime,
3268 runtime_expires);
3269 raw_spin_lock(&cfs_b->lock);
3270
3271 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3272 }
58088ad0 3273
671fd9da
PT
3274 /* return (any) remaining runtime */
3275 cfs_b->runtime = runtime;
3276 /*
3277 * While we are ensured activity in the period following an
3278 * unthrottle, this also covers the case in which the new bandwidth is
3279 * insufficient to cover the existing bandwidth deficit. (Forcing the
3280 * timer to remain active while there are any throttled entities.)
3281 */
3282 cfs_b->idle = 0;
58088ad0
PT
3283out_unlock:
3284 if (idle)
3285 cfs_b->timer_active = 0;
3286 raw_spin_unlock(&cfs_b->lock);
3287
3288 return idle;
3289}
d3d9dc33 3290
d8b4986d
PT
3291/* a cfs_rq won't donate quota below this amount */
3292static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3293/* minimum remaining period time to redistribute slack quota */
3294static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3295/* how long we wait to gather additional slack before distributing */
3296static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3297
db06e78c
BS
3298/*
3299 * Are we near the end of the current quota period?
3300 *
3301 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3302 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3303 * migrate_hrtimers, base is never cleared, so we are fine.
3304 */
d8b4986d
PT
3305static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3306{
3307 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3308 u64 remaining;
3309
3310 /* if the call-back is running a quota refresh is already occurring */
3311 if (hrtimer_callback_running(refresh_timer))
3312 return 1;
3313
3314 /* is a quota refresh about to occur? */
3315 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3316 if (remaining < min_expire)
3317 return 1;
3318
3319 return 0;
3320}
3321
3322static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3323{
3324 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3325
3326 /* if there's a quota refresh soon don't bother with slack */
3327 if (runtime_refresh_within(cfs_b, min_left))
3328 return;
3329
3330 start_bandwidth_timer(&cfs_b->slack_timer,
3331 ns_to_ktime(cfs_bandwidth_slack_period));
3332}
3333
3334/* we know any runtime found here is valid as update_curr() precedes return */
3335static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3336{
3337 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3338 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3339
3340 if (slack_runtime <= 0)
3341 return;
3342
3343 raw_spin_lock(&cfs_b->lock);
3344 if (cfs_b->quota != RUNTIME_INF &&
3345 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3346 cfs_b->runtime += slack_runtime;
3347
3348 /* we are under rq->lock, defer unthrottling using a timer */
3349 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3350 !list_empty(&cfs_b->throttled_cfs_rq))
3351 start_cfs_slack_bandwidth(cfs_b);
3352 }
3353 raw_spin_unlock(&cfs_b->lock);
3354
3355 /* even if it's not valid for return we don't want to try again */
3356 cfs_rq->runtime_remaining -= slack_runtime;
3357}
3358
3359static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3360{
56f570e5
PT
3361 if (!cfs_bandwidth_used())
3362 return;
3363
fccfdc6f 3364 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3365 return;
3366
3367 __return_cfs_rq_runtime(cfs_rq);
3368}
3369
3370/*
3371 * This is done with a timer (instead of inline with bandwidth return) since
3372 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3373 */
3374static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3375{
3376 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3377 u64 expires;
3378
3379 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3380 raw_spin_lock(&cfs_b->lock);
3381 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3382 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3383 return;
db06e78c 3384 }
d8b4986d 3385
d8b4986d
PT
3386 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3387 runtime = cfs_b->runtime;
3388 cfs_b->runtime = 0;
3389 }
3390 expires = cfs_b->runtime_expires;
3391 raw_spin_unlock(&cfs_b->lock);
3392
3393 if (!runtime)
3394 return;
3395
3396 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3397
3398 raw_spin_lock(&cfs_b->lock);
3399 if (expires == cfs_b->runtime_expires)
3400 cfs_b->runtime = runtime;
3401 raw_spin_unlock(&cfs_b->lock);
3402}
3403
d3d9dc33
PT
3404/*
3405 * When a group wakes up we want to make sure that its quota is not already
3406 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3407 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3408 */
3409static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3410{
56f570e5
PT
3411 if (!cfs_bandwidth_used())
3412 return;
3413
d3d9dc33
PT
3414 /* an active group must be handled by the update_curr()->put() path */
3415 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3416 return;
3417
3418 /* ensure the group is not already throttled */
3419 if (cfs_rq_throttled(cfs_rq))
3420 return;
3421
3422 /* update runtime allocation */
3423 account_cfs_rq_runtime(cfs_rq, 0);
3424 if (cfs_rq->runtime_remaining <= 0)
3425 throttle_cfs_rq(cfs_rq);
3426}
3427
3428/* conditionally throttle active cfs_rq's from put_prev_entity() */
3429static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3430{
56f570e5
PT
3431 if (!cfs_bandwidth_used())
3432 return;
3433
d3d9dc33
PT
3434 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3435 return;
3436
3437 /*
3438 * it's possible for a throttled entity to be forced into a running
3439 * state (e.g. set_curr_task), in this case we're finished.
3440 */
3441 if (cfs_rq_throttled(cfs_rq))
3442 return;
3443
3444 throttle_cfs_rq(cfs_rq);
3445}
029632fb 3446
029632fb
PZ
3447static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3448{
3449 struct cfs_bandwidth *cfs_b =
3450 container_of(timer, struct cfs_bandwidth, slack_timer);
3451 do_sched_cfs_slack_timer(cfs_b);
3452
3453 return HRTIMER_NORESTART;
3454}
3455
3456static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3457{
3458 struct cfs_bandwidth *cfs_b =
3459 container_of(timer, struct cfs_bandwidth, period_timer);
3460 ktime_t now;
3461 int overrun;
3462 int idle = 0;
3463
3464 for (;;) {
3465 now = hrtimer_cb_get_time(timer);
3466 overrun = hrtimer_forward(timer, now, cfs_b->period);
3467
3468 if (!overrun)
3469 break;
3470
3471 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3472 }
3473
3474 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3475}
3476
3477void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3478{
3479 raw_spin_lock_init(&cfs_b->lock);
3480 cfs_b->runtime = 0;
3481 cfs_b->quota = RUNTIME_INF;
3482 cfs_b->period = ns_to_ktime(default_cfs_period());
3483
3484 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3485 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3486 cfs_b->period_timer.function = sched_cfs_period_timer;
3487 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3488 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3489}
3490
3491static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3492{
3493 cfs_rq->runtime_enabled = 0;
3494 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3495}
3496
3497/* requires cfs_b->lock, may release to reprogram timer */
3498void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3499{
3500 /*
3501 * The timer may be active because we're trying to set a new bandwidth
3502 * period or because we're racing with the tear-down path
3503 * (timer_active==0 becomes visible before the hrtimer call-back
3504 * terminates). In either case we ensure that it's re-programmed
3505 */
927b54fc
BS
3506 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3507 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3508 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3509 raw_spin_unlock(&cfs_b->lock);
927b54fc 3510 cpu_relax();
029632fb
PZ
3511 raw_spin_lock(&cfs_b->lock);
3512 /* if someone else restarted the timer then we're done */
3513 if (cfs_b->timer_active)
3514 return;
3515 }
3516
3517 cfs_b->timer_active = 1;
3518 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3519}
3520
3521static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3522{
3523 hrtimer_cancel(&cfs_b->period_timer);
3524 hrtimer_cancel(&cfs_b->slack_timer);
3525}
3526
38dc3348 3527static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3528{
3529 struct cfs_rq *cfs_rq;
3530
3531 for_each_leaf_cfs_rq(rq, cfs_rq) {
3532 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3533
3534 if (!cfs_rq->runtime_enabled)
3535 continue;
3536
3537 /*
3538 * clock_task is not advancing so we just need to make sure
3539 * there's some valid quota amount
3540 */
3541 cfs_rq->runtime_remaining = cfs_b->quota;
3542 if (cfs_rq_throttled(cfs_rq))
3543 unthrottle_cfs_rq(cfs_rq);
3544 }
3545}
3546
3547#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3548static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3549{
78becc27 3550 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3551}
3552
9dbdb155 3553static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
d3d9dc33
PT
3554static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3555static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3556static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3557
3558static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3559{
3560 return 0;
3561}
64660c86
PT
3562
3563static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3564{
3565 return 0;
3566}
3567
3568static inline int throttled_lb_pair(struct task_group *tg,
3569 int src_cpu, int dest_cpu)
3570{
3571 return 0;
3572}
029632fb
PZ
3573
3574void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3575
3576#ifdef CONFIG_FAIR_GROUP_SCHED
3577static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3578#endif
3579
029632fb
PZ
3580static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3581{
3582 return NULL;
3583}
3584static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3585static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3586
3587#endif /* CONFIG_CFS_BANDWIDTH */
3588
bf0f6f24
IM
3589/**************************************************
3590 * CFS operations on tasks:
3591 */
3592
8f4d37ec
PZ
3593#ifdef CONFIG_SCHED_HRTICK
3594static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3595{
8f4d37ec
PZ
3596 struct sched_entity *se = &p->se;
3597 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3598
3599 WARN_ON(task_rq(p) != rq);
3600
b39e66ea 3601 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3602 u64 slice = sched_slice(cfs_rq, se);
3603 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3604 s64 delta = slice - ran;
3605
3606 if (delta < 0) {
3607 if (rq->curr == p)
3608 resched_task(p);
3609 return;
3610 }
3611
3612 /*
3613 * Don't schedule slices shorter than 10000ns, that just
3614 * doesn't make sense. Rely on vruntime for fairness.
3615 */
31656519 3616 if (rq->curr != p)
157124c1 3617 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3618
31656519 3619 hrtick_start(rq, delta);
8f4d37ec
PZ
3620 }
3621}
a4c2f00f
PZ
3622
3623/*
3624 * called from enqueue/dequeue and updates the hrtick when the
3625 * current task is from our class and nr_running is low enough
3626 * to matter.
3627 */
3628static void hrtick_update(struct rq *rq)
3629{
3630 struct task_struct *curr = rq->curr;
3631
b39e66ea 3632 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3633 return;
3634
3635 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3636 hrtick_start_fair(rq, curr);
3637}
55e12e5e 3638#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3639static inline void
3640hrtick_start_fair(struct rq *rq, struct task_struct *p)
3641{
3642}
a4c2f00f
PZ
3643
3644static inline void hrtick_update(struct rq *rq)
3645{
3646}
8f4d37ec
PZ
3647#endif
3648
bf0f6f24
IM
3649/*
3650 * The enqueue_task method is called before nr_running is
3651 * increased. Here we update the fair scheduling stats and
3652 * then put the task into the rbtree:
3653 */
ea87bb78 3654static void
371fd7e7 3655enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3656{
3657 struct cfs_rq *cfs_rq;
62fb1851 3658 struct sched_entity *se = &p->se;
bf0f6f24
IM
3659
3660 for_each_sched_entity(se) {
62fb1851 3661 if (se->on_rq)
bf0f6f24
IM
3662 break;
3663 cfs_rq = cfs_rq_of(se);
88ec22d3 3664 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3665
3666 /*
3667 * end evaluation on encountering a throttled cfs_rq
3668 *
3669 * note: in the case of encountering a throttled cfs_rq we will
3670 * post the final h_nr_running increment below.
3671 */
3672 if (cfs_rq_throttled(cfs_rq))
3673 break;
953bfcd1 3674 cfs_rq->h_nr_running++;
85dac906 3675
88ec22d3 3676 flags = ENQUEUE_WAKEUP;
bf0f6f24 3677 }
8f4d37ec 3678
2069dd75 3679 for_each_sched_entity(se) {
0f317143 3680 cfs_rq = cfs_rq_of(se);
953bfcd1 3681 cfs_rq->h_nr_running++;
2069dd75 3682
85dac906
PT
3683 if (cfs_rq_throttled(cfs_rq))
3684 break;
3685
17bc14b7 3686 update_cfs_shares(cfs_rq);
9ee474f5 3687 update_entity_load_avg(se, 1);
2069dd75
PZ
3688 }
3689
18bf2805
BS
3690 if (!se) {
3691 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3692 inc_nr_running(rq);
18bf2805 3693 }
a4c2f00f 3694 hrtick_update(rq);
bf0f6f24
IM
3695}
3696
2f36825b
VP
3697static void set_next_buddy(struct sched_entity *se);
3698
bf0f6f24
IM
3699/*
3700 * The dequeue_task method is called before nr_running is
3701 * decreased. We remove the task from the rbtree and
3702 * update the fair scheduling stats:
3703 */
371fd7e7 3704static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3705{
3706 struct cfs_rq *cfs_rq;
62fb1851 3707 struct sched_entity *se = &p->se;
2f36825b 3708 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3709
3710 for_each_sched_entity(se) {
3711 cfs_rq = cfs_rq_of(se);
371fd7e7 3712 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3713
3714 /*
3715 * end evaluation on encountering a throttled cfs_rq
3716 *
3717 * note: in the case of encountering a throttled cfs_rq we will
3718 * post the final h_nr_running decrement below.
3719 */
3720 if (cfs_rq_throttled(cfs_rq))
3721 break;
953bfcd1 3722 cfs_rq->h_nr_running--;
2069dd75 3723
bf0f6f24 3724 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3725 if (cfs_rq->load.weight) {
3726 /*
3727 * Bias pick_next to pick a task from this cfs_rq, as
3728 * p is sleeping when it is within its sched_slice.
3729 */
3730 if (task_sleep && parent_entity(se))
3731 set_next_buddy(parent_entity(se));
9598c82d
PT
3732
3733 /* avoid re-evaluating load for this entity */
3734 se = parent_entity(se);
bf0f6f24 3735 break;
2f36825b 3736 }
371fd7e7 3737 flags |= DEQUEUE_SLEEP;
bf0f6f24 3738 }
8f4d37ec 3739
2069dd75 3740 for_each_sched_entity(se) {
0f317143 3741 cfs_rq = cfs_rq_of(se);
953bfcd1 3742 cfs_rq->h_nr_running--;
2069dd75 3743
85dac906
PT
3744 if (cfs_rq_throttled(cfs_rq))
3745 break;
3746
17bc14b7 3747 update_cfs_shares(cfs_rq);
9ee474f5 3748 update_entity_load_avg(se, 1);
2069dd75
PZ
3749 }
3750
18bf2805 3751 if (!se) {
85dac906 3752 dec_nr_running(rq);
18bf2805
BS
3753 update_rq_runnable_avg(rq, 1);
3754 }
a4c2f00f 3755 hrtick_update(rq);
bf0f6f24
IM
3756}
3757
e7693a36 3758#ifdef CONFIG_SMP
029632fb
PZ
3759/* Used instead of source_load when we know the type == 0 */
3760static unsigned long weighted_cpuload(const int cpu)
3761{
b92486cb 3762 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3763}
3764
3765/*
3766 * Return a low guess at the load of a migration-source cpu weighted
3767 * according to the scheduling class and "nice" value.
3768 *
3769 * We want to under-estimate the load of migration sources, to
3770 * balance conservatively.
3771 */
3772static unsigned long source_load(int cpu, int type)
3773{
3774 struct rq *rq = cpu_rq(cpu);
3775 unsigned long total = weighted_cpuload(cpu);
3776
3777 if (type == 0 || !sched_feat(LB_BIAS))
3778 return total;
3779
3780 return min(rq->cpu_load[type-1], total);
3781}
3782
3783/*
3784 * Return a high guess at the load of a migration-target cpu weighted
3785 * according to the scheduling class and "nice" value.
3786 */
3787static unsigned long target_load(int cpu, int type)
3788{
3789 struct rq *rq = cpu_rq(cpu);
3790 unsigned long total = weighted_cpuload(cpu);
3791
3792 if (type == 0 || !sched_feat(LB_BIAS))
3793 return total;
3794
3795 return max(rq->cpu_load[type-1], total);
3796}
3797
3798static unsigned long power_of(int cpu)
3799{
3800 return cpu_rq(cpu)->cpu_power;
3801}
3802
3803static unsigned long cpu_avg_load_per_task(int cpu)
3804{
3805 struct rq *rq = cpu_rq(cpu);
3806 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3807 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3808
3809 if (nr_running)
b92486cb 3810 return load_avg / nr_running;
029632fb
PZ
3811
3812 return 0;
3813}
3814
62470419
MW
3815static void record_wakee(struct task_struct *p)
3816{
3817 /*
3818 * Rough decay (wiping) for cost saving, don't worry
3819 * about the boundary, really active task won't care
3820 * about the loss.
