Merge tag 'please-pull-pstore' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl...
[deliverable/linux.git] / kernel / sched / rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
029632fb
PZ
6#include "sched.h"
7
8#include <linux/slab.h>
9
ce0dbbbb
CW
10int sched_rr_timeslice = RR_TIMESLICE;
11
029632fb
PZ
12static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13
14struct rt_bandwidth def_rt_bandwidth;
15
16static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17{
18 struct rt_bandwidth *rt_b =
19 container_of(timer, struct rt_bandwidth, rt_period_timer);
20 ktime_t now;
21 int overrun;
22 int idle = 0;
23
24 for (;;) {
25 now = hrtimer_cb_get_time(timer);
26 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27
28 if (!overrun)
29 break;
30
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 }
33
34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35}
36
37void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38{
39 rt_b->rt_period = ns_to_ktime(period);
40 rt_b->rt_runtime = runtime;
41
42 raw_spin_lock_init(&rt_b->rt_runtime_lock);
43
44 hrtimer_init(&rt_b->rt_period_timer,
45 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 rt_b->rt_period_timer.function = sched_rt_period_timer;
47}
48
49static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50{
51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 return;
53
54 if (hrtimer_active(&rt_b->rt_period_timer))
55 return;
56
57 raw_spin_lock(&rt_b->rt_runtime_lock);
58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 raw_spin_unlock(&rt_b->rt_runtime_lock);
60}
61
62void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63{
64 struct rt_prio_array *array;
65 int i;
66
67 array = &rt_rq->active;
68 for (i = 0; i < MAX_RT_PRIO; i++) {
69 INIT_LIST_HEAD(array->queue + i);
70 __clear_bit(i, array->bitmap);
71 }
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO, array->bitmap);
74
75#if defined CONFIG_SMP
76 rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 rt_rq->highest_prio.next = MAX_RT_PRIO;
78 rt_rq->rt_nr_migratory = 0;
79 rt_rq->overloaded = 0;
80 plist_head_init(&rt_rq->pushable_tasks);
81#endif
82
83 rt_rq->rt_time = 0;
84 rt_rq->rt_throttled = 0;
85 rt_rq->rt_runtime = 0;
86 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
87}
88
8f48894f 89#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
90static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
91{
92 hrtimer_cancel(&rt_b->rt_period_timer);
93}
8f48894f
PZ
94
95#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
96
398a153b
GH
97static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
98{
8f48894f
PZ
99#ifdef CONFIG_SCHED_DEBUG
100 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
101#endif
398a153b
GH
102 return container_of(rt_se, struct task_struct, rt);
103}
104
398a153b
GH
105static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
106{
107 return rt_rq->rq;
108}
109
110static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
111{
112 return rt_se->rt_rq;
113}
114
029632fb
PZ
115void free_rt_sched_group(struct task_group *tg)
116{
117 int i;
118
119 if (tg->rt_se)
120 destroy_rt_bandwidth(&tg->rt_bandwidth);
121
122 for_each_possible_cpu(i) {
123 if (tg->rt_rq)
124 kfree(tg->rt_rq[i]);
125 if (tg->rt_se)
126 kfree(tg->rt_se[i]);
127 }
128
129 kfree(tg->rt_rq);
130 kfree(tg->rt_se);
131}
132
133void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
134 struct sched_rt_entity *rt_se, int cpu,
135 struct sched_rt_entity *parent)
136{
137 struct rq *rq = cpu_rq(cpu);
138
139 rt_rq->highest_prio.curr = MAX_RT_PRIO;
140 rt_rq->rt_nr_boosted = 0;
141 rt_rq->rq = rq;
142 rt_rq->tg = tg;
143
144 tg->rt_rq[cpu] = rt_rq;
145 tg->rt_se[cpu] = rt_se;
146
147 if (!rt_se)
148 return;
149
150 if (!parent)
151 rt_se->rt_rq = &rq->rt;
152 else
153 rt_se->rt_rq = parent->my_q;
154
155 rt_se->my_q = rt_rq;
156 rt_se->parent = parent;
157 INIT_LIST_HEAD(&rt_se->run_list);
158}
159
160int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
161{
162 struct rt_rq *rt_rq;
163 struct sched_rt_entity *rt_se;
164 int i;
165
166 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
167 if (!tg->rt_rq)
168 goto err;
169 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
170 if (!tg->rt_se)
171 goto err;
172
173 init_rt_bandwidth(&tg->rt_bandwidth,
174 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
175
176 for_each_possible_cpu(i) {
177 rt_rq = kzalloc_node(sizeof(struct rt_rq),
178 GFP_KERNEL, cpu_to_node(i));
179 if (!rt_rq)
180 goto err;
181
182 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
183 GFP_KERNEL, cpu_to_node(i));
184 if (!rt_se)
185 goto err_free_rq;
186
187 init_rt_rq(rt_rq, cpu_rq(i));
188 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
189 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
190 }
191
192 return 1;
193
194err_free_rq:
195 kfree(rt_rq);
196err:
197 return 0;
198}
199
398a153b
GH
200#else /* CONFIG_RT_GROUP_SCHED */
201
a1ba4d8b
PZ
202#define rt_entity_is_task(rt_se) (1)
203
8f48894f
PZ
204static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
205{
206 return container_of(rt_se, struct task_struct, rt);
207}
208
398a153b
GH
209static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
210{
211 return container_of(rt_rq, struct rq, rt);
212}
213
214static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
215{
216 struct task_struct *p = rt_task_of(rt_se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->rt;
220}
221
029632fb
PZ
222void free_rt_sched_group(struct task_group *tg) { }
223
224int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
225{
226 return 1;
227}
398a153b
GH
228#endif /* CONFIG_RT_GROUP_SCHED */
229
4fd29176 230#ifdef CONFIG_SMP
84de4274 231
637f5085 232static inline int rt_overloaded(struct rq *rq)
4fd29176 233{
637f5085 234 return atomic_read(&rq->rd->rto_count);
4fd29176 235}
84de4274 236
4fd29176
SR
237static inline void rt_set_overload(struct rq *rq)
238{
1f11eb6a
GH
239 if (!rq->online)
240 return;
241
c6c4927b 242 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
243 /*
244 * Make sure the mask is visible before we set
245 * the overload count. That is checked to determine
246 * if we should look at the mask. It would be a shame
247 * if we looked at the mask, but the mask was not
248 * updated yet.
