staging: imx-drm: Replace DRM_LOG_KMS() by DRM_DEBUG_KMS()
[deliverable/linux.git] / kernel / sched / rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
029632fb
PZ
6#include "sched.h"
7
8#include <linux/slab.h>
9
ce0dbbbb
CW
10int sched_rr_timeslice = RR_TIMESLICE;
11
029632fb
PZ
12static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13
14struct rt_bandwidth def_rt_bandwidth;
15
16static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17{
18 struct rt_bandwidth *rt_b =
19 container_of(timer, struct rt_bandwidth, rt_period_timer);
20 ktime_t now;
21 int overrun;
22 int idle = 0;
23
24 for (;;) {
25 now = hrtimer_cb_get_time(timer);
26 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27
28 if (!overrun)
29 break;
30
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 }
33
34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35}
36
37void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38{
39 rt_b->rt_period = ns_to_ktime(period);
40 rt_b->rt_runtime = runtime;
41
42 raw_spin_lock_init(&rt_b->rt_runtime_lock);
43
44 hrtimer_init(&rt_b->rt_period_timer,
45 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 rt_b->rt_period_timer.function = sched_rt_period_timer;
47}
48
49static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50{
51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 return;
53
54 if (hrtimer_active(&rt_b->rt_period_timer))
55 return;
56
57 raw_spin_lock(&rt_b->rt_runtime_lock);
58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 raw_spin_unlock(&rt_b->rt_runtime_lock);
60}
61
62void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63{
64 struct rt_prio_array *array;
65 int i;
66
67 array = &rt_rq->active;
68 for (i = 0; i < MAX_RT_PRIO; i++) {
69 INIT_LIST_HEAD(array->queue + i);
70 __clear_bit(i, array->bitmap);
71 }
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO, array->bitmap);
74
75#if defined CONFIG_SMP
76 rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 rt_rq->highest_prio.next = MAX_RT_PRIO;
78 rt_rq->rt_nr_migratory = 0;
79 rt_rq->overloaded = 0;
80 plist_head_init(&rt_rq->pushable_tasks);
81#endif
82
83 rt_rq->rt_time = 0;
84 rt_rq->rt_throttled = 0;
85 rt_rq->rt_runtime = 0;
86 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
87}
88
8f48894f 89#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
90static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
91{
92 hrtimer_cancel(&rt_b->rt_period_timer);
93}
8f48894f
PZ
94
95#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
96
398a153b
GH
97static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
98{
8f48894f
PZ
99#ifdef CONFIG_SCHED_DEBUG
100 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
101#endif
398a153b
GH
102 return container_of(rt_se, struct task_struct, rt);
103}
104
398a153b
GH
105static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
106{
107 return rt_rq->rq;
108}
109
110static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
111{
112 return rt_se->rt_rq;
113}
114
029632fb
PZ
115void free_rt_sched_group(struct task_group *tg)
116{
117 int i;
118
119 if (tg->rt_se)
120 destroy_rt_bandwidth(&tg->rt_bandwidth);
121
122 for_each_possible_cpu(i) {
123 if (tg->rt_rq)
124 kfree(tg->rt_rq[i]);
125 if (tg->rt_se)
126 kfree(tg->rt_se[i]);
127 }
128
129 kfree(tg->rt_rq);
130 kfree(tg->rt_se);
131}
132
133void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
134 struct sched_rt_entity *rt_se, int cpu,
135 struct sched_rt_entity *parent)
136{
137 struct rq *rq = cpu_rq(cpu);
138
139 rt_rq->highest_prio.curr = MAX_RT_PRIO;
140 rt_rq->rt_nr_boosted = 0;
141 rt_rq->rq = rq;
142 rt_rq->tg = tg;
143
144 tg->rt_rq[cpu] = rt_rq;
145 tg->rt_se[cpu] = rt_se;
146
147 if (!rt_se)
148 return;
149
150 if (!parent)
151 rt_se->rt_rq = &rq->rt;
152 else
153 rt_se->rt_rq = parent->my_q;
154
155 rt_se->my_q = rt_rq;
156 rt_se->parent = parent;
157 INIT_LIST_HEAD(&rt_se->run_list);
158}
159
160int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
161{
162 struct rt_rq *rt_rq;
163 struct sched_rt_entity *rt_se;
164 int i;
165
166 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
167 if (!tg->rt_rq)
168 goto err;
169 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
170 if (!tg->rt_se)
171 goto err;
172
173 init_rt_bandwidth(&tg->rt_bandwidth,
174 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
175
176 for_each_possible_cpu(i) {
177 rt_rq = kzalloc_node(sizeof(struct rt_rq),
178 GFP_KERNEL, cpu_to_node(i));
179 if (!rt_rq)
180 goto err;
181
182 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
183 GFP_KERNEL, cpu_to_node(i));
184 if (!rt_se)
185 goto err_free_rq;
186
187 init_rt_rq(rt_rq, cpu_rq(i));
188 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
189 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
190 }
191
192 return 1;
193
194err_free_rq:
195 kfree(rt_rq);
196err:
197 return 0;
198}
199
398a153b
GH
200#else /* CONFIG_RT_GROUP_SCHED */
201
a1ba4d8b
PZ
202#define rt_entity_is_task(rt_se) (1)
203
8f48894f
PZ
204static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
205{
206 return container_of(rt_se, struct task_struct, rt);
207}
208
398a153b
GH
209static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
210{
211 return container_of(rt_rq, struct rq, rt);
212}
213
214static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
215{
216 struct task_struct *p = rt_task_of(rt_se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->rt;
220}
221
029632fb
PZ
222void free_rt_sched_group(struct task_group *tg) { }
223
224int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
225{
226 return 1;
227}
398a153b
GH
228#endif /* CONFIG_RT_GROUP_SCHED */
229
4fd29176 230#ifdef CONFIG_SMP
84de4274 231
637f5085 232static inline int rt_overloaded(struct rq *rq)
4fd29176 233{
637f5085 234 return atomic_read(&rq->rd->rto_count);
4fd29176 235}
84de4274 236
4fd29176
SR
237static inline void rt_set_overload(struct rq *rq)
238{
1f11eb6a
GH
239 if (!rq->online)
240 return;
241
c6c4927b 242 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
243 /*
244 * Make sure the mask is visible before we set
245 * the overload count. That is checked to determine
246 * if we should look at the mask. It would be a shame
247 * if we looked at the mask, but the mask was not
248 * updated yet.
7c3f2ab7
PZ
249 *
250 * Matched by the barrier in pull_rt_task().