3821 */
3822 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3823 current->wakee_flips = 0;
3824 current->wakee_flip_decay_ts = jiffies;
3825 }
3826
3827 if (current->last_wakee != p) {
3828 current->last_wakee = p;
3829 current->wakee_flips++;
3830 }
3831}
098fb9db 3832
74f8e4b2 3833static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3834{
3835 struct sched_entity *se = &p->se;
3836 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3837 u64 min_vruntime;
3838
3839#ifndef CONFIG_64BIT
3840 u64 min_vruntime_copy;
88ec22d3 3841
3fe1698b
PZ
3842 do {
3843 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3844 smp_rmb();
3845 min_vruntime = cfs_rq->min_vruntime;
3846 } while (min_vruntime != min_vruntime_copy);
3847#else
3848 min_vruntime = cfs_rq->min_vruntime;
3849#endif
88ec22d3 3850
3fe1698b 3851 se->vruntime -= min_vruntime;
62470419 3852 record_wakee(p);
88ec22d3
PZ
3853}
3854
bb3469ac 3855#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3856/*
3857 * effective_load() calculates the load change as seen from the root_task_group
3858 *
3859 * Adding load to a group doesn't make a group heavier, but can cause movement
3860 * of group shares between cpus. Assuming the shares were perfectly aligned one
3861 * can calculate the shift in shares.
cf5f0acf
PZ
3862 *
3863 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3864 * on this @cpu and results in a total addition (subtraction) of @wg to the
3865 * total group weight.
3866 *
3867 * Given a runqueue weight distribution (rw_i) we can compute a shares
3868 * distribution (s_i) using:
3869 *
3870 * s_i = rw_i / \Sum rw_j (1)
3871 *
3872 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3873 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3874 * shares distribution (s_i):
3875 *
3876 * rw_i = { 2, 4, 1, 0 }
3877 * s_i = { 2/7, 4/7, 1/7, 0 }
3878 *
3879 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3880 * task used to run on and the CPU the waker is running on), we need to
3881 * compute the effect of waking a task on either CPU and, in case of a sync
3882 * wakeup, compute the effect of the current task going to sleep.
3883 *
3884 * So for a change of @wl to the local @cpu with an overall group weight change
3885 * of @wl we can compute the new shares distribution (s'_i) using:
3886 *
3887 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3888 *
3889 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3890 * differences in waking a task to CPU 0. The additional task changes the
3891 * weight and shares distributions like:
3892 *
3893 * rw'_i = { 3, 4, 1, 0 }
3894 * s'_i = { 3/8, 4/8, 1/8, 0 }
3895 *
3896 * We can then compute the difference in effective weight by using:
3897 *
3898 * dw_i = S * (s'_i - s_i) (3)
3899 *
3900 * Where 'S' is the group weight as seen by its parent.
3901 *
3902 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3903 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3904 * 4/7) times the weight of the group.
f5bfb7d9 3905 */
2069dd75 3906static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3907{
4be9daaa 3908 struct sched_entity *se = tg->se[cpu];
f1d239f7 3909
58d081b5 3910 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3911 return wl;
3912
4be9daaa 3913 for_each_sched_entity(se) {
cf5f0acf 3914 long w, W;
4be9daaa 3915
977dda7c 3916 tg = se->my_q->tg;
bb3469ac 3917
cf5f0acf
PZ
3918 /*
3919 * W = @wg + \Sum rw_j
3920 */
3921 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3922
cf5f0acf
PZ
3923 /*
3924 * w = rw_i + @wl
3925 */
3926 w = se->my_q->load.weight + wl;
940959e9 3927
cf5f0acf
PZ
3928 /*
3929 * wl = S * s'_i; see (2)
3930 */
3931 if (W > 0 && w < W)
3932 wl = (w * tg->shares) / W;
977dda7c
PT
3933 else
3934 wl = tg->shares;
940959e9 3935
cf5f0acf
PZ
3936 /*
3937 * Per the above, wl is the new se->load.weight value; since
3938 * those are clipped to [MIN_SHARES, ...) do so now. See
3939 * calc_cfs_shares().
3940 */
977dda7c
PT
3941 if (wl < MIN_SHARES)
3942 wl = MIN_SHARES;
cf5f0acf
PZ
3943
3944 /*
3945 * wl = dw_i = S * (s'_i - s_i); see (3)
3946 */
977dda7c 3947 wl -= se->load.weight;
cf5f0acf
PZ
3948
3949 /*
3950 * Recursively apply this logic to all parent groups to compute
3951 * the final effective load change on the root group. Since
3952 * only the @tg group gets extra weight, all parent groups can
3953 * only redistribute existing shares. @wl is the shift in shares
3954 * resulting from this level per the above.
3955 */
4be9daaa 3956 wg = 0;
4be9daaa 3957 }
bb3469ac 3958
4be9daaa 3959 return wl;
bb3469ac
PZ
3960}
3961#else
4be9daaa 3962
58d081b5 3963static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3964{
83378269 3965 return wl;
bb3469ac 3966}
4be9daaa 3967
bb3469ac
PZ
3968#endif
3969
62470419
MW
3970static int wake_wide(struct task_struct *p)
3971{
7d9ffa89 3972 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3973
3974 /*
3975 * Yeah, it's the switching-frequency, could means many wakee or
3976 * rapidly switch, use factor here will just help to automatically
3977 * adjust the loose-degree, so bigger node will lead to more pull.
3978 */
3979 if (p->wakee_flips > factor) {
3980 /*
3981 * wakee is somewhat hot, it needs certain amount of cpu
3982 * resource, so if waker is far more hot, prefer to leave
3983 * it alone.
3984 */
3985 if (current->wakee_flips > (factor * p->wakee_flips))
3986 return 1;
3987 }
3988
3989 return 0;
3990}
3991
c88d5910 3992static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3993{
e37b6a7b 3994 s64 this_load, load;
c88d5910 3995 int idx, this_cpu, prev_cpu;
098fb9db 3996 unsigned long tl_per_task;
c88d5910 3997 struct task_group *tg;
83378269 3998 unsigned long weight;
b3137bc8 3999 int balanced;
098fb9db 4000
62470419
MW
4001 /*
4002 * If we wake multiple tasks be careful to not bounce
4003 * ourselves around too much.
4004 */
4005 if (wake_wide(p))
4006 return 0;
4007
c88d5910
PZ
4008 idx = sd->wake_idx;
4009 this_cpu = smp_processor_id();
4010 prev_cpu = task_cpu(p);
4011 load = source_load(prev_cpu, idx);
4012 this_load = target_load(this_cpu, idx);
098fb9db 4013
b3137bc8
MG
4014 /*
4015 * If sync wakeup then subtract the (maximum possible)
4016 * effect of the currently running task from the load
4017 * of the current CPU:
4018 */
83378269
PZ
4019 if (sync) {
4020 tg = task_group(current);
4021 weight = current->se.load.weight;
4022
c88d5910 4023 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4024 load += effective_load(tg, prev_cpu, 0, -weight);
4025 }
b3137bc8 4026
83378269
PZ
4027 tg = task_group(p);
4028 weight = p->se.load.weight;
b3137bc8 4029
71a29aa7
PZ
4030 /*
4031 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4032 * due to the sync cause above having dropped this_load to 0, we'll
4033 * always have an imbalance, but there's really nothing you can do
4034 * about that, so that's good too.
71a29aa7
PZ
4035 *
4036 * Otherwise check if either cpus are near enough in load to allow this
4037 * task to be woken on this_cpu.
4038 */
e37b6a7b
PT
4039 if (this_load > 0) {
4040 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4041
4042 this_eff_load = 100;
4043 this_eff_load *= power_of(prev_cpu);
4044 this_eff_load *= this_load +
4045 effective_load(tg, this_cpu, weight, weight);
4046
4047 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4048 prev_eff_load *= power_of(this_cpu);
4049 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4050
4051 balanced = this_eff_load <= prev_eff_load;
4052 } else
4053 balanced = true;
b3137bc8 4054
098fb9db 4055 /*
4ae7d5ce
IM
4056 * If the currently running task will sleep within
4057 * a reasonable amount of time then attract this newly
4058 * woken task:
098fb9db 4059 */
2fb7635c
PZ
4060 if (sync && balanced)
4061 return 1;
098fb9db 4062
41acab88 4063 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4064 tl_per_task = cpu_avg_load_per_task(this_cpu);
4065
c88d5910
PZ
4066 if (balanced ||
4067 (this_load <= load &&
4068 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4069 /*
4070 * This domain has SD_WAKE_AFFINE and
4071 * p is cache cold in this domain, and
4072 * there is no bad imbalance.
4073 */
c88d5910 4074 schedstat_inc(sd, ttwu_move_affine);
41acab88 4075 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4076
4077 return 1;
4078 }
4079 return 0;
4080}
4081
aaee1203
PZ
4082/*
4083 * find_idlest_group finds and returns the least busy CPU group within the
4084 * domain.
4085 */
4086static struct sched_group *
78e7ed53 4087find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4088 int this_cpu, int sd_flag)
e7693a36 4089{
b3bd3de6 4090 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4091 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4092 int load_idx = sd->forkexec_idx;
aaee1203 4093 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4094
c44f2a02
VG
4095 if (sd_flag & SD_BALANCE_WAKE)
4096 load_idx = sd->wake_idx;
4097
aaee1203
PZ
4098 do {
4099 unsigned long load, avg_load;
4100 int local_group;
4101 int i;
e7693a36 4102
aaee1203
PZ
4103 /* Skip over this group if it has no CPUs allowed */
4104 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4105 tsk_cpus_allowed(p)))
aaee1203
PZ
4106 continue;
4107
4108 local_group = cpumask_test_cpu(this_cpu,
4109 sched_group_cpus(group));
4110
4111 /* Tally up the load of all CPUs in the group */
4112 avg_load = 0;
4113
4114 for_each_cpu(i, sched_group_cpus(group)) {
4115 /* Bias balancing toward cpus of our domain */
4116 if (local_group)
4117 load = source_load(i, load_idx);
4118 else
4119 load = target_load(i, load_idx);
4120
4121 avg_load += load;
4122 }
4123
4124 /* Adjust by relative CPU power of the group */
9c3f75cb 4125 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4126
4127 if (local_group) {
4128 this_load = avg_load;
aaee1203
PZ
4129 } else if (avg_load < min_load) {
4130 min_load = avg_load;
4131 idlest = group;
4132 }
4133 } while (group = group->next, group != sd->groups);
4134
4135 if (!idlest || 100*this_load < imbalance*min_load)
4136 return NULL;
4137 return idlest;
4138}
4139
4140/*
4141 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4142 */
4143static int
4144find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4145{
4146 unsigned long load, min_load = ULONG_MAX;
4147 int idlest = -1;
4148 int i;
4149
4150 /* Traverse only the allowed CPUs */
fa17b507 4151 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4152 load = weighted_cpuload(i);
4153
4154 if (load < min_load || (load == min_load && i == this_cpu)) {
4155 min_load = load;
4156 idlest = i;
e7693a36
GH
4157 }
4158 }
4159
aaee1203
PZ
4160 return idlest;
4161}
e7693a36 4162
a50bde51
PZ
4163/*
4164 * Try and locate an idle CPU in the sched_domain.
4165 */
99bd5e2f 4166static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4167{
99bd5e2f 4168 struct sched_domain *sd;
37407ea7 4169 struct sched_group *sg;
e0a79f52 4170 int i = task_cpu(p);
a50bde51 4171
e0a79f52
MG
4172 if (idle_cpu(target))
4173 return target;
99bd5e2f
SS
4174
4175 /*
e0a79f52 4176 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4177 */
e0a79f52
MG
4178 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4179 return i;
a50bde51
PZ
4180
4181 /*
37407ea7 4182 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4183 */
518cd623 4184 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4185 for_each_lower_domain(sd) {
37407ea7
LT
4186 sg = sd->groups;
4187 do {
4188 if (!cpumask_intersects(sched_group_cpus(sg),
4189 tsk_cpus_allowed(p)))
4190 goto next;
4191
4192 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4193 if (i == target || !idle_cpu(i))
37407ea7
LT
4194 goto next;
4195 }
970e1789 4196
37407ea7
LT
4197 target = cpumask_first_and(sched_group_cpus(sg),
4198 tsk_cpus_allowed(p));
4199 goto done;
4200next:
4201 sg = sg->next;
4202 } while (sg != sd->groups);
4203 }
4204done:
a50bde51
PZ
4205 return target;
4206}
4207
aaee1203
PZ
4208/*
4209 * sched_balance_self: balance the current task (running on cpu) in domains
4210 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4211 * SD_BALANCE_EXEC.
4212 *
4213 * Balance, ie. select the least loaded group.
4214 *
4215 * Returns the target CPU number, or the same CPU if no balancing is needed.
4216 *
4217 * preempt must be disabled.
4218 */
0017d735 4219static int
ac66f547 4220select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4221{
29cd8bae 4222 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4223 int cpu = smp_processor_id();
c88d5910 4224 int new_cpu = cpu;
99bd5e2f 4225 int want_affine = 0;
5158f4e4 4226 int sync = wake_flags & WF_SYNC;
c88d5910 4227
29baa747 4228 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4229 return prev_cpu;
4230
0763a660 4231 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4232 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4233 want_affine = 1;
4234 new_cpu = prev_cpu;
4235 }
aaee1203 4236
dce840a0 4237 rcu_read_lock();
aaee1203 4238 for_each_domain(cpu, tmp) {
e4f42888
PZ
4239 if (!(tmp->flags & SD_LOAD_BALANCE))
4240 continue;
4241
fe3bcfe1 4242 /*
99bd5e2f
SS
4243 * If both cpu and prev_cpu are part of this domain,
4244 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4245 */
99bd5e2f
SS
4246 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4247 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4248 affine_sd = tmp;
29cd8bae 4249 break;
f03542a7 4250 }
29cd8bae 4251
f03542a7 4252 if (tmp->flags & sd_flag)
29cd8bae
PZ
4253 sd = tmp;
4254 }
4255
8b911acd 4256 if (affine_sd) {
f03542a7 4257 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4258 prev_cpu = cpu;
4259
4260 new_cpu = select_idle_sibling(p, prev_cpu);
4261 goto unlock;
8b911acd 4262 }
e7693a36 4263
aaee1203
PZ
4264 while (sd) {
4265 struct sched_group *group;
c88d5910 4266 int weight;
098fb9db 4267
0763a660 4268 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4269 sd = sd->child;
4270 continue;
4271 }
098fb9db 4272
c44f2a02 4273 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4274 if (!group) {
4275 sd = sd->child;
4276 continue;
4277 }
4ae7d5ce 4278
d7c33c49 4279 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4280 if (new_cpu == -1 || new_cpu == cpu) {
4281 /* Now try balancing at a lower domain level of cpu */
4282 sd = sd->child;
4283 continue;
e7693a36 4284 }
aaee1203
PZ
4285
4286 /* Now try balancing at a lower domain level of new_cpu */
4287 cpu = new_cpu;
669c55e9 4288 weight = sd->span_weight;
aaee1203
PZ
4289 sd = NULL;
4290 for_each_domain(cpu, tmp) {
669c55e9 4291 if (weight <= tmp->span_weight)
aaee1203 4292 break;
0763a660 4293 if (tmp->flags & sd_flag)
aaee1203
PZ
4294 sd = tmp;
4295 }
4296 /* while loop will break here if sd == NULL */
e7693a36 4297 }
dce840a0
PZ
4298unlock:
4299 rcu_read_unlock();
e7693a36 4300
c88d5910 4301 return new_cpu;
e7693a36 4302}
0a74bef8
PT
4303
4304/*
4305 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4306 * cfs_rq_of(p) references at time of call are still valid and identify the
4307 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4308 * other assumptions, including the state of rq->lock, should be made.
4309 */
4310static void
4311migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4312{
aff3e498
PT
4313 struct sched_entity *se = &p->se;
4314 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4315
4316 /*
4317 * Load tracking: accumulate removed load so that it can be processed
4318 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4319 * to blocked load iff they have a positive decay-count. It can never
4320 * be negative here since on-rq tasks have decay-count == 0.
