sched/numa: Introduce migrate_swap()
[deliverable/linux.git] / kernel / sched / rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
029632fb
PZ
6#include "sched.h"
7
8#include <linux/slab.h>
9
ce0dbbbb
CW
10int sched_rr_timeslice = RR_TIMESLICE;
11
029632fb
PZ
12static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13
14struct rt_bandwidth def_rt_bandwidth;
15
16static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17{
18 struct rt_bandwidth *rt_b =
19 container_of(timer, struct rt_bandwidth, rt_period_timer);
20 ktime_t now;
21 int overrun;
22 int idle = 0;
23
24 for (;;) {
25 now = hrtimer_cb_get_time(timer);
26 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27
28 if (!overrun)
29 break;
30
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 }
33
34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35}
36
37void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38{
39 rt_b->rt_period = ns_to_ktime(period);
40 rt_b->rt_runtime = runtime;
41
42 raw_spin_lock_init(&rt_b->rt_runtime_lock);
43
44 hrtimer_init(&rt_b->rt_period_timer,
45 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 rt_b->rt_period_timer.function = sched_rt_period_timer;
47}
48
49static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50{
51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 return;
53
54 if (hrtimer_active(&rt_b->rt_period_timer))
55 return;
56
57 raw_spin_lock(&rt_b->rt_runtime_lock);
58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 raw_spin_unlock(&rt_b->rt_runtime_lock);
60}
61
62void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63{
64 struct rt_prio_array *array;
65 int i;
66
67 array = &rt_rq->active;
68 for (i = 0; i < MAX_RT_PRIO; i++) {
69 INIT_LIST_HEAD(array->queue + i);
70 __clear_bit(i, array->bitmap);
71 }
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO, array->bitmap);
74
75#if defined CONFIG_SMP
76 rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 rt_rq->highest_prio.next = MAX_RT_PRIO;
78 rt_rq->rt_nr_migratory = 0;
79 rt_rq->overloaded = 0;
80 plist_head_init(&rt_rq->pushable_tasks);
81#endif
82
83 rt_rq->rt_time = 0;
84 rt_rq->rt_throttled = 0;
85 rt_rq->rt_runtime = 0;
86 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
87}
88
8f48894f 89#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
90static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
91{
92 hrtimer_cancel(&rt_b->rt_period_timer);
93}
8f48894f
PZ
94
95#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
96
398a153b
GH
97static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
98{
8f48894f
PZ
99#ifdef CONFIG_SCHED_DEBUG
100 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
101#endif
398a153b
GH
102 return container_of(rt_se, struct task_struct, rt);
103}
104
398a153b
GH
105static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
106{
107 return rt_rq->rq;
108}
109
110static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
111{
112 return rt_se->rt_rq;
113}
114
029632fb
PZ
115void free_rt_sched_group(struct task_group *tg)
116{
117 int i;
118
119 if (tg->rt_se)
120 destroy_rt_bandwidth(&tg->rt_bandwidth);
121
122 for_each_possible_cpu(i) {
123 if (tg->rt_rq)
124 kfree(tg->rt_rq[i]);
125 if (tg->rt_se)
126 kfree(tg->rt_se[i]);
127 }
128
129 kfree(tg->rt_rq);
130 kfree(tg->rt_se);
131}
132
133void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
134 struct sched_rt_entity *rt_se, int cpu,
135 struct sched_rt_entity *parent)
136{
137 struct rq *rq = cpu_rq(cpu);
138
139 rt_rq->highest_prio.curr = MAX_RT_PRIO;
140 rt_rq->rt_nr_boosted = 0;
141 rt_rq->rq = rq;
142 rt_rq->tg = tg;
143
144 tg->rt_rq[cpu] = rt_rq;
145 tg->rt_se[cpu] = rt_se;
146
147 if (!rt_se)
148 return;
149
150 if (!parent)
151 rt_se->rt_rq = &rq->rt;
152 else
153 rt_se->rt_rq = parent->my_q;
154
155 rt_se->my_q = rt_rq;
156 rt_se->parent = parent;
157 INIT_LIST_HEAD(&rt_se->run_list);
158}
159
160int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
161{
162 struct rt_rq *rt_rq;
163 struct sched_rt_entity *rt_se;
164 int i;
165
166 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
167 if (!tg->rt_rq)
168 goto err;
169 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
170 if (!tg->rt_se)
171 goto err;
172
173 init_rt_bandwidth(&tg->rt_bandwidth,
174 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
175
176 for_each_possible_cpu(i) {
177 rt_rq = kzalloc_node(sizeof(struct rt_rq),
178 GFP_KERNEL, cpu_to_node(i));
179 if (!rt_rq)
180 goto err;
181
182 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
183 GFP_KERNEL, cpu_to_node(i));
184 if (!rt_se)
185 goto err_free_rq;
186
187 init_rt_rq(rt_rq, cpu_rq(i));
188 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
189 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
190 }
191
192 return 1;
193
194err_free_rq:
195 kfree(rt_rq);
196err:
197 return 0;
198}
199
398a153b
GH
200#else /* CONFIG_RT_GROUP_SCHED */
201
a1ba4d8b
PZ
202#define rt_entity_is_task(rt_se) (1)
203
8f48894f
PZ
204static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
205{
206 return container_of(rt_se, struct task_struct, rt);
207}
208
398a153b
GH
209static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
210{
211 return container_of(rt_rq, struct rq, rt);
212}
213
214static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
215{
216 struct task_struct *p = rt_task_of(rt_se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->rt;
220}
221
029632fb
PZ
222void free_rt_sched_group(struct task_group *tg) { }
223
224int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
225{
226 return 1;
227}
398a153b
GH
228#endif /* CONFIG_RT_GROUP_SCHED */
229
4fd29176 230#ifdef CONFIG_SMP
84de4274 231
637f5085 232static inline int rt_overloaded(struct rq *rq)
4fd29176 233{
637f5085 234 return atomic_read(&rq->rd->rto_count);
4fd29176 235}
84de4274 236
4fd29176
SR
237static inline void rt_set_overload(struct rq *rq)
238{
1f11eb6a
GH
239 if (!rq->online)
240 return;
241
c6c4927b 242 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
243 /*
244 * Make sure the mask is visible before we set
245 * the overload count. That is checked to determine
246 * if we should look at the mask. It would be a shame
247 * if we looked at the mask, but the mask was not
248 * updated yet.
