sched: Replace post_schedule with a balance callback list
[deliverable/linux.git] / kernel / sched / rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
029632fb
PZ
6#include "sched.h"
7
8#include <linux/slab.h>
b6366f04 9#include <linux/irq_work.h>
029632fb 10
ce0dbbbb
CW
11int sched_rr_timeslice = RR_TIMESLICE;
12
029632fb
PZ
13static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15struct rt_bandwidth def_rt_bandwidth;
16
17static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18{
19 struct rt_bandwidth *rt_b =
20 container_of(timer, struct rt_bandwidth, rt_period_timer);
029632fb 21 int idle = 0;
77a4d1a1 22 int overrun;
029632fb 23
77a4d1a1 24 raw_spin_lock(&rt_b->rt_runtime_lock);
029632fb 25 for (;;) {
77a4d1a1 26 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
029632fb
PZ
27 if (!overrun)
28 break;
29
77a4d1a1 30 raw_spin_unlock(&rt_b->rt_runtime_lock);
029632fb 31 idle = do_sched_rt_period_timer(rt_b, overrun);
77a4d1a1 32 raw_spin_lock(&rt_b->rt_runtime_lock);
029632fb 33 }
4cfafd30
PZ
34 if (idle)
35 rt_b->rt_period_active = 0;
77a4d1a1 36 raw_spin_unlock(&rt_b->rt_runtime_lock);
029632fb
PZ
37
38 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39}
40
41void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42{
43 rt_b->rt_period = ns_to_ktime(period);
44 rt_b->rt_runtime = runtime;
45
46 raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48 hrtimer_init(&rt_b->rt_period_timer,
49 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50 rt_b->rt_period_timer.function = sched_rt_period_timer;
51}
52
53static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54{
55 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 return;
57
029632fb 58 raw_spin_lock(&rt_b->rt_runtime_lock);
4cfafd30
PZ
59 if (!rt_b->rt_period_active) {
60 rt_b->rt_period_active = 1;
61 hrtimer_forward_now(&rt_b->rt_period_timer, rt_b->rt_period);
62 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
63 }
029632fb
PZ
64 raw_spin_unlock(&rt_b->rt_runtime_lock);
65}
66
b6366f04
SR
67#ifdef CONFIG_SMP
68static void push_irq_work_func(struct irq_work *work);
69#endif
70
07c54f7a 71void init_rt_rq(struct rt_rq *rt_rq)
029632fb
PZ
72{
73 struct rt_prio_array *array;
74 int i;
75
76 array = &rt_rq->active;
77 for (i = 0; i < MAX_RT_PRIO; i++) {
78 INIT_LIST_HEAD(array->queue + i);
79 __clear_bit(i, array->bitmap);
80 }
81 /* delimiter for bitsearch: */
82 __set_bit(MAX_RT_PRIO, array->bitmap);
83
84#if defined CONFIG_SMP
85 rt_rq->highest_prio.curr = MAX_RT_PRIO;
86 rt_rq->highest_prio.next = MAX_RT_PRIO;
87 rt_rq->rt_nr_migratory = 0;
88 rt_rq->overloaded = 0;
89 plist_head_init(&rt_rq->pushable_tasks);
b6366f04
SR
90
91#ifdef HAVE_RT_PUSH_IPI
92 rt_rq->push_flags = 0;
93 rt_rq->push_cpu = nr_cpu_ids;
94 raw_spin_lock_init(&rt_rq->push_lock);
95 init_irq_work(&rt_rq->push_work, push_irq_work_func);
029632fb 96#endif
b6366f04 97#endif /* CONFIG_SMP */
f4ebcbc0
KT
98 /* We start is dequeued state, because no RT tasks are queued */
99 rt_rq->rt_queued = 0;
029632fb
PZ
100
101 rt_rq->rt_time = 0;
102 rt_rq->rt_throttled = 0;
103 rt_rq->rt_runtime = 0;
104 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
105}
106
8f48894f 107#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
108static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
109{
110 hrtimer_cancel(&rt_b->rt_period_timer);
111}
8f48894f
PZ
112
113#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
114
398a153b
GH
115static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
116{
8f48894f
PZ
117#ifdef CONFIG_SCHED_DEBUG
118 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
119#endif
398a153b
GH
120 return container_of(rt_se, struct task_struct, rt);
121}
122
398a153b
GH
123static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
124{
125 return rt_rq->rq;
126}
127
128static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
129{
130 return rt_se->rt_rq;
131}
132
653d07a6
KT
133static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
134{
135 struct rt_rq *rt_rq = rt_se->rt_rq;
136
137 return rt_rq->rq;
138}
139
029632fb
PZ
140void free_rt_sched_group(struct task_group *tg)
141{
142 int i;
143
144 if (tg->rt_se)
145 destroy_rt_bandwidth(&tg->rt_bandwidth);
146
147 for_each_possible_cpu(i) {
148 if (tg->rt_rq)
149 kfree(tg->rt_rq[i]);
150 if (tg->rt_se)
151 kfree(tg->rt_se[i]);
152 }
153
154 kfree(tg->rt_rq);
155 kfree(tg->rt_se);
156}
157
158void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
159 struct sched_rt_entity *rt_se, int cpu,
160 struct sched_rt_entity *parent)
161{
162 struct rq *rq = cpu_rq(cpu);
163
164 rt_rq->highest_prio.curr = MAX_RT_PRIO;
165 rt_rq->rt_nr_boosted = 0;
166 rt_rq->rq = rq;
167 rt_rq->tg = tg;
168
169 tg->rt_rq[cpu] = rt_rq;
170 tg->rt_se[cpu] = rt_se;
171
172 if (!rt_se)
173 return;
174
175 if (!parent)
176 rt_se->rt_rq = &rq->rt;
177 else
178 rt_se->rt_rq = parent->my_q;
179
180 rt_se->my_q = rt_rq;
181 rt_se->parent = parent;
182 INIT_LIST_HEAD(&rt_se->run_list);
183}
184
185int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
186{
187 struct rt_rq *rt_rq;
188 struct sched_rt_entity *rt_se;
189 int i;
190
191 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
192 if (!tg->rt_rq)
193 goto err;
194 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
195 if (!tg->rt_se)
196 goto err;
197
198 init_rt_bandwidth(&tg->rt_bandwidth,
199 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
200
201 for_each_possible_cpu(i) {
202 rt_rq = kzalloc_node(sizeof(struct rt_rq),
203 GFP_KERNEL, cpu_to_node(i));
204 if (!rt_rq)
205 goto err;
206
207 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
208 GFP_KERNEL, cpu_to_node(i));
209 if (!rt_se)
210 goto err_free_rq;
211
07c54f7a 212 init_rt_rq(rt_rq);
029632fb
PZ
213 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
214 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
215 }
216
217 return 1;
218
219err_free_rq:
220 kfree(rt_rq);
221err:
222 return 0;
223}
224
398a153b
GH
225#else /* CONFIG_RT_GROUP_SCHED */
226
a1ba4d8b
PZ
227#define rt_entity_is_task(rt_se) (1)
228
8f48894f
PZ
229static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
230{
231 return container_of(rt_se, struct task_struct, rt);
232}
233
398a153b
GH
234static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
235{
236 return container_of(rt_rq, struct rq, rt);
237}
238
653d07a6 239static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
398a153b
GH
240{
241 struct task_struct *p = rt_task_of(rt_se);
653d07a6
KT
242
243 return task_rq(p);
244}
245
246static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
247{
248 struct rq *rq = rq_of_rt_se(rt_se);
398a153b
GH
249
250 return &rq->rt;
251}
252
029632fb
PZ
253void free_rt_sched_group(struct task_group *tg) { }
254
255int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
256{
257 return 1;
258}
398a153b
GH
259#endif /* CONFIG_RT_GROUP_SCHED */
260
4fd29176 261#ifdef CONFIG_SMP
84de4274 262
38033c37
PZ
263static int pull_rt_task(struct rq *this_rq);
264
dc877341
PZ
265static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
266{
267 /* Try to pull RT tasks here if we lower this rq's prio */
268 return rq->rt.highest_prio.curr > prev->prio;
269}
270
637f5085 271static inline int rt_overloaded(struct rq *rq)
4fd29176 272{
637f5085 273 return atomic_read(&rq->rd->rto_count);
4fd29176 274}
84de4274 275
4fd29176
SR
276static inline void rt_set_overload(struct rq *rq)
277{
1f11eb6a
GH
278 if (!rq->online)
279 return;
280
c6c4927b 281 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
282 /*
283 * Make sure the mask is visible before we set
284 * the overload count. That is checked to determine
285 * if we should look at the mask. It would be a shame
286 * if we looked at the mask, but the mask was not
287 * updated yet.
7c3f2ab7
PZ
288 *
289 * Matched by the barrier in pull_rt_task().
