Merge tag 'for-f2fs-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[deliverable/linux.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
3866e845 6#include <linux/binfmts.h>
029632fb
PZ
7#include <linux/mutex.h>
8#include <linux/spinlock.h>
9#include <linux/stop_machine.h>
b6366f04 10#include <linux/irq_work.h>
9f3660c2 11#include <linux/tick.h>
f809ca9a 12#include <linux/slab.h>
029632fb 13
391e43da 14#include "cpupri.h"
6bfd6d72 15#include "cpudeadline.h"
60fed789 16#include "cpuacct.h"
029632fb 17
45ceebf7 18struct rq;
442bf3aa 19struct cpuidle_state;
45ceebf7 20
da0c1e65
KT
21/* task_struct::on_rq states: */
22#define TASK_ON_RQ_QUEUED 1
cca26e80 23#define TASK_ON_RQ_MIGRATING 2
da0c1e65 24
029632fb
PZ
25extern __read_mostly int scheduler_running;
26
45ceebf7
PG
27extern unsigned long calc_load_update;
28extern atomic_long_t calc_load_tasks;
29
3289bdb4 30extern void calc_global_load_tick(struct rq *this_rq);
45ceebf7 31extern long calc_load_fold_active(struct rq *this_rq);
3289bdb4
PZ
32
33#ifdef CONFIG_SMP
45ceebf7 34extern void update_cpu_load_active(struct rq *this_rq);
3289bdb4
PZ
35#else
36static inline void update_cpu_load_active(struct rq *this_rq) { }
37#endif
45ceebf7 38
029632fb
PZ
39/*
40 * Helpers for converting nanosecond timing to jiffy resolution
41 */
42#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
43
cc1f4b1f
LZ
44/*
45 * Increase resolution of nice-level calculations for 64-bit architectures.
46 * The extra resolution improves shares distribution and load balancing of
47 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
48 * hierarchies, especially on larger systems. This is not a user-visible change
49 * and does not change the user-interface for setting shares/weights.
50 *
51 * We increase resolution only if we have enough bits to allow this increased
52 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
53 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
54 * increased costs.
55 */
56#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
57# define SCHED_LOAD_RESOLUTION 10
58# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
59# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
60#else
61# define SCHED_LOAD_RESOLUTION 0
62# define scale_load(w) (w)
63# define scale_load_down(w) (w)
64#endif
65
66#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
67#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
68
029632fb
PZ
69#define NICE_0_LOAD SCHED_LOAD_SCALE
70#define NICE_0_SHIFT SCHED_LOAD_SHIFT
71
332ac17e
DF
72/*
73 * Single value that decides SCHED_DEADLINE internal math precision.
74 * 10 -> just above 1us
75 * 9 -> just above 0.5us
76 */
77#define DL_SCALE (10)
78
029632fb
PZ
79/*
80 * These are the 'tuning knobs' of the scheduler:
029632fb 81 */
029632fb
PZ
82
83/*
84 * single value that denotes runtime == period, ie unlimited time.
85 */
86#define RUNTIME_INF ((u64)~0ULL)
87
20f9cd2a
HA
88static inline int idle_policy(int policy)
89{
90 return policy == SCHED_IDLE;
91}
d50dde5a
DF
92static inline int fair_policy(int policy)
93{
94 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
95}
96
029632fb
PZ
97static inline int rt_policy(int policy)
98{
d50dde5a 99 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
100}
101
aab03e05
DF
102static inline int dl_policy(int policy)
103{
104 return policy == SCHED_DEADLINE;
105}
20f9cd2a
HA
106static inline bool valid_policy(int policy)
107{
108 return idle_policy(policy) || fair_policy(policy) ||
109 rt_policy(policy) || dl_policy(policy);
110}
aab03e05 111
029632fb
PZ
112static inline int task_has_rt_policy(struct task_struct *p)
113{
114 return rt_policy(p->policy);
115}
116
aab03e05
DF
117static inline int task_has_dl_policy(struct task_struct *p)
118{
119 return dl_policy(p->policy);
120}
121
2d3d891d
DF
122/*
123 * Tells if entity @a should preempt entity @b.
124 */
332ac17e
DF
125static inline bool
126dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
127{
128 return dl_time_before(a->deadline, b->deadline);
129}
130
029632fb
PZ
131/*
132 * This is the priority-queue data structure of the RT scheduling class:
133 */
134struct rt_prio_array {
135 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
136 struct list_head queue[MAX_RT_PRIO];
137};
138
139struct rt_bandwidth {
140 /* nests inside the rq lock: */
141 raw_spinlock_t rt_runtime_lock;
142 ktime_t rt_period;
143 u64 rt_runtime;
144 struct hrtimer rt_period_timer;
4cfafd30 145 unsigned int rt_period_active;
029632fb 146};
a5e7be3b
JL
147
148void __dl_clear_params(struct task_struct *p);
149
332ac17e
DF
150/*
151 * To keep the bandwidth of -deadline tasks and groups under control
152 * we need some place where:
153 * - store the maximum -deadline bandwidth of the system (the group);
154 * - cache the fraction of that bandwidth that is currently allocated.
155 *
156 * This is all done in the data structure below. It is similar to the
157 * one used for RT-throttling (rt_bandwidth), with the main difference
158 * that, since here we are only interested in admission control, we
159 * do not decrease any runtime while the group "executes", neither we
160 * need a timer to replenish it.
161 *
162 * With respect to SMP, the bandwidth is given on a per-CPU basis,
163 * meaning that:
164 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
165 * - dl_total_bw array contains, in the i-eth element, the currently
166 * allocated bandwidth on the i-eth CPU.
167 * Moreover, groups consume bandwidth on each CPU, while tasks only
168 * consume bandwidth on the CPU they're running on.
169 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
170 * that will be shown the next time the proc or cgroup controls will
171 * be red. It on its turn can be changed by writing on its own
172 * control.
173 */
174struct dl_bandwidth {
175 raw_spinlock_t dl_runtime_lock;
176 u64 dl_runtime;
177 u64 dl_period;
178};
179
180static inline int dl_bandwidth_enabled(void)
181{
1724813d 182 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
183}
184
185extern struct dl_bw *dl_bw_of(int i);
186
187struct dl_bw {
188 raw_spinlock_t lock;
189 u64 bw, total_bw;
190};
191
7f51412a
JL
192static inline
193void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
194{
195 dl_b->total_bw -= tsk_bw;
196}
197
198static inline
199void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
200{
201 dl_b->total_bw += tsk_bw;
202}
203
204static inline
205bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
206{
207 return dl_b->bw != -1 &&
208 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
209}
210
029632fb
PZ
211extern struct mutex sched_domains_mutex;
212
213#ifdef CONFIG_CGROUP_SCHED
214
215#include <linux/cgroup.h>
216
217struct cfs_rq;
218struct rt_rq;
219
35cf4e50 220extern struct list_head task_groups;
029632fb
PZ
221
222struct cfs_bandwidth {
223#ifdef CONFIG_CFS_BANDWIDTH
224 raw_spinlock_t lock;
225 ktime_t period;
226 u64 quota, runtime;
9c58c79a 227 s64 hierarchical_quota;
029632fb
PZ
228 u64 runtime_expires;
229
4cfafd30 230 int idle, period_active;
029632fb
PZ
231 struct hrtimer period_timer, slack_timer;
232 struct list_head throttled_cfs_rq;
233
234 /* statistics */
235 int nr_periods, nr_throttled;
236 u64 throttled_time;
237#endif
238};
239
240/* task group related information */
241struct task_group {
242 struct cgroup_subsys_state css;
243
244#ifdef CONFIG_FAIR_GROUP_SCHED
245 /* schedulable entities of this group on each cpu */
246 struct sched_entity **se;
247 /* runqueue "owned" by this group on each cpu */
248 struct cfs_rq **cfs_rq;
249 unsigned long shares;
250
fa6bddeb 251#ifdef CONFIG_SMP
b0367629
WL
252 /*
253 * load_avg can be heavily contended at clock tick time, so put
254 * it in its own cacheline separated from the fields above which
255 * will also be accessed at each tick.