249 */
250 wmb();
637f5085 251 atomic_inc(&rq->rd->rto_count);
4fd29176 252}
84de4274 253
4fd29176
SR
254static inline void rt_clear_overload(struct rq *rq)
255{
1f11eb6a
GH
256 if (!rq->online)
257 return;
258
4fd29176 259 /* the order here really doesn't matter */
637f5085 260 atomic_dec(&rq->rd->rto_count);
c6c4927b 261 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 262}
73fe6aae 263
398a153b 264static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 265{
a1ba4d8b 266 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
267 if (!rt_rq->overloaded) {
268 rt_set_overload(rq_of_rt_rq(rt_rq));
269 rt_rq->overloaded = 1;
cdc8eb98 270 }
398a153b
GH
271 } else if (rt_rq->overloaded) {
272 rt_clear_overload(rq_of_rt_rq(rt_rq));
273 rt_rq->overloaded = 0;
637f5085 274 }
73fe6aae 275}
4fd29176 276
398a153b
GH
277static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
278{
29baa747
PZ
279 struct task_struct *p;
280
a1ba4d8b
PZ
281 if (!rt_entity_is_task(rt_se))
282 return;
283
29baa747 284 p = rt_task_of(rt_se);
a1ba4d8b
PZ
285 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
286
287 rt_rq->rt_nr_total++;
29baa747 288 if (p->nr_cpus_allowed > 1)
398a153b
GH
289 rt_rq->rt_nr_migratory++;
290
291 update_rt_migration(rt_rq);
292}
293
294static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
295{
29baa747
PZ
296 struct task_struct *p;
297
a1ba4d8b
PZ
298 if (!rt_entity_is_task(rt_se))
299 return;
300
29baa747 301 p = rt_task_of(rt_se);
a1ba4d8b
PZ
302 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
303
304 rt_rq->rt_nr_total--;
29baa747 305 if (p->nr_cpus_allowed > 1)
398a153b
GH
306 rt_rq->rt_nr_migratory--;
307
308 update_rt_migration(rt_rq);
309}
310
5181f4a4
SR
311static inline int has_pushable_tasks(struct rq *rq)
312{
313 return !plist_head_empty(&rq->rt.pushable_tasks);
314}
315
917b627d
GH
316static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
317{
318 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
319 plist_node_init(&p->pushable_tasks, p->prio);
320 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
321
322 /* Update the highest prio pushable task */
323 if (p->prio < rq->rt.highest_prio.next)
324 rq->rt.highest_prio.next = p->prio;
917b627d
GH
325}
326
327static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
328{
329 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 330
5181f4a4
SR
331 /* Update the new highest prio pushable task */
332 if (has_pushable_tasks(rq)) {
333 p = plist_first_entry(&rq->rt.pushable_tasks,
334 struct task_struct, pushable_tasks);
335 rq->rt.highest_prio.next = p->prio;
336 } else
337 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
338}
339
917b627d
GH
340#else
341
ceacc2c1 342static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 343{
6f505b16
PZ
344}
345
ceacc2c1
PZ
346static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
347{
348}
349
b07430ac 350static inline
ceacc2c1
PZ
351void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
352{
353}
354
398a153b 355static inline
ceacc2c1
PZ
356void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
357{
358}
917b627d 359
4fd29176
SR
360#endif /* CONFIG_SMP */
361
6f505b16
PZ
362static inline int on_rt_rq(struct sched_rt_entity *rt_se)
363{
364 return !list_empty(&rt_se->run_list);
365}
366
052f1dc7 367#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 368
9f0c1e56 369static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
370{
371 if (!rt_rq->tg)
9f0c1e56 372 return RUNTIME_INF;
6f505b16 373
ac086bc2
PZ
374 return rt_rq->rt_runtime;
375}
376
377static inline u64 sched_rt_period(struct rt_rq *rt_rq)
378{
379 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
380}
381
ec514c48
CX
382typedef struct task_group *rt_rq_iter_t;
383
1c09ab0d
YZ
384static inline struct task_group *next_task_group(struct task_group *tg)
385{
386 do {
387 tg = list_entry_rcu(tg->list.next,
388 typeof(struct task_group), list);
389 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
390
391 if (&tg->list == &task_groups)
392 tg = NULL;
393
394 return tg;
395}
396
397#define for_each_rt_rq(rt_rq, iter, rq) \
398 for (iter = container_of(&task_groups, typeof(*iter), list); \
399 (iter = next_task_group(iter)) && \
400 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 401
6f505b16
PZ
402#define for_each_sched_rt_entity(rt_se) \
403 for (; rt_se; rt_se = rt_se->parent)
404
405static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
406{
407 return rt_se->my_q;
408}
409
37dad3fc 410static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
411static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
412
9f0c1e56 413static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 414{
f6121f4f 415 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
74b7eb58
YZ
416 struct sched_rt_entity *rt_se;
417
0c3b9168
BS
418 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
419
420 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 421
f6121f4f
DF
422 if (rt_rq->rt_nr_running) {
423 if (rt_se && !on_rt_rq(rt_se))
37dad3fc 424 enqueue_rt_entity(rt_se, false);
e864c499 425 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 426 resched_task(curr);
6f505b16
PZ
427 }
428}
429
9f0c1e56 430static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 431{
74b7eb58 432 struct sched_rt_entity *rt_se;
0c3b9168 433 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 434
0c3b9168 435 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16
PZ
436
437 if (rt_se && on_rt_rq(rt_se))
438 dequeue_rt_entity(rt_se);
439}
440
23b0fdfc
PZ
441static inline int rt_rq_throttled(struct rt_rq *rt_rq)
442{
443 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
444}
445
446static int rt_se_boosted(struct sched_rt_entity *rt_se)
447{
448 struct rt_rq *rt_rq = group_rt_rq(rt_se);
449 struct task_struct *p;
450
451 if (rt_rq)
452 return !!rt_rq->rt_nr_boosted;
453
454 p = rt_task_of(rt_se);
455 return p->prio != p->normal_prio;
456}
457
d0b27fa7 458#ifdef CONFIG_SMP
c6c4927b 459static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 460{
424c93fe 461 return this_rq()->rd->span;
d0b27fa7 462}
6f505b16 463#else
c6c4927b 464static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 465{
c6c4927b 466 return cpu_online_mask;
d0b27fa7
PZ
467}
468#endif
6f505b16 469
d0b27fa7
PZ
470static inline
471struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 472{
d0b27fa7
PZ
473 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
474}
9f0c1e56 475
ac086bc2
PZ
476static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
477{
478 return &rt_rq->tg->rt_bandwidth;
479}
480
55e12e5e 481#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
482
483static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
484{
ac086bc2
PZ
485 return rt_rq->rt_runtime;
486}
487
488static inline u64 sched_rt_period(struct rt_rq *rt_rq)
489{
490 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
491}
492
ec514c48
CX
493typedef struct rt_rq *rt_rq_iter_t;
494
495#define for_each_rt_rq(rt_rq, iter, rq) \
496 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
497
6f505b16
PZ
498#define for_each_sched_rt_entity(rt_se) \
499 for (; rt_se; rt_se = NULL)
500
501static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
502{
503 return NULL;
504}
505
9f0c1e56 506static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 507{
f3ade837
JB
508 if (rt_rq->rt_nr_running)
509 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
510}
511
9f0c1e56 512static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
513{
514}
515
23b0fdfc
PZ
516static inline int rt_rq_throttled(struct rt_rq *rt_rq)
517{
518 return rt_rq->rt_throttled;
519}
d0b27fa7 520
c6c4927b 521static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 522{
c6c4927b 523 return cpu_online_mask;
d0b27fa7
PZ
524}
525
526static inline
527struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
528{
529 return &cpu_rq(cpu)->rt;
530}
531
ac086bc2
PZ
532static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
533{
534 return &def_rt_bandwidth;
535}
536
55e12e5e 537#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 538
ac086bc2 539#ifdef CONFIG_SMP
78333cdd
PZ
540/*
541 * We ran out of runtime, see if we can borrow some from our neighbours.
542 */
b79f3833 543static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
544{
545 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
aa7f6730 546 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
ac086bc2
PZ
547 int i, weight, more = 0;
548 u64 rt_period;
549
c6c4927b 550 weight = cpumask_weight(rd->span);
ac086bc2 551
0986b11b 552 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 553 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 554 for_each_cpu(i, rd->span) {
ac086bc2
PZ
555 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
556 s64 diff;
557
558 if (iter == rt_rq)
559 continue;
560
0986b11b 561 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
562 /*
563 * Either all rqs have inf runtime and there's nothing to steal
564 * or __disable_runtime() below sets a specific rq to inf to
565 * indicate its been disabled and disalow stealing.
566 */
7def2be1
PZ
567 if (iter->rt_runtime == RUNTIME_INF)
568 goto next;
569
78333cdd
PZ
570 /*
571 * From runqueues with spare time, take 1/n part of their
572 * spare time, but no more than our period.