4fd29176 290 */
7c3f2ab7 291 smp_wmb();
637f5085 292 atomic_inc(&rq->rd->rto_count);
4fd29176 293}
84de4274 294
4fd29176
SR
295static inline void rt_clear_overload(struct rq *rq)
296{
1f11eb6a
GH
297 if (!rq->online)
298 return;
299
4fd29176 300 /* the order here really doesn't matter */
637f5085 301 atomic_dec(&rq->rd->rto_count);
c6c4927b 302 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 303}
73fe6aae 304
398a153b 305static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 306{
a1ba4d8b 307 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
308 if (!rt_rq->overloaded) {
309 rt_set_overload(rq_of_rt_rq(rt_rq));
310 rt_rq->overloaded = 1;
cdc8eb98 311 }
398a153b
GH
312 } else if (rt_rq->overloaded) {
313 rt_clear_overload(rq_of_rt_rq(rt_rq));
314 rt_rq->overloaded = 0;
637f5085 315 }
73fe6aae 316}
4fd29176 317
398a153b
GH
318static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
319{
29baa747
PZ
320 struct task_struct *p;
321
a1ba4d8b
PZ
322 if (!rt_entity_is_task(rt_se))
323 return;
324
29baa747 325 p = rt_task_of(rt_se);
a1ba4d8b
PZ
326 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
327
328 rt_rq->rt_nr_total++;
29baa747 329 if (p->nr_cpus_allowed > 1)
398a153b
GH
330 rt_rq->rt_nr_migratory++;
331
332 update_rt_migration(rt_rq);
333}
334
335static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
336{
29baa747
PZ
337 struct task_struct *p;
338
a1ba4d8b
PZ
339 if (!rt_entity_is_task(rt_se))
340 return;
341
29baa747 342 p = rt_task_of(rt_se);
a1ba4d8b
PZ
343 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
344
345 rt_rq->rt_nr_total--;
29baa747 346 if (p->nr_cpus_allowed > 1)
398a153b
GH
347 rt_rq->rt_nr_migratory--;
348
349 update_rt_migration(rt_rq);
350}
351
5181f4a4
SR
352static inline int has_pushable_tasks(struct rq *rq)
353{
354 return !plist_head_empty(&rq->rt.pushable_tasks);
355}
356
e3fca9e7
PZ
357static DEFINE_PER_CPU(struct callback_head, rt_balance_head);
358
359static void push_rt_tasks(struct rq *);
360
361static inline void queue_push_tasks(struct rq *rq)
dc877341 362{
e3fca9e7
PZ
363 if (!has_pushable_tasks(rq))
364 return;
365
366 queue_balance_callback(rq, &per_cpu(rt_balance_head, rq->cpu), push_rt_tasks);
dc877341
PZ
367}
368
917b627d
GH
369static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
370{
371 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
372 plist_node_init(&p->pushable_tasks, p->prio);
373 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
374
375 /* Update the highest prio pushable task */
376 if (p->prio < rq->rt.highest_prio.next)
377 rq->rt.highest_prio.next = p->prio;
917b627d
GH
378}
379
380static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
381{
382 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 383
5181f4a4
SR
384 /* Update the new highest prio pushable task */
385 if (has_pushable_tasks(rq)) {
386 p = plist_first_entry(&rq->rt.pushable_tasks,
387 struct task_struct, pushable_tasks);
388 rq->rt.highest_prio.next = p->prio;
389 } else
390 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
391}
392
917b627d
GH
393#else
394
ceacc2c1 395static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 396{
6f505b16
PZ
397}
398
ceacc2c1
PZ
399static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
400{
401}
402
b07430ac 403static inline
ceacc2c1
PZ
404void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
405{
406}
407
398a153b 408static inline
ceacc2c1
PZ
409void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
410{
411}
917b627d 412
dc877341
PZ
413static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
414{
415 return false;
416}
417
418static inline int pull_rt_task(struct rq *this_rq)
419{
420 return 0;
421}
422
e3fca9e7 423static inline void queue_push_tasks(struct rq *rq)
dc877341
PZ
424{
425}
4fd29176
SR
426#endif /* CONFIG_SMP */
427
f4ebcbc0
KT
428static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
429static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
430
6f505b16
PZ
431static inline int on_rt_rq(struct sched_rt_entity *rt_se)
432{
433 return !list_empty(&rt_se->run_list);
434}
435
052f1dc7 436#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 437
9f0c1e56 438static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
439{
440 if (!rt_rq->tg)
9f0c1e56 441 return RUNTIME_INF;
6f505b16 442
ac086bc2
PZ
443 return rt_rq->rt_runtime;
444}
445
446static inline u64 sched_rt_period(struct rt_rq *rt_rq)
447{
448 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
449}
450
ec514c48
CX
451typedef struct task_group *rt_rq_iter_t;
452
1c09ab0d
YZ
453static inline struct task_group *next_task_group(struct task_group *tg)
454{
455 do {
456 tg = list_entry_rcu(tg->list.next,
457 typeof(struct task_group), list);
458 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
459
460 if (&tg->list == &task_groups)
461 tg = NULL;
462
463 return tg;
464}
465
466#define for_each_rt_rq(rt_rq, iter, rq) \
467 for (iter = container_of(&task_groups, typeof(*iter), list); \
468 (iter = next_task_group(iter)) && \
469 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 470
6f505b16
PZ
471#define for_each_sched_rt_entity(rt_se) \
472 for (; rt_se; rt_se = rt_se->parent)
473
474static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
475{
476 return rt_se->my_q;
477}
478
37dad3fc 479static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
480static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
481
9f0c1e56 482static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 483{
f6121f4f 484 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
8875125e 485 struct rq *rq = rq_of_rt_rq(rt_rq);
74b7eb58
YZ
486 struct sched_rt_entity *rt_se;
487
8875125e 488 int cpu = cpu_of(rq);
0c3b9168
BS
489
490 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 491
f6121f4f 492 if (rt_rq->rt_nr_running) {
f4ebcbc0
KT
493 if (!rt_se)
494 enqueue_top_rt_rq(rt_rq);
495 else if (!on_rt_rq(rt_se))
37dad3fc 496 enqueue_rt_entity(rt_se, false);
f4ebcbc0 497
e864c499 498 if (rt_rq->highest_prio.curr < curr->prio)
8875125e 499 resched_curr(rq);
6f505b16
PZ
500 }
501}
502
9f0c1e56 503static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 504{
74b7eb58 505 struct sched_rt_entity *rt_se;
0c3b9168 506 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 507
0c3b9168 508 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 509
f4ebcbc0
KT
510 if (!rt_se)
511 dequeue_top_rt_rq(rt_rq);
512 else if (on_rt_rq(rt_se))
6f505b16
PZ
513 dequeue_rt_entity(rt_se);
514}
515
46383648
KT
516static inline int rt_rq_throttled(struct rt_rq *rt_rq)
517{
518 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
519}
520
23b0fdfc
PZ
521static int rt_se_boosted(struct sched_rt_entity *rt_se)
522{
523 struct rt_rq *rt_rq = group_rt_rq(rt_se);
524 struct task_struct *p;
525
526 if (rt_rq)
527 return !!rt_rq->rt_nr_boosted;
528
529 p = rt_task_of(rt_se);
530 return p->prio != p->normal_prio;
531}
532
d0b27fa7 533#ifdef CONFIG_SMP
c6c4927b 534static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 535{
424c93fe 536 return this_rq()->rd->span;
d0b27fa7 537}
6f505b16 538#else
c6c4927b 539static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 540{
c6c4927b 541 return cpu_online_mask;
d0b27fa7
PZ
542}
543#endif
6f505b16 544
d0b27fa7
PZ
545static inline
546struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 547{
d0b27fa7
PZ
548 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
549}
9f0c1e56 550
ac086bc2
PZ
551static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
552{
553 return &rt_rq->tg->rt_bandwidth;
554}
555
55e12e5e 556#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
557
558static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
559{
ac086bc2
PZ
560 return rt_rq->rt_runtime;
561}
562
563static inline u64 sched_rt_period(struct rt_rq *rt_rq)
564{
565 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
566}
567
ec514c48
CX
568typedef struct rt_rq *rt_rq_iter_t;
569
570#define for_each_rt_rq(rt_rq, iter, rq) \
571 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
572
6f505b16
PZ
573#define for_each_sched_rt_entity(rt_se) \
574 for (; rt_se; rt_se = NULL)
575
576static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
577{
578 return NULL;
579}
580
9f0c1e56 581static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 582{
f4ebcbc0
KT
583 struct rq *rq = rq_of_rt_rq(rt_rq);
584
585 if (!rt_rq->rt_nr_running)
586 return;
587
588 enqueue_top_rt_rq(rt_rq);
8875125e 589 resched_curr(rq);
6f505b16
PZ
590}
591
9f0c1e56 592static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 593{
f4ebcbc0 594 dequeue_top_rt_rq(rt_rq);
6f505b16
PZ
595}
596
46383648
KT
597static inline int rt_rq_throttled(struct rt_rq *rt_rq)
598{
599 return rt_rq->rt_throttled;
600}
601
c6c4927b 602static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 603{
c6c4927b 604 return cpu_online_mask;
d0b27fa7
PZ
605}
606
607static inline
608struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
609{
610 return &cpu_rq(cpu)->rt;
611}
612
ac086bc2
PZ
613static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
614{
615 return &def_rt_bandwidth;
616}
617
55e12e5e 618#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 619
faa59937
JL
620bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
621{
622 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
623
624 return (hrtimer_active(&rt_b->rt_period_timer) ||
625 rt_rq->rt_time < rt_b->rt_runtime);
626}
627
ac086bc2 628#ifdef CONFIG_SMP
78333cdd
PZ
629/*
630 * We ran out of runtime, see if we can borrow some from our neighbours.
631 */
b79f3833 632static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
633{
634 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
aa7f6730 635 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
ac086bc2
PZ
636 int i, weight, more = 0;
637 u64 rt_period;
638
c6c4927b 639 weight = cpumask_weight(rd->span);
ac086bc2 640
0986b11b 641 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 642 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 643 for_each_cpu(i, rd->span) {
ac086bc2
PZ
644 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
645 s64 diff;
646
647 if (iter == rt_rq)
648 continue;
649
0986b11b 650 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
651 /*
652 * Either all rqs have inf runtime and there's nothing to steal
653 * or __disable_runtime() below sets a specific rq to inf to
654 * indicate its been disabled and disalow stealing.
