sched: Move all scheduler bits into kernel/sched/
[deliverable/linux.git] / kernel / sched / rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
029632fb
PZ
6#include "sched.h"
7
8#include <linux/slab.h>
9
10static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
11
12struct rt_bandwidth def_rt_bandwidth;
13
14static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
15{
16 struct rt_bandwidth *rt_b =
17 container_of(timer, struct rt_bandwidth, rt_period_timer);
18 ktime_t now;
19 int overrun;
20 int idle = 0;
21
22 for (;;) {
23 now = hrtimer_cb_get_time(timer);
24 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
25
26 if (!overrun)
27 break;
28
29 idle = do_sched_rt_period_timer(rt_b, overrun);
30 }
31
32 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
33}
34
35void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
36{
37 rt_b->rt_period = ns_to_ktime(period);
38 rt_b->rt_runtime = runtime;
39
40 raw_spin_lock_init(&rt_b->rt_runtime_lock);
41
42 hrtimer_init(&rt_b->rt_period_timer,
43 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
44 rt_b->rt_period_timer.function = sched_rt_period_timer;
45}
46
47static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
48{
49 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
50 return;
51
52 if (hrtimer_active(&rt_b->rt_period_timer))
53 return;
54
55 raw_spin_lock(&rt_b->rt_runtime_lock);
56 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
57 raw_spin_unlock(&rt_b->rt_runtime_lock);
58}
59
60void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
61{
62 struct rt_prio_array *array;
63 int i;
64
65 array = &rt_rq->active;
66 for (i = 0; i < MAX_RT_PRIO; i++) {
67 INIT_LIST_HEAD(array->queue + i);
68 __clear_bit(i, array->bitmap);
69 }
70 /* delimiter for bitsearch: */
71 __set_bit(MAX_RT_PRIO, array->bitmap);
72
73#if defined CONFIG_SMP
74 rt_rq->highest_prio.curr = MAX_RT_PRIO;
75 rt_rq->highest_prio.next = MAX_RT_PRIO;
76 rt_rq->rt_nr_migratory = 0;
77 rt_rq->overloaded = 0;
78 plist_head_init(&rt_rq->pushable_tasks);
79#endif
80
81 rt_rq->rt_time = 0;
82 rt_rq->rt_throttled = 0;
83 rt_rq->rt_runtime = 0;
84 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
85}
86
8f48894f 87#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
88static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
89{
90 hrtimer_cancel(&rt_b->rt_period_timer);
91}
8f48894f
PZ
92
93#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
94
398a153b
GH
95static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
96{
8f48894f
PZ
97#ifdef CONFIG_SCHED_DEBUG
98 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
99#endif
398a153b
GH
100 return container_of(rt_se, struct task_struct, rt);
101}
102
398a153b
GH
103static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
104{
105 return rt_rq->rq;
106}
107
108static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
109{
110 return rt_se->rt_rq;
111}
112
029632fb
PZ
113void free_rt_sched_group(struct task_group *tg)
114{
115 int i;
116
117 if (tg->rt_se)
118 destroy_rt_bandwidth(&tg->rt_bandwidth);
119
120 for_each_possible_cpu(i) {
121 if (tg->rt_rq)
122 kfree(tg->rt_rq[i]);
123 if (tg->rt_se)
124 kfree(tg->rt_se[i]);
125 }
126
127 kfree(tg->rt_rq);
128 kfree(tg->rt_se);
129}
130
131void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
132 struct sched_rt_entity *rt_se, int cpu,
133 struct sched_rt_entity *parent)
134{
135 struct rq *rq = cpu_rq(cpu);
136
137 rt_rq->highest_prio.curr = MAX_RT_PRIO;
138 rt_rq->rt_nr_boosted = 0;
139 rt_rq->rq = rq;
140 rt_rq->tg = tg;
141
142 tg->rt_rq[cpu] = rt_rq;
143 tg->rt_se[cpu] = rt_se;
144
145 if (!rt_se)
146 return;
147
148 if (!parent)
149 rt_se->rt_rq = &rq->rt;
150 else
151 rt_se->rt_rq = parent->my_q;
152
153 rt_se->my_q = rt_rq;
154 rt_se->parent = parent;
155 INIT_LIST_HEAD(&rt_se->run_list);
156}
157
158int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
159{
160 struct rt_rq *rt_rq;
161 struct sched_rt_entity *rt_se;
162 int i;
163
164 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
165 if (!tg->rt_rq)
166 goto err;
167 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
168 if (!tg->rt_se)
169 goto err;
170
171 init_rt_bandwidth(&tg->rt_bandwidth,
172 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
173
174 for_each_possible_cpu(i) {
175 rt_rq = kzalloc_node(sizeof(struct rt_rq),
176 GFP_KERNEL, cpu_to_node(i));
177 if (!rt_rq)
178 goto err;
179
180 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
181 GFP_KERNEL, cpu_to_node(i));
182 if (!rt_se)
183 goto err_free_rq;
184
185 init_rt_rq(rt_rq, cpu_rq(i));
186 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
187 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
188 }
189
190 return 1;
191
192err_free_rq:
193 kfree(rt_rq);
194err:
195 return 0;
196}
197
398a153b
GH
198#else /* CONFIG_RT_GROUP_SCHED */
199
a1ba4d8b
PZ
200#define rt_entity_is_task(rt_se) (1)
201
8f48894f
PZ
202static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
203{
204 return container_of(rt_se, struct task_struct, rt);
205}
206
398a153b
GH
207static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
208{
209 return container_of(rt_rq, struct rq, rt);
210}
211
212static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
213{
214 struct task_struct *p = rt_task_of(rt_se);
215 struct rq *rq = task_rq(p);
216
217 return &rq->rt;
218}
219
029632fb
PZ
220void free_rt_sched_group(struct task_group *tg) { }
221
222int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
223{
224 return 1;
225}
398a153b
GH
226#endif /* CONFIG_RT_GROUP_SCHED */
227
4fd29176 228#ifdef CONFIG_SMP
84de4274 229
637f5085 230static inline int rt_overloaded(struct rq *rq)
4fd29176 231{
637f5085 232 return atomic_read(&rq->rd->rto_count);
4fd29176 233}
84de4274 234
4fd29176
SR
235static inline void rt_set_overload(struct rq *rq)
236{
1f11eb6a
GH
237 if (!rq->online)
238 return;
239
c6c4927b 240 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
241 /*
242 * Make sure the mask is visible before we set
243 * the overload count. That is checked to determine
244 * if we should look at the mask. It would be a shame
245 * if we looked at the mask, but the mask was not
246 * updated yet.
