epoll: fix use-after-free in eventpoll_release_file
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
ced549fa 1020static unsigned long capacity_of(int cpu);
58d081b5
MG
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
5ef20ca1 1029 unsigned long compute_capacity;
fb13c7ee
MG
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1032 unsigned long task_capacity;
1b6a7495 1033 int has_free_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
5eca82a9 1041 int cpu, cpus = 0;
fb13c7ee
MG
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
ced549fa 1049 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1050
1051 cpus++;
fb13c7ee
MG
1052 }
1053
5eca82a9
PZ
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1b6a7495
NP
1059 * We'll either bail at !has_free_capacity, or we'll detect a huge
1060 * imbalance and bail there.
5eca82a9
PZ
1061 */
1062 if (!cpus)
1063 return;
1064
ca8ce3d0 1065 ns->load = (ns->load * SCHED_CAPACITY_SCALE) / ns->compute_capacity;
5ef20ca1 1066 ns->task_capacity =
ca8ce3d0 1067 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE);
1b6a7495 1068 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1069}
1070
58d081b5
MG
1071struct task_numa_env {
1072 struct task_struct *p;
e6628d5b 1073
58d081b5
MG
1074 int src_cpu, src_nid;
1075 int dst_cpu, dst_nid;
e6628d5b 1076
58d081b5 1077 struct numa_stats src_stats, dst_stats;
e6628d5b 1078
40ea2b42 1079 int imbalance_pct;
fb13c7ee
MG
1080
1081 struct task_struct *best_task;
1082 long best_imp;
58d081b5
MG
1083 int best_cpu;
1084};
1085
fb13c7ee
MG
1086static void task_numa_assign(struct task_numa_env *env,
1087 struct task_struct *p, long imp)
1088{
1089 if (env->best_task)
1090 put_task_struct(env->best_task);
1091 if (p)
1092 get_task_struct(p);
1093
1094 env->best_task = p;
1095 env->best_imp = imp;
1096 env->best_cpu = env->dst_cpu;
1097}
1098
e63da036
RR
1099static bool load_too_imbalanced(long orig_src_load, long orig_dst_load,
1100 long src_load, long dst_load,
1101 struct task_numa_env *env)
1102{
1103 long imb, old_imb;
1104
1105 /* We care about the slope of the imbalance, not the direction. */
1106 if (dst_load < src_load)
1107 swap(dst_load, src_load);
1108
1109 /* Is the difference below the threshold? */
1110 imb = dst_load * 100 - src_load * env->imbalance_pct;
1111 if (imb <= 0)
1112 return false;
1113
1114 /*
1115 * The imbalance is above the allowed threshold.
1116 * Compare it with the old imbalance.
1117 */
1118 if (orig_dst_load < orig_src_load)
1119 swap(orig_dst_load, orig_src_load);
1120
1121 old_imb = orig_dst_load * 100 - orig_src_load * env->imbalance_pct;
1122
1123 /* Would this change make things worse? */
1662867a 1124 return (imb > old_imb);
e63da036
RR
1125}
1126
fb13c7ee
MG
1127/*
1128 * This checks if the overall compute and NUMA accesses of the system would
1129 * be improved if the source tasks was migrated to the target dst_cpu taking
1130 * into account that it might be best if task running on the dst_cpu should
1131 * be exchanged with the source task
1132 */
887c290e
RR
1133static void task_numa_compare(struct task_numa_env *env,
1134 long taskimp, long groupimp)
fb13c7ee
MG
1135{
1136 struct rq *src_rq = cpu_rq(env->src_cpu);
1137 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1138 struct task_struct *cur;
e63da036
RR
1139 long orig_src_load, src_load;
1140 long orig_dst_load, dst_load;
fb13c7ee 1141 long load;
887c290e 1142 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1143
1144 rcu_read_lock();
1145 cur = ACCESS_ONCE(dst_rq->curr);
1146 if (cur->pid == 0) /* idle */
1147 cur = NULL;
1148
1149 /*
1150 * "imp" is the fault differential for the source task between the
1151 * source and destination node. Calculate the total differential for
1152 * the source task and potential destination task. The more negative
1153 * the value is, the more rmeote accesses that would be expected to
1154 * be incurred if the tasks were swapped.
1155 */
1156 if (cur) {
1157 /* Skip this swap candidate if cannot move to the source cpu */
1158 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1159 goto unlock;
1160
887c290e
RR
1161 /*
1162 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1163 * in any group then look only at task weights.
887c290e 1164 */
ca28aa53 1165 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1166 imp = taskimp + task_weight(cur, env->src_nid) -
1167 task_weight(cur, env->dst_nid);
ca28aa53
RR
1168 /*
1169 * Add some hysteresis to prevent swapping the
1170 * tasks within a group over tiny differences.
1171 */
1172 if (cur->numa_group)
1173 imp -= imp/16;
887c290e 1174 } else {
ca28aa53
RR
1175 /*
1176 * Compare the group weights. If a task is all by
1177 * itself (not part of a group), use the task weight
1178 * instead.
1179 */
1180 if (env->p->numa_group)
1181 imp = groupimp;
1182 else
1183 imp = taskimp;
1184
1185 if (cur->numa_group)
1186 imp += group_weight(cur, env->src_nid) -
1187 group_weight(cur, env->dst_nid);
1188 else
1189 imp += task_weight(cur, env->src_nid) -
1190 task_weight(cur, env->dst_nid);
887c290e 1191 }
fb13c7ee
MG
1192 }
1193
1194 if (imp < env->best_imp)
1195 goto unlock;
1196
1197 if (!cur) {
1198 /* Is there capacity at our destination? */
1b6a7495
NP
1199 if (env->src_stats.has_free_capacity &&
1200 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1201 goto unlock;
1202
1203 goto balance;
1204 }
1205
1206 /* Balance doesn't matter much if we're running a task per cpu */
1207 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1208 goto assign;
1209
1210 /*
1211 * In the overloaded case, try and keep the load balanced.
1212 */
1213balance:
e63da036
RR
1214 orig_dst_load = env->dst_stats.load;
1215 orig_src_load = env->src_stats.load;
fb13c7ee 1216
ced549fa 1217 /* XXX missing capacity terms */
fb13c7ee 1218 load = task_h_load(env->p);
e63da036
RR
1219 dst_load = orig_dst_load + load;
1220 src_load = orig_src_load - load;
fb13c7ee
MG
1221
1222 if (cur) {
1223 load = task_h_load(cur);
1224 dst_load -= load;
1225 src_load += load;
1226 }
1227
e63da036
RR
1228 if (load_too_imbalanced(orig_src_load, orig_dst_load,
1229 src_load, dst_load, env))
fb13c7ee
MG
1230 goto unlock;
1231
1232assign:
1233 task_numa_assign(env, cur, imp);
1234unlock:
1235 rcu_read_unlock();
1236}
1237
887c290e
RR
1238static void task_numa_find_cpu(struct task_numa_env *env,
1239 long taskimp, long groupimp)
2c8a50aa
MG
1240{
1241 int cpu;
1242
1243 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1244 /* Skip this CPU if the source task cannot migrate */
1245 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1246 continue;
1247
1248 env->dst_cpu = cpu;
887c290e 1249 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1250 }
1251}
1252
58d081b5
MG
1253static int task_numa_migrate(struct task_struct *p)
1254{
58d081b5
MG
1255 struct task_numa_env env = {
1256 .p = p,
fb13c7ee 1257
58d081b5 1258 .src_cpu = task_cpu(p),
b32e86b4 1259 .src_nid = task_node(p),
fb13c7ee
MG
1260
1261 .imbalance_pct = 112,
1262
1263 .best_task = NULL,
1264 .best_imp = 0,
1265 .best_cpu = -1
58d081b5
MG
1266 };
1267 struct sched_domain *sd;
887c290e 1268 unsigned long taskweight, groupweight;
2c8a50aa 1269 int nid, ret;
887c290e 1270 long taskimp, groupimp;
e6628d5b 1271
58d081b5 1272 /*
fb13c7ee
MG
1273 * Pick the lowest SD_NUMA domain, as that would have the smallest
1274 * imbalance and would be the first to start moving tasks about.
1275 *
1276 * And we want to avoid any moving of tasks about, as that would create
1277 * random movement of tasks -- counter the numa conditions we're trying
1278 * to satisfy here.
58d081b5
MG
1279 */
1280 rcu_read_lock();
fb13c7ee 1281 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1282 if (sd)
1283 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1284 rcu_read_unlock();
1285
46a73e8a
RR
1286 /*
1287 * Cpusets can break the scheduler domain tree into smaller
1288 * balance domains, some of which do not cross NUMA boundaries.
1289 * Tasks that are "trapped" in such domains cannot be migrated
1290 * elsewhere, so there is no point in (re)trying.
1291 */
1292 if (unlikely(!sd)) {
de1b301a 1293 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1294 return -EINVAL;
1295 }
1296
887c290e
RR
1297 taskweight = task_weight(p, env.src_nid);
1298 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1299 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1300 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1301 taskimp = task_weight(p, env.dst_nid) - taskweight;
1302 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1303 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1304
1b6a7495
NP
1305 /* If the preferred nid has free capacity, try to use it. */
1306 if (env.dst_stats.has_free_capacity)
887c290e 1307 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1308
1309 /* No space available on the preferred nid. Look elsewhere. */
1310 if (env.best_cpu == -1) {
2c8a50aa
MG
1311 for_each_online_node(nid) {
1312 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1313 continue;
58d081b5 1314
83e1d2cd 1315 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1316 taskimp = task_weight(p, nid) - taskweight;
1317 groupimp = group_weight(p, nid) - groupweight;
1318 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1319 continue;
1320
2c8a50aa
MG
1321 env.dst_nid = nid;
1322 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1323 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1324 }
1325 }
1326
fb13c7ee
MG
1327 /* No better CPU than the current one was found. */
1328 if (env.best_cpu == -1)
1329 return -EAGAIN;
1330
68d1b02a
RR
1331 /*
1332 * If the task is part of a workload that spans multiple NUMA nodes,
1333 * and is migrating into one of the workload's active nodes, remember
1334 * this node as the task's preferred numa node, so the workload can
1335 * settle down.
1336 * A task that migrated to a second choice node will be better off
1337 * trying for a better one later. Do not set the preferred node here.
1338 */
1339 if (p->numa_group && node_isset(env.dst_nid, p->numa_group->active_nodes))
1340 sched_setnuma(p, env.dst_nid);
0ec8aa00 1341
04bb2f94
RR
1342 /*
1343 * Reset the scan period if the task is being rescheduled on an
1344 * alternative node to recheck if the tasks is now properly placed.
1345 */
1346 p->numa_scan_period = task_scan_min(p);
1347
fb13c7ee 1348 if (env.best_task == NULL) {
286549dc
MG
1349 ret = migrate_task_to(p, env.best_cpu);
1350 if (ret != 0)
1351 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1352 return ret;
1353 }
1354
1355 ret = migrate_swap(p, env.best_task);
286549dc
MG
1356 if (ret != 0)
1357 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1358 put_task_struct(env.best_task);
1359 return ret;
e6628d5b
MG
1360}
1361
6b9a7460
MG
1362/* Attempt to migrate a task to a CPU on the preferred node. */
1363static void numa_migrate_preferred(struct task_struct *p)
1364{
5085e2a3
RR
1365 unsigned long interval = HZ;
1366
2739d3ee 1367 /* This task has no NUMA fault statistics yet */
ff1df896 1368 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1369 return;
1370
2739d3ee 1371 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1372 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1373 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1374
1375 /* Success if task is already running on preferred CPU */
de1b301a 1376 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1377 return;
1378
1379 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1380 task_numa_migrate(p);
6b9a7460
MG
1381}
1382
20e07dea
RR
1383/*
1384 * Find the nodes on which the workload is actively running. We do this by
1385 * tracking the nodes from which NUMA hinting faults are triggered. This can
1386 * be different from the set of nodes where the workload's memory is currently
1387 * located.
1388 *
1389 * The bitmask is used to make smarter decisions on when to do NUMA page
1390 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1391 * are added when they cause over 6/16 of the maximum number of faults, but
1392 * only removed when they drop below 3/16.
1393 */
1394static void update_numa_active_node_mask(struct numa_group *numa_group)
1395{
1396 unsigned long faults, max_faults = 0;
1397 int nid;
1398
1399 for_each_online_node(nid) {
1400 faults = group_faults_cpu(numa_group, nid);
1401 if (faults > max_faults)
1402 max_faults = faults;
1403 }
1404
1405 for_each_online_node(nid) {
1406 faults = group_faults_cpu(numa_group, nid);
1407 if (!node_isset(nid, numa_group->active_nodes)) {
1408 if (faults > max_faults * 6 / 16)
1409 node_set(nid, numa_group->active_nodes);
1410 } else if (faults < max_faults * 3 / 16)
1411 node_clear(nid, numa_group->active_nodes);
1412 }
1413}
1414
04bb2f94
RR
1415/*
1416 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1417 * increments. The more local the fault statistics are, the higher the scan
1418 * period will be for the next scan window. If local/remote ratio is below
1419 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1420 * scan period will decrease
1421 */
1422#define NUMA_PERIOD_SLOTS 10
1423#define NUMA_PERIOD_THRESHOLD 3
1424
1425/*
1426 * Increase the scan period (slow down scanning) if the majority of
1427 * our memory is already on our local node, or if the majority of
1428 * the page accesses are shared with other processes.
1429 * Otherwise, decrease the scan period.
1430 */
1431static void update_task_scan_period(struct task_struct *p,
1432 unsigned long shared, unsigned long private)
1433{
1434 unsigned int period_slot;
1435 int ratio;
1436 int diff;
1437
1438 unsigned long remote = p->numa_faults_locality[0];
1439 unsigned long local = p->numa_faults_locality[1];
1440
1441 /*
1442 * If there were no record hinting faults then either the task is
1443 * completely idle or all activity is areas that are not of interest
1444 * to automatic numa balancing. Scan slower
1445 */
1446 if (local + shared == 0) {
1447 p->numa_scan_period = min(p->numa_scan_period_max,
1448 p->numa_scan_period << 1);
1449
1450 p->mm->numa_next_scan = jiffies +
1451 msecs_to_jiffies(p->numa_scan_period);
1452
1453 return;
1454 }
1455
1456 /*
1457 * Prepare to scale scan period relative to the current period.
1458 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1459 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1460 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1461 */
1462 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1463 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1464 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1465 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1466 if (!slot)
1467 slot = 1;
1468 diff = slot * period_slot;
1469 } else {
1470 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1471
1472 /*
1473 * Scale scan rate increases based on sharing. There is an
1474 * inverse relationship between the degree of sharing and
1475 * the adjustment made to the scanning period. Broadly
1476 * speaking the intent is that there is little point
1477 * scanning faster if shared accesses dominate as it may
1478 * simply bounce migrations uselessly
1479 */
04bb2f94
RR
1480 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1481 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1482 }
1483
1484 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1485 task_scan_min(p), task_scan_max(p));
1486 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1487}
1488
7e2703e6
RR
1489/*
1490 * Get the fraction of time the task has been running since the last
1491 * NUMA placement cycle. The scheduler keeps similar statistics, but
1492 * decays those on a 32ms period, which is orders of magnitude off
1493 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1494 * stats only if the task is so new there are no NUMA statistics yet.
1495 */
1496static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1497{
1498 u64 runtime, delta, now;
1499 /* Use the start of this time slice to avoid calculations. */
1500 now = p->se.exec_start;
1501 runtime = p->se.sum_exec_runtime;
1502
1503 if (p->last_task_numa_placement) {
1504 delta = runtime - p->last_sum_exec_runtime;
1505 *period = now - p->last_task_numa_placement;
1506 } else {
1507 delta = p->se.avg.runnable_avg_sum;
1508 *period = p->se.avg.runnable_avg_period;
1509 }
1510
1511 p->last_sum_exec_runtime = runtime;
1512 p->last_task_numa_placement = now;
1513
1514 return delta;
1515}
1516
cbee9f88
PZ
1517static void task_numa_placement(struct task_struct *p)
1518{
83e1d2cd
MG
1519 int seq, nid, max_nid = -1, max_group_nid = -1;
1520 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1521 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1522 unsigned long total_faults;
1523 u64 runtime, period;
7dbd13ed 1524 spinlock_t *group_lock = NULL;
cbee9f88 1525
2832bc19 1526 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1527 if (p->numa_scan_seq == seq)
1528 return;
1529 p->numa_scan_seq = seq;
598f0ec0 1530 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1531
7e2703e6
RR
1532 total_faults = p->numa_faults_locality[0] +
1533 p->numa_faults_locality[1];
1534 runtime = numa_get_avg_runtime(p, &period);
1535
7dbd13ed
MG
1536 /* If the task is part of a group prevent parallel updates to group stats */
1537 if (p->numa_group) {
1538 group_lock = &p->numa_group->lock;
60e69eed 1539 spin_lock_irq(group_lock);
7dbd13ed
MG
1540 }
1541
688b7585
MG
1542 /* Find the node with the highest number of faults */
1543 for_each_online_node(nid) {
83e1d2cd 1544 unsigned long faults = 0, group_faults = 0;
ac8e895b 1545 int priv, i;
745d6147 1546
be1e4e76 1547 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1548 long diff, f_diff, f_weight;
8c8a743c 1549
ac8e895b 1550 i = task_faults_idx(nid, priv);
745d6147 1551
ac8e895b 1552 /* Decay existing window, copy faults since last scan */
35664fd4 1553 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1554 fault_types[priv] += p->numa_faults_buffer_memory[i];
1555 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1556
7e2703e6
RR
1557 /*
1558 * Normalize the faults_from, so all tasks in a group
1559 * count according to CPU use, instead of by the raw
1560 * number of faults. Tasks with little runtime have
1561 * little over-all impact on throughput, and thus their
1562 * faults are less important.
1563 */
1564 f_weight = div64_u64(runtime << 16, period + 1);
1565 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1566 (total_faults + 1);
35664fd4 1567 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1568 p->numa_faults_buffer_cpu[i] = 0;
1569
35664fd4
RR
1570 p->numa_faults_memory[i] += diff;
1571 p->numa_faults_cpu[i] += f_diff;
ff1df896 1572 faults += p->numa_faults_memory[i];
83e1d2cd 1573 p->total_numa_faults += diff;
8c8a743c
PZ
1574 if (p->numa_group) {
1575 /* safe because we can only change our own group */
989348b5 1576 p->numa_group->faults[i] += diff;
50ec8a40 1577 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1578 p->numa_group->total_faults += diff;
1579 group_faults += p->numa_group->faults[i];
8c8a743c 1580 }
ac8e895b
MG
1581 }
1582
688b7585
MG
1583 if (faults > max_faults) {
1584 max_faults = faults;
1585 max_nid = nid;
1586 }
83e1d2cd
MG
1587
1588 if (group_faults > max_group_faults) {
1589 max_group_faults = group_faults;
1590 max_group_nid = nid;
1591 }
1592 }
1593
04bb2f94
RR
1594 update_task_scan_period(p, fault_types[0], fault_types[1]);
1595
7dbd13ed 1596 if (p->numa_group) {
20e07dea 1597 update_numa_active_node_mask(p->numa_group);
7dbd13ed
MG
1598 /*
1599 * If the preferred task and group nids are different,
1600 * iterate over the nodes again to find the best place.
1601 */
1602 if (max_nid != max_group_nid) {
1603 unsigned long weight, max_weight = 0;
1604
1605 for_each_online_node(nid) {
1606 weight = task_weight(p, nid) + group_weight(p, nid);
1607 if (weight > max_weight) {
1608 max_weight = weight;
1609 max_nid = nid;
1610 }
83e1d2cd
MG
1611 }
1612 }
7dbd13ed 1613
60e69eed 1614 spin_unlock_irq(group_lock);
688b7585
MG
1615 }
1616
6b9a7460 1617 /* Preferred node as the node with the most faults */
3a7053b3 1618 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1619 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1620 sched_setnuma(p, max_nid);
6b9a7460 1621 numa_migrate_preferred(p);
3a7053b3 1622 }
cbee9f88
PZ
1623}
1624
8c8a743c
PZ
1625static inline int get_numa_group(struct numa_group *grp)
1626{
1627 return atomic_inc_not_zero(&grp->refcount);
1628}
1629
1630static inline void put_numa_group(struct numa_group *grp)
1631{
1632 if (atomic_dec_and_test(&grp->refcount))
1633 kfree_rcu(grp, rcu);
1634}
1635
3e6a9418
MG
1636static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1637 int *priv)
8c8a743c
PZ
1638{
1639 struct numa_group *grp, *my_grp;
1640 struct task_struct *tsk;
1641 bool join = false;
1642 int cpu = cpupid_to_cpu(cpupid);
1643 int i;
1644
1645 if (unlikely(!p->numa_group)) {
1646 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1647 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1648
1649 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1650 if (!grp)
1651 return;
1652
1653 atomic_set(&grp->refcount, 1);
1654 spin_lock_init(&grp->lock);
1655 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1656 grp->gid = p->pid;
50ec8a40 1657 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1658 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1659 nr_node_ids;
8c8a743c 1660
20e07dea
RR
1661 node_set(task_node(current), grp->active_nodes);
1662
be1e4e76 1663 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1664 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1665
989348b5 1666 grp->total_faults = p->total_numa_faults;
83e1d2cd 1667
8c8a743c
PZ
1668 list_add(&p->numa_entry, &grp->task_list);
1669 grp->nr_tasks++;
1670 rcu_assign_pointer(p->numa_group, grp);
1671 }
1672
1673 rcu_read_lock();
1674 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1675
1676 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1677 goto no_join;
8c8a743c
PZ
1678
1679 grp = rcu_dereference(tsk->numa_group);
1680 if (!grp)
3354781a 1681 goto no_join;
8c8a743c
PZ
1682
1683 my_grp = p->numa_group;
1684 if (grp == my_grp)
3354781a 1685 goto no_join;
8c8a743c
PZ
1686
1687 /*
1688 * Only join the other group if its bigger; if we're the bigger group,
1689 * the other task will join us.
1690 */
1691 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1692 goto no_join;
8c8a743c
PZ
1693
1694 /*
1695 * Tie-break on the grp address.
1696 */
1697 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1698 goto no_join;
8c8a743c 1699
dabe1d99
RR
1700 /* Always join threads in the same process. */
1701 if (tsk->mm == current->mm)
1702 join = true;
1703
1704 /* Simple filter to avoid false positives due to PID collisions */
1705 if (flags & TNF_SHARED)
1706 join = true;
8c8a743c 1707
3e6a9418
MG
1708 /* Update priv based on whether false sharing was detected */
1709 *priv = !join;
1710
dabe1d99 1711 if (join && !get_numa_group(grp))
3354781a 1712 goto no_join;
8c8a743c 1713
8c8a743c
PZ
1714 rcu_read_unlock();
1715
1716 if (!join)
1717 return;
1718
60e69eed
MG
1719 BUG_ON(irqs_disabled());
1720 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1721
be1e4e76 1722 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1723 my_grp->faults[i] -= p->numa_faults_memory[i];
1724 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1725 }
989348b5
MG
1726 my_grp->total_faults -= p->total_numa_faults;
1727 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1728
1729 list_move(&p->numa_entry, &grp->task_list);
1730 my_grp->nr_tasks--;
1731 grp->nr_tasks++;
1732
1733 spin_unlock(&my_grp->lock);
60e69eed 1734 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1735
1736 rcu_assign_pointer(p->numa_group, grp);
1737
1738 put_numa_group(my_grp);
3354781a
PZ
1739 return;
1740
1741no_join:
1742 rcu_read_unlock();
1743 return;
8c8a743c
PZ
1744}
1745
1746void task_numa_free(struct task_struct *p)
1747{
1748 struct numa_group *grp = p->numa_group;
ff1df896 1749 void *numa_faults = p->numa_faults_memory;
e9dd685c
SR
1750 unsigned long flags;
1751 int i;
8c8a743c
PZ
1752
1753 if (grp) {
e9dd685c 1754 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 1755 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1756 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1757 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1758
8c8a743c
PZ
1759 list_del(&p->numa_entry);
1760 grp->nr_tasks--;
e9dd685c 1761 spin_unlock_irqrestore(&grp->lock, flags);
8c8a743c
PZ
1762 rcu_assign_pointer(p->numa_group, NULL);
1763 put_numa_group(grp);
1764 }
1765
ff1df896
RR
1766 p->numa_faults_memory = NULL;
1767 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1768 p->numa_faults_cpu= NULL;
1769 p->numa_faults_buffer_cpu = NULL;
82727018 1770 kfree(numa_faults);
8c8a743c
PZ
1771}
1772
cbee9f88
PZ
1773/*
1774 * Got a PROT_NONE fault for a page on @node.
1775 */
58b46da3 1776void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1777{
1778 struct task_struct *p = current;
6688cc05 1779 bool migrated = flags & TNF_MIGRATED;
58b46da3 1780 int cpu_node = task_node(current);
792568ec 1781 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1782 int priv;
cbee9f88 1783
10e84b97 1784 if (!numabalancing_enabled)
1a687c2e
MG
1785 return;
1786
9ff1d9ff
MG
1787 /* for example, ksmd faulting in a user's mm */
1788 if (!p->mm)
1789 return;
1790
82727018
RR
1791 /* Do not worry about placement if exiting */
1792 if (p->state == TASK_DEAD)
1793 return;
1794
f809ca9a 1795 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1796 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1797 int size = sizeof(*p->numa_faults_memory) *
1798 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1799
be1e4e76 1800 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1801 if (!p->numa_faults_memory)
f809ca9a 1802 return;
745d6147 1803
ff1df896 1804 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1805 /*
1806 * The averaged statistics, shared & private, memory & cpu,
1807 * occupy the first half of the array. The second half of the
1808 * array is for current counters, which are averaged into the
1809 * first set by task_numa_placement.
1810 */
50ec8a40
RR
1811 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1812 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1813 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1814 p->total_numa_faults = 0;
04bb2f94 1815 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1816 }
cbee9f88 1817
8c8a743c
PZ
1818 /*
1819 * First accesses are treated as private, otherwise consider accesses
1820 * to be private if the accessing pid has not changed
1821 */
1822 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1823 priv = 1;
1824 } else {
1825 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1826 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1827 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1828 }
1829
792568ec
RR
1830 /*
1831 * If a workload spans multiple NUMA nodes, a shared fault that
1832 * occurs wholly within the set of nodes that the workload is
1833 * actively using should be counted as local. This allows the
1834 * scan rate to slow down when a workload has settled down.
1835 */
1836 if (!priv && !local && p->numa_group &&
1837 node_isset(cpu_node, p->numa_group->active_nodes) &&
1838 node_isset(mem_node, p->numa_group->active_nodes))
1839 local = 1;
1840
cbee9f88 1841 task_numa_placement(p);
f809ca9a 1842
2739d3ee
RR
1843 /*
1844 * Retry task to preferred node migration periodically, in case it
1845 * case it previously failed, or the scheduler moved us.