4321 */
4322 if (se->avg.decay_count) {
4323 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4324 atomic_long_add(se->avg.load_avg_contrib,
4325 &cfs_rq->removed_load);
aff3e498 4326 }
0a74bef8 4327}
e7693a36
GH
4328#endif /* CONFIG_SMP */
4329
e52fb7c0
PZ
4330static unsigned long
4331wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4332{
4333 unsigned long gran = sysctl_sched_wakeup_granularity;
4334
4335 /*
e52fb7c0
PZ
4336 * Since its curr running now, convert the gran from real-time
4337 * to virtual-time in his units.
13814d42
MG
4338 *
4339 * By using 'se' instead of 'curr' we penalize light tasks, so
4340 * they get preempted easier. That is, if 'se' < 'curr' then
4341 * the resulting gran will be larger, therefore penalizing the
4342 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4343 * be smaller, again penalizing the lighter task.
4344 *
4345 * This is especially important for buddies when the leftmost
4346 * task is higher priority than the buddy.
0bbd3336 4347 */
f4ad9bd2 4348 return calc_delta_fair(gran, se);
0bbd3336
PZ
4349}
4350
464b7527
PZ
4351/*
4352 * Should 'se' preempt 'curr'.
4353 *
4354 * |s1
4355 * |s2
4356 * |s3
4357 * g
4358 * |<--->|c
4359 *
4360 * w(c, s1) = -1
4361 * w(c, s2) = 0
4362 * w(c, s3) = 1
4363 *
4364 */
4365static int
4366wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4367{
4368 s64 gran, vdiff = curr->vruntime - se->vruntime;
4369
4370 if (vdiff <= 0)
4371 return -1;
4372
e52fb7c0 4373 gran = wakeup_gran(curr, se);
464b7527
PZ
4374 if (vdiff > gran)
4375 return 1;
4376
4377 return 0;
4378}
4379
02479099
PZ
4380static void set_last_buddy(struct sched_entity *se)
4381{
69c80f3e
VP
4382 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4383 return;
4384
4385 for_each_sched_entity(se)
4386 cfs_rq_of(se)->last = se;
02479099
PZ
4387}
4388
4389static void set_next_buddy(struct sched_entity *se)
4390{
69c80f3e
VP
4391 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4392 return;
4393
4394 for_each_sched_entity(se)
4395 cfs_rq_of(se)->next = se;
02479099
PZ
4396}
4397
ac53db59
RR
4398static void set_skip_buddy(struct sched_entity *se)
4399{
69c80f3e
VP
4400 for_each_sched_entity(se)
4401 cfs_rq_of(se)->skip = se;
ac53db59
RR
4402}
4403
bf0f6f24
IM
4404/*
4405 * Preempt the current task with a newly woken task if needed:
4406 */
5a9b86f6 4407static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4408{
4409 struct task_struct *curr = rq->curr;
8651a86c 4410 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4411 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4412 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4413 int next_buddy_marked = 0;
bf0f6f24 4414
4ae7d5ce
IM
4415 if (unlikely(se == pse))
4416 return;
4417
5238cdd3 4418 /*
ddcdf6e7 4419 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4420 * unconditionally check_prempt_curr() after an enqueue (which may have
4421 * lead to a throttle). This both saves work and prevents false
4422 * next-buddy nomination below.
4423 */
4424 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4425 return;
4426
2f36825b 4427 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4428 set_next_buddy(pse);
2f36825b
VP
4429 next_buddy_marked = 1;
4430 }
57fdc26d 4431
aec0a514
BR
4432 /*
4433 * We can come here with TIF_NEED_RESCHED already set from new task
4434 * wake up path.
5238cdd3
PT
4435 *
4436 * Note: this also catches the edge-case of curr being in a throttled
4437 * group (e.g. via set_curr_task), since update_curr() (in the
4438 * enqueue of curr) will have resulted in resched being set. This
4439 * prevents us from potentially nominating it as a false LAST_BUDDY
4440 * below.
aec0a514
BR
4441 */
4442 if (test_tsk_need_resched(curr))
4443 return;
4444
a2f5c9ab
DH
4445 /* Idle tasks are by definition preempted by non-idle tasks. */
4446 if (unlikely(curr->policy == SCHED_IDLE) &&
4447 likely(p->policy != SCHED_IDLE))
4448 goto preempt;
4449
91c234b4 4450 /*
a2f5c9ab
DH
4451 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4452 * is driven by the tick):
91c234b4 4453 */
8ed92e51 4454 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4455 return;
bf0f6f24 4456
464b7527 4457 find_matching_se(&se, &pse);
9bbd7374 4458 update_curr(cfs_rq_of(se));
002f128b 4459 BUG_ON(!pse);
2f36825b
VP
4460 if (wakeup_preempt_entity(se, pse) == 1) {
4461 /*
4462 * Bias pick_next to pick the sched entity that is
4463 * triggering this preemption.
4464 */
4465 if (!next_buddy_marked)
4466 set_next_buddy(pse);
3a7e73a2 4467 goto preempt;
2f36825b 4468 }
464b7527 4469
3a7e73a2 4470 return;
a65ac745 4471
3a7e73a2
PZ
4472preempt:
4473 resched_task(curr);
4474 /*
4475 * Only set the backward buddy when the current task is still
4476 * on the rq. This can happen when a wakeup gets interleaved
4477 * with schedule on the ->pre_schedule() or idle_balance()
4478 * point, either of which can * drop the rq lock.
4479 *
4480 * Also, during early boot the idle thread is in the fair class,
4481 * for obvious reasons its a bad idea to schedule back to it.
4482 */
4483 if (unlikely(!se->on_rq || curr == rq->idle))
4484 return;
4485
4486 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4487 set_last_buddy(se);
bf0f6f24
IM
4488}
4489
fb8d4724 4490static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4491{
8f4d37ec 4492 struct task_struct *p;
bf0f6f24
IM
4493 struct cfs_rq *cfs_rq = &rq->cfs;
4494 struct sched_entity *se;
4495
36ace27e 4496 if (!cfs_rq->nr_running)
bf0f6f24
IM
4497 return NULL;
4498
4499 do {
9948f4b2 4500 se = pick_next_entity(cfs_rq);
f4b6755f 4501 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4502 cfs_rq = group_cfs_rq(se);
4503 } while (cfs_rq);
4504
8f4d37ec 4505 p = task_of(se);
b39e66ea
MG
4506 if (hrtick_enabled(rq))
4507 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4508
4509 return p;
bf0f6f24
IM
4510}
4511
4512/*
4513 * Account for a descheduled task:
4514 */
31ee529c 4515static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4516{
4517 struct sched_entity *se = &prev->se;
4518 struct cfs_rq *cfs_rq;
4519
4520 for_each_sched_entity(se) {
4521 cfs_rq = cfs_rq_of(se);
ab6cde26 4522 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4523 }
4524}
4525
ac53db59
RR
4526/*
4527 * sched_yield() is very simple
4528 *
4529 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4530 */
4531static void yield_task_fair(struct rq *rq)
4532{
4533 struct task_struct *curr = rq->curr;
4534 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4535 struct sched_entity *se = &curr->se;
4536
4537 /*
4538 * Are we the only task in the tree?
4539 */
4540 if (unlikely(rq->nr_running == 1))
4541 return;
4542
4543 clear_buddies(cfs_rq, se);
4544
4545 if (curr->policy != SCHED_BATCH) {
4546 update_rq_clock(rq);
4547 /*
4548 * Update run-time statistics of the 'current'.
4549 */
4550 update_curr(cfs_rq);
916671c0
MG
4551 /*
4552 * Tell update_rq_clock() that we've just updated,
4553 * so we don't do microscopic update in schedule()
4554 * and double the fastpath cost.
4555 */
4556 rq->skip_clock_update = 1;
ac53db59
RR
4557 }
4558
4559 set_skip_buddy(se);
4560}
4561
d95f4122
MG
4562static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4563{
4564 struct sched_entity *se = &p->se;
4565
5238cdd3
PT
4566 /* throttled hierarchies are not runnable */
4567 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4568 return false;
4569
4570 /* Tell the scheduler that we'd really like pse to run next. */
4571 set_next_buddy(se);
4572
d95f4122
MG
4573 yield_task_fair(rq);
4574
4575 return true;
4576}
4577
681f3e68 4578#ifdef CONFIG_SMP
bf0f6f24 4579/**************************************************
e9c84cb8
PZ
4580 * Fair scheduling class load-balancing methods.
4581 *
4582 * BASICS
4583 *
4584 * The purpose of load-balancing is to achieve the same basic fairness the
4585 * per-cpu scheduler provides, namely provide a proportional amount of compute
4586 * time to each task. This is expressed in the following equation:
4587 *
4588 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4589 *
4590 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4591 * W_i,0 is defined as:
4592 *
4593 * W_i,0 = \Sum_j w_i,j (2)
4594 *
4595 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4596 * is derived from the nice value as per prio_to_weight[].
4597 *
4598 * The weight average is an exponential decay average of the instantaneous
4599 * weight:
4600 *
4601 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4602 *
4603 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4604 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4605 * can also include other factors [XXX].
4606 *
4607 * To achieve this balance we define a measure of imbalance which follows
4608 * directly from (1):
4609 *
4610 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4611 *
4612 * We them move tasks around to minimize the imbalance. In the continuous
4613 * function space it is obvious this converges, in the discrete case we get
4614 * a few fun cases generally called infeasible weight scenarios.
4615 *
4616 * [XXX expand on:
4617 * - infeasible weights;
4618 * - local vs global optima in the discrete case. ]
4619 *
4620 *
4621 * SCHED DOMAINS
4622 *
4623 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4624 * for all i,j solution, we create a tree of cpus that follows the hardware
4625 * topology where each level pairs two lower groups (or better). This results
4626 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4627 * tree to only the first of the previous level and we decrease the frequency
4628 * of load-balance at each level inv. proportional to the number of cpus in
4629 * the groups.
4630 *
4631 * This yields:
4632 *
4633 * log_2 n 1 n
4634 * \Sum { --- * --- * 2^i } = O(n) (5)
4635 * i = 0 2^i 2^i
4636 * `- size of each group
4637 * | | `- number of cpus doing load-balance
4638 * | `- freq
4639 * `- sum over all levels
4640 *
4641 * Coupled with a limit on how many tasks we can migrate every balance pass,
4642 * this makes (5) the runtime complexity of the balancer.
4643 *
4644 * An important property here is that each CPU is still (indirectly) connected
4645 * to every other cpu in at most O(log n) steps:
4646 *
4647 * The adjacency matrix of the resulting graph is given by:
4648 *
4649 * log_2 n
4650 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4651 * k = 0
4652 *
4653 * And you'll find that:
4654 *
4655 * A^(log_2 n)_i,j != 0 for all i,j (7)
4656 *
4657 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4658 * The task movement gives a factor of O(m), giving a convergence complexity
4659 * of:
4660 *
4661 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4662 *
4663 *
4664 * WORK CONSERVING
4665 *
4666 * In order to avoid CPUs going idle while there's still work to do, new idle
4667 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4668 * tree itself instead of relying on other CPUs to bring it work.
4669 *
4670 * This adds some complexity to both (5) and (8) but it reduces the total idle
4671 * time.
4672 *
4673 * [XXX more?]
4674 *
4675 *
4676 * CGROUPS
4677 *
4678 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4679 *
4680 * s_k,i
4681 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4682 * S_k
4683 *
4684 * Where
4685 *
4686 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4687 *
4688 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4689 *
4690 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4691 * property.
4692 *
4693 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4694 * rewrite all of this once again.]
4695 */
bf0f6f24 4696
ed387b78
HS
4697static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4698
0ec8aa00
PZ
4699enum fbq_type { regular, remote, all };
4700
ddcdf6e7 4701#define LBF_ALL_PINNED 0x01
367456c7 4702#define LBF_NEED_BREAK 0x02
6263322c
PZ
4703#define LBF_DST_PINNED 0x04
4704#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4705
4706struct lb_env {
4707 struct sched_domain *sd;
4708
ddcdf6e7 4709 struct rq *src_rq;
85c1e7da 4710 int src_cpu;
ddcdf6e7
PZ
4711
4712 int dst_cpu;
4713 struct rq *dst_rq;
4714
88b8dac0
SV
4715 struct cpumask *dst_grpmask;
4716 int new_dst_cpu;
ddcdf6e7 4717 enum cpu_idle_type idle;
bd939f45 4718 long imbalance;
b9403130
MW
4719 /* The set of CPUs under consideration for load-balancing */
4720 struct cpumask *cpus;
4721
ddcdf6e7 4722 unsigned int flags;
367456c7
PZ
4723
4724 unsigned int loop;
4725 unsigned int loop_break;
4726 unsigned int loop_max;
0ec8aa00
PZ
4727
4728 enum fbq_type fbq_type;
ddcdf6e7
PZ
4729};
4730
1e3c88bd 4731/*
ddcdf6e7 4732 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4733 * Both runqueues must be locked.
4734 */
ddcdf6e7 4735static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4736{
ddcdf6e7
PZ
4737 deactivate_task(env->src_rq, p, 0);
4738 set_task_cpu(p, env->dst_cpu);
4739 activate_task(env->dst_rq, p, 0);
4740 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
4741}
4742
029632fb
PZ
4743/*
4744 * Is this task likely cache-hot:
4745 */
4746static int
4747task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4748{
4749 s64 delta;
4750
4751 if (p->sched_class != &fair_sched_class)
4752 return 0;
4753
4754 if (unlikely(p->policy == SCHED_IDLE))
4755 return 0;
4756
4757 /*
4758 * Buddy candidates are cache hot:
4759 */
4760 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4761 (&p->se == cfs_rq_of(&p->se)->next ||
4762 &p->se == cfs_rq_of(&p->se)->last))
4763 return 1;
4764
4765 if (sysctl_sched_migration_cost == -1)
4766 return 1;
4767 if (sysctl_sched_migration_cost == 0)
4768 return 0;
4769
4770 delta = now - p->se.exec_start;
4771
4772 return delta < (s64)sysctl_sched_migration_cost;
4773}
4774
3a7053b3
MG
4775#ifdef CONFIG_NUMA_BALANCING
4776/* Returns true if the destination node has incurred more faults */
4777static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4778{
4779 int src_nid, dst_nid;
4780
4781 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4782 !(env->sd->flags & SD_NUMA)) {
4783 return false;
4784 }
4785
4786 src_nid = cpu_to_node(env->src_cpu);
4787 dst_nid = cpu_to_node(env->dst_cpu);
4788
83e1d2cd 4789 if (src_nid == dst_nid)
3a7053b3
MG
4790 return false;
4791
83e1d2cd
MG
4792 /* Always encourage migration to the preferred node. */
4793 if (dst_nid == p->numa_preferred_nid)
4794 return true;
4795
887c290e
RR
4796 /* If both task and group weight improve, this move is a winner. */
4797 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4798 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4799 return true;
4800
4801 return false;
4802}
7a0f3083
MG
4803
4804
4805static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4806{
4807 int src_nid, dst_nid;
4808
4809 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4810 return false;
4811
4812 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4813 return false;
4814
4815 src_nid = cpu_to_node(env->src_cpu);
4816 dst_nid = cpu_to_node(env->dst_cpu);
4817
83e1d2cd 4818 if (src_nid == dst_nid)
7a0f3083
MG
4819 return false;
4820
83e1d2cd
MG
4821 /* Migrating away from the preferred node is always bad. */
4822 if (src_nid == p->numa_preferred_nid)
4823 return true;
4824
887c290e
RR
4825 /* If either task or group weight get worse, don't do it. */
4826 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4827 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
4828 return true;
4829
4830 return false;
4831}
4832
3a7053b3
MG
4833#else
4834static inline bool migrate_improves_locality(struct task_struct *p,
4835 struct lb_env *env)
4836{
4837 return false;
4838}
7a0f3083
MG
4839
4840static inline bool migrate_degrades_locality(struct task_struct *p,
4841 struct lb_env *env)
4842{
4843 return false;
4844}
3a7053b3
MG
4845#endif
4846
1e3c88bd
PZ
4847/*
4848 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4849 */
4850static
8e45cb54 4851int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4852{
4853 int tsk_cache_hot = 0;
4854 /*
4855 * We do not migrate tasks that are:
d3198084 4856 * 1) throttled_lb_pair, or
1e3c88bd 4857 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4858 * 3) running (obviously), or
4859 * 4) are cache-hot on their current CPU.