256 */
257 atomic_long_t load_avg ____cacheline_aligned;
029632fb 258#endif
fa6bddeb 259#endif
029632fb
PZ
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
265 struct rt_bandwidth rt_bandwidth;
266#endif
267
268 struct rcu_head rcu;
269 struct list_head list;
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
278
279 struct cfs_bandwidth cfs_bandwidth;
280};
281
282#ifdef CONFIG_FAIR_GROUP_SCHED
283#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
284
285/*
286 * A weight of 0 or 1 can cause arithmetics problems.
287 * A weight of a cfs_rq is the sum of weights of which entities
288 * are queued on this cfs_rq, so a weight of a entity should not be
289 * too large, so as the shares value of a task group.
290 * (The default weight is 1024 - so there's no practical
291 * limitation from this.)
292 */
293#define MIN_SHARES (1UL << 1)
294#define MAX_SHARES (1UL << 18)
295#endif
296
029632fb
PZ
297typedef int (*tg_visitor)(struct task_group *, void *);
298
299extern int walk_tg_tree_from(struct task_group *from,
300 tg_visitor down, tg_visitor up, void *data);
301
302/*
303 * Iterate the full tree, calling @down when first entering a node and @up when
304 * leaving it for the final time.
305 *
306 * Caller must hold rcu_lock or sufficient equivalent.
307 */
308static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
309{
310 return walk_tg_tree_from(&root_task_group, down, up, data);
311}
312
313extern int tg_nop(struct task_group *tg, void *data);
314
315extern void free_fair_sched_group(struct task_group *tg);
316extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
6fe1f348 317extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
318extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
319 struct sched_entity *se, int cpu,
320 struct sched_entity *parent);
321extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
322
323extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 324extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
325extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
326
327extern void free_rt_sched_group(struct task_group *tg);
328extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
329extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
330 struct sched_rt_entity *rt_se, int cpu,
331 struct sched_rt_entity *parent);
332
25cc7da7
LZ
333extern struct task_group *sched_create_group(struct task_group *parent);
334extern void sched_online_group(struct task_group *tg,
335 struct task_group *parent);
336extern void sched_destroy_group(struct task_group *tg);
337extern void sched_offline_group(struct task_group *tg);
338
339extern void sched_move_task(struct task_struct *tsk);
340
341#ifdef CONFIG_FAIR_GROUP_SCHED
342extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
343
344#ifdef CONFIG_SMP
345extern void set_task_rq_fair(struct sched_entity *se,
346 struct cfs_rq *prev, struct cfs_rq *next);
347#else /* !CONFIG_SMP */
348static inline void set_task_rq_fair(struct sched_entity *se,
349 struct cfs_rq *prev, struct cfs_rq *next) { }
350#endif /* CONFIG_SMP */
351#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 352
029632fb
PZ
353#else /* CONFIG_CGROUP_SCHED */
354
355struct cfs_bandwidth { };
356
357#endif /* CONFIG_CGROUP_SCHED */
358
359/* CFS-related fields in a runqueue */
360struct cfs_rq {
361 struct load_weight load;
c82513e5 362 unsigned int nr_running, h_nr_running;
029632fb
PZ
363
364 u64 exec_clock;
365 u64 min_vruntime;
366#ifndef CONFIG_64BIT
367 u64 min_vruntime_copy;
368#endif
369
370 struct rb_root tasks_timeline;
371 struct rb_node *rb_leftmost;
372
029632fb
PZ
373 /*
374 * 'curr' points to currently running entity on this cfs_rq.
375 * It is set to NULL otherwise (i.e when none are currently running).
376 */
377 struct sched_entity *curr, *next, *last, *skip;
378
379#ifdef CONFIG_SCHED_DEBUG
380 unsigned int nr_spread_over;
381#endif
382
2dac754e
PT
383#ifdef CONFIG_SMP
384 /*
9d89c257 385 * CFS load tracking
2dac754e 386 */
9d89c257 387 struct sched_avg avg;
13962234
YD
388 u64 runnable_load_sum;
389 unsigned long runnable_load_avg;
c566e8e9 390#ifdef CONFIG_FAIR_GROUP_SCHED
9d89c257
YD
391 unsigned long tg_load_avg_contrib;
392#endif
393 atomic_long_t removed_load_avg, removed_util_avg;
394#ifndef CONFIG_64BIT
395 u64 load_last_update_time_copy;
396#endif
82958366 397
9d89c257 398#ifdef CONFIG_FAIR_GROUP_SCHED
82958366
PT
399 /*
400 * h_load = weight * f(tg)
401 *
402 * Where f(tg) is the recursive weight fraction assigned to
403 * this group.
404 */
405 unsigned long h_load;
68520796
VD
406 u64 last_h_load_update;
407 struct sched_entity *h_load_next;
408#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
409#endif /* CONFIG_SMP */
410
029632fb
PZ
411#ifdef CONFIG_FAIR_GROUP_SCHED
412 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
413
414 /*
415 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
416 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
417 * (like users, containers etc.)
418 *
419 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
420 * list is used during load balance.