1846 */
1847 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1848 numa_migrate_preferred(p);
1849
b32e86b4
IM
1850 if (migrated)
1851 p->numa_pages_migrated += pages;
1852
58b46da3
RR
1853 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1854 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1855 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1856}
1857
6e5fb223
PZ
1858static void reset_ptenuma_scan(struct task_struct *p)
1859{
1860 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1861 p->mm->numa_scan_offset = 0;
1862}
1863
cbee9f88
PZ
1864/*
1865 * The expensive part of numa migration is done from task_work context.
1866 * Triggered from task_tick_numa().
1867 */
1868void task_numa_work(struct callback_head *work)
1869{
1870 unsigned long migrate, next_scan, now = jiffies;
1871 struct task_struct *p = current;
1872 struct mm_struct *mm = p->mm;
6e5fb223 1873 struct vm_area_struct *vma;
9f40604c 1874 unsigned long start, end;
598f0ec0 1875 unsigned long nr_pte_updates = 0;
9f40604c 1876 long pages;
cbee9f88
PZ
1877
1878 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1879
1880 work->next = work; /* protect against double add */
1881 /*
1882 * Who cares about NUMA placement when they're dying.
1883 *
1884 * NOTE: make sure not to dereference p->mm before this check,
1885 * exit_task_work() happens _after_ exit_mm() so we could be called
1886 * without p->mm even though we still had it when we enqueued this
1887 * work.
1888 */
1889 if (p->flags & PF_EXITING)
1890 return;
1891
930aa174 1892 if (!mm->numa_next_scan) {
7e8d16b6
MG
1893 mm->numa_next_scan = now +
1894 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1895 }
1896
cbee9f88
PZ
1897 /*
1898 * Enforce maximal scan/migration frequency..
1899 */
1900 migrate = mm->numa_next_scan;
1901 if (time_before(now, migrate))
1902 return;
1903
598f0ec0
MG
1904 if (p->numa_scan_period == 0) {
1905 p->numa_scan_period_max = task_scan_max(p);
1906 p->numa_scan_period = task_scan_min(p);
1907 }
cbee9f88 1908
fb003b80 1909 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1910 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1911 return;
1912
19a78d11
PZ
1913 /*
1914 * Delay this task enough that another task of this mm will likely win
1915 * the next time around.
1916 */
1917 p->node_stamp += 2 * TICK_NSEC;
1918
9f40604c
MG
1919 start = mm->numa_scan_offset;
1920 pages = sysctl_numa_balancing_scan_size;
1921 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1922 if (!pages)
1923 return;
cbee9f88 1924
6e5fb223 1925 down_read(&mm->mmap_sem);
9f40604c 1926 vma = find_vma(mm, start);
6e5fb223
PZ
1927 if (!vma) {
1928 reset_ptenuma_scan(p);
9f40604c 1929 start = 0;
6e5fb223
PZ
1930 vma = mm->mmap;
1931 }
9f40604c 1932 for (; vma; vma = vma->vm_next) {
fc314724 1933 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1934 continue;
1935
4591ce4f
MG
1936 /*
1937 * Shared library pages mapped by multiple processes are not
1938 * migrated as it is expected they are cache replicated. Avoid
1939 * hinting faults in read-only file-backed mappings or the vdso
1940 * as migrating the pages will be of marginal benefit.
1941 */
1942 if (!vma->vm_mm ||
1943 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1944 continue;
1945
3c67f474
MG
1946 /*
1947 * Skip inaccessible VMAs to avoid any confusion between
1948 * PROT_NONE and NUMA hinting ptes
1949 */
1950 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1951 continue;
4591ce4f 1952
9f40604c
MG
1953 do {
1954 start = max(start, vma->vm_start);
1955 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1956 end = min(end, vma->vm_end);
598f0ec0
MG
1957 nr_pte_updates += change_prot_numa(vma, start, end);
1958
1959 /*
1960 * Scan sysctl_numa_balancing_scan_size but ensure that
1961 * at least one PTE is updated so that unused virtual
1962 * address space is quickly skipped.
1963 */
1964 if (nr_pte_updates)
1965 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1966
9f40604c
MG
1967 start = end;
1968 if (pages <= 0)
1969 goto out;
3cf1962c
RR
1970
1971 cond_resched();
9f40604c 1972 } while (end != vma->vm_end);
cbee9f88 1973 }
6e5fb223 1974
9f40604c 1975out:
6e5fb223 1976 /*
c69307d5
PZ
1977 * It is possible to reach the end of the VMA list but the last few
1978 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1979 * would find the !migratable VMA on the next scan but not reset the
1980 * scanner to the start so check it now.
6e5fb223
PZ
1981 */
1982 if (vma)
9f40604c 1983 mm->numa_scan_offset = start;
6e5fb223
PZ
1984 else
1985 reset_ptenuma_scan(p);
1986 up_read(&mm->mmap_sem);
cbee9f88
PZ
1987}
1988
1989/*
1990 * Drive the periodic memory faults..
1991 */
1992void task_tick_numa(struct rq *rq, struct task_struct *curr)
1993{
1994 struct callback_head *work = &curr->numa_work;
1995 u64 period, now;
1996
1997 /*
1998 * We don't care about NUMA placement if we don't have memory.
1999 */
2000 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2001 return;
2002
2003 /*
2004 * Using runtime rather than walltime has the dual advantage that
2005 * we (mostly) drive the selection from busy threads and that the
2006 * task needs to have done some actual work before we bother with
2007 * NUMA placement.
2008 */
2009 now = curr->se.sum_exec_runtime;
2010 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2011
2012 if (now - curr->node_stamp > period) {
4b96a29b 2013 if (!curr->node_stamp)
598f0ec0 2014 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2015 curr->node_stamp += period;
cbee9f88
PZ
2016
2017 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2018 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2019 task_work_add(curr, work, true);
2020 }
2021 }
2022}
2023#else
2024static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2025{
2026}
0ec8aa00
PZ
2027
2028static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2029{
2030}
2031
2032static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2033{
2034}
cbee9f88
PZ
2035#endif /* CONFIG_NUMA_BALANCING */
2036
30cfdcfc
DA
2037static void
2038account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2039{
2040 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2041 if (!parent_entity(se))
029632fb 2042 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2043#ifdef CONFIG_SMP
0ec8aa00
PZ
2044 if (entity_is_task(se)) {
2045 struct rq *rq = rq_of(cfs_rq);
2046
2047 account_numa_enqueue(rq, task_of(se));
2048 list_add(&se->group_node, &rq->cfs_tasks);
2049 }
367456c7 2050#endif
30cfdcfc 2051 cfs_rq->nr_running++;
30cfdcfc
DA
2052}
2053
2054static void
2055account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2056{
2057 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2058 if (!parent_entity(se))
029632fb 2059 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2060 if (entity_is_task(se)) {
2061 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2062 list_del_init(&se->group_node);
0ec8aa00 2063 }
30cfdcfc 2064 cfs_rq->nr_running--;
30cfdcfc
DA
2065}
2066
3ff6dcac
YZ
2067#ifdef CONFIG_FAIR_GROUP_SCHED
2068# ifdef CONFIG_SMP
cf5f0acf
PZ
2069static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2070{
2071 long tg_weight;
2072
2073 /*
2074 * Use this CPU's actual weight instead of the last load_contribution
2075 * to gain a more accurate current total weight. See
2076 * update_cfs_rq_load_contribution().
2077 */
bf5b986e 2078 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2079 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2080 tg_weight += cfs_rq->load.weight;
2081
2082 return tg_weight;
2083}
2084
6d5ab293 2085static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2086{
cf5f0acf 2087 long tg_weight, load, shares;
3ff6dcac 2088
cf5f0acf 2089 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2090 load = cfs_rq->load.weight;
3ff6dcac 2091
3ff6dcac 2092 shares = (tg->shares * load);
cf5f0acf
PZ
2093 if (tg_weight)
2094 shares /= tg_weight;
3ff6dcac
YZ
2095
2096 if (shares < MIN_SHARES)
2097 shares = MIN_SHARES;
2098 if (shares > tg->shares)
2099 shares = tg->shares;
2100
2101 return shares;
2102}
3ff6dcac 2103# else /* CONFIG_SMP */
6d5ab293 2104static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2105{
2106 return tg->shares;
2107}
3ff6dcac 2108# endif /* CONFIG_SMP */
2069dd75
PZ
2109static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2110 unsigned long weight)
2111{
19e5eebb
PT
2112 if (se->on_rq) {
2113 /* commit outstanding execution time */
2114 if (cfs_rq->curr == se)
2115 update_curr(cfs_rq);
2069dd75 2116 account_entity_dequeue(cfs_rq, se);
19e5eebb 2117 }
2069dd75
PZ
2118
2119 update_load_set(&se->load, weight);
2120
2121 if (se->on_rq)
2122 account_entity_enqueue(cfs_rq, se);
2123}
2124
82958366
PT
2125static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2126
6d5ab293 2127static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2128{
2129 struct task_group *tg;
2130 struct sched_entity *se;
3ff6dcac 2131 long shares;
2069dd75 2132
2069dd75
PZ
2133 tg = cfs_rq->tg;
2134 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2135 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2136 return;
3ff6dcac
YZ
2137#ifndef CONFIG_SMP
2138 if (likely(se->load.weight == tg->shares))
2139 return;
2140#endif
6d5ab293 2141 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2142
2143 reweight_entity(cfs_rq_of(se), se, shares);
2144}
2145#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2146static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2147{
2148}
2149#endif /* CONFIG_FAIR_GROUP_SCHED */
2150
141965c7 2151#ifdef CONFIG_SMP
5b51f2f8
PT
2152/*
2153 * We choose a half-life close to 1 scheduling period.
2154 * Note: The tables below are dependent on this value.
2155 */
2156#define LOAD_AVG_PERIOD 32
2157#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2158#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2159
2160/* Precomputed fixed inverse multiplies for multiplication by y^n */
2161static const u32 runnable_avg_yN_inv[] = {
2162 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2163 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2164 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2165 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2166 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2167 0x85aac367, 0x82cd8698,
2168};
2169
2170/*
2171 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2172 * over-estimates when re-combining.
2173 */
2174static const u32 runnable_avg_yN_sum[] = {
2175 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2176 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2177 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2178};
2179
9d85f21c
PT
2180/*
2181 * Approximate:
2182 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2183 */
2184static __always_inline u64 decay_load(u64 val, u64 n)
2185{
5b51f2f8
PT
2186 unsigned int local_n;
2187
2188 if (!n)
2189 return val;
2190 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2191 return 0;
2192
2193 /* after bounds checking we can collapse to 32-bit */
2194 local_n = n;
2195
2196 /*
2197 * As y^PERIOD = 1/2, we can combine
2198 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2199 * With a look-up table which covers k^n (n<PERIOD)
2200 *
2201 * To achieve constant time decay_load.
2202 */
2203 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2204 val >>= local_n / LOAD_AVG_PERIOD;
2205 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2206 }
2207
5b51f2f8
PT
2208 val *= runnable_avg_yN_inv[local_n];
2209 /* We don't use SRR here since we always want to round down. */
2210 return val >> 32;
2211}
2212
2213/*
2214 * For updates fully spanning n periods, the contribution to runnable
2215 * average will be: \Sum 1024*y^n
2216 *
2217 * We can compute this reasonably efficiently by combining:
2218 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2219 */
2220static u32 __compute_runnable_contrib(u64 n)
2221{
2222 u32 contrib = 0;
2223
2224 if (likely(n <= LOAD_AVG_PERIOD))
2225 return runnable_avg_yN_sum[n];
2226 else if (unlikely(n >= LOAD_AVG_MAX_N))
2227 return LOAD_AVG_MAX;
2228
2229 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2230 do {
2231 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2232 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2233
2234 n -= LOAD_AVG_PERIOD;
2235 } while (n > LOAD_AVG_PERIOD);
2236
2237 contrib = decay_load(contrib, n);
2238 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2239}
2240
2241/*
2242 * We can represent the historical contribution to runnable average as the
2243 * coefficients of a geometric series. To do this we sub-divide our runnable
2244 * history into segments of approximately 1ms (1024us); label the segment that
2245 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2246 *
2247 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2248 * p0 p1 p2
2249 * (now) (~1ms ago) (~2ms ago)
2250 *
2251 * Let u_i denote the fraction of p_i that the entity was runnable.
2252 *
2253 * We then designate the fractions u_i as our co-efficients, yielding the
2254 * following representation of historical load:
2255 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2256 *
2257 * We choose y based on the with of a reasonably scheduling period, fixing:
2258 * y^32 = 0.5
2259 *
2260 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2261 * approximately half as much as the contribution to load within the last ms
2262 * (u_0).
2263 *
2264 * When a period "rolls over" and we have new u_0`, multiplying the previous
2265 * sum again by y is sufficient to update:
2266 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2267 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2268 */
2269static __always_inline int __update_entity_runnable_avg(u64 now,
2270 struct sched_avg *sa,
2271 int runnable)
2272{
5b51f2f8
PT
2273 u64 delta, periods;
2274 u32 runnable_contrib;
9d85f21c
PT
2275 int delta_w, decayed = 0;
2276
2277 delta = now - sa->last_runnable_update;
2278 /*
2279 * This should only happen when time goes backwards, which it
2280 * unfortunately does during sched clock init when we swap over to TSC.
2281 */
2282 if ((s64)delta < 0) {
2283 sa->last_runnable_update = now;
2284 return 0;
2285 }
2286
2287 /*
2288 * Use 1024ns as the unit of measurement since it's a reasonable
2289 * approximation of 1us and fast to compute.
2290 */
2291 delta >>= 10;
2292 if (!delta)
2293 return 0;
2294 sa->last_runnable_update = now;
2295
2296 /* delta_w is the amount already accumulated against our next period */
2297 delta_w = sa->runnable_avg_period % 1024;
2298 if (delta + delta_w >= 1024) {
2299 /* period roll-over */
2300 decayed = 1;
2301
2302 /*
2303 * Now that we know we're crossing a period boundary, figure
2304 * out how much from delta we need to complete the current
2305 * period and accrue it.
2306 */
2307 delta_w = 1024 - delta_w;
5b51f2f8
PT
2308 if (runnable)
2309 sa->runnable_avg_sum += delta_w;
2310 sa->runnable_avg_period += delta_w;
2311
2312 delta -= delta_w;
2313
2314 /* Figure out how many additional periods this update spans */
2315 periods = delta / 1024;
2316 delta %= 1024;
2317
2318 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2319 periods + 1);
2320 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2321 periods + 1);
2322
2323 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2324 runnable_contrib = __compute_runnable_contrib(periods);
2325 if (runnable)
2326 sa->runnable_avg_sum += runnable_contrib;
2327 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2328 }
2329
2330 /* Remainder of delta accrued against u_0` */
2331 if (runnable)
2332 sa->runnable_avg_sum += delta;
2333 sa->runnable_avg_period += delta;
2334
2335 return decayed;
2336}
2337
9ee474f5 2338/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2339static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2340{
2341 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2342 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2343
2344 decays -= se->avg.decay_count;
2345 if (!decays)
aff3e498 2346 return 0;
9ee474f5
PT
2347
2348 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2349 se->avg.decay_count = 0;
aff3e498
PT
2350
2351 return decays;
9ee474f5
PT
2352}
2353
c566e8e9
PT
2354#ifdef CONFIG_FAIR_GROUP_SCHED
2355static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2356 int force_update)
2357{
2358 struct task_group *tg = cfs_rq->tg;
bf5b986e 2359 long tg_contrib;
c566e8e9
PT
2360
2361 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2362 tg_contrib -= cfs_rq->tg_load_contrib;
2363
bf5b986e
AS
2364 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2365 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2366 cfs_rq->tg_load_contrib += tg_contrib;
2367 }
2368}
8165e145 2369
bb17f655
PT
2370/*
2371 * Aggregate cfs_rq runnable averages into an equivalent task_group
2372 * representation for computing load contributions.
2373 */
2374static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2375 struct cfs_rq *cfs_rq)
2376{
2377 struct task_group *tg = cfs_rq->tg;
2378 long contrib;
2379
2380 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2381 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2382 sa->runnable_avg_period + 1);
2383 contrib -= cfs_rq->tg_runnable_contrib;
2384
2385 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2386 atomic_add(contrib, &tg->runnable_avg);
2387 cfs_rq->tg_runnable_contrib += contrib;
2388 }
2389}
2390
8165e145
PT
2391static inline void __update_group_entity_contrib(struct sched_entity *se)
2392{
2393 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2394 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2395 int runnable_avg;
2396
8165e145
PT
2397 u64 contrib;
2398
2399 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2400 se->avg.load_avg_contrib = div_u64(contrib,
2401 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2402
2403 /*
2404 * For group entities we need to compute a correction term in the case
2405 * that they are consuming <1 cpu so that we would contribute the same
2406 * load as a task of equal weight.
2407 *
2408 * Explicitly co-ordinating this measurement would be expensive, but
2409 * fortunately the sum of each cpus contribution forms a usable
2410 * lower-bound on the true value.
2411 *
2412 * Consider the aggregate of 2 contributions. Either they are disjoint
2413 * (and the sum represents true value) or they are disjoint and we are
2414 * understating by the aggregate of their overlap.
2415 *
2416 * Extending this to N cpus, for a given overlap, the maximum amount we
2417 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2418 * cpus that overlap for this interval and w_i is the interval width.
2419 *
2420 * On a small machine; the first term is well-bounded which bounds the
2421 * total error since w_i is a subset of the period. Whereas on a
2422 * larger machine, while this first term can be larger, if w_i is the
2423 * of consequential size guaranteed to see n_i*w_i quickly converge to
2424 * our upper bound of 1-cpu.
2425 */
2426 runnable_avg = atomic_read(&tg->runnable_avg);
2427 if (runnable_avg < NICE_0_LOAD) {
2428 se->avg.load_avg_contrib *= runnable_avg;
2429 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2430 }
8165e145 2431}
f5f9739d
DE
2432
2433static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2434{
2435 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2436 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2437}
6e83125c 2438#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2439static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2440 int force_update) {}
bb17f655
PT
2441static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2442 struct cfs_rq *cfs_rq) {}
8165e145 2443static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2444static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2445#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2446
8165e145
PT
2447static inline void __update_task_entity_contrib(struct sched_entity *se)
2448{
2449 u32 contrib;
2450
2451 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2452 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2453 contrib /= (se->avg.runnable_avg_period + 1);
2454 se->avg.load_avg_contrib = scale_load(contrib);
2455}
2456
2dac754e
PT
2457/* Compute the current contribution to load_avg by se, return any delta */
2458static long __update_entity_load_avg_contrib(struct sched_entity *se)
2459{
2460 long old_contrib = se->avg.load_avg_contrib;
2461
8165e145
PT
2462 if (entity_is_task(se)) {
2463 __update_task_entity_contrib(se);
2464 } else {
bb17f655 2465 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2466 __update_group_entity_contrib(se);
2467 }
2dac754e
PT
2468
2469 return se->avg.load_avg_contrib - old_contrib;
2470}
2471
9ee474f5
PT
2472static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2473 long load_contrib)
2474{
2475 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2476 cfs_rq->blocked_load_avg -= load_contrib;
2477 else
2478 cfs_rq->blocked_load_avg = 0;
2479}
2480
f1b17280
PT
2481static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2482
9d85f21c 2483/* Update a sched_entity's runnable average */
9ee474f5
PT
2484static inline void update_entity_load_avg(struct sched_entity *se,
2485 int update_cfs_rq)
9d85f21c 2486{
2dac754e
PT
2487 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2488 long contrib_delta;
f1b17280 2489 u64 now;
2dac754e 2490
f1b17280
PT
2491 /*
2492 * For a group entity we need to use their owned cfs_rq_clock_task() in
2493 * case they are the parent of a throttled hierarchy.
2494 */
2495 if (entity_is_task(se))
2496 now = cfs_rq_clock_task(cfs_rq);
2497 else
2498 now = cfs_rq_clock_task(group_cfs_rq(se));
2499
2500 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2501 return;
2502
2503 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2504
2505 if (!update_cfs_rq)
2506 return;
2507
2dac754e
PT
2508 if (se->on_rq)
2509 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2510 else
2511 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2512}
2513
2514/*
2515 * Decay the load contributed by all blocked children and account this so that
2516 * their contribution may appropriately discounted when they wake up.
2517 */
aff3e498 2518static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2519{
f1b17280 2520 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2521 u64 decays;
2522
2523 decays = now - cfs_rq->last_decay;
aff3e498 2524 if (!decays && !force_update)
9ee474f5
PT
2525 return;
2526
2509940f
AS
2527 if (atomic_long_read(&cfs_rq->removed_load)) {
2528 unsigned long removed_load;
2529 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2530 subtract_blocked_load_contrib(cfs_rq, removed_load);
2531 }
9ee474f5 2532
aff3e498
PT
2533 if (decays) {
2534 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2535 decays);
2536 atomic64_add(decays, &cfs_rq->decay_counter);
2537 cfs_rq->last_decay = now;
2538 }
c566e8e9
PT
2539
2540 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2541}
18bf2805 2542
2dac754e
PT
2543/* Add the load generated by se into cfs_rq's child load-average */
2544static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2545 struct sched_entity *se,
2546 int wakeup)
2dac754e 2547{
aff3e498
PT
2548 /*
2549 * We track migrations using entity decay_count <= 0, on a wake-up
2550 * migration we use a negative decay count to track the remote decays
2551 * accumulated while sleeping.
a75cdaa9
AS
2552 *
2553 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2554 * are seen by enqueue_entity_load_avg() as a migration with an already
2555 * constructed load_avg_contrib.
aff3e498
PT
2556 */
2557 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2558 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2559 if (se->avg.decay_count) {
2560 /*
2561 * In a wake-up migration we have to approximate the
2562 * time sleeping. This is because we can't synchronize
2563 * clock_task between the two cpus, and it is not
2564 * guaranteed to be read-safe. Instead, we can
2565 * approximate this using our carried decays, which are
2566 * explicitly atomically readable.
2567 */
2568 se->avg.last_runnable_update -= (-se->avg.decay_count)
2569 << 20;
2570 update_entity_load_avg(se, 0);
2571 /* Indicate that we're now synchronized and on-rq */
2572 se->avg.decay_count = 0;
2573 }
9ee474f5
PT
2574 wakeup = 0;
2575 } else {
9390675a 2576 __synchronize_entity_decay(se);
9ee474f5
PT
2577 }
2578
aff3e498
PT
2579 /* migrated tasks did not contribute to our blocked load */
2580 if (wakeup) {
9ee474f5 2581 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2582 update_entity_load_avg(se, 0);
2583 }
9ee474f5 2584
2dac754e 2585 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2586 /* we force update consideration on load-balancer moves */
2587 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2588}
2589
9ee474f5
PT
2590/*
2591 * Remove se's load from this cfs_rq child load-average, if the entity is
2592 * transitioning to a blocked state we track its projected decay using
2593 * blocked_load_avg.
2594 */
2dac754e 2595static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2596 struct sched_entity *se,
2597 int sleep)
2dac754e 2598{
9ee474f5 2599 update_entity_load_avg(se, 1);
aff3e498
PT
2600 /* we force update consideration on load-balancer moves */
2601 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2602
2dac754e 2603 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2604 if (sleep) {
2605 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2606 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2607 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2608}
642dbc39
VG
2609
2610/*
2611 * Update the rq's load with the elapsed running time before entering
2612 * idle. if the last scheduled task is not a CFS task, idle_enter will
2613 * be the only way to update the runnable statistic.
2614 */
2615void idle_enter_fair(struct rq *this_rq)
2616{
2617 update_rq_runnable_avg(this_rq, 1);
2618}
2619
2620/*
2621 * Update the rq's load with the elapsed idle time before a task is
2622 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2623 * be the only way to update the runnable statistic.
2624 */
2625void idle_exit_fair(struct rq *this_rq)
2626{
2627 update_rq_runnable_avg(this_rq, 0);
2628}
2629
6e83125c
PZ
2630static int idle_balance(struct rq *this_rq);
2631
38033c37
PZ
2632#else /* CONFIG_SMP */
2633
9ee474f5
PT
2634static inline void update_entity_load_avg(struct sched_entity *se,
2635 int update_cfs_rq) {}
18bf2805 2636static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2637static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2638 struct sched_entity *se,
2639 int wakeup) {}
2dac754e 2640static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2641 struct sched_entity *se,
2642 int sleep) {}
aff3e498
PT
2643static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2644 int force_update) {}
6e83125c
PZ
2645
2646static inline int idle_balance(struct rq *rq)
2647{
2648 return 0;
2649}
2650
38033c37 2651#endif /* CONFIG_SMP */
9d85f21c 2652
2396af69 2653static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2654{
bf0f6f24 2655#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2656 struct task_struct *tsk = NULL;
2657
2658 if (entity_is_task(se))
2659 tsk = task_of(se);
2660
41acab88 2661 if (se->statistics.sleep_start) {
78becc27 2662 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2663
2664 if ((s64)delta < 0)
2665 delta = 0;
2666
41acab88
LDM
2667 if (unlikely(delta > se->statistics.sleep_max))
2668 se->statistics.sleep_max = delta;
bf0f6f24 2669
8c79a045 2670 se->statistics.sleep_start = 0;
41acab88 2671 se->statistics.sum_sleep_runtime += delta;
9745512c 2672
768d0c27 2673 if (tsk) {
e414314c 2674 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2675 trace_sched_stat_sleep(tsk, delta);
2676 }
bf0f6f24 2677 }
41acab88 2678 if (se->statistics.block_start) {
78becc27 2679 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2680
2681 if ((s64)delta < 0)
2682 delta = 0;
2683
41acab88
LDM
2684 if (unlikely(delta > se->statistics.block_max))
2685 se->statistics.block_max = delta;
bf0f6f24 2686
8c79a045 2687 se->statistics.block_start = 0;
41acab88 2688 se->statistics.sum_sleep_runtime += delta;
30084fbd 2689
e414314c 2690 if (tsk) {
8f0dfc34 2691 if (tsk->in_iowait) {
41acab88
LDM
2692 se->statistics.iowait_sum += delta;
2693 se->statistics.iowait_count++;
768d0c27 2694 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2695 }
2696
b781a602
AV
2697 trace_sched_stat_blocked(tsk, delta);
2698
e414314c
PZ
2699 /*
2700 * Blocking time is in units of nanosecs, so shift by
2701 * 20 to get a milliseconds-range estimation of the
2702 * amount of time that the task spent sleeping:
2703 */
2704 if (unlikely(prof_on == SLEEP_PROFILING)) {
2705 profile_hits(SLEEP_PROFILING,
2706 (void *)get_wchan(tsk),
2707 delta >> 20);
2708 }
2709 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2710 }
bf0f6f24
IM
2711 }
2712#endif
2713}
2714
ddc97297
PZ
2715static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2716{
2717#ifdef CONFIG_SCHED_DEBUG
2718 s64 d = se->vruntime - cfs_rq->min_vruntime;
2719
2720 if (d < 0)
2721 d = -d;
2722
2723 if (d > 3*sysctl_sched_latency)
2724 schedstat_inc(cfs_rq, nr_spread_over);
2725#endif
2726}
2727
aeb73b04
PZ
2728static void
2729place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2730{
1af5f730 2731 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2732
2cb8600e
PZ
2733 /*
2734 * The 'current' period is already promised to the current tasks,
2735 * however the extra weight of the new task will slow them down a
2736 * little, place the new task so that it fits in the slot that
2737 * stays open at the end.