249 */
250 wmb();
637f5085 251 atomic_inc(&rq->rd->rto_count);
4fd29176 252}
84de4274 253
4fd29176
SR
254static inline void rt_clear_overload(struct rq *rq)
255{
1f11eb6a
GH
256 if (!rq->online)
257 return;
258
4fd29176 259 /* the order here really doesn't matter */
637f5085 260 atomic_dec(&rq->rd->rto_count);
c6c4927b 261 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 262}
73fe6aae 263
398a153b 264static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 265{
a1ba4d8b 266 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
267 if (!rt_rq->overloaded) {
268 rt_set_overload(rq_of_rt_rq(rt_rq));
269 rt_rq->overloaded = 1;
cdc8eb98 270 }
398a153b
GH
271 } else if (rt_rq->overloaded) {
272 rt_clear_overload(rq_of_rt_rq(rt_rq));
273 rt_rq->overloaded = 0;
637f5085 274 }
73fe6aae 275}
4fd29176 276
398a153b
GH
277static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
278{
29baa747
PZ
279 struct task_struct *p;
280
a1ba4d8b
PZ
281 if (!rt_entity_is_task(rt_se))
282 return;
283
29baa747 284 p = rt_task_of(rt_se);
a1ba4d8b
PZ
285 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
286
287 rt_rq->rt_nr_total++;
29baa747 288 if (p->nr_cpus_allowed > 1)
398a153b
GH
289 rt_rq->rt_nr_migratory++;
290
291 update_rt_migration(rt_rq);
292}
293
294static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
295{
29baa747
PZ
296 struct task_struct *p;
297
a1ba4d8b
PZ
298 if (!rt_entity_is_task(rt_se))
299 return;
300
29baa747 301 p = rt_task_of(rt_se);
a1ba4d8b
PZ
302 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
303
304 rt_rq->rt_nr_total--;
29baa747 305 if (p->nr_cpus_allowed > 1)
398a153b
GH
306 rt_rq->rt_nr_migratory--;
307
308 update_rt_migration(rt_rq);
309}
310
5181f4a4
SR
311static inline int has_pushable_tasks(struct rq *rq)
312{
313 return !plist_head_empty(&rq->rt.pushable_tasks);
314}
315
917b627d
GH
316static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
317{
318 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
319 plist_node_init(&p->pushable_tasks, p->prio);
320 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
321
322 /* Update the highest prio pushable task */
323 if (p->prio < rq->rt.highest_prio.next)
324 rq->rt.highest_prio.next = p->prio;
917b627d
GH
325}
326
327static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
328{
329 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 330
5181f4a4
SR
331 /* Update the new highest prio pushable task */
332 if (has_pushable_tasks(rq)) {
333 p = plist_first_entry(&rq->rt.pushable_tasks,
334 struct task_struct, pushable_tasks);
335 rq->rt.highest_prio.next = p->prio;
336 } else
337 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
338}
339
917b627d
GH
340#else
341
ceacc2c1 342static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 343{
6f505b16
PZ
344}
345
ceacc2c1
PZ
346static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
347{
348}
349
b07430ac 350static inline
ceacc2c1
PZ
351void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
352{
353}
354
398a153b 355static inline
ceacc2c1
PZ
356void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
357{
358}
917b627d 359
4fd29176
SR
360#endif /* CONFIG_SMP */
361
6f505b16
PZ
362static inline int on_rt_rq(struct sched_rt_entity *rt_se)
363{
364 return !list_empty(&rt_se->run_list);
365}
366
052f1dc7 367#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 368
9f0c1e56 369static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
370{
371 if (!rt_rq->tg)
9f0c1e56 372 return RUNTIME_INF;
6f505b16 373
ac086bc2
PZ
374 return rt_rq->rt_runtime;
375}
376
377static inline u64 sched_rt_period(struct rt_rq *rt_rq)
378{
379 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
380}
381
ec514c48
CX
382typedef struct task_group *rt_rq_iter_t;
383
1c09ab0d
YZ
384static inline struct task_group *next_task_group(struct task_group *tg)
385{
386 do {
387 tg = list_entry_rcu(tg->list.next,
388 typeof(struct task_group), list);
389 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
390
391 if (&tg->list == &task_groups)
392 tg = NULL;
393
394 return tg;
395}
396
397#define for_each_rt_rq(rt_rq, iter, rq) \
398 for (iter = container_of(&task_groups, typeof(*iter), list); \
399 (iter = next_task_group(iter)) && \
400 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 401
3d4b47b4
PZ
402static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
403{
404 list_add_rcu(&rt_rq->leaf_rt_rq_list,
405 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
406}
407
408static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
409{
410 list_del_rcu(&rt_rq->leaf_rt_rq_list);
411}
412
6f505b16 413#define for_each_leaf_rt_rq(rt_rq, rq) \
80f40ee4 414 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
6f505b16 415
6f505b16
PZ
416#define for_each_sched_rt_entity(rt_se) \
417 for (; rt_se; rt_se = rt_se->parent)
418
419static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
420{
421 return rt_se->my_q;
422}
423
37dad3fc 424static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
425static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
426
9f0c1e56 427static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 428{
f6121f4f 429 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
74b7eb58
YZ
430 struct sched_rt_entity *rt_se;
431
0c3b9168
BS
432 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
433
434 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 435
f6121f4f
DF
436 if (rt_rq->rt_nr_running) {
437 if (rt_se && !on_rt_rq(rt_se))
37dad3fc 438 enqueue_rt_entity(rt_se, false);
e864c499 439 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 440 resched_task(curr);
6f505b16
PZ
441 }
442}
443
9f0c1e56 444static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 445{
74b7eb58 446 struct sched_rt_entity *rt_se;
0c3b9168 447 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 448
0c3b9168 449 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16
PZ
450
451 if (rt_se && on_rt_rq(rt_se))
452 dequeue_rt_entity(rt_se);
453}
454
23b0fdfc
PZ
455static inline int rt_rq_throttled(struct rt_rq *rt_rq)
456{
457 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
458}
459
460static int rt_se_boosted(struct sched_rt_entity *rt_se)
461{
462 struct rt_rq *rt_rq = group_rt_rq(rt_se);
463 struct task_struct *p;
464
465 if (rt_rq)
466 return !!rt_rq->rt_nr_boosted;
467
468 p = rt_task_of(rt_se);
469 return p->prio != p->normal_prio;
470}
471
d0b27fa7 472#ifdef CONFIG_SMP
c6c4927b 473static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7
PZ
474{
475 return cpu_rq(smp_processor_id())->rd->span;
476}
6f505b16 477#else
c6c4927b 478static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 479{
c6c4927b 480 return cpu_online_mask;
d0b27fa7
PZ
481}
482#endif
6f505b16 483
d0b27fa7
PZ
484static inline
485struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 486{
d0b27fa7
PZ
487 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
488}
9f0c1e56 489
ac086bc2
PZ
490static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
491{
492 return &rt_rq->tg->rt_bandwidth;
493}
494
55e12e5e 495#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
496
497static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
498{
ac086bc2
PZ
499 return rt_rq->rt_runtime;
500}
501
502static inline u64 sched_rt_period(struct rt_rq *rt_rq)
503{
504 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
505}
506
ec514c48
CX
507typedef struct rt_rq *rt_rq_iter_t;
508
509#define for_each_rt_rq(rt_rq, iter, rq) \
510 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
511
3d4b47b4
PZ
512static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
513{
514}
515
516static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
517{
518}
519
6f505b16
PZ
520#define for_each_leaf_rt_rq(rt_rq, rq) \
521 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
522
6f505b16
PZ
523#define for_each_sched_rt_entity(rt_se) \
524 for (; rt_se; rt_se = NULL)
525
526static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
527{
528 return NULL;
529}
530
9f0c1e56 531static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 532{
f3ade837
JB
533 if (rt_rq->rt_nr_running)
534 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
535}
536
9f0c1e56 537static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
538{
539}
540
23b0fdfc
PZ
541static inline int rt_rq_throttled(struct rt_rq *rt_rq)
542{
543 return rt_rq->rt_throttled;
544}
d0b27fa7 545
c6c4927b 546static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 547{
c6c4927b 548 return cpu_online_mask;
d0b27fa7
PZ
549}
550
551static inline
552struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
553{
554 return &cpu_rq(cpu)->rt;
555}
556
ac086bc2
PZ
557static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
558{
559 return &def_rt_bandwidth;
560}
561
55e12e5e 562#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 563
ac086bc2 564#ifdef CONFIG_SMP
78333cdd
PZ
565/*
566 * We ran out of runtime, see if we can borrow some from our neighbours.
567 */
b79f3833 568static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
569{
570 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
aa7f6730 571 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
ac086bc2
PZ
572 int i, weight, more = 0;
573 u64 rt_period;
574
c6c4927b 575 weight = cpumask_weight(rd->span);
ac086bc2 576
0986b11b 577 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 578 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 579 for_each_cpu(i, rd->span) {
ac086bc2
PZ
580 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
581 s64 diff;
582
583 if (iter == rt_rq)
584 continue;
585
0986b11b 586 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
587 /*
588 * Either all rqs have inf runtime and there's nothing to steal
589 * or __disable_runtime() below sets a specific rq to inf to
590 * indicate its been disabled and disalow stealing.
591 */
7def2be1
PZ
592 if (iter->rt_runtime == RUNTIME_INF)
593 goto next;
594
78333cdd
PZ
595 /*
596 * From runqueues with spare time, take 1/n part of their
597 * spare time, but no more than our period.
598 */
ac086bc2
PZ
599 diff = iter->rt_runtime - iter->rt_time;
600 if (diff > 0) {
58838cf3 601 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
602 if (rt_rq->rt_runtime + diff > rt_period)
603 diff = rt_period - rt_rq->rt_runtime;
604 iter->rt_runtime -= diff;
605 rt_rq->rt_runtime += diff;
606 more = 1;
607 if (rt_rq->rt_runtime == rt_period) {
0986b11b 608 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
609 break;
610 }
611 }
7def2be1 612next:
0986b11b 613 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 614 }
0986b11b 615 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
616
617 return more;
618}
7def2be1 619
78333cdd
PZ
620/*
621 * Ensure this RQ takes back all the runtime it lend to its neighbours.