421 */
422 int on_list;
423 struct list_head leaf_cfs_rq_list;
424 struct task_group *tg; /* group that "owns" this runqueue */
425
029632fb
PZ
426#ifdef CONFIG_CFS_BANDWIDTH
427 int runtime_enabled;
428 u64 runtime_expires;
429 s64 runtime_remaining;
430
f1b17280
PT
431 u64 throttled_clock, throttled_clock_task;
432 u64 throttled_clock_task_time;
029632fb
PZ
433 int throttled, throttle_count;
434 struct list_head throttled_list;
435#endif /* CONFIG_CFS_BANDWIDTH */
436#endif /* CONFIG_FAIR_GROUP_SCHED */
437};
438
439static inline int rt_bandwidth_enabled(void)
440{
441 return sysctl_sched_rt_runtime >= 0;
442}
443
b6366f04
SR
444/* RT IPI pull logic requires IRQ_WORK */
445#ifdef CONFIG_IRQ_WORK
446# define HAVE_RT_PUSH_IPI
447#endif
448
029632fb
PZ
449/* Real-Time classes' related field in a runqueue: */
450struct rt_rq {
451 struct rt_prio_array active;
c82513e5 452 unsigned int rt_nr_running;
01d36d0a 453 unsigned int rr_nr_running;
029632fb
PZ
454#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
455 struct {
456 int curr; /* highest queued rt task prio */
457#ifdef CONFIG_SMP
458 int next; /* next highest */
459#endif
460 } highest_prio;
461#endif
462#ifdef CONFIG_SMP
463 unsigned long rt_nr_migratory;
464 unsigned long rt_nr_total;
465 int overloaded;
466 struct plist_head pushable_tasks;
b6366f04
SR
467#ifdef HAVE_RT_PUSH_IPI
468 int push_flags;
469 int push_cpu;
470 struct irq_work push_work;
471 raw_spinlock_t push_lock;
029632fb 472#endif
b6366f04 473#endif /* CONFIG_SMP */
f4ebcbc0
KT
474 int rt_queued;
475
029632fb
PZ
476 int rt_throttled;
477 u64 rt_time;
478 u64 rt_runtime;
479 /* Nests inside the rq lock: */
480 raw_spinlock_t rt_runtime_lock;
481
482#ifdef CONFIG_RT_GROUP_SCHED
483 unsigned long rt_nr_boosted;
484
485 struct rq *rq;
029632fb
PZ
486 struct task_group *tg;
487#endif
488};
489
aab03e05
DF
490/* Deadline class' related fields in a runqueue */
491struct dl_rq {
492 /* runqueue is an rbtree, ordered by deadline */
493 struct rb_root rb_root;
494 struct rb_node *rb_leftmost;
495
496 unsigned long dl_nr_running;
1baca4ce
JL
497
498#ifdef CONFIG_SMP
499 /*
500 * Deadline values of the currently executing and the
501 * earliest ready task on this rq. Caching these facilitates
502 * the decision wether or not a ready but not running task
503 * should migrate somewhere else.
504 */
505 struct {
506 u64 curr;
507 u64 next;
508 } earliest_dl;
509
510 unsigned long dl_nr_migratory;
1baca4ce
JL
511 int overloaded;
512
513 /*
514 * Tasks on this rq that can be pushed away. They are kept in
515 * an rb-tree, ordered by tasks' deadlines, with caching
516 * of the leftmost (earliest deadline) element.
517 */
518 struct rb_root pushable_dl_tasks_root;
519 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
520#else
521 struct dl_bw dl_bw;
1baca4ce 522#endif
aab03e05
DF
523};
524
029632fb
PZ
525#ifdef CONFIG_SMP
526
527/*
528 * We add the notion of a root-domain which will be used to define per-domain
529 * variables. Each exclusive cpuset essentially defines an island domain by
530 * fully partitioning the member cpus from any other cpuset. Whenever a new
531 * exclusive cpuset is created, we also create and attach a new root-domain
532 * object.
533 *
534 */
535struct root_domain {
536 atomic_t refcount;
537 atomic_t rto_count;
538 struct rcu_head rcu;
539 cpumask_var_t span;
540 cpumask_var_t online;
541
4486edd1
TC
542 /* Indicate more than one runnable task for any CPU */
543 bool overload;
544
1baca4ce
JL
545 /*
546 * The bit corresponding to a CPU gets set here if such CPU has more
547 * than one runnable -deadline task (as it is below for RT tasks).
548 */
549 cpumask_var_t dlo_mask;
550 atomic_t dlo_count;
332ac17e 551 struct dl_bw dl_bw;
6bfd6d72 552 struct cpudl cpudl;
1baca4ce 553
029632fb
PZ
554 /*
555 * The "RT overload" flag: it gets set if a CPU has more than
556 * one runnable RT task.
557 */
558 cpumask_var_t rto_mask;
559 struct cpupri cpupri;
560};
561
562extern struct root_domain def_root_domain;
563
564#endif /* CONFIG_SMP */
565
566/*
567 * This is the main, per-CPU runqueue data structure.
568 *
569 * Locking rule: those places that want to lock multiple runqueues
570 * (such as the load balancing or the thread migration code), lock
571 * acquire operations must be ordered by ascending &runqueue.
572 */
573struct rq {
574 /* runqueue lock: */
575 raw_spinlock_t lock;
576
577 /*
578 * nr_running and cpu_load should be in the same cacheline because
579 * remote CPUs use both these fields when doing load calculation.
580 */
c82513e5 581 unsigned int nr_running;
0ec8aa00
PZ
582#ifdef CONFIG_NUMA_BALANCING
583 unsigned int nr_numa_running;
584 unsigned int nr_preferred_running;
585#endif
029632fb
PZ
586 #define CPU_LOAD_IDX_MAX 5
587 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
588 unsigned long last_load_update_tick;
3451d024 589#ifdef CONFIG_NO_HZ_COMMON
029632fb 590 u64 nohz_stamp;
1c792db7 591 unsigned long nohz_flags;
265f22a9
FW
592#endif
593#ifdef CONFIG_NO_HZ_FULL
594 unsigned long last_sched_tick;
029632fb 595#endif
029632fb
PZ
596 /* capture load from *all* tasks on this cpu: */
597 struct load_weight load;
598 unsigned long nr_load_updates;
599 u64 nr_switches;
600
601 struct cfs_rq cfs;
602 struct rt_rq rt;
aab03e05 603 struct dl_rq dl;
029632fb
PZ
604
605#ifdef CONFIG_FAIR_GROUP_SCHED
606 /* list of leaf cfs_rq on this cpu: */
607 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
608#endif /* CONFIG_FAIR_GROUP_SCHED */
609
029632fb
PZ
610 /*
611 * This is part of a global counter where only the total sum
612 * over all CPUs matters. A task can increase this counter on
613 * one CPU and if it got migrated afterwards it may decrease
614 * it on another CPU. Always updated under the runqueue lock:
615 */
616 unsigned long nr_uninterruptible;
617
618 struct task_struct *curr, *idle, *stop;
619 unsigned long next_balance;
620 struct mm_struct *prev_mm;
621
9edfbfed 622 unsigned int clock_skip_update;
029632fb
PZ
623 u64 clock;
624 u64 clock_task;
625
626 atomic_t nr_iowait;
627
628#ifdef CONFIG_SMP
629 struct root_domain *rd;
630 struct sched_domain *sd;
631
ced549fa 632 unsigned long cpu_capacity;
ca6d75e6 633 unsigned long cpu_capacity_orig;
029632fb 634
e3fca9e7
PZ
635 struct callback_head *balance_callback;
636
029632fb
PZ
637 unsigned char idle_balance;
638 /* For active balancing */
029632fb
PZ
639 int active_balance;
640 int push_cpu;
641 struct cpu_stop_work active_balance_work;
642 /* cpu of this runqueue: */
643 int cpu;
644 int online;
645
367456c7
PZ
646 struct list_head cfs_tasks;
647
029632fb
PZ
648 u64 rt_avg;
649 u64 age_stamp;
650 u64 idle_stamp;
651 u64 avg_idle;
9bd721c5
JL
652
653 /* This is used to determine avg_idle's max value */
654 u64 max_idle_balance_cost;
029632fb
PZ
655#endif
656
657#ifdef CONFIG_IRQ_TIME_ACCOUNTING