2738 */
94dfb5e7 2739 if (initial && sched_feat(START_DEBIT))
f9c0b095 2740 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2741
a2e7a7eb 2742 /* sleeps up to a single latency don't count. */
5ca9880c 2743 if (!initial) {
a2e7a7eb 2744 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2745
a2e7a7eb
MG
2746 /*
2747 * Halve their sleep time's effect, to allow
2748 * for a gentler effect of sleepers:
2749 */
2750 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2751 thresh >>= 1;
51e0304c 2752
a2e7a7eb 2753 vruntime -= thresh;
aeb73b04
PZ
2754 }
2755
b5d9d734 2756 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2757 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2758}
2759
d3d9dc33
PT
2760static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2761
bf0f6f24 2762static void
88ec22d3 2763enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2764{
88ec22d3
PZ
2765 /*
2766 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2767 * through calling update_curr().
88ec22d3 2768 */
371fd7e7 2769 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2770 se->vruntime += cfs_rq->min_vruntime;
2771
bf0f6f24 2772 /*
a2a2d680 2773 * Update run-time statistics of the 'current'.
bf0f6f24 2774 */
b7cc0896 2775 update_curr(cfs_rq);
f269ae04 2776 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2777 account_entity_enqueue(cfs_rq, se);
2778 update_cfs_shares(cfs_rq);
bf0f6f24 2779
88ec22d3 2780 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2781 place_entity(cfs_rq, se, 0);
2396af69 2782 enqueue_sleeper(cfs_rq, se);
e9acbff6 2783 }
bf0f6f24 2784
d2417e5a 2785 update_stats_enqueue(cfs_rq, se);
ddc97297 2786 check_spread(cfs_rq, se);
83b699ed
SV
2787 if (se != cfs_rq->curr)
2788 __enqueue_entity(cfs_rq, se);
2069dd75 2789 se->on_rq = 1;
3d4b47b4 2790
d3d9dc33 2791 if (cfs_rq->nr_running == 1) {
3d4b47b4 2792 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2793 check_enqueue_throttle(cfs_rq);
2794 }
bf0f6f24
IM
2795}
2796
2c13c919 2797static void __clear_buddies_last(struct sched_entity *se)
2002c695 2798{
2c13c919
RR
2799 for_each_sched_entity(se) {
2800 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2801 if (cfs_rq->last != se)
2c13c919 2802 break;
f1044799
PZ
2803
2804 cfs_rq->last = NULL;
2c13c919
RR
2805 }
2806}
2002c695 2807
2c13c919
RR
2808static void __clear_buddies_next(struct sched_entity *se)
2809{
2810 for_each_sched_entity(se) {
2811 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2812 if (cfs_rq->next != se)
2c13c919 2813 break;
f1044799
PZ
2814
2815 cfs_rq->next = NULL;
2c13c919 2816 }
2002c695
PZ
2817}
2818
ac53db59
RR
2819static void __clear_buddies_skip(struct sched_entity *se)
2820{
2821 for_each_sched_entity(se) {
2822 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2823 if (cfs_rq->skip != se)
ac53db59 2824 break;
f1044799
PZ
2825
2826 cfs_rq->skip = NULL;
ac53db59
RR
2827 }
2828}
2829
a571bbea
PZ
2830static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2831{
2c13c919
RR
2832 if (cfs_rq->last == se)
2833 __clear_buddies_last(se);
2834
2835 if (cfs_rq->next == se)
2836 __clear_buddies_next(se);
ac53db59
RR
2837
2838 if (cfs_rq->skip == se)
2839 __clear_buddies_skip(se);
a571bbea
PZ
2840}
2841
6c16a6dc 2842static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2843
bf0f6f24 2844static void
371fd7e7 2845dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2846{
a2a2d680
DA
2847 /*
2848 * Update run-time statistics of the 'current'.
2849 */
2850 update_curr(cfs_rq);
17bc14b7 2851 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2852
19b6a2e3 2853 update_stats_dequeue(cfs_rq, se);
371fd7e7 2854 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2855#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2856 if (entity_is_task(se)) {
2857 struct task_struct *tsk = task_of(se);
2858
2859 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2860 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2861 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2862 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2863 }
db36cc7d 2864#endif
67e9fb2a
PZ
2865 }
2866
2002c695 2867 clear_buddies(cfs_rq, se);
4793241b 2868
83b699ed 2869 if (se != cfs_rq->curr)
30cfdcfc 2870 __dequeue_entity(cfs_rq, se);
17bc14b7 2871 se->on_rq = 0;
30cfdcfc 2872 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2873
2874 /*
2875 * Normalize the entity after updating the min_vruntime because the
2876 * update can refer to the ->curr item and we need to reflect this
2877 * movement in our normalized position.
2878 */
371fd7e7 2879 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2880 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2881
d8b4986d
PT
2882 /* return excess runtime on last dequeue */
2883 return_cfs_rq_runtime(cfs_rq);
2884
1e876231 2885 update_min_vruntime(cfs_rq);
17bc14b7 2886 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2887}
2888
2889/*
2890 * Preempt the current task with a newly woken task if needed:
2891 */
7c92e54f 2892static void
2e09bf55 2893check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2894{
11697830 2895 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2896 struct sched_entity *se;
2897 s64 delta;
11697830 2898
6d0f0ebd 2899 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2900 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2901 if (delta_exec > ideal_runtime) {
bf0f6f24 2902 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2903 /*
2904 * The current task ran long enough, ensure it doesn't get
2905 * re-elected due to buddy favours.
2906 */
2907 clear_buddies(cfs_rq, curr);
f685ceac
MG
2908 return;
2909 }
2910
2911 /*
2912 * Ensure that a task that missed wakeup preemption by a
2913 * narrow margin doesn't have to wait for a full slice.
2914 * This also mitigates buddy induced latencies under load.
2915 */
f685ceac
MG
2916 if (delta_exec < sysctl_sched_min_granularity)
2917 return;
2918
f4cfb33e
WX
2919 se = __pick_first_entity(cfs_rq);
2920 delta = curr->vruntime - se->vruntime;
f685ceac 2921
f4cfb33e
WX
2922 if (delta < 0)
2923 return;
d7d82944 2924
f4cfb33e
WX
2925 if (delta > ideal_runtime)
2926 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2927}
2928
83b699ed 2929static void
8494f412 2930set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2931{
83b699ed
SV
2932 /* 'current' is not kept within the tree. */
2933 if (se->on_rq) {
2934 /*
2935 * Any task has to be enqueued before it get to execute on
2936 * a CPU. So account for the time it spent waiting on the
2937 * runqueue.
2938 */
2939 update_stats_wait_end(cfs_rq, se);
2940 __dequeue_entity(cfs_rq, se);
2941 }
2942
79303e9e 2943 update_stats_curr_start(cfs_rq, se);
429d43bc 2944 cfs_rq->curr = se;
eba1ed4b
IM
2945#ifdef CONFIG_SCHEDSTATS
2946 /*
2947 * Track our maximum slice length, if the CPU's load is at
2948 * least twice that of our own weight (i.e. dont track it
2949 * when there are only lesser-weight tasks around):
2950 */
495eca49 2951 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2952 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2953 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2954 }
2955#endif
4a55b450 2956 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2957}
2958
3f3a4904
PZ
2959static int
2960wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2961
ac53db59
RR
2962/*
2963 * Pick the next process, keeping these things in mind, in this order:
2964 * 1) keep things fair between processes/task groups
2965 * 2) pick the "next" process, since someone really wants that to run
2966 * 3) pick the "last" process, for cache locality
2967 * 4) do not run the "skip" process, if something else is available
2968 */
678d5718
PZ
2969static struct sched_entity *
2970pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2971{
678d5718
PZ
2972 struct sched_entity *left = __pick_first_entity(cfs_rq);
2973 struct sched_entity *se;
2974
2975 /*
2976 * If curr is set we have to see if its left of the leftmost entity
2977 * still in the tree, provided there was anything in the tree at all.
2978 */
2979 if (!left || (curr && entity_before(curr, left)))
2980 left = curr;
2981
2982 se = left; /* ideally we run the leftmost entity */
f4b6755f 2983
ac53db59
RR
2984 /*
2985 * Avoid running the skip buddy, if running something else can
2986 * be done without getting too unfair.
2987 */
2988 if (cfs_rq->skip == se) {
678d5718
PZ
2989 struct sched_entity *second;
2990
2991 if (se == curr) {
2992 second = __pick_first_entity(cfs_rq);
2993 } else {
2994 second = __pick_next_entity(se);
2995 if (!second || (curr && entity_before(curr, second)))
2996 second = curr;
2997 }
2998
ac53db59
RR
2999 if (second && wakeup_preempt_entity(second, left) < 1)
3000 se = second;
3001 }
aa2ac252 3002
f685ceac
MG
3003 /*
3004 * Prefer last buddy, try to return the CPU to a preempted task.
3005 */
3006 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3007 se = cfs_rq->last;
3008
ac53db59
RR
3009 /*
3010 * Someone really wants this to run. If it's not unfair, run it.
3011 */
3012 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3013 se = cfs_rq->next;
3014
f685ceac 3015 clear_buddies(cfs_rq, se);
4793241b
PZ
3016
3017 return se;
aa2ac252
PZ
3018}
3019
678d5718 3020static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3021
ab6cde26 3022static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3023{
3024 /*
3025 * If still on the runqueue then deactivate_task()
3026 * was not called and update_curr() has to be done:
3027 */
3028 if (prev->on_rq)
b7cc0896 3029 update_curr(cfs_rq);
bf0f6f24 3030
d3d9dc33
PT
3031 /* throttle cfs_rqs exceeding runtime */
3032 check_cfs_rq_runtime(cfs_rq);
3033
ddc97297 3034 check_spread(cfs_rq, prev);
30cfdcfc 3035 if (prev->on_rq) {
5870db5b 3036 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3037 /* Put 'current' back into the tree. */
3038 __enqueue_entity(cfs_rq, prev);
9d85f21c 3039 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3040 update_entity_load_avg(prev, 1);
30cfdcfc 3041 }
429d43bc 3042 cfs_rq->curr = NULL;
bf0f6f24
IM
3043}
3044
8f4d37ec
PZ
3045static void
3046entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3047{
bf0f6f24 3048 /*
30cfdcfc 3049 * Update run-time statistics of the 'current'.
bf0f6f24 3050 */
30cfdcfc 3051 update_curr(cfs_rq);
bf0f6f24 3052
9d85f21c
PT
3053 /*
3054 * Ensure that runnable average is periodically updated.
3055 */
9ee474f5 3056 update_entity_load_avg(curr, 1);
aff3e498 3057 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3058 update_cfs_shares(cfs_rq);
9d85f21c 3059
8f4d37ec
PZ
3060#ifdef CONFIG_SCHED_HRTICK
3061 /*
3062 * queued ticks are scheduled to match the slice, so don't bother
3063 * validating it and just reschedule.
3064 */
983ed7a6
HH
3065 if (queued) {
3066 resched_task(rq_of(cfs_rq)->curr);
3067 return;
3068 }
8f4d37ec
PZ
3069 /*
3070 * don't let the period tick interfere with the hrtick preemption
3071 */
3072 if (!sched_feat(DOUBLE_TICK) &&
3073 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3074 return;
3075#endif
3076
2c2efaed 3077 if (cfs_rq->nr_running > 1)
2e09bf55 3078 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3079}
3080
ab84d31e
PT
3081
3082/**************************************************
3083 * CFS bandwidth control machinery
3084 */
3085
3086#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3087
3088#ifdef HAVE_JUMP_LABEL
c5905afb 3089static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3090
3091static inline bool cfs_bandwidth_used(void)
3092{
c5905afb 3093 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3094}
3095
1ee14e6c 3096void cfs_bandwidth_usage_inc(void)
029632fb 3097{
1ee14e6c
BS
3098 static_key_slow_inc(&__cfs_bandwidth_used);
3099}
3100
3101void cfs_bandwidth_usage_dec(void)
3102{
3103 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3104}
3105#else /* HAVE_JUMP_LABEL */
3106static bool cfs_bandwidth_used(void)
3107{
3108 return true;
3109}
3110
1ee14e6c
BS
3111void cfs_bandwidth_usage_inc(void) {}
3112void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3113#endif /* HAVE_JUMP_LABEL */
3114
ab84d31e
PT
3115/*
3116 * default period for cfs group bandwidth.
3117 * default: 0.1s, units: nanoseconds
3118 */
3119static inline u64 default_cfs_period(void)
3120{
3121 return 100000000ULL;
3122}
ec12cb7f
PT
3123
3124static inline u64 sched_cfs_bandwidth_slice(void)
3125{
3126 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3127}
3128
a9cf55b2
PT
3129/*
3130 * Replenish runtime according to assigned quota and update expiration time.
3131 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3132 * additional synchronization around rq->lock.
3133 *
3134 * requires cfs_b->lock
3135 */
029632fb 3136void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3137{
3138 u64 now;
3139
3140 if (cfs_b->quota == RUNTIME_INF)
3141 return;
3142
3143 now = sched_clock_cpu(smp_processor_id());
3144 cfs_b->runtime = cfs_b->quota;
3145 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3146}
3147
029632fb
PZ
3148static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3149{
3150 return &tg->cfs_bandwidth;
3151}
3152
f1b17280
PT
3153/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3154static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3155{
3156 if (unlikely(cfs_rq->throttle_count))
3157 return cfs_rq->throttled_clock_task;
3158
78becc27 3159 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3160}
3161
85dac906
PT
3162/* returns 0 on failure to allocate runtime */
3163static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3164{
3165 struct task_group *tg = cfs_rq->tg;
3166 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3167 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3168
3169 /* note: this is a positive sum as runtime_remaining <= 0 */
3170 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3171
3172 raw_spin_lock(&cfs_b->lock);
3173 if (cfs_b->quota == RUNTIME_INF)
3174 amount = min_amount;
58088ad0 3175 else {
a9cf55b2
PT
3176 /*
3177 * If the bandwidth pool has become inactive, then at least one
3178 * period must have elapsed since the last consumption.
3179 * Refresh the global state and ensure bandwidth timer becomes
3180 * active.
3181 */
3182 if (!cfs_b->timer_active) {
3183 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3184 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3185 }
58088ad0
PT
3186
3187 if (cfs_b->runtime > 0) {
3188 amount = min(cfs_b->runtime, min_amount);
3189 cfs_b->runtime -= amount;
3190 cfs_b->idle = 0;
3191 }
ec12cb7f 3192 }
a9cf55b2 3193 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3194 raw_spin_unlock(&cfs_b->lock);
3195
3196 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3197 /*
3198 * we may have advanced our local expiration to account for allowed
3199 * spread between our sched_clock and the one on which runtime was
3200 * issued.
3201 */
3202 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3203 cfs_rq->runtime_expires = expires;
85dac906
PT
3204
3205 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3206}
3207
a9cf55b2
PT
3208/*
3209 * Note: This depends on the synchronization provided by sched_clock and the
3210 * fact that rq->clock snapshots this value.
3211 */
3212static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3213{
a9cf55b2 3214 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3215
3216 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3217 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3218 return;
3219
a9cf55b2
PT
3220 if (cfs_rq->runtime_remaining < 0)
3221 return;
3222
3223 /*
3224 * If the local deadline has passed we have to consider the
3225 * possibility that our sched_clock is 'fast' and the global deadline
3226 * has not truly expired.
3227 *
3228 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3229 * whether the global deadline has advanced. It is valid to compare
3230 * cfs_b->runtime_expires without any locks since we only care about
3231 * exact equality, so a partial write will still work.
a9cf55b2
PT
3232 */
3233
51f2176d 3234 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3235 /* extend local deadline, drift is bounded above by 2 ticks */
3236 cfs_rq->runtime_expires += TICK_NSEC;
3237 } else {
3238 /* global deadline is ahead, expiration has passed */
3239 cfs_rq->runtime_remaining = 0;
3240 }
3241}
3242
9dbdb155 3243static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3244{
3245 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3246 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3247 expire_cfs_rq_runtime(cfs_rq);
3248
3249 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3250 return;
3251
85dac906
PT
3252 /*
3253 * if we're unable to extend our runtime we resched so that the active
3254 * hierarchy can be throttled
3255 */
3256 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3257 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3258}
3259
6c16a6dc 3260static __always_inline
9dbdb155 3261void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3262{
56f570e5 3263 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3264 return;
3265
3266 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3267}
3268
85dac906
PT
3269static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3270{
56f570e5 3271 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3272}
3273
64660c86
PT
3274/* check whether cfs_rq, or any parent, is throttled */
3275static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3276{
56f570e5 3277 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3278}
3279
3280/*
3281 * Ensure that neither of the group entities corresponding to src_cpu or
3282 * dest_cpu are members of a throttled hierarchy when performing group
3283 * load-balance operations.
3284 */
3285static inline int throttled_lb_pair(struct task_group *tg,
3286 int src_cpu, int dest_cpu)
3287{
3288 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3289
3290 src_cfs_rq = tg->cfs_rq[src_cpu];
3291 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3292
3293 return throttled_hierarchy(src_cfs_rq) ||
3294 throttled_hierarchy(dest_cfs_rq);
3295}
3296
3297/* updated child weight may affect parent so we have to do this bottom up */
3298static int tg_unthrottle_up(struct task_group *tg, void *data)
3299{
3300 struct rq *rq = data;
3301 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3302
3303 cfs_rq->throttle_count--;
3304#ifdef CONFIG_SMP
3305 if (!cfs_rq->throttle_count) {
f1b17280 3306 /* adjust cfs_rq_clock_task() */
78becc27 3307 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3308 cfs_rq->throttled_clock_task;
64660c86
PT
3309 }
3310#endif
3311
3312 return 0;
3313}
3314
3315static int tg_throttle_down(struct task_group *tg, void *data)
3316{
3317 struct rq *rq = data;
3318 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3319
82958366
PT
3320 /* group is entering throttled state, stop time */
3321 if (!cfs_rq->throttle_count)
78becc27 3322 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3323 cfs_rq->throttle_count++;
3324
3325 return 0;
3326}
3327
d3d9dc33 3328static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3329{
3330 struct rq *rq = rq_of(cfs_rq);
3331 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3332 struct sched_entity *se;
3333 long task_delta, dequeue = 1;
3334
3335 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3336
f1b17280 3337 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3338 rcu_read_lock();
3339 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3340 rcu_read_unlock();
85dac906
PT
3341
3342 task_delta = cfs_rq->h_nr_running;
3343 for_each_sched_entity(se) {
3344 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3345 /* throttled entity or throttle-on-deactivate */
3346 if (!se->on_rq)
3347 break;
3348
3349 if (dequeue)
3350 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3351 qcfs_rq->h_nr_running -= task_delta;
3352
3353 if (qcfs_rq->load.weight)
3354 dequeue = 0;
3355 }
3356
3357 if (!se)
72465447 3358 sub_nr_running(rq, task_delta);
85dac906
PT
3359
3360 cfs_rq->throttled = 1;
78becc27 3361 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3362 raw_spin_lock(&cfs_b->lock);
3363 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3364 if (!cfs_b->timer_active)
09dc4ab0 3365 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3366 raw_spin_unlock(&cfs_b->lock);
3367}
3368
029632fb 3369void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3370{
3371 struct rq *rq = rq_of(cfs_rq);
3372 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3373 struct sched_entity *se;
3374 int enqueue = 1;
3375 long task_delta;
3376
22b958d8 3377 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3378
3379 cfs_rq->throttled = 0;
1a55af2e
FW
3380
3381 update_rq_clock(rq);
3382
671fd9da 3383 raw_spin_lock(&cfs_b->lock);
78becc27 3384 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3385 list_del_rcu(&cfs_rq->throttled_list);
3386 raw_spin_unlock(&cfs_b->lock);
3387
64660c86
PT
3388 /* update hierarchical throttle state */
3389 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3390
671fd9da
PT
3391 if (!cfs_rq->load.weight)
3392 return;
3393
3394 task_delta = cfs_rq->h_nr_running;
3395 for_each_sched_entity(se) {
3396 if (se->on_rq)
3397 enqueue = 0;
3398
3399 cfs_rq = cfs_rq_of(se);
3400 if (enqueue)
3401 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3402 cfs_rq->h_nr_running += task_delta;
3403
3404 if (cfs_rq_throttled(cfs_rq))
3405 break;
3406 }
3407
3408 if (!se)
72465447 3409 add_nr_running(rq, task_delta);
671fd9da
PT
3410
3411 /* determine whether we need to wake up potentially idle cpu */
3412 if (rq->curr == rq->idle && rq->cfs.nr_running)
3413 resched_task(rq->curr);
3414}
3415
3416static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3417 u64 remaining, u64 expires)
3418{
3419 struct cfs_rq *cfs_rq;
3420 u64 runtime = remaining;
3421
3422 rcu_read_lock();
3423 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3424 throttled_list) {
3425 struct rq *rq = rq_of(cfs_rq);
3426
3427 raw_spin_lock(&rq->lock);
3428 if (!cfs_rq_throttled(cfs_rq))
3429 goto next;
3430
3431 runtime = -cfs_rq->runtime_remaining + 1;
3432 if (runtime > remaining)
3433 runtime = remaining;
3434 remaining -= runtime;
3435
3436 cfs_rq->runtime_remaining += runtime;
3437 cfs_rq->runtime_expires = expires;
3438
3439 /* we check whether we're throttled above */
3440 if (cfs_rq->runtime_remaining > 0)
3441 unthrottle_cfs_rq(cfs_rq);
3442
3443next:
3444 raw_spin_unlock(&rq->lock);
3445
3446 if (!remaining)
3447 break;
3448 }
3449 rcu_read_unlock();
3450
3451 return remaining;
3452}
3453
58088ad0
PT
3454/*
3455 * Responsible for refilling a task_group's bandwidth and unthrottling its
3456 * cfs_rqs as appropriate. If there has been no activity within the last
3457 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3458 * used to track this state.
3459 */
3460static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3461{
671fd9da 3462 u64 runtime, runtime_expires;
51f2176d 3463 int throttled;
58088ad0 3464
58088ad0
PT
3465 /* no need to continue the timer with no bandwidth constraint */
3466 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3467 goto out_deactivate;
58088ad0 3468
671fd9da 3469 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3470 cfs_b->nr_periods += overrun;
671fd9da 3471
51f2176d
BS
3472 /*
3473 * idle depends on !throttled (for the case of a large deficit), and if
3474 * we're going inactive then everything else can be deferred
3475 */
3476 if (cfs_b->idle && !throttled)
3477 goto out_deactivate;
a9cf55b2 3478
927b54fc
BS
3479 /*
3480 * if we have relooped after returning idle once, we need to update our
3481 * status as actually running, so that other cpus doing
3482 * __start_cfs_bandwidth will stop trying to cancel us.
3483 */
3484 cfs_b->timer_active = 1;
3485
a9cf55b2
PT
3486 __refill_cfs_bandwidth_runtime(cfs_b);
3487
671fd9da
PT
3488 if (!throttled) {
3489 /* mark as potentially idle for the upcoming period */
3490 cfs_b->idle = 1;
51f2176d 3491 return 0;
671fd9da
PT
3492 }
3493
e8da1b18
NR
3494 /* account preceding periods in which throttling occurred */
3495 cfs_b->nr_throttled += overrun;
3496
671fd9da
PT
3497 /*
3498 * There are throttled entities so we must first use the new bandwidth
3499 * to unthrottle them before making it generally available. This
3500 * ensures that all existing debts will be paid before a new cfs_rq is
3501 * allowed to run.
3502 */
3503 runtime = cfs_b->runtime;
3504 runtime_expires = cfs_b->runtime_expires;
3505 cfs_b->runtime = 0;
3506
3507 /*
3508 * This check is repeated as we are holding onto the new bandwidth
3509 * while we unthrottle. This can potentially race with an unthrottled
3510 * group trying to acquire new bandwidth from the global pool.
3511 */
3512 while (throttled && runtime > 0) {
3513 raw_spin_unlock(&cfs_b->lock);
3514 /* we can't nest cfs_b->lock while distributing bandwidth */
3515 runtime = distribute_cfs_runtime(cfs_b, runtime,
3516 runtime_expires);
3517 raw_spin_lock(&cfs_b->lock);
3518
3519 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3520 }
58088ad0 3521
671fd9da
PT
3522 /* return (any) remaining runtime */
3523 cfs_b->runtime = runtime;
3524 /*
3525 * While we are ensured activity in the period following an
3526 * unthrottle, this also covers the case in which the new bandwidth is
3527 * insufficient to cover the existing bandwidth deficit. (Forcing the
3528 * timer to remain active while there are any throttled entities.)
3529 */
3530 cfs_b->idle = 0;
58088ad0 3531
51f2176d
BS
3532 return 0;
3533
3534out_deactivate:
3535 cfs_b->timer_active = 0;
3536 return 1;
58088ad0 3537}
d3d9dc33 3538
d8b4986d
PT
3539/* a cfs_rq won't donate quota below this amount */
3540static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3541/* minimum remaining period time to redistribute slack quota */
3542static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3543/* how long we wait to gather additional slack before distributing */
3544static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3545
db06e78c
BS
3546/*
3547 * Are we near the end of the current quota period?
3548 *
3549 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3550 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3551 * migrate_hrtimers, base is never cleared, so we are fine.