622 */
7def2be1
PZ
623static void __disable_runtime(struct rq *rq)
624{
625 struct root_domain *rd = rq->rd;
ec514c48 626 rt_rq_iter_t iter;
7def2be1
PZ
627 struct rt_rq *rt_rq;
628
629 if (unlikely(!scheduler_running))
630 return;
631
ec514c48 632 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
633 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
634 s64 want;
635 int i;
636
0986b11b
TG
637 raw_spin_lock(&rt_b->rt_runtime_lock);
638 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
639 /*
640 * Either we're all inf and nobody needs to borrow, or we're
641 * already disabled and thus have nothing to do, or we have
642 * exactly the right amount of runtime to take out.
643 */
7def2be1
PZ
644 if (rt_rq->rt_runtime == RUNTIME_INF ||
645 rt_rq->rt_runtime == rt_b->rt_runtime)
646 goto balanced;
0986b11b 647 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 648
78333cdd
PZ
649 /*
650 * Calculate the difference between what we started out with
651 * and what we current have, that's the amount of runtime
652 * we lend and now have to reclaim.
653 */
7def2be1
PZ
654 want = rt_b->rt_runtime - rt_rq->rt_runtime;
655
78333cdd
PZ
656 /*
657 * Greedy reclaim, take back as much as we can.
658 */
c6c4927b 659 for_each_cpu(i, rd->span) {
7def2be1
PZ
660 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
661 s64 diff;
662
78333cdd
PZ
663 /*
664 * Can't reclaim from ourselves or disabled runqueues.
665 */
f1679d08 666 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
667 continue;
668
0986b11b 669 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
670 if (want > 0) {
671 diff = min_t(s64, iter->rt_runtime, want);
672 iter->rt_runtime -= diff;
673 want -= diff;
674 } else {
675 iter->rt_runtime -= want;
676 want -= want;
677 }
0986b11b 678 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
679
680 if (!want)
681 break;
682 }
683
0986b11b 684 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
685 /*
686 * We cannot be left wanting - that would mean some runtime
687 * leaked out of the system.
688 */
7def2be1
PZ
689 BUG_ON(want);
690balanced:
78333cdd
PZ
691 /*
692 * Disable all the borrow logic by pretending we have inf
693 * runtime - in which case borrowing doesn't make sense.
694 */
7def2be1 695 rt_rq->rt_runtime = RUNTIME_INF;
a4c96ae3 696 rt_rq->rt_throttled = 0;
0986b11b
TG
697 raw_spin_unlock(&rt_rq->rt_runtime_lock);
698 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
699 }
700}
701
702static void disable_runtime(struct rq *rq)
703{
704 unsigned long flags;
705
05fa785c 706 raw_spin_lock_irqsave(&rq->lock, flags);
7def2be1 707 __disable_runtime(rq);
05fa785c 708 raw_spin_unlock_irqrestore(&rq->lock, flags);
7def2be1
PZ
709}
710
711static void __enable_runtime(struct rq *rq)
712{
ec514c48 713 rt_rq_iter_t iter;
7def2be1
PZ
714 struct rt_rq *rt_rq;
715
716 if (unlikely(!scheduler_running))
717 return;
718
78333cdd
PZ
719 /*
720 * Reset each runqueue's bandwidth settings
721 */
ec514c48 722 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
723 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
724
0986b11b
TG
725 raw_spin_lock(&rt_b->rt_runtime_lock);
726 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
727 rt_rq->rt_runtime = rt_b->rt_runtime;
728 rt_rq->rt_time = 0;
baf25731 729 rt_rq->rt_throttled = 0;
0986b11b
TG
730 raw_spin_unlock(&rt_rq->rt_runtime_lock);
731 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
732 }
733}
734
735static void enable_runtime(struct rq *rq)
736{
737 unsigned long flags;
738
05fa785c 739 raw_spin_lock_irqsave(&rq->lock, flags);
7def2be1 740 __enable_runtime(rq);
05fa785c 741 raw_spin_unlock_irqrestore(&rq->lock, flags);
7def2be1
PZ
742}
743
029632fb
PZ
744int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
745{
746 int cpu = (int)(long)hcpu;
747
748 switch (action) {
749 case CPU_DOWN_PREPARE:
750 case CPU_DOWN_PREPARE_FROZEN:
751 disable_runtime(cpu_rq(cpu));
752 return NOTIFY_OK;
753
754 case CPU_DOWN_FAILED:
755 case CPU_DOWN_FAILED_FROZEN:
756 case CPU_ONLINE:
757 case CPU_ONLINE_FROZEN:
758 enable_runtime(cpu_rq(cpu));
759 return NOTIFY_OK;
760
761 default:
762 return NOTIFY_DONE;
763 }
764}
765
eff6549b
PZ
766static int balance_runtime(struct rt_rq *rt_rq)
767{
768 int more = 0;
769
4a6184ce
PZ
770 if (!sched_feat(RT_RUNTIME_SHARE))
771 return more;
772
eff6549b 773 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 774 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 775 more = do_balance_runtime(rt_rq);
0986b11b 776 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
777 }
778
779 return more;
780}
55e12e5e 781#else /* !CONFIG_SMP */
eff6549b
PZ
782static inline int balance_runtime(struct rt_rq *rt_rq)
783{
784 return 0;
785}
55e12e5e 786#endif /* CONFIG_SMP */
ac086bc2 787
eff6549b
PZ
788static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
789{
42c62a58 790 int i, idle = 1, throttled = 0;
c6c4927b 791 const struct cpumask *span;
eff6549b 792
eff6549b 793 span = sched_rt_period_mask();
e221d028
MG
794#ifdef CONFIG_RT_GROUP_SCHED
795 /*
796 * FIXME: isolated CPUs should really leave the root task group,
797 * whether they are isolcpus or were isolated via cpusets, lest
798 * the timer run on a CPU which does not service all runqueues,
799 * potentially leaving other CPUs indefinitely throttled. If
800 * isolation is really required, the user will turn the throttle
801 * off to kill the perturbations it causes anyway. Meanwhile,
802 * this maintains functionality for boot and/or troubleshooting.
803 */
804 if (rt_b == &root_task_group.rt_bandwidth)
805 span = cpu_online_mask;
806#endif
c6c4927b 807 for_each_cpu(i, span) {
eff6549b
PZ
808 int enqueue = 0;
809 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
810 struct rq *rq = rq_of_rt_rq(rt_rq);
811
05fa785c 812 raw_spin_lock(&rq->lock);
eff6549b
PZ
813 if (rt_rq->rt_time) {
814 u64 runtime;
815
0986b11b 816 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
817 if (rt_rq->rt_throttled)
818 balance_runtime(rt_rq);
819 runtime = rt_rq->rt_runtime;
820 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
821 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
822 rt_rq->rt_throttled = 0;
823 enqueue = 1;
61eadef6
MG
824
825 /*
826 * Force a clock update if the CPU was idle,
827 * lest wakeup -> unthrottle time accumulate.
828 */
829 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
830 rq->skip_clock_update = -1;
eff6549b
PZ
831 }
832 if (rt_rq->rt_time || rt_rq->rt_nr_running)
833 idle = 0;
0986b11b 834 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 835 } else if (rt_rq->rt_nr_running) {
6c3df255 836 idle = 0;
0c3b9168
BS
837 if (!rt_rq_throttled(rt_rq))
838 enqueue = 1;
839 }
42c62a58
PZ
840 if (rt_rq->rt_throttled)
841 throttled = 1;
eff6549b
PZ
842
843 if (enqueue)
844 sched_rt_rq_enqueue(rt_rq);
05fa785c 845 raw_spin_unlock(&rq->lock);
eff6549b
PZ
846 }
847
42c62a58
PZ
848 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
849 return 1;
850
eff6549b
PZ
851 return idle;
852}
ac086bc2 853
6f505b16
PZ
854static inline int rt_se_prio(struct sched_rt_entity *rt_se)
855{
052f1dc7 856#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
857 struct rt_rq *rt_rq = group_rt_rq(rt_se);
858
859 if (rt_rq)
e864c499 860 return rt_rq->highest_prio.curr;
6f505b16
PZ
861#endif
862
863 return rt_task_of(rt_se)->prio;
864}
865
9f0c1e56 866static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 867{
9f0c1e56 868 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 869
fa85ae24 870 if (rt_rq->rt_throttled)
23b0fdfc 871 return rt_rq_throttled(rt_rq);
fa85ae24 872
5b680fd6 873 if (runtime >= sched_rt_period(rt_rq))
ac086bc2
PZ
874 return 0;
875
b79f3833
PZ
876 balance_runtime(rt_rq);
877 runtime = sched_rt_runtime(rt_rq);
878 if (runtime == RUNTIME_INF)
879 return 0;
ac086bc2 880
9f0c1e56 881 if (rt_rq->rt_time > runtime) {
7abc63b1
PZ
882 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
883
884 /*
885 * Don't actually throttle groups that have no runtime assigned
886 * but accrue some time due to boosting.
