Merge remote-tracking branches 'regmap/fix/irq', 'regmap/fix/rbtree' and 'regmap...
[deliverable/linux.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
029632fb
PZ
6#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
9f3660c2 9#include <linux/tick.h>
f809ca9a 10#include <linux/slab.h>
029632fb 11
391e43da 12#include "cpupri.h"
6bfd6d72 13#include "cpudeadline.h"
60fed789 14#include "cpuacct.h"
029632fb 15
45ceebf7 16struct rq;
442bf3aa 17struct cpuidle_state;
45ceebf7 18
da0c1e65
KT
19/* task_struct::on_rq states: */
20#define TASK_ON_RQ_QUEUED 1
cca26e80 21#define TASK_ON_RQ_MIGRATING 2
da0c1e65 22
029632fb
PZ
23extern __read_mostly int scheduler_running;
24
45ceebf7
PG
25extern unsigned long calc_load_update;
26extern atomic_long_t calc_load_tasks;
27
28extern long calc_load_fold_active(struct rq *this_rq);
29extern void update_cpu_load_active(struct rq *this_rq);
30
029632fb
PZ
31/*
32 * Helpers for converting nanosecond timing to jiffy resolution
33 */
34#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
35
cc1f4b1f
LZ
36/*
37 * Increase resolution of nice-level calculations for 64-bit architectures.
38 * The extra resolution improves shares distribution and load balancing of
39 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
40 * hierarchies, especially on larger systems. This is not a user-visible change
41 * and does not change the user-interface for setting shares/weights.
42 *
43 * We increase resolution only if we have enough bits to allow this increased
44 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
45 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
46 * increased costs.
47 */
48#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
49# define SCHED_LOAD_RESOLUTION 10
50# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
51# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
52#else
53# define SCHED_LOAD_RESOLUTION 0
54# define scale_load(w) (w)
55# define scale_load_down(w) (w)
56#endif
57
58#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
59#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
60
029632fb
PZ
61#define NICE_0_LOAD SCHED_LOAD_SCALE
62#define NICE_0_SHIFT SCHED_LOAD_SHIFT
63
332ac17e
DF
64/*
65 * Single value that decides SCHED_DEADLINE internal math precision.
66 * 10 -> just above 1us
67 * 9 -> just above 0.5us
68 */
69#define DL_SCALE (10)
70
029632fb
PZ
71/*
72 * These are the 'tuning knobs' of the scheduler:
029632fb 73 */
029632fb
PZ
74
75/*
76 * single value that denotes runtime == period, ie unlimited time.
77 */
78#define RUNTIME_INF ((u64)~0ULL)
79
d50dde5a
DF
80static inline int fair_policy(int policy)
81{
82 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
83}
84
029632fb
PZ
85static inline int rt_policy(int policy)
86{
d50dde5a 87 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
88}
89
aab03e05
DF
90static inline int dl_policy(int policy)
91{
92 return policy == SCHED_DEADLINE;
93}
94
029632fb
PZ
95static inline int task_has_rt_policy(struct task_struct *p)
96{
97 return rt_policy(p->policy);
98}
99
aab03e05
DF
100static inline int task_has_dl_policy(struct task_struct *p)
101{
102 return dl_policy(p->policy);
103}
104
332ac17e 105static inline bool dl_time_before(u64 a, u64 b)
2d3d891d
DF
106{
107 return (s64)(a - b) < 0;
108}
109
110/*
111 * Tells if entity @a should preempt entity @b.
112 */
332ac17e
DF
113static inline bool
114dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
115{
116 return dl_time_before(a->deadline, b->deadline);
117}
118
029632fb
PZ
119/*
120 * This is the priority-queue data structure of the RT scheduling class:
121 */
122struct rt_prio_array {
123 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
124 struct list_head queue[MAX_RT_PRIO];
125};
126
127struct rt_bandwidth {
128 /* nests inside the rq lock: */
129 raw_spinlock_t rt_runtime_lock;
130 ktime_t rt_period;
131 u64 rt_runtime;
132 struct hrtimer rt_period_timer;
133};
a5e7be3b
JL
134
135void __dl_clear_params(struct task_struct *p);
136
332ac17e
DF
137/*
138 * To keep the bandwidth of -deadline tasks and groups under control
139 * we need some place where:
140 * - store the maximum -deadline bandwidth of the system (the group);
141 * - cache the fraction of that bandwidth that is currently allocated.
142 *
143 * This is all done in the data structure below. It is similar to the
144 * one used for RT-throttling (rt_bandwidth), with the main difference
145 * that, since here we are only interested in admission control, we
146 * do not decrease any runtime while the group "executes", neither we
147 * need a timer to replenish it.
148 *
149 * With respect to SMP, the bandwidth is given on a per-CPU basis,
150 * meaning that:
151 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
152 * - dl_total_bw array contains, in the i-eth element, the currently
153 * allocated bandwidth on the i-eth CPU.
154 * Moreover, groups consume bandwidth on each CPU, while tasks only
155 * consume bandwidth on the CPU they're running on.
156 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
157 * that will be shown the next time the proc or cgroup controls will
158 * be red. It on its turn can be changed by writing on its own
159 * control.