247 */
248 wmb();
637f5085 249 atomic_inc(&rq->rd->rto_count);
4fd29176 250}
84de4274 251
4fd29176
SR
252static inline void rt_clear_overload(struct rq *rq)
253{
1f11eb6a
GH
254 if (!rq->online)
255 return;
256
4fd29176 257 /* the order here really doesn't matter */
637f5085 258 atomic_dec(&rq->rd->rto_count);
c6c4927b 259 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 260}
73fe6aae 261
398a153b 262static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 263{
a1ba4d8b 264 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
265 if (!rt_rq->overloaded) {
266 rt_set_overload(rq_of_rt_rq(rt_rq));
267 rt_rq->overloaded = 1;
cdc8eb98 268 }
398a153b
GH
269 } else if (rt_rq->overloaded) {
270 rt_clear_overload(rq_of_rt_rq(rt_rq));
271 rt_rq->overloaded = 0;
637f5085 272 }
73fe6aae 273}
4fd29176 274
398a153b
GH
275static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
276{
a1ba4d8b
PZ
277 if (!rt_entity_is_task(rt_se))
278 return;
279
280 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
281
282 rt_rq->rt_nr_total++;
398a153b
GH
283 if (rt_se->nr_cpus_allowed > 1)
284 rt_rq->rt_nr_migratory++;
285
286 update_rt_migration(rt_rq);
287}
288
289static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
290{
a1ba4d8b
PZ
291 if (!rt_entity_is_task(rt_se))
292 return;
293
294 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
295
296 rt_rq->rt_nr_total--;
398a153b
GH
297 if (rt_se->nr_cpus_allowed > 1)
298 rt_rq->rt_nr_migratory--;
299
300 update_rt_migration(rt_rq);
301}
302
5181f4a4
SR
303static inline int has_pushable_tasks(struct rq *rq)
304{
305 return !plist_head_empty(&rq->rt.pushable_tasks);
306}
307
917b627d
GH
308static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
309{
310 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
311 plist_node_init(&p->pushable_tasks, p->prio);
312 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
313
314 /* Update the highest prio pushable task */
315 if (p->prio < rq->rt.highest_prio.next)
316 rq->rt.highest_prio.next = p->prio;
917b627d
GH
317}
318
319static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
320{
321 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 322
5181f4a4
SR
323 /* Update the new highest prio pushable task */
324 if (has_pushable_tasks(rq)) {
325 p = plist_first_entry(&rq->rt.pushable_tasks,
326 struct task_struct, pushable_tasks);
327 rq->rt.highest_prio.next = p->prio;
328 } else
329 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
330}
331
917b627d
GH
332#else
333
ceacc2c1 334static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 335{
6f505b16
PZ
336}
337
ceacc2c1
PZ
338static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
339{
340}
341
b07430ac 342static inline
ceacc2c1
PZ
343void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
344{
345}
346
398a153b 347static inline
ceacc2c1
PZ
348void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
349{
350}
917b627d 351
4fd29176
SR
352#endif /* CONFIG_SMP */
353
6f505b16
PZ
354static inline int on_rt_rq(struct sched_rt_entity *rt_se)
355{
356 return !list_empty(&rt_se->run_list);
357}
358
052f1dc7 359#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 360
9f0c1e56 361static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
362{
363 if (!rt_rq->tg)
9f0c1e56 364 return RUNTIME_INF;
6f505b16 365
ac086bc2
PZ
366 return rt_rq->rt_runtime;
367}
368
369static inline u64 sched_rt_period(struct rt_rq *rt_rq)
370{
371 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
372}
373
ec514c48
CX
374typedef struct task_group *rt_rq_iter_t;
375
1c09ab0d
YZ
376static inline struct task_group *next_task_group(struct task_group *tg)
377{
378 do {
379 tg = list_entry_rcu(tg->list.next,
380 typeof(struct task_group), list);
381 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
382
383 if (&tg->list == &task_groups)
384 tg = NULL;
385
386 return tg;
387}
388
389#define for_each_rt_rq(rt_rq, iter, rq) \
390 for (iter = container_of(&task_groups, typeof(*iter), list); \
391 (iter = next_task_group(iter)) && \
392 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 393
3d4b47b4
PZ
394static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
395{
396 list_add_rcu(&rt_rq->leaf_rt_rq_list,
397 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
398}
399
400static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
401{
402 list_del_rcu(&rt_rq->leaf_rt_rq_list);
403}
404
6f505b16 405#define for_each_leaf_rt_rq(rt_rq, rq) \
80f40ee4 406 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
6f505b16 407
6f505b16
PZ
408#define for_each_sched_rt_entity(rt_se) \
409 for (; rt_se; rt_se = rt_se->parent)
410
411static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
412{
413 return rt_se->my_q;
414}
415
37dad3fc 416static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
417static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
418
9f0c1e56 419static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 420{
f6121f4f 421 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
74b7eb58
YZ
422 struct sched_rt_entity *rt_se;
423
0c3b9168
BS
424 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
425
426 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 427
f6121f4f
DF
428 if (rt_rq->rt_nr_running) {
429 if (rt_se && !on_rt_rq(rt_se))
37dad3fc 430 enqueue_rt_entity(rt_se, false);
e864c499 431 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 432 resched_task(curr);
6f505b16
PZ
433 }
434}
435
9f0c1e56 436static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 437{
74b7eb58 438 struct sched_rt_entity *rt_se;
0c3b9168 439 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 440
0c3b9168 441 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16
PZ
442
443 if (rt_se && on_rt_rq(rt_se))
444 dequeue_rt_entity(rt_se);
445}
446
23b0fdfc
PZ
447static inline int rt_rq_throttled(struct rt_rq *rt_rq)
448{
449 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
450}
451
452static int rt_se_boosted(struct sched_rt_entity *rt_se)
453{
454 struct rt_rq *rt_rq = group_rt_rq(rt_se);
455 struct task_struct *p;
456
457 if (rt_rq)
458 return !!rt_rq->rt_nr_boosted;
459
460 p = rt_task_of(rt_se);
461 return p->prio != p->normal_prio;
462}
463
d0b27fa7 464#ifdef CONFIG_SMP
c6c4927b 465static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7
PZ
466{
467 return cpu_rq(smp_processor_id())->rd->span;
468}
6f505b16 469#else
c6c4927b 470static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 471{
c6c4927b 472 return cpu_online_mask;
d0b27fa7
PZ
473}
474#endif
6f505b16 475
d0b27fa7
PZ
476static inline
477struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 478{
d0b27fa7
PZ
479 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
480}
9f0c1e56 481
ac086bc2
PZ
482static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
483{
484 return &rt_rq->tg->rt_bandwidth;
485}
486
55e12e5e 487#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
488
489static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
490{
ac086bc2
PZ
491 return rt_rq->rt_runtime;
492}
493
494static inline u64 sched_rt_period(struct rt_rq *rt_rq)
495{
496 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
497}
498
ec514c48
CX
499typedef struct rt_rq *rt_rq_iter_t;
500
501#define for_each_rt_rq(rt_rq, iter, rq) \
502 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
503
3d4b47b4
PZ
504static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
505{
506}
507
508static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
509{
510}
511
6f505b16
PZ
512#define for_each_leaf_rt_rq(rt_rq, rq) \
513 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
514
6f505b16
PZ
515#define for_each_sched_rt_entity(rt_se) \
516 for (; rt_se; rt_se = NULL)
517
518static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
519{
520 return NULL;
521}
522
9f0c1e56 523static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 524{
f3ade837
JB
525 if (rt_rq->rt_nr_running)
526 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
527}
528
9f0c1e56 529static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
530{
531}
532
23b0fdfc
PZ
533static inline int rt_rq_throttled(struct rt_rq *rt_rq)
534{
535 return rt_rq->rt_throttled;
536}
d0b27fa7 537
c6c4927b 538static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 539{
c6c4927b 540 return cpu_online_mask;
d0b27fa7
PZ
541}
542
543static inline
544struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
545{
546 return &cpu_rq(cpu)->rt;
547}
548
ac086bc2
PZ
549static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
550{
551 return &def_rt_bandwidth;
552}
553
55e12e5e 554#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 555
ac086bc2 556#ifdef CONFIG_SMP
78333cdd
PZ
557/*
558 * We ran out of runtime, see if we can borrow some from our neighbours.
559 */
b79f3833 560static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
561{
562 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
563 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
564 int i, weight, more = 0;
565 u64 rt_period;
566
c6c4927b 567 weight = cpumask_weight(rd->span);
ac086bc2 568
0986b11b 569 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 570 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 571 for_each_cpu(i, rd->span) {
ac086bc2
PZ
572 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
573 s64 diff;
574
575 if (iter == rt_rq)
576 continue;
577
0986b11b 578 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
579 /*
580 * Either all rqs have inf runtime and there's nothing to steal
581 * or __disable_runtime() below sets a specific rq to inf to
582 * indicate its been disabled and disalow stealing.
583 */
7def2be1
PZ
584 if (iter->rt_runtime == RUNTIME_INF)
585 goto next;
586
78333cdd
PZ
587 /*
588 * From runqueues with spare time, take 1/n part of their
589 * spare time, but no more than our period.