1e3c88bd 4860 */
d3198084
JK
4861 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4862 return 0;
4863
ddcdf6e7 4864 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4865 int cpu;
88b8dac0 4866
41acab88 4867 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4868
6263322c
PZ
4869 env->flags |= LBF_SOME_PINNED;
4870
88b8dac0
SV
4871 /*
4872 * Remember if this task can be migrated to any other cpu in
4873 * our sched_group. We may want to revisit it if we couldn't
4874 * meet load balance goals by pulling other tasks on src_cpu.
4875 *
4876 * Also avoid computing new_dst_cpu if we have already computed
4877 * one in current iteration.
4878 */
6263322c 4879 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4880 return 0;
4881
e02e60c1
JK
4882 /* Prevent to re-select dst_cpu via env's cpus */
4883 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4884 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4885 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4886 env->new_dst_cpu = cpu;
4887 break;
4888 }
88b8dac0 4889 }
e02e60c1 4890
1e3c88bd
PZ
4891 return 0;
4892 }
88b8dac0
SV
4893
4894 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4895 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4896
ddcdf6e7 4897 if (task_running(env->src_rq, p)) {
41acab88 4898 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4899 return 0;
4900 }
4901
4902 /*
4903 * Aggressive migration if:
3a7053b3
MG
4904 * 1) destination numa is preferred
4905 * 2) task is cache cold, or
4906 * 3) too many balance attempts have failed.
1e3c88bd 4907 */
78becc27 4908 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4909 if (!tsk_cache_hot)
4910 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4911
4912 if (migrate_improves_locality(p, env)) {
4913#ifdef CONFIG_SCHEDSTATS
4914 if (tsk_cache_hot) {
4915 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4916 schedstat_inc(p, se.statistics.nr_forced_migrations);
4917 }
4918#endif
4919 return 1;
4920 }
4921
1e3c88bd 4922 if (!tsk_cache_hot ||
8e45cb54 4923 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4924
1e3c88bd 4925 if (tsk_cache_hot) {
8e45cb54 4926 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4927 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4928 }
4e2dcb73 4929
1e3c88bd
PZ
4930 return 1;
4931 }
4932
4e2dcb73
ZH
4933 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4934 return 0;
1e3c88bd
PZ
4935}
4936
897c395f
PZ
4937/*
4938 * move_one_task tries to move exactly one task from busiest to this_rq, as
4939 * part of active balancing operations within "domain".
4940 * Returns 1 if successful and 0 otherwise.
4941 *
4942 * Called with both runqueues locked.
4943 */
8e45cb54 4944static int move_one_task(struct lb_env *env)
897c395f
PZ
4945{
4946 struct task_struct *p, *n;
897c395f 4947
367456c7 4948 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4949 if (!can_migrate_task(p, env))
4950 continue;
897c395f 4951
367456c7
PZ
4952 move_task(p, env);
4953 /*
4954 * Right now, this is only the second place move_task()
4955 * is called, so we can safely collect move_task()
4956 * stats here rather than inside move_task().
4957 */
4958 schedstat_inc(env->sd, lb_gained[env->idle]);
4959 return 1;
897c395f 4960 }
897c395f
PZ
4961 return 0;
4962}
4963
eb95308e
PZ
4964static const unsigned int sched_nr_migrate_break = 32;
4965
5d6523eb 4966/*
bd939f45 4967 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4968 * this_rq, as part of a balancing operation within domain "sd".
4969 * Returns 1 if successful and 0 otherwise.
4970 *
4971 * Called with both runqueues locked.
4972 */
4973static int move_tasks(struct lb_env *env)
1e3c88bd 4974{
5d6523eb
PZ
4975 struct list_head *tasks = &env->src_rq->cfs_tasks;
4976 struct task_struct *p;
367456c7
PZ
4977 unsigned long load;
4978 int pulled = 0;
1e3c88bd 4979
bd939f45 4980 if (env->imbalance <= 0)
5d6523eb 4981 return 0;
1e3c88bd 4982
5d6523eb
PZ
4983 while (!list_empty(tasks)) {
4984 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4985
367456c7
PZ
4986 env->loop++;
4987 /* We've more or less seen every task there is, call it quits */
5d6523eb 4988 if (env->loop > env->loop_max)
367456c7 4989 break;
5d6523eb
PZ
4990
4991 /* take a breather every nr_migrate tasks */
367456c7 4992 if (env->loop > env->loop_break) {
eb95308e 4993 env->loop_break += sched_nr_migrate_break;
8e45cb54 4994 env->flags |= LBF_NEED_BREAK;
ee00e66f 4995 break;
a195f004 4996 }
1e3c88bd 4997
d3198084 4998 if (!can_migrate_task(p, env))
367456c7
PZ
4999 goto next;
5000
5001 load = task_h_load(p);
5d6523eb 5002
eb95308e 5003 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5004 goto next;
5005
bd939f45 5006 if ((load / 2) > env->imbalance)
367456c7 5007 goto next;
1e3c88bd 5008
ddcdf6e7 5009 move_task(p, env);
ee00e66f 5010 pulled++;
bd939f45 5011 env->imbalance -= load;
1e3c88bd
PZ
5012
5013#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5014 /*
5015 * NEWIDLE balancing is a source of latency, so preemptible
5016 * kernels will stop after the first task is pulled to minimize
5017 * the critical section.
5018 */
5d6523eb 5019 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5020 break;
1e3c88bd
PZ
5021#endif
5022
ee00e66f
PZ
5023 /*
5024 * We only want to steal up to the prescribed amount of
5025 * weighted load.
5026 */
bd939f45 5027 if (env->imbalance <= 0)
ee00e66f 5028 break;
367456c7
PZ
5029
5030 continue;
5031next:
5d6523eb 5032 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5033 }
5d6523eb 5034
1e3c88bd 5035 /*
ddcdf6e7
PZ
5036 * Right now, this is one of only two places move_task() is called,
5037 * so we can safely collect move_task() stats here rather than
5038 * inside move_task().
1e3c88bd 5039 */
8e45cb54 5040 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5041
5d6523eb 5042 return pulled;
1e3c88bd
PZ
5043}
5044
230059de 5045#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5046/*
5047 * update tg->load_weight by folding this cpu's load_avg
5048 */
48a16753 5049static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5050{
48a16753
PT
5051 struct sched_entity *se = tg->se[cpu];
5052 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5053
48a16753
PT
5054 /* throttled entities do not contribute to load */
5055 if (throttled_hierarchy(cfs_rq))
5056 return;
9e3081ca 5057
aff3e498 5058 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5059
82958366
PT
5060 if (se) {
5061 update_entity_load_avg(se, 1);
5062 /*
5063 * We pivot on our runnable average having decayed to zero for
5064 * list removal. This generally implies that all our children
5065 * have also been removed (modulo rounding error or bandwidth
5066 * control); however, such cases are rare and we can fix these
5067 * at enqueue.
5068 *
5069 * TODO: fix up out-of-order children on enqueue.
5070 */
5071 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5072 list_del_leaf_cfs_rq(cfs_rq);
5073 } else {
48a16753 5074 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5075 update_rq_runnable_avg(rq, rq->nr_running);
5076 }
9e3081ca
PZ
5077}
5078
48a16753 5079static void update_blocked_averages(int cpu)
9e3081ca 5080{
9e3081ca 5081 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5082 struct cfs_rq *cfs_rq;
5083 unsigned long flags;
9e3081ca 5084
48a16753
PT
5085 raw_spin_lock_irqsave(&rq->lock, flags);
5086 update_rq_clock(rq);
9763b67f
PZ
5087 /*
5088 * Iterates the task_group tree in a bottom up fashion, see
5089 * list_add_leaf_cfs_rq() for details.
5090 */
64660c86 5091 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5092 /*
5093 * Note: We may want to consider periodically releasing
5094 * rq->lock about these updates so that creating many task
5095 * groups does not result in continually extending hold time.
5096 */
5097 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5098 }
48a16753
PT
5099
5100 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5101}
5102
9763b67f 5103/*
68520796 5104 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5105 * This needs to be done in a top-down fashion because the load of a child
5106 * group is a fraction of its parents load.
5107 */
68520796 5108static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5109{
68520796
VD
5110 struct rq *rq = rq_of(cfs_rq);
5111 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5112 unsigned long now = jiffies;
68520796 5113 unsigned long load;
a35b6466 5114
68520796 5115 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5116 return;
5117
68520796
VD
5118 cfs_rq->h_load_next = NULL;
5119 for_each_sched_entity(se) {
5120 cfs_rq = cfs_rq_of(se);
5121 cfs_rq->h_load_next = se;
5122 if (cfs_rq->last_h_load_update == now)
5123 break;
5124 }
a35b6466 5125
68520796 5126 if (!se) {
7e3115ef 5127 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5128 cfs_rq->last_h_load_update = now;
5129 }
5130
5131 while ((se = cfs_rq->h_load_next) != NULL) {
5132 load = cfs_rq->h_load;
5133 load = div64_ul(load * se->avg.load_avg_contrib,
5134 cfs_rq->runnable_load_avg + 1);
5135 cfs_rq = group_cfs_rq(se);
5136 cfs_rq->h_load = load;
5137 cfs_rq->last_h_load_update = now;
5138 }
9763b67f
PZ
5139}
5140
367456c7 5141static unsigned long task_h_load(struct task_struct *p)
230059de 5142{
367456c7 5143 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5144
68520796 5145 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5146 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5147 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5148}
5149#else
48a16753 5150static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5151{
5152}
5153
367456c7 5154static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5155{
a003a25b 5156 return p->se.avg.load_avg_contrib;
1e3c88bd 5157}
230059de 5158#endif
1e3c88bd 5159
1e3c88bd 5160/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5161/*
5162 * sg_lb_stats - stats of a sched_group required for load_balancing
5163 */
5164struct sg_lb_stats {
5165 unsigned long avg_load; /*Avg load across the CPUs of the group */
5166 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5167 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5168 unsigned long load_per_task;
3ae11c90 5169 unsigned long group_power;
147c5fc2
PZ
5170 unsigned int sum_nr_running; /* Nr tasks running in the group */
5171 unsigned int group_capacity;
5172 unsigned int idle_cpus;
5173 unsigned int group_weight;
1e3c88bd 5174 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5175 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5176#ifdef CONFIG_NUMA_BALANCING
5177 unsigned int nr_numa_running;
5178 unsigned int nr_preferred_running;
5179#endif
1e3c88bd
PZ
5180};
5181
56cf515b
JK
5182/*
5183 * sd_lb_stats - Structure to store the statistics of a sched_domain
5184 * during load balancing.
5185 */
5186struct sd_lb_stats {
5187 struct sched_group *busiest; /* Busiest group in this sd */
5188 struct sched_group *local; /* Local group in this sd */
5189 unsigned long total_load; /* Total load of all groups in sd */
5190 unsigned long total_pwr; /* Total power of all groups in sd */
5191 unsigned long avg_load; /* Average load across all groups in sd */
5192
56cf515b 5193 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5194 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5195};
5196
147c5fc2
PZ
5197static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5198{
5199 /*
5200 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5201 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5202 * We must however clear busiest_stat::avg_load because
5203 * update_sd_pick_busiest() reads this before assignment.
5204 */
5205 *sds = (struct sd_lb_stats){
5206 .busiest = NULL,
5207 .local = NULL,
5208 .total_load = 0UL,
5209 .total_pwr = 0UL,
5210 .busiest_stat = {
5211 .avg_load = 0UL,
5212 },
5213 };
5214}
5215
1e3c88bd
PZ
5216/**
5217 * get_sd_load_idx - Obtain the load index for a given sched domain.
5218 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5219 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5220 *
5221 * Return: The load index.
1e3c88bd
PZ
5222 */
5223static inline int get_sd_load_idx(struct sched_domain *sd,
5224 enum cpu_idle_type idle)
5225{
5226 int load_idx;
5227
5228 switch (idle) {
5229 case CPU_NOT_IDLE:
5230 load_idx = sd->busy_idx;
5231 break;
5232
5233 case CPU_NEWLY_IDLE:
5234 load_idx = sd->newidle_idx;
5235 break;
5236 default:
5237 load_idx = sd->idle_idx;
5238 break;
5239 }
5240
5241 return load_idx;
5242}
5243
15f803c9 5244static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5245{
1399fa78 5246 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5247}
5248
5249unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5250{
5251 return default_scale_freq_power(sd, cpu);
5252}
5253
15f803c9 5254static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5255{
669c55e9 5256 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5257 unsigned long smt_gain = sd->smt_gain;
5258
5259 smt_gain /= weight;
5260
5261 return smt_gain;
5262}
5263
5264unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5265{
5266 return default_scale_smt_power(sd, cpu);
5267}
5268
15f803c9 5269static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5270{
5271 struct rq *rq = cpu_rq(cpu);
b654f7de 5272 u64 total, available, age_stamp, avg;
1e3c88bd 5273
b654f7de
PZ
5274 /*
5275 * Since we're reading these variables without serialization make sure
5276 * we read them once before doing sanity checks on them.
5277 */
5278 age_stamp = ACCESS_ONCE(rq->age_stamp);
5279 avg = ACCESS_ONCE(rq->rt_avg);
5280
78becc27 5281 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5282
b654f7de 5283 if (unlikely(total < avg)) {
aa483808
VP
5284 /* Ensures that power won't end up being negative */
5285 available = 0;
5286 } else {
b654f7de 5287 available = total - avg;
aa483808 5288 }
1e3c88bd 5289
1399fa78
NR
5290 if (unlikely((s64)total < SCHED_POWER_SCALE))
5291 total = SCHED_POWER_SCALE;
1e3c88bd 5292
1399fa78 5293 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5294
5295 return div_u64(available, total);
5296}
5297
5298static void update_cpu_power(struct sched_domain *sd, int cpu)
5299{
669c55e9 5300 unsigned long weight = sd->span_weight;
1399fa78 5301 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5302 struct sched_group *sdg = sd->groups;
5303
1e3c88bd
PZ
5304 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5305 if (sched_feat(ARCH_POWER))
5306 power *= arch_scale_smt_power(sd, cpu);
5307 else
5308 power *= default_scale_smt_power(sd, cpu);
5309
1399fa78 5310 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5311 }
5312
9c3f75cb 5313 sdg->sgp->power_orig = power;
9d5efe05
SV
5314
5315 if (sched_feat(ARCH_POWER))
5316 power *= arch_scale_freq_power(sd, cpu);
5317 else
5318 power *= default_scale_freq_power(sd, cpu);
5319
1399fa78 5320 power >>= SCHED_POWER_SHIFT;
9d5efe05 5321
1e3c88bd 5322 power *= scale_rt_power(cpu);
1399fa78 5323 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5324
5325 if (!power)
5326 power = 1;
5327
e51fd5e2 5328 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5329 sdg->sgp->power = power;
1e3c88bd
PZ
5330}
5331
029632fb 5332void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5333{
5334 struct sched_domain *child = sd->child;
5335 struct sched_group *group, *sdg = sd->groups;
863bffc8 5336 unsigned long power, power_orig;
4ec4412e
VG
5337 unsigned long interval;
5338
5339 interval = msecs_to_jiffies(sd->balance_interval);
5340 interval = clamp(interval, 1UL, max_load_balance_interval);
5341 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5342
5343 if (!child) {
5344 update_cpu_power(sd, cpu);
5345 return;
5346 }
5347
863bffc8 5348 power_orig = power = 0;
1e3c88bd 5349
74a5ce20
PZ
5350 if (child->flags & SD_OVERLAP) {
5351 /*
5352 * SD_OVERLAP domains cannot assume that child groups
5353 * span the current group.
5354 */
5355
863bffc8 5356 for_each_cpu(cpu, sched_group_cpus(sdg)) {
9abf24d4
SD
5357 struct sched_group_power *sgp;
5358 struct rq *rq = cpu_rq(cpu);
863bffc8 5359
9abf24d4
SD
5360 /*
5361 * build_sched_domains() -> init_sched_groups_power()
5362 * gets here before we've attached the domains to the
5363 * runqueues.