160 */
161struct dl_bandwidth {
162 raw_spinlock_t dl_runtime_lock;
163 u64 dl_runtime;
164 u64 dl_period;
165};
166
167static inline int dl_bandwidth_enabled(void)
168{
1724813d 169 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
170}
171
172extern struct dl_bw *dl_bw_of(int i);
173
174struct dl_bw {
175 raw_spinlock_t lock;
176 u64 bw, total_bw;
177};
178
7f51412a
JL
179static inline
180void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
181{
182 dl_b->total_bw -= tsk_bw;
183}
184
185static inline
186void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
187{
188 dl_b->total_bw += tsk_bw;
189}
190
191static inline
192bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
193{
194 return dl_b->bw != -1 &&
195 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
196}
197
029632fb
PZ
198extern struct mutex sched_domains_mutex;
199
200#ifdef CONFIG_CGROUP_SCHED
201
202#include <linux/cgroup.h>
203
204struct cfs_rq;
205struct rt_rq;
206
35cf4e50 207extern struct list_head task_groups;
029632fb
PZ
208
209struct cfs_bandwidth {
210#ifdef CONFIG_CFS_BANDWIDTH
211 raw_spinlock_t lock;
212 ktime_t period;
213 u64 quota, runtime;
9c58c79a 214 s64 hierarchical_quota;
029632fb
PZ
215 u64 runtime_expires;
216
217 int idle, timer_active;
218 struct hrtimer period_timer, slack_timer;
219 struct list_head throttled_cfs_rq;
220
221 /* statistics */
222 int nr_periods, nr_throttled;
223 u64 throttled_time;
224#endif
225};
226
227/* task group related information */
228struct task_group {
229 struct cgroup_subsys_state css;
230
231#ifdef CONFIG_FAIR_GROUP_SCHED
232 /* schedulable entities of this group on each cpu */
233 struct sched_entity **se;
234 /* runqueue "owned" by this group on each cpu */
235 struct cfs_rq **cfs_rq;
236 unsigned long shares;
237
fa6bddeb 238#ifdef CONFIG_SMP
bf5b986e 239 atomic_long_t load_avg;
bb17f655 240 atomic_t runnable_avg;
029632fb 241#endif
fa6bddeb 242#endif
029632fb
PZ
243
244#ifdef CONFIG_RT_GROUP_SCHED
245 struct sched_rt_entity **rt_se;
246 struct rt_rq **rt_rq;
247
248 struct rt_bandwidth rt_bandwidth;
249#endif
250
251 struct rcu_head rcu;
252 struct list_head list;
253
254 struct task_group *parent;
255 struct list_head siblings;
256 struct list_head children;
257
258#ifdef CONFIG_SCHED_AUTOGROUP
259 struct autogroup *autogroup;
260#endif
261
262 struct cfs_bandwidth cfs_bandwidth;
263};
264
265#ifdef CONFIG_FAIR_GROUP_SCHED
266#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
267
268/*
269 * A weight of 0 or 1 can cause arithmetics problems.
270 * A weight of a cfs_rq is the sum of weights of which entities
271 * are queued on this cfs_rq, so a weight of a entity should not be
272 * too large, so as the shares value of a task group.
273 * (The default weight is 1024 - so there's no practical
274 * limitation from this.)
275 */
276#define MIN_SHARES (1UL << 1)
277#define MAX_SHARES (1UL << 18)
278#endif
279
029632fb
PZ
280typedef int (*tg_visitor)(struct task_group *, void *);
281
282extern int walk_tg_tree_from(struct task_group *from,
283 tg_visitor down, tg_visitor up, void *data);
284
285/*
286 * Iterate the full tree, calling @down when first entering a node and @up when
287 * leaving it for the final time.
288 *
289 * Caller must hold rcu_lock or sufficient equivalent.
290 */
291static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
292{
293 return walk_tg_tree_from(&root_task_group, down, up, data);
294}
295
296extern int tg_nop(struct task_group *tg, void *data);
297
298extern void free_fair_sched_group(struct task_group *tg);
299extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
300extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
301extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
302 struct sched_entity *se, int cpu,
303 struct sched_entity *parent);
304extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
305extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
306
307extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
09dc4ab0 308extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
029632fb
PZ
309extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
310
311extern void free_rt_sched_group(struct task_group *tg);
312extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
313extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
314 struct sched_rt_entity *rt_se, int cpu,
315 struct sched_rt_entity *parent);
316
25cc7da7
LZ
317extern struct task_group *sched_create_group(struct task_group *parent);
318extern void sched_online_group(struct task_group *tg,
319 struct task_group *parent);
320extern void sched_destroy_group(struct task_group *tg);
321extern void sched_offline_group(struct task_group *tg);
322
323extern void sched_move_task(struct task_struct *tsk);
324
325#ifdef CONFIG_FAIR_GROUP_SCHED
326extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
327#endif
328
029632fb
PZ
329#else /* CONFIG_CGROUP_SCHED */
330
331struct cfs_bandwidth { };
332
333#endif /* CONFIG_CGROUP_SCHED */
334
335/* CFS-related fields in a runqueue */
336struct cfs_rq {
337 struct load_weight load;
c82513e5 338 unsigned int nr_running, h_nr_running;
029632fb
PZ
339
340 u64 exec_clock;
341 u64 min_vruntime;
342#ifndef CONFIG_64BIT
343 u64 min_vruntime_copy;
344#endif
345
346 struct rb_root tasks_timeline;
347 struct rb_node *rb_leftmost;
348
029632fb
PZ
349 /*
350 * 'curr' points to currently running entity on this cfs_rq.
351 * It is set to NULL otherwise (i.e when none are currently running).
352 */
353 struct sched_entity *curr, *next, *last, *skip;
354
355#ifdef CONFIG_SCHED_DEBUG
356 unsigned int nr_spread_over;
357#endif
358
2dac754e
PT
359#ifdef CONFIG_SMP
360 /*
361 * CFS Load tracking
362 * Under CFS, load is tracked on a per-entity basis and aggregated up.
363 * This allows for the description of both thread and group usage (in
364 * the FAIR_GROUP_SCHED case).
365 */
72a4cf20 366 unsigned long runnable_load_avg, blocked_load_avg;
2509940f 367 atomic64_t decay_counter;
9ee474f5 368 u64 last_decay;
2509940f 369 atomic_long_t removed_load;
141965c7 370
c566e8e9 371#ifdef CONFIG_FAIR_GROUP_SCHED
141965c7 372 /* Required to track per-cpu representation of a task_group */
bb17f655 373 u32 tg_runnable_contrib;
bf5b986e 374 unsigned long tg_load_contrib;
82958366
PT
375
376 /*
377 * h_load = weight * f(tg)
378 *
379 * Where f(tg) is the recursive weight fraction assigned to
380 * this group.