3552 */
d8b4986d
PT
3553static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3554{
3555 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3556 u64 remaining;
3557
3558 /* if the call-back is running a quota refresh is already occurring */
3559 if (hrtimer_callback_running(refresh_timer))
3560 return 1;
3561
3562 /* is a quota refresh about to occur? */
3563 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3564 if (remaining < min_expire)
3565 return 1;
3566
3567 return 0;
3568}
3569
3570static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3571{
3572 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3573
3574 /* if there's a quota refresh soon don't bother with slack */
3575 if (runtime_refresh_within(cfs_b, min_left))
3576 return;
3577
3578 start_bandwidth_timer(&cfs_b->slack_timer,
3579 ns_to_ktime(cfs_bandwidth_slack_period));
3580}
3581
3582/* we know any runtime found here is valid as update_curr() precedes return */
3583static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3584{
3585 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3586 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3587
3588 if (slack_runtime <= 0)
3589 return;
3590
3591 raw_spin_lock(&cfs_b->lock);
3592 if (cfs_b->quota != RUNTIME_INF &&
3593 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3594 cfs_b->runtime += slack_runtime;
3595
3596 /* we are under rq->lock, defer unthrottling using a timer */
3597 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3598 !list_empty(&cfs_b->throttled_cfs_rq))
3599 start_cfs_slack_bandwidth(cfs_b);
3600 }
3601 raw_spin_unlock(&cfs_b->lock);
3602
3603 /* even if it's not valid for return we don't want to try again */
3604 cfs_rq->runtime_remaining -= slack_runtime;
3605}
3606
3607static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3608{
56f570e5
PT
3609 if (!cfs_bandwidth_used())
3610 return;
3611
fccfdc6f 3612 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3613 return;
3614
3615 __return_cfs_rq_runtime(cfs_rq);
3616}
3617
3618/*
3619 * This is done with a timer (instead of inline with bandwidth return) since
3620 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3621 */
3622static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3623{
3624 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3625 u64 expires;
3626
3627 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3628 raw_spin_lock(&cfs_b->lock);
3629 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3630 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3631 return;
db06e78c 3632 }
d8b4986d 3633
d8b4986d
PT
3634 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3635 runtime = cfs_b->runtime;
3636 cfs_b->runtime = 0;
3637 }
3638 expires = cfs_b->runtime_expires;
3639 raw_spin_unlock(&cfs_b->lock);
3640
3641 if (!runtime)
3642 return;
3643
3644 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3645
3646 raw_spin_lock(&cfs_b->lock);
3647 if (expires == cfs_b->runtime_expires)
3648 cfs_b->runtime = runtime;
3649 raw_spin_unlock(&cfs_b->lock);
3650}
3651
d3d9dc33
PT
3652/*
3653 * When a group wakes up we want to make sure that its quota is not already
3654 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3655 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3656 */
3657static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3658{
56f570e5
PT
3659 if (!cfs_bandwidth_used())
3660 return;
3661
d3d9dc33
PT
3662 /* an active group must be handled by the update_curr()->put() path */
3663 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3664 return;
3665
3666 /* ensure the group is not already throttled */
3667 if (cfs_rq_throttled(cfs_rq))
3668 return;
3669
3670 /* update runtime allocation */
3671 account_cfs_rq_runtime(cfs_rq, 0);
3672 if (cfs_rq->runtime_remaining <= 0)
3673 throttle_cfs_rq(cfs_rq);
3674}
3675
3676/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3677static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3678{
56f570e5 3679 if (!cfs_bandwidth_used())
678d5718 3680 return false;
56f570e5 3681
d3d9dc33 3682 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3683 return false;
d3d9dc33
PT
3684
3685 /*
3686 * it's possible for a throttled entity to be forced into a running
3687 * state (e.g. set_curr_task), in this case we're finished.
3688 */
3689 if (cfs_rq_throttled(cfs_rq))
678d5718 3690 return true;
d3d9dc33
PT
3691
3692 throttle_cfs_rq(cfs_rq);
678d5718 3693 return true;
d3d9dc33 3694}
029632fb 3695
029632fb
PZ
3696static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3697{
3698 struct cfs_bandwidth *cfs_b =
3699 container_of(timer, struct cfs_bandwidth, slack_timer);
3700 do_sched_cfs_slack_timer(cfs_b);
3701
3702 return HRTIMER_NORESTART;
3703}
3704
3705static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3706{
3707 struct cfs_bandwidth *cfs_b =
3708 container_of(timer, struct cfs_bandwidth, period_timer);
3709 ktime_t now;
3710 int overrun;
3711 int idle = 0;
3712
51f2176d 3713 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3714 for (;;) {
3715 now = hrtimer_cb_get_time(timer);
3716 overrun = hrtimer_forward(timer, now, cfs_b->period);
3717
3718 if (!overrun)
3719 break;
3720
3721 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3722 }
51f2176d 3723 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3724
3725 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3726}
3727
3728void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3729{
3730 raw_spin_lock_init(&cfs_b->lock);
3731 cfs_b->runtime = 0;
3732 cfs_b->quota = RUNTIME_INF;
3733 cfs_b->period = ns_to_ktime(default_cfs_period());
3734
3735 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3736 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3737 cfs_b->period_timer.function = sched_cfs_period_timer;
3738 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3739 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3740}
3741
3742static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3743{
3744 cfs_rq->runtime_enabled = 0;
3745 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3746}
3747
3748/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3749void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3750{
3751 /*
3752 * The timer may be active because we're trying to set a new bandwidth
3753 * period or because we're racing with the tear-down path
3754 * (timer_active==0 becomes visible before the hrtimer call-back
3755 * terminates). In either case we ensure that it's re-programmed
3756 */
927b54fc
BS
3757 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3758 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3759 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3760 raw_spin_unlock(&cfs_b->lock);
927b54fc 3761 cpu_relax();
029632fb
PZ
3762 raw_spin_lock(&cfs_b->lock);
3763 /* if someone else restarted the timer then we're done */
09dc4ab0 3764 if (!force && cfs_b->timer_active)
029632fb
PZ
3765 return;
3766 }
3767
3768 cfs_b->timer_active = 1;
3769 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3770}
3771
3772static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3773{
3774 hrtimer_cancel(&cfs_b->period_timer);
3775 hrtimer_cancel(&cfs_b->slack_timer);
3776}
3777
38dc3348 3778static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3779{
3780 struct cfs_rq *cfs_rq;
3781
3782 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3783 if (!cfs_rq->runtime_enabled)
3784 continue;
3785
3786 /*
3787 * clock_task is not advancing so we just need to make sure
3788 * there's some valid quota amount
3789 */
51f2176d 3790 cfs_rq->runtime_remaining = 1;
029632fb
PZ
3791 if (cfs_rq_throttled(cfs_rq))
3792 unthrottle_cfs_rq(cfs_rq);
3793 }
3794}
3795
3796#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3797static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3798{
78becc27 3799 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3800}
3801
9dbdb155 3802static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3803static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3804static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3805static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3806
3807static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3808{
3809 return 0;
3810}
64660c86
PT
3811
3812static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3813{
3814 return 0;
3815}
3816
3817static inline int throttled_lb_pair(struct task_group *tg,
3818 int src_cpu, int dest_cpu)
3819{
3820 return 0;
3821}
029632fb
PZ
3822
3823void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3824
3825#ifdef CONFIG_FAIR_GROUP_SCHED
3826static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3827#endif
3828
029632fb
PZ
3829static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3830{
3831 return NULL;
3832}
3833static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3834static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3835
3836#endif /* CONFIG_CFS_BANDWIDTH */
3837
bf0f6f24
IM
3838/**************************************************
3839 * CFS operations on tasks:
3840 */
3841
8f4d37ec
PZ
3842#ifdef CONFIG_SCHED_HRTICK
3843static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3844{
8f4d37ec
PZ
3845 struct sched_entity *se = &p->se;
3846 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3847
3848 WARN_ON(task_rq(p) != rq);
3849
b39e66ea 3850 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3851 u64 slice = sched_slice(cfs_rq, se);
3852 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3853 s64 delta = slice - ran;
3854
3855 if (delta < 0) {
3856 if (rq->curr == p)
3857 resched_task(p);
3858 return;
3859 }
3860
3861 /*
3862 * Don't schedule slices shorter than 10000ns, that just
3863 * doesn't make sense. Rely on vruntime for fairness.
3864 */
31656519 3865 if (rq->curr != p)
157124c1 3866 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3867
31656519 3868 hrtick_start(rq, delta);
8f4d37ec
PZ
3869 }
3870}
a4c2f00f
PZ
3871
3872/*
3873 * called from enqueue/dequeue and updates the hrtick when the
3874 * current task is from our class and nr_running is low enough
3875 * to matter.
3876 */
3877static void hrtick_update(struct rq *rq)
3878{
3879 struct task_struct *curr = rq->curr;
3880
b39e66ea 3881 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3882 return;
3883
3884 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3885 hrtick_start_fair(rq, curr);
3886}
55e12e5e 3887#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3888static inline void
3889hrtick_start_fair(struct rq *rq, struct task_struct *p)
3890{
3891}
a4c2f00f
PZ
3892
3893static inline void hrtick_update(struct rq *rq)
3894{
3895}
8f4d37ec
PZ
3896#endif
3897
bf0f6f24
IM
3898/*
3899 * The enqueue_task method is called before nr_running is
3900 * increased. Here we update the fair scheduling stats and
3901 * then put the task into the rbtree:
3902 */
ea87bb78 3903static void
371fd7e7 3904enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3905{
3906 struct cfs_rq *cfs_rq;
62fb1851 3907 struct sched_entity *se = &p->se;
bf0f6f24
IM
3908
3909 for_each_sched_entity(se) {
62fb1851 3910 if (se->on_rq)
bf0f6f24
IM
3911 break;
3912 cfs_rq = cfs_rq_of(se);
88ec22d3 3913 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3914
3915 /*
3916 * end evaluation on encountering a throttled cfs_rq
3917 *
3918 * note: in the case of encountering a throttled cfs_rq we will
3919 * post the final h_nr_running increment below.
3920 */
3921 if (cfs_rq_throttled(cfs_rq))
3922 break;
953bfcd1 3923 cfs_rq->h_nr_running++;
85dac906 3924
88ec22d3 3925 flags = ENQUEUE_WAKEUP;
bf0f6f24 3926 }
8f4d37ec 3927
2069dd75 3928 for_each_sched_entity(se) {
0f317143 3929 cfs_rq = cfs_rq_of(se);
953bfcd1 3930 cfs_rq->h_nr_running++;
2069dd75 3931
85dac906
PT
3932 if (cfs_rq_throttled(cfs_rq))
3933 break;
3934
17bc14b7 3935 update_cfs_shares(cfs_rq);
9ee474f5 3936 update_entity_load_avg(se, 1);
2069dd75
PZ
3937 }
3938
18bf2805
BS
3939 if (!se) {
3940 update_rq_runnable_avg(rq, rq->nr_running);
72465447 3941 add_nr_running(rq, 1);
18bf2805 3942 }
a4c2f00f 3943 hrtick_update(rq);
bf0f6f24
IM
3944}
3945
2f36825b
VP
3946static void set_next_buddy(struct sched_entity *se);
3947
bf0f6f24
IM
3948/*
3949 * The dequeue_task method is called before nr_running is
3950 * decreased. We remove the task from the rbtree and
3951 * update the fair scheduling stats:
3952 */
371fd7e7 3953static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3954{
3955 struct cfs_rq *cfs_rq;
62fb1851 3956 struct sched_entity *se = &p->se;
2f36825b 3957 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3958
3959 for_each_sched_entity(se) {
3960 cfs_rq = cfs_rq_of(se);
371fd7e7 3961 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3962
3963 /*
3964 * end evaluation on encountering a throttled cfs_rq
3965 *
3966 * note: in the case of encountering a throttled cfs_rq we will
3967 * post the final h_nr_running decrement below.
3968 */
3969 if (cfs_rq_throttled(cfs_rq))
3970 break;
953bfcd1 3971 cfs_rq->h_nr_running--;
2069dd75 3972
bf0f6f24 3973 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3974 if (cfs_rq->load.weight) {
3975 /*
3976 * Bias pick_next to pick a task from this cfs_rq, as
3977 * p is sleeping when it is within its sched_slice.
3978 */
3979 if (task_sleep && parent_entity(se))
3980 set_next_buddy(parent_entity(se));
9598c82d
PT
3981
3982 /* avoid re-evaluating load for this entity */
3983 se = parent_entity(se);
bf0f6f24 3984 break;
2f36825b 3985 }
371fd7e7 3986 flags |= DEQUEUE_SLEEP;
bf0f6f24 3987 }
8f4d37ec 3988
2069dd75 3989 for_each_sched_entity(se) {
0f317143 3990 cfs_rq = cfs_rq_of(se);
953bfcd1 3991 cfs_rq->h_nr_running--;
2069dd75 3992
85dac906
PT
3993 if (cfs_rq_throttled(cfs_rq))
3994 break;
3995
17bc14b7 3996 update_cfs_shares(cfs_rq);
9ee474f5 3997 update_entity_load_avg(se, 1);
2069dd75
PZ
3998 }
3999
18bf2805 4000 if (!se) {
72465447 4001 sub_nr_running(rq, 1);
18bf2805
BS
4002 update_rq_runnable_avg(rq, 1);
4003 }
a4c2f00f 4004 hrtick_update(rq);
bf0f6f24
IM
4005}
4006
e7693a36 4007#ifdef CONFIG_SMP
029632fb
PZ
4008/* Used instead of source_load when we know the type == 0 */
4009static unsigned long weighted_cpuload(const int cpu)
4010{
b92486cb 4011 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4012}
4013
4014/*
4015 * Return a low guess at the load of a migration-source cpu weighted
4016 * according to the scheduling class and "nice" value.
4017 *
4018 * We want to under-estimate the load of migration sources, to
4019 * balance conservatively.
4020 */
4021static unsigned long source_load(int cpu, int type)
4022{
4023 struct rq *rq = cpu_rq(cpu);
4024 unsigned long total = weighted_cpuload(cpu);
4025
4026 if (type == 0 || !sched_feat(LB_BIAS))
4027 return total;
4028
4029 return min(rq->cpu_load[type-1], total);
4030}
4031
4032/*
4033 * Return a high guess at the load of a migration-target cpu weighted
4034 * according to the scheduling class and "nice" value.
4035 */
4036static unsigned long target_load(int cpu, int type)
4037{
4038 struct rq *rq = cpu_rq(cpu);
4039 unsigned long total = weighted_cpuload(cpu);
4040
4041 if (type == 0 || !sched_feat(LB_BIAS))
4042 return total;
4043
4044 return max(rq->cpu_load[type-1], total);
4045}
4046
ced549fa 4047static unsigned long capacity_of(int cpu)
029632fb 4048{
ced549fa 4049 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4050}
4051
4052static unsigned long cpu_avg_load_per_task(int cpu)
4053{
4054 struct rq *rq = cpu_rq(cpu);
4055 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 4056 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4057
4058 if (nr_running)
b92486cb 4059 return load_avg / nr_running;
029632fb
PZ
4060
4061 return 0;
4062}
4063
62470419
MW
4064static void record_wakee(struct task_struct *p)
4065{
4066 /*
4067 * Rough decay (wiping) for cost saving, don't worry
4068 * about the boundary, really active task won't care
4069 * about the loss.
4070 */
2538d960 4071 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4072 current->wakee_flips >>= 1;
62470419
MW
4073 current->wakee_flip_decay_ts = jiffies;
4074 }
4075
4076 if (current->last_wakee != p) {
4077 current->last_wakee = p;
4078 current->wakee_flips++;
4079 }
4080}
098fb9db 4081
74f8e4b2 4082static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4083{
4084 struct sched_entity *se = &p->se;
4085 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4086 u64 min_vruntime;
4087
4088#ifndef CONFIG_64BIT
4089 u64 min_vruntime_copy;
88ec22d3 4090
3fe1698b
PZ
4091 do {
4092 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4093 smp_rmb();
4094 min_vruntime = cfs_rq->min_vruntime;
4095 } while (min_vruntime != min_vruntime_copy);
4096#else
4097 min_vruntime = cfs_rq->min_vruntime;
4098#endif
88ec22d3 4099
3fe1698b 4100 se->vruntime -= min_vruntime;
62470419 4101 record_wakee(p);
88ec22d3
PZ
4102}
4103
bb3469ac 4104#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4105/*
4106 * effective_load() calculates the load change as seen from the root_task_group
4107 *
4108 * Adding load to a group doesn't make a group heavier, but can cause movement
4109 * of group shares between cpus. Assuming the shares were perfectly aligned one
4110 * can calculate the shift in shares.
cf5f0acf
PZ
4111 *
4112 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4113 * on this @cpu and results in a total addition (subtraction) of @wg to the
4114 * total group weight.
4115 *
4116 * Given a runqueue weight distribution (rw_i) we can compute a shares
4117 * distribution (s_i) using:
4118 *
4119 * s_i = rw_i / \Sum rw_j (1)
4120 *
4121 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4122 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4123 * shares distribution (s_i):
4124 *
4125 * rw_i = { 2, 4, 1, 0 }
4126 * s_i = { 2/7, 4/7, 1/7, 0 }
4127 *
4128 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4129 * task used to run on and the CPU the waker is running on), we need to
4130 * compute the effect of waking a task on either CPU and, in case of a sync
4131 * wakeup, compute the effect of the current task going to sleep.
4132 *
4133 * So for a change of @wl to the local @cpu with an overall group weight change
4134 * of @wl we can compute the new shares distribution (s'_i) using:
4135 *
4136 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4137 *
4138 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4139 * differences in waking a task to CPU 0. The additional task changes the
4140 * weight and shares distributions like:
4141 *
4142 * rw'_i = { 3, 4, 1, 0 }
4143 * s'_i = { 3/8, 4/8, 1/8, 0 }
4144 *
4145 * We can then compute the difference in effective weight by using:
4146 *
4147 * dw_i = S * (s'_i - s_i) (3)
4148 *
4149 * Where 'S' is the group weight as seen by its parent.
4150 *
4151 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4152 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4153 * 4/7) times the weight of the group.
f5bfb7d9 4154 */
2069dd75 4155static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4156{
4be9daaa 4157 struct sched_entity *se = tg->se[cpu];
f1d239f7 4158
9722c2da 4159 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4160 return wl;
4161
4be9daaa 4162 for_each_sched_entity(se) {
cf5f0acf 4163 long w, W;
4be9daaa 4164
977dda7c 4165 tg = se->my_q->tg;
bb3469ac 4166
cf5f0acf
PZ
4167 /*
4168 * W = @wg + \Sum rw_j
4169 */
4170 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4171
cf5f0acf
PZ
4172 /*
4173 * w = rw_i + @wl
4174 */
4175 w = se->my_q->load.weight + wl;
940959e9 4176
cf5f0acf
PZ
4177 /*
4178 * wl = S * s'_i; see (2)
4179 */
4180 if (W > 0 && w < W)
4181 wl = (w * tg->shares) / W;
977dda7c
PT
4182 else
4183 wl = tg->shares;
940959e9 4184
cf5f0acf
PZ
4185 /*
4186 * Per the above, wl is the new se->load.weight value; since
4187 * those are clipped to [MIN_SHARES, ...) do so now. See
4188 * calc_cfs_shares().
4189 */
977dda7c
PT
4190 if (wl < MIN_SHARES)
4191 wl = MIN_SHARES;
cf5f0acf
PZ
4192
4193 /*
4194 * wl = dw_i = S * (s'_i - s_i); see (3)
4195 */
977dda7c 4196 wl -= se->load.weight;
cf5f0acf
PZ
4197
4198 /*
4199 * Recursively apply this logic to all parent groups to compute
4200 * the final effective load change on the root group. Since
4201 * only the @tg group gets extra weight, all parent groups can
4202 * only redistribute existing shares. @wl is the shift in shares
4203 * resulting from this level per the above.
4204 */
4be9daaa 4205 wg = 0;
4be9daaa 4206 }
bb3469ac 4207
4be9daaa 4208 return wl;
bb3469ac
PZ
4209}
4210#else
4be9daaa 4211
58d081b5 4212static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4213{
83378269 4214 return wl;
bb3469ac 4215}
4be9daaa 4216
bb3469ac
PZ
4217#endif
4218
62470419
MW
4219static int wake_wide(struct task_struct *p)
4220{
7d9ffa89 4221 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4222
4223 /*
4224 * Yeah, it's the switching-frequency, could means many wakee or
4225 * rapidly switch, use factor here will just help to automatically
4226 * adjust the loose-degree, so bigger node will lead to more pull.
4227 */
4228 if (p->wakee_flips > factor) {
4229 /*
4230 * wakee is somewhat hot, it needs certain amount of cpu
4231 * resource, so if waker is far more hot, prefer to leave
4232 * it alone.
4233 */
4234 if (current->wakee_flips > (factor * p->wakee_flips))
4235 return 1;
4236 }
4237
4238 return 0;
4239}
4240
c88d5910 4241static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4242{
e37b6a7b 4243 s64 this_load, load;
c88d5910 4244 int idx, this_cpu, prev_cpu;
098fb9db 4245 unsigned long tl_per_task;
c88d5910 4246 struct task_group *tg;
83378269 4247 unsigned long weight;
b3137bc8 4248 int balanced;
098fb9db 4249
62470419
MW
4250 /*
4251 * If we wake multiple tasks be careful to not bounce
4252 * ourselves around too much.
4253 */
4254 if (wake_wide(p))
4255 return 0;
4256
c88d5910
PZ
4257 idx = sd->wake_idx;
4258 this_cpu = smp_processor_id();
4259 prev_cpu = task_cpu(p);
4260 load = source_load(prev_cpu, idx);
4261 this_load = target_load(this_cpu, idx);
098fb9db 4262
b3137bc8
MG
4263 /*
4264 * If sync wakeup then subtract the (maximum possible)
4265 * effect of the currently running task from the load
4266 * of the current CPU:
4267 */
83378269
PZ
4268 if (sync) {
4269 tg = task_group(current);
4270 weight = current->se.load.weight;
4271
c88d5910 4272 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4273 load += effective_load(tg, prev_cpu, 0, -weight);
4274 }
b3137bc8 4275
83378269
PZ
4276 tg = task_group(p);
4277 weight = p->se.load.weight;
b3137bc8 4278
71a29aa7
PZ
4279 /*
4280 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4281 * due to the sync cause above having dropped this_load to 0, we'll
4282 * always have an imbalance, but there's really nothing you can do
4283 * about that, so that's good too.
71a29aa7
PZ
4284 *
4285 * Otherwise check if either cpus are near enough in load to allow this
4286 * task to be woken on this_cpu.
4287 */
e37b6a7b
PT
4288 if (this_load > 0) {
4289 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4290
4291 this_eff_load = 100;
ced549fa 4292 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2
PZ
4293 this_eff_load *= this_load +
4294 effective_load(tg, this_cpu, weight, weight);
4295
4296 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
ced549fa 4297 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2
PZ
4298 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4299
4300 balanced = this_eff_load <= prev_eff_load;
4301 } else
4302 balanced = true;
b3137bc8 4303
098fb9db 4304 /*
4ae7d5ce
IM
4305 * If the currently running task will sleep within
4306 * a reasonable amount of time then attract this newly
4307 * woken task:
098fb9db 4308 */
2fb7635c
PZ
4309 if (sync && balanced)
4310 return 1;
098fb9db 4311
41acab88 4312 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4313 tl_per_task = cpu_avg_load_per_task(this_cpu);
4314
c88d5910
PZ
4315 if (balanced ||
4316 (this_load <= load &&
4317 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4318 /*
4319 * This domain has SD_WAKE_AFFINE and
4320 * p is cache cold in this domain, and
4321 * there is no bad imbalance.
4322 */
c88d5910 4323 schedstat_inc(sd, ttwu_move_affine);
41acab88 4324 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4325
4326 return 1;
4327 }
4328 return 0;
4329}
4330
aaee1203
PZ
4331/*
4332 * find_idlest_group finds and returns the least busy CPU group within the
4333 * domain.
4334 */
4335static struct sched_group *
78e7ed53 4336find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4337 int this_cpu, int sd_flag)
e7693a36 4338{
b3bd3de6 4339 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4340 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4341 int load_idx = sd->forkexec_idx;
aaee1203 4342 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4343
c44f2a02
VG
4344 if (sd_flag & SD_BALANCE_WAKE)
4345 load_idx = sd->wake_idx;
4346
aaee1203
PZ
4347 do {
4348 unsigned long load, avg_load;
4349 int local_group;
4350 int i;
e7693a36 4351
aaee1203
PZ
4352 /* Skip over this group if it has no CPUs allowed */
4353 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4354 tsk_cpus_allowed(p)))
aaee1203
PZ
4355 continue;
4356
4357 local_group = cpumask_test_cpu(this_cpu,
4358 sched_group_cpus(group));
4359
4360 /* Tally up the load of all CPUs in the group */
4361 avg_load = 0;
4362
4363 for_each_cpu(i, sched_group_cpus(group)) {
4364 /* Bias balancing toward cpus of our domain */
4365 if (local_group)
4366 load = source_load(i, load_idx);
4367 else
4368 load = target_load(i, load_idx);
4369
4370 avg_load += load;
4371 }
4372
63b2ca30 4373 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4374 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4375
4376 if (local_group) {
4377 this_load = avg_load;
aaee1203
PZ
4378 } else if (avg_load < min_load) {
4379 min_load = avg_load;
4380 idlest = group;
4381 }
4382 } while (group = group->next, group != sd->groups);
4383
4384 if (!idlest || 100*this_load < imbalance*min_load)
4385 return NULL;
4386 return idlest;
4387}
4388
4389/*
4390 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4391 */
4392static int
4393find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4394{
4395 unsigned long load, min_load = ULONG_MAX;
4396 int idlest = -1;
4397 int i;
4398
4399 /* Traverse only the allowed CPUs */
fa17b507 4400 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4401 load = weighted_cpuload(i);
4402
4403 if (load < min_load || (load == min_load && i == this_cpu)) {
4404 min_load = load;
4405 idlest = i;
e7693a36
GH
4406 }
4407 }
4408
aaee1203
PZ
4409 return idlest;
4410}
e7693a36 4411
a50bde51
PZ
4412/*
4413 * Try and locate an idle CPU in the sched_domain.
4414 */
99bd5e2f 4415static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4416{
99bd5e2f 4417 struct sched_domain *sd;
37407ea7 4418 struct sched_group *sg;
e0a79f52 4419 int i = task_cpu(p);
a50bde51 4420
e0a79f52
MG
4421 if (idle_cpu(target))
4422 return target;
99bd5e2f
SS
4423
4424 /*
e0a79f52 4425 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4426 */
e0a79f52
MG
4427 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4428 return i;
a50bde51
PZ
4429
4430 /*
37407ea7 4431 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4432 */
518cd623 4433 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4434 for_each_lower_domain(sd) {
37407ea7
LT
4435 sg = sd->groups;
4436 do {
4437 if (!cpumask_intersects(sched_group_cpus(sg),
4438 tsk_cpus_allowed(p)))
4439 goto next;
4440
4441 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4442 if (i == target || !idle_cpu(i))
37407ea7
LT
4443 goto next;
4444 }
970e1789 4445
37407ea7
LT
4446 target = cpumask_first_and(sched_group_cpus(sg),
4447 tsk_cpus_allowed(p));
4448 goto done;
4449next:
4450 sg = sg->next;
4451 } while (sg != sd->groups);
4452 }
4453done:
a50bde51
PZ
4454 return target;
4455}
4456
aaee1203 4457/*
de91b9cb
MR
4458 * select_task_rq_fair: Select target runqueue for the waking task in domains
4459 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4460 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4461 *
de91b9cb
MR
4462 * Balances load by selecting the idlest cpu in the idlest group, or under
4463 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4464 *
de91b9cb 4465 * Returns the target cpu number.
aaee1203
PZ
4466 *
4467 * preempt must be disabled.