4fd29176 251 */
7c3f2ab7 252 smp_wmb();
637f5085 253 atomic_inc(&rq->rd->rto_count);
4fd29176 254}
84de4274 255
4fd29176
SR
256static inline void rt_clear_overload(struct rq *rq)
257{
1f11eb6a
GH
258 if (!rq->online)
259 return;
260
4fd29176 261 /* the order here really doesn't matter */
637f5085 262 atomic_dec(&rq->rd->rto_count);
c6c4927b 263 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 264}
73fe6aae 265
398a153b 266static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 267{
a1ba4d8b 268 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
269 if (!rt_rq->overloaded) {
270 rt_set_overload(rq_of_rt_rq(rt_rq));
271 rt_rq->overloaded = 1;
cdc8eb98 272 }
398a153b
GH
273 } else if (rt_rq->overloaded) {
274 rt_clear_overload(rq_of_rt_rq(rt_rq));
275 rt_rq->overloaded = 0;
637f5085 276 }
73fe6aae 277}
4fd29176 278
398a153b
GH
279static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
280{
29baa747
PZ
281 struct task_struct *p;
282
a1ba4d8b
PZ
283 if (!rt_entity_is_task(rt_se))
284 return;
285
29baa747 286 p = rt_task_of(rt_se);
a1ba4d8b
PZ
287 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
288
289 rt_rq->rt_nr_total++;
29baa747 290 if (p->nr_cpus_allowed > 1)
398a153b
GH
291 rt_rq->rt_nr_migratory++;
292
293 update_rt_migration(rt_rq);
294}
295
296static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
297{
29baa747
PZ
298 struct task_struct *p;
299
a1ba4d8b
PZ
300 if (!rt_entity_is_task(rt_se))
301 return;
302
29baa747 303 p = rt_task_of(rt_se);
a1ba4d8b
PZ
304 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
305
306 rt_rq->rt_nr_total--;
29baa747 307 if (p->nr_cpus_allowed > 1)
398a153b
GH
308 rt_rq->rt_nr_migratory--;
309
310 update_rt_migration(rt_rq);
311}
312
5181f4a4
SR
313static inline int has_pushable_tasks(struct rq *rq)
314{
315 return !plist_head_empty(&rq->rt.pushable_tasks);
316}
317
917b627d
GH
318static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
319{
320 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
321 plist_node_init(&p->pushable_tasks, p->prio);
322 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
323
324 /* Update the highest prio pushable task */
325 if (p->prio < rq->rt.highest_prio.next)
326 rq->rt.highest_prio.next = p->prio;
917b627d
GH
327}
328
329static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
330{
331 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 332
5181f4a4
SR
333 /* Update the new highest prio pushable task */
334 if (has_pushable_tasks(rq)) {
335 p = plist_first_entry(&rq->rt.pushable_tasks,
336 struct task_struct, pushable_tasks);
337 rq->rt.highest_prio.next = p->prio;
338 } else
339 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
340}
341
917b627d
GH
342#else
343
ceacc2c1 344static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 345{
6f505b16
PZ
346}
347
ceacc2c1
PZ
348static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
349{
350}
351
b07430ac 352static inline
ceacc2c1
PZ
353void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
354{
355}
356
398a153b 357static inline
ceacc2c1
PZ
358void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
359{
360}
917b627d 361
4fd29176
SR
362#endif /* CONFIG_SMP */
363
6f505b16
PZ
364static inline int on_rt_rq(struct sched_rt_entity *rt_se)
365{
366 return !list_empty(&rt_se->run_list);
367}
368
052f1dc7 369#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 370
9f0c1e56 371static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
372{
373 if (!rt_rq->tg)
9f0c1e56 374 return RUNTIME_INF;
6f505b16 375
ac086bc2
PZ
376 return rt_rq->rt_runtime;
377}
378
379static inline u64 sched_rt_period(struct rt_rq *rt_rq)
380{
381 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
382}
383
ec514c48
CX
384typedef struct task_group *rt_rq_iter_t;
385
1c09ab0d
YZ
386static inline struct task_group *next_task_group(struct task_group *tg)
387{
388 do {
389 tg = list_entry_rcu(tg->list.next,
390 typeof(struct task_group), list);
391 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
392
393 if (&tg->list == &task_groups)
394 tg = NULL;
395
396 return tg;
397}
398
399#define for_each_rt_rq(rt_rq, iter, rq) \
400 for (iter = container_of(&task_groups, typeof(*iter), list); \
401 (iter = next_task_group(iter)) && \
402 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 403
6f505b16
PZ
404#define for_each_sched_rt_entity(rt_se) \
405 for (; rt_se; rt_se = rt_se->parent)
406
407static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
408{
409 return rt_se->my_q;
410}
411
37dad3fc 412static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
413static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
414
9f0c1e56 415static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 416{
f6121f4f 417 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
74b7eb58
YZ
418 struct sched_rt_entity *rt_se;
419
0c3b9168
BS
420 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
421
422 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 423
f6121f4f
DF
424 if (rt_rq->rt_nr_running) {
425 if (rt_se && !on_rt_rq(rt_se))
37dad3fc 426 enqueue_rt_entity(rt_se, false);
e864c499 427 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 428 resched_task(curr);
6f505b16
PZ
429 }
430}
431
9f0c1e56 432static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 433{
74b7eb58 434 struct sched_rt_entity *rt_se;
0c3b9168 435 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 436
0c3b9168 437 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16
PZ
438
439 if (rt_se && on_rt_rq(rt_se))
440 dequeue_rt_entity(rt_se);
441}
442
23b0fdfc
PZ
443static inline int rt_rq_throttled(struct rt_rq *rt_rq)
444{
445 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
446}
447
448static int rt_se_boosted(struct sched_rt_entity *rt_se)
449{
450 struct rt_rq *rt_rq = group_rt_rq(rt_se);
451 struct task_struct *p;
452
453 if (rt_rq)
454 return !!rt_rq->rt_nr_boosted;
455
456 p = rt_task_of(rt_se);
457 return p->prio != p->normal_prio;
458}
459
d0b27fa7 460#ifdef CONFIG_SMP
c6c4927b 461static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 462{
424c93fe 463 return this_rq()->rd->span;
d0b27fa7 464}
6f505b16 465#else
c6c4927b 466static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 467{
c6c4927b 468 return cpu_online_mask;
d0b27fa7
PZ
469}
470#endif
6f505b16 471
d0b27fa7
PZ
472static inline
473struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 474{
d0b27fa7
PZ
475 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
476}
9f0c1e56 477
ac086bc2
PZ
478static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
479{
480 return &rt_rq->tg->rt_bandwidth;
481}
482
55e12e5e 483#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
484
485static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
486{
ac086bc2
PZ
487 return rt_rq->rt_runtime;
488}
489
490static inline u64 sched_rt_period(struct rt_rq *rt_rq)
491{
492 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
493}
494
ec514c48
CX
495typedef struct rt_rq *rt_rq_iter_t;
496
497#define for_each_rt_rq(rt_rq, iter, rq) \
498 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
499
6f505b16
PZ
500#define for_each_sched_rt_entity(rt_se) \
501 for (; rt_se; rt_se = NULL)
502
503static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
504{
505 return NULL;
506}
507
9f0c1e56 508static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 509{
f3ade837
JB
510 if (rt_rq->rt_nr_running)
511 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
512}
513
9f0c1e56 514static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
515{
516}
517
23b0fdfc
PZ
518static inline int rt_rq_throttled(struct rt_rq *rt_rq)
519{
520 return rt_rq->rt_throttled;
521}
d0b27fa7 522
c6c4927b 523static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 524{
c6c4927b 525 return cpu_online_mask;
d0b27fa7
PZ
526}
527
528static inline
529struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
530{
531 return &cpu_rq(cpu)->rt;
532}
533
ac086bc2
PZ
534static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
535{
536 return &def_rt_bandwidth;
537}
538
55e12e5e 539#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 540
faa59937
JL
541bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
542{
543 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
544
545 return (hrtimer_active(&rt_b->rt_period_timer) ||
546 rt_rq->rt_time < rt_b->rt_runtime);
547}
548
ac086bc2 549#ifdef CONFIG_SMP
78333cdd
PZ
550/*
551 * We ran out of runtime, see if we can borrow some from our neighbours.
552 */
b79f3833 553static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
554{
555 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
aa7f6730 556 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
ac086bc2
PZ
557 int i, weight, more = 0;
558 u64 rt_period;
559
c6c4927b 560 weight = cpumask_weight(rd->span);
ac086bc2 561
0986b11b 562 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 563 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 564 for_each_cpu(i, rd->span) {
ac086bc2
PZ
565 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
566 s64 diff;
567
568 if (iter == rt_rq)
569 continue;
570
0986b11b 571 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
572 /*
573 * Either all rqs have inf runtime and there's nothing to steal
574 * or __disable_runtime() below sets a specific rq to inf to
575 * indicate its been disabled and disalow stealing.
576 */
7def2be1
PZ
577 if (iter->rt_runtime == RUNTIME_INF)
578 goto next;
579
78333cdd
PZ
580 /*
581 * From runqueues with spare time, take 1/n part of their
582 * spare time, but no more than our period.