381 */
382 unsigned long h_load;
68520796
VD
383 u64 last_h_load_update;
384 struct sched_entity *h_load_next;
385#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
386#endif /* CONFIG_SMP */
387
029632fb
PZ
388#ifdef CONFIG_FAIR_GROUP_SCHED
389 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
390
391 /*
392 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
393 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
394 * (like users, containers etc.)
395 *
396 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
397 * list is used during load balance.
398 */
399 int on_list;
400 struct list_head leaf_cfs_rq_list;
401 struct task_group *tg; /* group that "owns" this runqueue */
402
029632fb
PZ
403#ifdef CONFIG_CFS_BANDWIDTH
404 int runtime_enabled;
405 u64 runtime_expires;
406 s64 runtime_remaining;
407
f1b17280
PT
408 u64 throttled_clock, throttled_clock_task;
409 u64 throttled_clock_task_time;
029632fb
PZ
410 int throttled, throttle_count;
411 struct list_head throttled_list;
412#endif /* CONFIG_CFS_BANDWIDTH */
413#endif /* CONFIG_FAIR_GROUP_SCHED */
414};
415
416static inline int rt_bandwidth_enabled(void)
417{
418 return sysctl_sched_rt_runtime >= 0;
419}
420
421/* Real-Time classes' related field in a runqueue: */
422struct rt_rq {
423 struct rt_prio_array active;
c82513e5 424 unsigned int rt_nr_running;
029632fb
PZ
425#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
426 struct {
427 int curr; /* highest queued rt task prio */
428#ifdef CONFIG_SMP
429 int next; /* next highest */
430#endif
431 } highest_prio;
432#endif
433#ifdef CONFIG_SMP
434 unsigned long rt_nr_migratory;
435 unsigned long rt_nr_total;
436 int overloaded;
437 struct plist_head pushable_tasks;
438#endif
f4ebcbc0
KT
439 int rt_queued;
440
029632fb
PZ
441 int rt_throttled;
442 u64 rt_time;
443 u64 rt_runtime;
444 /* Nests inside the rq lock: */
445 raw_spinlock_t rt_runtime_lock;
446
447#ifdef CONFIG_RT_GROUP_SCHED
448 unsigned long rt_nr_boosted;
449
450 struct rq *rq;
029632fb
PZ
451 struct task_group *tg;
452#endif
453};
454
aab03e05
DF
455/* Deadline class' related fields in a runqueue */
456struct dl_rq {
457 /* runqueue is an rbtree, ordered by deadline */
458 struct rb_root rb_root;
459 struct rb_node *rb_leftmost;
460
461 unsigned long dl_nr_running;
1baca4ce
JL
462
463#ifdef CONFIG_SMP
464 /*
465 * Deadline values of the currently executing and the
466 * earliest ready task on this rq. Caching these facilitates
467 * the decision wether or not a ready but not running task
468 * should migrate somewhere else.
469 */
470 struct {
471 u64 curr;
472 u64 next;
473 } earliest_dl;
474
475 unsigned long dl_nr_migratory;
1baca4ce
JL
476 int overloaded;
477
478 /*
479 * Tasks on this rq that can be pushed away. They are kept in
480 * an rb-tree, ordered by tasks' deadlines, with caching
481 * of the leftmost (earliest deadline) element.
482 */
483 struct rb_root pushable_dl_tasks_root;
484 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
485#else
486 struct dl_bw dl_bw;
1baca4ce 487#endif
aab03e05
DF
488};
489
029632fb
PZ
490#ifdef CONFIG_SMP
491
492/*
493 * We add the notion of a root-domain which will be used to define per-domain
494 * variables. Each exclusive cpuset essentially defines an island domain by
495 * fully partitioning the member cpus from any other cpuset. Whenever a new
496 * exclusive cpuset is created, we also create and attach a new root-domain
497 * object.
498 *
499 */
500struct root_domain {
501 atomic_t refcount;
502 atomic_t rto_count;
503 struct rcu_head rcu;
504 cpumask_var_t span;
505 cpumask_var_t online;
506
4486edd1
TC
507 /* Indicate more than one runnable task for any CPU */
508 bool overload;
509
1baca4ce
JL
510 /*
511 * The bit corresponding to a CPU gets set here if such CPU has more
512 * than one runnable -deadline task (as it is below for RT tasks).
513 */
514 cpumask_var_t dlo_mask;
515 atomic_t dlo_count;
332ac17e 516 struct dl_bw dl_bw;
6bfd6d72 517 struct cpudl cpudl;
1baca4ce 518
029632fb
PZ
519 /*
520 * The "RT overload" flag: it gets set if a CPU has more than
521 * one runnable RT task.
522 */
523 cpumask_var_t rto_mask;
524 struct cpupri cpupri;
525};
526
527extern struct root_domain def_root_domain;
528
529#endif /* CONFIG_SMP */
530
531/*
532 * This is the main, per-CPU runqueue data structure.
533 *
534 * Locking rule: those places that want to lock multiple runqueues
535 * (such as the load balancing or the thread migration code), lock
536 * acquire operations must be ordered by ascending &runqueue.
537 */
538struct rq {
539 /* runqueue lock: */
540 raw_spinlock_t lock;
541
542 /*
543 * nr_running and cpu_load should be in the same cacheline because
544 * remote CPUs use both these fields when doing load calculation.