4468 */
0017d735 4469static int
ac66f547 4470select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4471{
29cd8bae 4472 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4473 int cpu = smp_processor_id();
c88d5910 4474 int new_cpu = cpu;
99bd5e2f 4475 int want_affine = 0;
5158f4e4 4476 int sync = wake_flags & WF_SYNC;
c88d5910 4477
29baa747 4478 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4479 return prev_cpu;
4480
0763a660 4481 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4482 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4483 want_affine = 1;
4484 new_cpu = prev_cpu;
4485 }
aaee1203 4486
dce840a0 4487 rcu_read_lock();
aaee1203 4488 for_each_domain(cpu, tmp) {
e4f42888
PZ
4489 if (!(tmp->flags & SD_LOAD_BALANCE))
4490 continue;
4491
fe3bcfe1 4492 /*
99bd5e2f
SS
4493 * If both cpu and prev_cpu are part of this domain,
4494 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4495 */
99bd5e2f
SS
4496 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4497 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4498 affine_sd = tmp;
29cd8bae 4499 break;
f03542a7 4500 }
29cd8bae 4501
f03542a7 4502 if (tmp->flags & sd_flag)
29cd8bae
PZ
4503 sd = tmp;
4504 }
4505
8bf21433
RR
4506 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4507 prev_cpu = cpu;
dce840a0 4508
8bf21433 4509 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4510 new_cpu = select_idle_sibling(p, prev_cpu);
4511 goto unlock;
8b911acd 4512 }
e7693a36 4513
aaee1203
PZ
4514 while (sd) {
4515 struct sched_group *group;
c88d5910 4516 int weight;
098fb9db 4517
0763a660 4518 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4519 sd = sd->child;
4520 continue;
4521 }
098fb9db 4522
c44f2a02 4523 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4524 if (!group) {
4525 sd = sd->child;
4526 continue;
4527 }
4ae7d5ce 4528
d7c33c49 4529 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4530 if (new_cpu == -1 || new_cpu == cpu) {
4531 /* Now try balancing at a lower domain level of cpu */
4532 sd = sd->child;
4533 continue;
e7693a36 4534 }
aaee1203
PZ
4535
4536 /* Now try balancing at a lower domain level of new_cpu */
4537 cpu = new_cpu;
669c55e9 4538 weight = sd->span_weight;
aaee1203
PZ
4539 sd = NULL;
4540 for_each_domain(cpu, tmp) {
669c55e9 4541 if (weight <= tmp->span_weight)
aaee1203 4542 break;
0763a660 4543 if (tmp->flags & sd_flag)
aaee1203
PZ
4544 sd = tmp;
4545 }
4546 /* while loop will break here if sd == NULL */
e7693a36 4547 }
dce840a0
PZ
4548unlock:
4549 rcu_read_unlock();
e7693a36 4550
c88d5910 4551 return new_cpu;
e7693a36 4552}
0a74bef8
PT
4553
4554/*
4555 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4556 * cfs_rq_of(p) references at time of call are still valid and identify the
4557 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4558 * other assumptions, including the state of rq->lock, should be made.
4559 */
4560static void
4561migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4562{
aff3e498
PT
4563 struct sched_entity *se = &p->se;
4564 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4565
4566 /*
4567 * Load tracking: accumulate removed load so that it can be processed
4568 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4569 * to blocked load iff they have a positive decay-count. It can never
4570 * be negative here since on-rq tasks have decay-count == 0.
4571 */
4572 if (se->avg.decay_count) {
4573 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4574 atomic_long_add(se->avg.load_avg_contrib,
4575 &cfs_rq->removed_load);
aff3e498 4576 }
3944a927
BS
4577
4578 /* We have migrated, no longer consider this task hot */
4579 se->exec_start = 0;
0a74bef8 4580}
e7693a36
GH
4581#endif /* CONFIG_SMP */
4582
e52fb7c0
PZ
4583static unsigned long
4584wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4585{
4586 unsigned long gran = sysctl_sched_wakeup_granularity;
4587
4588 /*
e52fb7c0
PZ
4589 * Since its curr running now, convert the gran from real-time
4590 * to virtual-time in his units.
13814d42
MG
4591 *
4592 * By using 'se' instead of 'curr' we penalize light tasks, so
4593 * they get preempted easier. That is, if 'se' < 'curr' then
4594 * the resulting gran will be larger, therefore penalizing the
4595 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4596 * be smaller, again penalizing the lighter task.
4597 *
4598 * This is especially important for buddies when the leftmost
4599 * task is higher priority than the buddy.
0bbd3336 4600 */
f4ad9bd2 4601 return calc_delta_fair(gran, se);
0bbd3336
PZ
4602}
4603
464b7527
PZ
4604/*
4605 * Should 'se' preempt 'curr'.
4606 *
4607 * |s1
4608 * |s2
4609 * |s3
4610 * g
4611 * |<--->|c
4612 *
4613 * w(c, s1) = -1
4614 * w(c, s2) = 0
4615 * w(c, s3) = 1
4616 *
4617 */
4618static int
4619wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4620{
4621 s64 gran, vdiff = curr->vruntime - se->vruntime;
4622
4623 if (vdiff <= 0)
4624 return -1;
4625
e52fb7c0 4626 gran = wakeup_gran(curr, se);
464b7527
PZ
4627 if (vdiff > gran)
4628 return 1;
4629
4630 return 0;
4631}
4632
02479099
PZ
4633static void set_last_buddy(struct sched_entity *se)
4634{
69c80f3e
VP
4635 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4636 return;
4637
4638 for_each_sched_entity(se)
4639 cfs_rq_of(se)->last = se;
02479099
PZ
4640}
4641
4642static void set_next_buddy(struct sched_entity *se)
4643{
69c80f3e
VP
4644 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4645 return;
4646
4647 for_each_sched_entity(se)
4648 cfs_rq_of(se)->next = se;
02479099
PZ
4649}
4650
ac53db59
RR
4651static void set_skip_buddy(struct sched_entity *se)
4652{
69c80f3e
VP
4653 for_each_sched_entity(se)
4654 cfs_rq_of(se)->skip = se;
ac53db59
RR
4655}
4656
bf0f6f24
IM
4657/*
4658 * Preempt the current task with a newly woken task if needed:
4659 */
5a9b86f6 4660static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4661{
4662 struct task_struct *curr = rq->curr;
8651a86c 4663 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4664 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4665 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4666 int next_buddy_marked = 0;
bf0f6f24 4667
4ae7d5ce
IM
4668 if (unlikely(se == pse))
4669 return;
4670
5238cdd3 4671 /*
ddcdf6e7 4672 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4673 * unconditionally check_prempt_curr() after an enqueue (which may have
4674 * lead to a throttle). This both saves work and prevents false
4675 * next-buddy nomination below.
4676 */
4677 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4678 return;
4679
2f36825b 4680 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4681 set_next_buddy(pse);
2f36825b
VP
4682 next_buddy_marked = 1;
4683 }
57fdc26d 4684
aec0a514
BR
4685 /*
4686 * We can come here with TIF_NEED_RESCHED already set from new task
4687 * wake up path.
5238cdd3
PT
4688 *
4689 * Note: this also catches the edge-case of curr being in a throttled
4690 * group (e.g. via set_curr_task), since update_curr() (in the
4691 * enqueue of curr) will have resulted in resched being set. This
4692 * prevents us from potentially nominating it as a false LAST_BUDDY
4693 * below.
aec0a514
BR
4694 */
4695 if (test_tsk_need_resched(curr))
4696 return;
4697
a2f5c9ab
DH
4698 /* Idle tasks are by definition preempted by non-idle tasks. */
4699 if (unlikely(curr->policy == SCHED_IDLE) &&
4700 likely(p->policy != SCHED_IDLE))
4701 goto preempt;
4702
91c234b4 4703 /*
a2f5c9ab
DH
4704 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4705 * is driven by the tick):
91c234b4 4706 */
8ed92e51 4707 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4708 return;
bf0f6f24 4709
464b7527 4710 find_matching_se(&se, &pse);
9bbd7374 4711 update_curr(cfs_rq_of(se));
002f128b 4712 BUG_ON(!pse);
2f36825b
VP
4713 if (wakeup_preempt_entity(se, pse) == 1) {
4714 /*
4715 * Bias pick_next to pick the sched entity that is
4716 * triggering this preemption.
4717 */
4718 if (!next_buddy_marked)
4719 set_next_buddy(pse);
3a7e73a2 4720 goto preempt;
2f36825b 4721 }
464b7527 4722
3a7e73a2 4723 return;
a65ac745 4724
3a7e73a2
PZ
4725preempt:
4726 resched_task(curr);
4727 /*
4728 * Only set the backward buddy when the current task is still
4729 * on the rq. This can happen when a wakeup gets interleaved
4730 * with schedule on the ->pre_schedule() or idle_balance()
4731 * point, either of which can * drop the rq lock.
4732 *
4733 * Also, during early boot the idle thread is in the fair class,
4734 * for obvious reasons its a bad idea to schedule back to it.
4735 */
4736 if (unlikely(!se->on_rq || curr == rq->idle))
4737 return;
4738
4739 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4740 set_last_buddy(se);
bf0f6f24
IM
4741}
4742
606dba2e
PZ
4743static struct task_struct *
4744pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4745{
4746 struct cfs_rq *cfs_rq = &rq->cfs;
4747 struct sched_entity *se;
678d5718 4748 struct task_struct *p;
37e117c0 4749 int new_tasks;
678d5718 4750
6e83125c 4751again:
678d5718
PZ
4752#ifdef CONFIG_FAIR_GROUP_SCHED
4753 if (!cfs_rq->nr_running)
38033c37 4754 goto idle;
678d5718 4755
3f1d2a31 4756 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4757 goto simple;
4758
4759 /*
4760 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4761 * likely that a next task is from the same cgroup as the current.
4762 *
4763 * Therefore attempt to avoid putting and setting the entire cgroup
4764 * hierarchy, only change the part that actually changes.
4765 */
4766
4767 do {
4768 struct sched_entity *curr = cfs_rq->curr;
4769
4770 /*
4771 * Since we got here without doing put_prev_entity() we also
4772 * have to consider cfs_rq->curr. If it is still a runnable
4773 * entity, update_curr() will update its vruntime, otherwise
4774 * forget we've ever seen it.
4775 */
4776 if (curr && curr->on_rq)
4777 update_curr(cfs_rq);
4778 else
4779 curr = NULL;
4780
4781 /*
4782 * This call to check_cfs_rq_runtime() will do the throttle and
4783 * dequeue its entity in the parent(s). Therefore the 'simple'
4784 * nr_running test will indeed be correct.
4785 */
4786 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4787 goto simple;
4788
4789 se = pick_next_entity(cfs_rq, curr);
4790 cfs_rq = group_cfs_rq(se);
4791 } while (cfs_rq);
4792
4793 p = task_of(se);
4794
4795 /*
4796 * Since we haven't yet done put_prev_entity and if the selected task
4797 * is a different task than we started out with, try and touch the
4798 * least amount of cfs_rqs.
4799 */
4800 if (prev != p) {
4801 struct sched_entity *pse = &prev->se;
4802
4803 while (!(cfs_rq = is_same_group(se, pse))) {
4804 int se_depth = se->depth;
4805 int pse_depth = pse->depth;
4806
4807 if (se_depth <= pse_depth) {
4808 put_prev_entity(cfs_rq_of(pse), pse);
4809 pse = parent_entity(pse);
4810 }
4811 if (se_depth >= pse_depth) {
4812 set_next_entity(cfs_rq_of(se), se);
4813 se = parent_entity(se);
4814 }
4815 }
4816
4817 put_prev_entity(cfs_rq, pse);
4818 set_next_entity(cfs_rq, se);
4819 }
4820
4821 if (hrtick_enabled(rq))
4822 hrtick_start_fair(rq, p);
4823
4824 return p;
4825simple:
4826 cfs_rq = &rq->cfs;
4827#endif
bf0f6f24 4828
36ace27e 4829 if (!cfs_rq->nr_running)
38033c37 4830 goto idle;
bf0f6f24 4831
3f1d2a31 4832 put_prev_task(rq, prev);
606dba2e 4833
bf0f6f24 4834 do {
678d5718 4835 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4836 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4837 cfs_rq = group_cfs_rq(se);
4838 } while (cfs_rq);
4839
8f4d37ec 4840 p = task_of(se);
678d5718 4841
b39e66ea
MG
4842 if (hrtick_enabled(rq))
4843 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4844
4845 return p;
38033c37
PZ
4846
4847idle:
e4aa358b 4848 new_tasks = idle_balance(rq);
37e117c0
PZ
4849 /*
4850 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4851 * possible for any higher priority task to appear. In that case we
4852 * must re-start the pick_next_entity() loop.
4853 */
e4aa358b 4854 if (new_tasks < 0)
37e117c0
PZ
4855 return RETRY_TASK;
4856
e4aa358b 4857 if (new_tasks > 0)
38033c37 4858 goto again;
38033c37
PZ
4859
4860 return NULL;
bf0f6f24
IM
4861}
4862
4863/*
4864 * Account for a descheduled task:
4865 */
31ee529c 4866static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4867{
4868 struct sched_entity *se = &prev->se;
4869 struct cfs_rq *cfs_rq;
4870
4871 for_each_sched_entity(se) {
4872 cfs_rq = cfs_rq_of(se);
ab6cde26 4873 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4874 }
4875}
4876
ac53db59
RR
4877/*
4878 * sched_yield() is very simple
4879 *
4880 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4881 */
4882static void yield_task_fair(struct rq *rq)
4883{
4884 struct task_struct *curr = rq->curr;
4885 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4886 struct sched_entity *se = &curr->se;
4887
4888 /*
4889 * Are we the only task in the tree?
4890 */
4891 if (unlikely(rq->nr_running == 1))
4892 return;
4893
4894 clear_buddies(cfs_rq, se);
4895
4896 if (curr->policy != SCHED_BATCH) {
4897 update_rq_clock(rq);
4898 /*
4899 * Update run-time statistics of the 'current'.
4900 */
4901 update_curr(cfs_rq);
916671c0
MG
4902 /*
4903 * Tell update_rq_clock() that we've just updated,
4904 * so we don't do microscopic update in schedule()
4905 * and double the fastpath cost.
4906 */
4907 rq->skip_clock_update = 1;
ac53db59
RR
4908 }
4909
4910 set_skip_buddy(se);
4911}
4912
d95f4122
MG
4913static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4914{
4915 struct sched_entity *se = &p->se;
4916
5238cdd3
PT
4917 /* throttled hierarchies are not runnable */
4918 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4919 return false;
4920
4921 /* Tell the scheduler that we'd really like pse to run next. */
4922 set_next_buddy(se);
4923
d95f4122
MG
4924 yield_task_fair(rq);
4925
4926 return true;
4927}
4928
681f3e68 4929#ifdef CONFIG_SMP
bf0f6f24 4930/**************************************************
e9c84cb8
PZ
4931 * Fair scheduling class load-balancing methods.
4932 *
4933 * BASICS
4934 *
4935 * The purpose of load-balancing is to achieve the same basic fairness the
4936 * per-cpu scheduler provides, namely provide a proportional amount of compute
4937 * time to each task. This is expressed in the following equation:
4938 *
4939 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4940 *
4941 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4942 * W_i,0 is defined as:
4943 *
4944 * W_i,0 = \Sum_j w_i,j (2)
4945 *
4946 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4947 * is derived from the nice value as per prio_to_weight[].
4948 *
4949 * The weight average is an exponential decay average of the instantaneous
4950 * weight:
4951 *
4952 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4953 *
ced549fa 4954 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
4955 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4956 * can also include other factors [XXX].
4957 *
4958 * To achieve this balance we define a measure of imbalance which follows
4959 * directly from (1):
4960 *
ced549fa 4961 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
4962 *
4963 * We them move tasks around to minimize the imbalance. In the continuous
4964 * function space it is obvious this converges, in the discrete case we get
4965 * a few fun cases generally called infeasible weight scenarios.
4966 *
4967 * [XXX expand on:
4968 * - infeasible weights;
4969 * - local vs global optima in the discrete case. ]
4970 *
4971 *
4972 * SCHED DOMAINS
4973 *
4974 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4975 * for all i,j solution, we create a tree of cpus that follows the hardware
4976 * topology where each level pairs two lower groups (or better). This results
4977 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4978 * tree to only the first of the previous level and we decrease the frequency
4979 * of load-balance at each level inv. proportional to the number of cpus in
4980 * the groups.
4981 *
4982 * This yields:
4983 *
4984 * log_2 n 1 n
4985 * \Sum { --- * --- * 2^i } = O(n) (5)
4986 * i = 0 2^i 2^i
4987 * `- size of each group
4988 * | | `- number of cpus doing load-balance
4989 * | `- freq
4990 * `- sum over all levels
4991 *
4992 * Coupled with a limit on how many tasks we can migrate every balance pass,
4993 * this makes (5) the runtime complexity of the balancer.
4994 *
4995 * An important property here is that each CPU is still (indirectly) connected
4996 * to every other cpu in at most O(log n) steps:
4997 *
4998 * The adjacency matrix of the resulting graph is given by:
4999 *
5000 * log_2 n
5001 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5002 * k = 0
5003 *
5004 * And you'll find that:
5005 *
5006 * A^(log_2 n)_i,j != 0 for all i,j (7)
5007 *
5008 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5009 * The task movement gives a factor of O(m), giving a convergence complexity
5010 * of:
5011 *
5012 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5013 *
5014 *
5015 * WORK CONSERVING
5016 *
5017 * In order to avoid CPUs going idle while there's still work to do, new idle
5018 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5019 * tree itself instead of relying on other CPUs to bring it work.
5020 *
5021 * This adds some complexity to both (5) and (8) but it reduces the total idle
5022 * time.
5023 *
5024 * [XXX more?]
5025 *
5026 *
5027 * CGROUPS
5028 *
5029 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5030 *
5031 * s_k,i
5032 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5033 * S_k
5034 *
5035 * Where
5036 *
5037 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5038 *
5039 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5040 *
5041 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5042 * property.
5043 *
5044 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5045 * rewrite all of this once again.]
5046 */
bf0f6f24 5047
ed387b78
HS
5048static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5049
0ec8aa00
PZ
5050enum fbq_type { regular, remote, all };
5051
ddcdf6e7 5052#define LBF_ALL_PINNED 0x01
367456c7 5053#define LBF_NEED_BREAK 0x02
6263322c
PZ
5054#define LBF_DST_PINNED 0x04
5055#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5056
5057struct lb_env {
5058 struct sched_domain *sd;
5059
ddcdf6e7 5060 struct rq *src_rq;
85c1e7da 5061 int src_cpu;
ddcdf6e7
PZ
5062
5063 int dst_cpu;
5064 struct rq *dst_rq;
5065
88b8dac0
SV
5066 struct cpumask *dst_grpmask;
5067 int new_dst_cpu;
ddcdf6e7 5068 enum cpu_idle_type idle;
bd939f45 5069 long imbalance;
b9403130
MW
5070 /* The set of CPUs under consideration for load-balancing */
5071 struct cpumask *cpus;
5072
ddcdf6e7 5073 unsigned int flags;
367456c7
PZ
5074
5075 unsigned int loop;
5076 unsigned int loop_break;
5077 unsigned int loop_max;
0ec8aa00
PZ
5078
5079 enum fbq_type fbq_type;
ddcdf6e7
PZ
5080};
5081
1e3c88bd 5082/*
ddcdf6e7 5083 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
5084 * Both runqueues must be locked.
5085 */
ddcdf6e7 5086static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5087{
ddcdf6e7
PZ
5088 deactivate_task(env->src_rq, p, 0);
5089 set_task_cpu(p, env->dst_cpu);
5090 activate_task(env->dst_rq, p, 0);
5091 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
5092}
5093
029632fb
PZ
5094/*
5095 * Is this task likely cache-hot:
5096 */
5097static int
6037dd1a 5098task_hot(struct task_struct *p, u64 now)
029632fb
PZ
5099{
5100 s64 delta;
5101
5102 if (p->sched_class != &fair_sched_class)
5103 return 0;
5104
5105 if (unlikely(p->policy == SCHED_IDLE))
5106 return 0;
5107
5108 /*
5109 * Buddy candidates are cache hot:
5110 */
5111 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5112 (&p->se == cfs_rq_of(&p->se)->next ||
5113 &p->se == cfs_rq_of(&p->se)->last))
5114 return 1;
5115
5116 if (sysctl_sched_migration_cost == -1)
5117 return 1;
5118 if (sysctl_sched_migration_cost == 0)
5119 return 0;
5120
5121 delta = now - p->se.exec_start;
5122
5123 return delta < (s64)sysctl_sched_migration_cost;
5124}
5125
3a7053b3
MG
5126#ifdef CONFIG_NUMA_BALANCING
5127/* Returns true if the destination node has incurred more faults */
5128static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5129{
b1ad065e 5130 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5131 int src_nid, dst_nid;
5132
ff1df896 5133 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5134 !(env->sd->flags & SD_NUMA)) {
5135 return false;
5136 }
5137
5138 src_nid = cpu_to_node(env->src_cpu);
5139 dst_nid = cpu_to_node(env->dst_cpu);
5140
83e1d2cd 5141 if (src_nid == dst_nid)
3a7053b3
MG
5142 return false;
5143
b1ad065e
RR
5144 if (numa_group) {
5145 /* Task is already in the group's interleave set. */
5146 if (node_isset(src_nid, numa_group->active_nodes))
5147 return false;
83e1d2cd 5148
b1ad065e
RR
5149 /* Task is moving into the group's interleave set. */
5150 if (node_isset(dst_nid, numa_group->active_nodes))
5151 return true;
83e1d2cd 5152
b1ad065e
RR
5153 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5154 }
5155
5156 /* Encourage migration to the preferred node. */
5157 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5158 return true;
5159
b1ad065e 5160 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5161}
7a0f3083
MG
5162
5163
5164static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5165{
b1ad065e 5166 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5167 int src_nid, dst_nid;
5168
5169 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5170 return false;
5171
ff1df896 5172 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5173 return false;
5174
5175 src_nid = cpu_to_node(env->src_cpu);
5176 dst_nid = cpu_to_node(env->dst_cpu);
5177
83e1d2cd 5178 if (src_nid == dst_nid)
7a0f3083
MG
5179 return false;
5180
b1ad065e
RR
5181 if (numa_group) {
5182 /* Task is moving within/into the group's interleave set. */
5183 if (node_isset(dst_nid, numa_group->active_nodes))
5184 return false;
5185
5186 /* Task is moving out of the group's interleave set. */
5187 if (node_isset(src_nid, numa_group->active_nodes))
5188 return true;
5189
5190 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5191 }
5192
83e1d2cd
MG
5193 /* Migrating away from the preferred node is always bad. */
5194 if (src_nid == p->numa_preferred_nid)
5195 return true;
5196
b1ad065e 5197 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5198}
5199
3a7053b3
MG
5200#else
5201static inline bool migrate_improves_locality(struct task_struct *p,
5202 struct lb_env *env)
5203{
5204 return false;
5205}
7a0f3083
MG
5206
5207static inline bool migrate_degrades_locality(struct task_struct *p,
5208 struct lb_env *env)
5209{
5210 return false;
5211}
3a7053b3
MG
5212#endif
5213
1e3c88bd
PZ
5214/*
5215 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5216 */
5217static
8e45cb54 5218int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5219{
5220 int tsk_cache_hot = 0;
5221 /*
5222 * We do not migrate tasks that are:
d3198084 5223 * 1) throttled_lb_pair, or
1e3c88bd 5224 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5225 * 3) running (obviously), or
5226 * 4) are cache-hot on their current CPU.
1e3c88bd 5227 */
d3198084
JK
5228 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5229 return 0;
5230
ddcdf6e7 5231 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5232 int cpu;
88b8dac0 5233
41acab88 5234 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5235
6263322c
PZ
5236 env->flags |= LBF_SOME_PINNED;
5237
88b8dac0
SV
5238 /*
5239 * Remember if this task can be migrated to any other cpu in
5240 * our sched_group. We may want to revisit it if we couldn't
5241 * meet load balance goals by pulling other tasks on src_cpu.
5242 *
5243 * Also avoid computing new_dst_cpu if we have already computed
5244 * one in current iteration.
5245 */
6263322c 5246 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5247 return 0;
5248
e02e60c1
JK
5249 /* Prevent to re-select dst_cpu via env's cpus */
5250 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5251 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5252 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5253 env->new_dst_cpu = cpu;
5254 break;
5255 }
88b8dac0 5256 }
e02e60c1 5257
1e3c88bd
PZ
5258 return 0;
5259 }
88b8dac0
SV
5260
5261 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5262 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5263
ddcdf6e7 5264 if (task_running(env->src_rq, p)) {
41acab88 5265 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5266 return 0;
5267 }
5268
5269 /*
5270 * Aggressive migration if:
3a7053b3
MG
5271 * 1) destination numa is preferred
5272 * 2) task is cache cold, or
5273 * 3) too many balance attempts have failed.
1e3c88bd 5274 */
6037dd1a 5275 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
7a0f3083
MG
5276 if (!tsk_cache_hot)
5277 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5278
5279 if (migrate_improves_locality(p, env)) {
5280#ifdef CONFIG_SCHEDSTATS
5281 if (tsk_cache_hot) {
5282 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5283 schedstat_inc(p, se.statistics.nr_forced_migrations);
5284 }
5285#endif
5286 return 1;
5287 }
5288
1e3c88bd 5289 if (!tsk_cache_hot ||
8e45cb54 5290 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5291
1e3c88bd 5292 if (tsk_cache_hot) {
8e45cb54 5293 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5294 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5295 }
4e2dcb73 5296
1e3c88bd
PZ
5297 return 1;
5298 }
5299
4e2dcb73
ZH
5300 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5301 return 0;
1e3c88bd
PZ
5302}
5303
897c395f
PZ
5304/*
5305 * move_one_task tries to move exactly one task from busiest to this_rq, as
5306 * part of active balancing operations within "domain".
5307 * Returns 1 if successful and 0 otherwise.
5308 *
5309 * Called with both runqueues locked.
5310 */
8e45cb54 5311static int move_one_task(struct lb_env *env)
897c395f
PZ
5312{
5313 struct task_struct *p, *n;
897c395f 5314
367456c7 5315 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5316 if (!can_migrate_task(p, env))
5317 continue;
897c395f 5318
367456c7
PZ
5319 move_task(p, env);
5320 /*
5321 * Right now, this is only the second place move_task()
5322 * is called, so we can safely collect move_task()
5323 * stats here rather than inside move_task().