583 */
ac086bc2
PZ
584 diff = iter->rt_runtime - iter->rt_time;
585 if (diff > 0) {
58838cf3 586 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
587 if (rt_rq->rt_runtime + diff > rt_period)
588 diff = rt_period - rt_rq->rt_runtime;
589 iter->rt_runtime -= diff;
590 rt_rq->rt_runtime += diff;
591 more = 1;
592 if (rt_rq->rt_runtime == rt_period) {
0986b11b 593 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
594 break;
595 }
596 }
7def2be1 597next:
0986b11b 598 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 599 }
0986b11b 600 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
601
602 return more;
603}
7def2be1 604
78333cdd
PZ
605/*
606 * Ensure this RQ takes back all the runtime it lend to its neighbours.
607 */
7def2be1
PZ
608static void __disable_runtime(struct rq *rq)
609{
610 struct root_domain *rd = rq->rd;
ec514c48 611 rt_rq_iter_t iter;
7def2be1
PZ
612 struct rt_rq *rt_rq;
613
614 if (unlikely(!scheduler_running))
615 return;
616
ec514c48 617 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
618 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
619 s64 want;
620 int i;
621
0986b11b
TG
622 raw_spin_lock(&rt_b->rt_runtime_lock);
623 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
624 /*
625 * Either we're all inf and nobody needs to borrow, or we're
626 * already disabled and thus have nothing to do, or we have
627 * exactly the right amount of runtime to take out.
628 */
7def2be1
PZ
629 if (rt_rq->rt_runtime == RUNTIME_INF ||
630 rt_rq->rt_runtime == rt_b->rt_runtime)
631 goto balanced;
0986b11b 632 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 633
78333cdd
PZ
634 /*
635 * Calculate the difference between what we started out with
636 * and what we current have, that's the amount of runtime
637 * we lend and now have to reclaim.
638 */
7def2be1
PZ
639 want = rt_b->rt_runtime - rt_rq->rt_runtime;
640
78333cdd
PZ
641 /*
642 * Greedy reclaim, take back as much as we can.
643 */
c6c4927b 644 for_each_cpu(i, rd->span) {
7def2be1
PZ
645 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
646 s64 diff;
647
78333cdd
PZ
648 /*
649 * Can't reclaim from ourselves or disabled runqueues.
650 */
f1679d08 651 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
652 continue;
653
0986b11b 654 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
655 if (want > 0) {
656 diff = min_t(s64, iter->rt_runtime, want);
657 iter->rt_runtime -= diff;
658 want -= diff;
659 } else {
660 iter->rt_runtime -= want;
661 want -= want;
662 }
0986b11b 663 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
664
665 if (!want)
666 break;
667 }
668
0986b11b 669 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
670 /*
671 * We cannot be left wanting - that would mean some runtime
672 * leaked out of the system.
673 */
7def2be1
PZ
674 BUG_ON(want);
675balanced:
78333cdd
PZ
676 /*
677 * Disable all the borrow logic by pretending we have inf
678 * runtime - in which case borrowing doesn't make sense.
679 */
7def2be1 680 rt_rq->rt_runtime = RUNTIME_INF;
a4c96ae3 681 rt_rq->rt_throttled = 0;
0986b11b
TG
682 raw_spin_unlock(&rt_rq->rt_runtime_lock);
683 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
684 }
685}
686
7def2be1
PZ
687static void __enable_runtime(struct rq *rq)
688{
ec514c48 689 rt_rq_iter_t iter;
7def2be1
PZ
690 struct rt_rq *rt_rq;
691
692 if (unlikely(!scheduler_running))
693 return;
694
78333cdd
PZ
695 /*
696 * Reset each runqueue's bandwidth settings
697 */
ec514c48 698 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
699 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
700
0986b11b
TG
701 raw_spin_lock(&rt_b->rt_runtime_lock);
702 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
703 rt_rq->rt_runtime = rt_b->rt_runtime;
704 rt_rq->rt_time = 0;
baf25731 705 rt_rq->rt_throttled = 0;
0986b11b
TG
706 raw_spin_unlock(&rt_rq->rt_runtime_lock);
707 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
708 }
709}
710
eff6549b
PZ
711static int balance_runtime(struct rt_rq *rt_rq)
712{
713 int more = 0;
714
4a6184ce
PZ
715 if (!sched_feat(RT_RUNTIME_SHARE))
716 return more;
717
eff6549b 718 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 719 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 720 more = do_balance_runtime(rt_rq);
0986b11b 721 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
722 }
723
724 return more;
725}
55e12e5e 726#else /* !CONFIG_SMP */
eff6549b
PZ
727static inline int balance_runtime(struct rt_rq *rt_rq)
728{
729 return 0;
730}
55e12e5e 731#endif /* CONFIG_SMP */
ac086bc2 732
eff6549b
PZ
733static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
734{
42c62a58 735 int i, idle = 1, throttled = 0;
c6c4927b 736 const struct cpumask *span;
eff6549b 737
eff6549b 738 span = sched_rt_period_mask();
e221d028
MG
739#ifdef CONFIG_RT_GROUP_SCHED
740 /*
741 * FIXME: isolated CPUs should really leave the root task group,
742 * whether they are isolcpus or were isolated via cpusets, lest
743 * the timer run on a CPU which does not service all runqueues,
744 * potentially leaving other CPUs indefinitely throttled. If
745 * isolation is really required, the user will turn the throttle
746 * off to kill the perturbations it causes anyway. Meanwhile,
747 * this maintains functionality for boot and/or troubleshooting.
748 */
749 if (rt_b == &root_task_group.rt_bandwidth)
750 span = cpu_online_mask;
751#endif
c6c4927b 752 for_each_cpu(i, span) {
eff6549b
PZ
753 int enqueue = 0;
754 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
755 struct rq *rq = rq_of_rt_rq(rt_rq);
756
05fa785c 757 raw_spin_lock(&rq->lock);
eff6549b
PZ
758 if (rt_rq->rt_time) {
759 u64 runtime;
760
0986b11b 761 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
762 if (rt_rq->rt_throttled)
763 balance_runtime(rt_rq);
764 runtime = rt_rq->rt_runtime;
765 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
766 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
767 rt_rq->rt_throttled = 0;
768 enqueue = 1;
61eadef6
MG
769
770 /*
771 * Force a clock update if the CPU was idle,
772 * lest wakeup -> unthrottle time accumulate.
773 */
774 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
775 rq->skip_clock_update = -1;
eff6549b
PZ
776 }
777 if (rt_rq->rt_time || rt_rq->rt_nr_running)
778 idle = 0;
0986b11b 779 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 780 } else if (rt_rq->rt_nr_running) {
6c3df255 781 idle = 0;
0c3b9168
BS
782 if (!rt_rq_throttled(rt_rq))
783 enqueue = 1;
784 }
42c62a58
PZ
785 if (rt_rq->rt_throttled)
786 throttled = 1;
eff6549b
PZ
787
788 if (enqueue)
789 sched_rt_rq_enqueue(rt_rq);
05fa785c 790 raw_spin_unlock(&rq->lock);
eff6549b
PZ
791 }
792
42c62a58
PZ
793 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
794 return 1;
795
eff6549b
PZ
796 return idle;
797}
ac086bc2 798
6f505b16
PZ
799static inline int rt_se_prio(struct sched_rt_entity *rt_se)
800{
052f1dc7 801#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
802 struct rt_rq *rt_rq = group_rt_rq(rt_se);
803
804 if (rt_rq)
e864c499 805 return rt_rq->highest_prio.curr;
6f505b16
PZ
806#endif
807
808 return rt_task_of(rt_se)->prio;
809}
810
9f0c1e56 811static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 812{
9f0c1e56 813 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 814
fa85ae24 815 if (rt_rq->rt_throttled)
23b0fdfc 816 return rt_rq_throttled(rt_rq);
fa85ae24 817
5b680fd6 818 if (runtime >= sched_rt_period(rt_rq))
ac086bc2
PZ
819 return 0;
820
b79f3833
PZ
821 balance_runtime(rt_rq);
822 runtime = sched_rt_runtime(rt_rq);
823 if (runtime == RUNTIME_INF)
824 return 0;
ac086bc2 825
9f0c1e56 826 if (rt_rq->rt_time > runtime) {
7abc63b1
PZ
827 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
828
829 /*
830 * Don't actually throttle groups that have no runtime assigned
831 * but accrue some time due to boosting.