5364 *
5365 * Use power_of(), which is set irrespective of domains
5366 * in update_cpu_power().
5367 *
5368 * This avoids power/power_orig from being 0 and
5369 * causing divide-by-zero issues on boot.
5370 *
5371 * Runtime updates will correct power_orig.
5372 */
5373 if (unlikely(!rq->sd)) {
5374 power_orig += power_of(cpu);
5375 power += power_of(cpu);
5376 continue;
5377 }
863bffc8 5378
9abf24d4
SD
5379 sgp = rq->sd->groups->sgp;
5380 power_orig += sgp->power_orig;
5381 power += sgp->power;
863bffc8 5382 }
74a5ce20
PZ
5383 } else {
5384 /*
5385 * !SD_OVERLAP domains can assume that child groups
5386 * span the current group.
5387 */
5388
5389 group = child->groups;
5390 do {
863bffc8 5391 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5392 power += group->sgp->power;
5393 group = group->next;
5394 } while (group != child->groups);
5395 }
1e3c88bd 5396
863bffc8
PZ
5397 sdg->sgp->power_orig = power_orig;
5398 sdg->sgp->power = power;
1e3c88bd
PZ
5399}
5400
9d5efe05
SV
5401/*
5402 * Try and fix up capacity for tiny siblings, this is needed when
5403 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5404 * which on its own isn't powerful enough.
5405 *
5406 * See update_sd_pick_busiest() and check_asym_packing().
5407 */
5408static inline int
5409fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5410{
5411 /*
1399fa78 5412 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5413 */
a6c75f2f 5414 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5415 return 0;
5416
5417 /*
5418 * If ~90% of the cpu_power is still there, we're good.
5419 */
9c3f75cb 5420 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5421 return 1;
5422
5423 return 0;
5424}
5425
30ce5dab
PZ
5426/*
5427 * Group imbalance indicates (and tries to solve) the problem where balancing
5428 * groups is inadequate due to tsk_cpus_allowed() constraints.
5429 *
5430 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5431 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5432 * Something like:
5433 *
5434 * { 0 1 2 3 } { 4 5 6 7 }
5435 * * * * *
5436 *
5437 * If we were to balance group-wise we'd place two tasks in the first group and
5438 * two tasks in the second group. Clearly this is undesired as it will overload
5439 * cpu 3 and leave one of the cpus in the second group unused.
5440 *
5441 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5442 * by noticing the lower domain failed to reach balance and had difficulty
5443 * moving tasks due to affinity constraints.
30ce5dab
PZ
5444 *
5445 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5446 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5447 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5448 * to create an effective group imbalance.
5449 *
5450 * This is a somewhat tricky proposition since the next run might not find the
5451 * group imbalance and decide the groups need to be balanced again. A most
5452 * subtle and fragile situation.
5453 */
5454
6263322c 5455static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5456{
6263322c 5457 return group->sgp->imbalance;
30ce5dab
PZ
5458}
5459
b37d9316
PZ
5460/*
5461 * Compute the group capacity.
5462 *
c61037e9
PZ
5463 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5464 * first dividing out the smt factor and computing the actual number of cores
5465 * and limit power unit capacity with that.
b37d9316
PZ
5466 */
5467static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5468{
c61037e9
PZ
5469 unsigned int capacity, smt, cpus;
5470 unsigned int power, power_orig;
5471
5472 power = group->sgp->power;
5473 power_orig = group->sgp->power_orig;
5474 cpus = group->group_weight;
b37d9316 5475
c61037e9
PZ
5476 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5477 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5478 capacity = cpus / smt; /* cores */
b37d9316 5479
c61037e9 5480 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5481 if (!capacity)
5482 capacity = fix_small_capacity(env->sd, group);
5483
5484 return capacity;
5485}
5486
1e3c88bd
PZ
5487/**
5488 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5489 * @env: The load balancing environment.
1e3c88bd 5490 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5491 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5492 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5493 * @sgs: variable to hold the statistics for this group.
5494 */
bd939f45
PZ
5495static inline void update_sg_lb_stats(struct lb_env *env,
5496 struct sched_group *group, int load_idx,
23f0d209 5497 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5498{
30ce5dab 5499 unsigned long load;
bd939f45 5500 int i;
1e3c88bd 5501
b72ff13c
PZ
5502 memset(sgs, 0, sizeof(*sgs));
5503
b9403130 5504 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5505 struct rq *rq = cpu_rq(i);
5506
1e3c88bd 5507 /* Bias balancing toward cpus of our domain */
6263322c 5508 if (local_group)
04f733b4 5509 load = target_load(i, load_idx);
6263322c 5510 else
1e3c88bd 5511 load = source_load(i, load_idx);
1e3c88bd
PZ
5512
5513 sgs->group_load += load;
380c9077 5514 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5515#ifdef CONFIG_NUMA_BALANCING
5516 sgs->nr_numa_running += rq->nr_numa_running;
5517 sgs->nr_preferred_running += rq->nr_preferred_running;
5518#endif
1e3c88bd 5519 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5520 if (idle_cpu(i))
5521 sgs->idle_cpus++;
1e3c88bd
PZ
5522 }
5523
1e3c88bd 5524 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5525 sgs->group_power = group->sgp->power;
5526 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5527
dd5feea1 5528 if (sgs->sum_nr_running)
38d0f770 5529 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5530
aae6d3dd 5531 sgs->group_weight = group->group_weight;
fab47622 5532
b37d9316
PZ
5533 sgs->group_imb = sg_imbalanced(group);
5534 sgs->group_capacity = sg_capacity(env, group);
5535
fab47622
NR
5536 if (sgs->group_capacity > sgs->sum_nr_running)
5537 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5538}
5539
532cb4c4
MN
5540/**
5541 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5542 * @env: The load balancing environment.
532cb4c4
MN
5543 * @sds: sched_domain statistics
5544 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5545 * @sgs: sched_group statistics
532cb4c4
MN
5546 *
5547 * Determine if @sg is a busier group than the previously selected
5548 * busiest group.
e69f6186
YB
5549 *
5550 * Return: %true if @sg is a busier group than the previously selected
5551 * busiest group. %false otherwise.
532cb4c4 5552 */
bd939f45 5553static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5554 struct sd_lb_stats *sds,
5555 struct sched_group *sg,
bd939f45 5556 struct sg_lb_stats *sgs)
532cb4c4 5557{
56cf515b 5558 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5559 return false;
5560
5561 if (sgs->sum_nr_running > sgs->group_capacity)
5562 return true;
5563
5564 if (sgs->group_imb)
5565 return true;
5566
5567 /*
5568 * ASYM_PACKING needs to move all the work to the lowest
5569 * numbered CPUs in the group, therefore mark all groups
5570 * higher than ourself as busy.
5571 */
bd939f45
PZ
5572 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5573 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5574 if (!sds->busiest)
5575 return true;
5576
5577 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5578 return true;
5579 }
5580
5581 return false;
5582}
5583
0ec8aa00
PZ
5584#ifdef CONFIG_NUMA_BALANCING
5585static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5586{
5587 if (sgs->sum_nr_running > sgs->nr_numa_running)
5588 return regular;
5589 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5590 return remote;
5591 return all;
5592}
5593
5594static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5595{
5596 if (rq->nr_running > rq->nr_numa_running)
5597 return regular;
5598 if (rq->nr_running > rq->nr_preferred_running)
5599 return remote;
5600 return all;
5601}
5602#else
5603static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5604{
5605 return all;
5606}
5607
5608static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5609{
5610 return regular;
5611}
5612#endif /* CONFIG_NUMA_BALANCING */
5613
1e3c88bd 5614/**
461819ac 5615 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5616 * @env: The load balancing environment.
1e3c88bd
PZ
5617 * @sds: variable to hold the statistics for this sched_domain.
5618 */
0ec8aa00 5619static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5620{
bd939f45
PZ
5621 struct sched_domain *child = env->sd->child;
5622 struct sched_group *sg = env->sd->groups;
56cf515b 5623 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5624 int load_idx, prefer_sibling = 0;
5625
5626 if (child && child->flags & SD_PREFER_SIBLING)
5627 prefer_sibling = 1;
5628
bd939f45 5629 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5630
5631 do {
56cf515b 5632 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5633 int local_group;
5634
bd939f45 5635 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5636 if (local_group) {
5637 sds->local = sg;
5638 sgs = &sds->local_stat;
b72ff13c
PZ
5639
5640 if (env->idle != CPU_NEWLY_IDLE ||
5641 time_after_eq(jiffies, sg->sgp->next_update))
5642 update_group_power(env->sd, env->dst_cpu);
56cf515b 5643 }
1e3c88bd 5644
56cf515b 5645 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5646
b72ff13c
PZ
5647 if (local_group)
5648 goto next_group;
5649
1e3c88bd
PZ
5650 /*
5651 * In case the child domain prefers tasks go to siblings
532cb4c4 5652 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5653 * and move all the excess tasks away. We lower the capacity
5654 * of a group only if the local group has the capacity to fit
5655 * these excess tasks, i.e. nr_running < group_capacity. The
5656 * extra check prevents the case where you always pull from the
5657 * heaviest group when it is already under-utilized (possible
5658 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5659 */
b72ff13c
PZ
5660 if (prefer_sibling && sds->local &&
5661 sds->local_stat.group_has_capacity)
147c5fc2 5662 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5663
b72ff13c 5664 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5665 sds->busiest = sg;
56cf515b 5666 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5667 }
5668
b72ff13c
PZ
5669next_group:
5670 /* Now, start updating sd_lb_stats */
5671 sds->total_load += sgs->group_load;
5672 sds->total_pwr += sgs->group_power;
5673
532cb4c4 5674 sg = sg->next;
bd939f45 5675 } while (sg != env->sd->groups);
0ec8aa00
PZ
5676
5677 if (env->sd->flags & SD_NUMA)
5678 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5679}
5680
532cb4c4
MN
5681/**
5682 * check_asym_packing - Check to see if the group is packed into the
5683 * sched doman.
5684 *
5685 * This is primarily intended to used at the sibling level. Some
5686 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5687 * case of POWER7, it can move to lower SMT modes only when higher
5688 * threads are idle. When in lower SMT modes, the threads will
5689 * perform better since they share less core resources. Hence when we
5690 * have idle threads, we want them to be the higher ones.
5691 *
5692 * This packing function is run on idle threads. It checks to see if
5693 * the busiest CPU in this domain (core in the P7 case) has a higher
5694 * CPU number than the packing function is being run on. Here we are
5695 * assuming lower CPU number will be equivalent to lower a SMT thread
5696 * number.
5697 *
e69f6186 5698 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5699 * this CPU. The amount of the imbalance is returned in *imbalance.
5700 *
cd96891d 5701 * @env: The load balancing environment.
532cb4c4 5702 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5703 */
bd939f45 5704static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5705{
5706 int busiest_cpu;
5707
bd939f45 5708 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5709 return 0;
5710
5711 if (!sds->busiest)
5712 return 0;
5713
5714 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5715 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5716 return 0;
5717
bd939f45 5718 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5719 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5720 SCHED_POWER_SCALE);
bd939f45 5721
532cb4c4 5722 return 1;
1e3c88bd
PZ
5723}
5724
5725/**
5726 * fix_small_imbalance - Calculate the minor imbalance that exists
5727 * amongst the groups of a sched_domain, during
5728 * load balancing.
cd96891d 5729 * @env: The load balancing environment.
1e3c88bd 5730 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5731 */
bd939f45
PZ
5732static inline
5733void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5734{
5735 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5736 unsigned int imbn = 2;
dd5feea1 5737 unsigned long scaled_busy_load_per_task;
56cf515b 5738 struct sg_lb_stats *local, *busiest;
1e3c88bd 5739
56cf515b
JK
5740 local = &sds->local_stat;
5741 busiest = &sds->busiest_stat;
1e3c88bd 5742
56cf515b
JK
5743 if (!local->sum_nr_running)
5744 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5745 else if (busiest->load_per_task > local->load_per_task)
5746 imbn = 1;
dd5feea1 5747
56cf515b
JK
5748 scaled_busy_load_per_task =
5749 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5750 busiest->group_power;
56cf515b 5751
3029ede3
VD
5752 if (busiest->avg_load + scaled_busy_load_per_task >=
5753 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5754 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5755 return;
5756 }
5757
5758 /*
5759 * OK, we don't have enough imbalance to justify moving tasks,
5760 * however we may be able to increase total CPU power used by
5761 * moving them.
5762 */
5763
3ae11c90 5764 pwr_now += busiest->group_power *
56cf515b 5765 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5766 pwr_now += local->group_power *
56cf515b 5767 min(local->load_per_task, local->avg_load);
1399fa78 5768 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5769
5770 /* Amount of load we'd subtract */
56cf515b 5771 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5772 busiest->group_power;
56cf515b 5773 if (busiest->avg_load > tmp) {
3ae11c90 5774 pwr_move += busiest->group_power *
56cf515b
JK
5775 min(busiest->load_per_task,
5776 busiest->avg_load - tmp);
5777 }
1e3c88bd
PZ
5778
5779 /* Amount of load we'd add */
3ae11c90 5780 if (busiest->avg_load * busiest->group_power <
56cf515b 5781 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5782 tmp = (busiest->avg_load * busiest->group_power) /
5783 local->group_power;
56cf515b
JK
5784 } else {
5785 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5786 local->group_power;
56cf515b 5787 }
3ae11c90
PZ
5788 pwr_move += local->group_power *
5789 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5790 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5791
5792 /* Move if we gain throughput */
5793 if (pwr_move > pwr_now)
56cf515b 5794 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5795}
5796
5797/**
5798 * calculate_imbalance - Calculate the amount of imbalance present within the
5799 * groups of a given sched_domain during load balance.
bd939f45 5800 * @env: load balance environment
1e3c88bd 5801 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5802 */
bd939f45 5803static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5804{
dd5feea1 5805 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5806 struct sg_lb_stats *local, *busiest;
5807
5808 local = &sds->local_stat;
56cf515b 5809 busiest = &sds->busiest_stat;
dd5feea1 5810
56cf515b 5811 if (busiest->group_imb) {
30ce5dab
PZ
5812 /*
5813 * In the group_imb case we cannot rely on group-wide averages
5814 * to ensure cpu-load equilibrium, look at wider averages. XXX
5815 */
56cf515b
JK
5816 busiest->load_per_task =
5817 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5818 }
5819
1e3c88bd
PZ
5820 /*
5821 * In the presence of smp nice balancing, certain scenarios can have
5822 * max load less than avg load(as we skip the groups at or below
5823 * its cpu_power, while calculating max_load..)
5824 */
b1885550
VD
5825 if (busiest->avg_load <= sds->avg_load ||
5826 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5827 env->imbalance = 0;
5828 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5829 }
5830
56cf515b 5831 if (!busiest->group_imb) {
dd5feea1
SS
5832 /*
5833 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5834 * Except of course for the group_imb case, since then we might
5835 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5836 */
56cf515b
JK
5837 load_above_capacity =
5838 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5839
1399fa78 5840 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5841 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5842 }
5843
5844 /*
5845 * We're trying to get all the cpus to the average_load, so we don't
5846 * want to push ourselves above the average load, nor do we wish to
5847 * reduce the max loaded cpu below the average load. At the same time,
5848 * we also don't want to reduce the group load below the group capacity
5849 * (so that we can implement power-savings policies etc). Thus we look
5850 * for the minimum possible imbalance.
dd5feea1 5851 */
30ce5dab 5852 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5853
5854 /* How much load to actually move to equalise the imbalance */
56cf515b 5855 env->imbalance = min(
3ae11c90
PZ
5856 max_pull * busiest->group_power,
5857 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5858 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5859
5860 /*
5861 * if *imbalance is less than the average load per runnable task
25985edc 5862 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5863 * a think about bumping its value to force at least one task to be
5864 * moved
5865 */
56cf515b 5866 if (env->imbalance < busiest->load_per_task)
bd939f45 5867 return fix_small_imbalance(env, sds);
1e3c88bd 5868}
fab47622 5869
1e3c88bd
PZ
5870/******* find_busiest_group() helpers end here *********************/
5871
5872/**
5873 * find_busiest_group - Returns the busiest group within the sched_domain
5874 * if there is an imbalance. If there isn't an imbalance, and
5875 * the user has opted for power-savings, it returns a group whose
5876 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5877 * such a group exists.