658 u64 prev_irq_time;
659#endif
660#ifdef CONFIG_PARAVIRT
661 u64 prev_steal_time;
662#endif
663#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
664 u64 prev_steal_time_rq;
665#endif
666
667 /* calc_load related fields */
668 unsigned long calc_load_update;
669 long calc_load_active;
670
671#ifdef CONFIG_SCHED_HRTICK
672#ifdef CONFIG_SMP
673 int hrtick_csd_pending;
674 struct call_single_data hrtick_csd;
675#endif
676 struct hrtimer hrtick_timer;
677#endif
678
679#ifdef CONFIG_SCHEDSTATS
680 /* latency stats */
681 struct sched_info rq_sched_info;
682 unsigned long long rq_cpu_time;
683 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
684
685 /* sys_sched_yield() stats */
686 unsigned int yld_count;
687
688 /* schedule() stats */
029632fb
PZ
689 unsigned int sched_count;
690 unsigned int sched_goidle;
691
692 /* try_to_wake_up() stats */
693 unsigned int ttwu_count;
694 unsigned int ttwu_local;
695#endif
696
697#ifdef CONFIG_SMP
698 struct llist_head wake_list;
699#endif
442bf3aa
DL
700
701#ifdef CONFIG_CPU_IDLE
702 /* Must be inspected within a rcu lock section */
703 struct cpuidle_state *idle_state;
704#endif
029632fb
PZ
705};
706
707static inline int cpu_of(struct rq *rq)
708{
709#ifdef CONFIG_SMP
710 return rq->cpu;
711#else
712 return 0;
713#endif
714}
715
8b06c55b 716DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 717
518cd623 718#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 719#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
720#define task_rq(p) cpu_rq(task_cpu(p))
721#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 722#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 723
cebde6d6
PZ
724static inline u64 __rq_clock_broken(struct rq *rq)
725{
316c1608 726 return READ_ONCE(rq->clock);
cebde6d6
PZ
727}
728
78becc27
FW
729static inline u64 rq_clock(struct rq *rq)
730{
cebde6d6 731 lockdep_assert_held(&rq->lock);
78becc27
FW
732 return rq->clock;
733}
734
735static inline u64 rq_clock_task(struct rq *rq)
736{
cebde6d6 737 lockdep_assert_held(&rq->lock);
78becc27
FW
738 return rq->clock_task;
739}
740
9edfbfed
PZ
741#define RQCF_REQ_SKIP 0x01
742#define RQCF_ACT_SKIP 0x02
743
744static inline void rq_clock_skip_update(struct rq *rq, bool skip)
745{
746 lockdep_assert_held(&rq->lock);
747 if (skip)
748 rq->clock_skip_update |= RQCF_REQ_SKIP;
749 else
750 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
751}
752
9942f79b 753#ifdef CONFIG_NUMA
e3fe70b1
RR
754enum numa_topology_type {
755 NUMA_DIRECT,
756 NUMA_GLUELESS_MESH,
757 NUMA_BACKPLANE,
758};
759extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
760extern int sched_max_numa_distance;
761extern bool find_numa_distance(int distance);
762#endif
763
f809ca9a 764#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
765/* The regions in numa_faults array from task_struct */
766enum numa_faults_stats {
767 NUMA_MEM = 0,
768 NUMA_CPU,
769 NUMA_MEMBUF,
770 NUMA_CPUBUF
771};
0ec8aa00 772extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 773extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 774extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
775#endif /* CONFIG_NUMA_BALANCING */
776
518cd623
PZ
777#ifdef CONFIG_SMP
778
e3fca9e7
PZ
779static inline void
780queue_balance_callback(struct rq *rq,
781 struct callback_head *head,
782 void (*func)(struct rq *rq))
783{
784 lockdep_assert_held(&rq->lock);
785
786 if (unlikely(head->next))
787 return;
788
789 head->func = (void (*)(struct callback_head *))func;
790 head->next = rq->balance_callback;
791 rq->balance_callback = head;
792}
793
e3baac47
PZ
794extern void sched_ttwu_pending(void);
795
029632fb
PZ
796#define rcu_dereference_check_sched_domain(p) \
797 rcu_dereference_check((p), \
798 lockdep_is_held(&sched_domains_mutex))
799
800/*
801 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
802 * See detach_destroy_domains: synchronize_sched for details.
803 *
804 * The domain tree of any CPU may only be accessed from within
805 * preempt-disabled sections.
806 */
807#define for_each_domain(cpu, __sd) \
518cd623
PZ
808 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
809 __sd; __sd = __sd->parent)
029632fb 810
77e81365
SS
811#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
812
518cd623
PZ
813/**
814 * highest_flag_domain - Return highest sched_domain containing flag.
815 * @cpu: The cpu whose highest level of sched domain is to
816 * be returned.
817 * @flag: The flag to check for the highest sched_domain
818 * for the given cpu.
819 *
820 * Returns the highest sched_domain of a cpu which contains the given flag.
821 */
822static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
823{
824 struct sched_domain *sd, *hsd = NULL;
825
826 for_each_domain(cpu, sd) {
827 if (!(sd->flags & flag))
828 break;
829 hsd = sd;
830 }
831
832 return hsd;
833}
834
fb13c7ee
MG
835static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
836{
837 struct sched_domain *sd;
838
839 for_each_domain(cpu, sd) {
840 if (sd->flags & flag)
841 break;
842 }
843
844 return sd;
845}
846
518cd623 847DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 848DECLARE_PER_CPU(int, sd_llc_size);
518cd623 849DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 850DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
851DECLARE_PER_CPU(struct sched_domain *, sd_busy);
852DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 853
63b2ca30 854struct sched_group_capacity {
5e6521ea
LZ
855 atomic_t ref;
856 /*
63b2ca30
NP
857 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
858 * for a single CPU.
5e6521ea 859 */
dc7ff76e 860 unsigned int capacity;
5e6521ea 861 unsigned long next_update;
63b2ca30 862 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
863 /*
864 * Number of busy cpus in this group.
865 */
866 atomic_t nr_busy_cpus;
867
868 unsigned long cpumask[0]; /* iteration mask */
869};
870
871struct sched_group {
872 struct sched_group *next; /* Must be a circular list */
873 atomic_t ref;
874
875 unsigned int group_weight;
63b2ca30 876 struct sched_group_capacity *sgc;
5e6521ea
LZ
877
878 /*
879 * The CPUs this group covers.
880 *
881 * NOTE: this field is variable length. (Allocated dynamically
882 * by attaching extra space to the end of the structure,
883 * depending on how many CPUs the kernel has booted up with)
884 */
885 unsigned long cpumask[0];
886};
887
888static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
889{
890 return to_cpumask(sg->cpumask);
891}
892
893/*
894 * cpumask masking which cpus in the group are allowed to iterate up the domain
895 * tree.
896 */
897static inline struct cpumask *sched_group_mask(struct sched_group *sg)
898{
63b2ca30 899 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
900}
901
902/**
903 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
904 * @group: The group whose first cpu is to be returned.