655 */
7def2be1
PZ
656 if (iter->rt_runtime == RUNTIME_INF)
657 goto next;
658
78333cdd
PZ
659 /*
660 * From runqueues with spare time, take 1/n part of their
661 * spare time, but no more than our period.
662 */
ac086bc2
PZ
663 diff = iter->rt_runtime - iter->rt_time;
664 if (diff > 0) {
58838cf3 665 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
666 if (rt_rq->rt_runtime + diff > rt_period)
667 diff = rt_period - rt_rq->rt_runtime;
668 iter->rt_runtime -= diff;
669 rt_rq->rt_runtime += diff;
670 more = 1;
671 if (rt_rq->rt_runtime == rt_period) {
0986b11b 672 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
673 break;
674 }
675 }
7def2be1 676next:
0986b11b 677 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 678 }
0986b11b 679 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
680
681 return more;
682}
7def2be1 683
78333cdd
PZ
684/*
685 * Ensure this RQ takes back all the runtime it lend to its neighbours.
686 */
7def2be1
PZ
687static void __disable_runtime(struct rq *rq)
688{
689 struct root_domain *rd = rq->rd;
ec514c48 690 rt_rq_iter_t iter;
7def2be1
PZ
691 struct rt_rq *rt_rq;
692
693 if (unlikely(!scheduler_running))
694 return;
695
ec514c48 696 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
697 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
698 s64 want;
699 int i;
700
0986b11b
TG
701 raw_spin_lock(&rt_b->rt_runtime_lock);
702 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
703 /*
704 * Either we're all inf and nobody needs to borrow, or we're
705 * already disabled and thus have nothing to do, or we have
706 * exactly the right amount of runtime to take out.
707 */
7def2be1
PZ
708 if (rt_rq->rt_runtime == RUNTIME_INF ||
709 rt_rq->rt_runtime == rt_b->rt_runtime)
710 goto balanced;
0986b11b 711 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 712
78333cdd
PZ
713 /*
714 * Calculate the difference between what we started out with
715 * and what we current have, that's the amount of runtime
716 * we lend and now have to reclaim.
717 */
7def2be1
PZ
718 want = rt_b->rt_runtime - rt_rq->rt_runtime;
719
78333cdd
PZ
720 /*
721 * Greedy reclaim, take back as much as we can.
722 */
c6c4927b 723 for_each_cpu(i, rd->span) {
7def2be1
PZ
724 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
725 s64 diff;
726
78333cdd
PZ
727 /*
728 * Can't reclaim from ourselves or disabled runqueues.
729 */
f1679d08 730 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
731 continue;
732
0986b11b 733 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
734 if (want > 0) {
735 diff = min_t(s64, iter->rt_runtime, want);
736 iter->rt_runtime -= diff;
737 want -= diff;
738 } else {
739 iter->rt_runtime -= want;
740 want -= want;
741 }
0986b11b 742 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
743
744 if (!want)
745 break;
746 }
747
0986b11b 748 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
749 /*
750 * We cannot be left wanting - that would mean some runtime
751 * leaked out of the system.
752 */
7def2be1
PZ
753 BUG_ON(want);
754balanced:
78333cdd
PZ
755 /*
756 * Disable all the borrow logic by pretending we have inf
757 * runtime - in which case borrowing doesn't make sense.
758 */
7def2be1 759 rt_rq->rt_runtime = RUNTIME_INF;
a4c96ae3 760 rt_rq->rt_throttled = 0;
0986b11b
TG
761 raw_spin_unlock(&rt_rq->rt_runtime_lock);
762 raw_spin_unlock(&rt_b->rt_runtime_lock);
99b62567
KT
763
764 /* Make rt_rq available for pick_next_task() */
765 sched_rt_rq_enqueue(rt_rq);
7def2be1
PZ
766 }
767}
768
7def2be1
PZ
769static void __enable_runtime(struct rq *rq)
770{
ec514c48 771 rt_rq_iter_t iter;
7def2be1
PZ
772 struct rt_rq *rt_rq;
773
774 if (unlikely(!scheduler_running))
775 return;
776
78333cdd
PZ
777 /*
778 * Reset each runqueue's bandwidth settings
779 */
ec514c48 780 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
781 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
782
0986b11b
TG
783 raw_spin_lock(&rt_b->rt_runtime_lock);
784 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
785 rt_rq->rt_runtime = rt_b->rt_runtime;
786 rt_rq->rt_time = 0;
baf25731 787 rt_rq->rt_throttled = 0;
0986b11b
TG
788 raw_spin_unlock(&rt_rq->rt_runtime_lock);
789 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
790 }
791}
792
eff6549b
PZ
793static int balance_runtime(struct rt_rq *rt_rq)
794{
795 int more = 0;
796
4a6184ce
PZ
797 if (!sched_feat(RT_RUNTIME_SHARE))
798 return more;
799
eff6549b 800 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 801 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 802 more = do_balance_runtime(rt_rq);
0986b11b 803 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
804 }
805
806 return more;
807}
55e12e5e 808#else /* !CONFIG_SMP */
eff6549b
PZ
809static inline int balance_runtime(struct rt_rq *rt_rq)
810{
811 return 0;
812}
55e12e5e 813#endif /* CONFIG_SMP */
ac086bc2 814
eff6549b
PZ
815static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
816{
42c62a58 817 int i, idle = 1, throttled = 0;
c6c4927b 818 const struct cpumask *span;
eff6549b 819
eff6549b 820 span = sched_rt_period_mask();
e221d028
MG
821#ifdef CONFIG_RT_GROUP_SCHED
822 /*
823 * FIXME: isolated CPUs should really leave the root task group,
824 * whether they are isolcpus or were isolated via cpusets, lest
825 * the timer run on a CPU which does not service all runqueues,
826 * potentially leaving other CPUs indefinitely throttled. If
827 * isolation is really required, the user will turn the throttle
828 * off to kill the perturbations it causes anyway. Meanwhile,
829 * this maintains functionality for boot and/or troubleshooting.
830 */
831 if (rt_b == &root_task_group.rt_bandwidth)
832 span = cpu_online_mask;
833#endif
c6c4927b 834 for_each_cpu(i, span) {
eff6549b
PZ
835 int enqueue = 0;
836 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
837 struct rq *rq = rq_of_rt_rq(rt_rq);
838
05fa785c 839 raw_spin_lock(&rq->lock);
eff6549b
PZ
840 if (rt_rq->rt_time) {
841 u64 runtime;
842
0986b11b 843 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
844 if (rt_rq->rt_throttled)
845 balance_runtime(rt_rq);
846 runtime = rt_rq->rt_runtime;
847 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
848 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
849 rt_rq->rt_throttled = 0;
850 enqueue = 1;
61eadef6
MG
851
852 /*
9edfbfed
PZ
853 * When we're idle and a woken (rt) task is
854 * throttled check_preempt_curr() will set
855 * skip_update and the time between the wakeup
856 * and this unthrottle will get accounted as
857 * 'runtime'.
61eadef6
MG
858 */
859 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
9edfbfed 860 rq_clock_skip_update(rq, false);
eff6549b
PZ
861 }
862 if (rt_rq->rt_time || rt_rq->rt_nr_running)
863 idle = 0;
0986b11b 864 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 865 } else if (rt_rq->rt_nr_running) {
6c3df255 866 idle = 0;
0c3b9168
BS
867 if (!rt_rq_throttled(rt_rq))
868 enqueue = 1;
869 }
42c62a58
PZ
870 if (rt_rq->rt_throttled)
871 throttled = 1;
eff6549b
PZ
872
873 if (enqueue)
874 sched_rt_rq_enqueue(rt_rq);
05fa785c 875 raw_spin_unlock(&rq->lock);
eff6549b
PZ
876 }
877
42c62a58
PZ
878 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
879 return 1;
880
eff6549b
PZ
881 return idle;
882}
ac086bc2 883
6f505b16
PZ
884static inline int rt_se_prio(struct sched_rt_entity *rt_se)
885{
052f1dc7 886#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
887 struct rt_rq *rt_rq = group_rt_rq(rt_se);
888
889 if (rt_rq)
e864c499 890 return rt_rq->highest_prio.curr;
6f505b16
PZ
891#endif
892
893 return rt_task_of(rt_se)->prio;
894}
895
9f0c1e56 896static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 897{
9f0c1e56 898 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 899
fa85ae24 900 if (rt_rq->rt_throttled)
23b0fdfc 901 return rt_rq_throttled(rt_rq);
fa85ae24 902
5b680fd6 903 if (runtime >= sched_rt_period(rt_rq))
ac086bc2
PZ
904 return 0;
905
b79f3833
PZ
906 balance_runtime(rt_rq);
907 runtime = sched_rt_runtime(rt_rq);
908 if (runtime == RUNTIME_INF)
909 return 0;
ac086bc2 910
9f0c1e56 911 if (rt_rq->rt_time > runtime) {
7abc63b1
PZ
912 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
913
914 /*
915 * Don't actually throttle groups that have no runtime assigned
916 * but accrue some time due to boosting.
917 */
918 if (likely(rt_b->rt_runtime)) {
919 rt_rq->rt_throttled = 1;
c224815d 920 printk_deferred_once("sched: RT throttling activated\n");
7abc63b1
PZ
921 } else {
922 /*
923 * In case we did anyway, make it go away,
924 * replenishment is a joke, since it will replenish us
925 * with exactly 0 ns.