5324 */
5325 schedstat_inc(env->sd, lb_gained[env->idle]);
5326 return 1;
897c395f 5327 }
897c395f
PZ
5328 return 0;
5329}
5330
eb95308e
PZ
5331static const unsigned int sched_nr_migrate_break = 32;
5332
5d6523eb 5333/*
bd939f45 5334 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5335 * this_rq, as part of a balancing operation within domain "sd".
5336 * Returns 1 if successful and 0 otherwise.
5337 *
5338 * Called with both runqueues locked.
5339 */
5340static int move_tasks(struct lb_env *env)
1e3c88bd 5341{
5d6523eb
PZ
5342 struct list_head *tasks = &env->src_rq->cfs_tasks;
5343 struct task_struct *p;
367456c7
PZ
5344 unsigned long load;
5345 int pulled = 0;
1e3c88bd 5346
bd939f45 5347 if (env->imbalance <= 0)
5d6523eb 5348 return 0;
1e3c88bd 5349
5d6523eb
PZ
5350 while (!list_empty(tasks)) {
5351 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5352
367456c7
PZ
5353 env->loop++;
5354 /* We've more or less seen every task there is, call it quits */
5d6523eb 5355 if (env->loop > env->loop_max)
367456c7 5356 break;
5d6523eb
PZ
5357
5358 /* take a breather every nr_migrate tasks */
367456c7 5359 if (env->loop > env->loop_break) {
eb95308e 5360 env->loop_break += sched_nr_migrate_break;
8e45cb54 5361 env->flags |= LBF_NEED_BREAK;
ee00e66f 5362 break;
a195f004 5363 }
1e3c88bd 5364
d3198084 5365 if (!can_migrate_task(p, env))
367456c7
PZ
5366 goto next;
5367
5368 load = task_h_load(p);
5d6523eb 5369
eb95308e 5370 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5371 goto next;
5372
bd939f45 5373 if ((load / 2) > env->imbalance)
367456c7 5374 goto next;
1e3c88bd 5375
ddcdf6e7 5376 move_task(p, env);
ee00e66f 5377 pulled++;
bd939f45 5378 env->imbalance -= load;
1e3c88bd
PZ
5379
5380#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5381 /*
5382 * NEWIDLE balancing is a source of latency, so preemptible
5383 * kernels will stop after the first task is pulled to minimize
5384 * the critical section.
5385 */
5d6523eb 5386 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5387 break;
1e3c88bd
PZ
5388#endif
5389
ee00e66f
PZ
5390 /*
5391 * We only want to steal up to the prescribed amount of
5392 * weighted load.
5393 */
bd939f45 5394 if (env->imbalance <= 0)
ee00e66f 5395 break;
367456c7
PZ
5396
5397 continue;
5398next:
5d6523eb 5399 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5400 }
5d6523eb 5401
1e3c88bd 5402 /*
ddcdf6e7
PZ
5403 * Right now, this is one of only two places move_task() is called,
5404 * so we can safely collect move_task() stats here rather than
5405 * inside move_task().
1e3c88bd 5406 */
8e45cb54 5407 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5408
5d6523eb 5409 return pulled;
1e3c88bd
PZ
5410}
5411
230059de 5412#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5413/*
5414 * update tg->load_weight by folding this cpu's load_avg
5415 */
48a16753 5416static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5417{
48a16753
PT
5418 struct sched_entity *se = tg->se[cpu];
5419 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5420
48a16753
PT
5421 /* throttled entities do not contribute to load */
5422 if (throttled_hierarchy(cfs_rq))
5423 return;
9e3081ca 5424
aff3e498 5425 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5426
82958366
PT
5427 if (se) {
5428 update_entity_load_avg(se, 1);
5429 /*
5430 * We pivot on our runnable average having decayed to zero for
5431 * list removal. This generally implies that all our children
5432 * have also been removed (modulo rounding error or bandwidth
5433 * control); however, such cases are rare and we can fix these
5434 * at enqueue.
5435 *
5436 * TODO: fix up out-of-order children on enqueue.
5437 */
5438 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5439 list_del_leaf_cfs_rq(cfs_rq);
5440 } else {
48a16753 5441 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5442 update_rq_runnable_avg(rq, rq->nr_running);
5443 }
9e3081ca
PZ
5444}
5445
48a16753 5446static void update_blocked_averages(int cpu)
9e3081ca 5447{
9e3081ca 5448 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5449 struct cfs_rq *cfs_rq;
5450 unsigned long flags;
9e3081ca 5451
48a16753
PT
5452 raw_spin_lock_irqsave(&rq->lock, flags);
5453 update_rq_clock(rq);
9763b67f
PZ
5454 /*
5455 * Iterates the task_group tree in a bottom up fashion, see
5456 * list_add_leaf_cfs_rq() for details.
5457 */
64660c86 5458 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5459 /*
5460 * Note: We may want to consider periodically releasing
5461 * rq->lock about these updates so that creating many task
5462 * groups does not result in continually extending hold time.
5463 */
5464 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5465 }
48a16753
PT
5466
5467 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5468}
5469
9763b67f 5470/*
68520796 5471 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5472 * This needs to be done in a top-down fashion because the load of a child
5473 * group is a fraction of its parents load.
5474 */
68520796 5475static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5476{
68520796
VD
5477 struct rq *rq = rq_of(cfs_rq);
5478 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5479 unsigned long now = jiffies;
68520796 5480 unsigned long load;
a35b6466 5481
68520796 5482 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5483 return;
5484
68520796
VD
5485 cfs_rq->h_load_next = NULL;
5486 for_each_sched_entity(se) {
5487 cfs_rq = cfs_rq_of(se);
5488 cfs_rq->h_load_next = se;
5489 if (cfs_rq->last_h_load_update == now)
5490 break;
5491 }
a35b6466 5492
68520796 5493 if (!se) {
7e3115ef 5494 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5495 cfs_rq->last_h_load_update = now;
5496 }
5497
5498 while ((se = cfs_rq->h_load_next) != NULL) {
5499 load = cfs_rq->h_load;
5500 load = div64_ul(load * se->avg.load_avg_contrib,
5501 cfs_rq->runnable_load_avg + 1);
5502 cfs_rq = group_cfs_rq(se);
5503 cfs_rq->h_load = load;
5504 cfs_rq->last_h_load_update = now;
5505 }
9763b67f
PZ
5506}
5507
367456c7 5508static unsigned long task_h_load(struct task_struct *p)
230059de 5509{
367456c7 5510 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5511
68520796 5512 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5513 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5514 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5515}
5516#else
48a16753 5517static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5518{
5519}
5520
367456c7 5521static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5522{
a003a25b 5523 return p->se.avg.load_avg_contrib;
1e3c88bd 5524}
230059de 5525#endif
1e3c88bd 5526
1e3c88bd 5527/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5528/*
5529 * sg_lb_stats - stats of a sched_group required for load_balancing
5530 */
5531struct sg_lb_stats {
5532 unsigned long avg_load; /*Avg load across the CPUs of the group */
5533 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5534 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5535 unsigned long load_per_task;
63b2ca30 5536 unsigned long group_capacity;
147c5fc2 5537 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5538 unsigned int group_capacity_factor;
147c5fc2
PZ
5539 unsigned int idle_cpus;
5540 unsigned int group_weight;
1e3c88bd 5541 int group_imb; /* Is there an imbalance in the group ? */
1b6a7495 5542 int group_has_free_capacity;
0ec8aa00
PZ
5543#ifdef CONFIG_NUMA_BALANCING
5544 unsigned int nr_numa_running;
5545 unsigned int nr_preferred_running;
5546#endif
1e3c88bd
PZ
5547};
5548
56cf515b
JK
5549/*
5550 * sd_lb_stats - Structure to store the statistics of a sched_domain
5551 * during load balancing.
5552 */
5553struct sd_lb_stats {
5554 struct sched_group *busiest; /* Busiest group in this sd */
5555 struct sched_group *local; /* Local group in this sd */
5556 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5557 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5558 unsigned long avg_load; /* Average load across all groups in sd */
5559
56cf515b 5560 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5561 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5562};
5563
147c5fc2
PZ
5564static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5565{
5566 /*
5567 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5568 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5569 * We must however clear busiest_stat::avg_load because
5570 * update_sd_pick_busiest() reads this before assignment.
5571 */
5572 *sds = (struct sd_lb_stats){
5573 .busiest = NULL,
5574 .local = NULL,
5575 .total_load = 0UL,
63b2ca30 5576 .total_capacity = 0UL,
147c5fc2
PZ
5577 .busiest_stat = {
5578 .avg_load = 0UL,
5579 },
5580 };
5581}
5582
1e3c88bd
PZ
5583/**
5584 * get_sd_load_idx - Obtain the load index for a given sched domain.
5585 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5586 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5587 *
5588 * Return: The load index.
1e3c88bd
PZ
5589 */
5590static inline int get_sd_load_idx(struct sched_domain *sd,
5591 enum cpu_idle_type idle)
5592{
5593 int load_idx;
5594
5595 switch (idle) {
5596 case CPU_NOT_IDLE:
5597 load_idx = sd->busy_idx;
5598 break;
5599
5600 case CPU_NEWLY_IDLE:
5601 load_idx = sd->newidle_idx;
5602 break;
5603 default:
5604 load_idx = sd->idle_idx;
5605 break;
5606 }
5607
5608 return load_idx;
5609}
5610
ced549fa 5611static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5612{
ca8ce3d0 5613 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5614}
5615
ca8ce3d0 5616unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5617{
ced549fa 5618 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5619}
5620
ced549fa 5621static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5622{
669c55e9 5623 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5624 unsigned long smt_gain = sd->smt_gain;
5625
5626 smt_gain /= weight;
5627
5628 return smt_gain;
5629}
5630
ca8ce3d0 5631unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5632{
ced549fa 5633 return default_scale_smt_capacity(sd, cpu);
1e3c88bd
PZ
5634}
5635
ced549fa 5636static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5637{
5638 struct rq *rq = cpu_rq(cpu);
b654f7de 5639 u64 total, available, age_stamp, avg;
cadefd3d 5640 s64 delta;
1e3c88bd 5641
b654f7de
PZ
5642 /*
5643 * Since we're reading these variables without serialization make sure
5644 * we read them once before doing sanity checks on them.
5645 */
5646 age_stamp = ACCESS_ONCE(rq->age_stamp);
5647 avg = ACCESS_ONCE(rq->rt_avg);
5648
cadefd3d
PZ
5649 delta = rq_clock(rq) - age_stamp;
5650 if (unlikely(delta < 0))
5651 delta = 0;
5652
5653 total = sched_avg_period() + delta;
aa483808 5654
b654f7de 5655 if (unlikely(total < avg)) {
ced549fa 5656 /* Ensures that capacity won't end up being negative */
aa483808
VP
5657 available = 0;
5658 } else {
b654f7de 5659 available = total - avg;
aa483808 5660 }
1e3c88bd 5661
ca8ce3d0
NP
5662 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5663 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5664
ca8ce3d0 5665 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5666
5667 return div_u64(available, total);
5668}
5669
ced549fa 5670static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5671{
669c55e9 5672 unsigned long weight = sd->span_weight;
ca8ce3d0 5673 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5674 struct sched_group *sdg = sd->groups;
5675
5d4dfddd
NP
5676 if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
5677 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5678 capacity *= arch_scale_smt_capacity(sd, cpu);
1e3c88bd 5679 else
ced549fa 5680 capacity *= default_scale_smt_capacity(sd, cpu);
1e3c88bd 5681
ca8ce3d0 5682 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5683 }
5684
ced549fa 5685 sdg->sgc->capacity_orig = capacity;
9d5efe05 5686
5d4dfddd 5687 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5688 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 5689 else
ced549fa 5690 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 5691
ca8ce3d0 5692 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 5693
ced549fa 5694 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 5695 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5696
ced549fa
NP
5697 if (!capacity)
5698 capacity = 1;
1e3c88bd 5699
ced549fa
NP
5700 cpu_rq(cpu)->cpu_capacity = capacity;
5701 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5702}
5703
63b2ca30 5704void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5705{
5706 struct sched_domain *child = sd->child;
5707 struct sched_group *group, *sdg = sd->groups;
63b2ca30 5708 unsigned long capacity, capacity_orig;
4ec4412e
VG
5709 unsigned long interval;
5710
5711 interval = msecs_to_jiffies(sd->balance_interval);
5712 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 5713 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
5714
5715 if (!child) {
ced549fa 5716 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5717 return;
5718 }
5719
63b2ca30 5720 capacity_orig = capacity = 0;
1e3c88bd 5721
74a5ce20
PZ
5722 if (child->flags & SD_OVERLAP) {
5723 /*
5724 * SD_OVERLAP domains cannot assume that child groups
5725 * span the current group.
5726 */
5727
863bffc8 5728 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 5729 struct sched_group_capacity *sgc;
9abf24d4 5730 struct rq *rq = cpu_rq(cpu);
863bffc8 5731
9abf24d4 5732 /*
63b2ca30 5733 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
5734 * gets here before we've attached the domains to the
5735 * runqueues.
5736 *
ced549fa
NP
5737 * Use capacity_of(), which is set irrespective of domains
5738 * in update_cpu_capacity().
9abf24d4 5739 *
63b2ca30 5740 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
5741 * causing divide-by-zero issues on boot.
5742 *
63b2ca30 5743 * Runtime updates will correct capacity_orig.
9abf24d4
SD
5744 */
5745 if (unlikely(!rq->sd)) {
ced549fa
NP
5746 capacity_orig += capacity_of(cpu);
5747 capacity += capacity_of(cpu);
9abf24d4
SD
5748 continue;
5749 }
863bffc8 5750
63b2ca30
NP
5751 sgc = rq->sd->groups->sgc;
5752 capacity_orig += sgc->capacity_orig;
5753 capacity += sgc->capacity;
863bffc8 5754 }
74a5ce20
PZ
5755 } else {
5756 /*
5757 * !SD_OVERLAP domains can assume that child groups
5758 * span the current group.
5759 */
5760
5761 group = child->groups;
5762 do {
63b2ca30
NP
5763 capacity_orig += group->sgc->capacity_orig;
5764 capacity += group->sgc->capacity;
74a5ce20
PZ
5765 group = group->next;
5766 } while (group != child->groups);
5767 }
1e3c88bd 5768
63b2ca30
NP
5769 sdg->sgc->capacity_orig = capacity_orig;
5770 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5771}
5772
9d5efe05
SV
5773/*
5774 * Try and fix up capacity for tiny siblings, this is needed when
5775 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5776 * which on its own isn't powerful enough.
5777 *
5778 * See update_sd_pick_busiest() and check_asym_packing().
5779 */
5780static inline int
5781fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5782{
5783 /*
ca8ce3d0 5784 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 5785 */
5d4dfddd 5786 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
5787 return 0;
5788
5789 /*
63b2ca30 5790 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 5791 */
63b2ca30 5792 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
5793 return 1;
5794
5795 return 0;
5796}
5797
30ce5dab
PZ
5798/*
5799 * Group imbalance indicates (and tries to solve) the problem where balancing
5800 * groups is inadequate due to tsk_cpus_allowed() constraints.
5801 *
5802 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5803 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5804 * Something like:
5805 *
5806 * { 0 1 2 3 } { 4 5 6 7 }
5807 * * * * *
5808 *
5809 * If we were to balance group-wise we'd place two tasks in the first group and
5810 * two tasks in the second group. Clearly this is undesired as it will overload
5811 * cpu 3 and leave one of the cpus in the second group unused.
5812 *
5813 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5814 * by noticing the lower domain failed to reach balance and had difficulty
5815 * moving tasks due to affinity constraints.
30ce5dab
PZ
5816 *
5817 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5818 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5819 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5820 * to create an effective group imbalance.
5821 *
5822 * This is a somewhat tricky proposition since the next run might not find the
5823 * group imbalance and decide the groups need to be balanced again. A most
5824 * subtle and fragile situation.
5825 */
5826
6263322c 5827static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5828{
63b2ca30 5829 return group->sgc->imbalance;
30ce5dab
PZ
5830}
5831
b37d9316 5832/*
0fedc6c8 5833 * Compute the group capacity factor.
b37d9316 5834 *
ced549fa 5835 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 5836 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 5837 * and limit unit capacity with that.
b37d9316 5838 */
0fedc6c8 5839static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 5840{
0fedc6c8 5841 unsigned int capacity_factor, smt, cpus;
63b2ca30 5842 unsigned int capacity, capacity_orig;
c61037e9 5843
63b2ca30
NP
5844 capacity = group->sgc->capacity;
5845 capacity_orig = group->sgc->capacity_orig;
c61037e9 5846 cpus = group->group_weight;
b37d9316 5847
63b2ca30 5848 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 5849 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 5850 capacity_factor = cpus / smt; /* cores */
b37d9316 5851
63b2ca30 5852 capacity_factor = min_t(unsigned,
ca8ce3d0 5853 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
5854 if (!capacity_factor)
5855 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 5856
0fedc6c8 5857 return capacity_factor;
b37d9316
PZ
5858}
5859
1e3c88bd
PZ
5860/**
5861 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5862 * @env: The load balancing environment.
1e3c88bd 5863 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5864 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5865 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5866 * @sgs: variable to hold the statistics for this group.
5867 */
bd939f45
PZ
5868static inline void update_sg_lb_stats(struct lb_env *env,
5869 struct sched_group *group, int load_idx,
23f0d209 5870 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5871{
30ce5dab 5872 unsigned long load;
bd939f45 5873 int i;
1e3c88bd 5874
b72ff13c
PZ
5875 memset(sgs, 0, sizeof(*sgs));
5876
b9403130 5877 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5878 struct rq *rq = cpu_rq(i);
5879
1e3c88bd 5880 /* Bias balancing toward cpus of our domain */
6263322c 5881 if (local_group)
04f733b4 5882 load = target_load(i, load_idx);
6263322c 5883 else
1e3c88bd 5884 load = source_load(i, load_idx);
1e3c88bd
PZ
5885
5886 sgs->group_load += load;
380c9077 5887 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5888#ifdef CONFIG_NUMA_BALANCING
5889 sgs->nr_numa_running += rq->nr_numa_running;
5890 sgs->nr_preferred_running += rq->nr_preferred_running;
5891#endif
1e3c88bd 5892 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5893 if (idle_cpu(i))
5894 sgs->idle_cpus++;
1e3c88bd
PZ
5895 }
5896
63b2ca30
NP
5897 /* Adjust by relative CPU capacity of the group */
5898 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 5899 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 5900
dd5feea1 5901 if (sgs->sum_nr_running)
38d0f770 5902 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5903
aae6d3dd 5904 sgs->group_weight = group->group_weight;
fab47622 5905
b37d9316 5906 sgs->group_imb = sg_imbalanced(group);
0fedc6c8 5907 sgs->group_capacity_factor = sg_capacity_factor(env, group);
b37d9316 5908
0fedc6c8 5909 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 5910 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
5911}
5912
532cb4c4
MN
5913/**
5914 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5915 * @env: The load balancing environment.
532cb4c4
MN
5916 * @sds: sched_domain statistics
5917 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5918 * @sgs: sched_group statistics
532cb4c4
MN
5919 *
5920 * Determine if @sg is a busier group than the previously selected
5921 * busiest group.
e69f6186
YB
5922 *
5923 * Return: %true if @sg is a busier group than the previously selected
5924 * busiest group. %false otherwise.
532cb4c4 5925 */
bd939f45 5926static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5927 struct sd_lb_stats *sds,
5928 struct sched_group *sg,
bd939f45 5929 struct sg_lb_stats *sgs)
532cb4c4 5930{
56cf515b 5931 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5932 return false;
5933
0fedc6c8 5934 if (sgs->sum_nr_running > sgs->group_capacity_factor)
532cb4c4
MN
5935 return true;
5936
5937 if (sgs->group_imb)
5938 return true;
5939
5940 /*
5941 * ASYM_PACKING needs to move all the work to the lowest
5942 * numbered CPUs in the group, therefore mark all groups
5943 * higher than ourself as busy.
5944 */
bd939f45
PZ
5945 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5946 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5947 if (!sds->busiest)
5948 return true;
5949
5950 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5951 return true;
5952 }
5953
5954 return false;
5955}
5956
0ec8aa00
PZ
5957#ifdef CONFIG_NUMA_BALANCING
5958static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5959{
5960 if (sgs->sum_nr_running > sgs->nr_numa_running)
5961 return regular;
5962 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5963 return remote;
5964 return all;
5965}
5966
5967static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5968{
5969 if (rq->nr_running > rq->nr_numa_running)
5970 return regular;
5971 if (rq->nr_running > rq->nr_preferred_running)
5972 return remote;
5973 return all;
5974}
5975#else
5976static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5977{
5978 return all;
5979}
5980
5981static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5982{
5983 return regular;
5984}
5985#endif /* CONFIG_NUMA_BALANCING */
5986
1e3c88bd 5987/**
461819ac 5988 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5989 * @env: The load balancing environment.
1e3c88bd
PZ
5990 * @sds: variable to hold the statistics for this sched_domain.
5991 */
0ec8aa00 5992static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5993{
bd939f45
PZ
5994 struct sched_domain *child = env->sd->child;
5995 struct sched_group *sg = env->sd->groups;
56cf515b 5996 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5997 int load_idx, prefer_sibling = 0;
5998
5999 if (child && child->flags & SD_PREFER_SIBLING)
6000 prefer_sibling = 1;
6001
bd939f45 6002 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6003
6004 do {
56cf515b 6005 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6006 int local_group;
6007
bd939f45 6008 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6009 if (local_group) {
6010 sds->local = sg;
6011 sgs = &sds->local_stat;
b72ff13c
PZ
6012
6013 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6014 time_after_eq(jiffies, sg->sgc->next_update))
6015 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6016 }
1e3c88bd 6017
56cf515b 6018 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 6019
b72ff13c
PZ
6020 if (local_group)
6021 goto next_group;
6022
1e3c88bd
PZ
6023 /*
6024 * In case the child domain prefers tasks go to siblings
0fedc6c8 6025 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6026 * and move all the excess tasks away. We lower the capacity
6027 * of a group only if the local group has the capacity to fit
0fedc6c8 6028 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6029 * extra check prevents the case where you always pull from the
6030 * heaviest group when it is already under-utilized (possible
6031 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6032 */
b72ff13c 6033 if (prefer_sibling && sds->local &&
1b6a7495 6034 sds->local_stat.group_has_free_capacity)
0fedc6c8 6035 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
1e3c88bd 6036
b72ff13c 6037 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6038 sds->busiest = sg;
56cf515b 6039 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6040 }
6041
b72ff13c
PZ
6042next_group:
6043 /* Now, start updating sd_lb_stats */
6044 sds->total_load += sgs->group_load;
63b2ca30 6045 sds->total_capacity += sgs->group_capacity;
b72ff13c 6046
532cb4c4 6047 sg = sg->next;
bd939f45 6048 } while (sg != env->sd->groups);
0ec8aa00
PZ
6049
6050 if (env->sd->flags & SD_NUMA)
6051 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
6052}
6053
532cb4c4
MN
6054/**
6055 * check_asym_packing - Check to see if the group is packed into the
6056 * sched doman.
6057 *
6058 * This is primarily intended to used at the sibling level. Some
6059 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6060 * case of POWER7, it can move to lower SMT modes only when higher
6061 * threads are idle. When in lower SMT modes, the threads will
6062 * perform better since they share less core resources. Hence when we
6063 * have idle threads, we want them to be the higher ones.
6064 *
6065 * This packing function is run on idle threads. It checks to see if
6066 * the busiest CPU in this domain (core in the P7 case) has a higher
6067 * CPU number than the packing function is being run on. Here we are
6068 * assuming lower CPU number will be equivalent to lower a SMT thread
6069 * number.
6070 *
e69f6186 6071 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6072 * this CPU. The amount of the imbalance is returned in *imbalance.
6073 *
cd96891d 6074 * @env: The load balancing environment.
532cb4c4 6075 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6076 */
bd939f45 6077static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6078{
6079 int busiest_cpu;
6080
bd939f45 6081 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6082 return 0;
6083
6084 if (!sds->busiest)
6085 return 0;
6086
6087 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6088 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6089 return 0;
6090
bd939f45 6091 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6092 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6093 SCHED_CAPACITY_SCALE);
bd939f45 6094
532cb4c4 6095 return 1;
1e3c88bd
PZ
6096}
6097
6098/**
6099 * fix_small_imbalance - Calculate the minor imbalance that exists
6100 * amongst the groups of a sched_domain, during
6101 * load balancing.
cd96891d 6102 * @env: The load balancing environment.
1e3c88bd 6103 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6104 */
bd939f45
PZ
6105static inline
6106void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6107{
63b2ca30 6108 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6109 unsigned int imbn = 2;
dd5feea1 6110 unsigned long scaled_busy_load_per_task;
56cf515b 6111 struct sg_lb_stats *local, *busiest;
1e3c88bd 6112
56cf515b
JK
6113 local = &sds->local_stat;
6114 busiest = &sds->busiest_stat;
1e3c88bd 6115
56cf515b
JK
6116 if (!local->sum_nr_running)
6117 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6118 else if (busiest->load_per_task > local->load_per_task)
6119 imbn = 1;
dd5feea1 6120
56cf515b 6121 scaled_busy_load_per_task =
ca8ce3d0 6122 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6123 busiest->group_capacity;
56cf515b 6124
3029ede3
VD
6125 if (busiest->avg_load + scaled_busy_load_per_task >=
6126 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6127 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6128 return;
6129 }
6130
6131 /*
6132 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6133 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6134 * moving them.