590 */
ac086bc2
PZ
591 diff = iter->rt_runtime - iter->rt_time;
592 if (diff > 0) {
58838cf3 593 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
594 if (rt_rq->rt_runtime + diff > rt_period)
595 diff = rt_period - rt_rq->rt_runtime;
596 iter->rt_runtime -= diff;
597 rt_rq->rt_runtime += diff;
598 more = 1;
599 if (rt_rq->rt_runtime == rt_period) {
0986b11b 600 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
601 break;
602 }
603 }
7def2be1 604next:
0986b11b 605 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 606 }
0986b11b 607 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
608
609 return more;
610}
7def2be1 611
78333cdd
PZ
612/*
613 * Ensure this RQ takes back all the runtime it lend to its neighbours.
614 */
7def2be1
PZ
615static void __disable_runtime(struct rq *rq)
616{
617 struct root_domain *rd = rq->rd;
ec514c48 618 rt_rq_iter_t iter;
7def2be1
PZ
619 struct rt_rq *rt_rq;
620
621 if (unlikely(!scheduler_running))
622 return;
623
ec514c48 624 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
625 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
626 s64 want;
627 int i;
628
0986b11b
TG
629 raw_spin_lock(&rt_b->rt_runtime_lock);
630 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
631 /*
632 * Either we're all inf and nobody needs to borrow, or we're
633 * already disabled and thus have nothing to do, or we have
634 * exactly the right amount of runtime to take out.
635 */
7def2be1
PZ
636 if (rt_rq->rt_runtime == RUNTIME_INF ||
637 rt_rq->rt_runtime == rt_b->rt_runtime)
638 goto balanced;
0986b11b 639 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 640
78333cdd
PZ
641 /*
642 * Calculate the difference between what we started out with
643 * and what we current have, that's the amount of runtime
644 * we lend and now have to reclaim.
645 */
7def2be1
PZ
646 want = rt_b->rt_runtime - rt_rq->rt_runtime;
647
78333cdd
PZ
648 /*
649 * Greedy reclaim, take back as much as we can.
650 */
c6c4927b 651 for_each_cpu(i, rd->span) {
7def2be1
PZ
652 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
653 s64 diff;
654
78333cdd
PZ
655 /*
656 * Can't reclaim from ourselves or disabled runqueues.
657 */
f1679d08 658 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
659 continue;
660
0986b11b 661 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
662 if (want > 0) {
663 diff = min_t(s64, iter->rt_runtime, want);
664 iter->rt_runtime -= diff;
665 want -= diff;
666 } else {
667 iter->rt_runtime -= want;
668 want -= want;
669 }
0986b11b 670 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
671
672 if (!want)
673 break;
674 }
675
0986b11b 676 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
677 /*
678 * We cannot be left wanting - that would mean some runtime
679 * leaked out of the system.
680 */
7def2be1
PZ
681 BUG_ON(want);
682balanced:
78333cdd
PZ
683 /*
684 * Disable all the borrow logic by pretending we have inf
685 * runtime - in which case borrowing doesn't make sense.
686 */
7def2be1 687 rt_rq->rt_runtime = RUNTIME_INF;
0986b11b
TG
688 raw_spin_unlock(&rt_rq->rt_runtime_lock);
689 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
690 }
691}
692
693static void disable_runtime(struct rq *rq)
694{
695 unsigned long flags;
696
05fa785c 697 raw_spin_lock_irqsave(&rq->lock, flags);
7def2be1 698 __disable_runtime(rq);
05fa785c 699 raw_spin_unlock_irqrestore(&rq->lock, flags);
7def2be1
PZ
700}
701
702static void __enable_runtime(struct rq *rq)
703{
ec514c48 704 rt_rq_iter_t iter;
7def2be1
PZ
705 struct rt_rq *rt_rq;
706
707 if (unlikely(!scheduler_running))
708 return;
709
78333cdd
PZ
710 /*
711 * Reset each runqueue's bandwidth settings
712 */
ec514c48 713 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
714 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
715
0986b11b
TG
716 raw_spin_lock(&rt_b->rt_runtime_lock);
717 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
718 rt_rq->rt_runtime = rt_b->rt_runtime;
719 rt_rq->rt_time = 0;
baf25731 720 rt_rq->rt_throttled = 0;
0986b11b
TG
721 raw_spin_unlock(&rt_rq->rt_runtime_lock);
722 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
723 }
724}
725
726static void enable_runtime(struct rq *rq)
727{
728 unsigned long flags;
729
05fa785c 730 raw_spin_lock_irqsave(&rq->lock, flags);
7def2be1 731 __enable_runtime(rq);
05fa785c 732 raw_spin_unlock_irqrestore(&rq->lock, flags);
7def2be1
PZ
733}
734
029632fb
PZ
735int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
736{
737 int cpu = (int)(long)hcpu;
738
739 switch (action) {
740 case CPU_DOWN_PREPARE:
741 case CPU_DOWN_PREPARE_FROZEN:
742 disable_runtime(cpu_rq(cpu));
743 return NOTIFY_OK;
744
745 case CPU_DOWN_FAILED:
746 case CPU_DOWN_FAILED_FROZEN:
747 case CPU_ONLINE:
748 case CPU_ONLINE_FROZEN:
749 enable_runtime(cpu_rq(cpu));
750 return NOTIFY_OK;
751
752 default:
753 return NOTIFY_DONE;
754 }
755}
756
eff6549b
PZ
757static int balance_runtime(struct rt_rq *rt_rq)
758{
759 int more = 0;
760
4a6184ce
PZ
761 if (!sched_feat(RT_RUNTIME_SHARE))
762 return more;
763
eff6549b 764 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 765 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 766 more = do_balance_runtime(rt_rq);
0986b11b 767 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
768 }
769
770 return more;
771}
55e12e5e 772#else /* !CONFIG_SMP */
eff6549b
PZ
773static inline int balance_runtime(struct rt_rq *rt_rq)
774{
775 return 0;
776}
55e12e5e 777#endif /* CONFIG_SMP */
ac086bc2 778
eff6549b
PZ
779static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
780{
781 int i, idle = 1;
c6c4927b 782 const struct cpumask *span;
eff6549b 783
0b148fa0 784 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
eff6549b
PZ
785 return 1;
786
787 span = sched_rt_period_mask();
c6c4927b 788 for_each_cpu(i, span) {
eff6549b
PZ
789 int enqueue = 0;
790 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
791 struct rq *rq = rq_of_rt_rq(rt_rq);
792
05fa785c 793 raw_spin_lock(&rq->lock);
eff6549b
PZ
794 if (rt_rq->rt_time) {
795 u64 runtime;
796
0986b11b 797 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
798 if (rt_rq->rt_throttled)
799 balance_runtime(rt_rq);
800 runtime = rt_rq->rt_runtime;
801 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
802 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
803 rt_rq->rt_throttled = 0;
804 enqueue = 1;
61eadef6
MG
805
806 /*
807 * Force a clock update if the CPU was idle,
808 * lest wakeup -> unthrottle time accumulate.