926 */
927 rt_rq->rt_time = 0;
928 }
929
23b0fdfc 930 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 931 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
932 return 1;
933 }
fa85ae24
PZ
934 }
935
936 return 0;
937}
938
bb44e5d1
IM
939/*
940 * Update the current task's runtime statistics. Skip current tasks that
941 * are not in our scheduling class.
942 */
a9957449 943static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
944{
945 struct task_struct *curr = rq->curr;
6f505b16 946 struct sched_rt_entity *rt_se = &curr->rt;
bb44e5d1
IM
947 u64 delta_exec;
948
06c3bc65 949 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
950 return;
951
78becc27 952 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
fc79e240
KT
953 if (unlikely((s64)delta_exec <= 0))
954 return;
6cfb0d5d 955
42c62a58
PZ
956 schedstat_set(curr->se.statistics.exec_max,
957 max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
958
959 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
960 account_group_exec_runtime(curr, delta_exec);
961
78becc27 962 curr->se.exec_start = rq_clock_task(rq);
d842de87 963 cpuacct_charge(curr, delta_exec);
fa85ae24 964
e9e9250b
PZ
965 sched_rt_avg_update(rq, delta_exec);
966
0b148fa0
PZ
967 if (!rt_bandwidth_enabled())
968 return;
969
354d60c2 970 for_each_sched_rt_entity(rt_se) {
0b07939c 971 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
354d60c2 972
cc2991cf 973 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 974 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
975 rt_rq->rt_time += delta_exec;
976 if (sched_rt_runtime_exceeded(rt_rq))
8875125e 977 resched_curr(rq);
0986b11b 978 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 979 }
354d60c2 980 }
bb44e5d1
IM
981}
982
f4ebcbc0
KT
983static void
984dequeue_top_rt_rq(struct rt_rq *rt_rq)
985{
986 struct rq *rq = rq_of_rt_rq(rt_rq);
987
988 BUG_ON(&rq->rt != rt_rq);
989
990 if (!rt_rq->rt_queued)
991 return;
992
993 BUG_ON(!rq->nr_running);
994
72465447 995 sub_nr_running(rq, rt_rq->rt_nr_running);
f4ebcbc0
KT
996 rt_rq->rt_queued = 0;
997}
998
999static void
1000enqueue_top_rt_rq(struct rt_rq *rt_rq)
1001{
1002 struct rq *rq = rq_of_rt_rq(rt_rq);
1003
1004 BUG_ON(&rq->rt != rt_rq);
1005
1006 if (rt_rq->rt_queued)
1007 return;
1008 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1009 return;
1010
72465447 1011 add_nr_running(rq, rt_rq->rt_nr_running);
f4ebcbc0
KT
1012 rt_rq->rt_queued = 1;
1013}
1014
398a153b 1015#if defined CONFIG_SMP
e864c499 1016
398a153b
GH
1017static void
1018inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 1019{
4d984277 1020 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 1021
757dfcaa
KT
1022#ifdef CONFIG_RT_GROUP_SCHED
1023 /*
1024 * Change rq's cpupri only if rt_rq is the top queue.
1025 */
1026 if (&rq->rt != rt_rq)
1027 return;
1028#endif
5181f4a4
SR
1029 if (rq->online && prio < prev_prio)
1030 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 1031}
73fe6aae 1032
398a153b
GH
1033static void
1034dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1035{
1036 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 1037
757dfcaa
KT
1038#ifdef CONFIG_RT_GROUP_SCHED
1039 /*
1040 * Change rq's cpupri only if rt_rq is the top queue.
1041 */
1042 if (&rq->rt != rt_rq)
1043 return;
1044#endif
398a153b
GH
1045 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1046 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
1047}
1048
398a153b
GH
1049#else /* CONFIG_SMP */
1050
6f505b16 1051static inline
398a153b
GH
1052void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1053static inline
1054void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1055
1056#endif /* CONFIG_SMP */
6e0534f2 1057
052f1dc7 1058#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
1059static void
1060inc_rt_prio(struct rt_rq *rt_rq, int prio)
1061{
1062 int prev_prio = rt_rq->highest_prio.curr;
1063
1064 if (prio < prev_prio)
1065 rt_rq->highest_prio.curr = prio;
1066
1067 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1068}
1069
1070static void
1071dec_rt_prio(struct rt_rq *rt_rq, int prio)
1072{
1073 int prev_prio = rt_rq->highest_prio.curr;
1074
6f505b16 1075 if (rt_rq->rt_nr_running) {
764a9d6f 1076
398a153b 1077 WARN_ON(prio < prev_prio);
764a9d6f 1078
e864c499 1079 /*
398a153b
GH
1080 * This may have been our highest task, and therefore
1081 * we may have some recomputation to do
e864c499 1082 */
398a153b 1083 if (prio == prev_prio) {
e864c499
GH
1084 struct rt_prio_array *array = &rt_rq->active;
1085
1086 rt_rq->highest_prio.curr =
764a9d6f 1087 sched_find_first_bit(array->bitmap);
e864c499
GH
1088 }
1089
764a9d6f 1090 } else
e864c499 1091 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 1092
398a153b
GH
1093 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1094}
1f11eb6a 1095
398a153b
GH
1096#else
1097
1098static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1099static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1100
1101#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 1102
052f1dc7 1103#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
1104
1105static void
1106inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1107{
1108 if (rt_se_boosted(rt_se))
1109 rt_rq->rt_nr_boosted++;
1110
1111 if (rt_rq->tg)
1112 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1113}
1114
1115static void
1116dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1117{
23b0fdfc
PZ
1118 if (rt_se_boosted(rt_se))
1119 rt_rq->rt_nr_boosted--;
1120
1121 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
1122}
1123
1124#else /* CONFIG_RT_GROUP_SCHED */
1125
1126static void
1127inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1128{
1129 start_rt_bandwidth(&def_rt_bandwidth);
1130}
1131
1132static inline
1133void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1134
1135#endif /* CONFIG_RT_GROUP_SCHED */
1136
22abdef3
KT
1137static inline
1138unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1139{
1140 struct rt_rq *group_rq = group_rt_rq(rt_se);
1141
1142 if (group_rq)
1143 return group_rq->rt_nr_running;
1144 else
1145 return 1;
1146}
1147
398a153b
GH
1148static inline
1149void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1150{
1151 int prio = rt_se_prio(rt_se);
1152
1153 WARN_ON(!rt_prio(prio));
22abdef3 1154 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
398a153b
GH
1155
1156 inc_rt_prio(rt_rq, prio);
1157 inc_rt_migration(rt_se, rt_rq);
1158 inc_rt_group(rt_se, rt_rq);
1159}
1160
1161static inline
1162void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1163{
1164 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1165 WARN_ON(!rt_rq->rt_nr_running);
22abdef3 1166 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
398a153b
GH
1167
1168 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1169 dec_rt_migration(rt_se, rt_rq);
1170 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1171}
1172
37dad3fc 1173static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 1174{
6f505b16
PZ
1175 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1176 struct rt_prio_array *array = &rt_rq->active;
1177 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1178 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1179
ad2a3f13
PZ
1180 /*
1181 * Don't enqueue the group if its throttled, or when empty.
1182 * The latter is a consequence of the former when a child group
1183 * get throttled and the current group doesn't have any other
1184 * active members.
1185 */
1186 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 1187 return;
63489e45 1188
37dad3fc
TG
1189 if (head)
1190 list_add(&rt_se->run_list, queue);
1191 else
1192 list_add_tail(&rt_se->run_list, queue);
6f505b16 1193 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 1194
6f505b16
PZ
1195 inc_rt_tasks(rt_se, rt_rq);
1196}
1197
ad2a3f13 1198static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
1199{
1200 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1201 struct rt_prio_array *array = &rt_rq->active;
1202
1203 list_del_init(&rt_se->run_list);
1204 if (list_empty(array->queue + rt_se_prio(rt_se)))
1205 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1206
1207 dec_rt_tasks(rt_se, rt_rq);
1208}
1209
1210/*
1211 * Because the prio of an upper entry depends on the lower
1212 * entries, we must remove entries top - down.