545 */
c82513e5 546 unsigned int nr_running;
0ec8aa00
PZ
547#ifdef CONFIG_NUMA_BALANCING
548 unsigned int nr_numa_running;
549 unsigned int nr_preferred_running;
550#endif
029632fb
PZ
551 #define CPU_LOAD_IDX_MAX 5
552 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
553 unsigned long last_load_update_tick;
3451d024 554#ifdef CONFIG_NO_HZ_COMMON
029632fb 555 u64 nohz_stamp;
1c792db7 556 unsigned long nohz_flags;
265f22a9
FW
557#endif
558#ifdef CONFIG_NO_HZ_FULL
559 unsigned long last_sched_tick;
029632fb 560#endif
029632fb
PZ
561 /* capture load from *all* tasks on this cpu: */
562 struct load_weight load;
563 unsigned long nr_load_updates;
564 u64 nr_switches;
565
566 struct cfs_rq cfs;
567 struct rt_rq rt;
aab03e05 568 struct dl_rq dl;
029632fb
PZ
569
570#ifdef CONFIG_FAIR_GROUP_SCHED
571 /* list of leaf cfs_rq on this cpu: */
572 struct list_head leaf_cfs_rq_list;
f5f9739d
DE
573
574 struct sched_avg avg;
a35b6466
PZ
575#endif /* CONFIG_FAIR_GROUP_SCHED */
576
029632fb
PZ
577 /*
578 * This is part of a global counter where only the total sum
579 * over all CPUs matters. A task can increase this counter on
580 * one CPU and if it got migrated afterwards it may decrease
581 * it on another CPU. Always updated under the runqueue lock:
582 */
583 unsigned long nr_uninterruptible;
584
585 struct task_struct *curr, *idle, *stop;
586 unsigned long next_balance;
587 struct mm_struct *prev_mm;
588
9edfbfed 589 unsigned int clock_skip_update;
029632fb
PZ
590 u64 clock;
591 u64 clock_task;
592
593 atomic_t nr_iowait;
594
595#ifdef CONFIG_SMP
596 struct root_domain *rd;
597 struct sched_domain *sd;
598
ced549fa 599 unsigned long cpu_capacity;
029632fb
PZ
600
601 unsigned char idle_balance;
602 /* For active balancing */
603 int post_schedule;
604 int active_balance;
605 int push_cpu;
606 struct cpu_stop_work active_balance_work;
607 /* cpu of this runqueue: */
608 int cpu;
609 int online;
610
367456c7
PZ
611 struct list_head cfs_tasks;
612
029632fb
PZ
613 u64 rt_avg;
614 u64 age_stamp;
615 u64 idle_stamp;
616 u64 avg_idle;
9bd721c5
JL
617
618 /* This is used to determine avg_idle's max value */
619 u64 max_idle_balance_cost;
029632fb
PZ
620#endif
621
622#ifdef CONFIG_IRQ_TIME_ACCOUNTING
623 u64 prev_irq_time;
624#endif
625#ifdef CONFIG_PARAVIRT
626 u64 prev_steal_time;
627#endif
628#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
629 u64 prev_steal_time_rq;
630#endif
631
632 /* calc_load related fields */
633 unsigned long calc_load_update;
634 long calc_load_active;
635
636#ifdef CONFIG_SCHED_HRTICK
637#ifdef CONFIG_SMP
638 int hrtick_csd_pending;
639 struct call_single_data hrtick_csd;
640#endif
641 struct hrtimer hrtick_timer;
642#endif
643
644#ifdef CONFIG_SCHEDSTATS
645 /* latency stats */
646 struct sched_info rq_sched_info;
647 unsigned long long rq_cpu_time;
648 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
649
650 /* sys_sched_yield() stats */
651 unsigned int yld_count;
652
653 /* schedule() stats */
029632fb
PZ
654 unsigned int sched_count;
655 unsigned int sched_goidle;
656
657 /* try_to_wake_up() stats */
658 unsigned int ttwu_count;
659 unsigned int ttwu_local;
660#endif
661
662#ifdef CONFIG_SMP
663 struct llist_head wake_list;
664#endif
442bf3aa
DL
665
666#ifdef CONFIG_CPU_IDLE
667 /* Must be inspected within a rcu lock section */
668 struct cpuidle_state *idle_state;
669#endif
029632fb
PZ
670};
671
672static inline int cpu_of(struct rq *rq)
673{
674#ifdef CONFIG_SMP
675 return rq->cpu;
676#else
677 return 0;
678#endif
679}
680
8b06c55b 681DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 682
518cd623 683#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 684#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
685#define task_rq(p) cpu_rq(task_cpu(p))
686#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 687#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 688
cebde6d6
PZ
689static inline u64 __rq_clock_broken(struct rq *rq)
690{
691 return ACCESS_ONCE(rq->clock);
692}
693
78becc27
FW
694static inline u64 rq_clock(struct rq *rq)
695{
cebde6d6 696 lockdep_assert_held(&rq->lock);
78becc27
FW
697 return rq->clock;
698}
699
700static inline u64 rq_clock_task(struct rq *rq)
701{
cebde6d6 702 lockdep_assert_held(&rq->lock);
78becc27
FW
703 return rq->clock_task;
704}
705
9edfbfed
PZ
706#define RQCF_REQ_SKIP 0x01
707#define RQCF_ACT_SKIP 0x02
708
709static inline void rq_clock_skip_update(struct rq *rq, bool skip)
710{
711 lockdep_assert_held(&rq->lock);
712 if (skip)
713 rq->clock_skip_update |= RQCF_REQ_SKIP;
714 else
715 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
716}
717
9942f79b 718#ifdef CONFIG_NUMA
e3fe70b1
RR
719enum numa_topology_type {
720 NUMA_DIRECT,
721 NUMA_GLUELESS_MESH,
722 NUMA_BACKPLANE,
723};
724extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
725extern int sched_max_numa_distance;
726extern bool find_numa_distance(int distance);
727#endif
728
f809ca9a 729#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
730/* The regions in numa_faults array from task_struct */
731enum numa_faults_stats {
732 NUMA_MEM = 0,
733 NUMA_CPU,
734 NUMA_MEMBUF,
735 NUMA_CPUBUF
736};
0ec8aa00 737extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 738extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 739extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
740#endif /* CONFIG_NUMA_BALANCING */
741
518cd623
PZ
742#ifdef CONFIG_SMP
743
e3baac47
PZ
744extern void sched_ttwu_pending(void);
745
029632fb
PZ
746#define rcu_dereference_check_sched_domain(p) \
747 rcu_dereference_check((p), \
748 lockdep_is_held(&sched_domains_mutex))
749
750/*
751 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
752 * See detach_destroy_domains: synchronize_sched for details.