573 */
ac086bc2
PZ
574 diff = iter->rt_runtime - iter->rt_time;
575 if (diff > 0) {
58838cf3 576 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
577 if (rt_rq->rt_runtime + diff > rt_period)
578 diff = rt_period - rt_rq->rt_runtime;
579 iter->rt_runtime -= diff;
580 rt_rq->rt_runtime += diff;
581 more = 1;
582 if (rt_rq->rt_runtime == rt_period) {
0986b11b 583 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
584 break;
585 }
586 }
7def2be1 587next:
0986b11b 588 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 589 }
0986b11b 590 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
591
592 return more;
593}
7def2be1 594
78333cdd
PZ
595/*
596 * Ensure this RQ takes back all the runtime it lend to its neighbours.
597 */
7def2be1
PZ
598static void __disable_runtime(struct rq *rq)
599{
600 struct root_domain *rd = rq->rd;
ec514c48 601 rt_rq_iter_t iter;
7def2be1
PZ
602 struct rt_rq *rt_rq;
603
604 if (unlikely(!scheduler_running))
605 return;
606
ec514c48 607 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
608 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
609 s64 want;
610 int i;
611
0986b11b
TG
612 raw_spin_lock(&rt_b->rt_runtime_lock);
613 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
614 /*
615 * Either we're all inf and nobody needs to borrow, or we're
616 * already disabled and thus have nothing to do, or we have
617 * exactly the right amount of runtime to take out.
618 */
7def2be1
PZ
619 if (rt_rq->rt_runtime == RUNTIME_INF ||
620 rt_rq->rt_runtime == rt_b->rt_runtime)
621 goto balanced;
0986b11b 622 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 623
78333cdd
PZ
624 /*
625 * Calculate the difference between what we started out with
626 * and what we current have, that's the amount of runtime
627 * we lend and now have to reclaim.
628 */
7def2be1
PZ
629 want = rt_b->rt_runtime - rt_rq->rt_runtime;
630
78333cdd
PZ
631 /*
632 * Greedy reclaim, take back as much as we can.
633 */
c6c4927b 634 for_each_cpu(i, rd->span) {
7def2be1
PZ
635 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
636 s64 diff;
637
78333cdd
PZ
638 /*
639 * Can't reclaim from ourselves or disabled runqueues.
640 */
f1679d08 641 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
642 continue;
643
0986b11b 644 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
645 if (want > 0) {
646 diff = min_t(s64, iter->rt_runtime, want);
647 iter->rt_runtime -= diff;
648 want -= diff;
649 } else {
650 iter->rt_runtime -= want;
651 want -= want;
652 }
0986b11b 653 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
654
655 if (!want)
656 break;
657 }
658
0986b11b 659 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
660 /*
661 * We cannot be left wanting - that would mean some runtime
662 * leaked out of the system.
663 */
7def2be1
PZ
664 BUG_ON(want);
665balanced:
78333cdd
PZ
666 /*
667 * Disable all the borrow logic by pretending we have inf
668 * runtime - in which case borrowing doesn't make sense.
669 */
7def2be1 670 rt_rq->rt_runtime = RUNTIME_INF;
a4c96ae3 671 rt_rq->rt_throttled = 0;
0986b11b
TG
672 raw_spin_unlock(&rt_rq->rt_runtime_lock);
673 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
674 }
675}
676
7def2be1
PZ
677static void __enable_runtime(struct rq *rq)
678{
ec514c48 679 rt_rq_iter_t iter;
7def2be1
PZ
680 struct rt_rq *rt_rq;
681
682 if (unlikely(!scheduler_running))
683 return;
684
78333cdd
PZ
685 /*
686 * Reset each runqueue's bandwidth settings
687 */
ec514c48 688 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
689 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
690
0986b11b
TG
691 raw_spin_lock(&rt_b->rt_runtime_lock);
692 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
693 rt_rq->rt_runtime = rt_b->rt_runtime;
694 rt_rq->rt_time = 0;
baf25731 695 rt_rq->rt_throttled = 0;
0986b11b
TG
696 raw_spin_unlock(&rt_rq->rt_runtime_lock);
697 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
698 }
699}
700
eff6549b
PZ
701static int balance_runtime(struct rt_rq *rt_rq)
702{
703 int more = 0;
704
4a6184ce
PZ
705 if (!sched_feat(RT_RUNTIME_SHARE))
706 return more;
707
eff6549b 708 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 709 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 710 more = do_balance_runtime(rt_rq);
0986b11b 711 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
712 }
713
714 return more;
715}
55e12e5e 716#else /* !CONFIG_SMP */
eff6549b
PZ
717static inline int balance_runtime(struct rt_rq *rt_rq)
718{
719 return 0;
720}
55e12e5e 721#endif /* CONFIG_SMP */
ac086bc2 722
eff6549b
PZ
723static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
724{
42c62a58 725 int i, idle = 1, throttled = 0;
c6c4927b 726 const struct cpumask *span;
eff6549b 727
eff6549b 728 span = sched_rt_period_mask();
e221d028
MG
729#ifdef CONFIG_RT_GROUP_SCHED
730 /*
731 * FIXME: isolated CPUs should really leave the root task group,
732 * whether they are isolcpus or were isolated via cpusets, lest
733 * the timer run on a CPU which does not service all runqueues,
734 * potentially leaving other CPUs indefinitely throttled. If
735 * isolation is really required, the user will turn the throttle
736 * off to kill the perturbations it causes anyway. Meanwhile,
737 * this maintains functionality for boot and/or troubleshooting.
738 */
739 if (rt_b == &root_task_group.rt_bandwidth)
740 span = cpu_online_mask;
741#endif
c6c4927b 742 for_each_cpu(i, span) {
eff6549b
PZ
743 int enqueue = 0;
744 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
745 struct rq *rq = rq_of_rt_rq(rt_rq);
746
05fa785c 747 raw_spin_lock(&rq->lock);
eff6549b
PZ
748 if (rt_rq->rt_time) {
749 u64 runtime;
750
0986b11b 751 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
752 if (rt_rq->rt_throttled)
753 balance_runtime(rt_rq);
754 runtime = rt_rq->rt_runtime;
755 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
756 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
757 rt_rq->rt_throttled = 0;
758 enqueue = 1;
61eadef6
MG
759
760 /*
761 * Force a clock update if the CPU was idle,
762 * lest wakeup -> unthrottle time accumulate.
763 */
764 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
765 rq->skip_clock_update = -1;
eff6549b
PZ
766 }
767 if (rt_rq->rt_time || rt_rq->rt_nr_running)
768 idle = 0;
0986b11b 769 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 770 } else if (rt_rq->rt_nr_running) {
6c3df255 771 idle = 0;
0c3b9168
BS
772 if (!rt_rq_throttled(rt_rq))
773 enqueue = 1;
774 }
42c62a58
PZ
775 if (rt_rq->rt_throttled)
776 throttled = 1;
eff6549b
PZ
777
778 if (enqueue)
779 sched_rt_rq_enqueue(rt_rq);
05fa785c 780 raw_spin_unlock(&rq->lock);
eff6549b
PZ
781 }
782
42c62a58
PZ
783 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
784 return 1;
785
eff6549b
PZ
786 return idle;
787}
ac086bc2 788
6f505b16
PZ
789static inline int rt_se_prio(struct sched_rt_entity *rt_se)
790{
052f1dc7 791#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
792 struct rt_rq *rt_rq = group_rt_rq(rt_se);
793
794 if (rt_rq)
e864c499 795 return rt_rq->highest_prio.curr;
6f505b16
PZ
796#endif
797
798 return rt_task_of(rt_se)->prio;
799}
800
9f0c1e56 801static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 802{
9f0c1e56 803 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 804
fa85ae24 805 if (rt_rq->rt_throttled)
23b0fdfc 806 return rt_rq_throttled(rt_rq);
fa85ae24 807
5b680fd6 808 if (runtime >= sched_rt_period(rt_rq))
ac086bc2
PZ
809 return 0;
810
b79f3833
PZ
811 balance_runtime(rt_rq);
812 runtime = sched_rt_runtime(rt_rq);
813 if (runtime == RUNTIME_INF)
814 return 0;
ac086bc2 815
9f0c1e56 816 if (rt_rq->rt_time > runtime) {
7abc63b1
PZ
817 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
818
819 /*
820 * Don't actually throttle groups that have no runtime assigned
821 * but accrue some time due to boosting.