6f505b16 1213 */
ad2a3f13 1214static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 1215{
ad2a3f13 1216 struct sched_rt_entity *back = NULL;
6f505b16 1217
58d6c2d7
PZ
1218 for_each_sched_rt_entity(rt_se) {
1219 rt_se->back = back;
1220 back = rt_se;
1221 }
1222
f4ebcbc0
KT
1223 dequeue_top_rt_rq(rt_rq_of_se(back));
1224
58d6c2d7
PZ
1225 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1226 if (on_rt_rq(rt_se))
ad2a3f13
PZ
1227 __dequeue_rt_entity(rt_se);
1228 }
1229}
1230
37dad3fc 1231static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13 1232{
f4ebcbc0
KT
1233 struct rq *rq = rq_of_rt_se(rt_se);
1234
ad2a3f13
PZ
1235 dequeue_rt_stack(rt_se);
1236 for_each_sched_rt_entity(rt_se)
37dad3fc 1237 __enqueue_rt_entity(rt_se, head);
f4ebcbc0 1238 enqueue_top_rt_rq(&rq->rt);
ad2a3f13
PZ
1239}
1240
1241static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1242{
f4ebcbc0
KT
1243 struct rq *rq = rq_of_rt_se(rt_se);
1244
ad2a3f13
PZ
1245 dequeue_rt_stack(rt_se);
1246
1247 for_each_sched_rt_entity(rt_se) {
1248 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1249
1250 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 1251 __enqueue_rt_entity(rt_se, false);
58d6c2d7 1252 }
f4ebcbc0 1253 enqueue_top_rt_rq(&rq->rt);
bb44e5d1
IM
1254}
1255
1256/*
1257 * Adding/removing a task to/from a priority array:
1258 */
ea87bb78 1259static void
371fd7e7 1260enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1261{
1262 struct sched_rt_entity *rt_se = &p->rt;
1263
371fd7e7 1264 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1265 rt_se->timeout = 0;
1266
371fd7e7 1267 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 1268
29baa747 1269 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
917b627d 1270 enqueue_pushable_task(rq, p);
6f505b16
PZ
1271}
1272
371fd7e7 1273static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1274{
6f505b16 1275 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1276
f1e14ef6 1277 update_curr_rt(rq);
ad2a3f13 1278 dequeue_rt_entity(rt_se);
c09595f6 1279
917b627d 1280 dequeue_pushable_task(rq, p);
bb44e5d1
IM
1281}
1282
1283/*
60686317
RW
1284 * Put task to the head or the end of the run list without the overhead of
1285 * dequeue followed by enqueue.
bb44e5d1 1286 */
7ebefa8c
DA
1287static void
1288requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1289{
1cdad715 1290 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1291 struct rt_prio_array *array = &rt_rq->active;
1292 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1293
1294 if (head)
1295 list_move(&rt_se->run_list, queue);
1296 else
1297 list_move_tail(&rt_se->run_list, queue);
1cdad715 1298 }
6f505b16
PZ
1299}
1300
7ebefa8c 1301static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1302{
6f505b16
PZ
1303 struct sched_rt_entity *rt_se = &p->rt;
1304 struct rt_rq *rt_rq;
bb44e5d1 1305
6f505b16
PZ
1306 for_each_sched_rt_entity(rt_se) {
1307 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1308 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1309 }
bb44e5d1
IM
1310}
1311
6f505b16 1312static void yield_task_rt(struct rq *rq)
bb44e5d1 1313{
7ebefa8c 1314 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1315}
1316
e7693a36 1317#ifdef CONFIG_SMP
318e0893
GH
1318static int find_lowest_rq(struct task_struct *task);
1319
0017d735 1320static int
ac66f547 1321select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
e7693a36 1322{
7608dec2
PZ
1323 struct task_struct *curr;
1324 struct rq *rq;
c37495fd
SR
1325
1326 /* For anything but wake ups, just return the task_cpu */
1327 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1328 goto out;
1329
7608dec2
PZ
1330 rq = cpu_rq(cpu);
1331
1332 rcu_read_lock();
316c1608 1333 curr = READ_ONCE(rq->curr); /* unlocked access */
7608dec2 1334
318e0893 1335 /*
7608dec2 1336 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1337 * try to see if we can wake this RT task up on another
1338 * runqueue. Otherwise simply start this RT task
1339 * on its current runqueue.
1340 *
43fa5460
SR
1341 * We want to avoid overloading runqueues. If the woken
1342 * task is a higher priority, then it will stay on this CPU
1343 * and the lower prio task should be moved to another CPU.
1344 * Even though this will probably make the lower prio task
1345 * lose its cache, we do not want to bounce a higher task
1346 * around just because it gave up its CPU, perhaps for a
1347 * lock?
1348 *
1349 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1350 *
1351 * Otherwise, just let it ride on the affined RQ and the
1352 * post-schedule router will push the preempted task away
1353 *
1354 * This test is optimistic, if we get it wrong the load-balancer
1355 * will have to sort it out.
318e0893 1356 */
7608dec2 1357 if (curr && unlikely(rt_task(curr)) &&
29baa747 1358 (curr->nr_cpus_allowed < 2 ||
6bfa687c 1359 curr->prio <= p->prio)) {
7608dec2 1360 int target = find_lowest_rq(p);
318e0893 1361
80e3d87b
TC
1362 /*
1363 * Don't bother moving it if the destination CPU is
1364 * not running a lower priority task.
1365 */
1366 if (target != -1 &&
1367 p->prio < cpu_rq(target)->rt.highest_prio.curr)
7608dec2 1368 cpu = target;
318e0893 1369 }
7608dec2 1370 rcu_read_unlock();
318e0893 1371
c37495fd 1372out:
7608dec2 1373 return cpu;
e7693a36 1374}
7ebefa8c
DA
1375
1376static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1377{
308a623a
WL
1378 /*
1379 * Current can't be migrated, useless to reschedule,
1380 * let's hope p can move out.
1381 */
1382 if (rq->curr->nr_cpus_allowed == 1 ||
1383 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
7ebefa8c
DA
1384 return;
1385
308a623a
WL
1386 /*
1387 * p is migratable, so let's not schedule it and
1388 * see if it is pushed or pulled somewhere else.
1389 */
29baa747 1390 if (p->nr_cpus_allowed != 1
13b8bd0a
RR
1391 && cpupri_find(&rq->rd->cpupri, p, NULL))
1392 return;
24600ce8 1393
7ebefa8c
DA
1394 /*
1395 * There appears to be other cpus that can accept
1396 * current and none to run 'p', so lets reschedule
1397 * to try and push current away:
1398 */
1399 requeue_task_rt(rq, p, 1);
8875125e 1400 resched_curr(rq);
7ebefa8c
DA
1401}
1402
e7693a36
GH
1403#endif /* CONFIG_SMP */
1404
bb44e5d1
IM
1405/*
1406 * Preempt the current task with a newly woken task if needed:
1407 */
7d478721 1408static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1409{
45c01e82 1410 if (p->prio < rq->curr->prio) {
8875125e 1411 resched_curr(rq);
45c01e82
GH
1412 return;
1413 }
1414
1415#ifdef CONFIG_SMP
1416 /*
1417 * If:
1418 *
1419 * - the newly woken task is of equal priority to the current task
1420 * - the newly woken task is non-migratable while current is migratable
1421 * - current will be preempted on the next reschedule
1422 *
1423 * we should check to see if current can readily move to a different
1424 * cpu. If so, we will reschedule to allow the push logic to try
1425 * to move current somewhere else, making room for our non-migratable
1426 * task.
1427 */
8dd0de8b 1428 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1429 check_preempt_equal_prio(rq, p);
45c01e82 1430#endif
bb44e5d1
IM
1431}
1432
6f505b16
PZ
1433static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1434 struct rt_rq *rt_rq)
bb44e5d1 1435{
6f505b16
PZ
1436 struct rt_prio_array *array = &rt_rq->active;
1437 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1438 struct list_head *queue;
1439 int idx;
1440
1441 idx = sched_find_first_bit(array->bitmap);
6f505b16 1442 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1443
1444 queue = array->queue + idx;
6f505b16 1445 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1446
6f505b16
PZ
1447 return next;
1448}
bb44e5d1 1449
917b627d 1450static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1451{
1452 struct sched_rt_entity *rt_se;
1453 struct task_struct *p;
606dba2e 1454 struct rt_rq *rt_rq = &rq->rt;
6f505b16
PZ
1455
1456 do {
1457 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1458 BUG_ON(!rt_se);
6f505b16
PZ
1459 rt_rq = group_rt_rq(rt_se);
1460 } while (rt_rq);
1461
1462 p = rt_task_of(rt_se);
78becc27 1463 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1464
1465 return p;
1466}
1467
606dba2e
PZ
1468static struct task_struct *
1469pick_next_task_rt(struct rq *rq, struct task_struct *prev)
917b627d 1470{
606dba2e
PZ
1471 struct task_struct *p;
1472 struct rt_rq *rt_rq = &rq->rt;
1473
37e117c0 1474 if (need_pull_rt_task(rq, prev)) {
38033c37 1475 pull_rt_task(rq);
37e117c0
PZ
1476 /*
1477 * pull_rt_task() can drop (and re-acquire) rq->lock; this
a1d9a323
KT
1478 * means a dl or stop task can slip in, in which case we need
1479 * to re-start task selection.
37e117c0 1480 */
da0c1e65 1481 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
a1d9a323 1482 rq->dl.dl_nr_running))
37e117c0
PZ
1483 return RETRY_TASK;
1484 }
38033c37 1485
734ff2a7
KT
1486 /*
1487 * We may dequeue prev's rt_rq in put_prev_task().
1488 * So, we update time before rt_nr_running check.