832 */
833 if (likely(rt_b->rt_runtime)) {
3ccf3e83
PZ
834 static bool once = false;
835
7abc63b1 836 rt_rq->rt_throttled = 1;
3ccf3e83
PZ
837
838 if (!once) {
839 once = true;
840 printk_sched("sched: RT throttling activated\n");
841 }
7abc63b1
PZ
842 } else {
843 /*
844 * In case we did anyway, make it go away,
845 * replenishment is a joke, since it will replenish us
846 * with exactly 0 ns.
847 */
848 rt_rq->rt_time = 0;
849 }
850
23b0fdfc 851 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 852 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
853 return 1;
854 }
fa85ae24
PZ
855 }
856
857 return 0;
858}
859
bb44e5d1
IM
860/*
861 * Update the current task's runtime statistics. Skip current tasks that
862 * are not in our scheduling class.
863 */
a9957449 864static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
865{
866 struct task_struct *curr = rq->curr;
6f505b16
PZ
867 struct sched_rt_entity *rt_se = &curr->rt;
868 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
869 u64 delta_exec;
870
06c3bc65 871 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
872 return;
873
78becc27 874 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
fc79e240
KT
875 if (unlikely((s64)delta_exec <= 0))
876 return;
6cfb0d5d 877
42c62a58
PZ
878 schedstat_set(curr->se.statistics.exec_max,
879 max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
880
881 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
882 account_group_exec_runtime(curr, delta_exec);
883
78becc27 884 curr->se.exec_start = rq_clock_task(rq);
d842de87 885 cpuacct_charge(curr, delta_exec);
fa85ae24 886
e9e9250b
PZ
887 sched_rt_avg_update(rq, delta_exec);
888
0b148fa0
PZ
889 if (!rt_bandwidth_enabled())
890 return;
891
354d60c2
DG
892 for_each_sched_rt_entity(rt_se) {
893 rt_rq = rt_rq_of_se(rt_se);
894
cc2991cf 895 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 896 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
897 rt_rq->rt_time += delta_exec;
898 if (sched_rt_runtime_exceeded(rt_rq))
899 resched_task(curr);
0986b11b 900 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 901 }
354d60c2 902 }
bb44e5d1
IM
903}
904
398a153b 905#if defined CONFIG_SMP
e864c499 906
398a153b
GH
907static void
908inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 909{
4d984277 910 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 911
757dfcaa
KT
912#ifdef CONFIG_RT_GROUP_SCHED
913 /*
914 * Change rq's cpupri only if rt_rq is the top queue.
915 */
916 if (&rq->rt != rt_rq)
917 return;
918#endif
5181f4a4
SR
919 if (rq->online && prio < prev_prio)
920 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 921}
73fe6aae 922
398a153b
GH
923static void
924dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
925{
926 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 927
757dfcaa
KT
928#ifdef CONFIG_RT_GROUP_SCHED
929 /*
930 * Change rq's cpupri only if rt_rq is the top queue.
931 */
932 if (&rq->rt != rt_rq)
933 return;
934#endif
398a153b
GH
935 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
936 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
937}
938
398a153b
GH
939#else /* CONFIG_SMP */
940
6f505b16 941static inline
398a153b
GH
942void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
943static inline
944void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
945
946#endif /* CONFIG_SMP */
6e0534f2 947
052f1dc7 948#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
949static void
950inc_rt_prio(struct rt_rq *rt_rq, int prio)
951{
952 int prev_prio = rt_rq->highest_prio.curr;
953
954 if (prio < prev_prio)
955 rt_rq->highest_prio.curr = prio;
956
957 inc_rt_prio_smp(rt_rq, prio, prev_prio);
958}
959
960static void
961dec_rt_prio(struct rt_rq *rt_rq, int prio)
962{
963 int prev_prio = rt_rq->highest_prio.curr;
964
6f505b16 965 if (rt_rq->rt_nr_running) {
764a9d6f 966
398a153b 967 WARN_ON(prio < prev_prio);
764a9d6f 968
e864c499 969 /*
398a153b
GH
970 * This may have been our highest task, and therefore
971 * we may have some recomputation to do
e864c499 972 */
398a153b 973 if (prio == prev_prio) {
e864c499
GH
974 struct rt_prio_array *array = &rt_rq->active;
975
976 rt_rq->highest_prio.curr =
764a9d6f 977 sched_find_first_bit(array->bitmap);
e864c499
GH
978 }
979
764a9d6f 980 } else
e864c499 981 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 982
398a153b
GH
983 dec_rt_prio_smp(rt_rq, prio, prev_prio);
984}
1f11eb6a 985
398a153b
GH
986#else
987
988static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
989static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
990
991#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 992
052f1dc7 993#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
994
995static void
996inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
997{
998 if (rt_se_boosted(rt_se))
999 rt_rq->rt_nr_boosted++;
1000
1001 if (rt_rq->tg)
1002 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1003}
1004
1005static void
1006dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1007{
23b0fdfc
PZ
1008 if (rt_se_boosted(rt_se))
1009 rt_rq->rt_nr_boosted--;
1010
1011 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
1012}
1013
1014#else /* CONFIG_RT_GROUP_SCHED */
1015
1016static void
1017inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1018{
1019 start_rt_bandwidth(&def_rt_bandwidth);
1020}
1021
1022static inline
1023void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1024
1025#endif /* CONFIG_RT_GROUP_SCHED */
1026
1027static inline
1028void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1029{
1030 int prio = rt_se_prio(rt_se);
1031
1032 WARN_ON(!rt_prio(prio));
1033 rt_rq->rt_nr_running++;
1034
1035 inc_rt_prio(rt_rq, prio);
1036 inc_rt_migration(rt_se, rt_rq);
1037 inc_rt_group(rt_se, rt_rq);
1038}
1039
1040static inline
1041void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1042{
1043 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1044 WARN_ON(!rt_rq->rt_nr_running);
1045 rt_rq->rt_nr_running--;
1046
1047 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1048 dec_rt_migration(rt_se, rt_rq);
1049 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1050}
1051
37dad3fc 1052static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 1053{
6f505b16
PZ
1054 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1055 struct rt_prio_array *array = &rt_rq->active;
1056 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1057 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1058
ad2a3f13
PZ
1059 /*
1060 * Don't enqueue the group if its throttled, or when empty.
1061 * The latter is a consequence of the former when a child group
1062 * get throttled and the current group doesn't have any other
1063 * active members.
1064 */
1065 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 1066 return;
63489e45 1067
37dad3fc
TG
1068 if (head)
1069 list_add(&rt_se->run_list, queue);
1070 else
1071 list_add_tail(&rt_se->run_list, queue);
6f505b16 1072 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 1073
6f505b16
PZ
1074 inc_rt_tasks(rt_se, rt_rq);
1075}
1076
ad2a3f13 1077static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
1078{
1079 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1080 struct rt_prio_array *array = &rt_rq->active;
1081
1082 list_del_init(&rt_se->run_list);
1083 if (list_empty(array->queue + rt_se_prio(rt_se)))
1084 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1085
1086 dec_rt_tasks(rt_se, rt_rq);
1087}
1088
1089/*
1090 * Because the prio of an upper entry depends on the lower
1091 * entries, we must remove entries top - down.