822 */
823 if (likely(rt_b->rt_runtime)) {
3ccf3e83
PZ
824 static bool once = false;
825
7abc63b1 826 rt_rq->rt_throttled = 1;
3ccf3e83
PZ
827
828 if (!once) {
829 once = true;
830 printk_sched("sched: RT throttling activated\n");
831 }
7abc63b1
PZ
832 } else {
833 /*
834 * In case we did anyway, make it go away,
835 * replenishment is a joke, since it will replenish us
836 * with exactly 0 ns.
837 */
838 rt_rq->rt_time = 0;
839 }
840
23b0fdfc 841 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 842 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
843 return 1;
844 }
fa85ae24
PZ
845 }
846
847 return 0;
848}
849
bb44e5d1
IM
850/*
851 * Update the current task's runtime statistics. Skip current tasks that
852 * are not in our scheduling class.
853 */
a9957449 854static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
855{
856 struct task_struct *curr = rq->curr;
6f505b16
PZ
857 struct sched_rt_entity *rt_se = &curr->rt;
858 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
859 u64 delta_exec;
860
06c3bc65 861 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
862 return;
863
78becc27 864 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
fc79e240
KT
865 if (unlikely((s64)delta_exec <= 0))
866 return;
6cfb0d5d 867
42c62a58
PZ
868 schedstat_set(curr->se.statistics.exec_max,
869 max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
870
871 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
872 account_group_exec_runtime(curr, delta_exec);
873
78becc27 874 curr->se.exec_start = rq_clock_task(rq);
d842de87 875 cpuacct_charge(curr, delta_exec);
fa85ae24 876
e9e9250b
PZ
877 sched_rt_avg_update(rq, delta_exec);
878
0b148fa0
PZ
879 if (!rt_bandwidth_enabled())
880 return;
881
354d60c2
DG
882 for_each_sched_rt_entity(rt_se) {
883 rt_rq = rt_rq_of_se(rt_se);
884
cc2991cf 885 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 886 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
887 rt_rq->rt_time += delta_exec;
888 if (sched_rt_runtime_exceeded(rt_rq))
889 resched_task(curr);
0986b11b 890 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 891 }
354d60c2 892 }
bb44e5d1
IM
893}
894
398a153b 895#if defined CONFIG_SMP
e864c499 896
398a153b
GH
897static void
898inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 899{
4d984277 900 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 901
5181f4a4
SR
902 if (rq->online && prio < prev_prio)
903 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 904}
73fe6aae 905
398a153b
GH
906static void
907dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
908{
909 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 910
398a153b
GH
911 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
912 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
913}
914
398a153b
GH
915#else /* CONFIG_SMP */
916
6f505b16 917static inline
398a153b
GH
918void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
919static inline
920void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
921
922#endif /* CONFIG_SMP */
6e0534f2 923
052f1dc7 924#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
925static void
926inc_rt_prio(struct rt_rq *rt_rq, int prio)
927{
928 int prev_prio = rt_rq->highest_prio.curr;
929
930 if (prio < prev_prio)
931 rt_rq->highest_prio.curr = prio;
932
933 inc_rt_prio_smp(rt_rq, prio, prev_prio);
934}
935
936static void
937dec_rt_prio(struct rt_rq *rt_rq, int prio)
938{
939 int prev_prio = rt_rq->highest_prio.curr;
940
6f505b16 941 if (rt_rq->rt_nr_running) {
764a9d6f 942
398a153b 943 WARN_ON(prio < prev_prio);
764a9d6f 944
e864c499 945 /*
398a153b
GH
946 * This may have been our highest task, and therefore
947 * we may have some recomputation to do
e864c499 948 */
398a153b 949 if (prio == prev_prio) {
e864c499
GH
950 struct rt_prio_array *array = &rt_rq->active;
951
952 rt_rq->highest_prio.curr =
764a9d6f 953 sched_find_first_bit(array->bitmap);
e864c499
GH
954 }
955
764a9d6f 956 } else
e864c499 957 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 958
398a153b
GH
959 dec_rt_prio_smp(rt_rq, prio, prev_prio);
960}
1f11eb6a 961
398a153b
GH
962#else
963
964static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
965static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
966
967#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 968
052f1dc7 969#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
970
971static void
972inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
973{
974 if (rt_se_boosted(rt_se))
975 rt_rq->rt_nr_boosted++;
976
977 if (rt_rq->tg)
978 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
979}
980
981static void
982dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
983{
23b0fdfc
PZ
984 if (rt_se_boosted(rt_se))
985 rt_rq->rt_nr_boosted--;
986
987 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
988}
989
990#else /* CONFIG_RT_GROUP_SCHED */
991
992static void
993inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
994{
995 start_rt_bandwidth(&def_rt_bandwidth);
996}
997
998static inline
999void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1000
1001#endif /* CONFIG_RT_GROUP_SCHED */
1002
1003static inline
1004void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1005{
1006 int prio = rt_se_prio(rt_se);
1007
1008 WARN_ON(!rt_prio(prio));
1009 rt_rq->rt_nr_running++;
1010
1011 inc_rt_prio(rt_rq, prio);
1012 inc_rt_migration(rt_se, rt_rq);
1013 inc_rt_group(rt_se, rt_rq);
1014}
1015
1016static inline
1017void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1018{
1019 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1020 WARN_ON(!rt_rq->rt_nr_running);
1021 rt_rq->rt_nr_running--;
1022
1023 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1024 dec_rt_migration(rt_se, rt_rq);
1025 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1026}
1027
37dad3fc 1028static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 1029{
6f505b16
PZ
1030 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1031 struct rt_prio_array *array = &rt_rq->active;
1032 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1033 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1034
ad2a3f13
PZ
1035 /*
1036 * Don't enqueue the group if its throttled, or when empty.
1037 * The latter is a consequence of the former when a child group
1038 * get throttled and the current group doesn't have any other
1039 * active members.
1040 */
1041 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 1042 return;
63489e45 1043
37dad3fc
TG
1044 if (head)
1045 list_add(&rt_se->run_list, queue);
1046 else
1047 list_add_tail(&rt_se->run_list, queue);
6f505b16 1048 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 1049
6f505b16
PZ
1050 inc_rt_tasks(rt_se, rt_rq);
1051}
1052
ad2a3f13 1053static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
1054{
1055 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1056 struct rt_prio_array *array = &rt_rq->active;
1057
1058 list_del_init(&rt_se->run_list);
1059 if (list_empty(array->queue + rt_se_prio(rt_se)))
1060 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1061
1062 dec_rt_tasks(rt_se, rt_rq);
1063}
1064
1065/*
1066 * Because the prio of an upper entry depends on the lower
1067 * entries, we must remove entries top - down.