905 */
906static inline unsigned int group_first_cpu(struct sched_group *group)
907{
908 return cpumask_first(sched_group_cpus(group));
909}
910
c1174876
PZ
911extern int group_balance_cpu(struct sched_group *sg);
912
3866e845
SRRH
913#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
914void register_sched_domain_sysctl(void);
915void unregister_sched_domain_sysctl(void);
916#else
917static inline void register_sched_domain_sysctl(void)
918{
919}
920static inline void unregister_sched_domain_sysctl(void)
921{
922}
923#endif
924
e3baac47
PZ
925#else
926
927static inline void sched_ttwu_pending(void) { }
928
518cd623 929#endif /* CONFIG_SMP */
029632fb 930
391e43da
PZ
931#include "stats.h"
932#include "auto_group.h"
029632fb
PZ
933
934#ifdef CONFIG_CGROUP_SCHED
935
936/*
937 * Return the group to which this tasks belongs.
938 *
8af01f56
TH
939 * We cannot use task_css() and friends because the cgroup subsystem
940 * changes that value before the cgroup_subsys::attach() method is called,
941 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
942 *
943 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
944 * core changes this before calling sched_move_task().
945 *
946 * Instead we use a 'copy' which is updated from sched_move_task() while
947 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
948 */
949static inline struct task_group *task_group(struct task_struct *p)
950{
8323f26c 951 return p->sched_task_group;
029632fb
PZ
952}
953
954/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
955static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
956{
957#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
958 struct task_group *tg = task_group(p);
959#endif
960
961#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 962 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
963 p->se.cfs_rq = tg->cfs_rq[cpu];
964 p->se.parent = tg->se[cpu];
965#endif
966
967#ifdef CONFIG_RT_GROUP_SCHED
968 p->rt.rt_rq = tg->rt_rq[cpu];
969 p->rt.parent = tg->rt_se[cpu];
970#endif
971}
972
973#else /* CONFIG_CGROUP_SCHED */
974
975static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
976static inline struct task_group *task_group(struct task_struct *p)
977{
978 return NULL;
979}
980
981#endif /* CONFIG_CGROUP_SCHED */
982
983static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
984{
985 set_task_rq(p, cpu);
986#ifdef CONFIG_SMP
987 /*
988 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
989 * successfuly executed on another CPU. We must ensure that updates of
990 * per-task data have been completed by this moment.
991 */
992 smp_wmb();
993 task_thread_info(p)->cpu = cpu;
ac66f547 994 p->wake_cpu = cpu;
029632fb
PZ
995#endif
996}
997
998/*
999 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1000 */
1001#ifdef CONFIG_SCHED_DEBUG
c5905afb 1002# include <linux/static_key.h>
029632fb
PZ
1003# define const_debug __read_mostly
1004#else
1005# define const_debug const
1006#endif
1007
1008extern const_debug unsigned int sysctl_sched_features;
1009
1010#define SCHED_FEAT(name, enabled) \
1011 __SCHED_FEAT_##name ,
1012
1013enum {
391e43da 1014#include "features.h"
f8b6d1cc 1015 __SCHED_FEAT_NR,
029632fb
PZ
1016};
1017
1018#undef SCHED_FEAT
1019
f8b6d1cc 1020#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 1021#define SCHED_FEAT(name, enabled) \
c5905afb 1022static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1023{ \
6e76ea8a 1024 return static_key_##enabled(key); \
f8b6d1cc
PZ
1025}
1026
1027#include "features.h"
1028
1029#undef SCHED_FEAT
1030
c5905afb 1031extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
1032#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1033#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 1034#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 1035#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1036
2a595721 1037extern struct static_key_false sched_numa_balancing;
cb251765 1038extern struct static_key_false sched_schedstats;
cbee9f88 1039
029632fb
PZ
1040static inline u64 global_rt_period(void)
1041{
1042 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1043}
1044
1045static inline u64 global_rt_runtime(void)
1046{
1047 if (sysctl_sched_rt_runtime < 0)
1048 return RUNTIME_INF;
1049
1050 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1051}
1052
029632fb
PZ
1053static inline int task_current(struct rq *rq, struct task_struct *p)
1054{
1055 return rq->curr == p;
1056}
1057
1058static inline int task_running(struct rq *rq, struct task_struct *p)
1059{
1060#ifdef CONFIG_SMP
1061 return p->on_cpu;
1062#else
1063 return task_current(rq, p);
1064#endif
1065}
1066
da0c1e65
KT
1067static inline int task_on_rq_queued(struct task_struct *p)
1068{
1069 return p->on_rq == TASK_ON_RQ_QUEUED;
1070}
029632fb 1071
cca26e80
KT
1072static inline int task_on_rq_migrating(struct task_struct *p)
1073{
1074 return p->on_rq == TASK_ON_RQ_MIGRATING;
1075}
1076
029632fb
PZ
1077#ifndef prepare_arch_switch
1078# define prepare_arch_switch(next) do { } while (0)
1079#endif
01f23e16
CM
1080#ifndef finish_arch_post_lock_switch
1081# define finish_arch_post_lock_switch() do { } while (0)
1082#endif
029632fb 1083
029632fb
PZ
1084static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1085{
1086#ifdef CONFIG_SMP
1087 /*
1088 * We can optimise this out completely for !SMP, because the
1089 * SMP rebalancing from interrupt is the only thing that cares
1090 * here.
1091 */
1092 next->on_cpu = 1;
1093#endif
1094}
1095
1096static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1097{
1098#ifdef CONFIG_SMP
1099 /*
1100 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1101 * We must ensure this doesn't happen until the switch is completely
1102 * finished.
95913d97 1103 *
b75a2253
PZ
1104 * In particular, the load of prev->state in finish_task_switch() must
1105 * happen before this.
1106 *
b3e0b1b6 1107 * Pairs with the smp_cond_acquire() in try_to_wake_up().
029632fb 1108 */
95913d97 1109 smp_store_release(&prev->on_cpu, 0);
029632fb
PZ
1110#endif
1111#ifdef CONFIG_DEBUG_SPINLOCK
1112 /* this is a valid case when another task releases the spinlock */
1113 rq->lock.owner = current;
1114#endif
1115 /*
1116 * If we are tracking spinlock dependencies then we have to
1117 * fix up the runqueue lock - which gets 'carried over' from
1118 * prev into current:
1119 */
1120 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1121
1122 raw_spin_unlock_irq(&rq->lock);
1123}
1124
b13095f0
LZ
1125/*
1126 * wake flags
1127 */
1128#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1129#define WF_FORK 0x02 /* child wakeup after fork */
1130#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1131
029632fb
PZ
1132/*
1133 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1134 * of tasks with abnormal "nice" values across CPUs the contribution that
1135 * each task makes to its run queue's load is weighted according to its
1136 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1137 * scaled version of the new time slice allocation that they receive on time
1138 * slice expiry etc.
1139 */
1140
1141#define WEIGHT_IDLEPRIO 3
1142#define WMULT_IDLEPRIO 1431655765
1143
ed82b8a1
AK
1144extern const int sched_prio_to_weight[40];
1145extern const u32 sched_prio_to_wmult[40];
029632fb 1146
ff77e468
PZ
1147/*
1148 * {de,en}queue flags:
1149 *
1150 * DEQUEUE_SLEEP - task is no longer runnable
1151 * ENQUEUE_WAKEUP - task just became runnable
1152 *
1153 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1154 * are in a known state which allows modification. Such pairs
1155 * should preserve as much state as possible.