753 *
754 * The domain tree of any CPU may only be accessed from within
755 * preempt-disabled sections.
756 */
757#define for_each_domain(cpu, __sd) \
518cd623
PZ
758 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
759 __sd; __sd = __sd->parent)
029632fb 760
77e81365
SS
761#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
762
518cd623
PZ
763/**
764 * highest_flag_domain - Return highest sched_domain containing flag.
765 * @cpu: The cpu whose highest level of sched domain is to
766 * be returned.
767 * @flag: The flag to check for the highest sched_domain
768 * for the given cpu.
769 *
770 * Returns the highest sched_domain of a cpu which contains the given flag.
771 */
772static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
773{
774 struct sched_domain *sd, *hsd = NULL;
775
776 for_each_domain(cpu, sd) {
777 if (!(sd->flags & flag))
778 break;
779 hsd = sd;
780 }
781
782 return hsd;
783}
784
fb13c7ee
MG
785static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
786{
787 struct sched_domain *sd;
788
789 for_each_domain(cpu, sd) {
790 if (sd->flags & flag)
791 break;
792 }
793
794 return sd;
795}
796
518cd623 797DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 798DECLARE_PER_CPU(int, sd_llc_size);
518cd623 799DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 800DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
801DECLARE_PER_CPU(struct sched_domain *, sd_busy);
802DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 803
63b2ca30 804struct sched_group_capacity {
5e6521ea
LZ
805 atomic_t ref;
806 /*
63b2ca30
NP
807 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
808 * for a single CPU.
5e6521ea 809 */
63b2ca30 810 unsigned int capacity, capacity_orig;
5e6521ea 811 unsigned long next_update;
63b2ca30 812 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
813 /*
814 * Number of busy cpus in this group.
815 */
816 atomic_t nr_busy_cpus;
817
818 unsigned long cpumask[0]; /* iteration mask */
819};
820
821struct sched_group {
822 struct sched_group *next; /* Must be a circular list */
823 atomic_t ref;
824
825 unsigned int group_weight;
63b2ca30 826 struct sched_group_capacity *sgc;
5e6521ea
LZ
827
828 /*
829 * The CPUs this group covers.
830 *
831 * NOTE: this field is variable length. (Allocated dynamically
832 * by attaching extra space to the end of the structure,
833 * depending on how many CPUs the kernel has booted up with)
834 */
835 unsigned long cpumask[0];
836};
837
838static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
839{
840 return to_cpumask(sg->cpumask);
841}
842
843/*
844 * cpumask masking which cpus in the group are allowed to iterate up the domain
845 * tree.
846 */
847static inline struct cpumask *sched_group_mask(struct sched_group *sg)
848{
63b2ca30 849 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
850}
851
852/**
853 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
854 * @group: The group whose first cpu is to be returned.
855 */
856static inline unsigned int group_first_cpu(struct sched_group *group)
857{
858 return cpumask_first(sched_group_cpus(group));
859}
860
c1174876
PZ
861extern int group_balance_cpu(struct sched_group *sg);
862
e3baac47
PZ
863#else
864
865static inline void sched_ttwu_pending(void) { }
866
518cd623 867#endif /* CONFIG_SMP */
029632fb 868
391e43da
PZ
869#include "stats.h"
870#include "auto_group.h"
029632fb
PZ
871
872#ifdef CONFIG_CGROUP_SCHED
873
874/*
875 * Return the group to which this tasks belongs.
876 *
8af01f56
TH
877 * We cannot use task_css() and friends because the cgroup subsystem
878 * changes that value before the cgroup_subsys::attach() method is called,
879 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
880 *
881 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
882 * core changes this before calling sched_move_task().
883 *
884 * Instead we use a 'copy' which is updated from sched_move_task() while
885 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
886 */
887static inline struct task_group *task_group(struct task_struct *p)
888{
8323f26c 889 return p->sched_task_group;
029632fb
PZ
890}
891
892/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
893static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
894{
895#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
896 struct task_group *tg = task_group(p);
897#endif
898
899#ifdef CONFIG_FAIR_GROUP_SCHED
900 p->se.cfs_rq = tg->cfs_rq[cpu];
901 p->se.parent = tg->se[cpu];
902#endif
903
904#ifdef CONFIG_RT_GROUP_SCHED
905 p->rt.rt_rq = tg->rt_rq[cpu];
906 p->rt.parent = tg->rt_se[cpu];
907#endif
908}
909
910#else /* CONFIG_CGROUP_SCHED */
911
912static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
913static inline struct task_group *task_group(struct task_struct *p)
914{
915 return NULL;
916}
917
918#endif /* CONFIG_CGROUP_SCHED */
919
920static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
921{
922 set_task_rq(p, cpu);
923#ifdef CONFIG_SMP
924 /*
925 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
926 * successfuly executed on another CPU. We must ensure that updates of
927 * per-task data have been completed by this moment.