6135 */
6136
63b2ca30 6137 capa_now += busiest->group_capacity *
56cf515b 6138 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6139 capa_now += local->group_capacity *
56cf515b 6140 min(local->load_per_task, local->avg_load);
ca8ce3d0 6141 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6142
6143 /* Amount of load we'd subtract */
a2cd4260 6144 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6145 capa_move += busiest->group_capacity *
56cf515b 6146 min(busiest->load_per_task,
a2cd4260 6147 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6148 }
1e3c88bd
PZ
6149
6150 /* Amount of load we'd add */
63b2ca30 6151 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6152 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6153 tmp = (busiest->avg_load * busiest->group_capacity) /
6154 local->group_capacity;
56cf515b 6155 } else {
ca8ce3d0 6156 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6157 local->group_capacity;
56cf515b 6158 }
63b2ca30 6159 capa_move += local->group_capacity *
3ae11c90 6160 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6161 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6162
6163 /* Move if we gain throughput */
63b2ca30 6164 if (capa_move > capa_now)
56cf515b 6165 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6166}
6167
6168/**
6169 * calculate_imbalance - Calculate the amount of imbalance present within the
6170 * groups of a given sched_domain during load balance.
bd939f45 6171 * @env: load balance environment
1e3c88bd 6172 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6173 */
bd939f45 6174static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6175{
dd5feea1 6176 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6177 struct sg_lb_stats *local, *busiest;
6178
6179 local = &sds->local_stat;
56cf515b 6180 busiest = &sds->busiest_stat;
dd5feea1 6181
56cf515b 6182 if (busiest->group_imb) {
30ce5dab
PZ
6183 /*
6184 * In the group_imb case we cannot rely on group-wide averages
6185 * to ensure cpu-load equilibrium, look at wider averages. XXX
6186 */
56cf515b
JK
6187 busiest->load_per_task =
6188 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6189 }
6190
1e3c88bd
PZ
6191 /*
6192 * In the presence of smp nice balancing, certain scenarios can have
6193 * max load less than avg load(as we skip the groups at or below
ced549fa 6194 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6195 */
b1885550
VD
6196 if (busiest->avg_load <= sds->avg_load ||
6197 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6198 env->imbalance = 0;
6199 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6200 }
6201
56cf515b 6202 if (!busiest->group_imb) {
dd5feea1
SS
6203 /*
6204 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
6205 * Except of course for the group_imb case, since then we might
6206 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 6207 */
56cf515b 6208 load_above_capacity =
0fedc6c8 6209 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6210
ca8ce3d0 6211 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6212 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6213 }
6214
6215 /*
6216 * We're trying to get all the cpus to the average_load, so we don't
6217 * want to push ourselves above the average load, nor do we wish to
6218 * reduce the max loaded cpu below the average load. At the same time,
6219 * we also don't want to reduce the group load below the group capacity
6220 * (so that we can implement power-savings policies etc). Thus we look
6221 * for the minimum possible imbalance.
dd5feea1 6222 */
30ce5dab 6223 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6224
6225 /* How much load to actually move to equalise the imbalance */
56cf515b 6226 env->imbalance = min(
63b2ca30
NP
6227 max_pull * busiest->group_capacity,
6228 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6229 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6230
6231 /*
6232 * if *imbalance is less than the average load per runnable task
25985edc 6233 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6234 * a think about bumping its value to force at least one task to be
6235 * moved
6236 */
56cf515b 6237 if (env->imbalance < busiest->load_per_task)
bd939f45 6238 return fix_small_imbalance(env, sds);
1e3c88bd 6239}
fab47622 6240
1e3c88bd
PZ
6241/******* find_busiest_group() helpers end here *********************/
6242
6243/**
6244 * find_busiest_group - Returns the busiest group within the sched_domain
6245 * if there is an imbalance. If there isn't an imbalance, and
6246 * the user has opted for power-savings, it returns a group whose
6247 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6248 * such a group exists.
6249 *
6250 * Also calculates the amount of weighted load which should be moved
6251 * to restore balance.
6252 *
cd96891d 6253 * @env: The load balancing environment.
1e3c88bd 6254 *
e69f6186 6255 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6256 * - If no imbalance and user has opted for power-savings balance,
6257 * return the least loaded group whose CPUs can be
6258 * put to idle by rebalancing its tasks onto our group.
6259 */
56cf515b 6260static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6261{
56cf515b 6262 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6263 struct sd_lb_stats sds;
6264
147c5fc2 6265 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6266
6267 /*
6268 * Compute the various statistics relavent for load balancing at
6269 * this level.
6270 */
23f0d209 6271 update_sd_lb_stats(env, &sds);
56cf515b
JK
6272 local = &sds.local_stat;
6273 busiest = &sds.busiest_stat;
1e3c88bd 6274
bd939f45
PZ
6275 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6276 check_asym_packing(env, &sds))
532cb4c4
MN
6277 return sds.busiest;
6278
cc57aa8f 6279 /* There is no busy sibling group to pull tasks from */
56cf515b 6280 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6281 goto out_balanced;
6282
ca8ce3d0
NP
6283 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6284 / sds.total_capacity;
b0432d8f 6285
866ab43e
PZ
6286 /*
6287 * If the busiest group is imbalanced the below checks don't
30ce5dab 6288 * work because they assume all things are equal, which typically
866ab43e
PZ
6289 * isn't true due to cpus_allowed constraints and the like.
6290 */
56cf515b 6291 if (busiest->group_imb)
866ab43e
PZ
6292 goto force_balance;
6293
cc57aa8f 6294 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6295 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6296 !busiest->group_has_free_capacity)
fab47622
NR
6297 goto force_balance;
6298
cc57aa8f
PZ
6299 /*
6300 * If the local group is more busy than the selected busiest group
6301 * don't try and pull any tasks.
6302 */
56cf515b 6303 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6304 goto out_balanced;
6305
cc57aa8f
PZ
6306 /*
6307 * Don't pull any tasks if this group is already above the domain
6308 * average load.
6309 */
56cf515b 6310 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6311 goto out_balanced;
6312
bd939f45 6313 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6314 /*
6315 * This cpu is idle. If the busiest group load doesn't
6316 * have more tasks than the number of available cpu's and
6317 * there is no imbalance between this and busiest group
6318 * wrt to idle cpu's, it is balanced.
6319 */
56cf515b
JK
6320 if ((local->idle_cpus < busiest->idle_cpus) &&
6321 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6322 goto out_balanced;
c186fafe
PZ
6323 } else {
6324 /*
6325 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6326 * imbalance_pct to be conservative.
6327 */
56cf515b
JK
6328 if (100 * busiest->avg_load <=
6329 env->sd->imbalance_pct * local->avg_load)
c186fafe 6330 goto out_balanced;
aae6d3dd 6331 }
1e3c88bd 6332
fab47622 6333force_balance:
1e3c88bd 6334 /* Looks like there is an imbalance. Compute it */
bd939f45 6335 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6336 return sds.busiest;
6337
6338out_balanced:
bd939f45 6339 env->imbalance = 0;
1e3c88bd
PZ
6340 return NULL;
6341}
6342
6343/*
6344 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6345 */
bd939f45 6346static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6347 struct sched_group *group)
1e3c88bd
PZ
6348{
6349 struct rq *busiest = NULL, *rq;
ced549fa 6350 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6351 int i;
6352
6906a408 6353 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6354 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6355 enum fbq_type rt;
6356
6357 rq = cpu_rq(i);
6358 rt = fbq_classify_rq(rq);
1e3c88bd 6359
0ec8aa00
PZ
6360 /*
6361 * We classify groups/runqueues into three groups:
6362 * - regular: there are !numa tasks
6363 * - remote: there are numa tasks that run on the 'wrong' node
6364 * - all: there is no distinction
6365 *
6366 * In order to avoid migrating ideally placed numa tasks,
6367 * ignore those when there's better options.
6368 *
6369 * If we ignore the actual busiest queue to migrate another
6370 * task, the next balance pass can still reduce the busiest
6371 * queue by moving tasks around inside the node.
6372 *
6373 * If we cannot move enough load due to this classification
6374 * the next pass will adjust the group classification and
6375 * allow migration of more tasks.
6376 *
6377 * Both cases only affect the total convergence complexity.
6378 */
6379 if (rt > env->fbq_type)
6380 continue;
6381
ced549fa 6382 capacity = capacity_of(i);
ca8ce3d0 6383 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6384 if (!capacity_factor)
6385 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6386
6e40f5bb 6387 wl = weighted_cpuload(i);
1e3c88bd 6388
6e40f5bb
TG
6389 /*
6390 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6391 * which is not scaled with the cpu capacity.
6e40f5bb 6392 */
0fedc6c8 6393 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6394 continue;
6395
6e40f5bb
TG
6396 /*
6397 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6398 * the weighted_cpuload() scaled with the cpu capacity, so
6399 * that the load can be moved away from the cpu that is
6400 * potentially running at a lower capacity.
95a79b80 6401 *
ced549fa 6402 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6403 * multiplication to rid ourselves of the division works out
ced549fa
NP
6404 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6405 * our previous maximum.
6e40f5bb 6406 */
ced549fa 6407 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6408 busiest_load = wl;
ced549fa 6409 busiest_capacity = capacity;
1e3c88bd
PZ
6410 busiest = rq;
6411 }
6412 }
6413
6414 return busiest;
6415}
6416
6417/*
6418 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6419 * so long as it is large enough.
6420 */
6421#define MAX_PINNED_INTERVAL 512
6422
6423/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6424DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6425
bd939f45 6426static int need_active_balance(struct lb_env *env)
1af3ed3d 6427{
bd939f45
PZ
6428 struct sched_domain *sd = env->sd;
6429
6430 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6431
6432 /*
6433 * ASYM_PACKING needs to force migrate tasks from busy but
6434 * higher numbered CPUs in order to pack all tasks in the
6435 * lowest numbered CPUs.
6436 */
bd939f45 6437 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6438 return 1;
1af3ed3d
PZ
6439 }
6440
6441 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6442}
6443
969c7921
TH
6444static int active_load_balance_cpu_stop(void *data);
6445
23f0d209
JK
6446static int should_we_balance(struct lb_env *env)
6447{
6448 struct sched_group *sg = env->sd->groups;
6449 struct cpumask *sg_cpus, *sg_mask;
6450 int cpu, balance_cpu = -1;
6451
6452 /*
6453 * In the newly idle case, we will allow all the cpu's
6454 * to do the newly idle load balance.
6455 */
6456 if (env->idle == CPU_NEWLY_IDLE)
6457 return 1;
6458
6459 sg_cpus = sched_group_cpus(sg);
6460 sg_mask = sched_group_mask(sg);
6461 /* Try to find first idle cpu */
6462 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6463 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6464 continue;
6465
6466 balance_cpu = cpu;
6467 break;
6468 }
6469
6470 if (balance_cpu == -1)
6471 balance_cpu = group_balance_cpu(sg);
6472
6473 /*
6474 * First idle cpu or the first cpu(busiest) in this sched group
6475 * is eligible for doing load balancing at this and above domains.
6476 */
b0cff9d8 6477 return balance_cpu == env->dst_cpu;
23f0d209
JK
6478}
6479
1e3c88bd
PZ
6480/*
6481 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6482 * tasks if there is an imbalance.
6483 */
6484static int load_balance(int this_cpu, struct rq *this_rq,
6485 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6486 int *continue_balancing)
1e3c88bd 6487{
88b8dac0 6488 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6489 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6490 struct sched_group *group;
1e3c88bd
PZ
6491 struct rq *busiest;
6492 unsigned long flags;
e6252c3e 6493 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6494
8e45cb54
PZ
6495 struct lb_env env = {
6496 .sd = sd,
ddcdf6e7
PZ
6497 .dst_cpu = this_cpu,
6498 .dst_rq = this_rq,
88b8dac0 6499 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6500 .idle = idle,
eb95308e 6501 .loop_break = sched_nr_migrate_break,
b9403130 6502 .cpus = cpus,
0ec8aa00 6503 .fbq_type = all,
8e45cb54
PZ
6504 };
6505
cfc03118
JK
6506 /*
6507 * For NEWLY_IDLE load_balancing, we don't need to consider
6508 * other cpus in our group
6509 */
e02e60c1 6510 if (idle == CPU_NEWLY_IDLE)
cfc03118 6511 env.dst_grpmask = NULL;
cfc03118 6512
1e3c88bd
PZ
6513 cpumask_copy(cpus, cpu_active_mask);
6514
1e3c88bd
PZ
6515 schedstat_inc(sd, lb_count[idle]);
6516
6517redo:
23f0d209
JK
6518 if (!should_we_balance(&env)) {
6519 *continue_balancing = 0;
1e3c88bd 6520 goto out_balanced;
23f0d209 6521 }
1e3c88bd 6522
23f0d209 6523 group = find_busiest_group(&env);
1e3c88bd
PZ
6524 if (!group) {
6525 schedstat_inc(sd, lb_nobusyg[idle]);
6526 goto out_balanced;
6527 }
6528
b9403130 6529 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6530 if (!busiest) {
6531 schedstat_inc(sd, lb_nobusyq[idle]);
6532 goto out_balanced;
6533 }
6534
78feefc5 6535 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6536
bd939f45 6537 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6538
6539 ld_moved = 0;
6540 if (busiest->nr_running > 1) {
6541 /*
6542 * Attempt to move tasks. If find_busiest_group has found
6543 * an imbalance but busiest->nr_running <= 1, the group is
6544 * still unbalanced. ld_moved simply stays zero, so it is
6545 * correctly treated as an imbalance.
6546 */
8e45cb54 6547 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6548 env.src_cpu = busiest->cpu;
6549 env.src_rq = busiest;
6550 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6551
5d6523eb 6552more_balance:
1e3c88bd 6553 local_irq_save(flags);
78feefc5 6554 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6555
6556 /*
6557 * cur_ld_moved - load moved in current iteration
6558 * ld_moved - cumulative load moved across iterations
6559 */
6560 cur_ld_moved = move_tasks(&env);
6561 ld_moved += cur_ld_moved;
78feefc5 6562 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6563 local_irq_restore(flags);
6564
6565 /*
6566 * some other cpu did the load balance for us.
6567 */
88b8dac0
SV
6568 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6569 resched_cpu(env.dst_cpu);
6570
f1cd0858
JK
6571 if (env.flags & LBF_NEED_BREAK) {
6572 env.flags &= ~LBF_NEED_BREAK;
6573 goto more_balance;
6574 }
6575
88b8dac0
SV
6576 /*
6577 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6578 * us and move them to an alternate dst_cpu in our sched_group
6579 * where they can run. The upper limit on how many times we
6580 * iterate on same src_cpu is dependent on number of cpus in our
6581 * sched_group.
6582 *
6583 * This changes load balance semantics a bit on who can move
6584 * load to a given_cpu. In addition to the given_cpu itself
6585 * (or a ilb_cpu acting on its behalf where given_cpu is
6586 * nohz-idle), we now have balance_cpu in a position to move
6587 * load to given_cpu. In rare situations, this may cause
6588 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6589 * _independently_ and at _same_ time to move some load to
6590 * given_cpu) causing exceess load to be moved to given_cpu.
6591 * This however should not happen so much in practice and
6592 * moreover subsequent load balance cycles should correct the
6593 * excess load moved.
6594 */
6263322c 6595 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6596
7aff2e3a
VD
6597 /* Prevent to re-select dst_cpu via env's cpus */
6598 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6599
78feefc5 6600 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6601 env.dst_cpu = env.new_dst_cpu;
6263322c 6602 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6603 env.loop = 0;
6604 env.loop_break = sched_nr_migrate_break;
e02e60c1 6605
88b8dac0
SV
6606 /*
6607 * Go back to "more_balance" rather than "redo" since we
6608 * need to continue with same src_cpu.
6609 */
6610 goto more_balance;
6611 }
1e3c88bd 6612
6263322c
PZ
6613 /*
6614 * We failed to reach balance because of affinity.
6615 */
6616 if (sd_parent) {
63b2ca30 6617 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c
PZ
6618
6619 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6620 *group_imbalance = 1;
6621 } else if (*group_imbalance)
6622 *group_imbalance = 0;
6623 }
6624
1e3c88bd 6625 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6626 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6627 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6628 if (!cpumask_empty(cpus)) {
6629 env.loop = 0;
6630 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6631 goto redo;
bbf18b19 6632 }
1e3c88bd
PZ
6633 goto out_balanced;
6634 }
6635 }
6636
6637 if (!ld_moved) {
6638 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6639 /*
6640 * Increment the failure counter only on periodic balance.
6641 * We do not want newidle balance, which can be very
6642 * frequent, pollute the failure counter causing
6643 * excessive cache_hot migrations and active balances.
6644 */
6645 if (idle != CPU_NEWLY_IDLE)
6646 sd->nr_balance_failed++;
1e3c88bd 6647
bd939f45 6648 if (need_active_balance(&env)) {
1e3c88bd
PZ
6649 raw_spin_lock_irqsave(&busiest->lock, flags);
6650
969c7921
TH
6651 /* don't kick the active_load_balance_cpu_stop,
6652 * if the curr task on busiest cpu can't be
6653 * moved to this_cpu
1e3c88bd
PZ
6654 */
6655 if (!cpumask_test_cpu(this_cpu,
fa17b507 6656 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6657 raw_spin_unlock_irqrestore(&busiest->lock,
6658 flags);
8e45cb54 6659 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6660 goto out_one_pinned;
6661 }
6662
969c7921
TH
6663 /*
6664 * ->active_balance synchronizes accesses to
6665 * ->active_balance_work. Once set, it's cleared
6666 * only after active load balance is finished.
6667 */
1e3c88bd
PZ
6668 if (!busiest->active_balance) {
6669 busiest->active_balance = 1;
6670 busiest->push_cpu = this_cpu;
6671 active_balance = 1;
6672 }
6673 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6674
bd939f45 6675 if (active_balance) {
969c7921
TH
6676 stop_one_cpu_nowait(cpu_of(busiest),
6677 active_load_balance_cpu_stop, busiest,
6678 &busiest->active_balance_work);
bd939f45 6679 }
1e3c88bd
PZ
6680
6681 /*
6682 * We've kicked active balancing, reset the failure
6683 * counter.
6684 */
6685 sd->nr_balance_failed = sd->cache_nice_tries+1;
6686 }
6687 } else
6688 sd->nr_balance_failed = 0;
6689
6690 if (likely(!active_balance)) {
6691 /* We were unbalanced, so reset the balancing interval */
6692 sd->balance_interval = sd->min_interval;
6693 } else {
6694 /*
6695 * If we've begun active balancing, start to back off. This
6696 * case may not be covered by the all_pinned logic if there
6697 * is only 1 task on the busy runqueue (because we don't call
6698 * move_tasks).
6699 */
6700 if (sd->balance_interval < sd->max_interval)
6701 sd->balance_interval *= 2;
6702 }
6703
1e3c88bd
PZ
6704 goto out;
6705
6706out_balanced:
6707 schedstat_inc(sd, lb_balanced[idle]);
6708
6709 sd->nr_balance_failed = 0;
6710
6711out_one_pinned:
6712 /* tune up the balancing interval */
8e45cb54 6713 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6714 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6715 (sd->balance_interval < sd->max_interval))
6716 sd->balance_interval *= 2;
6717
46e49b38 6718 ld_moved = 0;
1e3c88bd 6719out:
1e3c88bd
PZ
6720 return ld_moved;
6721}
6722
52a08ef1
JL
6723static inline unsigned long
6724get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6725{
6726 unsigned long interval = sd->balance_interval;
6727
6728 if (cpu_busy)
6729 interval *= sd->busy_factor;
6730
6731 /* scale ms to jiffies */
6732 interval = msecs_to_jiffies(interval);
6733 interval = clamp(interval, 1UL, max_load_balance_interval);
6734
6735 return interval;
6736}
6737
6738static inline void
6739update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6740{
6741 unsigned long interval, next;
6742
6743 interval = get_sd_balance_interval(sd, cpu_busy);
6744 next = sd->last_balance + interval;
6745
6746 if (time_after(*next_balance, next))
6747 *next_balance = next;
6748}
6749
1e3c88bd
PZ
6750/*
6751 * idle_balance is called by schedule() if this_cpu is about to become
6752 * idle. Attempts to pull tasks from other CPUs.
6753 */
6e83125c 6754static int idle_balance(struct rq *this_rq)
1e3c88bd 6755{
52a08ef1
JL
6756 unsigned long next_balance = jiffies + HZ;
6757 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
6758 struct sched_domain *sd;
6759 int pulled_task = 0;
9bd721c5 6760 u64 curr_cost = 0;
1e3c88bd 6761
6e83125c 6762 idle_enter_fair(this_rq);
0e5b5337 6763
6e83125c
PZ
6764 /*
6765 * We must set idle_stamp _before_ calling idle_balance(), such that we
6766 * measure the duration of idle_balance() as idle time.
6767 */
6768 this_rq->idle_stamp = rq_clock(this_rq);
6769
52a08ef1
JL
6770 if (this_rq->avg_idle < sysctl_sched_migration_cost) {
6771 rcu_read_lock();
6772 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6773 if (sd)
6774 update_next_balance(sd, 0, &next_balance);
6775 rcu_read_unlock();
6776
6e83125c 6777 goto out;
52a08ef1 6778 }
1e3c88bd 6779
f492e12e
PZ
6780 /*
6781 * Drop the rq->lock, but keep IRQ/preempt disabled.
6782 */
6783 raw_spin_unlock(&this_rq->lock);
6784
48a16753 6785 update_blocked_averages(this_cpu);
dce840a0 6786 rcu_read_lock();
1e3c88bd 6787 for_each_domain(this_cpu, sd) {
23f0d209 6788 int continue_balancing = 1;
9bd721c5 6789 u64 t0, domain_cost;
1e3c88bd
PZ
6790
6791 if (!(sd->flags & SD_LOAD_BALANCE))
6792 continue;
6793
52a08ef1
JL
6794 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6795 update_next_balance(sd, 0, &next_balance);
9bd721c5 6796 break;
52a08ef1 6797 }
9bd721c5 6798
f492e12e 6799 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6800 t0 = sched_clock_cpu(this_cpu);
6801
f492e12e 6802 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6803 sd, CPU_NEWLY_IDLE,
6804 &continue_balancing);
9bd721c5
JL
6805
6806 domain_cost = sched_clock_cpu(this_cpu) - t0;
6807 if (domain_cost > sd->max_newidle_lb_cost)
6808 sd->max_newidle_lb_cost = domain_cost;
6809
6810 curr_cost += domain_cost;
f492e12e 6811 }
1e3c88bd 6812
52a08ef1 6813 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
6814
6815 /*
6816 * Stop searching for tasks to pull if there are
6817 * now runnable tasks on this rq.
6818 */
6819 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 6820 break;
1e3c88bd 6821 }
dce840a0 6822 rcu_read_unlock();
f492e12e
PZ
6823
6824 raw_spin_lock(&this_rq->lock);
6825
0e5b5337
JL
6826 if (curr_cost > this_rq->max_idle_balance_cost)
6827 this_rq->max_idle_balance_cost = curr_cost;
6828
e5fc6611 6829 /*
0e5b5337
JL
6830 * While browsing the domains, we released the rq lock, a task could
6831 * have been enqueued in the meantime. Since we're not going idle,
6832 * pretend we pulled a task.
e5fc6611 6833 */
0e5b5337 6834 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 6835 pulled_task = 1;
e5fc6611 6836
52a08ef1
JL
6837out:
6838 /* Move the next balance forward */
6839 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 6840 this_rq->next_balance = next_balance;
9bd721c5 6841
e4aa358b 6842 /* Is there a task of a high priority class? */
46383648 6843 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
6844 pulled_task = -1;
6845
6846 if (pulled_task) {
6847 idle_exit_fair(this_rq);
6e83125c 6848 this_rq->idle_stamp = 0;
e4aa358b 6849 }
6e83125c 6850
3c4017c1 6851 return pulled_task;
1e3c88bd
PZ
6852}
6853
6854/*
969c7921
TH
6855 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6856 * running tasks off the busiest CPU onto idle CPUs. It requires at
6857 * least 1 task to be running on each physical CPU where possible, and
6858 * avoids physical / logical imbalances.
1e3c88bd 6859 */
969c7921 6860static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6861{
969c7921
TH
6862 struct rq *busiest_rq = data;
6863 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6864 int target_cpu = busiest_rq->push_cpu;
969c7921 6865 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6866 struct sched_domain *sd;
969c7921
TH
6867
6868 raw_spin_lock_irq(&busiest_rq->lock);
6869
6870 /* make sure the requested cpu hasn't gone down in the meantime */
6871 if (unlikely(busiest_cpu != smp_processor_id() ||
6872 !busiest_rq->active_balance))
6873 goto out_unlock;
1e3c88bd
PZ
6874
6875 /* Is there any task to move? */
6876 if (busiest_rq->nr_running <= 1)
969c7921 6877 goto out_unlock;
1e3c88bd
PZ
6878
6879 /*
6880 * This condition is "impossible", if it occurs
6881 * we need to fix it. Originally reported by
6882 * Bjorn Helgaas on a 128-cpu setup.
6883 */
6884 BUG_ON(busiest_rq == target_rq);
6885
6886 /* move a task from busiest_rq to target_rq */
6887 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6888
6889 /* Search for an sd spanning us and the target CPU. */
dce840a0 6890 rcu_read_lock();
1e3c88bd
PZ
6891 for_each_domain(target_cpu, sd) {
6892 if ((sd->flags & SD_LOAD_BALANCE) &&
6893 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6894 break;
6895 }
6896
6897 if (likely(sd)) {
8e45cb54
PZ
6898 struct lb_env env = {
6899 .sd = sd,
ddcdf6e7
PZ
6900 .dst_cpu = target_cpu,
6901 .dst_rq = target_rq,
6902 .src_cpu = busiest_rq->cpu,
6903 .src_rq = busiest_rq,
8e45cb54
PZ
6904 .idle = CPU_IDLE,
6905 };
6906
1e3c88bd
PZ
6907 schedstat_inc(sd, alb_count);
6908
8e45cb54 6909 if (move_one_task(&env))
1e3c88bd
PZ
6910 schedstat_inc(sd, alb_pushed);
6911 else
6912 schedstat_inc(sd, alb_failed);
6913 }
dce840a0 6914 rcu_read_unlock();
1e3c88bd 6915 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6916out_unlock:
6917 busiest_rq->active_balance = 0;
6918 raw_spin_unlock_irq(&busiest_rq->lock);
6919 return 0;
1e3c88bd
PZ
6920}
6921
d987fc7f
MG
6922static inline int on_null_domain(struct rq *rq)
6923{
6924 return unlikely(!rcu_dereference_sched(rq->sd));
6925}
6926
3451d024 6927#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6928/*
6929 * idle load balancing details
83cd4fe2
VP
6930 * - When one of the busy CPUs notice that there may be an idle rebalancing
6931 * needed, they will kick the idle load balancer, which then does idle
6932 * load balancing for all the idle CPUs.
6933 */
1e3c88bd 6934static struct {
83cd4fe2 6935 cpumask_var_t idle_cpus_mask;
0b005cf5 6936 atomic_t nr_cpus;
83cd4fe2
VP
6937 unsigned long next_balance; /* in jiffy units */
6938} nohz ____cacheline_aligned;
1e3c88bd 6939
3dd0337d 6940static inline int find_new_ilb(void)
1e3c88bd 6941{
0b005cf5 6942 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6943
786d6dc7
SS
6944 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6945 return ilb;
6946
6947 return nr_cpu_ids;
1e3c88bd 6948}
1e3c88bd 6949
83cd4fe2
VP
6950/*
6951 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6952 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6953 * CPU (if there is one).
6954 */
0aeeeeba 6955static void nohz_balancer_kick(void)
83cd4fe2
VP
6956{
6957 int ilb_cpu;
6958
6959 nohz.next_balance++;
6960
3dd0337d 6961 ilb_cpu = find_new_ilb();
83cd4fe2 6962
0b005cf5
SS
6963 if (ilb_cpu >= nr_cpu_ids)
6964 return;
83cd4fe2 6965
cd490c5b 6966 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6967 return;
6968 /*
6969 * Use smp_send_reschedule() instead of resched_cpu().