809 */
810 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
811 rq->skip_clock_update = -1;
eff6549b
PZ
812 }
813 if (rt_rq->rt_time || rt_rq->rt_nr_running)
814 idle = 0;
0986b11b 815 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 816 } else if (rt_rq->rt_nr_running) {
6c3df255 817 idle = 0;
0c3b9168
BS
818 if (!rt_rq_throttled(rt_rq))
819 enqueue = 1;
820 }
eff6549b
PZ
821
822 if (enqueue)
823 sched_rt_rq_enqueue(rt_rq);
05fa785c 824 raw_spin_unlock(&rq->lock);
eff6549b
PZ
825 }
826
827 return idle;
828}
ac086bc2 829
6f505b16
PZ
830static inline int rt_se_prio(struct sched_rt_entity *rt_se)
831{
052f1dc7 832#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
833 struct rt_rq *rt_rq = group_rt_rq(rt_se);
834
835 if (rt_rq)
e864c499 836 return rt_rq->highest_prio.curr;
6f505b16
PZ
837#endif
838
839 return rt_task_of(rt_se)->prio;
840}
841
9f0c1e56 842static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 843{
9f0c1e56 844 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 845
fa85ae24 846 if (rt_rq->rt_throttled)
23b0fdfc 847 return rt_rq_throttled(rt_rq);
fa85ae24 848
ac086bc2
PZ
849 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
850 return 0;
851
b79f3833
PZ
852 balance_runtime(rt_rq);
853 runtime = sched_rt_runtime(rt_rq);
854 if (runtime == RUNTIME_INF)
855 return 0;
ac086bc2 856
9f0c1e56 857 if (rt_rq->rt_time > runtime) {
6f505b16 858 rt_rq->rt_throttled = 1;
1c83437e 859 printk_once(KERN_WARNING "sched: RT throttling activated\n");
23b0fdfc 860 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 861 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
862 return 1;
863 }
fa85ae24
PZ
864 }
865
866 return 0;
867}
868
bb44e5d1
IM
869/*
870 * Update the current task's runtime statistics. Skip current tasks that
871 * are not in our scheduling class.
872 */
a9957449 873static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
874{
875 struct task_struct *curr = rq->curr;
6f505b16
PZ
876 struct sched_rt_entity *rt_se = &curr->rt;
877 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
878 u64 delta_exec;
879
06c3bc65 880 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
881 return;
882
305e6835 883 delta_exec = rq->clock_task - curr->se.exec_start;
bb44e5d1
IM
884 if (unlikely((s64)delta_exec < 0))
885 delta_exec = 0;
6cfb0d5d 886
41acab88 887 schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
888
889 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
890 account_group_exec_runtime(curr, delta_exec);
891
305e6835 892 curr->se.exec_start = rq->clock_task;
d842de87 893 cpuacct_charge(curr, delta_exec);
fa85ae24 894
e9e9250b
PZ
895 sched_rt_avg_update(rq, delta_exec);
896
0b148fa0
PZ
897 if (!rt_bandwidth_enabled())
898 return;
899
354d60c2
DG
900 for_each_sched_rt_entity(rt_se) {
901 rt_rq = rt_rq_of_se(rt_se);
902
cc2991cf 903 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 904 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
905 rt_rq->rt_time += delta_exec;
906 if (sched_rt_runtime_exceeded(rt_rq))
907 resched_task(curr);
0986b11b 908 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 909 }
354d60c2 910 }
bb44e5d1
IM
911}
912
398a153b 913#if defined CONFIG_SMP
e864c499 914
398a153b
GH
915static void
916inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 917{
4d984277 918 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 919
5181f4a4
SR
920 if (rq->online && prio < prev_prio)
921 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 922}
73fe6aae 923
398a153b
GH
924static void
925dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
926{
927 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 928
398a153b
GH
929 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
930 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
931}
932
398a153b
GH
933#else /* CONFIG_SMP */
934
6f505b16 935static inline
398a153b
GH
936void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
937static inline
938void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
939
940#endif /* CONFIG_SMP */
6e0534f2 941
052f1dc7 942#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
943static void
944inc_rt_prio(struct rt_rq *rt_rq, int prio)
945{
946 int prev_prio = rt_rq->highest_prio.curr;
947
948 if (prio < prev_prio)
949 rt_rq->highest_prio.curr = prio;
950
951 inc_rt_prio_smp(rt_rq, prio, prev_prio);
952}
953
954static void
955dec_rt_prio(struct rt_rq *rt_rq, int prio)
956{
957 int prev_prio = rt_rq->highest_prio.curr;
958
6f505b16 959 if (rt_rq->rt_nr_running) {
764a9d6f 960
398a153b 961 WARN_ON(prio < prev_prio);
764a9d6f 962
e864c499 963 /*
398a153b
GH
964 * This may have been our highest task, and therefore
965 * we may have some recomputation to do
e864c499 966 */
398a153b 967 if (prio == prev_prio) {
e864c499
GH
968 struct rt_prio_array *array = &rt_rq->active;
969
970 rt_rq->highest_prio.curr =
764a9d6f 971 sched_find_first_bit(array->bitmap);
e864c499
GH
972 }
973
764a9d6f 974 } else
e864c499 975 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 976
398a153b
GH
977 dec_rt_prio_smp(rt_rq, prio, prev_prio);
978}
1f11eb6a 979
398a153b
GH
980#else
981
982static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
983static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
984
985#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 986
052f1dc7 987#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
988
989static void
990inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
991{
992 if (rt_se_boosted(rt_se))
993 rt_rq->rt_nr_boosted++;
994
995 if (rt_rq->tg)
996 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
997}
998
999static void
1000dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1001{
23b0fdfc
PZ
1002 if (rt_se_boosted(rt_se))
1003 rt_rq->rt_nr_boosted--;
1004
1005 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
1006}
1007
1008#else /* CONFIG_RT_GROUP_SCHED */
1009
1010static void
1011inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1012{
1013 start_rt_bandwidth(&def_rt_bandwidth);
1014}
1015
1016static inline
1017void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1018
1019#endif /* CONFIG_RT_GROUP_SCHED */
1020
1021static inline
1022void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1023{
1024 int prio = rt_se_prio(rt_se);
1025
1026 WARN_ON(!rt_prio(prio));
1027 rt_rq->rt_nr_running++;
1028
1029 inc_rt_prio(rt_rq, prio);
1030 inc_rt_migration(rt_se, rt_rq);
1031 inc_rt_group(rt_se, rt_rq);
1032}
1033
1034static inline
1035void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1036{
1037 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1038 WARN_ON(!rt_rq->rt_nr_running);
1039 rt_rq->rt_nr_running--;
1040
1041 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1042 dec_rt_migration(rt_se, rt_rq);
1043 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1044}
1045
37dad3fc 1046static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 1047{
6f505b16
PZ
1048 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1049 struct rt_prio_array *array = &rt_rq->active;
1050 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1051 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1052
ad2a3f13
PZ
1053 /*
1054 * Don't enqueue the group if its throttled, or when empty.
1055 * The latter is a consequence of the former when a child group
1056 * get throttled and the current group doesn't have any other
1057 * active members.
1058 */
1059 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 1060 return;
63489e45 1061
3d4b47b4
PZ
1062 if (!rt_rq->rt_nr_running)
1063 list_add_leaf_rt_rq(rt_rq);
1064
37dad3fc
TG
1065 if (head)
1066 list_add(&rt_se->run_list, queue);
1067 else
1068 list_add_tail(&rt_se->run_list, queue);
6f505b16 1069 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 1070
6f505b16
PZ
1071 inc_rt_tasks(rt_se, rt_rq);
1072}
1073
ad2a3f13 1074static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
1075{
1076 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1077 struct rt_prio_array *array = &rt_rq->active;
1078
1079 list_del_init(&rt_se->run_list);
1080 if (list_empty(array->queue + rt_se_prio(rt_se)))
1081 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1082
1083 dec_rt_tasks(rt_se, rt_rq);
3d4b47b4
PZ
1084 if (!rt_rq->rt_nr_running)
1085 list_del_leaf_rt_rq(rt_rq);
6f505b16
PZ
1086}
1087
1088/*
1089 * Because the prio of an upper entry depends on the lower
1090 * entries, we must remove entries top - down.