887 */
888 if (likely(rt_b->rt_runtime)) {
3ccf3e83
PZ
889 static bool once = false;
890
7abc63b1 891 rt_rq->rt_throttled = 1;
3ccf3e83
PZ
892
893 if (!once) {
894 once = true;
895 printk_sched("sched: RT throttling activated\n");
896 }
7abc63b1
PZ
897 } else {
898 /*
899 * In case we did anyway, make it go away,
900 * replenishment is a joke, since it will replenish us
901 * with exactly 0 ns.
902 */
903 rt_rq->rt_time = 0;
904 }
905
23b0fdfc 906 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 907 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
908 return 1;
909 }
fa85ae24
PZ
910 }
911
912 return 0;
913}
914
bb44e5d1
IM
915/*
916 * Update the current task's runtime statistics. Skip current tasks that
917 * are not in our scheduling class.
918 */
a9957449 919static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
920{
921 struct task_struct *curr = rq->curr;
6f505b16
PZ
922 struct sched_rt_entity *rt_se = &curr->rt;
923 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
924 u64 delta_exec;
925
06c3bc65 926 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
927 return;
928
305e6835 929 delta_exec = rq->clock_task - curr->se.exec_start;
fc79e240
KT
930 if (unlikely((s64)delta_exec <= 0))
931 return;
6cfb0d5d 932
42c62a58
PZ
933 schedstat_set(curr->se.statistics.exec_max,
934 max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
935
936 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
937 account_group_exec_runtime(curr, delta_exec);
938
305e6835 939 curr->se.exec_start = rq->clock_task;
d842de87 940 cpuacct_charge(curr, delta_exec);
fa85ae24 941
e9e9250b
PZ
942 sched_rt_avg_update(rq, delta_exec);
943
0b148fa0
PZ
944 if (!rt_bandwidth_enabled())
945 return;
946
354d60c2
DG
947 for_each_sched_rt_entity(rt_se) {
948 rt_rq = rt_rq_of_se(rt_se);
949
cc2991cf 950 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 951 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
952 rt_rq->rt_time += delta_exec;
953 if (sched_rt_runtime_exceeded(rt_rq))
954 resched_task(curr);
0986b11b 955 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 956 }
354d60c2 957 }
bb44e5d1
IM
958}
959
398a153b 960#if defined CONFIG_SMP
e864c499 961
398a153b
GH
962static void
963inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 964{
4d984277 965 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 966
5181f4a4
SR
967 if (rq->online && prio < prev_prio)
968 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 969}
73fe6aae 970
398a153b
GH
971static void
972dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
973{
974 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 975
398a153b
GH
976 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
977 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
978}
979
398a153b
GH
980#else /* CONFIG_SMP */
981
6f505b16 982static inline
398a153b
GH
983void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
984static inline
985void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
986
987#endif /* CONFIG_SMP */
6e0534f2 988
052f1dc7 989#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
990static void
991inc_rt_prio(struct rt_rq *rt_rq, int prio)
992{
993 int prev_prio = rt_rq->highest_prio.curr;
994
995 if (prio < prev_prio)
996 rt_rq->highest_prio.curr = prio;
997
998 inc_rt_prio_smp(rt_rq, prio, prev_prio);
999}
1000
1001static void
1002dec_rt_prio(struct rt_rq *rt_rq, int prio)
1003{
1004 int prev_prio = rt_rq->highest_prio.curr;
1005
6f505b16 1006 if (rt_rq->rt_nr_running) {
764a9d6f 1007
398a153b 1008 WARN_ON(prio < prev_prio);
764a9d6f 1009
e864c499 1010 /*
398a153b
GH
1011 * This may have been our highest task, and therefore
1012 * we may have some recomputation to do
e864c499 1013 */
398a153b 1014 if (prio == prev_prio) {
e864c499
GH
1015 struct rt_prio_array *array = &rt_rq->active;
1016
1017 rt_rq->highest_prio.curr =
764a9d6f 1018 sched_find_first_bit(array->bitmap);
e864c499
GH
1019 }
1020
764a9d6f 1021 } else
e864c499 1022 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 1023
398a153b
GH
1024 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1025}
1f11eb6a 1026
398a153b
GH
1027#else
1028
1029static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1030static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1031
1032#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 1033
052f1dc7 1034#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
1035
1036static void
1037inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1038{
1039 if (rt_se_boosted(rt_se))
1040 rt_rq->rt_nr_boosted++;
1041
1042 if (rt_rq->tg)
1043 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1044}
1045
1046static void
1047dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1048{
23b0fdfc
PZ
1049 if (rt_se_boosted(rt_se))
1050 rt_rq->rt_nr_boosted--;
1051
1052 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
1053}
1054
1055#else /* CONFIG_RT_GROUP_SCHED */
1056
1057static void
1058inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1059{
1060 start_rt_bandwidth(&def_rt_bandwidth);
1061}
1062
1063static inline
1064void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1065
1066#endif /* CONFIG_RT_GROUP_SCHED */
1067
1068static inline
1069void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1070{
1071 int prio = rt_se_prio(rt_se);
1072
1073 WARN_ON(!rt_prio(prio));
1074 rt_rq->rt_nr_running++;
1075
1076 inc_rt_prio(rt_rq, prio);
1077 inc_rt_migration(rt_se, rt_rq);
1078 inc_rt_group(rt_se, rt_rq);
1079}
1080
1081static inline
1082void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1083{
1084 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1085 WARN_ON(!rt_rq->rt_nr_running);
1086 rt_rq->rt_nr_running--;
1087
1088 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1089 dec_rt_migration(rt_se, rt_rq);
1090 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1091}
1092
37dad3fc 1093static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 1094{
6f505b16
PZ
1095 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1096 struct rt_prio_array *array = &rt_rq->active;
1097 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1098 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1099
ad2a3f13
PZ
1100 /*
1101 * Don't enqueue the group if its throttled, or when empty.
1102 * The latter is a consequence of the former when a child group
1103 * get throttled and the current group doesn't have any other
1104 * active members.
1105 */
1106 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 1107 return;
63489e45 1108
3d4b47b4
PZ
1109 if (!rt_rq->rt_nr_running)
1110 list_add_leaf_rt_rq(rt_rq);
1111
37dad3fc
TG
1112 if (head)
1113 list_add(&rt_se->run_list, queue);
1114 else
1115 list_add_tail(&rt_se->run_list, queue);
6f505b16 1116 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 1117
6f505b16
PZ
1118 inc_rt_tasks(rt_se, rt_rq);
1119}
1120
ad2a3f13 1121static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
1122{
1123 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1124 struct rt_prio_array *array = &rt_rq->active;
1125
1126 list_del_init(&rt_se->run_list);
1127 if (list_empty(array->queue + rt_se_prio(rt_se)))
1128 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1129
1130 dec_rt_tasks(rt_se, rt_rq);
3d4b47b4
PZ
1131 if (!rt_rq->rt_nr_running)
1132 list_del_leaf_rt_rq(rt_rq);
6f505b16
PZ
1133}
1134
1135/*
1136 * Because the prio of an upper entry depends on the lower
1137 * entries, we must remove entries top - down.