928 */
929 smp_wmb();
930 task_thread_info(p)->cpu = cpu;
ac66f547 931 p->wake_cpu = cpu;
029632fb
PZ
932#endif
933}
934
935/*
936 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
937 */
938#ifdef CONFIG_SCHED_DEBUG
c5905afb 939# include <linux/static_key.h>
029632fb
PZ
940# define const_debug __read_mostly
941#else
942# define const_debug const
943#endif
944
945extern const_debug unsigned int sysctl_sched_features;
946
947#define SCHED_FEAT(name, enabled) \
948 __SCHED_FEAT_##name ,
949
950enum {
391e43da 951#include "features.h"
f8b6d1cc 952 __SCHED_FEAT_NR,
029632fb
PZ
953};
954
955#undef SCHED_FEAT
956
f8b6d1cc 957#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 958#define SCHED_FEAT(name, enabled) \
c5905afb 959static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 960{ \
6e76ea8a 961 return static_key_##enabled(key); \
f8b6d1cc
PZ
962}
963
964#include "features.h"
965
966#undef SCHED_FEAT
967
c5905afb 968extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
969#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
970#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 971#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 972#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 973
cbee9f88
PZ
974#ifdef CONFIG_NUMA_BALANCING
975#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
976#ifdef CONFIG_SCHED_DEBUG
977#define numabalancing_enabled sched_feat_numa(NUMA)
978#else
979extern bool numabalancing_enabled;
980#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
981#else
982#define sched_feat_numa(x) (0)
3105b86a
MG
983#define numabalancing_enabled (0)
984#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 985
029632fb
PZ
986static inline u64 global_rt_period(void)
987{
988 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
989}
990
991static inline u64 global_rt_runtime(void)
992{
993 if (sysctl_sched_rt_runtime < 0)
994 return RUNTIME_INF;
995
996 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
997}
998
029632fb
PZ
999static inline int task_current(struct rq *rq, struct task_struct *p)
1000{
1001 return rq->curr == p;
1002}
1003
1004static inline int task_running(struct rq *rq, struct task_struct *p)
1005{
1006#ifdef CONFIG_SMP
1007 return p->on_cpu;
1008#else
1009 return task_current(rq, p);
1010#endif
1011}
1012
da0c1e65
KT
1013static inline int task_on_rq_queued(struct task_struct *p)
1014{
1015 return p->on_rq == TASK_ON_RQ_QUEUED;
1016}
029632fb 1017
cca26e80
KT
1018static inline int task_on_rq_migrating(struct task_struct *p)
1019{
1020 return p->on_rq == TASK_ON_RQ_MIGRATING;
1021}
1022
029632fb
PZ
1023#ifndef prepare_arch_switch
1024# define prepare_arch_switch(next) do { } while (0)
1025#endif
1026#ifndef finish_arch_switch
1027# define finish_arch_switch(prev) do { } while (0)
1028#endif
01f23e16
CM
1029#ifndef finish_arch_post_lock_switch
1030# define finish_arch_post_lock_switch() do { } while (0)
1031#endif
029632fb 1032
029632fb
PZ
1033static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1034{
1035#ifdef CONFIG_SMP
1036 /*
1037 * We can optimise this out completely for !SMP, because the
1038 * SMP rebalancing from interrupt is the only thing that cares
1039 * here.
1040 */
1041 next->on_cpu = 1;
1042#endif
1043}
1044
1045static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1046{
1047#ifdef CONFIG_SMP
1048 /*
1049 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1050 * We must ensure this doesn't happen until the switch is completely
1051 * finished.
1052 */
1053 smp_wmb();
1054 prev->on_cpu = 0;
1055#endif
1056#ifdef CONFIG_DEBUG_SPINLOCK
1057 /* this is a valid case when another task releases the spinlock */
1058 rq->lock.owner = current;
1059#endif
1060 /*
1061 * If we are tracking spinlock dependencies then we have to
1062 * fix up the runqueue lock - which gets 'carried over' from
1063 * prev into current:
1064 */
1065 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1066
1067 raw_spin_unlock_irq(&rq->lock);
1068}
1069
b13095f0
LZ
1070/*
1071 * wake flags
1072 */
1073#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1074#define WF_FORK 0x02 /* child wakeup after fork */
1075#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1076
029632fb
PZ
1077/*
1078 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1079 * of tasks with abnormal "nice" values across CPUs the contribution that
1080 * each task makes to its run queue's load is weighted according to its
1081 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1082 * scaled version of the new time slice allocation that they receive on time
1083 * slice expiry etc.
1084 */
1085
1086#define WEIGHT_IDLEPRIO 3
1087#define WMULT_IDLEPRIO 1431655765
1088
1089/*
1090 * Nice levels are multiplicative, with a gentle 10% change for every
1091 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1092 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1093 * that remained on nice 0.
1094 *
1095 * The "10% effect" is relative and cumulative: from _any_ nice level,
1096 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1097 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1098 * If a task goes up by ~10% and another task goes down by ~10% then
1099 * the relative distance between them is ~25%.)
1100 */
1101static const int prio_to_weight[40] = {
1102 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1103 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1104 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1105 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1106 /* 0 */ 1024, 820, 655, 526, 423,
1107 /* 5 */ 335, 272, 215, 172, 137,
1108 /* 10 */ 110, 87, 70, 56, 45,
1109 /* 15 */ 36, 29, 23, 18, 15,
1110};
1111
1112/*
1113 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1114 *
1115 * In cases where the weight does not change often, we can use the
1116 * precalculated inverse to speed up arithmetics by turning divisions
1117 * into multiplications:
1118 */
1119static const u32 prio_to_wmult[40] = {
1120 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1121 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1122 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1123 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1124 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1125 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1126 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1127 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1128};
1129
c82ba9fa
LZ
1130#define ENQUEUE_WAKEUP 1
1131#define ENQUEUE_HEAD 2
1132#ifdef CONFIG_SMP
1133#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1134#else
1135#define ENQUEUE_WAKING 0
1136#endif
aab03e05 1137#define ENQUEUE_REPLENISH 8
c82ba9fa
LZ
1138
1139#define DEQUEUE_SLEEP 1
1140
37e117c0
PZ
1141#define RETRY_TASK ((void *)-1UL)
1142
c82ba9fa
LZ
1143struct sched_class {
1144 const struct sched_class *next;
1145
1146 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1147 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1148 void (*yield_task) (struct rq *rq);
1149 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1150
1151 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1152
606dba2e
PZ
1153 /*
1154 * It is the responsibility of the pick_next_task() method that will
1155 * return the next task to call put_prev_task() on the @prev task or
1156 * something equivalent.
37e117c0
PZ
1157 *
1158 * May return RETRY_TASK when it finds a higher prio class has runnable
1159 * tasks.