6f505b16 1091 */
ad2a3f13 1092static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 1093{
ad2a3f13 1094 struct sched_rt_entity *back = NULL;
6f505b16 1095
58d6c2d7
PZ
1096 for_each_sched_rt_entity(rt_se) {
1097 rt_se->back = back;
1098 back = rt_se;
1099 }
1100
1101 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1102 if (on_rt_rq(rt_se))
ad2a3f13
PZ
1103 __dequeue_rt_entity(rt_se);
1104 }
1105}
1106
37dad3fc 1107static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13
PZ
1108{
1109 dequeue_rt_stack(rt_se);
1110 for_each_sched_rt_entity(rt_se)
37dad3fc 1111 __enqueue_rt_entity(rt_se, head);
ad2a3f13
PZ
1112}
1113
1114static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1115{
1116 dequeue_rt_stack(rt_se);
1117
1118 for_each_sched_rt_entity(rt_se) {
1119 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1120
1121 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 1122 __enqueue_rt_entity(rt_se, false);
58d6c2d7 1123 }
bb44e5d1
IM
1124}
1125
1126/*
1127 * Adding/removing a task to/from a priority array:
1128 */
ea87bb78 1129static void
371fd7e7 1130enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1131{
1132 struct sched_rt_entity *rt_se = &p->rt;
1133
371fd7e7 1134 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1135 rt_se->timeout = 0;
1136
371fd7e7 1137 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 1138
917b627d
GH
1139 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
1140 enqueue_pushable_task(rq, p);
953bfcd1
PT
1141
1142 inc_nr_running(rq);
6f505b16
PZ
1143}
1144
371fd7e7 1145static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1146{
6f505b16 1147 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1148
f1e14ef6 1149 update_curr_rt(rq);
ad2a3f13 1150 dequeue_rt_entity(rt_se);
c09595f6 1151
917b627d 1152 dequeue_pushable_task(rq, p);
953bfcd1
PT
1153
1154 dec_nr_running(rq);
bb44e5d1
IM
1155}
1156
1157/*
60686317
RW
1158 * Put task to the head or the end of the run list without the overhead of
1159 * dequeue followed by enqueue.
bb44e5d1 1160 */
7ebefa8c
DA
1161static void
1162requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1163{
1cdad715 1164 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1165 struct rt_prio_array *array = &rt_rq->active;
1166 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1167
1168 if (head)
1169 list_move(&rt_se->run_list, queue);
1170 else
1171 list_move_tail(&rt_se->run_list, queue);
1cdad715 1172 }
6f505b16
PZ
1173}
1174
7ebefa8c 1175static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1176{
6f505b16
PZ
1177 struct sched_rt_entity *rt_se = &p->rt;
1178 struct rt_rq *rt_rq;
bb44e5d1 1179
6f505b16
PZ
1180 for_each_sched_rt_entity(rt_se) {
1181 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1182 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1183 }
bb44e5d1
IM
1184}
1185
6f505b16 1186static void yield_task_rt(struct rq *rq)
bb44e5d1 1187{
7ebefa8c 1188 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1189}
1190
e7693a36 1191#ifdef CONFIG_SMP
318e0893
GH
1192static int find_lowest_rq(struct task_struct *task);
1193
0017d735 1194static int
7608dec2 1195select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
e7693a36 1196{
7608dec2
PZ
1197 struct task_struct *curr;
1198 struct rq *rq;
1199 int cpu;
1200
7608dec2 1201 cpu = task_cpu(p);
c37495fd
SR
1202
1203 /* For anything but wake ups, just return the task_cpu */
1204 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1205 goto out;
1206
7608dec2
PZ
1207 rq = cpu_rq(cpu);
1208
1209 rcu_read_lock();
1210 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1211
318e0893 1212 /*
7608dec2 1213 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1214 * try to see if we can wake this RT task up on another
1215 * runqueue. Otherwise simply start this RT task
1216 * on its current runqueue.
1217 *
43fa5460
SR
1218 * We want to avoid overloading runqueues. If the woken
1219 * task is a higher priority, then it will stay on this CPU
1220 * and the lower prio task should be moved to another CPU.
1221 * Even though this will probably make the lower prio task
1222 * lose its cache, we do not want to bounce a higher task
1223 * around just because it gave up its CPU, perhaps for a
1224 * lock?
1225 *
1226 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1227 *
1228 * Otherwise, just let it ride on the affined RQ and the
1229 * post-schedule router will push the preempted task away
1230 *
1231 * This test is optimistic, if we get it wrong the load-balancer
1232 * will have to sort it out.
318e0893 1233 */
7608dec2
PZ
1234 if (curr && unlikely(rt_task(curr)) &&
1235 (curr->rt.nr_cpus_allowed < 2 ||
3be209a8 1236 curr->prio <= p->prio) &&
6f505b16 1237 (p->rt.nr_cpus_allowed > 1)) {
7608dec2 1238 int target = find_lowest_rq(p);
318e0893 1239
7608dec2
PZ
1240 if (target != -1)
1241 cpu = target;
318e0893 1242 }
7608dec2 1243 rcu_read_unlock();
318e0893 1244
c37495fd 1245out:
7608dec2 1246 return cpu;
e7693a36 1247}
7ebefa8c
DA
1248
1249static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1250{
7ebefa8c
DA
1251 if (rq->curr->rt.nr_cpus_allowed == 1)
1252 return;
1253
24600ce8 1254 if (p->rt.nr_cpus_allowed != 1
13b8bd0a
RR
1255 && cpupri_find(&rq->rd->cpupri, p, NULL))
1256 return;
24600ce8 1257
13b8bd0a
RR
1258 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1259 return;
7ebefa8c
DA
1260
1261 /*
1262 * There appears to be other cpus that can accept
1263 * current and none to run 'p', so lets reschedule
1264 * to try and push current away:
1265 */
1266 requeue_task_rt(rq, p, 1);
1267 resched_task(rq->curr);
1268}
1269
e7693a36
GH
1270#endif /* CONFIG_SMP */
1271
bb44e5d1
IM
1272/*
1273 * Preempt the current task with a newly woken task if needed:
1274 */
7d478721 1275static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1276{
45c01e82 1277 if (p->prio < rq->curr->prio) {
bb44e5d1 1278 resched_task(rq->curr);
45c01e82
GH
1279 return;
1280 }
1281
1282#ifdef CONFIG_SMP
1283 /*
1284 * If:
1285 *
1286 * - the newly woken task is of equal priority to the current task
1287 * - the newly woken task is non-migratable while current is migratable
1288 * - current will be preempted on the next reschedule
1289 *
1290 * we should check to see if current can readily move to a different
1291 * cpu. If so, we will reschedule to allow the push logic to try
1292 * to move current somewhere else, making room for our non-migratable
1293 * task.