6f505b16 1138 */
ad2a3f13 1139static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 1140{
ad2a3f13 1141 struct sched_rt_entity *back = NULL;
6f505b16 1142
58d6c2d7
PZ
1143 for_each_sched_rt_entity(rt_se) {
1144 rt_se->back = back;
1145 back = rt_se;
1146 }
1147
1148 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1149 if (on_rt_rq(rt_se))
ad2a3f13
PZ
1150 __dequeue_rt_entity(rt_se);
1151 }
1152}
1153
37dad3fc 1154static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13
PZ
1155{
1156 dequeue_rt_stack(rt_se);
1157 for_each_sched_rt_entity(rt_se)
37dad3fc 1158 __enqueue_rt_entity(rt_se, head);
ad2a3f13
PZ
1159}
1160
1161static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1162{
1163 dequeue_rt_stack(rt_se);
1164
1165 for_each_sched_rt_entity(rt_se) {
1166 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1167
1168 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 1169 __enqueue_rt_entity(rt_se, false);
58d6c2d7 1170 }
bb44e5d1
IM
1171}
1172
1173/*
1174 * Adding/removing a task to/from a priority array:
1175 */
ea87bb78 1176static void
371fd7e7 1177enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1178{
1179 struct sched_rt_entity *rt_se = &p->rt;
1180
371fd7e7 1181 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1182 rt_se->timeout = 0;
1183
371fd7e7 1184 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 1185
29baa747 1186 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
917b627d 1187 enqueue_pushable_task(rq, p);
953bfcd1
PT
1188
1189 inc_nr_running(rq);
6f505b16
PZ
1190}
1191
371fd7e7 1192static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1193{
6f505b16 1194 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1195
f1e14ef6 1196 update_curr_rt(rq);
ad2a3f13 1197 dequeue_rt_entity(rt_se);
c09595f6 1198
917b627d 1199 dequeue_pushable_task(rq, p);
953bfcd1
PT
1200
1201 dec_nr_running(rq);
bb44e5d1
IM
1202}
1203
1204/*
60686317
RW
1205 * Put task to the head or the end of the run list without the overhead of
1206 * dequeue followed by enqueue.
bb44e5d1 1207 */
7ebefa8c
DA
1208static void
1209requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1210{
1cdad715 1211 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1212 struct rt_prio_array *array = &rt_rq->active;
1213 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1214
1215 if (head)
1216 list_move(&rt_se->run_list, queue);
1217 else
1218 list_move_tail(&rt_se->run_list, queue);
1cdad715 1219 }
6f505b16
PZ
1220}
1221
7ebefa8c 1222static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1223{
6f505b16
PZ
1224 struct sched_rt_entity *rt_se = &p->rt;
1225 struct rt_rq *rt_rq;
bb44e5d1 1226
6f505b16
PZ
1227 for_each_sched_rt_entity(rt_se) {
1228 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1229 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1230 }
bb44e5d1
IM
1231}
1232
6f505b16 1233static void yield_task_rt(struct rq *rq)
bb44e5d1 1234{
7ebefa8c 1235 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1236}
1237
e7693a36 1238#ifdef CONFIG_SMP
318e0893
GH
1239static int find_lowest_rq(struct task_struct *task);
1240
0017d735 1241static int
7608dec2 1242select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
e7693a36 1243{
7608dec2
PZ
1244 struct task_struct *curr;
1245 struct rq *rq;
1246 int cpu;
1247
7608dec2 1248 cpu = task_cpu(p);
c37495fd 1249
29baa747 1250 if (p->nr_cpus_allowed == 1)
76854c7e
MG
1251 goto out;
1252
c37495fd
SR
1253 /* For anything but wake ups, just return the task_cpu */
1254 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1255 goto out;
1256
7608dec2
PZ
1257 rq = cpu_rq(cpu);
1258
1259 rcu_read_lock();
1260 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1261
318e0893 1262 /*
7608dec2 1263 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1264 * try to see if we can wake this RT task up on another
1265 * runqueue. Otherwise simply start this RT task
1266 * on its current runqueue.
1267 *
43fa5460
SR
1268 * We want to avoid overloading runqueues. If the woken
1269 * task is a higher priority, then it will stay on this CPU
1270 * and the lower prio task should be moved to another CPU.
1271 * Even though this will probably make the lower prio task
1272 * lose its cache, we do not want to bounce a higher task
1273 * around just because it gave up its CPU, perhaps for a
1274 * lock?
1275 *
1276 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1277 *
1278 * Otherwise, just let it ride on the affined RQ and the
1279 * post-schedule router will push the preempted task away
1280 *
1281 * This test is optimistic, if we get it wrong the load-balancer
1282 * will have to sort it out.
318e0893 1283 */
7608dec2 1284 if (curr && unlikely(rt_task(curr)) &&
29baa747 1285 (curr->nr_cpus_allowed < 2 ||
3be209a8 1286 curr->prio <= p->prio) &&
29baa747 1287 (p->nr_cpus_allowed > 1)) {
7608dec2 1288 int target = find_lowest_rq(p);
318e0893 1289
7608dec2
PZ
1290 if (target != -1)
1291 cpu = target;
318e0893 1292 }
7608dec2 1293 rcu_read_unlock();
318e0893 1294
c37495fd 1295out:
7608dec2 1296 return cpu;
e7693a36 1297}
7ebefa8c
DA
1298
1299static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1300{
29baa747 1301 if (rq->curr->nr_cpus_allowed == 1)
7ebefa8c
DA
1302 return;
1303
29baa747 1304 if (p->nr_cpus_allowed != 1
13b8bd0a
RR
1305 && cpupri_find(&rq->rd->cpupri, p, NULL))
1306 return;
24600ce8 1307
13b8bd0a
RR
1308 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1309 return;
7ebefa8c
DA
1310
1311 /*
1312 * There appears to be other cpus that can accept
1313 * current and none to run 'p', so lets reschedule
1314 * to try and push current away:
1315 */
1316 requeue_task_rt(rq, p, 1);
1317 resched_task(rq->curr);
1318}
1319
e7693a36
GH
1320#endif /* CONFIG_SMP */
1321
bb44e5d1
IM
1322/*
1323 * Preempt the current task with a newly woken task if needed:
1324 */
7d478721 1325static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1326{
45c01e82 1327 if (p->prio < rq->curr->prio) {
bb44e5d1 1328 resched_task(rq->curr);
45c01e82
GH
1329 return;
1330 }
1331
1332#ifdef CONFIG_SMP
1333 /*
1334 * If:
1335 *
1336 * - the newly woken task is of equal priority to the current task
1337 * - the newly woken task is non-migratable while current is migratable
1338 * - current will be preempted on the next reschedule
1339 *
1340 * we should check to see if current can readily move to a different
1341 * cpu. If so, we will reschedule to allow the push logic to try
1342 * to move current somewhere else, making room for our non-migratable
1343 * task.