1156 *
1157 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1158 * in the runqueue.
1159 *
1160 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1161 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1162 * ENQUEUE_WAKING - sched_class::task_waking was called
1163 *
1164 */
1165
1166#define DEQUEUE_SLEEP 0x01
1167#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1168#define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1169
1de64443 1170#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1171#define ENQUEUE_RESTORE 0x02
1172#define ENQUEUE_MOVE 0x04
1173
1174#define ENQUEUE_HEAD 0x08
1175#define ENQUEUE_REPLENISH 0x10
c82ba9fa 1176#ifdef CONFIG_SMP
ff77e468 1177#define ENQUEUE_WAKING 0x20
c82ba9fa 1178#else
1de64443 1179#define ENQUEUE_WAKING 0x00
c82ba9fa 1180#endif
c82ba9fa 1181
37e117c0
PZ
1182#define RETRY_TASK ((void *)-1UL)
1183
c82ba9fa
LZ
1184struct sched_class {
1185 const struct sched_class *next;
1186
1187 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1188 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1189 void (*yield_task) (struct rq *rq);
1190 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1191
1192 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1193
606dba2e
PZ
1194 /*
1195 * It is the responsibility of the pick_next_task() method that will
1196 * return the next task to call put_prev_task() on the @prev task or
1197 * something equivalent.
37e117c0
PZ
1198 *
1199 * May return RETRY_TASK when it finds a higher prio class has runnable
1200 * tasks.
606dba2e
PZ
1201 */
1202 struct task_struct * (*pick_next_task) (struct rq *rq,
1203 struct task_struct *prev);
c82ba9fa
LZ
1204 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1205
1206#ifdef CONFIG_SMP
ac66f547 1207 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
5a4fd036 1208 void (*migrate_task_rq)(struct task_struct *p);
c82ba9fa 1209
c82ba9fa
LZ
1210 void (*task_waking) (struct task_struct *task);
1211 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1212
1213 void (*set_cpus_allowed)(struct task_struct *p,
1214 const struct cpumask *newmask);
1215
1216 void (*rq_online)(struct rq *rq);
1217 void (*rq_offline)(struct rq *rq);
1218#endif
1219
1220 void (*set_curr_task) (struct rq *rq);
1221 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1222 void (*task_fork) (struct task_struct *p);
e6c390f2 1223 void (*task_dead) (struct task_struct *p);
c82ba9fa 1224
67dfa1b7
KT
1225 /*
1226 * The switched_from() call is allowed to drop rq->lock, therefore we
1227 * cannot assume the switched_from/switched_to pair is serliazed by
1228 * rq->lock. They are however serialized by p->pi_lock.
1229 */
c82ba9fa
LZ
1230 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1231 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1232 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1233 int oldprio);
1234
1235 unsigned int (*get_rr_interval) (struct rq *rq,
1236 struct task_struct *task);
1237
6e998916
SG
1238 void (*update_curr) (struct rq *rq);
1239
c82ba9fa 1240#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 1241 void (*task_move_group) (struct task_struct *p);
c82ba9fa
LZ
1242#endif
1243};
029632fb 1244
3f1d2a31
PZ
1245static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1246{
1247 prev->sched_class->put_prev_task(rq, prev);
1248}
1249
029632fb
PZ
1250#define sched_class_highest (&stop_sched_class)
1251#define for_each_class(class) \
1252 for (class = sched_class_highest; class; class = class->next)
1253
1254extern const struct sched_class stop_sched_class;
aab03e05 1255extern const struct sched_class dl_sched_class;
029632fb
PZ
1256extern const struct sched_class rt_sched_class;
1257extern const struct sched_class fair_sched_class;
1258extern const struct sched_class idle_sched_class;
1259
1260
1261#ifdef CONFIG_SMP
1262
63b2ca30 1263extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1264
7caff66f 1265extern void trigger_load_balance(struct rq *rq);
029632fb 1266
c5b28038
PZ
1267extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1268
029632fb
PZ
1269#endif
1270
442bf3aa
DL
1271#ifdef CONFIG_CPU_IDLE
1272static inline void idle_set_state(struct rq *rq,
1273 struct cpuidle_state *idle_state)
1274{
1275 rq->idle_state = idle_state;
1276}
1277
1278static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1279{
1280 WARN_ON(!rcu_read_lock_held());
1281 return rq->idle_state;
1282}
1283#else
1284static inline void idle_set_state(struct rq *rq,
1285 struct cpuidle_state *idle_state)
1286{
1287}
1288
1289static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1290{
1291 return NULL;
1292}
1293#endif
1294
029632fb
PZ
1295extern void sysrq_sched_debug_show(void);
1296extern void sched_init_granularity(void);
1297extern void update_max_interval(void);
1baca4ce
JL
1298
1299extern void init_sched_dl_class(void);
029632fb
PZ
1300extern void init_sched_rt_class(void);
1301extern void init_sched_fair_class(void);
1302
8875125e 1303extern void resched_curr(struct rq *rq);
029632fb
PZ
1304extern void resched_cpu(int cpu);
1305
1306extern struct rt_bandwidth def_rt_bandwidth;
1307extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1308
332ac17e
DF
1309extern struct dl_bandwidth def_dl_bandwidth;
1310extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1311extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1312
332ac17e
DF
1313unsigned long to_ratio(u64 period, u64 runtime);
1314
540247fb 1315extern void init_entity_runnable_average(struct sched_entity *se);
a75cdaa9 1316
76d92ac3
FW
1317#ifdef CONFIG_NO_HZ_FULL
1318extern bool sched_can_stop_tick(struct rq *rq);
1319
1320/*
1321 * Tick may be needed by tasks in the runqueue depending on their policy and
1322 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1323 * nohz mode if necessary.