6f505b16 1092 */
ad2a3f13 1093static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 1094{
ad2a3f13 1095 struct sched_rt_entity *back = NULL;
6f505b16 1096
58d6c2d7
PZ
1097 for_each_sched_rt_entity(rt_se) {
1098 rt_se->back = back;
1099 back = rt_se;
1100 }
1101
1102 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1103 if (on_rt_rq(rt_se))
ad2a3f13
PZ
1104 __dequeue_rt_entity(rt_se);
1105 }
1106}
1107
37dad3fc 1108static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13
PZ
1109{
1110 dequeue_rt_stack(rt_se);
1111 for_each_sched_rt_entity(rt_se)
37dad3fc 1112 __enqueue_rt_entity(rt_se, head);
ad2a3f13
PZ
1113}
1114
1115static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1116{
1117 dequeue_rt_stack(rt_se);
1118
1119 for_each_sched_rt_entity(rt_se) {
1120 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1121
1122 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 1123 __enqueue_rt_entity(rt_se, false);
58d6c2d7 1124 }
bb44e5d1
IM
1125}
1126
1127/*
1128 * Adding/removing a task to/from a priority array:
1129 */
ea87bb78 1130static void
371fd7e7 1131enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1132{
1133 struct sched_rt_entity *rt_se = &p->rt;
1134
371fd7e7 1135 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1136 rt_se->timeout = 0;
1137
371fd7e7 1138 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 1139
29baa747 1140 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
917b627d 1141 enqueue_pushable_task(rq, p);
953bfcd1
PT
1142
1143 inc_nr_running(rq);
6f505b16
PZ
1144}
1145
371fd7e7 1146static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1147{
6f505b16 1148 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1149
f1e14ef6 1150 update_curr_rt(rq);
ad2a3f13 1151 dequeue_rt_entity(rt_se);
c09595f6 1152
917b627d 1153 dequeue_pushable_task(rq, p);
953bfcd1
PT
1154
1155 dec_nr_running(rq);
bb44e5d1
IM
1156}
1157
1158/*
60686317
RW
1159 * Put task to the head or the end of the run list without the overhead of
1160 * dequeue followed by enqueue.
bb44e5d1 1161 */
7ebefa8c
DA
1162static void
1163requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1164{
1cdad715 1165 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1166 struct rt_prio_array *array = &rt_rq->active;
1167 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1168
1169 if (head)
1170 list_move(&rt_se->run_list, queue);
1171 else
1172 list_move_tail(&rt_se->run_list, queue);
1cdad715 1173 }
6f505b16
PZ
1174}
1175
7ebefa8c 1176static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1177{
6f505b16
PZ
1178 struct sched_rt_entity *rt_se = &p->rt;
1179 struct rt_rq *rt_rq;
bb44e5d1 1180
6f505b16
PZ
1181 for_each_sched_rt_entity(rt_se) {
1182 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1183 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1184 }
bb44e5d1
IM
1185}
1186
6f505b16 1187static void yield_task_rt(struct rq *rq)
bb44e5d1 1188{
7ebefa8c 1189 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1190}
1191
e7693a36 1192#ifdef CONFIG_SMP
318e0893
GH
1193static int find_lowest_rq(struct task_struct *task);
1194
0017d735 1195static int
ac66f547 1196select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
e7693a36 1197{
7608dec2
PZ
1198 struct task_struct *curr;
1199 struct rq *rq;
c37495fd 1200
29baa747 1201 if (p->nr_cpus_allowed == 1)
76854c7e
MG
1202 goto out;
1203
c37495fd
SR
1204 /* For anything but wake ups, just return the task_cpu */
1205 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1206 goto out;
1207
7608dec2
PZ
1208 rq = cpu_rq(cpu);
1209
1210 rcu_read_lock();
1211 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1212
318e0893 1213 /*
7608dec2 1214 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1215 * try to see if we can wake this RT task up on another
1216 * runqueue. Otherwise simply start this RT task
1217 * on its current runqueue.
1218 *
43fa5460
SR
1219 * We want to avoid overloading runqueues. If the woken
1220 * task is a higher priority, then it will stay on this CPU
1221 * and the lower prio task should be moved to another CPU.
1222 * Even though this will probably make the lower prio task
1223 * lose its cache, we do not want to bounce a higher task
1224 * around just because it gave up its CPU, perhaps for a
1225 * lock?
1226 *
1227 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1228 *
1229 * Otherwise, just let it ride on the affined RQ and the
1230 * post-schedule router will push the preempted task away
1231 *
1232 * This test is optimistic, if we get it wrong the load-balancer
1233 * will have to sort it out.
318e0893 1234 */
7608dec2 1235 if (curr && unlikely(rt_task(curr)) &&
29baa747 1236 (curr->nr_cpus_allowed < 2 ||
6bfa687c 1237 curr->prio <= p->prio)) {
7608dec2 1238 int target = find_lowest_rq(p);
318e0893 1239
7608dec2
PZ
1240 if (target != -1)
1241 cpu = target;
318e0893 1242 }
7608dec2 1243 rcu_read_unlock();
318e0893 1244
c37495fd 1245out:
7608dec2 1246 return cpu;
e7693a36 1247}
7ebefa8c
DA
1248
1249static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1250{
29baa747 1251 if (rq->curr->nr_cpus_allowed == 1)
7ebefa8c
DA
1252 return;
1253
29baa747 1254 if (p->nr_cpus_allowed != 1
13b8bd0a
RR
1255 && cpupri_find(&rq->rd->cpupri, p, NULL))
1256 return;
24600ce8 1257
13b8bd0a
RR
1258 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1259 return;
7ebefa8c
DA
1260
1261 /*
1262 * There appears to be other cpus that can accept
1263 * current and none to run 'p', so lets reschedule
1264 * to try and push current away:
1265 */
1266 requeue_task_rt(rq, p, 1);
1267 resched_task(rq->curr);
1268}
1269
e7693a36
GH
1270#endif /* CONFIG_SMP */
1271
bb44e5d1
IM
1272/*
1273 * Preempt the current task with a newly woken task if needed:
1274 */
7d478721 1275static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1276{
45c01e82 1277 if (p->prio < rq->curr->prio) {
bb44e5d1 1278 resched_task(rq->curr);
45c01e82
GH
1279 return;
1280 }
1281
1282#ifdef CONFIG_SMP
1283 /*
1284 * If:
1285 *
1286 * - the newly woken task is of equal priority to the current task
1287 * - the newly woken task is non-migratable while current is migratable
1288 * - current will be preempted on the next reschedule
1289 *
1290 * we should check to see if current can readily move to a different
1291 * cpu. If so, we will reschedule to allow the push logic to try
1292 * to move current somewhere else, making room for our non-migratable
1293 * task.