1344 */
8dd0de8b 1345 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1346 check_preempt_equal_prio(rq, p);
45c01e82 1347#endif
bb44e5d1
IM
1348}
1349
6f505b16
PZ
1350static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1351 struct rt_rq *rt_rq)
bb44e5d1 1352{
6f505b16
PZ
1353 struct rt_prio_array *array = &rt_rq->active;
1354 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1355 struct list_head *queue;
1356 int idx;
1357
1358 idx = sched_find_first_bit(array->bitmap);
6f505b16 1359 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1360
1361 queue = array->queue + idx;
6f505b16 1362 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1363
6f505b16
PZ
1364 return next;
1365}
bb44e5d1 1366
917b627d 1367static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1368{
1369 struct sched_rt_entity *rt_se;
1370 struct task_struct *p;
1371 struct rt_rq *rt_rq;
bb44e5d1 1372
6f505b16
PZ
1373 rt_rq = &rq->rt;
1374
8e54a2c0 1375 if (!rt_rq->rt_nr_running)
6f505b16
PZ
1376 return NULL;
1377
23b0fdfc 1378 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
1379 return NULL;
1380
1381 do {
1382 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1383 BUG_ON(!rt_se);
6f505b16
PZ
1384 rt_rq = group_rt_rq(rt_se);
1385 } while (rt_rq);
1386
1387 p = rt_task_of(rt_se);
305e6835 1388 p->se.exec_start = rq->clock_task;
917b627d
GH
1389
1390 return p;
1391}
1392
1393static struct task_struct *pick_next_task_rt(struct rq *rq)
1394{
1395 struct task_struct *p = _pick_next_task_rt(rq);
1396
1397 /* The running task is never eligible for pushing */
1398 if (p)
1399 dequeue_pushable_task(rq, p);
1400
bcf08df3 1401#ifdef CONFIG_SMP
3f029d3c
GH
1402 /*
1403 * We detect this state here so that we can avoid taking the RQ
1404 * lock again later if there is no need to push
1405 */
1406 rq->post_schedule = has_pushable_tasks(rq);
bcf08df3 1407#endif
3f029d3c 1408
6f505b16 1409 return p;
bb44e5d1
IM
1410}
1411
31ee529c 1412static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1413{
f1e14ef6 1414 update_curr_rt(rq);
917b627d
GH
1415
1416 /*
1417 * The previous task needs to be made eligible for pushing
1418 * if it is still active
1419 */
29baa747 1420 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
917b627d 1421 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1422}
1423
681f3e68 1424#ifdef CONFIG_SMP
6f505b16 1425
e8fa1362
SR
1426/* Only try algorithms three times */
1427#define RT_MAX_TRIES 3
1428
f65eda4f
SR
1429static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1430{
1431 if (!task_running(rq, p) &&
60334caf 1432 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
f65eda4f
SR
1433 return 1;
1434 return 0;
1435}
1436
e8fa1362 1437/* Return the second highest RT task, NULL otherwise */
79064fbf 1438static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 1439{
6f505b16
PZ
1440 struct task_struct *next = NULL;
1441 struct sched_rt_entity *rt_se;
1442 struct rt_prio_array *array;
1443 struct rt_rq *rt_rq;
e8fa1362
SR
1444 int idx;
1445
6f505b16
PZ
1446 for_each_leaf_rt_rq(rt_rq, rq) {
1447 array = &rt_rq->active;
1448 idx = sched_find_first_bit(array->bitmap);
49246274 1449next_idx:
6f505b16
PZ
1450 if (idx >= MAX_RT_PRIO)
1451 continue;
1b028abc 1452 if (next && next->prio <= idx)
6f505b16
PZ
1453 continue;
1454 list_for_each_entry(rt_se, array->queue + idx, run_list) {
3d07467b
PZ
1455 struct task_struct *p;
1456
1457 if (!rt_entity_is_task(rt_se))
1458 continue;
1459
1460 p = rt_task_of(rt_se);
6f505b16
PZ
1461 if (pick_rt_task(rq, p, cpu)) {
1462 next = p;
1463 break;
1464 }
1465 }
1466 if (!next) {
1467 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1468 goto next_idx;
1469 }
f65eda4f
SR
1470 }
1471
e8fa1362
SR
1472 return next;
1473}
1474
0e3900e6 1475static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1476
6e1254d2
GH
1477static int find_lowest_rq(struct task_struct *task)
1478{
1479 struct sched_domain *sd;
96f874e2 1480 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1481 int this_cpu = smp_processor_id();
1482 int cpu = task_cpu(task);
06f90dbd 1483
0da938c4
SR
1484 /* Make sure the mask is initialized first */
1485 if (unlikely(!lowest_mask))
1486 return -1;
1487
29baa747 1488 if (task->nr_cpus_allowed == 1)
6e0534f2 1489 return -1; /* No other targets possible */
6e1254d2 1490
6e0534f2
GH
1491 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1492 return -1; /* No targets found */
6e1254d2
GH
1493
1494 /*
1495 * At this point we have built a mask of cpus representing the
1496 * lowest priority tasks in the system. Now we want to elect
1497 * the best one based on our affinity and topology.
1498 *
1499 * We prioritize the last cpu that the task executed on since
1500 * it is most likely cache-hot in that location.
1501 */
96f874e2 1502 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1503 return cpu;
1504
1505 /*
1506 * Otherwise, we consult the sched_domains span maps to figure
1507 * out which cpu is logically closest to our hot cache data.
1508 */
e2c88063
RR
1509 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1510 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1511
cd4ae6ad 1512 rcu_read_lock();
e2c88063
RR
1513 for_each_domain(cpu, sd) {
1514 if (sd->flags & SD_WAKE_AFFINE) {
1515 int best_cpu;
6e1254d2 1516
e2c88063
RR
1517 /*
1518 * "this_cpu" is cheaper to preempt than a
1519 * remote processor.
1520 */
1521 if (this_cpu != -1 &&
cd4ae6ad
XF
1522 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1523 rcu_read_unlock();
e2c88063 1524 return this_cpu;
cd4ae6ad 1525 }
e2c88063
RR
1526
1527 best_cpu = cpumask_first_and(lowest_mask,
1528 sched_domain_span(sd));
cd4ae6ad
XF
1529 if (best_cpu < nr_cpu_ids) {
1530 rcu_read_unlock();
e2c88063 1531 return best_cpu;
cd4ae6ad 1532 }
6e1254d2
GH
1533 }
1534 }
cd4ae6ad 1535 rcu_read_unlock();
6e1254d2
GH
1536
1537 /*
1538 * And finally, if there were no matches within the domains
1539 * just give the caller *something* to work with from the compatible
1540 * locations.
1541 */
e2c88063
RR
1542 if (this_cpu != -1)
1543 return this_cpu;
1544
1545 cpu = cpumask_any(lowest_mask);
1546 if (cpu < nr_cpu_ids)
1547 return cpu;
1548 return -1;
07b4032c
GH
1549}
1550
1551/* Will lock the rq it finds */
4df64c0b 1552static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1553{
1554 struct rq *lowest_rq = NULL;
07b4032c 1555 int tries;
4df64c0b 1556 int cpu;
e8fa1362 1557
07b4032c
GH
1558 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1559 cpu = find_lowest_rq(task);
1560
2de0b463 1561 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1562 break;
1563
07b4032c
GH
1564 lowest_rq = cpu_rq(cpu);
1565
e8fa1362 1566 /* if the prio of this runqueue changed, try again */
07b4032c 1567 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1568 /*
1569 * We had to unlock the run queue. In
1570 * the mean time, task could have
1571 * migrated already or had its affinity changed.
1572 * Also make sure that it wasn't scheduled on its rq.
1573 */
07b4032c 1574 if (unlikely(task_rq(task) != rq ||
96f874e2 1575 !cpumask_test_cpu(lowest_rq->cpu,
fa17b507 1576 tsk_cpus_allowed(task)) ||
07b4032c 1577 task_running(rq, task) ||
fd2f4419 1578 !task->on_rq)) {
4df64c0b 1579
7f1b4393 1580 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1581 lowest_rq = NULL;
1582 break;
1583 }
1584 }
1585
1586 /* If this rq is still suitable use it. */
e864c499 1587 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1588 break;
1589
1590 /* try again */
1b12bbc7 1591 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1592 lowest_rq = NULL;
1593 }
1594
1595 return lowest_rq;
1596}
1597
917b627d
GH
1598static struct task_struct *pick_next_pushable_task(struct rq *rq)
1599{
1600 struct task_struct *p;
1601
1602 if (!has_pushable_tasks(rq))
1603 return NULL;
1604
1605 p = plist_first_entry(&rq->rt.pushable_tasks,
1606 struct task_struct, pushable_tasks);
1607
1608 BUG_ON(rq->cpu != task_cpu(p));
1609 BUG_ON(task_current(rq, p));
29baa747 1610 BUG_ON(p->nr_cpus_allowed <= 1);
917b627d 1611
fd2f4419 1612 BUG_ON(!p->on_rq);
917b627d
GH
1613 BUG_ON(!rt_task(p));
1614
1615 return p;
1616}
1617
e8fa1362
SR
1618/*
1619 * If the current CPU has more than one RT task, see if the non
1620 * running task can migrate over to a CPU that is running a task
1621 * of lesser priority.
1622 */
697f0a48 1623static int push_rt_task(struct rq *rq)
e8fa1362
SR
1624{
1625 struct task_struct *next_task;
1626 struct rq *lowest_rq;
311e800e 1627 int ret = 0;
e8fa1362 1628
a22d7fc1
GH
1629 if (!rq->rt.overloaded)
1630 return 0;
1631
917b627d 1632 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1633 if (!next_task)
1634 return 0;
1635
49246274 1636retry:
697f0a48 1637 if (unlikely(next_task == rq->curr)) {
f65eda4f 1638 WARN_ON(1);
e8fa1362 1639 return 0;
f65eda4f 1640 }
e8fa1362
SR
1641
1642 /*
1643 * It's possible that the next_task slipped in of
1644 * higher priority than current. If that's the case
1645 * just reschedule current.