6f505b16 1068 */
ad2a3f13 1069static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 1070{
ad2a3f13 1071 struct sched_rt_entity *back = NULL;
6f505b16 1072
58d6c2d7
PZ
1073 for_each_sched_rt_entity(rt_se) {
1074 rt_se->back = back;
1075 back = rt_se;
1076 }
1077
1078 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1079 if (on_rt_rq(rt_se))
ad2a3f13
PZ
1080 __dequeue_rt_entity(rt_se);
1081 }
1082}
1083
37dad3fc 1084static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13
PZ
1085{
1086 dequeue_rt_stack(rt_se);
1087 for_each_sched_rt_entity(rt_se)
37dad3fc 1088 __enqueue_rt_entity(rt_se, head);
ad2a3f13
PZ
1089}
1090
1091static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1092{
1093 dequeue_rt_stack(rt_se);
1094
1095 for_each_sched_rt_entity(rt_se) {
1096 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1097
1098 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 1099 __enqueue_rt_entity(rt_se, false);
58d6c2d7 1100 }
bb44e5d1
IM
1101}
1102
1103/*
1104 * Adding/removing a task to/from a priority array:
1105 */
ea87bb78 1106static void
371fd7e7 1107enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1108{
1109 struct sched_rt_entity *rt_se = &p->rt;
1110
371fd7e7 1111 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1112 rt_se->timeout = 0;
1113
371fd7e7 1114 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 1115
29baa747 1116 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
917b627d 1117 enqueue_pushable_task(rq, p);
953bfcd1
PT
1118
1119 inc_nr_running(rq);
6f505b16
PZ
1120}
1121
371fd7e7 1122static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1123{
6f505b16 1124 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1125
f1e14ef6 1126 update_curr_rt(rq);
ad2a3f13 1127 dequeue_rt_entity(rt_se);
c09595f6 1128
917b627d 1129 dequeue_pushable_task(rq, p);
953bfcd1
PT
1130
1131 dec_nr_running(rq);
bb44e5d1
IM
1132}
1133
1134/*
60686317
RW
1135 * Put task to the head or the end of the run list without the overhead of
1136 * dequeue followed by enqueue.
bb44e5d1 1137 */
7ebefa8c
DA
1138static void
1139requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1140{
1cdad715 1141 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1142 struct rt_prio_array *array = &rt_rq->active;
1143 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1144
1145 if (head)
1146 list_move(&rt_se->run_list, queue);
1147 else
1148 list_move_tail(&rt_se->run_list, queue);
1cdad715 1149 }
6f505b16
PZ
1150}
1151
7ebefa8c 1152static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1153{
6f505b16
PZ
1154 struct sched_rt_entity *rt_se = &p->rt;
1155 struct rt_rq *rt_rq;
bb44e5d1 1156
6f505b16
PZ
1157 for_each_sched_rt_entity(rt_se) {
1158 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1159 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1160 }
bb44e5d1
IM
1161}
1162
6f505b16 1163static void yield_task_rt(struct rq *rq)
bb44e5d1 1164{
7ebefa8c 1165 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1166}
1167
e7693a36 1168#ifdef CONFIG_SMP
318e0893
GH
1169static int find_lowest_rq(struct task_struct *task);
1170
0017d735 1171static int
ac66f547 1172select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
e7693a36 1173{
7608dec2
PZ
1174 struct task_struct *curr;
1175 struct rq *rq;
c37495fd 1176
29baa747 1177 if (p->nr_cpus_allowed == 1)
76854c7e
MG
1178 goto out;
1179
c37495fd
SR
1180 /* For anything but wake ups, just return the task_cpu */
1181 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1182 goto out;
1183
7608dec2
PZ
1184 rq = cpu_rq(cpu);
1185
1186 rcu_read_lock();
1187 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1188
318e0893 1189 /*
7608dec2 1190 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1191 * try to see if we can wake this RT task up on another
1192 * runqueue. Otherwise simply start this RT task
1193 * on its current runqueue.
1194 *
43fa5460
SR
1195 * We want to avoid overloading runqueues. If the woken
1196 * task is a higher priority, then it will stay on this CPU
1197 * and the lower prio task should be moved to another CPU.
1198 * Even though this will probably make the lower prio task
1199 * lose its cache, we do not want to bounce a higher task
1200 * around just because it gave up its CPU, perhaps for a
1201 * lock?
1202 *
1203 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1204 *
1205 * Otherwise, just let it ride on the affined RQ and the
1206 * post-schedule router will push the preempted task away
1207 *
1208 * This test is optimistic, if we get it wrong the load-balancer
1209 * will have to sort it out.
318e0893 1210 */
7608dec2 1211 if (curr && unlikely(rt_task(curr)) &&
29baa747 1212 (curr->nr_cpus_allowed < 2 ||
6bfa687c 1213 curr->prio <= p->prio)) {
7608dec2 1214 int target = find_lowest_rq(p);
318e0893 1215
7608dec2
PZ
1216 if (target != -1)
1217 cpu = target;
318e0893 1218 }
7608dec2 1219 rcu_read_unlock();
318e0893 1220
c37495fd 1221out:
7608dec2 1222 return cpu;
e7693a36 1223}
7ebefa8c
DA
1224
1225static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1226{
29baa747 1227 if (rq->curr->nr_cpus_allowed == 1)
7ebefa8c
DA
1228 return;
1229
29baa747 1230 if (p->nr_cpus_allowed != 1
13b8bd0a
RR
1231 && cpupri_find(&rq->rd->cpupri, p, NULL))
1232 return;
24600ce8 1233
13b8bd0a
RR
1234 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1235 return;
7ebefa8c
DA
1236
1237 /*
1238 * There appears to be other cpus that can accept
1239 * current and none to run 'p', so lets reschedule
1240 * to try and push current away:
1241 */
1242 requeue_task_rt(rq, p, 1);
1243 resched_task(rq->curr);
1244}
1245
e7693a36
GH
1246#endif /* CONFIG_SMP */
1247
bb44e5d1
IM
1248/*
1249 * Preempt the current task with a newly woken task if needed:
1250 */
7d478721 1251static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1252{
45c01e82 1253 if (p->prio < rq->curr->prio) {
bb44e5d1 1254 resched_task(rq->curr);
45c01e82
GH
1255 return;
1256 }
1257
1258#ifdef CONFIG_SMP
1259 /*
1260 * If:
1261 *
1262 * - the newly woken task is of equal priority to the current task
1263 * - the newly woken task is non-migratable while current is migratable
1264 * - current will be preempted on the next reschedule
1265 *
1266 * we should check to see if current can readily move to a different
1267 * cpu. If so, we will reschedule to allow the push logic to try
1268 * to move current somewhere else, making room for our non-migratable
1269 * task.