1489 */
1490 if (prev->sched_class == &rt_sched_class)
1491 update_curr_rt(rq);
1492
f4ebcbc0 1493 if (!rt_rq->rt_queued)
606dba2e
PZ
1494 return NULL;
1495
3f1d2a31 1496 put_prev_task(rq, prev);
606dba2e
PZ
1497
1498 p = _pick_next_task_rt(rq);
917b627d
GH
1499
1500 /* The running task is never eligible for pushing */
f3f1768f 1501 dequeue_pushable_task(rq, p);
917b627d 1502
e3fca9e7 1503 queue_push_tasks(rq);
3f029d3c 1504
6f505b16 1505 return p;
bb44e5d1
IM
1506}
1507
31ee529c 1508static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1509{
f1e14ef6 1510 update_curr_rt(rq);
917b627d
GH
1511
1512 /*
1513 * The previous task needs to be made eligible for pushing
1514 * if it is still active
1515 */
29baa747 1516 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
917b627d 1517 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1518}
1519
681f3e68 1520#ifdef CONFIG_SMP
6f505b16 1521
e8fa1362
SR
1522/* Only try algorithms three times */
1523#define RT_MAX_TRIES 3
1524
f65eda4f
SR
1525static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1526{
1527 if (!task_running(rq, p) &&
60334caf 1528 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
f65eda4f
SR
1529 return 1;
1530 return 0;
1531}
1532
e23ee747
KT
1533/*
1534 * Return the highest pushable rq's task, which is suitable to be executed
1535 * on the cpu, NULL otherwise
1536 */
1537static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
e8fa1362 1538{
e23ee747
KT
1539 struct plist_head *head = &rq->rt.pushable_tasks;
1540 struct task_struct *p;
3d07467b 1541
e23ee747
KT
1542 if (!has_pushable_tasks(rq))
1543 return NULL;
3d07467b 1544
e23ee747
KT
1545 plist_for_each_entry(p, head, pushable_tasks) {
1546 if (pick_rt_task(rq, p, cpu))
1547 return p;
f65eda4f
SR
1548 }
1549
e23ee747 1550 return NULL;
e8fa1362
SR
1551}
1552
0e3900e6 1553static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1554
6e1254d2
GH
1555static int find_lowest_rq(struct task_struct *task)
1556{
1557 struct sched_domain *sd;
4ba29684 1558 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
6e1254d2
GH
1559 int this_cpu = smp_processor_id();
1560 int cpu = task_cpu(task);
06f90dbd 1561
0da938c4
SR
1562 /* Make sure the mask is initialized first */
1563 if (unlikely(!lowest_mask))
1564 return -1;
1565
29baa747 1566 if (task->nr_cpus_allowed == 1)
6e0534f2 1567 return -1; /* No other targets possible */
6e1254d2 1568
6e0534f2
GH
1569 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1570 return -1; /* No targets found */
6e1254d2
GH
1571
1572 /*
1573 * At this point we have built a mask of cpus representing the
1574 * lowest priority tasks in the system. Now we want to elect
1575 * the best one based on our affinity and topology.
1576 *
1577 * We prioritize the last cpu that the task executed on since
1578 * it is most likely cache-hot in that location.
1579 */
96f874e2 1580 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1581 return cpu;
1582
1583 /*
1584 * Otherwise, we consult the sched_domains span maps to figure
1585 * out which cpu is logically closest to our hot cache data.
1586 */
e2c88063
RR
1587 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1588 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1589
cd4ae6ad 1590 rcu_read_lock();
e2c88063
RR
1591 for_each_domain(cpu, sd) {
1592 if (sd->flags & SD_WAKE_AFFINE) {
1593 int best_cpu;
6e1254d2 1594
e2c88063
RR
1595 /*
1596 * "this_cpu" is cheaper to preempt than a
1597 * remote processor.
1598 */
1599 if (this_cpu != -1 &&
cd4ae6ad
XF
1600 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1601 rcu_read_unlock();
e2c88063 1602 return this_cpu;
cd4ae6ad 1603 }
e2c88063
RR
1604
1605 best_cpu = cpumask_first_and(lowest_mask,
1606 sched_domain_span(sd));
cd4ae6ad
XF
1607 if (best_cpu < nr_cpu_ids) {
1608 rcu_read_unlock();
e2c88063 1609 return best_cpu;
cd4ae6ad 1610 }
6e1254d2
GH
1611 }
1612 }
cd4ae6ad 1613 rcu_read_unlock();
6e1254d2
GH
1614
1615 /*
1616 * And finally, if there were no matches within the domains
1617 * just give the caller *something* to work with from the compatible
1618 * locations.
1619 */
e2c88063
RR
1620 if (this_cpu != -1)
1621 return this_cpu;
1622
1623 cpu = cpumask_any(lowest_mask);
1624 if (cpu < nr_cpu_ids)
1625 return cpu;
1626 return -1;
07b4032c
GH
1627}
1628
1629/* Will lock the rq it finds */
4df64c0b 1630static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1631{
1632 struct rq *lowest_rq = NULL;
07b4032c 1633 int tries;
4df64c0b 1634 int cpu;
e8fa1362 1635
07b4032c
GH
1636 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1637 cpu = find_lowest_rq(task);
1638
2de0b463 1639 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1640 break;
1641
07b4032c
GH
1642 lowest_rq = cpu_rq(cpu);
1643
80e3d87b
TC
1644 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1645 /*
1646 * Target rq has tasks of equal or higher priority,
1647 * retrying does not release any lock and is unlikely
1648 * to yield a different result.
1649 */
1650 lowest_rq = NULL;
1651 break;
1652 }
1653
e8fa1362 1654 /* if the prio of this runqueue changed, try again */
07b4032c 1655 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1656 /*
1657 * We had to unlock the run queue. In
1658 * the mean time, task could have
1659 * migrated already or had its affinity changed.
1660 * Also make sure that it wasn't scheduled on its rq.
1661 */
07b4032c 1662 if (unlikely(task_rq(task) != rq ||
96f874e2 1663 !cpumask_test_cpu(lowest_rq->cpu,
fa17b507 1664 tsk_cpus_allowed(task)) ||
07b4032c 1665 task_running(rq, task) ||
da0c1e65 1666 !task_on_rq_queued(task))) {
4df64c0b 1667
7f1b4393 1668 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1669 lowest_rq = NULL;
1670 break;
1671 }
1672 }
1673
1674 /* If this rq is still suitable use it. */
e864c499 1675 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1676 break;
1677
1678 /* try again */
1b12bbc7 1679 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1680 lowest_rq = NULL;
1681 }
1682
1683 return lowest_rq;
1684}
1685
917b627d
GH
1686static struct task_struct *pick_next_pushable_task(struct rq *rq)
1687{
1688 struct task_struct *p;
1689
1690 if (!has_pushable_tasks(rq))
1691 return NULL;
1692
1693 p = plist_first_entry(&rq->rt.pushable_tasks,
1694 struct task_struct, pushable_tasks);
1695
1696 BUG_ON(rq->cpu != task_cpu(p));
1697 BUG_ON(task_current(rq, p));
29baa747 1698 BUG_ON(p->nr_cpus_allowed <= 1);
917b627d 1699
da0c1e65 1700 BUG_ON(!task_on_rq_queued(p));
917b627d
GH
1701 BUG_ON(!rt_task(p));
1702
1703 return p;
1704}
1705
e8fa1362
SR
1706/*
1707 * If the current CPU has more than one RT task, see if the non
1708 * running task can migrate over to a CPU that is running a task
1709 * of lesser priority.
1710 */
697f0a48 1711static int push_rt_task(struct rq *rq)
e8fa1362
SR
1712{
1713 struct task_struct *next_task;
1714 struct rq *lowest_rq;
311e800e 1715 int ret = 0;
e8fa1362 1716
a22d7fc1
GH
1717 if (!rq->rt.overloaded)
1718 return 0;
1719
917b627d 1720 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1721 if (!next_task)
1722 return 0;
1723
49246274 1724retry:
697f0a48 1725 if (unlikely(next_task == rq->curr)) {
f65eda4f 1726 WARN_ON(1);
e8fa1362 1727 return 0;
f65eda4f 1728 }
e8fa1362
SR
1729
1730 /*
1731 * It's possible that the next_task slipped in of
1732 * higher priority than current. If that's the case
1733 * just reschedule current.
1734 */
697f0a48 1735 if (unlikely(next_task->prio < rq->curr->prio)) {
8875125e 1736 resched_curr(rq);
e8fa1362
SR
1737 return 0;
1738 }
1739
697f0a48 1740 /* We might release rq lock */
e8fa1362
SR
1741 get_task_struct(next_task);
1742
1743 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1744 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1745 if (!lowest_rq) {
1746 struct task_struct *task;
1747 /*
311e800e 1748 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1749 * so it is possible that next_task has migrated.
1750 *
1751 * We need to make sure that the task is still on the same
1752 * run-queue and is also still the next task eligible for
1753 * pushing.
e8fa1362 1754 */
917b627d 1755 task = pick_next_pushable_task(rq);
1563513d
GH
1756 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1757 /*
311e800e
HD
1758 * The task hasn't migrated, and is still the next
1759 * eligible task, but we failed to find a run-queue
1760 * to push it to. Do not retry in this case, since
1761 * other cpus will pull from us when ready.
1563513d 1762 */
1563513d 1763 goto out;
e8fa1362 1764 }
917b627d 1765
1563513d
GH
1766 if (!task)
1767 /* No more tasks, just exit */
1768 goto out;
1769
917b627d 1770 /*
1563513d 1771 * Something has shifted, try again.
917b627d 1772 */
1563513d
GH
1773 put_task_struct(next_task);
1774 next_task = task;
1775 goto retry;
e8fa1362
SR
1776 }
1777
697f0a48 1778 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1779 set_task_cpu(next_task, lowest_rq->cpu);
1780 activate_task(lowest_rq, next_task, 0);
311e800e 1781 ret = 1;
e8fa1362 1782
8875125e 1783 resched_curr(lowest_rq);
e8fa1362 1784
1b12bbc7 1785 double_unlock_balance(rq, lowest_rq);
e8fa1362 1786
e8fa1362
SR
1787out:
1788 put_task_struct(next_task);
1789
311e800e 1790 return ret;
e8fa1362
SR
1791}
1792
e8fa1362
SR
1793static void push_rt_tasks(struct rq *rq)
1794{
1795 /* push_rt_task will return true if it moved an RT */
1796 while (push_rt_task(rq))
1797 ;
1798}
1799
b6366f04
SR
1800#ifdef HAVE_RT_PUSH_IPI
1801/*
1802 * The search for the next cpu always starts at rq->cpu and ends
1803 * when we reach rq->cpu again. It will never return rq->cpu.