1646 */
697f0a48
GH
1647 if (unlikely(next_task->prio < rq->curr->prio)) {
1648 resched_task(rq->curr);
e8fa1362
SR
1649 return 0;
1650 }
1651
697f0a48 1652 /* We might release rq lock */
e8fa1362
SR
1653 get_task_struct(next_task);
1654
1655 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1656 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1657 if (!lowest_rq) {
1658 struct task_struct *task;
1659 /*
311e800e 1660 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1661 * so it is possible that next_task has migrated.
1662 *
1663 * We need to make sure that the task is still on the same
1664 * run-queue and is also still the next task eligible for
1665 * pushing.
e8fa1362 1666 */
917b627d 1667 task = pick_next_pushable_task(rq);
1563513d
GH
1668 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1669 /*
311e800e
HD
1670 * The task hasn't migrated, and is still the next
1671 * eligible task, but we failed to find a run-queue
1672 * to push it to. Do not retry in this case, since
1673 * other cpus will pull from us when ready.
1563513d 1674 */
1563513d 1675 goto out;
e8fa1362 1676 }
917b627d 1677
1563513d
GH
1678 if (!task)
1679 /* No more tasks, just exit */
1680 goto out;
1681
917b627d 1682 /*
1563513d 1683 * Something has shifted, try again.
917b627d 1684 */
1563513d
GH
1685 put_task_struct(next_task);
1686 next_task = task;
1687 goto retry;
e8fa1362
SR
1688 }
1689
697f0a48 1690 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1691 set_task_cpu(next_task, lowest_rq->cpu);
1692 activate_task(lowest_rq, next_task, 0);
311e800e 1693 ret = 1;
e8fa1362
SR
1694
1695 resched_task(lowest_rq->curr);
1696
1b12bbc7 1697 double_unlock_balance(rq, lowest_rq);
e8fa1362 1698
e8fa1362
SR
1699out:
1700 put_task_struct(next_task);
1701
311e800e 1702 return ret;
e8fa1362
SR
1703}
1704
e8fa1362
SR
1705static void push_rt_tasks(struct rq *rq)
1706{
1707 /* push_rt_task will return true if it moved an RT */
1708 while (push_rt_task(rq))
1709 ;
1710}
1711
f65eda4f
SR
1712static int pull_rt_task(struct rq *this_rq)
1713{
80bf3171 1714 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1715 struct task_struct *p;
f65eda4f 1716 struct rq *src_rq;
f65eda4f 1717
637f5085 1718 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1719 return 0;
1720
c6c4927b 1721 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1722 if (this_cpu == cpu)
1723 continue;
1724
1725 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1726
1727 /*
1728 * Don't bother taking the src_rq->lock if the next highest
1729 * task is known to be lower-priority than our current task.
1730 * This may look racy, but if this value is about to go
1731 * logically higher, the src_rq will push this task away.
1732 * And if its going logically lower, we do not care
1733 */
1734 if (src_rq->rt.highest_prio.next >=
1735 this_rq->rt.highest_prio.curr)
1736 continue;
1737
f65eda4f
SR
1738 /*
1739 * We can potentially drop this_rq's lock in
1740 * double_lock_balance, and another CPU could
a8728944 1741 * alter this_rq
f65eda4f 1742 */
a8728944 1743 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1744
1745 /*
1746 * Are there still pullable RT tasks?
1747 */
614ee1f6
MG
1748 if (src_rq->rt.rt_nr_running <= 1)
1749 goto skip;
f65eda4f 1750
f65eda4f
SR
1751 p = pick_next_highest_task_rt(src_rq, this_cpu);
1752
1753 /*
1754 * Do we have an RT task that preempts
1755 * the to-be-scheduled task?
1756 */
a8728944 1757 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 1758 WARN_ON(p == src_rq->curr);
fd2f4419 1759 WARN_ON(!p->on_rq);
f65eda4f
SR
1760
1761 /*
1762 * There's a chance that p is higher in priority
1763 * than what's currently running on its cpu.
1764 * This is just that p is wakeing up and hasn't
1765 * had a chance to schedule. We only pull
1766 * p if it is lower in priority than the
a8728944 1767 * current task on the run queue
f65eda4f 1768 */
a8728944 1769 if (p->prio < src_rq->curr->prio)
614ee1f6 1770 goto skip;
f65eda4f
SR
1771
1772 ret = 1;
1773
1774 deactivate_task(src_rq, p, 0);
1775 set_task_cpu(p, this_cpu);
1776 activate_task(this_rq, p, 0);
1777 /*
1778 * We continue with the search, just in
1779 * case there's an even higher prio task
25985edc 1780 * in another runqueue. (low likelihood
f65eda4f 1781 * but possible)
f65eda4f 1782 */
f65eda4f 1783 }
49246274 1784skip:
1b12bbc7 1785 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1786 }
1787
1788 return ret;
1789}
1790
9a897c5a 1791static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1792{
1793 /* Try to pull RT tasks here if we lower this rq's prio */
33c3d6c6 1794 if (rq->rt.highest_prio.curr > prev->prio)
f65eda4f
SR
1795 pull_rt_task(rq);
1796}
1797
9a897c5a 1798static void post_schedule_rt(struct rq *rq)
e8fa1362 1799{
967fc046 1800 push_rt_tasks(rq);
e8fa1362
SR
1801}
1802
8ae121ac
GH
1803/*
1804 * If we are not running and we are not going to reschedule soon, we should
1805 * try to push tasks away now
1806 */
efbbd05a 1807static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 1808{
9a897c5a 1809 if (!task_running(rq, p) &&
8ae121ac 1810 !test_tsk_need_resched(rq->curr) &&
917b627d 1811 has_pushable_tasks(rq) &&
29baa747 1812 p->nr_cpus_allowed > 1 &&
43fa5460 1813 rt_task(rq->curr) &&
29baa747 1814 (rq->curr->nr_cpus_allowed < 2 ||
3be209a8 1815 rq->curr->prio <= p->prio))
4642dafd
SR
1816 push_rt_tasks(rq);
1817}
1818
cd8ba7cd 1819static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1820 const struct cpumask *new_mask)
73fe6aae 1821{
8d3d5ada
KT
1822 struct rq *rq;
1823 int weight;
73fe6aae
GH
1824
1825 BUG_ON(!rt_task(p));
1826
8d3d5ada
KT
1827 if (!p->on_rq)
1828 return;
917b627d 1829
8d3d5ada 1830 weight = cpumask_weight(new_mask);
917b627d 1831
8d3d5ada
KT
1832 /*
1833 * Only update if the process changes its state from whether it
1834 * can migrate or not.
1835 */
29baa747 1836 if ((p->nr_cpus_allowed > 1) == (weight > 1))
8d3d5ada 1837 return;
917b627d 1838
8d3d5ada 1839 rq = task_rq(p);
73fe6aae 1840
8d3d5ada
KT
1841 /*
1842 * The process used to be able to migrate OR it can now migrate
1843 */
1844 if (weight <= 1) {
1845 if (!task_current(rq, p))
1846 dequeue_pushable_task(rq, p);
1847 BUG_ON(!rq->rt.rt_nr_migratory);
1848 rq->rt.rt_nr_migratory--;
1849 } else {
1850 if (!task_current(rq, p))
1851 enqueue_pushable_task(rq, p);
1852 rq->rt.rt_nr_migratory++;
73fe6aae 1853 }
8d3d5ada
KT
1854
1855 update_rt_migration(&rq->rt);
73fe6aae 1856}
deeeccd4 1857
bdd7c81b 1858/* Assumes rq->lock is held */
1f11eb6a 1859static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1860{
1861 if (rq->rt.overloaded)
1862 rt_set_overload(rq);
6e0534f2 1863
7def2be1
PZ
1864 __enable_runtime(rq);
1865
e864c499 1866 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1867}
1868
1869/* Assumes rq->lock is held */
1f11eb6a 1870static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1871{
1872 if (rq->rt.overloaded)
1873 rt_clear_overload(rq);
6e0534f2 1874
7def2be1
PZ
1875 __disable_runtime(rq);
1876
6e0534f2 1877 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1878}
cb469845
SR
1879
1880/*
1881 * When switch from the rt queue, we bring ourselves to a position
1882 * that we might want to pull RT tasks from other runqueues.