6970 * This way we generate a sched IPI on the target cpu which
6971 * is idle. And the softirq performing nohz idle load balance
6972 * will be run before returning from the IPI.
6973 */
6974 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6975 return;
6976}
6977
c1cc017c 6978static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6979{
6980 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
6981 /*
6982 * Completely isolated CPUs don't ever set, so we must test.
6983 */
6984 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6985 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6986 atomic_dec(&nohz.nr_cpus);
6987 }
71325960
SS
6988 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6989 }
6990}
6991
69e1e811
SS
6992static inline void set_cpu_sd_state_busy(void)
6993{
6994 struct sched_domain *sd;
37dc6b50 6995 int cpu = smp_processor_id();
69e1e811 6996
69e1e811 6997 rcu_read_lock();
37dc6b50 6998 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6999
7000 if (!sd || !sd->nohz_idle)
7001 goto unlock;
7002 sd->nohz_idle = 0;
7003
63b2ca30 7004 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7005unlock:
69e1e811
SS
7006 rcu_read_unlock();
7007}
7008
7009void set_cpu_sd_state_idle(void)
7010{
7011 struct sched_domain *sd;
37dc6b50 7012 int cpu = smp_processor_id();
69e1e811 7013
69e1e811 7014 rcu_read_lock();
37dc6b50 7015 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7016
7017 if (!sd || sd->nohz_idle)
7018 goto unlock;
7019 sd->nohz_idle = 1;
7020
63b2ca30 7021 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7022unlock:
69e1e811
SS
7023 rcu_read_unlock();
7024}
7025
1e3c88bd 7026/*
c1cc017c 7027 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7028 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7029 */
c1cc017c 7030void nohz_balance_enter_idle(int cpu)
1e3c88bd 7031{
71325960
SS
7032 /*
7033 * If this cpu is going down, then nothing needs to be done.
7034 */
7035 if (!cpu_active(cpu))
7036 return;
7037
c1cc017c
AS
7038 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7039 return;
1e3c88bd 7040
d987fc7f
MG
7041 /*
7042 * If we're a completely isolated CPU, we don't play.
7043 */
7044 if (on_null_domain(cpu_rq(cpu)))
7045 return;
7046
c1cc017c
AS
7047 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7048 atomic_inc(&nohz.nr_cpus);
7049 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7050}
71325960 7051
0db0628d 7052static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7053 unsigned long action, void *hcpu)
7054{
7055 switch (action & ~CPU_TASKS_FROZEN) {
7056 case CPU_DYING:
c1cc017c 7057 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7058 return NOTIFY_OK;
7059 default:
7060 return NOTIFY_DONE;
7061 }
7062}
1e3c88bd
PZ
7063#endif
7064
7065static DEFINE_SPINLOCK(balancing);
7066
49c022e6
PZ
7067/*
7068 * Scale the max load_balance interval with the number of CPUs in the system.
7069 * This trades load-balance latency on larger machines for less cross talk.
7070 */
029632fb 7071void update_max_interval(void)
49c022e6
PZ
7072{
7073 max_load_balance_interval = HZ*num_online_cpus()/10;
7074}
7075
1e3c88bd
PZ
7076/*
7077 * It checks each scheduling domain to see if it is due to be balanced,
7078 * and initiates a balancing operation if so.
7079 *
b9b0853a 7080 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7081 */
f7ed0a89 7082static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7083{
23f0d209 7084 int continue_balancing = 1;
f7ed0a89 7085 int cpu = rq->cpu;
1e3c88bd 7086 unsigned long interval;
04f733b4 7087 struct sched_domain *sd;
1e3c88bd
PZ
7088 /* Earliest time when we have to do rebalance again */
7089 unsigned long next_balance = jiffies + 60*HZ;
7090 int update_next_balance = 0;
f48627e6
JL
7091 int need_serialize, need_decay = 0;
7092 u64 max_cost = 0;
1e3c88bd 7093
48a16753 7094 update_blocked_averages(cpu);
2069dd75 7095
dce840a0 7096 rcu_read_lock();
1e3c88bd 7097 for_each_domain(cpu, sd) {
f48627e6
JL
7098 /*
7099 * Decay the newidle max times here because this is a regular
7100 * visit to all the domains. Decay ~1% per second.
7101 */
7102 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7103 sd->max_newidle_lb_cost =
7104 (sd->max_newidle_lb_cost * 253) / 256;
7105 sd->next_decay_max_lb_cost = jiffies + HZ;
7106 need_decay = 1;
7107 }
7108 max_cost += sd->max_newidle_lb_cost;
7109
1e3c88bd
PZ
7110 if (!(sd->flags & SD_LOAD_BALANCE))
7111 continue;
7112
f48627e6
JL
7113 /*
7114 * Stop the load balance at this level. There is another
7115 * CPU in our sched group which is doing load balancing more
7116 * actively.
7117 */
7118 if (!continue_balancing) {
7119 if (need_decay)
7120 continue;
7121 break;
7122 }
7123
52a08ef1 7124 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7125
7126 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7127 if (need_serialize) {
7128 if (!spin_trylock(&balancing))
7129 goto out;
7130 }
7131
7132 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7133 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7134 /*
6263322c 7135 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7136 * env->dst_cpu, so we can't know our idle
7137 * state even if we migrated tasks. Update it.
1e3c88bd 7138 */
de5eb2dd 7139 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7140 }
7141 sd->last_balance = jiffies;
52a08ef1 7142 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7143 }
7144 if (need_serialize)
7145 spin_unlock(&balancing);
7146out:
7147 if (time_after(next_balance, sd->last_balance + interval)) {
7148 next_balance = sd->last_balance + interval;
7149 update_next_balance = 1;
7150 }
f48627e6
JL
7151 }
7152 if (need_decay) {
1e3c88bd 7153 /*
f48627e6
JL
7154 * Ensure the rq-wide value also decays but keep it at a
7155 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7156 */
f48627e6
JL
7157 rq->max_idle_balance_cost =
7158 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7159 }
dce840a0 7160 rcu_read_unlock();
1e3c88bd
PZ
7161
7162 /*
7163 * next_balance will be updated only when there is a need.
7164 * When the cpu is attached to null domain for ex, it will not be
7165 * updated.
7166 */
7167 if (likely(update_next_balance))
7168 rq->next_balance = next_balance;
7169}
7170
3451d024 7171#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7172/*
3451d024 7173 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7174 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7175 */
208cb16b 7176static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7177{
208cb16b 7178 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7179 struct rq *rq;
7180 int balance_cpu;
7181
1c792db7
SS
7182 if (idle != CPU_IDLE ||
7183 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7184 goto end;
83cd4fe2
VP
7185
7186 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7187 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7188 continue;
7189
7190 /*
7191 * If this cpu gets work to do, stop the load balancing
7192 * work being done for other cpus. Next load
7193 * balancing owner will pick it up.
7194 */
1c792db7 7195 if (need_resched())
83cd4fe2 7196 break;
83cd4fe2 7197
5ed4f1d9
VG
7198 rq = cpu_rq(balance_cpu);
7199
ed61bbc6
TC
7200 /*
7201 * If time for next balance is due,
7202 * do the balance.
7203 */
7204 if (time_after_eq(jiffies, rq->next_balance)) {
7205 raw_spin_lock_irq(&rq->lock);
7206 update_rq_clock(rq);
7207 update_idle_cpu_load(rq);
7208 raw_spin_unlock_irq(&rq->lock);
7209 rebalance_domains(rq, CPU_IDLE);
7210 }
83cd4fe2 7211
83cd4fe2
VP
7212 if (time_after(this_rq->next_balance, rq->next_balance))
7213 this_rq->next_balance = rq->next_balance;
7214 }
7215 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7216end:
7217 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7218}
7219
7220/*
0b005cf5
SS
7221 * Current heuristic for kicking the idle load balancer in the presence
7222 * of an idle cpu is the system.
7223 * - This rq has more than one task.
7224 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7225 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7226 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7227 * domain span are idle.
83cd4fe2 7228 */
4a725627 7229static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7230{
7231 unsigned long now = jiffies;
0b005cf5 7232 struct sched_domain *sd;
63b2ca30 7233 struct sched_group_capacity *sgc;
4a725627 7234 int nr_busy, cpu = rq->cpu;
83cd4fe2 7235
4a725627 7236 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7237 return 0;
7238
1c792db7
SS
7239 /*
7240 * We may be recently in ticked or tickless idle mode. At the first
7241 * busy tick after returning from idle, we will update the busy stats.
7242 */
69e1e811 7243 set_cpu_sd_state_busy();
c1cc017c 7244 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7245
7246 /*
7247 * None are in tickless mode and hence no need for NOHZ idle load
7248 * balancing.
7249 */
7250 if (likely(!atomic_read(&nohz.nr_cpus)))
7251 return 0;
1c792db7
SS
7252
7253 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7254 return 0;
7255
0b005cf5
SS
7256 if (rq->nr_running >= 2)
7257 goto need_kick;
83cd4fe2 7258
067491b7 7259 rcu_read_lock();
37dc6b50 7260 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7261
37dc6b50 7262 if (sd) {
63b2ca30
NP
7263 sgc = sd->groups->sgc;
7264 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7265
37dc6b50 7266 if (nr_busy > 1)
067491b7 7267 goto need_kick_unlock;
83cd4fe2 7268 }
37dc6b50
PM
7269
7270 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7271
7272 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7273 sched_domain_span(sd)) < cpu))
7274 goto need_kick_unlock;
7275
067491b7 7276 rcu_read_unlock();
83cd4fe2 7277 return 0;
067491b7
PZ
7278
7279need_kick_unlock:
7280 rcu_read_unlock();
0b005cf5
SS
7281need_kick:
7282 return 1;
83cd4fe2
VP
7283}
7284#else
208cb16b 7285static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7286#endif
7287
7288/*
7289 * run_rebalance_domains is triggered when needed from the scheduler tick.
7290 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7291 */
1e3c88bd
PZ
7292static void run_rebalance_domains(struct softirq_action *h)
7293{
208cb16b 7294 struct rq *this_rq = this_rq();
6eb57e0d 7295 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7296 CPU_IDLE : CPU_NOT_IDLE;
7297
f7ed0a89 7298 rebalance_domains(this_rq, idle);
1e3c88bd 7299
1e3c88bd 7300 /*
83cd4fe2 7301 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7302 * balancing on behalf of the other idle cpus whose ticks are
7303 * stopped.
7304 */
208cb16b 7305 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7306}
7307
1e3c88bd
PZ
7308/*
7309 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7310 */
7caff66f 7311void trigger_load_balance(struct rq *rq)
1e3c88bd 7312{
1e3c88bd 7313 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7314 if (unlikely(on_null_domain(rq)))
7315 return;
7316
7317 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7318 raise_softirq(SCHED_SOFTIRQ);
3451d024 7319#ifdef CONFIG_NO_HZ_COMMON
c726099e 7320 if (nohz_kick_needed(rq))
0aeeeeba 7321 nohz_balancer_kick();
83cd4fe2 7322#endif
1e3c88bd
PZ
7323}
7324
0bcdcf28
CE
7325static void rq_online_fair(struct rq *rq)
7326{
7327 update_sysctl();
7328}
7329
7330static void rq_offline_fair(struct rq *rq)
7331{
7332 update_sysctl();
a4c96ae3
PB
7333
7334 /* Ensure any throttled groups are reachable by pick_next_task */
7335 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7336}
7337
55e12e5e 7338#endif /* CONFIG_SMP */
e1d1484f 7339
bf0f6f24
IM
7340/*
7341 * scheduler tick hitting a task of our scheduling class:
7342 */
8f4d37ec 7343static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7344{
7345 struct cfs_rq *cfs_rq;
7346 struct sched_entity *se = &curr->se;
7347
7348 for_each_sched_entity(se) {
7349 cfs_rq = cfs_rq_of(se);
8f4d37ec 7350 entity_tick(cfs_rq, se, queued);
bf0f6f24 7351 }
18bf2805 7352
10e84b97 7353 if (numabalancing_enabled)
cbee9f88 7354 task_tick_numa(rq, curr);
3d59eebc 7355
18bf2805 7356 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7357}
7358
7359/*
cd29fe6f
PZ
7360 * called on fork with the child task as argument from the parent's context
7361 * - child not yet on the tasklist
7362 * - preemption disabled
bf0f6f24 7363 */
cd29fe6f 7364static void task_fork_fair(struct task_struct *p)
bf0f6f24 7365{
4fc420c9
DN
7366 struct cfs_rq *cfs_rq;
7367 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7368 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7369 struct rq *rq = this_rq();
7370 unsigned long flags;
7371
05fa785c 7372 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7373
861d034e
PZ
7374 update_rq_clock(rq);
7375
4fc420c9
DN
7376 cfs_rq = task_cfs_rq(current);
7377 curr = cfs_rq->curr;
7378
6c9a27f5
DN
7379 /*
7380 * Not only the cpu but also the task_group of the parent might have
7381 * been changed after parent->se.parent,cfs_rq were copied to
7382 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7383 * of child point to valid ones.
7384 */
7385 rcu_read_lock();
7386 __set_task_cpu(p, this_cpu);
7387 rcu_read_unlock();
bf0f6f24 7388
7109c442 7389 update_curr(cfs_rq);
cd29fe6f 7390
b5d9d734
MG
7391 if (curr)
7392 se->vruntime = curr->vruntime;
aeb73b04 7393 place_entity(cfs_rq, se, 1);
4d78e7b6 7394
cd29fe6f 7395 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7396 /*
edcb60a3
IM
7397 * Upon rescheduling, sched_class::put_prev_task() will place
7398 * 'current' within the tree based on its new key value.
7399 */
4d78e7b6 7400 swap(curr->vruntime, se->vruntime);
aec0a514 7401 resched_task(rq->curr);
4d78e7b6 7402 }
bf0f6f24 7403
88ec22d3
PZ
7404 se->vruntime -= cfs_rq->min_vruntime;
7405
05fa785c 7406 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7407}
7408
cb469845
SR
7409/*
7410 * Priority of the task has changed. Check to see if we preempt
7411 * the current task.
7412 */
da7a735e
PZ
7413static void
7414prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7415{
da7a735e
PZ
7416 if (!p->se.on_rq)
7417 return;
7418
cb469845
SR
7419 /*
7420 * Reschedule if we are currently running on this runqueue and
7421 * our priority decreased, or if we are not currently running on
7422 * this runqueue and our priority is higher than the current's
7423 */
da7a735e 7424 if (rq->curr == p) {
cb469845
SR
7425 if (p->prio > oldprio)
7426 resched_task(rq->curr);
7427 } else
15afe09b 7428 check_preempt_curr(rq, p, 0);
cb469845
SR
7429}
7430
da7a735e
PZ
7431static void switched_from_fair(struct rq *rq, struct task_struct *p)
7432{
7433 struct sched_entity *se = &p->se;
7434 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7435
7436 /*
791c9e02 7437 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7438 * switched back to the fair class the enqueue_entity(.flags=0) will
7439 * do the right thing.
7440 *
791c9e02
GM
7441 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7442 * have normalized the vruntime, if it's !on_rq, then only when
da7a735e
PZ
7443 * the task is sleeping will it still have non-normalized vruntime.
7444 */
791c9e02 7445 if (!p->on_rq && p->state != TASK_RUNNING) {
da7a735e
PZ
7446 /*
7447 * Fix up our vruntime so that the current sleep doesn't
7448 * cause 'unlimited' sleep bonus.
7449 */
7450 place_entity(cfs_rq, se, 0);
7451 se->vruntime -= cfs_rq->min_vruntime;
7452 }
9ee474f5 7453
141965c7 7454#ifdef CONFIG_SMP
9ee474f5
PT
7455 /*
7456 * Remove our load from contribution when we leave sched_fair
7457 * and ensure we don't carry in an old decay_count if we
7458 * switch back.
7459 */
87e3c8ae
KT
7460 if (se->avg.decay_count) {
7461 __synchronize_entity_decay(se);
7462 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7463 }
7464#endif
da7a735e
PZ
7465}
7466
cb469845
SR
7467/*
7468 * We switched to the sched_fair class.
7469 */
da7a735e 7470static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7471{
eb7a59b2
M
7472 struct sched_entity *se = &p->se;
7473#ifdef CONFIG_FAIR_GROUP_SCHED
7474 /*
7475 * Since the real-depth could have been changed (only FAIR
7476 * class maintain depth value), reset depth properly.
7477 */
7478 se->depth = se->parent ? se->parent->depth + 1 : 0;
7479#endif
7480 if (!se->on_rq)
da7a735e
PZ
7481 return;
7482
cb469845
SR
7483 /*
7484 * We were most likely switched from sched_rt, so
7485 * kick off the schedule if running, otherwise just see
7486 * if we can still preempt the current task.
7487 */
da7a735e 7488 if (rq->curr == p)
cb469845
SR
7489 resched_task(rq->curr);
7490 else
15afe09b 7491 check_preempt_curr(rq, p, 0);
cb469845
SR
7492}
7493
83b699ed
SV
7494/* Account for a task changing its policy or group.
7495 *
7496 * This routine is mostly called to set cfs_rq->curr field when a task
7497 * migrates between groups/classes.
7498 */
7499static void set_curr_task_fair(struct rq *rq)
7500{
7501 struct sched_entity *se = &rq->curr->se;
7502
ec12cb7f
PT
7503 for_each_sched_entity(se) {
7504 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7505
7506 set_next_entity(cfs_rq, se);
7507 /* ensure bandwidth has been allocated on our new cfs_rq */
7508 account_cfs_rq_runtime(cfs_rq, 0);
7509 }
83b699ed
SV
7510}
7511
029632fb
PZ
7512void init_cfs_rq(struct cfs_rq *cfs_rq)
7513{
7514 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7515 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7516#ifndef CONFIG_64BIT
7517 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7518#endif
141965c7 7519#ifdef CONFIG_SMP
9ee474f5 7520 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7521 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7522#endif
029632fb
PZ
7523}
7524
810b3817 7525#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7526static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7527{
fed14d45 7528 struct sched_entity *se = &p->se;
aff3e498 7529 struct cfs_rq *cfs_rq;
fed14d45 7530
b2b5ce02
PZ
7531 /*
7532 * If the task was not on the rq at the time of this cgroup movement
7533 * it must have been asleep, sleeping tasks keep their ->vruntime
7534 * absolute on their old rq until wakeup (needed for the fair sleeper
7535 * bonus in place_entity()).
7536 *
7537 * If it was on the rq, we've just 'preempted' it, which does convert
7538 * ->vruntime to a relative base.
7539 *
7540 * Make sure both cases convert their relative position when migrating
7541 * to another cgroup's rq. This does somewhat interfere with the
7542 * fair sleeper stuff for the first placement, but who cares.
7543 */
7ceff013
DN
7544 /*
7545 * When !on_rq, vruntime of the task has usually NOT been normalized.
7546 * But there are some cases where it has already been normalized:
7547 *
7548 * - Moving a forked child which is waiting for being woken up by
7549 * wake_up_new_task().
62af3783
DN
7550 * - Moving a task which has been woken up by try_to_wake_up() and
7551 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7552 *
7553 * To prevent boost or penalty in the new cfs_rq caused by delta
7554 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7555 */
fed14d45 7556 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7557 on_rq = 1;
7558
b2b5ce02 7559 if (!on_rq)
fed14d45 7560 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7561 set_task_rq(p, task_cpu(p));
fed14d45 7562 se->depth = se->parent ? se->parent->depth + 1 : 0;
aff3e498 7563 if (!on_rq) {
fed14d45
PZ
7564 cfs_rq = cfs_rq_of(se);
7565 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7566#ifdef CONFIG_SMP
7567 /*
7568 * migrate_task_rq_fair() will have removed our previous
7569 * contribution, but we must synchronize for ongoing future
7570 * decay.
7571 */
fed14d45
PZ
7572 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7573 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7574#endif
7575 }
810b3817 7576}
029632fb
PZ
7577
7578void free_fair_sched_group(struct task_group *tg)
7579{
7580 int i;
7581
7582 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7583
7584 for_each_possible_cpu(i) {
7585 if (tg->cfs_rq)
7586 kfree(tg->cfs_rq[i]);
7587 if (tg->se)
7588 kfree(tg->se[i]);
7589 }
7590
7591 kfree(tg->cfs_rq);
7592 kfree(tg->se);
7593}
7594
7595int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7596{
7597 struct cfs_rq *cfs_rq;
7598 struct sched_entity *se;
7599 int i;
7600
7601 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7602 if (!tg->cfs_rq)
7603 goto err;
7604 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7605 if (!tg->se)
7606 goto err;
7607
7608 tg->shares = NICE_0_LOAD;
7609
7610 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7611
7612 for_each_possible_cpu(i) {
7613 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7614 GFP_KERNEL, cpu_to_node(i));
7615 if (!cfs_rq)
7616 goto err;
7617
7618 se = kzalloc_node(sizeof(struct sched_entity),
7619 GFP_KERNEL, cpu_to_node(i));
7620 if (!se)
7621 goto err_free_rq;
7622
7623 init_cfs_rq(cfs_rq);
7624 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7625 }
7626
7627 return 1;
7628
7629err_free_rq:
7630 kfree(cfs_rq);
7631err:
7632 return 0;
7633}
7634
7635void unregister_fair_sched_group(struct task_group *tg, int cpu)
7636{
7637 struct rq *rq = cpu_rq(cpu);
7638 unsigned long flags;
7639
7640 /*
7641 * Only empty task groups can be destroyed; so we can speculatively
7642 * check on_list without danger of it being re-added.
7643 */
7644 if (!tg->cfs_rq[cpu]->on_list)
7645 return;
7646
7647 raw_spin_lock_irqsave(&rq->lock, flags);
7648 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7649 raw_spin_unlock_irqrestore(&rq->lock, flags);
7650}
7651
7652void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7653 struct sched_entity *se, int cpu,
7654 struct sched_entity *parent)
7655{
7656 struct rq *rq = cpu_rq(cpu);
7657
7658 cfs_rq->tg = tg;
7659 cfs_rq->rq = rq;
029632fb
PZ
7660 init_cfs_rq_runtime(cfs_rq);
7661
7662 tg->cfs_rq[cpu] = cfs_rq;
7663 tg->se[cpu] = se;
7664
7665 /* se could be NULL for root_task_group */
7666 if (!se)
7667 return;
7668
fed14d45 7669 if (!parent) {
029632fb 7670 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7671 se->depth = 0;
7672 } else {
029632fb 7673 se->cfs_rq = parent->my_q;
fed14d45
PZ
7674 se->depth = parent->depth + 1;
7675 }
029632fb
PZ
7676
7677 se->my_q = cfs_rq;
0ac9b1c2
PT
7678 /* guarantee group entities always have weight */
7679 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7680 se->parent = parent;
7681}
7682
7683static DEFINE_MUTEX(shares_mutex);
7684
7685int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7686{
7687 int i;
7688 unsigned long flags;
7689
7690 /*
7691 * We can't change the weight of the root cgroup.
7692 */
7693 if (!tg->se[0])
7694 return -EINVAL;
7695
7696 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7697
7698 mutex_lock(&shares_mutex);
7699 if (tg->shares == shares)
7700 goto done;
7701
7702 tg->shares = shares;
7703 for_each_possible_cpu(i) {
7704 struct rq *rq = cpu_rq(i);
7705 struct sched_entity *se;
7706
7707 se = tg->se[i];
7708 /* Propagate contribution to hierarchy */
7709 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7710
7711 /* Possible calls to update_curr() need rq clock */
7712 update_rq_clock(rq);
17bc14b7 7713 for_each_sched_entity(se)
029632fb
PZ
7714 update_cfs_shares(group_cfs_rq(se));
7715 raw_spin_unlock_irqrestore(&rq->lock, flags);
7716 }
7717
7718done:
7719 mutex_unlock(&shares_mutex);
7720 return 0;
7721}
7722#else /* CONFIG_FAIR_GROUP_SCHED */
7723
7724void free_fair_sched_group(struct task_group *tg) { }
7725
7726int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7727{
7728 return 1;
7729}
7730
7731void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7732
7733#endif /* CONFIG_FAIR_GROUP_SCHED */
7734
810b3817 7735
6d686f45 7736static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7737{
7738 struct sched_entity *se = &task->se;
0d721cea
PW
7739 unsigned int rr_interval = 0;
7740
7741 /*
7742 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7743 * idle runqueue:
7744 */
0d721cea 7745 if (rq->cfs.load.weight)
a59f4e07 7746 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7747
7748 return rr_interval;
7749}
7750
bf0f6f24
IM
7751/*
7752 * All the scheduling class methods:
7753 */
029632fb 7754const struct sched_class fair_sched_class = {
5522d5d5 7755 .next = &idle_sched_class,
bf0f6f24
IM
7756 .enqueue_task = enqueue_task_fair,
7757 .dequeue_task = dequeue_task_fair,
7758 .yield_task = yield_task_fair,
d95f4122 7759 .yield_to_task = yield_to_task_fair,
bf0f6f24 7760
2e09bf55 7761 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7762
7763 .pick_next_task = pick_next_task_fair,
7764 .put_prev_task = put_prev_task_fair,
7765
681f3e68 7766#ifdef CONFIG_SMP
4ce72a2c 7767 .select_task_rq = select_task_rq_fair,
0a74bef8 7768 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7769
0bcdcf28
CE
7770 .rq_online = rq_online_fair,
7771 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7772
7773 .task_waking = task_waking_fair,
681f3e68 7774#endif
bf0f6f24 7775
83b699ed 7776 .set_curr_task = set_curr_task_fair,
bf0f6f24 7777 .task_tick = task_tick_fair,
cd29fe6f 7778 .task_fork = task_fork_fair,
cb469845
SR
7779
7780 .prio_changed = prio_changed_fair,
da7a735e 7781 .switched_from = switched_from_fair,
cb469845 7782 .switched_to = switched_to_fair,
810b3817 7783
0d721cea
PW
7784 .get_rr_interval = get_rr_interval_fair,
7785
810b3817 7786#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7787 .task_move_group = task_move_group_fair,
810b3817 7788#endif
bf0f6f24
IM
7789};
7790
7791#ifdef CONFIG_SCHED_DEBUG
029632fb 7792void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7793{
bf0f6f24
IM
7794 struct cfs_rq *cfs_rq;
7795
5973e5b9 7796 rcu_read_lock();
c3b64f1e 7797 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7798 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7799 rcu_read_unlock();
bf0f6f24
IM
7800}
7801#endif
029632fb
PZ
7802
7803__init void init_sched_fair_class(void)
7804{
7805#ifdef CONFIG_SMP
7806 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7807
3451d024 7808#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7809 nohz.next_balance = jiffies;
029632fb 7810 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7811 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7812#endif
7813#endif /* SMP */
7814
7815}
This page took 1.369694 seconds and 5 git commands to generate.