1294 */
8dd0de8b 1295 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1296 check_preempt_equal_prio(rq, p);
45c01e82 1297#endif
bb44e5d1
IM
1298}
1299
6f505b16
PZ
1300static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1301 struct rt_rq *rt_rq)
bb44e5d1 1302{
6f505b16
PZ
1303 struct rt_prio_array *array = &rt_rq->active;
1304 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1305 struct list_head *queue;
1306 int idx;
1307
1308 idx = sched_find_first_bit(array->bitmap);
6f505b16 1309 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1310
1311 queue = array->queue + idx;
6f505b16 1312 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1313
6f505b16
PZ
1314 return next;
1315}
bb44e5d1 1316
917b627d 1317static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1318{
1319 struct sched_rt_entity *rt_se;
1320 struct task_struct *p;
1321 struct rt_rq *rt_rq;
bb44e5d1 1322
6f505b16
PZ
1323 rt_rq = &rq->rt;
1324
8e54a2c0 1325 if (!rt_rq->rt_nr_running)
6f505b16
PZ
1326 return NULL;
1327
23b0fdfc 1328 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
1329 return NULL;
1330
1331 do {
1332 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1333 BUG_ON(!rt_se);
6f505b16
PZ
1334 rt_rq = group_rt_rq(rt_se);
1335 } while (rt_rq);
1336
1337 p = rt_task_of(rt_se);
305e6835 1338 p->se.exec_start = rq->clock_task;
917b627d
GH
1339
1340 return p;
1341}
1342
1343static struct task_struct *pick_next_task_rt(struct rq *rq)
1344{
1345 struct task_struct *p = _pick_next_task_rt(rq);
1346
1347 /* The running task is never eligible for pushing */
1348 if (p)
1349 dequeue_pushable_task(rq, p);
1350
bcf08df3 1351#ifdef CONFIG_SMP
3f029d3c
GH
1352 /*
1353 * We detect this state here so that we can avoid taking the RQ
1354 * lock again later if there is no need to push
1355 */
1356 rq->post_schedule = has_pushable_tasks(rq);
bcf08df3 1357#endif
3f029d3c 1358
6f505b16 1359 return p;
bb44e5d1
IM
1360}
1361
31ee529c 1362static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1363{
f1e14ef6 1364 update_curr_rt(rq);
917b627d
GH
1365
1366 /*
1367 * The previous task needs to be made eligible for pushing
1368 * if it is still active
1369 */
fd2f4419 1370 if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
917b627d 1371 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1372}
1373
681f3e68 1374#ifdef CONFIG_SMP
6f505b16 1375
e8fa1362
SR
1376/* Only try algorithms three times */
1377#define RT_MAX_TRIES 3
1378
f65eda4f
SR
1379static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1380{
1381 if (!task_running(rq, p) &&
fa17b507 1382 (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
6f505b16 1383 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
1384 return 1;
1385 return 0;
1386}
1387
e8fa1362 1388/* Return the second highest RT task, NULL otherwise */
79064fbf 1389static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 1390{
6f505b16
PZ
1391 struct task_struct *next = NULL;
1392 struct sched_rt_entity *rt_se;
1393 struct rt_prio_array *array;
1394 struct rt_rq *rt_rq;
e8fa1362
SR
1395 int idx;
1396
6f505b16
PZ
1397 for_each_leaf_rt_rq(rt_rq, rq) {
1398 array = &rt_rq->active;
1399 idx = sched_find_first_bit(array->bitmap);
49246274 1400next_idx:
6f505b16
PZ
1401 if (idx >= MAX_RT_PRIO)
1402 continue;
1403 if (next && next->prio < idx)
1404 continue;
1405 list_for_each_entry(rt_se, array->queue + idx, run_list) {
3d07467b
PZ
1406 struct task_struct *p;
1407
1408 if (!rt_entity_is_task(rt_se))
1409 continue;
1410
1411 p = rt_task_of(rt_se);
6f505b16
PZ
1412 if (pick_rt_task(rq, p, cpu)) {
1413 next = p;
1414 break;
1415 }
1416 }
1417 if (!next) {
1418 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1419 goto next_idx;
1420 }
f65eda4f
SR
1421 }
1422
e8fa1362
SR
1423 return next;
1424}
1425
0e3900e6 1426static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1427
6e1254d2
GH
1428static int find_lowest_rq(struct task_struct *task)
1429{
1430 struct sched_domain *sd;
96f874e2 1431 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1432 int this_cpu = smp_processor_id();
1433 int cpu = task_cpu(task);
06f90dbd 1434
0da938c4
SR
1435 /* Make sure the mask is initialized first */
1436 if (unlikely(!lowest_mask))
1437 return -1;
1438
6e0534f2
GH
1439 if (task->rt.nr_cpus_allowed == 1)
1440 return -1; /* No other targets possible */
6e1254d2 1441
6e0534f2
GH
1442 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1443 return -1; /* No targets found */
6e1254d2
GH
1444
1445 /*
1446 * At this point we have built a mask of cpus representing the
1447 * lowest priority tasks in the system. Now we want to elect
1448 * the best one based on our affinity and topology.
1449 *
1450 * We prioritize the last cpu that the task executed on since
1451 * it is most likely cache-hot in that location.
1452 */
96f874e2 1453 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1454 return cpu;
1455
1456 /*
1457 * Otherwise, we consult the sched_domains span maps to figure
1458 * out which cpu is logically closest to our hot cache data.
1459 */
e2c88063
RR
1460 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1461 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1462
cd4ae6ad 1463 rcu_read_lock();
e2c88063
RR
1464 for_each_domain(cpu, sd) {
1465 if (sd->flags & SD_WAKE_AFFINE) {
1466 int best_cpu;
6e1254d2 1467
e2c88063
RR
1468 /*
1469 * "this_cpu" is cheaper to preempt than a
1470 * remote processor.
1471 */
1472 if (this_cpu != -1 &&
cd4ae6ad
XF
1473 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1474 rcu_read_unlock();
e2c88063 1475 return this_cpu;
cd4ae6ad 1476 }
e2c88063
RR
1477
1478 best_cpu = cpumask_first_and(lowest_mask,
1479 sched_domain_span(sd));
cd4ae6ad
XF
1480 if (best_cpu < nr_cpu_ids) {
1481 rcu_read_unlock();
e2c88063 1482 return best_cpu;
cd4ae6ad 1483 }
6e1254d2
GH
1484 }
1485 }
cd4ae6ad 1486 rcu_read_unlock();
6e1254d2
GH
1487
1488 /*
1489 * And finally, if there were no matches within the domains
1490 * just give the caller *something* to work with from the compatible
1491 * locations.
1492 */
e2c88063
RR
1493 if (this_cpu != -1)
1494 return this_cpu;
1495
1496 cpu = cpumask_any(lowest_mask);
1497 if (cpu < nr_cpu_ids)
1498 return cpu;
1499 return -1;
07b4032c
GH
1500}
1501
1502/* Will lock the rq it finds */
4df64c0b 1503static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1504{
1505 struct rq *lowest_rq = NULL;
07b4032c 1506 int tries;
4df64c0b 1507 int cpu;
e8fa1362 1508
07b4032c
GH
1509 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1510 cpu = find_lowest_rq(task);
1511
2de0b463 1512 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1513 break;
1514
07b4032c
GH
1515 lowest_rq = cpu_rq(cpu);
1516
e8fa1362 1517 /* if the prio of this runqueue changed, try again */
07b4032c 1518 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1519 /*
1520 * We had to unlock the run queue. In
1521 * the mean time, task could have
1522 * migrated already or had its affinity changed.
1523 * Also make sure that it wasn't scheduled on its rq.
1524 */
07b4032c 1525 if (unlikely(task_rq(task) != rq ||
96f874e2 1526 !cpumask_test_cpu(lowest_rq->cpu,
fa17b507 1527 tsk_cpus_allowed(task)) ||
07b4032c 1528 task_running(rq, task) ||
fd2f4419 1529 !task->on_rq)) {
4df64c0b 1530
05fa785c 1531 raw_spin_unlock(&lowest_rq->lock);
e8fa1362
SR
1532 lowest_rq = NULL;
1533 break;
1534 }
1535 }
1536
1537 /* If this rq is still suitable use it. */
e864c499 1538 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1539 break;
1540
1541 /* try again */
1b12bbc7 1542 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1543 lowest_rq = NULL;
1544 }
1545
1546 return lowest_rq;
1547}
1548
917b627d
GH
1549static struct task_struct *pick_next_pushable_task(struct rq *rq)
1550{
1551 struct task_struct *p;
1552
1553 if (!has_pushable_tasks(rq))
1554 return NULL;
1555
1556 p = plist_first_entry(&rq->rt.pushable_tasks,
1557 struct task_struct, pushable_tasks);
1558
1559 BUG_ON(rq->cpu != task_cpu(p));
1560 BUG_ON(task_current(rq, p));
1561 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1562
fd2f4419 1563 BUG_ON(!p->on_rq);
917b627d
GH
1564 BUG_ON(!rt_task(p));
1565
1566 return p;
1567}
1568
e8fa1362
SR
1569/*
1570 * If the current CPU has more than one RT task, see if the non
1571 * running task can migrate over to a CPU that is running a task
1572 * of lesser priority.
1573 */
697f0a48 1574static int push_rt_task(struct rq *rq)
e8fa1362
SR
1575{
1576 struct task_struct *next_task;
1577 struct rq *lowest_rq;
311e800e 1578 int ret = 0;
e8fa1362 1579
a22d7fc1
GH
1580 if (!rq->rt.overloaded)
1581 return 0;
1582
917b627d 1583 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1584 if (!next_task)
1585 return 0;
1586
49246274 1587retry:
697f0a48 1588 if (unlikely(next_task == rq->curr)) {
f65eda4f 1589 WARN_ON(1);
e8fa1362 1590 return 0;
f65eda4f 1591 }
e8fa1362
SR
1592
1593 /*
1594 * It's possible that the next_task slipped in of
1595 * higher priority than current. If that's the case
1596 * just reschedule current.