1804 * This returns the next cpu to check, or nr_cpu_ids if the loop
1805 * is complete.
1806 *
1807 * rq->rt.push_cpu holds the last cpu returned by this function,
1808 * or if this is the first instance, it must hold rq->cpu.
1809 */
1810static int rto_next_cpu(struct rq *rq)
1811{
1812 int prev_cpu = rq->rt.push_cpu;
1813 int cpu;
1814
1815 cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1816
1817 /*
1818 * If the previous cpu is less than the rq's CPU, then it already
1819 * passed the end of the mask, and has started from the beginning.
1820 * We end if the next CPU is greater or equal to rq's CPU.
1821 */
1822 if (prev_cpu < rq->cpu) {
1823 if (cpu >= rq->cpu)
1824 return nr_cpu_ids;
1825
1826 } else if (cpu >= nr_cpu_ids) {
1827 /*
1828 * We passed the end of the mask, start at the beginning.
1829 * If the result is greater or equal to the rq's CPU, then
1830 * the loop is finished.
1831 */
1832 cpu = cpumask_first(rq->rd->rto_mask);
1833 if (cpu >= rq->cpu)
1834 return nr_cpu_ids;
1835 }
1836 rq->rt.push_cpu = cpu;
1837
1838 /* Return cpu to let the caller know if the loop is finished or not */
1839 return cpu;
1840}
1841
1842static int find_next_push_cpu(struct rq *rq)
1843{
1844 struct rq *next_rq;
1845 int cpu;
1846
1847 while (1) {
1848 cpu = rto_next_cpu(rq);
1849 if (cpu >= nr_cpu_ids)
1850 break;
1851 next_rq = cpu_rq(cpu);
1852
1853 /* Make sure the next rq can push to this rq */
1854 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1855 break;
1856 }
1857
1858 return cpu;
1859}
1860
1861#define RT_PUSH_IPI_EXECUTING 1
1862#define RT_PUSH_IPI_RESTART 2
1863
1864static void tell_cpu_to_push(struct rq *rq)
1865{
1866 int cpu;
1867
1868 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1869 raw_spin_lock(&rq->rt.push_lock);
1870 /* Make sure it's still executing */
1871 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1872 /*
1873 * Tell the IPI to restart the loop as things have
1874 * changed since it started.
1875 */
1876 rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1877 raw_spin_unlock(&rq->rt.push_lock);
1878 return;
1879 }
1880 raw_spin_unlock(&rq->rt.push_lock);
1881 }
1882
1883 /* When here, there's no IPI going around */
1884
1885 rq->rt.push_cpu = rq->cpu;
1886 cpu = find_next_push_cpu(rq);
1887 if (cpu >= nr_cpu_ids)
1888 return;
1889
1890 rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1891
1892 irq_work_queue_on(&rq->rt.push_work, cpu);
1893}
1894
1895/* Called from hardirq context */
1896static void try_to_push_tasks(void *arg)
1897{
1898 struct rt_rq *rt_rq = arg;
1899 struct rq *rq, *src_rq;
1900 int this_cpu;
1901 int cpu;
1902
1903 this_cpu = rt_rq->push_cpu;
1904
1905 /* Paranoid check */
1906 BUG_ON(this_cpu != smp_processor_id());
1907
1908 rq = cpu_rq(this_cpu);
1909 src_rq = rq_of_rt_rq(rt_rq);
1910
1911again:
1912 if (has_pushable_tasks(rq)) {
1913 raw_spin_lock(&rq->lock);
1914 push_rt_task(rq);
1915 raw_spin_unlock(&rq->lock);
1916 }
1917
1918 /* Pass the IPI to the next rt overloaded queue */
1919 raw_spin_lock(&rt_rq->push_lock);
1920 /*
1921 * If the source queue changed since the IPI went out,
1922 * we need to restart the search from that CPU again.
1923 */
1924 if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1925 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1926 rt_rq->push_cpu = src_rq->cpu;
1927 }
1928
1929 cpu = find_next_push_cpu(src_rq);
1930
1931 if (cpu >= nr_cpu_ids)
1932 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1933 raw_spin_unlock(&rt_rq->push_lock);
1934
1935 if (cpu >= nr_cpu_ids)
1936 return;
1937
1938 /*
1939 * It is possible that a restart caused this CPU to be
1940 * chosen again. Don't bother with an IPI, just see if we
1941 * have more to push.
1942 */
1943 if (unlikely(cpu == rq->cpu))
1944 goto again;
1945
1946 /* Try the next RT overloaded CPU */
1947 irq_work_queue_on(&rt_rq->push_work, cpu);
1948}
1949
1950static void push_irq_work_func(struct irq_work *work)
1951{
1952 struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
1953
1954 try_to_push_tasks(rt_rq);
1955}
1956#endif /* HAVE_RT_PUSH_IPI */
1957
f65eda4f
SR
1958static int pull_rt_task(struct rq *this_rq)
1959{
80bf3171 1960 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1961 struct task_struct *p;
f65eda4f 1962 struct rq *src_rq;
f65eda4f 1963
637f5085 1964 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1965 return 0;
1966
7c3f2ab7
PZ
1967 /*
1968 * Match the barrier from rt_set_overloaded; this guarantees that if we
1969 * see overloaded we must also see the rto_mask bit.
1970 */
1971 smp_rmb();
1972
b6366f04
SR
1973#ifdef HAVE_RT_PUSH_IPI
1974 if (sched_feat(RT_PUSH_IPI)) {
1975 tell_cpu_to_push(this_rq);
1976 return 0;
1977 }
1978#endif
1979
c6c4927b 1980 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1981 if (this_cpu == cpu)
1982 continue;
1983
1984 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1985
1986 /*
1987 * Don't bother taking the src_rq->lock if the next highest
1988 * task is known to be lower-priority than our current task.
1989 * This may look racy, but if this value is about to go
1990 * logically higher, the src_rq will push this task away.
1991 * And if its going logically lower, we do not care
1992 */
1993 if (src_rq->rt.highest_prio.next >=
1994 this_rq->rt.highest_prio.curr)
1995 continue;
1996
f65eda4f
SR
1997 /*
1998 * We can potentially drop this_rq's lock in
1999 * double_lock_balance, and another CPU could
a8728944 2000 * alter this_rq
f65eda4f 2001 */
a8728944 2002 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
2003
2004 /*
e23ee747
KT
2005 * We can pull only a task, which is pushable
2006 * on its rq, and no others.
f65eda4f 2007 */
e23ee747 2008 p = pick_highest_pushable_task(src_rq, this_cpu);
f65eda4f
SR
2009
2010 /*
2011 * Do we have an RT task that preempts
2012 * the to-be-scheduled task?
2013 */
a8728944 2014 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 2015 WARN_ON(p == src_rq->curr);
da0c1e65 2016 WARN_ON(!task_on_rq_queued(p));
f65eda4f
SR
2017
2018 /*
2019 * There's a chance that p is higher in priority
2020 * than what's currently running on its cpu.
2021 * This is just that p is wakeing up and hasn't
2022 * had a chance to schedule. We only pull
2023 * p if it is lower in priority than the
a8728944 2024 * current task on the run queue
f65eda4f 2025 */
a8728944 2026 if (p->prio < src_rq->curr->prio)
614ee1f6 2027 goto skip;
f65eda4f
SR
2028
2029 ret = 1;
2030
2031 deactivate_task(src_rq, p, 0);
2032 set_task_cpu(p, this_cpu);
2033 activate_task(this_rq, p, 0);
2034 /*
2035 * We continue with the search, just in
2036 * case there's an even higher prio task
25985edc 2037 * in another runqueue. (low likelihood
f65eda4f 2038 * but possible)
f65eda4f 2039 */
f65eda4f 2040 }
49246274 2041skip:
1b12bbc7 2042 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
2043 }
2044
2045 return ret;
2046}
2047
8ae121ac
GH
2048/*
2049 * If we are not running and we are not going to reschedule soon, we should
2050 * try to push tasks away now
2051 */
efbbd05a 2052static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 2053{
9a897c5a 2054 if (!task_running(rq, p) &&
8ae121ac 2055 !test_tsk_need_resched(rq->curr) &&
917b627d 2056 has_pushable_tasks(rq) &&
29baa747 2057 p->nr_cpus_allowed > 1 &&
1baca4ce 2058 (dl_task(rq->curr) || rt_task(rq->curr)) &&
29baa747 2059 (rq->curr->nr_cpus_allowed < 2 ||
3be209a8 2060 rq->curr->prio <= p->prio))
4642dafd
SR
2061 push_rt_tasks(rq);
2062}
2063
cd8ba7cd 2064static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 2065 const struct cpumask *new_mask)
73fe6aae 2066{
8d3d5ada
KT
2067 struct rq *rq;
2068 int weight;
73fe6aae
GH
2069
2070 BUG_ON(!rt_task(p));
2071
da0c1e65 2072 if (!task_on_rq_queued(p))
8d3d5ada 2073 return;
917b627d 2074
8d3d5ada 2075 weight = cpumask_weight(new_mask);
917b627d 2076
8d3d5ada
KT
2077 /*
2078 * Only update if the process changes its state from whether it
2079 * can migrate or not.