1883 */
da7a735e 1884static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1885{
1886 /*
1887 * If there are other RT tasks then we will reschedule
1888 * and the scheduling of the other RT tasks will handle
1889 * the balancing. But if we are the last RT task
1890 * we may need to handle the pulling of RT tasks
1891 * now.
1892 */
1158ddb5
KT
1893 if (!p->on_rq || rq->rt.rt_nr_running)
1894 return;
1895
1896 if (pull_rt_task(rq))
1897 resched_task(rq->curr);
cb469845 1898}
3d8cbdf8 1899
029632fb 1900void init_sched_rt_class(void)
3d8cbdf8
RR
1901{
1902 unsigned int i;
1903
029632fb 1904 for_each_possible_cpu(i) {
eaa95840 1905 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 1906 GFP_KERNEL, cpu_to_node(i));
029632fb 1907 }
3d8cbdf8 1908}
cb469845
SR
1909#endif /* CONFIG_SMP */
1910
1911/*
1912 * When switching a task to RT, we may overload the runqueue
1913 * with RT tasks. In this case we try to push them off to
1914 * other runqueues.
1915 */
da7a735e 1916static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1917{
1918 int check_resched = 1;
1919
1920 /*
1921 * If we are already running, then there's nothing
1922 * that needs to be done. But if we are not running
1923 * we may need to preempt the current running task.
1924 * If that current running task is also an RT task
1925 * then see if we can move to another run queue.
1926 */
fd2f4419 1927 if (p->on_rq && rq->curr != p) {
cb469845
SR
1928#ifdef CONFIG_SMP
1929 if (rq->rt.overloaded && push_rt_task(rq) &&
1930 /* Don't resched if we changed runqueues */
1931 rq != task_rq(p))
1932 check_resched = 0;
1933#endif /* CONFIG_SMP */
1934 if (check_resched && p->prio < rq->curr->prio)
1935 resched_task(rq->curr);
1936 }
1937}
1938
1939/*
1940 * Priority of the task has changed. This may cause
1941 * us to initiate a push or pull.
1942 */
da7a735e
PZ
1943static void
1944prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 1945{
fd2f4419 1946 if (!p->on_rq)
da7a735e
PZ
1947 return;
1948
1949 if (rq->curr == p) {
cb469845
SR
1950#ifdef CONFIG_SMP
1951 /*
1952 * If our priority decreases while running, we
1953 * may need to pull tasks to this runqueue.
1954 */
1955 if (oldprio < p->prio)
1956 pull_rt_task(rq);
1957 /*
1958 * If there's a higher priority task waiting to run
6fa46fa5
SR
1959 * then reschedule. Note, the above pull_rt_task
1960 * can release the rq lock and p could migrate.
1961 * Only reschedule if p is still on the same runqueue.
cb469845 1962 */
e864c499 1963 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1964 resched_task(p);
1965#else
1966 /* For UP simply resched on drop of prio */
1967 if (oldprio < p->prio)
1968 resched_task(p);
e8fa1362 1969#endif /* CONFIG_SMP */
cb469845
SR
1970 } else {
1971 /*
1972 * This task is not running, but if it is
1973 * greater than the current running task
1974 * then reschedule.
1975 */
1976 if (p->prio < rq->curr->prio)
1977 resched_task(rq->curr);
1978 }
1979}
1980
78f2c7db
PZ
1981static void watchdog(struct rq *rq, struct task_struct *p)
1982{
1983 unsigned long soft, hard;
1984
78d7d407
JS
1985 /* max may change after cur was read, this will be fixed next tick */
1986 soft = task_rlimit(p, RLIMIT_RTTIME);
1987 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
1988
1989 if (soft != RLIM_INFINITY) {
1990 unsigned long next;
1991
57d2aa00
YX
1992 if (p->rt.watchdog_stamp != jiffies) {
1993 p->rt.timeout++;
1994 p->rt.watchdog_stamp = jiffies;
1995 }
1996
78f2c7db 1997 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1998 if (p->rt.timeout > next)
f06febc9 1999 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
2000 }
2001}
bb44e5d1 2002
8f4d37ec 2003static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 2004{
454c7999
CC
2005 struct sched_rt_entity *rt_se = &p->rt;
2006
67e2be02
PZ
2007 update_curr_rt(rq);
2008
78f2c7db
PZ
2009 watchdog(rq, p);
2010
bb44e5d1
IM
2011 /*
2012 * RR tasks need a special form of timeslice management.
2013 * FIFO tasks have no timeslices.
2014 */
2015 if (p->policy != SCHED_RR)
2016 return;
2017
fa717060 2018 if (--p->rt.time_slice)
bb44e5d1
IM
2019 return;
2020
ce0dbbbb 2021 p->rt.time_slice = sched_rr_timeslice;
bb44e5d1 2022
98fbc798 2023 /*
454c7999
CC
2024 * Requeue to the end of queue if we (and all of our ancestors) are the
2025 * only element on the queue
98fbc798 2026 */
454c7999
CC
2027 for_each_sched_rt_entity(rt_se) {
2028 if (rt_se->run_list.prev != rt_se->run_list.next) {
2029 requeue_task_rt(rq, p, 0);
2030 set_tsk_need_resched(p);
2031 return;
2032 }
98fbc798 2033 }
bb44e5d1
IM
2034}
2035
83b699ed
SV
2036static void set_curr_task_rt(struct rq *rq)
2037{
2038 struct task_struct *p = rq->curr;
2039
305e6835 2040 p->se.exec_start = rq->clock_task;
917b627d
GH
2041
2042 /* The running task is never eligible for pushing */
2043 dequeue_pushable_task(rq, p);
83b699ed
SV
2044}
2045
6d686f45 2046static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
2047{
2048 /*
2049 * Time slice is 0 for SCHED_FIFO tasks
2050 */
2051 if (task->policy == SCHED_RR)
ce0dbbbb 2052 return sched_rr_timeslice;
0d721cea
PW
2053 else
2054 return 0;
2055}
2056
029632fb 2057const struct sched_class rt_sched_class = {
5522d5d5 2058 .next = &fair_sched_class,
bb44e5d1
IM
2059 .enqueue_task = enqueue_task_rt,
2060 .dequeue_task = dequeue_task_rt,
2061 .yield_task = yield_task_rt,
2062
2063 .check_preempt_curr = check_preempt_curr_rt,
2064
2065 .pick_next_task = pick_next_task_rt,
2066 .put_prev_task = put_prev_task_rt,
2067
681f3e68 2068#ifdef CONFIG_SMP
4ce72a2c
LZ
2069 .select_task_rq = select_task_rq_rt,
2070
73fe6aae 2071 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
2072 .rq_online = rq_online_rt,
2073 .rq_offline = rq_offline_rt,
9a897c5a
SR
2074 .pre_schedule = pre_schedule_rt,
2075 .post_schedule = post_schedule_rt,
efbbd05a 2076 .task_woken = task_woken_rt,
cb469845 2077 .switched_from = switched_from_rt,
681f3e68 2078#endif
bb44e5d1 2079
83b699ed 2080 .set_curr_task = set_curr_task_rt,
bb44e5d1 2081 .task_tick = task_tick_rt,
cb469845 2082
0d721cea
PW
2083 .get_rr_interval = get_rr_interval_rt,
2084
cb469845
SR
2085 .prio_changed = prio_changed_rt,
2086 .switched_to = switched_to_rt,
bb44e5d1 2087};
ada18de2
PZ
2088
2089#ifdef CONFIG_SCHED_DEBUG
2090extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2091
029632fb 2092void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 2093{
ec514c48 2094 rt_rq_iter_t iter;
ada18de2
PZ
2095 struct rt_rq *rt_rq;
2096
2097 rcu_read_lock();
ec514c48 2098 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2099 print_rt_rq(m, cpu, rt_rq);
2100 rcu_read_unlock();
2101}
55e12e5e 2102#endif /* CONFIG_SCHED_DEBUG */
This page took 0.807955 seconds and 5 git commands to generate.