1270 */
8dd0de8b 1271 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1272 check_preempt_equal_prio(rq, p);
45c01e82 1273#endif
bb44e5d1
IM
1274}
1275
6f505b16
PZ
1276static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1277 struct rt_rq *rt_rq)
bb44e5d1 1278{
6f505b16
PZ
1279 struct rt_prio_array *array = &rt_rq->active;
1280 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1281 struct list_head *queue;
1282 int idx;
1283
1284 idx = sched_find_first_bit(array->bitmap);
6f505b16 1285 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1286
1287 queue = array->queue + idx;
6f505b16 1288 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1289
6f505b16
PZ
1290 return next;
1291}
bb44e5d1 1292
917b627d 1293static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1294{
1295 struct sched_rt_entity *rt_se;
1296 struct task_struct *p;
1297 struct rt_rq *rt_rq;
bb44e5d1 1298
6f505b16
PZ
1299 rt_rq = &rq->rt;
1300
8e54a2c0 1301 if (!rt_rq->rt_nr_running)
6f505b16
PZ
1302 return NULL;
1303
23b0fdfc 1304 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
1305 return NULL;
1306
1307 do {
1308 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1309 BUG_ON(!rt_se);
6f505b16
PZ
1310 rt_rq = group_rt_rq(rt_se);
1311 } while (rt_rq);
1312
1313 p = rt_task_of(rt_se);
78becc27 1314 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1315
1316 return p;
1317}
1318
1319static struct task_struct *pick_next_task_rt(struct rq *rq)
1320{
1321 struct task_struct *p = _pick_next_task_rt(rq);
1322
1323 /* The running task is never eligible for pushing */
1324 if (p)
1325 dequeue_pushable_task(rq, p);
1326
bcf08df3 1327#ifdef CONFIG_SMP
3f029d3c
GH
1328 /*
1329 * We detect this state here so that we can avoid taking the RQ
1330 * lock again later if there is no need to push
1331 */
1332 rq->post_schedule = has_pushable_tasks(rq);
bcf08df3 1333#endif
3f029d3c 1334
6f505b16 1335 return p;
bb44e5d1
IM
1336}
1337
31ee529c 1338static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1339{
f1e14ef6 1340 update_curr_rt(rq);
917b627d
GH
1341
1342 /*
1343 * The previous task needs to be made eligible for pushing
1344 * if it is still active
1345 */
29baa747 1346 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
917b627d 1347 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1348}
1349
681f3e68 1350#ifdef CONFIG_SMP
6f505b16 1351
e8fa1362
SR
1352/* Only try algorithms three times */
1353#define RT_MAX_TRIES 3
1354
f65eda4f
SR
1355static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1356{
1357 if (!task_running(rq, p) &&
60334caf 1358 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
f65eda4f
SR
1359 return 1;
1360 return 0;
1361}
1362
e23ee747
KT
1363/*
1364 * Return the highest pushable rq's task, which is suitable to be executed
1365 * on the cpu, NULL otherwise
1366 */
1367static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
e8fa1362 1368{
e23ee747
KT
1369 struct plist_head *head = &rq->rt.pushable_tasks;
1370 struct task_struct *p;
3d07467b 1371
e23ee747
KT
1372 if (!has_pushable_tasks(rq))
1373 return NULL;
3d07467b 1374
e23ee747
KT
1375 plist_for_each_entry(p, head, pushable_tasks) {
1376 if (pick_rt_task(rq, p, cpu))
1377 return p;
f65eda4f
SR
1378 }
1379
e23ee747 1380 return NULL;
e8fa1362
SR
1381}
1382
0e3900e6 1383static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1384
6e1254d2
GH
1385static int find_lowest_rq(struct task_struct *task)
1386{
1387 struct sched_domain *sd;
96f874e2 1388 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1389 int this_cpu = smp_processor_id();
1390 int cpu = task_cpu(task);
06f90dbd 1391
0da938c4
SR
1392 /* Make sure the mask is initialized first */
1393 if (unlikely(!lowest_mask))
1394 return -1;
1395
29baa747 1396 if (task->nr_cpus_allowed == 1)
6e0534f2 1397 return -1; /* No other targets possible */
6e1254d2 1398
6e0534f2
GH
1399 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1400 return -1; /* No targets found */
6e1254d2
GH
1401
1402 /*
1403 * At this point we have built a mask of cpus representing the
1404 * lowest priority tasks in the system. Now we want to elect
1405 * the best one based on our affinity and topology.
1406 *
1407 * We prioritize the last cpu that the task executed on since
1408 * it is most likely cache-hot in that location.
1409 */
96f874e2 1410 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1411 return cpu;
1412
1413 /*
1414 * Otherwise, we consult the sched_domains span maps to figure
1415 * out which cpu is logically closest to our hot cache data.
1416 */
e2c88063
RR
1417 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1418 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1419
cd4ae6ad 1420 rcu_read_lock();
e2c88063
RR
1421 for_each_domain(cpu, sd) {
1422 if (sd->flags & SD_WAKE_AFFINE) {
1423 int best_cpu;
6e1254d2 1424
e2c88063
RR
1425 /*
1426 * "this_cpu" is cheaper to preempt than a
1427 * remote processor.
1428 */
1429 if (this_cpu != -1 &&
cd4ae6ad
XF
1430 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1431 rcu_read_unlock();
e2c88063 1432 return this_cpu;
cd4ae6ad 1433 }
e2c88063
RR
1434
1435 best_cpu = cpumask_first_and(lowest_mask,
1436 sched_domain_span(sd));
cd4ae6ad
XF
1437 if (best_cpu < nr_cpu_ids) {
1438 rcu_read_unlock();
e2c88063 1439 return best_cpu;
cd4ae6ad 1440 }
6e1254d2
GH
1441 }
1442 }
cd4ae6ad 1443 rcu_read_unlock();
6e1254d2
GH
1444
1445 /*
1446 * And finally, if there were no matches within the domains
1447 * just give the caller *something* to work with from the compatible
1448 * locations.
1449 */
e2c88063
RR
1450 if (this_cpu != -1)
1451 return this_cpu;
1452
1453 cpu = cpumask_any(lowest_mask);
1454 if (cpu < nr_cpu_ids)
1455 return cpu;
1456 return -1;
07b4032c
GH
1457}
1458
1459/* Will lock the rq it finds */
4df64c0b 1460static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1461{
1462 struct rq *lowest_rq = NULL;
07b4032c 1463 int tries;
4df64c0b 1464 int cpu;
e8fa1362 1465
07b4032c
GH
1466 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1467 cpu = find_lowest_rq(task);
1468
2de0b463 1469 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1470 break;
1471
07b4032c
GH
1472 lowest_rq = cpu_rq(cpu);
1473
e8fa1362 1474 /* if the prio of this runqueue changed, try again */
07b4032c 1475 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1476 /*
1477 * We had to unlock the run queue. In
1478 * the mean time, task could have
1479 * migrated already or had its affinity changed.
1480 * Also make sure that it wasn't scheduled on its rq.
1481 */
07b4032c 1482 if (unlikely(task_rq(task) != rq ||
96f874e2 1483 !cpumask_test_cpu(lowest_rq->cpu,
fa17b507 1484 tsk_cpus_allowed(task)) ||
07b4032c 1485 task_running(rq, task) ||
fd2f4419 1486 !task->on_rq)) {
4df64c0b 1487
7f1b4393 1488 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1489 lowest_rq = NULL;
1490 break;
1491 }
1492 }
1493
1494 /* If this rq is still suitable use it. */
e864c499 1495 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1496 break;
1497
1498 /* try again */
1b12bbc7 1499 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1500 lowest_rq = NULL;
1501 }
1502
1503 return lowest_rq;
1504}
1505
917b627d
GH
1506static struct task_struct *pick_next_pushable_task(struct rq *rq)
1507{
1508 struct task_struct *p;
1509
1510 if (!has_pushable_tasks(rq))
1511 return NULL;
1512
1513 p = plist_first_entry(&rq->rt.pushable_tasks,
1514 struct task_struct, pushable_tasks);
1515
1516 BUG_ON(rq->cpu != task_cpu(p));
1517 BUG_ON(task_current(rq, p));
29baa747 1518 BUG_ON(p->nr_cpus_allowed <= 1);
917b627d 1519
fd2f4419 1520 BUG_ON(!p->on_rq);
917b627d
GH
1521 BUG_ON(!rt_task(p));
1522
1523 return p;
1524}
1525
e8fa1362
SR
1526/*
1527 * If the current CPU has more than one RT task, see if the non
1528 * running task can migrate over to a CPU that is running a task
1529 * of lesser priority.
1530 */
697f0a48 1531static int push_rt_task(struct rq *rq)
e8fa1362
SR
1532{
1533 struct task_struct *next_task;
1534 struct rq *lowest_rq;
311e800e 1535 int ret = 0;
e8fa1362 1536
a22d7fc1
GH
1537 if (!rq->rt.overloaded)
1538 return 0;
1539
917b627d 1540 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1541 if (!next_task)
1542 return 0;
1543
49246274 1544retry:
697f0a48 1545 if (unlikely(next_task == rq->curr)) {
f65eda4f 1546 WARN_ON(1);
e8fa1362 1547 return 0;
f65eda4f 1548 }
e8fa1362
SR
1549
1550 /*
1551 * It's possible that the next_task slipped in of
1552 * higher priority than current. If that's the case
1553 * just reschedule current.
1554 */
697f0a48
GH
1555 if (unlikely(next_task->prio < rq->curr->prio)) {
1556 resched_task(rq->curr);
e8fa1362
SR
1557 return 0;
1558 }
1559
697f0a48 1560 /* We might release rq lock */
e8fa1362
SR
1561 get_task_struct(next_task);
1562
1563 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1564 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1565 if (!lowest_rq) {
1566 struct task_struct *task;
1567 /*
311e800e 1568 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1569 * so it is possible that next_task has migrated.