2080 */
29baa747 2081 if ((p->nr_cpus_allowed > 1) == (weight > 1))
8d3d5ada 2082 return;
917b627d 2083
8d3d5ada 2084 rq = task_rq(p);
73fe6aae 2085
8d3d5ada
KT
2086 /*
2087 * The process used to be able to migrate OR it can now migrate
2088 */
2089 if (weight <= 1) {
2090 if (!task_current(rq, p))
2091 dequeue_pushable_task(rq, p);
2092 BUG_ON(!rq->rt.rt_nr_migratory);
2093 rq->rt.rt_nr_migratory--;
2094 } else {
2095 if (!task_current(rq, p))
2096 enqueue_pushable_task(rq, p);
2097 rq->rt.rt_nr_migratory++;
73fe6aae 2098 }
8d3d5ada
KT
2099
2100 update_rt_migration(&rq->rt);
73fe6aae 2101}
deeeccd4 2102
bdd7c81b 2103/* Assumes rq->lock is held */
1f11eb6a 2104static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
2105{
2106 if (rq->rt.overloaded)
2107 rt_set_overload(rq);
6e0534f2 2108
7def2be1
PZ
2109 __enable_runtime(rq);
2110
e864c499 2111 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
2112}
2113
2114/* Assumes rq->lock is held */
1f11eb6a 2115static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
2116{
2117 if (rq->rt.overloaded)
2118 rt_clear_overload(rq);
6e0534f2 2119
7def2be1
PZ
2120 __disable_runtime(rq);
2121
6e0534f2 2122 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 2123}
cb469845
SR
2124
2125/*
2126 * When switch from the rt queue, we bring ourselves to a position
2127 * that we might want to pull RT tasks from other runqueues.
2128 */
da7a735e 2129static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
2130{
2131 /*
2132 * If there are other RT tasks then we will reschedule
2133 * and the scheduling of the other RT tasks will handle
2134 * the balancing. But if we are the last RT task
2135 * we may need to handle the pulling of RT tasks
2136 * now.
2137 */
da0c1e65 2138 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
1158ddb5
KT
2139 return;
2140
2141 if (pull_rt_task(rq))
8875125e 2142 resched_curr(rq);
cb469845 2143}
3d8cbdf8 2144
11c785b7 2145void __init init_sched_rt_class(void)
3d8cbdf8
RR
2146{
2147 unsigned int i;
2148
029632fb 2149 for_each_possible_cpu(i) {
eaa95840 2150 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 2151 GFP_KERNEL, cpu_to_node(i));
029632fb 2152 }
3d8cbdf8 2153}
cb469845
SR
2154#endif /* CONFIG_SMP */
2155
2156/*
2157 * When switching a task to RT, we may overload the runqueue
2158 * with RT tasks. In this case we try to push them off to
2159 * other runqueues.
2160 */
da7a735e 2161static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
2162{
2163 int check_resched = 1;
2164
2165 /*
2166 * If we are already running, then there's nothing
2167 * that needs to be done. But if we are not running
2168 * we may need to preempt the current running task.
2169 * If that current running task is also an RT task
2170 * then see if we can move to another run queue.
2171 */
da0c1e65 2172 if (task_on_rq_queued(p) && rq->curr != p) {
cb469845 2173#ifdef CONFIG_SMP
10447917 2174 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
cb469845 2175 /* Don't resched if we changed runqueues */
10447917 2176 push_rt_task(rq) && rq != task_rq(p))
cb469845
SR
2177 check_resched = 0;
2178#endif /* CONFIG_SMP */
2179 if (check_resched && p->prio < rq->curr->prio)
8875125e 2180 resched_curr(rq);
cb469845
SR
2181 }
2182}
2183
2184/*
2185 * Priority of the task has changed. This may cause
2186 * us to initiate a push or pull.
2187 */
da7a735e
PZ
2188static void
2189prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 2190{
da0c1e65 2191 if (!task_on_rq_queued(p))
da7a735e
PZ
2192 return;
2193
2194 if (rq->curr == p) {
cb469845
SR
2195#ifdef CONFIG_SMP
2196 /*
2197 * If our priority decreases while running, we
2198 * may need to pull tasks to this runqueue.
2199 */
2200 if (oldprio < p->prio)
2201 pull_rt_task(rq);
2202 /*
2203 * If there's a higher priority task waiting to run
6fa46fa5
SR
2204 * then reschedule. Note, the above pull_rt_task
2205 * can release the rq lock and p could migrate.
2206 * Only reschedule if p is still on the same runqueue.
cb469845 2207 */
e864c499 2208 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
8875125e 2209 resched_curr(rq);
cb469845
SR
2210#else
2211 /* For UP simply resched on drop of prio */
2212 if (oldprio < p->prio)
8875125e 2213 resched_curr(rq);
e8fa1362 2214#endif /* CONFIG_SMP */
cb469845
SR
2215 } else {
2216 /*
2217 * This task is not running, but if it is
2218 * greater than the current running task
2219 * then reschedule.
2220 */
2221 if (p->prio < rq->curr->prio)
8875125e 2222 resched_curr(rq);
cb469845
SR
2223 }
2224}
2225
78f2c7db
PZ
2226static void watchdog(struct rq *rq, struct task_struct *p)
2227{
2228 unsigned long soft, hard;
2229
78d7d407
JS
2230 /* max may change after cur was read, this will be fixed next tick */
2231 soft = task_rlimit(p, RLIMIT_RTTIME);
2232 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
2233
2234 if (soft != RLIM_INFINITY) {
2235 unsigned long next;
2236
57d2aa00
YX
2237 if (p->rt.watchdog_stamp != jiffies) {
2238 p->rt.timeout++;
2239 p->rt.watchdog_stamp = jiffies;
2240 }
2241
78f2c7db 2242 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 2243 if (p->rt.timeout > next)
f06febc9 2244 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
2245 }
2246}
bb44e5d1 2247
8f4d37ec 2248static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 2249{
454c7999
CC
2250 struct sched_rt_entity *rt_se = &p->rt;
2251
67e2be02
PZ
2252 update_curr_rt(rq);
2253
78f2c7db
PZ
2254 watchdog(rq, p);
2255
bb44e5d1
IM
2256 /*
2257 * RR tasks need a special form of timeslice management.
2258 * FIFO tasks have no timeslices.
2259 */
2260 if (p->policy != SCHED_RR)
2261 return;
2262
fa717060 2263 if (--p->rt.time_slice)
bb44e5d1
IM
2264 return;
2265
ce0dbbbb 2266 p->rt.time_slice = sched_rr_timeslice;
bb44e5d1 2267
98fbc798 2268 /*
e9aa39bb
LB
2269 * Requeue to the end of queue if we (and all of our ancestors) are not
2270 * the only element on the queue
98fbc798 2271 */
454c7999
CC
2272 for_each_sched_rt_entity(rt_se) {
2273 if (rt_se->run_list.prev != rt_se->run_list.next) {
2274 requeue_task_rt(rq, p, 0);
8aa6f0eb 2275 resched_curr(rq);
454c7999
CC
2276 return;
2277 }
98fbc798 2278 }
bb44e5d1
IM
2279}
2280
83b699ed
SV
2281static void set_curr_task_rt(struct rq *rq)
2282{
2283 struct task_struct *p = rq->curr;
2284
78becc27 2285 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
2286
2287 /* The running task is never eligible for pushing */
2288 dequeue_pushable_task(rq, p);
83b699ed
SV
2289}
2290
6d686f45 2291static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
2292{
2293 /*
2294 * Time slice is 0 for SCHED_FIFO tasks
2295 */
2296 if (task->policy == SCHED_RR)
ce0dbbbb 2297 return sched_rr_timeslice;
0d721cea
PW
2298 else
2299 return 0;
2300}
2301
029632fb 2302const struct sched_class rt_sched_class = {
5522d5d5 2303 .next = &fair_sched_class,
bb44e5d1
IM
2304 .enqueue_task = enqueue_task_rt,
2305 .dequeue_task = dequeue_task_rt,
2306 .yield_task = yield_task_rt,
2307
2308 .check_preempt_curr = check_preempt_curr_rt,
2309
2310 .pick_next_task = pick_next_task_rt,
2311 .put_prev_task = put_prev_task_rt,
2312
681f3e68 2313#ifdef CONFIG_SMP
4ce72a2c
LZ
2314 .select_task_rq = select_task_rq_rt,
2315
73fe6aae 2316 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
2317 .rq_online = rq_online_rt,
2318 .rq_offline = rq_offline_rt,
efbbd05a 2319 .task_woken = task_woken_rt,
cb469845 2320 .switched_from = switched_from_rt,
681f3e68 2321#endif
bb44e5d1 2322
83b699ed 2323 .set_curr_task = set_curr_task_rt,
bb44e5d1 2324 .task_tick = task_tick_rt,
cb469845 2325
0d721cea
PW
2326 .get_rr_interval = get_rr_interval_rt,
2327
cb469845
SR
2328 .prio_changed = prio_changed_rt,
2329 .switched_to = switched_to_rt,
6e998916
SG
2330
2331 .update_curr = update_curr_rt,
bb44e5d1 2332};
ada18de2
PZ
2333
2334#ifdef CONFIG_SCHED_DEBUG
2335extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2336
029632fb 2337void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 2338{
ec514c48 2339 rt_rq_iter_t iter;
ada18de2
PZ
2340 struct rt_rq *rt_rq;
2341
2342 rcu_read_lock();
ec514c48 2343 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2344 print_rt_rq(m, cpu, rt_rq);
2345 rcu_read_unlock();
2346}
55e12e5e 2347#endif /* CONFIG_SCHED_DEBUG */
This page took 0.561245 seconds and 5 git commands to generate.