5878 *
5879 * Also calculates the amount of weighted load which should be moved
5880 * to restore balance.
5881 *
cd96891d 5882 * @env: The load balancing environment.
1e3c88bd 5883 *
e69f6186 5884 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5885 * - If no imbalance and user has opted for power-savings balance,
5886 * return the least loaded group whose CPUs can be
5887 * put to idle by rebalancing its tasks onto our group.
5888 */
56cf515b 5889static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5890{
56cf515b 5891 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5892 struct sd_lb_stats sds;
5893
147c5fc2 5894 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5895
5896 /*
5897 * Compute the various statistics relavent for load balancing at
5898 * this level.
5899 */
23f0d209 5900 update_sd_lb_stats(env, &sds);
56cf515b
JK
5901 local = &sds.local_stat;
5902 busiest = &sds.busiest_stat;
1e3c88bd 5903
bd939f45
PZ
5904 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5905 check_asym_packing(env, &sds))
532cb4c4
MN
5906 return sds.busiest;
5907
cc57aa8f 5908 /* There is no busy sibling group to pull tasks from */
56cf515b 5909 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5910 goto out_balanced;
5911
1399fa78 5912 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5913
866ab43e
PZ
5914 /*
5915 * If the busiest group is imbalanced the below checks don't
30ce5dab 5916 * work because they assume all things are equal, which typically
866ab43e
PZ
5917 * isn't true due to cpus_allowed constraints and the like.
5918 */
56cf515b 5919 if (busiest->group_imb)
866ab43e
PZ
5920 goto force_balance;
5921
cc57aa8f 5922 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5923 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5924 !busiest->group_has_capacity)
fab47622
NR
5925 goto force_balance;
5926
cc57aa8f
PZ
5927 /*
5928 * If the local group is more busy than the selected busiest group
5929 * don't try and pull any tasks.
5930 */
56cf515b 5931 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5932 goto out_balanced;
5933
cc57aa8f
PZ
5934 /*
5935 * Don't pull any tasks if this group is already above the domain
5936 * average load.
5937 */
56cf515b 5938 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5939 goto out_balanced;
5940
bd939f45 5941 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5942 /*
5943 * This cpu is idle. If the busiest group load doesn't
5944 * have more tasks than the number of available cpu's and
5945 * there is no imbalance between this and busiest group
5946 * wrt to idle cpu's, it is balanced.
5947 */
56cf515b
JK
5948 if ((local->idle_cpus < busiest->idle_cpus) &&
5949 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5950 goto out_balanced;
c186fafe
PZ
5951 } else {
5952 /*
5953 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5954 * imbalance_pct to be conservative.
5955 */
56cf515b
JK
5956 if (100 * busiest->avg_load <=
5957 env->sd->imbalance_pct * local->avg_load)
c186fafe 5958 goto out_balanced;
aae6d3dd 5959 }
1e3c88bd 5960
fab47622 5961force_balance:
1e3c88bd 5962 /* Looks like there is an imbalance. Compute it */
bd939f45 5963 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5964 return sds.busiest;
5965
5966out_balanced:
bd939f45 5967 env->imbalance = 0;
1e3c88bd
PZ
5968 return NULL;
5969}
5970
5971/*
5972 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5973 */
bd939f45 5974static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5975 struct sched_group *group)
1e3c88bd
PZ
5976{
5977 struct rq *busiest = NULL, *rq;
95a79b80 5978 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5979 int i;
5980
6906a408 5981 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
5982 unsigned long power, capacity, wl;
5983 enum fbq_type rt;
5984
5985 rq = cpu_rq(i);
5986 rt = fbq_classify_rq(rq);
1e3c88bd 5987
0ec8aa00
PZ
5988 /*
5989 * We classify groups/runqueues into three groups:
5990 * - regular: there are !numa tasks
5991 * - remote: there are numa tasks that run on the 'wrong' node
5992 * - all: there is no distinction
5993 *
5994 * In order to avoid migrating ideally placed numa tasks,
5995 * ignore those when there's better options.
5996 *
5997 * If we ignore the actual busiest queue to migrate another
5998 * task, the next balance pass can still reduce the busiest
5999 * queue by moving tasks around inside the node.
6000 *
6001 * If we cannot move enough load due to this classification
6002 * the next pass will adjust the group classification and
6003 * allow migration of more tasks.
6004 *
6005 * Both cases only affect the total convergence complexity.
6006 */
6007 if (rt > env->fbq_type)
6008 continue;
6009
6010 power = power_of(i);
6011 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6012 if (!capacity)
bd939f45 6013 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6014
6e40f5bb 6015 wl = weighted_cpuload(i);
1e3c88bd 6016
6e40f5bb
TG
6017 /*
6018 * When comparing with imbalance, use weighted_cpuload()
6019 * which is not scaled with the cpu power.
6020 */
bd939f45 6021 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6022 continue;
6023
6e40f5bb
TG
6024 /*
6025 * For the load comparisons with the other cpu's, consider
6026 * the weighted_cpuload() scaled with the cpu power, so that
6027 * the load can be moved away from the cpu that is potentially
6028 * running at a lower capacity.
95a79b80
JK
6029 *
6030 * Thus we're looking for max(wl_i / power_i), crosswise
6031 * multiplication to rid ourselves of the division works out
6032 * to: wl_i * power_j > wl_j * power_i; where j is our
6033 * previous maximum.
6e40f5bb 6034 */
95a79b80
JK
6035 if (wl * busiest_power > busiest_load * power) {
6036 busiest_load = wl;
6037 busiest_power = power;
1e3c88bd
PZ
6038 busiest = rq;
6039 }
6040 }
6041
6042 return busiest;
6043}
6044
6045/*
6046 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6047 * so long as it is large enough.
6048 */
6049#define MAX_PINNED_INTERVAL 512
6050
6051/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6052DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6053
bd939f45 6054static int need_active_balance(struct lb_env *env)
1af3ed3d 6055{
bd939f45
PZ
6056 struct sched_domain *sd = env->sd;
6057
6058 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6059
6060 /*
6061 * ASYM_PACKING needs to force migrate tasks from busy but
6062 * higher numbered CPUs in order to pack all tasks in the
6063 * lowest numbered CPUs.
6064 */
bd939f45 6065 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6066 return 1;
1af3ed3d
PZ
6067 }
6068
6069 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6070}
6071
969c7921
TH
6072static int active_load_balance_cpu_stop(void *data);
6073
23f0d209
JK
6074static int should_we_balance(struct lb_env *env)
6075{
6076 struct sched_group *sg = env->sd->groups;
6077 struct cpumask *sg_cpus, *sg_mask;
6078 int cpu, balance_cpu = -1;
6079
6080 /*
6081 * In the newly idle case, we will allow all the cpu's
6082 * to do the newly idle load balance.
6083 */
6084 if (env->idle == CPU_NEWLY_IDLE)
6085 return 1;
6086
6087 sg_cpus = sched_group_cpus(sg);
6088 sg_mask = sched_group_mask(sg);
6089 /* Try to find first idle cpu */
6090 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6091 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6092 continue;
6093
6094 balance_cpu = cpu;
6095 break;
6096 }
6097
6098 if (balance_cpu == -1)
6099 balance_cpu = group_balance_cpu(sg);
6100
6101 /*
6102 * First idle cpu or the first cpu(busiest) in this sched group
6103 * is eligible for doing load balancing at this and above domains.
6104 */
b0cff9d8 6105 return balance_cpu == env->dst_cpu;
23f0d209
JK
6106}
6107
1e3c88bd
PZ
6108/*
6109 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6110 * tasks if there is an imbalance.
6111 */
6112static int load_balance(int this_cpu, struct rq *this_rq,
6113 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6114 int *continue_balancing)
1e3c88bd 6115{
88b8dac0 6116 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6117 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6118 struct sched_group *group;
1e3c88bd
PZ
6119 struct rq *busiest;
6120 unsigned long flags;
e6252c3e 6121 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6122
8e45cb54
PZ
6123 struct lb_env env = {
6124 .sd = sd,
ddcdf6e7
PZ
6125 .dst_cpu = this_cpu,
6126 .dst_rq = this_rq,
88b8dac0 6127 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6128 .idle = idle,
eb95308e 6129 .loop_break = sched_nr_migrate_break,
b9403130 6130 .cpus = cpus,
0ec8aa00 6131 .fbq_type = all,
8e45cb54
PZ
6132 };
6133
cfc03118
JK
6134 /*
6135 * For NEWLY_IDLE load_balancing, we don't need to consider
6136 * other cpus in our group
6137 */
e02e60c1 6138 if (idle == CPU_NEWLY_IDLE)
cfc03118 6139 env.dst_grpmask = NULL;
cfc03118 6140
1e3c88bd
PZ
6141 cpumask_copy(cpus, cpu_active_mask);
6142
1e3c88bd
PZ
6143 schedstat_inc(sd, lb_count[idle]);
6144
6145redo:
23f0d209
JK
6146 if (!should_we_balance(&env)) {
6147 *continue_balancing = 0;
1e3c88bd 6148 goto out_balanced;
23f0d209 6149 }
1e3c88bd 6150
23f0d209 6151 group = find_busiest_group(&env);
1e3c88bd
PZ
6152 if (!group) {
6153 schedstat_inc(sd, lb_nobusyg[idle]);
6154 goto out_balanced;
6155 }
6156
b9403130 6157 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6158 if (!busiest) {
6159 schedstat_inc(sd, lb_nobusyq[idle]);
6160 goto out_balanced;
6161 }
6162
78feefc5 6163 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6164
bd939f45 6165 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6166
6167 ld_moved = 0;
6168 if (busiest->nr_running > 1) {
6169 /*
6170 * Attempt to move tasks. If find_busiest_group has found
6171 * an imbalance but busiest->nr_running <= 1, the group is
6172 * still unbalanced. ld_moved simply stays zero, so it is
6173 * correctly treated as an imbalance.
6174 */
8e45cb54 6175 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6176 env.src_cpu = busiest->cpu;
6177 env.src_rq = busiest;
6178 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6179
5d6523eb 6180more_balance:
1e3c88bd 6181 local_irq_save(flags);
78feefc5 6182 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6183
6184 /*
6185 * cur_ld_moved - load moved in current iteration
6186 * ld_moved - cumulative load moved across iterations
6187 */
6188 cur_ld_moved = move_tasks(&env);
6189 ld_moved += cur_ld_moved;
78feefc5 6190 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6191 local_irq_restore(flags);
6192
6193 /*
6194 * some other cpu did the load balance for us.
6195 */
88b8dac0
SV
6196 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6197 resched_cpu(env.dst_cpu);
6198
f1cd0858
JK
6199 if (env.flags & LBF_NEED_BREAK) {
6200 env.flags &= ~LBF_NEED_BREAK;
6201 goto more_balance;
6202 }
6203
88b8dac0
SV
6204 /*
6205 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6206 * us and move them to an alternate dst_cpu in our sched_group
6207 * where they can run. The upper limit on how many times we
6208 * iterate on same src_cpu is dependent on number of cpus in our
6209 * sched_group.
6210 *
6211 * This changes load balance semantics a bit on who can move
6212 * load to a given_cpu. In addition to the given_cpu itself
6213 * (or a ilb_cpu acting on its behalf where given_cpu is
6214 * nohz-idle), we now have balance_cpu in a position to move
6215 * load to given_cpu. In rare situations, this may cause
6216 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6217 * _independently_ and at _same_ time to move some load to
6218 * given_cpu) causing exceess load to be moved to given_cpu.
6219 * This however should not happen so much in practice and
6220 * moreover subsequent load balance cycles should correct the
6221 * excess load moved.
6222 */
6263322c 6223 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6224
7aff2e3a
VD
6225 /* Prevent to re-select dst_cpu via env's cpus */
6226 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6227
78feefc5 6228 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6229 env.dst_cpu = env.new_dst_cpu;
6263322c 6230 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6231 env.loop = 0;
6232 env.loop_break = sched_nr_migrate_break;
e02e60c1 6233
88b8dac0
SV
6234 /*
6235 * Go back to "more_balance" rather than "redo" since we
6236 * need to continue with same src_cpu.
6237 */
6238 goto more_balance;
6239 }
1e3c88bd 6240
6263322c
PZ
6241 /*
6242 * We failed to reach balance because of affinity.
6243 */
6244 if (sd_parent) {
6245 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6246
6247 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6248 *group_imbalance = 1;
6249 } else if (*group_imbalance)
6250 *group_imbalance = 0;
6251 }
6252
1e3c88bd 6253 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6254 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6255 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6256 if (!cpumask_empty(cpus)) {
6257 env.loop = 0;
6258 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6259 goto redo;
bbf18b19 6260 }
1e3c88bd
PZ
6261 goto out_balanced;
6262 }
6263 }
6264
6265 if (!ld_moved) {
6266 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6267 /*
6268 * Increment the failure counter only on periodic balance.
6269 * We do not want newidle balance, which can be very
6270 * frequent, pollute the failure counter causing
6271 * excessive cache_hot migrations and active balances.
6272 */
6273 if (idle != CPU_NEWLY_IDLE)
6274 sd->nr_balance_failed++;
1e3c88bd 6275
bd939f45 6276 if (need_active_balance(&env)) {
1e3c88bd
PZ
6277 raw_spin_lock_irqsave(&busiest->lock, flags);
6278
969c7921
TH
6279 /* don't kick the active_load_balance_cpu_stop,
6280 * if the curr task on busiest cpu can't be
6281 * moved to this_cpu
1e3c88bd
PZ
6282 */
6283 if (!cpumask_test_cpu(this_cpu,
fa17b507 6284 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6285 raw_spin_unlock_irqrestore(&busiest->lock,
6286 flags);
8e45cb54 6287 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6288 goto out_one_pinned;
6289 }
6290
969c7921
TH
6291 /*
6292 * ->active_balance synchronizes accesses to
6293 * ->active_balance_work. Once set, it's cleared
6294 * only after active load balance is finished.
6295 */
1e3c88bd
PZ
6296 if (!busiest->active_balance) {
6297 busiest->active_balance = 1;
6298 busiest->push_cpu = this_cpu;
6299 active_balance = 1;
6300 }
6301 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6302
bd939f45 6303 if (active_balance) {
969c7921
TH
6304 stop_one_cpu_nowait(cpu_of(busiest),
6305 active_load_balance_cpu_stop, busiest,
6306 &busiest->active_balance_work);
bd939f45 6307 }
1e3c88bd
PZ
6308
6309 /*
6310 * We've kicked active balancing, reset the failure
6311 * counter.
6312 */
6313 sd->nr_balance_failed = sd->cache_nice_tries+1;
6314 }
6315 } else
6316 sd->nr_balance_failed = 0;
6317
6318 if (likely(!active_balance)) {
6319 /* We were unbalanced, so reset the balancing interval */
6320 sd->balance_interval = sd->min_interval;
6321 } else {
6322 /*
6323 * If we've begun active balancing, start to back off. This
6324 * case may not be covered by the all_pinned logic if there
6325 * is only 1 task on the busy runqueue (because we don't call
6326 * move_tasks).
6327 */
6328 if (sd->balance_interval < sd->max_interval)
6329 sd->balance_interval *= 2;
6330 }
6331
1e3c88bd
PZ
6332 goto out;
6333
6334out_balanced:
6335 schedstat_inc(sd, lb_balanced[idle]);
6336
6337 sd->nr_balance_failed = 0;
6338
6339out_one_pinned:
6340 /* tune up the balancing interval */
8e45cb54 6341 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6342 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6343 (sd->balance_interval < sd->max_interval))
6344 sd->balance_interval *= 2;
6345
46e49b38 6346 ld_moved = 0;
1e3c88bd 6347out:
1e3c88bd
PZ
6348 return ld_moved;
6349}
6350
1e3c88bd
PZ
6351/*
6352 * idle_balance is called by schedule() if this_cpu is about to become
6353 * idle. Attempts to pull tasks from other CPUs.