1570 *
1571 * We need to make sure that the task is still on the same
1572 * run-queue and is also still the next task eligible for
1573 * pushing.
e8fa1362 1574 */
917b627d 1575 task = pick_next_pushable_task(rq);
1563513d
GH
1576 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1577 /*
311e800e
HD
1578 * The task hasn't migrated, and is still the next
1579 * eligible task, but we failed to find a run-queue
1580 * to push it to. Do not retry in this case, since
1581 * other cpus will pull from us when ready.
1563513d 1582 */
1563513d 1583 goto out;
e8fa1362 1584 }
917b627d 1585
1563513d
GH
1586 if (!task)
1587 /* No more tasks, just exit */
1588 goto out;
1589
917b627d 1590 /*
1563513d 1591 * Something has shifted, try again.
917b627d 1592 */
1563513d
GH
1593 put_task_struct(next_task);
1594 next_task = task;
1595 goto retry;
e8fa1362
SR
1596 }
1597
697f0a48 1598 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1599 set_task_cpu(next_task, lowest_rq->cpu);
1600 activate_task(lowest_rq, next_task, 0);
311e800e 1601 ret = 1;
e8fa1362
SR
1602
1603 resched_task(lowest_rq->curr);
1604
1b12bbc7 1605 double_unlock_balance(rq, lowest_rq);
e8fa1362 1606
e8fa1362
SR
1607out:
1608 put_task_struct(next_task);
1609
311e800e 1610 return ret;
e8fa1362
SR
1611}
1612
e8fa1362
SR
1613static void push_rt_tasks(struct rq *rq)
1614{
1615 /* push_rt_task will return true if it moved an RT */
1616 while (push_rt_task(rq))
1617 ;
1618}
1619
f65eda4f
SR
1620static int pull_rt_task(struct rq *this_rq)
1621{
80bf3171 1622 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1623 struct task_struct *p;
f65eda4f 1624 struct rq *src_rq;
f65eda4f 1625
637f5085 1626 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1627 return 0;
1628
c6c4927b 1629 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1630 if (this_cpu == cpu)
1631 continue;
1632
1633 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1634
1635 /*
1636 * Don't bother taking the src_rq->lock if the next highest
1637 * task is known to be lower-priority than our current task.
1638 * This may look racy, but if this value is about to go
1639 * logically higher, the src_rq will push this task away.
1640 * And if its going logically lower, we do not care
1641 */
1642 if (src_rq->rt.highest_prio.next >=
1643 this_rq->rt.highest_prio.curr)
1644 continue;
1645
f65eda4f
SR
1646 /*
1647 * We can potentially drop this_rq's lock in
1648 * double_lock_balance, and another CPU could
a8728944 1649 * alter this_rq
f65eda4f 1650 */
a8728944 1651 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1652
1653 /*
e23ee747
KT
1654 * We can pull only a task, which is pushable
1655 * on its rq, and no others.
f65eda4f 1656 */
e23ee747 1657 p = pick_highest_pushable_task(src_rq, this_cpu);
f65eda4f
SR
1658
1659 /*
1660 * Do we have an RT task that preempts
1661 * the to-be-scheduled task?
1662 */
a8728944 1663 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 1664 WARN_ON(p == src_rq->curr);
fd2f4419 1665 WARN_ON(!p->on_rq);
f65eda4f
SR
1666
1667 /*
1668 * There's a chance that p is higher in priority
1669 * than what's currently running on its cpu.
1670 * This is just that p is wakeing up and hasn't
1671 * had a chance to schedule. We only pull
1672 * p if it is lower in priority than the
a8728944 1673 * current task on the run queue
f65eda4f 1674 */
a8728944 1675 if (p->prio < src_rq->curr->prio)
614ee1f6 1676 goto skip;
f65eda4f
SR
1677
1678 ret = 1;
1679
1680 deactivate_task(src_rq, p, 0);
1681 set_task_cpu(p, this_cpu);
1682 activate_task(this_rq, p, 0);
1683 /*
1684 * We continue with the search, just in
1685 * case there's an even higher prio task
25985edc 1686 * in another runqueue. (low likelihood
f65eda4f 1687 * but possible)
f65eda4f 1688 */
f65eda4f 1689 }
49246274 1690skip:
1b12bbc7 1691 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1692 }
1693
1694 return ret;
1695}
1696
9a897c5a 1697static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1698{
1699 /* Try to pull RT tasks here if we lower this rq's prio */
33c3d6c6 1700 if (rq->rt.highest_prio.curr > prev->prio)
f65eda4f
SR
1701 pull_rt_task(rq);
1702}
1703
9a897c5a 1704static void post_schedule_rt(struct rq *rq)
e8fa1362 1705{
967fc046 1706 push_rt_tasks(rq);
e8fa1362
SR
1707}
1708
8ae121ac
GH
1709/*
1710 * If we are not running and we are not going to reschedule soon, we should
1711 * try to push tasks away now
1712 */
efbbd05a 1713static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 1714{
9a897c5a 1715 if (!task_running(rq, p) &&
8ae121ac 1716 !test_tsk_need_resched(rq->curr) &&
917b627d 1717 has_pushable_tasks(rq) &&
29baa747 1718 p->nr_cpus_allowed > 1 &&
43fa5460 1719 rt_task(rq->curr) &&
29baa747 1720 (rq->curr->nr_cpus_allowed < 2 ||
3be209a8 1721 rq->curr->prio <= p->prio))
4642dafd
SR
1722 push_rt_tasks(rq);
1723}
1724
cd8ba7cd 1725static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1726 const struct cpumask *new_mask)
73fe6aae 1727{
8d3d5ada
KT
1728 struct rq *rq;
1729 int weight;
73fe6aae
GH
1730
1731 BUG_ON(!rt_task(p));
1732
8d3d5ada
KT
1733 if (!p->on_rq)
1734 return;
917b627d 1735
8d3d5ada 1736 weight = cpumask_weight(new_mask);
917b627d 1737
8d3d5ada
KT
1738 /*
1739 * Only update if the process changes its state from whether it
1740 * can migrate or not.
1741 */
29baa747 1742 if ((p->nr_cpus_allowed > 1) == (weight > 1))
8d3d5ada 1743 return;
917b627d 1744
8d3d5ada 1745 rq = task_rq(p);
73fe6aae 1746
8d3d5ada
KT
1747 /*
1748 * The process used to be able to migrate OR it can now migrate
1749 */
1750 if (weight <= 1) {
1751 if (!task_current(rq, p))
1752 dequeue_pushable_task(rq, p);
1753 BUG_ON(!rq->rt.rt_nr_migratory);
1754 rq->rt.rt_nr_migratory--;
1755 } else {
1756 if (!task_current(rq, p))
1757 enqueue_pushable_task(rq, p);
1758 rq->rt.rt_nr_migratory++;
73fe6aae 1759 }
8d3d5ada
KT
1760
1761 update_rt_migration(&rq->rt);
73fe6aae 1762}
deeeccd4 1763
bdd7c81b 1764/* Assumes rq->lock is held */
1f11eb6a 1765static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1766{
1767 if (rq->rt.overloaded)
1768 rt_set_overload(rq);
6e0534f2 1769
7def2be1
PZ
1770 __enable_runtime(rq);
1771
e864c499 1772 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1773}
1774
1775/* Assumes rq->lock is held */
1f11eb6a 1776static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1777{
1778 if (rq->rt.overloaded)
1779 rt_clear_overload(rq);
6e0534f2 1780
7def2be1
PZ
1781 __disable_runtime(rq);
1782
6e0534f2 1783 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1784}
cb469845
SR
1785
1786/*
1787 * When switch from the rt queue, we bring ourselves to a position
1788 * that we might want to pull RT tasks from other runqueues.