1324 */
1325static inline void sched_update_tick_dependency(struct rq *rq)
1326{
1327 int cpu;
1328
1329 if (!tick_nohz_full_enabled())
1330 return;
1331
1332 cpu = cpu_of(rq);
1333
1334 if (!tick_nohz_full_cpu(cpu))
1335 return;
1336
1337 if (sched_can_stop_tick(rq))
1338 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1339 else
1340 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1341}
1342#else
1343static inline void sched_update_tick_dependency(struct rq *rq) { }
1344#endif
1345
72465447 1346static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1347{
72465447
KT
1348 unsigned prev_nr = rq->nr_running;
1349
1350 rq->nr_running = prev_nr + count;
9f3660c2 1351
72465447 1352 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1353#ifdef CONFIG_SMP
1354 if (!rq->rd->overload)
1355 rq->rd->overload = true;
1356#endif
4486edd1 1357 }
76d92ac3
FW
1358
1359 sched_update_tick_dependency(rq);
029632fb
PZ
1360}
1361
72465447 1362static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1363{
72465447 1364 rq->nr_running -= count;
76d92ac3
FW
1365 /* Check if we still need preemption */
1366 sched_update_tick_dependency(rq);
029632fb
PZ
1367}
1368
265f22a9
FW
1369static inline void rq_last_tick_reset(struct rq *rq)
1370{
1371#ifdef CONFIG_NO_HZ_FULL
1372 rq->last_sched_tick = jiffies;
1373#endif
1374}
1375
029632fb
PZ
1376extern void update_rq_clock(struct rq *rq);
1377
1378extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1379extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1380
1381extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1382
1383extern const_debug unsigned int sysctl_sched_time_avg;
1384extern const_debug unsigned int sysctl_sched_nr_migrate;
1385extern const_debug unsigned int sysctl_sched_migration_cost;
1386
1387static inline u64 sched_avg_period(void)
1388{
1389 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1390}
1391
029632fb
PZ
1392#ifdef CONFIG_SCHED_HRTICK
1393
1394/*
1395 * Use hrtick when:
1396 * - enabled by features
1397 * - hrtimer is actually high res
1398 */
1399static inline int hrtick_enabled(struct rq *rq)
1400{
1401 if (!sched_feat(HRTICK))
1402 return 0;
1403 if (!cpu_active(cpu_of(rq)))
1404 return 0;
1405 return hrtimer_is_hres_active(&rq->hrtick_timer);
1406}
1407
1408void hrtick_start(struct rq *rq, u64 delay);
1409
b39e66ea
MG
1410#else
1411
1412static inline int hrtick_enabled(struct rq *rq)
1413{
1414 return 0;
1415}
1416
029632fb
PZ
1417#endif /* CONFIG_SCHED_HRTICK */
1418
1419#ifdef CONFIG_SMP
1420extern void sched_avg_update(struct rq *rq);
dfbca41f
PZ
1421
1422#ifndef arch_scale_freq_capacity
1423static __always_inline
1424unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1425{
1426 return SCHED_CAPACITY_SCALE;
1427}
1428#endif
b5b4860d 1429
8cd5601c
MR
1430#ifndef arch_scale_cpu_capacity
1431static __always_inline
1432unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1433{
e3279a2e 1434 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
8cd5601c
MR
1435 return sd->smt_gain / sd->span_weight;
1436
1437 return SCHED_CAPACITY_SCALE;
1438}
1439#endif
1440
029632fb
PZ
1441static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1442{
b5b4860d 1443 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
029632fb
PZ
1444 sched_avg_update(rq);
1445}
1446#else
1447static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1448static inline void sched_avg_update(struct rq *rq) { }
1449#endif
1450
3960c8c0
PZ
1451/*
1452 * __task_rq_lock - lock the rq @p resides on.
1453 */
1454static inline struct rq *__task_rq_lock(struct task_struct *p)
1455 __acquires(rq->lock)
1456{
1457 struct rq *rq;
1458
1459 lockdep_assert_held(&p->pi_lock);
1460
1461 for (;;) {
1462 rq = task_rq(p);
1463 raw_spin_lock(&rq->lock);
cbce1a68
PZ
1464 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1465 lockdep_pin_lock(&rq->lock);
3960c8c0 1466 return rq;
cbce1a68 1467 }
3960c8c0
PZ
1468 raw_spin_unlock(&rq->lock);
1469
1470 while (unlikely(task_on_rq_migrating(p)))
1471 cpu_relax();
1472 }
1473}
1474
1475/*
1476 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1477 */
1478static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1479 __acquires(p->pi_lock)
1480 __acquires(rq->lock)
1481{
1482 struct rq *rq;
1483
1484 for (;;) {
1485 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1486 rq = task_rq(p);
1487 raw_spin_lock(&rq->lock);
1488 /*
1489 * move_queued_task() task_rq_lock()
1490 *
1491 * ACQUIRE (rq->lock)
1492 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
1493 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
1494 * [S] ->cpu = new_cpu [L] task_rq()
1495 * [L] ->on_rq
1496 * RELEASE (rq->lock)
1497 *
1498 * If we observe the old cpu in task_rq_lock, the acquire of
1499 * the old rq->lock will fully serialize against the stores.
1500 *
1501 * If we observe the new cpu in task_rq_lock, the acquire will
1502 * pair with the WMB to ensure we must then also see migrating.
1503 */
cbce1a68
PZ
1504 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1505 lockdep_pin_lock(&rq->lock);
3960c8c0 1506 return rq;
cbce1a68 1507 }
3960c8c0
PZ
1508 raw_spin_unlock(&rq->lock);
1509 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1510
1511 while (unlikely(task_on_rq_migrating(p)))
1512 cpu_relax();
1513 }
1514}
1515
1516static inline void __task_rq_unlock(struct rq *rq)
1517 __releases(rq->lock)
1518{
cbce1a68 1519 lockdep_unpin_lock(&rq->lock);
3960c8c0
PZ
1520 raw_spin_unlock(&rq->lock);
1521}
1522
1523static inline void
1524task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1525 __releases(rq->lock)
1526 __releases(p->pi_lock)
1527{
cbce1a68 1528 lockdep_unpin_lock(&rq->lock);
3960c8c0
PZ
1529 raw_spin_unlock(&rq->lock);
1530 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1531}
1532
029632fb
PZ
1533#ifdef CONFIG_SMP
1534#ifdef CONFIG_PREEMPT
1535
1536static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1537
1538/*
1539 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1540 * way at the expense of forcing extra atomic operations in all
1541 * invocations. This assures that the double_lock is acquired using the
1542 * same underlying policy as the spinlock_t on this architecture, which
1543 * reduces latency compared to the unfair variant below. However, it
1544 * also adds more overhead and therefore may reduce throughput.
1545 */
1546static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1547 __releases(this_rq->lock)
1548 __acquires(busiest->lock)
1549 __acquires(this_rq->lock)
1550{
1551 raw_spin_unlock(&this_rq->lock);
1552 double_rq_lock(this_rq, busiest);
1553
1554 return 1;
1555}
1556
1557#else
1558/*
1559 * Unfair double_lock_balance: Optimizes throughput at the expense of
1560 * latency by eliminating extra atomic operations when the locks are
1561 * already in proper order on entry. This favors lower cpu-ids and will
1562 * grant the double lock to lower cpus over higher ids under contention,
1563 * regardless of entry order into the function.
1564 */
1565static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1566 __releases(this_rq->lock)
1567 __acquires(busiest->lock)
1568 __acquires(this_rq->lock)
1569{
1570 int ret = 0;
1571
1572 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1573 if (busiest < this_rq) {
1574 raw_spin_unlock(&this_rq->lock);
1575 raw_spin_lock(&busiest->lock);
1576 raw_spin_lock_nested(&this_rq->lock,
1577 SINGLE_DEPTH_NESTING);
1578 ret = 1;
1579 } else
1580 raw_spin_lock_nested(&busiest->lock,
1581 SINGLE_DEPTH_NESTING);
1582 }
1583 return ret;
1584}
1585
1586#endif /* CONFIG_PREEMPT */
1587
1588/*
1589 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1590 */
1591static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1592{
1593 if (unlikely(!irqs_disabled())) {
1594 /* printk() doesn't work good under rq->lock */
1595 raw_spin_unlock(&this_rq->lock);
1596 BUG_ON(1);
1597 }
1598
1599 return _double_lock_balance(this_rq, busiest);
1600}
1601
1602static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1603 __releases(busiest->lock)
1604{
1605 raw_spin_unlock(&busiest->lock);
1606 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1607}
1608
74602315
PZ
1609static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1610{
1611 if (l1 > l2)
1612 swap(l1, l2);
1613
1614 spin_lock(l1);
1615 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1616}
1617
60e69eed
MG
1618static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1619{
1620 if (l1 > l2)
1621 swap(l1, l2);
1622
1623 spin_lock_irq(l1);
1624 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1625}
1626
74602315
PZ
1627static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1628{
1629 if (l1 > l2)
1630 swap(l1, l2);
1631
1632 raw_spin_lock(l1);
1633 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1634}
1635
029632fb
PZ
1636/*
1637 * double_rq_lock - safely lock two runqueues
1638 *
1639 * Note this does not disable interrupts like task_rq_lock,
1640 * you need to do so manually before calling.