6354 */
029632fb 6355void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6356{
6357 struct sched_domain *sd;
6358 int pulled_task = 0;
6359 unsigned long next_balance = jiffies + HZ;
9bd721c5 6360 u64 curr_cost = 0;
1e3c88bd 6361
78becc27 6362 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6363
6364 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6365 return;
6366
f492e12e
PZ
6367 /*
6368 * Drop the rq->lock, but keep IRQ/preempt disabled.
6369 */
6370 raw_spin_unlock(&this_rq->lock);
6371
48a16753 6372 update_blocked_averages(this_cpu);
dce840a0 6373 rcu_read_lock();
1e3c88bd
PZ
6374 for_each_domain(this_cpu, sd) {
6375 unsigned long interval;
23f0d209 6376 int continue_balancing = 1;
9bd721c5 6377 u64 t0, domain_cost;
1e3c88bd
PZ
6378
6379 if (!(sd->flags & SD_LOAD_BALANCE))
6380 continue;
6381
9bd721c5
JL
6382 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6383 break;
6384
f492e12e 6385 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6386 t0 = sched_clock_cpu(this_cpu);
6387
1e3c88bd 6388 /* If we've pulled tasks over stop searching: */
f492e12e 6389 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6390 sd, CPU_NEWLY_IDLE,
6391 &continue_balancing);
9bd721c5
JL
6392
6393 domain_cost = sched_clock_cpu(this_cpu) - t0;
6394 if (domain_cost > sd->max_newidle_lb_cost)
6395 sd->max_newidle_lb_cost = domain_cost;
6396
6397 curr_cost += domain_cost;
f492e12e 6398 }
1e3c88bd
PZ
6399
6400 interval = msecs_to_jiffies(sd->balance_interval);
6401 if (time_after(next_balance, sd->last_balance + interval))
6402 next_balance = sd->last_balance + interval;
d5ad140b
NR
6403 if (pulled_task) {
6404 this_rq->idle_stamp = 0;
1e3c88bd 6405 break;
d5ad140b 6406 }
1e3c88bd 6407 }
dce840a0 6408 rcu_read_unlock();
f492e12e
PZ
6409
6410 raw_spin_lock(&this_rq->lock);
6411
1e3c88bd
PZ
6412 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6413 /*
6414 * We are going idle. next_balance may be set based on
6415 * a busy processor. So reset next_balance.
6416 */
6417 this_rq->next_balance = next_balance;
6418 }
9bd721c5
JL
6419
6420 if (curr_cost > this_rq->max_idle_balance_cost)
6421 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6422}
6423
6424/*
969c7921
TH
6425 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6426 * running tasks off the busiest CPU onto idle CPUs. It requires at
6427 * least 1 task to be running on each physical CPU where possible, and
6428 * avoids physical / logical imbalances.
1e3c88bd 6429 */
969c7921 6430static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6431{
969c7921
TH
6432 struct rq *busiest_rq = data;
6433 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6434 int target_cpu = busiest_rq->push_cpu;
969c7921 6435 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6436 struct sched_domain *sd;
969c7921
TH
6437
6438 raw_spin_lock_irq(&busiest_rq->lock);
6439
6440 /* make sure the requested cpu hasn't gone down in the meantime */
6441 if (unlikely(busiest_cpu != smp_processor_id() ||
6442 !busiest_rq->active_balance))
6443 goto out_unlock;
1e3c88bd
PZ
6444
6445 /* Is there any task to move? */
6446 if (busiest_rq->nr_running <= 1)
969c7921 6447 goto out_unlock;
1e3c88bd
PZ
6448
6449 /*
6450 * This condition is "impossible", if it occurs
6451 * we need to fix it. Originally reported by
6452 * Bjorn Helgaas on a 128-cpu setup.
6453 */
6454 BUG_ON(busiest_rq == target_rq);
6455
6456 /* move a task from busiest_rq to target_rq */
6457 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6458
6459 /* Search for an sd spanning us and the target CPU. */
dce840a0 6460 rcu_read_lock();
1e3c88bd
PZ
6461 for_each_domain(target_cpu, sd) {
6462 if ((sd->flags & SD_LOAD_BALANCE) &&
6463 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6464 break;
6465 }
6466
6467 if (likely(sd)) {
8e45cb54
PZ
6468 struct lb_env env = {
6469 .sd = sd,
ddcdf6e7
PZ
6470 .dst_cpu = target_cpu,
6471 .dst_rq = target_rq,
6472 .src_cpu = busiest_rq->cpu,
6473 .src_rq = busiest_rq,
8e45cb54
PZ
6474 .idle = CPU_IDLE,
6475 };
6476
1e3c88bd
PZ
6477 schedstat_inc(sd, alb_count);
6478
8e45cb54 6479 if (move_one_task(&env))
1e3c88bd
PZ
6480 schedstat_inc(sd, alb_pushed);
6481 else
6482 schedstat_inc(sd, alb_failed);
6483 }
dce840a0 6484 rcu_read_unlock();
1e3c88bd 6485 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6486out_unlock:
6487 busiest_rq->active_balance = 0;
6488 raw_spin_unlock_irq(&busiest_rq->lock);
6489 return 0;
1e3c88bd
PZ
6490}
6491
3451d024 6492#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6493/*
6494 * idle load balancing details
83cd4fe2
VP
6495 * - When one of the busy CPUs notice that there may be an idle rebalancing
6496 * needed, they will kick the idle load balancer, which then does idle
6497 * load balancing for all the idle CPUs.
6498 */
1e3c88bd 6499static struct {
83cd4fe2 6500 cpumask_var_t idle_cpus_mask;
0b005cf5 6501 atomic_t nr_cpus;
83cd4fe2
VP
6502 unsigned long next_balance; /* in jiffy units */
6503} nohz ____cacheline_aligned;
1e3c88bd 6504
8e7fbcbc 6505static inline int find_new_ilb(int call_cpu)
1e3c88bd 6506{
0b005cf5 6507 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6508
786d6dc7
SS
6509 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6510 return ilb;
6511
6512 return nr_cpu_ids;
1e3c88bd 6513}
1e3c88bd 6514
83cd4fe2
VP
6515/*
6516 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6517 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6518 * CPU (if there is one).
6519 */
6520static void nohz_balancer_kick(int cpu)
6521{
6522 int ilb_cpu;
6523
6524 nohz.next_balance++;
6525
0b005cf5 6526 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 6527
0b005cf5
SS
6528 if (ilb_cpu >= nr_cpu_ids)
6529 return;
83cd4fe2 6530
cd490c5b 6531 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6532 return;
6533 /*
6534 * Use smp_send_reschedule() instead of resched_cpu().
6535 * This way we generate a sched IPI on the target cpu which
6536 * is idle. And the softirq performing nohz idle load balance
6537 * will be run before returning from the IPI.
6538 */
6539 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6540 return;
6541}
6542
c1cc017c 6543static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6544{
6545 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6546 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6547 atomic_dec(&nohz.nr_cpus);
6548 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6549 }
6550}
6551
69e1e811
SS
6552static inline void set_cpu_sd_state_busy(void)
6553{
6554 struct sched_domain *sd;
37dc6b50 6555 int cpu = smp_processor_id();
69e1e811 6556
69e1e811 6557 rcu_read_lock();
37dc6b50 6558 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6559
6560 if (!sd || !sd->nohz_idle)
6561 goto unlock;
6562 sd->nohz_idle = 0;
6563
37dc6b50 6564 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6565unlock:
69e1e811
SS
6566 rcu_read_unlock();
6567}
6568
6569void set_cpu_sd_state_idle(void)
6570{
6571 struct sched_domain *sd;
37dc6b50 6572 int cpu = smp_processor_id();
69e1e811 6573
69e1e811 6574 rcu_read_lock();
37dc6b50 6575 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6576
6577 if (!sd || sd->nohz_idle)
6578 goto unlock;
6579 sd->nohz_idle = 1;
6580
37dc6b50 6581 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6582unlock:
69e1e811
SS
6583 rcu_read_unlock();
6584}
6585
1e3c88bd 6586/*
c1cc017c 6587 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6588 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6589 */
c1cc017c 6590void nohz_balance_enter_idle(int cpu)
1e3c88bd 6591{
71325960
SS
6592 /*
6593 * If this cpu is going down, then nothing needs to be done.
6594 */
6595 if (!cpu_active(cpu))
6596 return;
6597
c1cc017c
AS
6598 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6599 return;
1e3c88bd 6600
c1cc017c
AS
6601 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6602 atomic_inc(&nohz.nr_cpus);
6603 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6604}
71325960 6605
0db0628d 6606static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6607 unsigned long action, void *hcpu)
6608{
6609 switch (action & ~CPU_TASKS_FROZEN) {
6610 case CPU_DYING:
c1cc017c 6611 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6612 return NOTIFY_OK;
6613 default:
6614 return NOTIFY_DONE;
6615 }
6616}
1e3c88bd
PZ
6617#endif
6618
6619static DEFINE_SPINLOCK(balancing);
6620
49c022e6
PZ
6621/*
6622 * Scale the max load_balance interval with the number of CPUs in the system.
6623 * This trades load-balance latency on larger machines for less cross talk.
6624 */
029632fb 6625void update_max_interval(void)
49c022e6
PZ
6626{
6627 max_load_balance_interval = HZ*num_online_cpus()/10;
6628}
6629
1e3c88bd
PZ
6630/*
6631 * It checks each scheduling domain to see if it is due to be balanced,
6632 * and initiates a balancing operation if so.
6633 *
b9b0853a 6634 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6635 */
6636static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6637{
23f0d209 6638 int continue_balancing = 1;
1e3c88bd
PZ
6639 struct rq *rq = cpu_rq(cpu);
6640 unsigned long interval;
04f733b4 6641 struct sched_domain *sd;
1e3c88bd
PZ
6642 /* Earliest time when we have to do rebalance again */
6643 unsigned long next_balance = jiffies + 60*HZ;
6644 int update_next_balance = 0;
f48627e6
JL
6645 int need_serialize, need_decay = 0;
6646 u64 max_cost = 0;
1e3c88bd 6647
48a16753 6648 update_blocked_averages(cpu);
2069dd75 6649
dce840a0 6650 rcu_read_lock();
1e3c88bd 6651 for_each_domain(cpu, sd) {
f48627e6
JL
6652 /*
6653 * Decay the newidle max times here because this is a regular
6654 * visit to all the domains. Decay ~1% per second.
6655 */
6656 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6657 sd->max_newidle_lb_cost =
6658 (sd->max_newidle_lb_cost * 253) / 256;
6659 sd->next_decay_max_lb_cost = jiffies + HZ;
6660 need_decay = 1;
6661 }
6662 max_cost += sd->max_newidle_lb_cost;
6663
1e3c88bd
PZ
6664 if (!(sd->flags & SD_LOAD_BALANCE))
6665 continue;
6666
f48627e6
JL
6667 /*
6668 * Stop the load balance at this level. There is another
6669 * CPU in our sched group which is doing load balancing more
6670 * actively.
6671 */
6672 if (!continue_balancing) {
6673 if (need_decay)
6674 continue;
6675 break;
6676 }
6677
1e3c88bd
PZ
6678 interval = sd->balance_interval;
6679 if (idle != CPU_IDLE)
6680 interval *= sd->busy_factor;
6681
6682 /* scale ms to jiffies */
6683 interval = msecs_to_jiffies(interval);
49c022e6 6684 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6685
6686 need_serialize = sd->flags & SD_SERIALIZE;
6687
6688 if (need_serialize) {
6689 if (!spin_trylock(&balancing))
6690 goto out;
6691 }
6692
6693 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6694 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6695 /*
6263322c 6696 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6697 * env->dst_cpu, so we can't know our idle
6698 * state even if we migrated tasks. Update it.
1e3c88bd 6699 */
de5eb2dd 6700 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6701 }
6702 sd->last_balance = jiffies;
6703 }
6704 if (need_serialize)
6705 spin_unlock(&balancing);
6706out:
6707 if (time_after(next_balance, sd->last_balance + interval)) {
6708 next_balance = sd->last_balance + interval;
6709 update_next_balance = 1;
6710 }
f48627e6
JL
6711 }
6712 if (need_decay) {
1e3c88bd 6713 /*
f48627e6
JL
6714 * Ensure the rq-wide value also decays but keep it at a
6715 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6716 */
f48627e6
JL
6717 rq->max_idle_balance_cost =
6718 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6719 }
dce840a0 6720 rcu_read_unlock();
1e3c88bd
PZ
6721
6722 /*
6723 * next_balance will be updated only when there is a need.
6724 * When the cpu is attached to null domain for ex, it will not be
6725 * updated.
6726 */
6727 if (likely(update_next_balance))
6728 rq->next_balance = next_balance;
6729}
6730
3451d024 6731#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6732/*
3451d024 6733 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6734 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6735 */
83cd4fe2
VP
6736static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6737{
6738 struct rq *this_rq = cpu_rq(this_cpu);
6739 struct rq *rq;
6740 int balance_cpu;
6741
1c792db7
SS
6742 if (idle != CPU_IDLE ||
6743 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6744 goto end;
83cd4fe2
VP
6745
6746 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6747 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6748 continue;
6749
6750 /*
6751 * If this cpu gets work to do, stop the load balancing
6752 * work being done for other cpus. Next load
6753 * balancing owner will pick it up.
6754 */
1c792db7 6755 if (need_resched())
83cd4fe2 6756 break;
83cd4fe2 6757
5ed4f1d9
VG
6758 rq = cpu_rq(balance_cpu);
6759
6760 raw_spin_lock_irq(&rq->lock);
6761 update_rq_clock(rq);
6762 update_idle_cpu_load(rq);
6763 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6764
6765 rebalance_domains(balance_cpu, CPU_IDLE);
6766
83cd4fe2
VP
6767 if (time_after(this_rq->next_balance, rq->next_balance))
6768 this_rq->next_balance = rq->next_balance;
6769 }
6770 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6771end:
6772 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6773}
6774
6775/*
0b005cf5
SS
6776 * Current heuristic for kicking the idle load balancer in the presence
6777 * of an idle cpu is the system.
6778 * - This rq has more than one task.
6779 * - At any scheduler domain level, this cpu's scheduler group has multiple
6780 * busy cpu's exceeding the group's power.
6781 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6782 * domain span are idle.
83cd4fe2
VP
6783 */
6784static inline int nohz_kick_needed(struct rq *rq, int cpu)
6785{
6786 unsigned long now = jiffies;
0b005cf5 6787 struct sched_domain *sd;
37dc6b50
PM
6788 struct sched_group_power *sgp;
6789 int nr_busy;
83cd4fe2 6790
1c792db7 6791 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6792 return 0;
6793
1c792db7
SS
6794 /*
6795 * We may be recently in ticked or tickless idle mode. At the first
6796 * busy tick after returning from idle, we will update the busy stats.
6797 */
69e1e811 6798 set_cpu_sd_state_busy();
c1cc017c 6799 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6800
6801 /*
6802 * None are in tickless mode and hence no need for NOHZ idle load
6803 * balancing.
6804 */
6805 if (likely(!atomic_read(&nohz.nr_cpus)))
6806 return 0;
1c792db7
SS
6807
6808 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6809 return 0;
6810
0b005cf5
SS
6811 if (rq->nr_running >= 2)
6812 goto need_kick;
83cd4fe2 6813
067491b7 6814 rcu_read_lock();
37dc6b50 6815 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 6816
37dc6b50
PM
6817 if (sd) {
6818 sgp = sd->groups->sgp;
6819 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 6820
37dc6b50 6821 if (nr_busy > 1)
067491b7 6822 goto need_kick_unlock;
83cd4fe2 6823 }
37dc6b50
PM
6824
6825 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6826
6827 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6828 sched_domain_span(sd)) < cpu))
6829 goto need_kick_unlock;
6830
067491b7 6831 rcu_read_unlock();
83cd4fe2 6832 return 0;
067491b7
PZ
6833
6834need_kick_unlock:
6835 rcu_read_unlock();
0b005cf5
SS
6836need_kick:
6837 return 1;
83cd4fe2
VP
6838}
6839#else
6840static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6841#endif
6842
6843/*
6844 * run_rebalance_domains is triggered when needed from the scheduler tick.