1294 */
8dd0de8b 1295 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1296 check_preempt_equal_prio(rq, p);
45c01e82 1297#endif
bb44e5d1
IM
1298}
1299
6f505b16
PZ
1300static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1301 struct rt_rq *rt_rq)
bb44e5d1 1302{
6f505b16
PZ
1303 struct rt_prio_array *array = &rt_rq->active;
1304 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1305 struct list_head *queue;
1306 int idx;
1307
1308 idx = sched_find_first_bit(array->bitmap);
6f505b16 1309 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1310
1311 queue = array->queue + idx;
6f505b16 1312 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1313
6f505b16
PZ
1314 return next;
1315}
bb44e5d1 1316
917b627d 1317static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1318{
1319 struct sched_rt_entity *rt_se;
1320 struct task_struct *p;
1321 struct rt_rq *rt_rq;
bb44e5d1 1322
6f505b16
PZ
1323 rt_rq = &rq->rt;
1324
8e54a2c0 1325 if (!rt_rq->rt_nr_running)
6f505b16
PZ
1326 return NULL;
1327
23b0fdfc 1328 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
1329 return NULL;
1330
1331 do {
1332 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1333 BUG_ON(!rt_se);
6f505b16
PZ
1334 rt_rq = group_rt_rq(rt_se);
1335 } while (rt_rq);
1336
1337 p = rt_task_of(rt_se);
78becc27 1338 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1339
1340 return p;
1341}
1342
1343static struct task_struct *pick_next_task_rt(struct rq *rq)
1344{
1345 struct task_struct *p = _pick_next_task_rt(rq);
1346
1347 /* The running task is never eligible for pushing */
1348 if (p)
1349 dequeue_pushable_task(rq, p);
1350
bcf08df3 1351#ifdef CONFIG_SMP
3f029d3c
GH
1352 /*
1353 * We detect this state here so that we can avoid taking the RQ
1354 * lock again later if there is no need to push
1355 */
1356 rq->post_schedule = has_pushable_tasks(rq);
bcf08df3 1357#endif
3f029d3c 1358
6f505b16 1359 return p;
bb44e5d1
IM
1360}
1361
31ee529c 1362static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1363{
f1e14ef6 1364 update_curr_rt(rq);
917b627d
GH
1365
1366 /*
1367 * The previous task needs to be made eligible for pushing
1368 * if it is still active
1369 */
29baa747 1370 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
917b627d 1371 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1372}
1373
681f3e68 1374#ifdef CONFIG_SMP
6f505b16 1375
e8fa1362
SR
1376/* Only try algorithms three times */
1377#define RT_MAX_TRIES 3
1378
f65eda4f
SR
1379static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1380{
1381 if (!task_running(rq, p) &&
60334caf 1382 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
f65eda4f
SR
1383 return 1;
1384 return 0;
1385}
1386
e23ee747
KT
1387/*
1388 * Return the highest pushable rq's task, which is suitable to be executed
1389 * on the cpu, NULL otherwise
1390 */
1391static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
e8fa1362 1392{
e23ee747
KT
1393 struct plist_head *head = &rq->rt.pushable_tasks;
1394 struct task_struct *p;
3d07467b 1395
e23ee747
KT
1396 if (!has_pushable_tasks(rq))
1397 return NULL;
3d07467b 1398
e23ee747
KT
1399 plist_for_each_entry(p, head, pushable_tasks) {
1400 if (pick_rt_task(rq, p, cpu))
1401 return p;
f65eda4f
SR
1402 }
1403
e23ee747 1404 return NULL;
e8fa1362
SR
1405}
1406
0e3900e6 1407static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1408
6e1254d2
GH
1409static int find_lowest_rq(struct task_struct *task)
1410{
1411 struct sched_domain *sd;
96f874e2 1412 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1413 int this_cpu = smp_processor_id();
1414 int cpu = task_cpu(task);
06f90dbd 1415
0da938c4
SR
1416 /* Make sure the mask is initialized first */
1417 if (unlikely(!lowest_mask))
1418 return -1;
1419
29baa747 1420 if (task->nr_cpus_allowed == 1)
6e0534f2 1421 return -1; /* No other targets possible */
6e1254d2 1422
6e0534f2
GH
1423 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1424 return -1; /* No targets found */
6e1254d2
GH
1425
1426 /*
1427 * At this point we have built a mask of cpus representing the
1428 * lowest priority tasks in the system. Now we want to elect
1429 * the best one based on our affinity and topology.
1430 *
1431 * We prioritize the last cpu that the task executed on since
1432 * it is most likely cache-hot in that location.
1433 */
96f874e2 1434 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1435 return cpu;
1436
1437 /*
1438 * Otherwise, we consult the sched_domains span maps to figure
1439 * out which cpu is logically closest to our hot cache data.
1440 */
e2c88063
RR
1441 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1442 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1443
cd4ae6ad 1444 rcu_read_lock();
e2c88063
RR
1445 for_each_domain(cpu, sd) {
1446 if (sd->flags & SD_WAKE_AFFINE) {
1447 int best_cpu;
6e1254d2 1448
e2c88063
RR
1449 /*
1450 * "this_cpu" is cheaper to preempt than a
1451 * remote processor.
1452 */
1453 if (this_cpu != -1 &&
cd4ae6ad
XF
1454 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1455 rcu_read_unlock();
e2c88063 1456 return this_cpu;
cd4ae6ad 1457 }
e2c88063
RR
1458
1459 best_cpu = cpumask_first_and(lowest_mask,
1460 sched_domain_span(sd));
cd4ae6ad
XF
1461 if (best_cpu < nr_cpu_ids) {
1462 rcu_read_unlock();
e2c88063 1463 return best_cpu;
cd4ae6ad 1464 }
6e1254d2
GH
1465 }
1466 }
cd4ae6ad 1467 rcu_read_unlock();
6e1254d2
GH
1468
1469 /*
1470 * And finally, if there were no matches within the domains
1471 * just give the caller *something* to work with from the compatible
1472 * locations.
1473 */
e2c88063
RR
1474 if (this_cpu != -1)
1475 return this_cpu;
1476
1477 cpu = cpumask_any(lowest_mask);
1478 if (cpu < nr_cpu_ids)
1479 return cpu;
1480 return -1;
07b4032c
GH
1481}
1482
1483/* Will lock the rq it finds */
4df64c0b 1484static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1485{
1486 struct rq *lowest_rq = NULL;
07b4032c 1487 int tries;
4df64c0b 1488 int cpu;
e8fa1362 1489
07b4032c
GH
1490 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1491 cpu = find_lowest_rq(task);
1492
2de0b463 1493 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1494 break;
1495
07b4032c
GH
1496 lowest_rq = cpu_rq(cpu);
1497
e8fa1362 1498 /* if the prio of this runqueue changed, try again */
07b4032c 1499 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1500 /*
1501 * We had to unlock the run queue. In
1502 * the mean time, task could have
1503 * migrated already or had its affinity changed.
1504 * Also make sure that it wasn't scheduled on its rq.
1505 */
07b4032c 1506 if (unlikely(task_rq(task) != rq ||
96f874e2 1507 !cpumask_test_cpu(lowest_rq->cpu,
fa17b507 1508 tsk_cpus_allowed(task)) ||
07b4032c 1509 task_running(rq, task) ||
fd2f4419 1510 !task->on_rq)) {
4df64c0b 1511
7f1b4393 1512 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1513 lowest_rq = NULL;
1514 break;
1515 }
1516 }
1517
1518 /* If this rq is still suitable use it. */
e864c499 1519 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1520 break;
1521
1522 /* try again */
1b12bbc7 1523 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1524 lowest_rq = NULL;
1525 }
1526
1527 return lowest_rq;
1528}
1529
917b627d
GH
1530static struct task_struct *pick_next_pushable_task(struct rq *rq)
1531{
1532 struct task_struct *p;
1533
1534 if (!has_pushable_tasks(rq))
1535 return NULL;
1536
1537 p = plist_first_entry(&rq->rt.pushable_tasks,
1538 struct task_struct, pushable_tasks);
1539
1540 BUG_ON(rq->cpu != task_cpu(p));
1541 BUG_ON(task_current(rq, p));
29baa747 1542 BUG_ON(p->nr_cpus_allowed <= 1);
917b627d 1543
fd2f4419 1544 BUG_ON(!p->on_rq);
917b627d
GH
1545 BUG_ON(!rt_task(p));
1546
1547 return p;
1548}
1549
e8fa1362
SR
1550/*
1551 * If the current CPU has more than one RT task, see if the non
1552 * running task can migrate over to a CPU that is running a task
1553 * of lesser priority.
1554 */
697f0a48 1555static int push_rt_task(struct rq *rq)
e8fa1362
SR
1556{
1557 struct task_struct *next_task;
1558 struct rq *lowest_rq;
311e800e 1559 int ret = 0;
e8fa1362 1560
a22d7fc1
GH
1561 if (!rq->rt.overloaded)
1562 return 0;
1563
917b627d 1564 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1565 if (!next_task)
1566 return 0;
1567
49246274 1568retry:
697f0a48 1569 if (unlikely(next_task == rq->curr)) {
f65eda4f 1570 WARN_ON(1);
e8fa1362 1571 return 0;
f65eda4f 1572 }
e8fa1362
SR
1573
1574 /*
1575 * It's possible that the next_task slipped in of
1576 * higher priority than current. If that's the case
1577 * just reschedule current.
1578 */
697f0a48
GH
1579 if (unlikely(next_task->prio < rq->curr->prio)) {
1580 resched_task(rq->curr);
e8fa1362
SR
1581 return 0;
1582 }
1583
697f0a48 1584 /* We might release rq lock */
e8fa1362
SR
1585 get_task_struct(next_task);
1586
1587 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1588 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1589 if (!lowest_rq) {
1590 struct task_struct *task;
1591 /*
311e800e 1592 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1593 * so it is possible that next_task has migrated.