1641 */
1642static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1643 __acquires(rq1->lock)
1644 __acquires(rq2->lock)
1645{
1646 BUG_ON(!irqs_disabled());
1647 if (rq1 == rq2) {
1648 raw_spin_lock(&rq1->lock);
1649 __acquire(rq2->lock); /* Fake it out ;) */
1650 } else {
1651 if (rq1 < rq2) {
1652 raw_spin_lock(&rq1->lock);
1653 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1654 } else {
1655 raw_spin_lock(&rq2->lock);
1656 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1657 }
1658 }
1659}
1660
1661/*
1662 * double_rq_unlock - safely unlock two runqueues
1663 *
1664 * Note this does not restore interrupts like task_rq_unlock,
1665 * you need to do so manually after calling.
1666 */
1667static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1668 __releases(rq1->lock)
1669 __releases(rq2->lock)
1670{
1671 raw_spin_unlock(&rq1->lock);
1672 if (rq1 != rq2)
1673 raw_spin_unlock(&rq2->lock);
1674 else
1675 __release(rq2->lock);
1676}
1677
1678#else /* CONFIG_SMP */
1679
1680/*
1681 * double_rq_lock - safely lock two runqueues
1682 *
1683 * Note this does not disable interrupts like task_rq_lock,
1684 * you need to do so manually before calling.
1685 */
1686static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1687 __acquires(rq1->lock)
1688 __acquires(rq2->lock)
1689{
1690 BUG_ON(!irqs_disabled());
1691 BUG_ON(rq1 != rq2);
1692 raw_spin_lock(&rq1->lock);
1693 __acquire(rq2->lock); /* Fake it out ;) */
1694}
1695
1696/*
1697 * double_rq_unlock - safely unlock two runqueues
1698 *
1699 * Note this does not restore interrupts like task_rq_unlock,
1700 * you need to do so manually after calling.
1701 */
1702static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1703 __releases(rq1->lock)
1704 __releases(rq2->lock)
1705{
1706 BUG_ON(rq1 != rq2);
1707 raw_spin_unlock(&rq1->lock);
1708 __release(rq2->lock);
1709}
1710
1711#endif
1712
1713extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1714extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
1715
1716#ifdef CONFIG_SCHED_DEBUG
029632fb
PZ
1717extern void print_cfs_stats(struct seq_file *m, int cpu);
1718extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 1719extern void print_dl_stats(struct seq_file *m, int cpu);
6b55c965
SD
1720extern void
1721print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
397f2378
SD
1722
1723#ifdef CONFIG_NUMA_BALANCING
1724extern void
1725show_numa_stats(struct task_struct *p, struct seq_file *m);
1726extern void
1727print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1728 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1729#endif /* CONFIG_NUMA_BALANCING */
1730#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
1731
1732extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
1733extern void init_rt_rq(struct rt_rq *rt_rq);
1734extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 1735
1ee14e6c
BS
1736extern void cfs_bandwidth_usage_inc(void);
1737extern void cfs_bandwidth_usage_dec(void);
1c792db7 1738
3451d024 1739#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1740enum rq_nohz_flag_bits {
1741 NOHZ_TICK_STOPPED,
1742 NOHZ_BALANCE_KICK,
1743};
1744
1745#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1746#endif
73fbec60
FW
1747
1748#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1749
1750DECLARE_PER_CPU(u64, cpu_hardirq_time);
1751DECLARE_PER_CPU(u64, cpu_softirq_time);
1752
1753#ifndef CONFIG_64BIT
1754DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1755
1756static inline void irq_time_write_begin(void)
1757{
1758 __this_cpu_inc(irq_time_seq.sequence);
1759 smp_wmb();
1760}
1761
1762static inline void irq_time_write_end(void)
1763{
1764 smp_wmb();
1765 __this_cpu_inc(irq_time_seq.sequence);
1766}
1767
1768static inline u64 irq_time_read(int cpu)
1769{
1770 u64 irq_time;
1771 unsigned seq;
1772
1773 do {
1774 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1775 irq_time = per_cpu(cpu_softirq_time, cpu) +
1776 per_cpu(cpu_hardirq_time, cpu);
1777 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1778
1779 return irq_time;
1780}
1781#else /* CONFIG_64BIT */
1782static inline void irq_time_write_begin(void)
1783{
1784}
1785
1786static inline void irq_time_write_end(void)
1787{
1788}
1789
1790static inline u64 irq_time_read(int cpu)
1791{
1792 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1793}
1794#endif /* CONFIG_64BIT */
1795#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
1796
1797#ifdef CONFIG_CPU_FREQ
1798DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1799
1800/**
1801 * cpufreq_update_util - Take a note about CPU utilization changes.
1802 * @time: Current time.
1803 * @util: Current utilization.
1804 * @max: Utilization ceiling.
1805 *
1806 * This function is called by the scheduler on every invocation of
1807 * update_load_avg() on the CPU whose utilization is being updated.
1808 *
1809 * It can only be called from RCU-sched read-side critical sections.
1810 */
1811static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max)
1812{
1813 struct update_util_data *data;
1814
1815 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1816 if (data)
1817 data->func(data, time, util, max);
1818}
1819
1820/**
1821 * cpufreq_trigger_update - Trigger CPU performance state evaluation if needed.
1822 * @time: Current time.
1823 *
1824 * The way cpufreq is currently arranged requires it to evaluate the CPU
1825 * performance state (frequency/voltage) on a regular basis to prevent it from
1826 * being stuck in a completely inadequate performance level for too long.
1827 * That is not guaranteed to happen if the updates are only triggered from CFS,
1828 * though, because they may not be coming in if RT or deadline tasks are active
1829 * all the time (or there are RT and DL tasks only).
1830 *
1831 * As a workaround for that issue, this function is called by the RT and DL
1832 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1833 * but that really is a band-aid. Going forward it should be replaced with
1834 * solutions targeted more specifically at RT and DL tasks.
1835 */
1836static inline void cpufreq_trigger_update(u64 time)
1837{
1838 cpufreq_update_util(time, ULONG_MAX, 0);
1839}
1840#else
1841static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max) {}
1842static inline void cpufreq_trigger_update(u64 time) {}
1843#endif /* CONFIG_CPU_FREQ */
This page took 0.230464 seconds and 5 git commands to generate.