1789 */
da7a735e 1790static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1791{
1792 /*
1793 * If there are other RT tasks then we will reschedule
1794 * and the scheduling of the other RT tasks will handle
1795 * the balancing. But if we are the last RT task
1796 * we may need to handle the pulling of RT tasks
1797 * now.
1798 */
1158ddb5
KT
1799 if (!p->on_rq || rq->rt.rt_nr_running)
1800 return;
1801
1802 if (pull_rt_task(rq))
1803 resched_task(rq->curr);
cb469845 1804}
3d8cbdf8 1805
029632fb 1806void init_sched_rt_class(void)
3d8cbdf8
RR
1807{
1808 unsigned int i;
1809
029632fb 1810 for_each_possible_cpu(i) {
eaa95840 1811 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 1812 GFP_KERNEL, cpu_to_node(i));
029632fb 1813 }
3d8cbdf8 1814}
cb469845
SR
1815#endif /* CONFIG_SMP */
1816
1817/*
1818 * When switching a task to RT, we may overload the runqueue
1819 * with RT tasks. In this case we try to push them off to
1820 * other runqueues.
1821 */
da7a735e 1822static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1823{
1824 int check_resched = 1;
1825
1826 /*
1827 * If we are already running, then there's nothing
1828 * that needs to be done. But if we are not running
1829 * we may need to preempt the current running task.
1830 * If that current running task is also an RT task
1831 * then see if we can move to another run queue.
1832 */
fd2f4419 1833 if (p->on_rq && rq->curr != p) {
cb469845
SR
1834#ifdef CONFIG_SMP
1835 if (rq->rt.overloaded && push_rt_task(rq) &&
1836 /* Don't resched if we changed runqueues */
1837 rq != task_rq(p))
1838 check_resched = 0;
1839#endif /* CONFIG_SMP */
1840 if (check_resched && p->prio < rq->curr->prio)
1841 resched_task(rq->curr);
1842 }
1843}
1844
1845/*
1846 * Priority of the task has changed. This may cause
1847 * us to initiate a push or pull.
1848 */
da7a735e
PZ
1849static void
1850prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 1851{
fd2f4419 1852 if (!p->on_rq)
da7a735e
PZ
1853 return;
1854
1855 if (rq->curr == p) {
cb469845
SR
1856#ifdef CONFIG_SMP
1857 /*
1858 * If our priority decreases while running, we
1859 * may need to pull tasks to this runqueue.
1860 */
1861 if (oldprio < p->prio)
1862 pull_rt_task(rq);
1863 /*
1864 * If there's a higher priority task waiting to run
6fa46fa5
SR
1865 * then reschedule. Note, the above pull_rt_task
1866 * can release the rq lock and p could migrate.
1867 * Only reschedule if p is still on the same runqueue.
cb469845 1868 */
e864c499 1869 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1870 resched_task(p);
1871#else
1872 /* For UP simply resched on drop of prio */
1873 if (oldprio < p->prio)
1874 resched_task(p);
e8fa1362 1875#endif /* CONFIG_SMP */
cb469845
SR
1876 } else {
1877 /*
1878 * This task is not running, but if it is
1879 * greater than the current running task
1880 * then reschedule.
1881 */
1882 if (p->prio < rq->curr->prio)
1883 resched_task(rq->curr);
1884 }
1885}
1886
78f2c7db
PZ
1887static void watchdog(struct rq *rq, struct task_struct *p)
1888{
1889 unsigned long soft, hard;
1890
78d7d407
JS
1891 /* max may change after cur was read, this will be fixed next tick */
1892 soft = task_rlimit(p, RLIMIT_RTTIME);
1893 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
1894
1895 if (soft != RLIM_INFINITY) {
1896 unsigned long next;
1897
57d2aa00
YX
1898 if (p->rt.watchdog_stamp != jiffies) {
1899 p->rt.timeout++;
1900 p->rt.watchdog_stamp = jiffies;
1901 }
1902
78f2c7db 1903 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1904 if (p->rt.timeout > next)
f06febc9 1905 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1906 }
1907}
bb44e5d1 1908
8f4d37ec 1909static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1910{
454c7999
CC
1911 struct sched_rt_entity *rt_se = &p->rt;
1912
67e2be02
PZ
1913 update_curr_rt(rq);
1914
78f2c7db
PZ
1915 watchdog(rq, p);
1916
bb44e5d1
IM
1917 /*
1918 * RR tasks need a special form of timeslice management.
1919 * FIFO tasks have no timeslices.
1920 */
1921 if (p->policy != SCHED_RR)
1922 return;
1923
fa717060 1924 if (--p->rt.time_slice)
bb44e5d1
IM
1925 return;
1926
ce0dbbbb 1927 p->rt.time_slice = sched_rr_timeslice;
bb44e5d1 1928
98fbc798 1929 /*
454c7999
CC
1930 * Requeue to the end of queue if we (and all of our ancestors) are the
1931 * only element on the queue
98fbc798 1932 */
454c7999
CC
1933 for_each_sched_rt_entity(rt_se) {
1934 if (rt_se->run_list.prev != rt_se->run_list.next) {
1935 requeue_task_rt(rq, p, 0);
1936 set_tsk_need_resched(p);
1937 return;
1938 }
98fbc798 1939 }
bb44e5d1
IM
1940}
1941
83b699ed
SV
1942static void set_curr_task_rt(struct rq *rq)
1943{
1944 struct task_struct *p = rq->curr;
1945
78becc27 1946 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1947
1948 /* The running task is never eligible for pushing */
1949 dequeue_pushable_task(rq, p);
83b699ed
SV
1950}
1951
6d686f45 1952static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
1953{
1954 /*
1955 * Time slice is 0 for SCHED_FIFO tasks
1956 */
1957 if (task->policy == SCHED_RR)
ce0dbbbb 1958 return sched_rr_timeslice;
0d721cea
PW
1959 else
1960 return 0;
1961}
1962
029632fb 1963const struct sched_class rt_sched_class = {
5522d5d5 1964 .next = &fair_sched_class,
bb44e5d1
IM
1965 .enqueue_task = enqueue_task_rt,
1966 .dequeue_task = dequeue_task_rt,
1967 .yield_task = yield_task_rt,
1968
1969 .check_preempt_curr = check_preempt_curr_rt,
1970
1971 .pick_next_task = pick_next_task_rt,
1972 .put_prev_task = put_prev_task_rt,
1973
681f3e68 1974#ifdef CONFIG_SMP
4ce72a2c
LZ
1975 .select_task_rq = select_task_rq_rt,
1976
73fe6aae 1977 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1978 .rq_online = rq_online_rt,
1979 .rq_offline = rq_offline_rt,
9a897c5a
SR
1980 .pre_schedule = pre_schedule_rt,
1981 .post_schedule = post_schedule_rt,
efbbd05a 1982 .task_woken = task_woken_rt,
cb469845 1983 .switched_from = switched_from_rt,
681f3e68 1984#endif
bb44e5d1 1985
83b699ed 1986 .set_curr_task = set_curr_task_rt,
bb44e5d1 1987 .task_tick = task_tick_rt,
cb469845 1988
0d721cea
PW
1989 .get_rr_interval = get_rr_interval_rt,
1990
cb469845
SR
1991 .prio_changed = prio_changed_rt,
1992 .switched_to = switched_to_rt,
bb44e5d1 1993};
ada18de2
PZ
1994
1995#ifdef CONFIG_SCHED_DEBUG
1996extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1997
029632fb 1998void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 1999{
ec514c48 2000 rt_rq_iter_t iter;
ada18de2
PZ
2001 struct rt_rq *rt_rq;
2002
2003 rcu_read_lock();
ec514c48 2004 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2005 print_rt_rq(m, cpu, rt_rq);
2006 rcu_read_unlock();
2007}
55e12e5e 2008#endif /* CONFIG_SCHED_DEBUG */
This page took 0.558108 seconds and 5 git commands to generate.