1597 */
697f0a48
GH
1598 if (unlikely(next_task->prio < rq->curr->prio)) {
1599 resched_task(rq->curr);
e8fa1362
SR
1600 return 0;
1601 }
1602
697f0a48 1603 /* We might release rq lock */
e8fa1362
SR
1604 get_task_struct(next_task);
1605
1606 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1607 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1608 if (!lowest_rq) {
1609 struct task_struct *task;
1610 /*
311e800e 1611 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1612 * so it is possible that next_task has migrated.
1613 *
1614 * We need to make sure that the task is still on the same
1615 * run-queue and is also still the next task eligible for
1616 * pushing.
e8fa1362 1617 */
917b627d 1618 task = pick_next_pushable_task(rq);
1563513d
GH
1619 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1620 /*
311e800e
HD
1621 * The task hasn't migrated, and is still the next
1622 * eligible task, but we failed to find a run-queue
1623 * to push it to. Do not retry in this case, since
1624 * other cpus will pull from us when ready.
1563513d 1625 */
1563513d 1626 goto out;
e8fa1362 1627 }
917b627d 1628
1563513d
GH
1629 if (!task)
1630 /* No more tasks, just exit */
1631 goto out;
1632
917b627d 1633 /*
1563513d 1634 * Something has shifted, try again.
917b627d 1635 */
1563513d
GH
1636 put_task_struct(next_task);
1637 next_task = task;
1638 goto retry;
e8fa1362
SR
1639 }
1640
697f0a48 1641 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1642 set_task_cpu(next_task, lowest_rq->cpu);
1643 activate_task(lowest_rq, next_task, 0);
311e800e 1644 ret = 1;
e8fa1362
SR
1645
1646 resched_task(lowest_rq->curr);
1647
1b12bbc7 1648 double_unlock_balance(rq, lowest_rq);
e8fa1362 1649
e8fa1362
SR
1650out:
1651 put_task_struct(next_task);
1652
311e800e 1653 return ret;
e8fa1362
SR
1654}
1655
e8fa1362
SR
1656static void push_rt_tasks(struct rq *rq)
1657{
1658 /* push_rt_task will return true if it moved an RT */
1659 while (push_rt_task(rq))
1660 ;
1661}
1662
f65eda4f
SR
1663static int pull_rt_task(struct rq *this_rq)
1664{
80bf3171 1665 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1666 struct task_struct *p;
f65eda4f 1667 struct rq *src_rq;
f65eda4f 1668
637f5085 1669 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1670 return 0;
1671
c6c4927b 1672 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1673 if (this_cpu == cpu)
1674 continue;
1675
1676 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1677
1678 /*
1679 * Don't bother taking the src_rq->lock if the next highest
1680 * task is known to be lower-priority than our current task.
1681 * This may look racy, but if this value is about to go
1682 * logically higher, the src_rq will push this task away.
1683 * And if its going logically lower, we do not care
1684 */
1685 if (src_rq->rt.highest_prio.next >=
1686 this_rq->rt.highest_prio.curr)
1687 continue;
1688
f65eda4f
SR
1689 /*
1690 * We can potentially drop this_rq's lock in
1691 * double_lock_balance, and another CPU could
a8728944 1692 * alter this_rq
f65eda4f 1693 */
a8728944 1694 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1695
1696 /*
1697 * Are there still pullable RT tasks?
1698 */
614ee1f6
MG
1699 if (src_rq->rt.rt_nr_running <= 1)
1700 goto skip;
f65eda4f 1701
f65eda4f
SR
1702 p = pick_next_highest_task_rt(src_rq, this_cpu);
1703
1704 /*
1705 * Do we have an RT task that preempts
1706 * the to-be-scheduled task?
1707 */
a8728944 1708 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 1709 WARN_ON(p == src_rq->curr);
fd2f4419 1710 WARN_ON(!p->on_rq);
f65eda4f
SR
1711
1712 /*
1713 * There's a chance that p is higher in priority
1714 * than what's currently running on its cpu.
1715 * This is just that p is wakeing up and hasn't
1716 * had a chance to schedule. We only pull
1717 * p if it is lower in priority than the
a8728944 1718 * current task on the run queue
f65eda4f 1719 */
a8728944 1720 if (p->prio < src_rq->curr->prio)
614ee1f6 1721 goto skip;
f65eda4f
SR
1722
1723 ret = 1;
1724
1725 deactivate_task(src_rq, p, 0);
1726 set_task_cpu(p, this_cpu);
1727 activate_task(this_rq, p, 0);
1728 /*
1729 * We continue with the search, just in
1730 * case there's an even higher prio task
25985edc 1731 * in another runqueue. (low likelihood
f65eda4f 1732 * but possible)
f65eda4f 1733 */
f65eda4f 1734 }
49246274 1735skip:
1b12bbc7 1736 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1737 }
1738
1739 return ret;
1740}
1741
9a897c5a 1742static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1743{
1744 /* Try to pull RT tasks here if we lower this rq's prio */
33c3d6c6 1745 if (rq->rt.highest_prio.curr > prev->prio)
f65eda4f
SR
1746 pull_rt_task(rq);
1747}
1748
9a897c5a 1749static void post_schedule_rt(struct rq *rq)
e8fa1362 1750{
967fc046 1751 push_rt_tasks(rq);
e8fa1362
SR
1752}
1753
8ae121ac
GH
1754/*
1755 * If we are not running and we are not going to reschedule soon, we should
1756 * try to push tasks away now
1757 */
efbbd05a 1758static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 1759{
9a897c5a 1760 if (!task_running(rq, p) &&
8ae121ac 1761 !test_tsk_need_resched(rq->curr) &&
917b627d 1762 has_pushable_tasks(rq) &&
b3bc211c 1763 p->rt.nr_cpus_allowed > 1 &&
43fa5460 1764 rt_task(rq->curr) &&
b3bc211c 1765 (rq->curr->rt.nr_cpus_allowed < 2 ||
3be209a8 1766 rq->curr->prio <= p->prio))
4642dafd
SR
1767 push_rt_tasks(rq);
1768}
1769
cd8ba7cd 1770static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1771 const struct cpumask *new_mask)
73fe6aae 1772{
96f874e2 1773 int weight = cpumask_weight(new_mask);
73fe6aae
GH
1774
1775 BUG_ON(!rt_task(p));
1776
1777 /*
1778 * Update the migration status of the RQ if we have an RT task
1779 * which is running AND changing its weight value.
1780 */
fd2f4419 1781 if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1782 struct rq *rq = task_rq(p);
1783
917b627d
GH
1784 if (!task_current(rq, p)) {
1785 /*
1786 * Make sure we dequeue this task from the pushable list
1787 * before going further. It will either remain off of
1788 * the list because we are no longer pushable, or it
1789 * will be requeued.
1790 */
1791 if (p->rt.nr_cpus_allowed > 1)
1792 dequeue_pushable_task(rq, p);
1793
1794 /*
1795 * Requeue if our weight is changing and still > 1
1796 */
1797 if (weight > 1)
1798 enqueue_pushable_task(rq, p);
1799
1800 }
1801
6f505b16 1802 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1803 rq->rt.rt_nr_migratory++;
6f505b16 1804 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1805 BUG_ON(!rq->rt.rt_nr_migratory);
1806 rq->rt.rt_nr_migratory--;
1807 }
1808
398a153b 1809 update_rt_migration(&rq->rt);
73fe6aae 1810 }
73fe6aae 1811}
deeeccd4 1812
bdd7c81b 1813/* Assumes rq->lock is held */
1f11eb6a 1814static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1815{
1816 if (rq->rt.overloaded)
1817 rt_set_overload(rq);
6e0534f2 1818
7def2be1
PZ
1819 __enable_runtime(rq);
1820
e864c499 1821 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1822}
1823
1824/* Assumes rq->lock is held */
1f11eb6a 1825static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1826{
1827 if (rq->rt.overloaded)
1828 rt_clear_overload(rq);
6e0534f2 1829
7def2be1
PZ
1830 __disable_runtime(rq);
1831
6e0534f2 1832 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1833}
cb469845
SR
1834
1835/*
1836 * When switch from the rt queue, we bring ourselves to a position
1837 * that we might want to pull RT tasks from other runqueues.