1594 *
1595 * We need to make sure that the task is still on the same
1596 * run-queue and is also still the next task eligible for
1597 * pushing.
e8fa1362 1598 */
917b627d 1599 task = pick_next_pushable_task(rq);
1563513d
GH
1600 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1601 /*
311e800e
HD
1602 * The task hasn't migrated, and is still the next
1603 * eligible task, but we failed to find a run-queue
1604 * to push it to. Do not retry in this case, since
1605 * other cpus will pull from us when ready.
1563513d 1606 */
1563513d 1607 goto out;
e8fa1362 1608 }
917b627d 1609
1563513d
GH
1610 if (!task)
1611 /* No more tasks, just exit */
1612 goto out;
1613
917b627d 1614 /*
1563513d 1615 * Something has shifted, try again.
917b627d 1616 */
1563513d
GH
1617 put_task_struct(next_task);
1618 next_task = task;
1619 goto retry;
e8fa1362
SR
1620 }
1621
697f0a48 1622 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1623 set_task_cpu(next_task, lowest_rq->cpu);
1624 activate_task(lowest_rq, next_task, 0);
311e800e 1625 ret = 1;
e8fa1362
SR
1626
1627 resched_task(lowest_rq->curr);
1628
1b12bbc7 1629 double_unlock_balance(rq, lowest_rq);
e8fa1362 1630
e8fa1362
SR
1631out:
1632 put_task_struct(next_task);
1633
311e800e 1634 return ret;
e8fa1362
SR
1635}
1636
e8fa1362
SR
1637static void push_rt_tasks(struct rq *rq)
1638{
1639 /* push_rt_task will return true if it moved an RT */
1640 while (push_rt_task(rq))
1641 ;
1642}
1643
f65eda4f
SR
1644static int pull_rt_task(struct rq *this_rq)
1645{
80bf3171 1646 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1647 struct task_struct *p;
f65eda4f 1648 struct rq *src_rq;
f65eda4f 1649
637f5085 1650 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1651 return 0;
1652
7c3f2ab7
PZ
1653 /*
1654 * Match the barrier from rt_set_overloaded; this guarantees that if we
1655 * see overloaded we must also see the rto_mask bit.
1656 */
1657 smp_rmb();
1658
c6c4927b 1659 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1660 if (this_cpu == cpu)
1661 continue;
1662
1663 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1664
1665 /*
1666 * Don't bother taking the src_rq->lock if the next highest
1667 * task is known to be lower-priority than our current task.
1668 * This may look racy, but if this value is about to go
1669 * logically higher, the src_rq will push this task away.
1670 * And if its going logically lower, we do not care
1671 */
1672 if (src_rq->rt.highest_prio.next >=
1673 this_rq->rt.highest_prio.curr)
1674 continue;
1675
f65eda4f
SR
1676 /*
1677 * We can potentially drop this_rq's lock in
1678 * double_lock_balance, and another CPU could
a8728944 1679 * alter this_rq
f65eda4f 1680 */
a8728944 1681 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1682
1683 /*
e23ee747
KT
1684 * We can pull only a task, which is pushable
1685 * on its rq, and no others.
f65eda4f 1686 */
e23ee747 1687 p = pick_highest_pushable_task(src_rq, this_cpu);
f65eda4f
SR
1688
1689 /*
1690 * Do we have an RT task that preempts
1691 * the to-be-scheduled task?
1692 */
a8728944 1693 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 1694 WARN_ON(p == src_rq->curr);
fd2f4419 1695 WARN_ON(!p->on_rq);
f65eda4f
SR
1696
1697 /*
1698 * There's a chance that p is higher in priority
1699 * than what's currently running on its cpu.
1700 * This is just that p is wakeing up and hasn't
1701 * had a chance to schedule. We only pull
1702 * p if it is lower in priority than the
a8728944 1703 * current task on the run queue
f65eda4f 1704 */
a8728944 1705 if (p->prio < src_rq->curr->prio)
614ee1f6 1706 goto skip;
f65eda4f
SR
1707
1708 ret = 1;
1709
1710 deactivate_task(src_rq, p, 0);
1711 set_task_cpu(p, this_cpu);
1712 activate_task(this_rq, p, 0);
1713 /*
1714 * We continue with the search, just in
1715 * case there's an even higher prio task
25985edc 1716 * in another runqueue. (low likelihood
f65eda4f 1717 * but possible)
f65eda4f 1718 */
f65eda4f 1719 }
49246274 1720skip:
1b12bbc7 1721 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1722 }
1723
1724 return ret;
1725}
1726
9a897c5a 1727static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1728{
1729 /* Try to pull RT tasks here if we lower this rq's prio */
33c3d6c6 1730 if (rq->rt.highest_prio.curr > prev->prio)
f65eda4f
SR
1731 pull_rt_task(rq);
1732}
1733
9a897c5a 1734static void post_schedule_rt(struct rq *rq)
e8fa1362 1735{
967fc046 1736 push_rt_tasks(rq);
e8fa1362
SR
1737}
1738
8ae121ac
GH
1739/*
1740 * If we are not running and we are not going to reschedule soon, we should
1741 * try to push tasks away now
1742 */
efbbd05a 1743static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 1744{
9a897c5a 1745 if (!task_running(rq, p) &&
8ae121ac 1746 !test_tsk_need_resched(rq->curr) &&
917b627d 1747 has_pushable_tasks(rq) &&
29baa747 1748 p->nr_cpus_allowed > 1 &&
1baca4ce 1749 (dl_task(rq->curr) || rt_task(rq->curr)) &&
29baa747 1750 (rq->curr->nr_cpus_allowed < 2 ||
3be209a8 1751 rq->curr->prio <= p->prio))
4642dafd
SR
1752 push_rt_tasks(rq);
1753}
1754
cd8ba7cd 1755static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1756 const struct cpumask *new_mask)
73fe6aae 1757{
8d3d5ada
KT
1758 struct rq *rq;
1759 int weight;
73fe6aae
GH
1760
1761 BUG_ON(!rt_task(p));
1762
8d3d5ada
KT
1763 if (!p->on_rq)
1764 return;
917b627d 1765
8d3d5ada 1766 weight = cpumask_weight(new_mask);
917b627d 1767
8d3d5ada
KT
1768 /*
1769 * Only update if the process changes its state from whether it
1770 * can migrate or not.
1771 */
29baa747 1772 if ((p->nr_cpus_allowed > 1) == (weight > 1))
8d3d5ada 1773 return;
917b627d 1774
8d3d5ada 1775 rq = task_rq(p);
73fe6aae 1776
8d3d5ada
KT
1777 /*
1778 * The process used to be able to migrate OR it can now migrate
1779 */
1780 if (weight <= 1) {
1781 if (!task_current(rq, p))
1782 dequeue_pushable_task(rq, p);
1783 BUG_ON(!rq->rt.rt_nr_migratory);
1784 rq->rt.rt_nr_migratory--;
1785 } else {
1786 if (!task_current(rq, p))
1787 enqueue_pushable_task(rq, p);
1788 rq->rt.rt_nr_migratory++;
73fe6aae 1789 }
8d3d5ada
KT
1790
1791 update_rt_migration(&rq->rt);
73fe6aae 1792}
deeeccd4 1793
bdd7c81b 1794/* Assumes rq->lock is held */
1f11eb6a 1795static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1796{
1797 if (rq->rt.overloaded)
1798 rt_set_overload(rq);
6e0534f2 1799
7def2be1
PZ
1800 __enable_runtime(rq);
1801
e864c499 1802 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1803}
1804
1805/* Assumes rq->lock is held */
1f11eb6a 1806static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1807{
1808 if (rq->rt.overloaded)
1809 rt_clear_overload(rq);
6e0534f2 1810
7def2be1
PZ
1811 __disable_runtime(rq);
1812
6e0534f2 1813 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1814}
cb469845
SR
1815
1816/*
1817 * When switch from the rt queue, we bring ourselves to a position
1818 * that we might want to pull RT tasks from other runqueues.