606dba2e
PZ
1160 */
1161 struct task_struct * (*pick_next_task) (struct rq *rq,
1162 struct task_struct *prev);
c82ba9fa
LZ
1163 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1164
1165#ifdef CONFIG_SMP
ac66f547 1166 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
c82ba9fa
LZ
1167 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1168
c82ba9fa
LZ
1169 void (*post_schedule) (struct rq *this_rq);
1170 void (*task_waking) (struct task_struct *task);
1171 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1172
1173 void (*set_cpus_allowed)(struct task_struct *p,
1174 const struct cpumask *newmask);
1175
1176 void (*rq_online)(struct rq *rq);
1177 void (*rq_offline)(struct rq *rq);
1178#endif
1179
1180 void (*set_curr_task) (struct rq *rq);
1181 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1182 void (*task_fork) (struct task_struct *p);
e6c390f2 1183 void (*task_dead) (struct task_struct *p);
c82ba9fa 1184
67dfa1b7
KT
1185 /*
1186 * The switched_from() call is allowed to drop rq->lock, therefore we
1187 * cannot assume the switched_from/switched_to pair is serliazed by
1188 * rq->lock. They are however serialized by p->pi_lock.
1189 */
c82ba9fa
LZ
1190 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1191 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1192 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1193 int oldprio);
1194
1195 unsigned int (*get_rr_interval) (struct rq *rq,
1196 struct task_struct *task);
1197
6e998916
SG
1198 void (*update_curr) (struct rq *rq);
1199
c82ba9fa
LZ
1200#ifdef CONFIG_FAIR_GROUP_SCHED
1201 void (*task_move_group) (struct task_struct *p, int on_rq);
1202#endif
1203};
029632fb 1204
3f1d2a31
PZ
1205static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1206{
1207 prev->sched_class->put_prev_task(rq, prev);
1208}
1209
029632fb
PZ
1210#define sched_class_highest (&stop_sched_class)
1211#define for_each_class(class) \
1212 for (class = sched_class_highest; class; class = class->next)
1213
1214extern const struct sched_class stop_sched_class;
aab03e05 1215extern const struct sched_class dl_sched_class;
029632fb
PZ
1216extern const struct sched_class rt_sched_class;
1217extern const struct sched_class fair_sched_class;
1218extern const struct sched_class idle_sched_class;
1219
1220
1221#ifdef CONFIG_SMP
1222
63b2ca30 1223extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1224
7caff66f 1225extern void trigger_load_balance(struct rq *rq);
029632fb 1226
642dbc39
VG
1227extern void idle_enter_fair(struct rq *this_rq);
1228extern void idle_exit_fair(struct rq *this_rq);
642dbc39 1229
dc877341
PZ
1230#else
1231
1232static inline void idle_enter_fair(struct rq *rq) { }
1233static inline void idle_exit_fair(struct rq *rq) { }
1234
029632fb
PZ
1235#endif
1236
442bf3aa
DL
1237#ifdef CONFIG_CPU_IDLE
1238static inline void idle_set_state(struct rq *rq,
1239 struct cpuidle_state *idle_state)
1240{
1241 rq->idle_state = idle_state;
1242}
1243
1244static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1245{
1246 WARN_ON(!rcu_read_lock_held());
1247 return rq->idle_state;
1248}
1249#else
1250static inline void idle_set_state(struct rq *rq,
1251 struct cpuidle_state *idle_state)
1252{
1253}
1254
1255static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1256{
1257 return NULL;
1258}
1259#endif
1260
029632fb
PZ
1261extern void sysrq_sched_debug_show(void);
1262extern void sched_init_granularity(void);
1263extern void update_max_interval(void);
1baca4ce
JL
1264
1265extern void init_sched_dl_class(void);
029632fb
PZ
1266extern void init_sched_rt_class(void);
1267extern void init_sched_fair_class(void);
332ac17e 1268extern void init_sched_dl_class(void);
029632fb 1269
8875125e 1270extern void resched_curr(struct rq *rq);
029632fb
PZ
1271extern void resched_cpu(int cpu);
1272
1273extern struct rt_bandwidth def_rt_bandwidth;
1274extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1275
332ac17e
DF
1276extern struct dl_bandwidth def_dl_bandwidth;
1277extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1278extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1279
332ac17e
DF
1280unsigned long to_ratio(u64 period, u64 runtime);
1281
556061b0 1282extern void update_idle_cpu_load(struct rq *this_rq);
029632fb 1283
a75cdaa9
AS
1284extern void init_task_runnable_average(struct task_struct *p);
1285
72465447 1286static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1287{
72465447
KT
1288 unsigned prev_nr = rq->nr_running;
1289
1290 rq->nr_running = prev_nr + count;
9f3660c2 1291
72465447 1292 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1293#ifdef CONFIG_SMP
1294 if (!rq->rd->overload)
1295 rq->rd->overload = true;
1296#endif
1297
1298#ifdef CONFIG_NO_HZ_FULL
9f3660c2 1299 if (tick_nohz_full_cpu(rq->cpu)) {
3882ec64
FW
1300 /*
1301 * Tick is needed if more than one task runs on a CPU.
1302 * Send the target an IPI to kick it out of nohz mode.
1303 *
1304 * We assume that IPI implies full memory barrier and the
1305 * new value of rq->nr_running is visible on reception
1306 * from the target.