1838 */
da7a735e 1839static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1840{
1841 /*
1842 * If there are other RT tasks then we will reschedule
1843 * and the scheduling of the other RT tasks will handle
1844 * the balancing. But if we are the last RT task
1845 * we may need to handle the pulling of RT tasks
1846 * now.
1847 */
fd2f4419 1848 if (p->on_rq && !rq->rt.rt_nr_running)
cb469845
SR
1849 pull_rt_task(rq);
1850}
3d8cbdf8 1851
029632fb 1852void init_sched_rt_class(void)
3d8cbdf8
RR
1853{
1854 unsigned int i;
1855
029632fb 1856 for_each_possible_cpu(i) {
eaa95840 1857 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 1858 GFP_KERNEL, cpu_to_node(i));
029632fb 1859 }
3d8cbdf8 1860}
cb469845
SR
1861#endif /* CONFIG_SMP */
1862
1863/*
1864 * When switching a task to RT, we may overload the runqueue
1865 * with RT tasks. In this case we try to push them off to
1866 * other runqueues.
1867 */
da7a735e 1868static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1869{
1870 int check_resched = 1;
1871
1872 /*
1873 * If we are already running, then there's nothing
1874 * that needs to be done. But if we are not running
1875 * we may need to preempt the current running task.
1876 * If that current running task is also an RT task
1877 * then see if we can move to another run queue.
1878 */
fd2f4419 1879 if (p->on_rq && rq->curr != p) {
cb469845
SR
1880#ifdef CONFIG_SMP
1881 if (rq->rt.overloaded && push_rt_task(rq) &&
1882 /* Don't resched if we changed runqueues */
1883 rq != task_rq(p))
1884 check_resched = 0;
1885#endif /* CONFIG_SMP */
1886 if (check_resched && p->prio < rq->curr->prio)
1887 resched_task(rq->curr);
1888 }
1889}
1890
1891/*
1892 * Priority of the task has changed. This may cause
1893 * us to initiate a push or pull.
1894 */
da7a735e
PZ
1895static void
1896prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 1897{
fd2f4419 1898 if (!p->on_rq)
da7a735e
PZ
1899 return;
1900
1901 if (rq->curr == p) {
cb469845
SR
1902#ifdef CONFIG_SMP
1903 /*
1904 * If our priority decreases while running, we
1905 * may need to pull tasks to this runqueue.
1906 */
1907 if (oldprio < p->prio)
1908 pull_rt_task(rq);
1909 /*
1910 * If there's a higher priority task waiting to run
6fa46fa5
SR
1911 * then reschedule. Note, the above pull_rt_task
1912 * can release the rq lock and p could migrate.
1913 * Only reschedule if p is still on the same runqueue.
cb469845 1914 */
e864c499 1915 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1916 resched_task(p);
1917#else
1918 /* For UP simply resched on drop of prio */
1919 if (oldprio < p->prio)
1920 resched_task(p);
e8fa1362 1921#endif /* CONFIG_SMP */
cb469845
SR
1922 } else {
1923 /*
1924 * This task is not running, but if it is
1925 * greater than the current running task
1926 * then reschedule.
1927 */
1928 if (p->prio < rq->curr->prio)
1929 resched_task(rq->curr);
1930 }
1931}
1932
78f2c7db
PZ
1933static void watchdog(struct rq *rq, struct task_struct *p)
1934{
1935 unsigned long soft, hard;
1936
78d7d407
JS
1937 /* max may change after cur was read, this will be fixed next tick */
1938 soft = task_rlimit(p, RLIMIT_RTTIME);
1939 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
1940
1941 if (soft != RLIM_INFINITY) {
1942 unsigned long next;
1943
1944 p->rt.timeout++;
1945 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1946 if (p->rt.timeout > next)
f06febc9 1947 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1948 }
1949}
bb44e5d1 1950
8f4d37ec 1951static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1952{
67e2be02
PZ
1953 update_curr_rt(rq);
1954
78f2c7db
PZ
1955 watchdog(rq, p);
1956
bb44e5d1
IM
1957 /*
1958 * RR tasks need a special form of timeslice management.
1959 * FIFO tasks have no timeslices.
1960 */
1961 if (p->policy != SCHED_RR)
1962 return;
1963
fa717060 1964 if (--p->rt.time_slice)
bb44e5d1
IM
1965 return;
1966
fa717060 1967 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1968
98fbc798
DA
1969 /*
1970 * Requeue to the end of queue if we are not the only element
1971 * on the queue:
1972 */
fa717060 1973 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 1974 requeue_task_rt(rq, p, 0);
98fbc798
DA
1975 set_tsk_need_resched(p);
1976 }
bb44e5d1
IM
1977}
1978
83b699ed
SV
1979static void set_curr_task_rt(struct rq *rq)
1980{
1981 struct task_struct *p = rq->curr;
1982
305e6835 1983 p->se.exec_start = rq->clock_task;
917b627d
GH
1984
1985 /* The running task is never eligible for pushing */
1986 dequeue_pushable_task(rq, p);
83b699ed
SV
1987}
1988
6d686f45 1989static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
1990{
1991 /*
1992 * Time slice is 0 for SCHED_FIFO tasks
1993 */
1994 if (task->policy == SCHED_RR)
1995 return DEF_TIMESLICE;
1996 else
1997 return 0;
1998}
1999
029632fb 2000const struct sched_class rt_sched_class = {
5522d5d5 2001 .next = &fair_sched_class,
bb44e5d1
IM
2002 .enqueue_task = enqueue_task_rt,
2003 .dequeue_task = dequeue_task_rt,
2004 .yield_task = yield_task_rt,
2005
2006 .check_preempt_curr = check_preempt_curr_rt,
2007
2008 .pick_next_task = pick_next_task_rt,
2009 .put_prev_task = put_prev_task_rt,
2010
681f3e68 2011#ifdef CONFIG_SMP
4ce72a2c
LZ
2012 .select_task_rq = select_task_rq_rt,
2013
73fe6aae 2014 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
2015 .rq_online = rq_online_rt,
2016 .rq_offline = rq_offline_rt,
9a897c5a
SR
2017 .pre_schedule = pre_schedule_rt,
2018 .post_schedule = post_schedule_rt,
efbbd05a 2019 .task_woken = task_woken_rt,
cb469845 2020 .switched_from = switched_from_rt,
681f3e68 2021#endif
bb44e5d1 2022
83b699ed 2023 .set_curr_task = set_curr_task_rt,
bb44e5d1 2024 .task_tick = task_tick_rt,
cb469845 2025
0d721cea
PW
2026 .get_rr_interval = get_rr_interval_rt,
2027
cb469845
SR
2028 .prio_changed = prio_changed_rt,
2029 .switched_to = switched_to_rt,
bb44e5d1 2030};
ada18de2
PZ
2031
2032#ifdef CONFIG_SCHED_DEBUG
2033extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2034
029632fb 2035void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 2036{
ec514c48 2037 rt_rq_iter_t iter;
ada18de2
PZ
2038 struct rt_rq *rt_rq;
2039
2040 rcu_read_lock();
ec514c48 2041 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2042 print_rt_rq(m, cpu, rt_rq);
2043 rcu_read_unlock();
2044}
55e12e5e 2045#endif /* CONFIG_SCHED_DEBUG */
This page took 1.049295 seconds and 5 git commands to generate.