6845 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6846 */
1e3c88bd
PZ
6847static void run_rebalance_domains(struct softirq_action *h)
6848{
6849 int this_cpu = smp_processor_id();
6850 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6851 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6852 CPU_IDLE : CPU_NOT_IDLE;
6853
6854 rebalance_domains(this_cpu, idle);
6855
1e3c88bd 6856 /*
83cd4fe2 6857 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6858 * balancing on behalf of the other idle cpus whose ticks are
6859 * stopped.
6860 */
83cd4fe2 6861 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6862}
6863
6864static inline int on_null_domain(int cpu)
6865{
90a6501f 6866 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6867}
6868
6869/*
6870 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6871 */
029632fb 6872void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6873{
1e3c88bd
PZ
6874 /* Don't need to rebalance while attached to NULL domain */
6875 if (time_after_eq(jiffies, rq->next_balance) &&
6876 likely(!on_null_domain(cpu)))
6877 raise_softirq(SCHED_SOFTIRQ);
3451d024 6878#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6879 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6880 nohz_balancer_kick(cpu);
6881#endif
1e3c88bd
PZ
6882}
6883
0bcdcf28
CE
6884static void rq_online_fair(struct rq *rq)
6885{
6886 update_sysctl();
6887}
6888
6889static void rq_offline_fair(struct rq *rq)
6890{
6891 update_sysctl();
a4c96ae3
PB
6892
6893 /* Ensure any throttled groups are reachable by pick_next_task */
6894 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6895}
6896
55e12e5e 6897#endif /* CONFIG_SMP */
e1d1484f 6898
bf0f6f24
IM
6899/*
6900 * scheduler tick hitting a task of our scheduling class:
6901 */
8f4d37ec 6902static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6903{
6904 struct cfs_rq *cfs_rq;
6905 struct sched_entity *se = &curr->se;
6906
6907 for_each_sched_entity(se) {
6908 cfs_rq = cfs_rq_of(se);
8f4d37ec 6909 entity_tick(cfs_rq, se, queued);
bf0f6f24 6910 }
18bf2805 6911
10e84b97 6912 if (numabalancing_enabled)
cbee9f88 6913 task_tick_numa(rq, curr);
3d59eebc 6914
18bf2805 6915 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6916}
6917
6918/*
cd29fe6f
PZ
6919 * called on fork with the child task as argument from the parent's context
6920 * - child not yet on the tasklist
6921 * - preemption disabled
bf0f6f24 6922 */
cd29fe6f 6923static void task_fork_fair(struct task_struct *p)
bf0f6f24 6924{
4fc420c9
DN
6925 struct cfs_rq *cfs_rq;
6926 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6927 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6928 struct rq *rq = this_rq();
6929 unsigned long flags;
6930
05fa785c 6931 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6932
861d034e
PZ
6933 update_rq_clock(rq);
6934
4fc420c9
DN
6935 cfs_rq = task_cfs_rq(current);
6936 curr = cfs_rq->curr;
6937
6c9a27f5
DN
6938 /*
6939 * Not only the cpu but also the task_group of the parent might have
6940 * been changed after parent->se.parent,cfs_rq were copied to
6941 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6942 * of child point to valid ones.
6943 */
6944 rcu_read_lock();
6945 __set_task_cpu(p, this_cpu);
6946 rcu_read_unlock();
bf0f6f24 6947
7109c442 6948 update_curr(cfs_rq);
cd29fe6f 6949
b5d9d734
MG
6950 if (curr)
6951 se->vruntime = curr->vruntime;
aeb73b04 6952 place_entity(cfs_rq, se, 1);
4d78e7b6 6953
cd29fe6f 6954 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6955 /*
edcb60a3
IM
6956 * Upon rescheduling, sched_class::put_prev_task() will place
6957 * 'current' within the tree based on its new key value.
6958 */
4d78e7b6 6959 swap(curr->vruntime, se->vruntime);
aec0a514 6960 resched_task(rq->curr);
4d78e7b6 6961 }
bf0f6f24 6962
88ec22d3
PZ
6963 se->vruntime -= cfs_rq->min_vruntime;
6964
05fa785c 6965 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6966}
6967
cb469845
SR
6968/*
6969 * Priority of the task has changed. Check to see if we preempt
6970 * the current task.
6971 */
da7a735e
PZ
6972static void
6973prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6974{
da7a735e
PZ
6975 if (!p->se.on_rq)
6976 return;
6977
cb469845
SR
6978 /*
6979 * Reschedule if we are currently running on this runqueue and
6980 * our priority decreased, or if we are not currently running on
6981 * this runqueue and our priority is higher than the current's
6982 */
da7a735e 6983 if (rq->curr == p) {
cb469845
SR
6984 if (p->prio > oldprio)
6985 resched_task(rq->curr);
6986 } else
15afe09b 6987 check_preempt_curr(rq, p, 0);
cb469845
SR
6988}
6989
da7a735e
PZ
6990static void switched_from_fair(struct rq *rq, struct task_struct *p)
6991{
6992 struct sched_entity *se = &p->se;
6993 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6994
6995 /*
6996 * Ensure the task's vruntime is normalized, so that when its
6997 * switched back to the fair class the enqueue_entity(.flags=0) will
6998 * do the right thing.
6999 *
7000 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7001 * have normalized the vruntime, if it was !on_rq, then only when
7002 * the task is sleeping will it still have non-normalized vruntime.
7003 */
7004 if (!se->on_rq && p->state != TASK_RUNNING) {
7005 /*
7006 * Fix up our vruntime so that the current sleep doesn't
7007 * cause 'unlimited' sleep bonus.
7008 */
7009 place_entity(cfs_rq, se, 0);
7010 se->vruntime -= cfs_rq->min_vruntime;
7011 }
9ee474f5 7012
141965c7 7013#ifdef CONFIG_SMP
9ee474f5
PT
7014 /*
7015 * Remove our load from contribution when we leave sched_fair
7016 * and ensure we don't carry in an old decay_count if we
7017 * switch back.
7018 */
87e3c8ae
KT
7019 if (se->avg.decay_count) {
7020 __synchronize_entity_decay(se);
7021 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7022 }
7023#endif
da7a735e
PZ
7024}
7025
cb469845
SR
7026/*
7027 * We switched to the sched_fair class.
7028 */
da7a735e 7029static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7030{
da7a735e
PZ
7031 if (!p->se.on_rq)
7032 return;
7033
cb469845
SR
7034 /*
7035 * We were most likely switched from sched_rt, so
7036 * kick off the schedule if running, otherwise just see
7037 * if we can still preempt the current task.
7038 */
da7a735e 7039 if (rq->curr == p)
cb469845
SR
7040 resched_task(rq->curr);
7041 else
15afe09b 7042 check_preempt_curr(rq, p, 0);
cb469845
SR
7043}
7044
83b699ed
SV
7045/* Account for a task changing its policy or group.
7046 *
7047 * This routine is mostly called to set cfs_rq->curr field when a task
7048 * migrates between groups/classes.
7049 */
7050static void set_curr_task_fair(struct rq *rq)
7051{
7052 struct sched_entity *se = &rq->curr->se;
7053
ec12cb7f
PT
7054 for_each_sched_entity(se) {
7055 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7056
7057 set_next_entity(cfs_rq, se);
7058 /* ensure bandwidth has been allocated on our new cfs_rq */
7059 account_cfs_rq_runtime(cfs_rq, 0);
7060 }
83b699ed
SV
7061}
7062
029632fb
PZ
7063void init_cfs_rq(struct cfs_rq *cfs_rq)
7064{
7065 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7066 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7067#ifndef CONFIG_64BIT
7068 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7069#endif
141965c7 7070#ifdef CONFIG_SMP
9ee474f5 7071 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7072 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7073#endif
029632fb
PZ
7074}
7075
810b3817 7076#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7077static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7078{
aff3e498 7079 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
7080 /*
7081 * If the task was not on the rq at the time of this cgroup movement
7082 * it must have been asleep, sleeping tasks keep their ->vruntime
7083 * absolute on their old rq until wakeup (needed for the fair sleeper
7084 * bonus in place_entity()).
7085 *
7086 * If it was on the rq, we've just 'preempted' it, which does convert
7087 * ->vruntime to a relative base.
7088 *
7089 * Make sure both cases convert their relative position when migrating
7090 * to another cgroup's rq. This does somewhat interfere with the
7091 * fair sleeper stuff for the first placement, but who cares.
7092 */
7ceff013
DN
7093 /*
7094 * When !on_rq, vruntime of the task has usually NOT been normalized.
7095 * But there are some cases where it has already been normalized:
7096 *
7097 * - Moving a forked child which is waiting for being woken up by
7098 * wake_up_new_task().
62af3783
DN
7099 * - Moving a task which has been woken up by try_to_wake_up() and
7100 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7101 *
7102 * To prevent boost or penalty in the new cfs_rq caused by delta
7103 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7104 */
62af3783 7105 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7106 on_rq = 1;
7107
b2b5ce02
PZ
7108 if (!on_rq)
7109 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7110 set_task_rq(p, task_cpu(p));
aff3e498
PT
7111 if (!on_rq) {
7112 cfs_rq = cfs_rq_of(&p->se);
7113 p->se.vruntime += cfs_rq->min_vruntime;
7114#ifdef CONFIG_SMP
7115 /*
7116 * migrate_task_rq_fair() will have removed our previous
7117 * contribution, but we must synchronize for ongoing future
7118 * decay.
7119 */
7120 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7121 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7122#endif
7123 }
810b3817 7124}
029632fb
PZ
7125
7126void free_fair_sched_group(struct task_group *tg)
7127{
7128 int i;
7129
7130 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7131
7132 for_each_possible_cpu(i) {
7133 if (tg->cfs_rq)
7134 kfree(tg->cfs_rq[i]);
7135 if (tg->se)
7136 kfree(tg->se[i]);
7137 }
7138
7139 kfree(tg->cfs_rq);
7140 kfree(tg->se);
7141}
7142
7143int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7144{
7145 struct cfs_rq *cfs_rq;
7146 struct sched_entity *se;
7147 int i;
7148
7149 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7150 if (!tg->cfs_rq)
7151 goto err;
7152 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7153 if (!tg->se)
7154 goto err;
7155
7156 tg->shares = NICE_0_LOAD;
7157
7158 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7159
7160 for_each_possible_cpu(i) {
7161 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7162 GFP_KERNEL, cpu_to_node(i));
7163 if (!cfs_rq)
7164 goto err;
7165
7166 se = kzalloc_node(sizeof(struct sched_entity),
7167 GFP_KERNEL, cpu_to_node(i));
7168 if (!se)
7169 goto err_free_rq;
7170
7171 init_cfs_rq(cfs_rq);
7172 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7173 }
7174
7175 return 1;
7176
7177err_free_rq:
7178 kfree(cfs_rq);
7179err:
7180 return 0;
7181}
7182
7183void unregister_fair_sched_group(struct task_group *tg, int cpu)
7184{
7185 struct rq *rq = cpu_rq(cpu);
7186 unsigned long flags;
7187
7188 /*
7189 * Only empty task groups can be destroyed; so we can speculatively
7190 * check on_list without danger of it being re-added.
7191 */
7192 if (!tg->cfs_rq[cpu]->on_list)
7193 return;
7194
7195 raw_spin_lock_irqsave(&rq->lock, flags);
7196 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7197 raw_spin_unlock_irqrestore(&rq->lock, flags);
7198}
7199
7200void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7201 struct sched_entity *se, int cpu,
7202 struct sched_entity *parent)
7203{
7204 struct rq *rq = cpu_rq(cpu);
7205
7206 cfs_rq->tg = tg;
7207 cfs_rq->rq = rq;
029632fb
PZ
7208 init_cfs_rq_runtime(cfs_rq);
7209
7210 tg->cfs_rq[cpu] = cfs_rq;
7211 tg->se[cpu] = se;
7212
7213 /* se could be NULL for root_task_group */
7214 if (!se)
7215 return;
7216
7217 if (!parent)
7218 se->cfs_rq = &rq->cfs;
7219 else
7220 se->cfs_rq = parent->my_q;
7221
7222 se->my_q = cfs_rq;
0ac9b1c2
PT
7223 /* guarantee group entities always have weight */
7224 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7225 se->parent = parent;
7226}
7227
7228static DEFINE_MUTEX(shares_mutex);
7229
7230int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7231{
7232 int i;
7233 unsigned long flags;
7234
7235 /*
7236 * We can't change the weight of the root cgroup.
7237 */
7238 if (!tg->se[0])
7239 return -EINVAL;
7240
7241 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7242
7243 mutex_lock(&shares_mutex);
7244 if (tg->shares == shares)
7245 goto done;
7246
7247 tg->shares = shares;
7248 for_each_possible_cpu(i) {
7249 struct rq *rq = cpu_rq(i);
7250 struct sched_entity *se;
7251
7252 se = tg->se[i];
7253 /* Propagate contribution to hierarchy */
7254 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7255
7256 /* Possible calls to update_curr() need rq clock */
7257 update_rq_clock(rq);
17bc14b7 7258 for_each_sched_entity(se)
029632fb
PZ
7259 update_cfs_shares(group_cfs_rq(se));
7260 raw_spin_unlock_irqrestore(&rq->lock, flags);
7261 }
7262
7263done:
7264 mutex_unlock(&shares_mutex);
7265 return 0;
7266}
7267#else /* CONFIG_FAIR_GROUP_SCHED */
7268
7269void free_fair_sched_group(struct task_group *tg) { }
7270
7271int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7272{
7273 return 1;
7274}
7275
7276void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7277
7278#endif /* CONFIG_FAIR_GROUP_SCHED */
7279
810b3817 7280
6d686f45 7281static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7282{
7283 struct sched_entity *se = &task->se;
0d721cea
PW
7284 unsigned int rr_interval = 0;
7285
7286 /*
7287 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7288 * idle runqueue:
7289 */
0d721cea 7290 if (rq->cfs.load.weight)
a59f4e07 7291 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7292
7293 return rr_interval;
7294}
7295
bf0f6f24
IM
7296/*
7297 * All the scheduling class methods:
7298 */
029632fb 7299const struct sched_class fair_sched_class = {
5522d5d5 7300 .next = &idle_sched_class,
bf0f6f24
IM
7301 .enqueue_task = enqueue_task_fair,
7302 .dequeue_task = dequeue_task_fair,
7303 .yield_task = yield_task_fair,
d95f4122 7304 .yield_to_task = yield_to_task_fair,
bf0f6f24 7305
2e09bf55 7306 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7307
7308 .pick_next_task = pick_next_task_fair,
7309 .put_prev_task = put_prev_task_fair,
7310
681f3e68 7311#ifdef CONFIG_SMP
4ce72a2c 7312 .select_task_rq = select_task_rq_fair,
0a74bef8 7313 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7314
0bcdcf28
CE
7315 .rq_online = rq_online_fair,
7316 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7317
7318 .task_waking = task_waking_fair,
681f3e68 7319#endif
bf0f6f24 7320
83b699ed 7321 .set_curr_task = set_curr_task_fair,
bf0f6f24 7322 .task_tick = task_tick_fair,
cd29fe6f 7323 .task_fork = task_fork_fair,
cb469845
SR
7324
7325 .prio_changed = prio_changed_fair,
da7a735e 7326 .switched_from = switched_from_fair,
cb469845 7327 .switched_to = switched_to_fair,
810b3817 7328
0d721cea
PW
7329 .get_rr_interval = get_rr_interval_fair,
7330
810b3817 7331#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7332 .task_move_group = task_move_group_fair,
810b3817 7333#endif
bf0f6f24
IM
7334};
7335
7336#ifdef CONFIG_SCHED_DEBUG
029632fb 7337void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7338{
bf0f6f24
IM
7339 struct cfs_rq *cfs_rq;
7340
5973e5b9 7341 rcu_read_lock();
c3b64f1e 7342 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7343 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7344 rcu_read_unlock();
bf0f6f24
IM
7345}
7346#endif
029632fb
PZ
7347
7348__init void init_sched_fair_class(void)
7349{
7350#ifdef CONFIG_SMP
7351 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7352
3451d024 7353#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7354 nohz.next_balance = jiffies;
029632fb 7355 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7356 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7357#endif
7358#endif /* SMP */
7359
7360}
This page took 1.570736 seconds and 5 git commands to generate.