1819 */
da7a735e 1820static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1821{
1822 /*
1823 * If there are other RT tasks then we will reschedule
1824 * and the scheduling of the other RT tasks will handle
1825 * the balancing. But if we are the last RT task
1826 * we may need to handle the pulling of RT tasks
1827 * now.
1828 */
1158ddb5
KT
1829 if (!p->on_rq || rq->rt.rt_nr_running)
1830 return;
1831
1832 if (pull_rt_task(rq))
1833 resched_task(rq->curr);
cb469845 1834}
3d8cbdf8 1835
029632fb 1836void init_sched_rt_class(void)
3d8cbdf8
RR
1837{
1838 unsigned int i;
1839
029632fb 1840 for_each_possible_cpu(i) {
eaa95840 1841 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 1842 GFP_KERNEL, cpu_to_node(i));
029632fb 1843 }
3d8cbdf8 1844}
cb469845
SR
1845#endif /* CONFIG_SMP */
1846
1847/*
1848 * When switching a task to RT, we may overload the runqueue
1849 * with RT tasks. In this case we try to push them off to
1850 * other runqueues.
1851 */
da7a735e 1852static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1853{
1854 int check_resched = 1;
1855
1856 /*
1857 * If we are already running, then there's nothing
1858 * that needs to be done. But if we are not running
1859 * we may need to preempt the current running task.
1860 * If that current running task is also an RT task
1861 * then see if we can move to another run queue.
1862 */
fd2f4419 1863 if (p->on_rq && rq->curr != p) {
cb469845
SR
1864#ifdef CONFIG_SMP
1865 if (rq->rt.overloaded && push_rt_task(rq) &&
1866 /* Don't resched if we changed runqueues */
1867 rq != task_rq(p))
1868 check_resched = 0;
1869#endif /* CONFIG_SMP */
1870 if (check_resched && p->prio < rq->curr->prio)
1871 resched_task(rq->curr);
1872 }
1873}
1874
1875/*
1876 * Priority of the task has changed. This may cause
1877 * us to initiate a push or pull.
1878 */
da7a735e
PZ
1879static void
1880prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 1881{
fd2f4419 1882 if (!p->on_rq)
da7a735e
PZ
1883 return;
1884
1885 if (rq->curr == p) {
cb469845
SR
1886#ifdef CONFIG_SMP
1887 /*
1888 * If our priority decreases while running, we
1889 * may need to pull tasks to this runqueue.
1890 */
1891 if (oldprio < p->prio)
1892 pull_rt_task(rq);
1893 /*
1894 * If there's a higher priority task waiting to run
6fa46fa5
SR
1895 * then reschedule. Note, the above pull_rt_task
1896 * can release the rq lock and p could migrate.
1897 * Only reschedule if p is still on the same runqueue.
cb469845 1898 */
e864c499 1899 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1900 resched_task(p);
1901#else
1902 /* For UP simply resched on drop of prio */
1903 if (oldprio < p->prio)
1904 resched_task(p);
e8fa1362 1905#endif /* CONFIG_SMP */
cb469845
SR
1906 } else {
1907 /*
1908 * This task is not running, but if it is
1909 * greater than the current running task
1910 * then reschedule.
1911 */
1912 if (p->prio < rq->curr->prio)
1913 resched_task(rq->curr);
1914 }
1915}
1916
78f2c7db
PZ
1917static void watchdog(struct rq *rq, struct task_struct *p)
1918{
1919 unsigned long soft, hard;
1920
78d7d407
JS
1921 /* max may change after cur was read, this will be fixed next tick */
1922 soft = task_rlimit(p, RLIMIT_RTTIME);
1923 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
1924
1925 if (soft != RLIM_INFINITY) {
1926 unsigned long next;
1927
57d2aa00
YX
1928 if (p->rt.watchdog_stamp != jiffies) {
1929 p->rt.timeout++;
1930 p->rt.watchdog_stamp = jiffies;
1931 }
1932
78f2c7db 1933 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1934 if (p->rt.timeout > next)
f06febc9 1935 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1936 }
1937}
bb44e5d1 1938
8f4d37ec 1939static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1940{
454c7999
CC
1941 struct sched_rt_entity *rt_se = &p->rt;
1942
67e2be02
PZ
1943 update_curr_rt(rq);
1944
78f2c7db
PZ
1945 watchdog(rq, p);
1946
bb44e5d1
IM
1947 /*
1948 * RR tasks need a special form of timeslice management.
1949 * FIFO tasks have no timeslices.
1950 */
1951 if (p->policy != SCHED_RR)
1952 return;
1953
fa717060 1954 if (--p->rt.time_slice)
bb44e5d1
IM
1955 return;
1956
ce0dbbbb 1957 p->rt.time_slice = sched_rr_timeslice;
bb44e5d1 1958
98fbc798 1959 /*
e9aa39bb
LB
1960 * Requeue to the end of queue if we (and all of our ancestors) are not
1961 * the only element on the queue
98fbc798 1962 */
454c7999
CC
1963 for_each_sched_rt_entity(rt_se) {
1964 if (rt_se->run_list.prev != rt_se->run_list.next) {
1965 requeue_task_rt(rq, p, 0);
1966 set_tsk_need_resched(p);
1967 return;
1968 }
98fbc798 1969 }
bb44e5d1
IM
1970}
1971
83b699ed
SV
1972static void set_curr_task_rt(struct rq *rq)
1973{
1974 struct task_struct *p = rq->curr;
1975
78becc27 1976 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1977
1978 /* The running task is never eligible for pushing */
1979 dequeue_pushable_task(rq, p);
83b699ed
SV
1980}
1981
6d686f45 1982static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
1983{
1984 /*
1985 * Time slice is 0 for SCHED_FIFO tasks
1986 */
1987 if (task->policy == SCHED_RR)
ce0dbbbb 1988 return sched_rr_timeslice;
0d721cea
PW
1989 else
1990 return 0;
1991}
1992
029632fb 1993const struct sched_class rt_sched_class = {
5522d5d5 1994 .next = &fair_sched_class,
bb44e5d1
IM
1995 .enqueue_task = enqueue_task_rt,
1996 .dequeue_task = dequeue_task_rt,
1997 .yield_task = yield_task_rt,
1998
1999 .check_preempt_curr = check_preempt_curr_rt,
2000
2001 .pick_next_task = pick_next_task_rt,
2002 .put_prev_task = put_prev_task_rt,
2003
681f3e68 2004#ifdef CONFIG_SMP
4ce72a2c
LZ
2005 .select_task_rq = select_task_rq_rt,
2006
73fe6aae 2007 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
2008 .rq_online = rq_online_rt,
2009 .rq_offline = rq_offline_rt,
9a897c5a
SR
2010 .pre_schedule = pre_schedule_rt,
2011 .post_schedule = post_schedule_rt,
efbbd05a 2012 .task_woken = task_woken_rt,
cb469845 2013 .switched_from = switched_from_rt,
681f3e68 2014#endif
bb44e5d1 2015
83b699ed 2016 .set_curr_task = set_curr_task_rt,
bb44e5d1 2017 .task_tick = task_tick_rt,
cb469845 2018
0d721cea
PW
2019 .get_rr_interval = get_rr_interval_rt,
2020
cb469845
SR
2021 .prio_changed = prio_changed_rt,
2022 .switched_to = switched_to_rt,
bb44e5d1 2023};
ada18de2
PZ
2024
2025#ifdef CONFIG_SCHED_DEBUG
2026extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2027
029632fb 2028void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 2029{
ec514c48 2030 rt_rq_iter_t iter;
ada18de2
PZ
2031 struct rt_rq *rt_rq;
2032
2033 rcu_read_lock();
ec514c48 2034 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2035 print_rt_rq(m, cpu, rt_rq);
2036 rcu_read_unlock();
2037}
55e12e5e 2038#endif /* CONFIG_SCHED_DEBUG */
This page took 0.51529 seconds and 5 git commands to generate.