1307 */
fd2ac4f4 1308 tick_nohz_full_kick_cpu(rq->cpu);
9f3660c2 1309 }
9f3660c2 1310#endif
4486edd1 1311 }
029632fb
PZ
1312}
1313
72465447 1314static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1315{
72465447 1316 rq->nr_running -= count;
029632fb
PZ
1317}
1318
265f22a9
FW
1319static inline void rq_last_tick_reset(struct rq *rq)
1320{
1321#ifdef CONFIG_NO_HZ_FULL
1322 rq->last_sched_tick = jiffies;
1323#endif
1324}
1325
029632fb
PZ
1326extern void update_rq_clock(struct rq *rq);
1327
1328extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1329extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1330
1331extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1332
1333extern const_debug unsigned int sysctl_sched_time_avg;
1334extern const_debug unsigned int sysctl_sched_nr_migrate;
1335extern const_debug unsigned int sysctl_sched_migration_cost;
1336
1337static inline u64 sched_avg_period(void)
1338{
1339 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1340}
1341
029632fb
PZ
1342#ifdef CONFIG_SCHED_HRTICK
1343
1344/*
1345 * Use hrtick when:
1346 * - enabled by features
1347 * - hrtimer is actually high res
1348 */
1349static inline int hrtick_enabled(struct rq *rq)
1350{
1351 if (!sched_feat(HRTICK))
1352 return 0;
1353 if (!cpu_active(cpu_of(rq)))
1354 return 0;
1355 return hrtimer_is_hres_active(&rq->hrtick_timer);
1356}
1357
1358void hrtick_start(struct rq *rq, u64 delay);
1359
b39e66ea
MG
1360#else
1361
1362static inline int hrtick_enabled(struct rq *rq)
1363{
1364 return 0;
1365}
1366
029632fb
PZ
1367#endif /* CONFIG_SCHED_HRTICK */
1368
1369#ifdef CONFIG_SMP
1370extern void sched_avg_update(struct rq *rq);
1371static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1372{
1373 rq->rt_avg += rt_delta;
1374 sched_avg_update(rq);
1375}
1376#else
1377static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1378static inline void sched_avg_update(struct rq *rq) { }
1379#endif
1380
1381extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1382
3960c8c0
PZ
1383/*
1384 * __task_rq_lock - lock the rq @p resides on.
1385 */
1386static inline struct rq *__task_rq_lock(struct task_struct *p)
1387 __acquires(rq->lock)
1388{
1389 struct rq *rq;
1390
1391 lockdep_assert_held(&p->pi_lock);
1392
1393 for (;;) {
1394 rq = task_rq(p);
1395 raw_spin_lock(&rq->lock);
1396 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1397 return rq;
1398 raw_spin_unlock(&rq->lock);
1399
1400 while (unlikely(task_on_rq_migrating(p)))
1401 cpu_relax();
1402 }
1403}
1404
1405/*
1406 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1407 */
1408static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1409 __acquires(p->pi_lock)
1410 __acquires(rq->lock)
1411{
1412 struct rq *rq;
1413
1414 for (;;) {
1415 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1416 rq = task_rq(p);
1417 raw_spin_lock(&rq->lock);
1418 /*
1419 * move_queued_task() task_rq_lock()
1420 *
1421 * ACQUIRE (rq->lock)
1422 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
1423 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
1424 * [S] ->cpu = new_cpu [L] task_rq()
1425 * [L] ->on_rq
1426 * RELEASE (rq->lock)
1427 *
1428 * If we observe the old cpu in task_rq_lock, the acquire of
1429 * the old rq->lock will fully serialize against the stores.
1430 *
1431 * If we observe the new cpu in task_rq_lock, the acquire will
1432 * pair with the WMB to ensure we must then also see migrating.
1433 */
1434 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1435 return rq;
1436 raw_spin_unlock(&rq->lock);
1437 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1438
1439 while (unlikely(task_on_rq_migrating(p)))
1440 cpu_relax();
1441 }
1442}
1443
1444static inline void __task_rq_unlock(struct rq *rq)
1445 __releases(rq->lock)
1446{
1447 raw_spin_unlock(&rq->lock);
1448}
1449
1450static inline void
1451task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1452 __releases(rq->lock)
1453 __releases(p->pi_lock)
1454{
1455 raw_spin_unlock(&rq->lock);
1456 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1457}
1458
029632fb
PZ
1459#ifdef CONFIG_SMP
1460#ifdef CONFIG_PREEMPT
1461
1462static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1463
1464/*
1465 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1466 * way at the expense of forcing extra atomic operations in all
1467 * invocations. This assures that the double_lock is acquired using the
1468 * same underlying policy as the spinlock_t on this architecture, which
1469 * reduces latency compared to the unfair variant below. However, it
1470 * also adds more overhead and therefore may reduce throughput.
1471 */
1472static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1473 __releases(this_rq->lock)
1474 __acquires(busiest->lock)
1475 __acquires(this_rq->lock)
1476{
1477 raw_spin_unlock(&this_rq->lock);
1478 double_rq_lock(this_rq, busiest);
1479
1480 return 1;
1481}
1482
1483#else
1484/*
1485 * Unfair double_lock_balance: Optimizes throughput at the expense of
1486 * latency by eliminating extra atomic operations when the locks are
1487 * already in proper order on entry. This favors lower cpu-ids and will
1488 * grant the double lock to lower cpus over higher ids under contention,
1489 * regardless of entry order into the function.
1490 */
1491static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1492 __releases(this_rq->lock)
1493 __acquires(busiest->lock)
1494 __acquires(this_rq->lock)
1495{
1496 int ret = 0;
1497
1498 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1499 if (busiest < this_rq) {
1500 raw_spin_unlock(&this_rq->lock);
1501 raw_spin_lock(&busiest->lock);
1502 raw_spin_lock_nested(&this_rq->lock,
1503 SINGLE_DEPTH_NESTING);
1504 ret = 1;
1505 } else
1506 raw_spin_lock_nested(&busiest->lock,
1507 SINGLE_DEPTH_NESTING);
1508 }
1509 return ret;
1510}
1511
1512#endif /* CONFIG_PREEMPT */
1513
1514/*
1515 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1516 */
1517static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1518{
1519 if (unlikely(!irqs_disabled())) {
1520 /* printk() doesn't work good under rq->lock */
1521 raw_spin_unlock(&this_rq->lock);
1522 BUG_ON(1);
1523 }
1524
1525 return _double_lock_balance(this_rq, busiest);
1526}
1527
1528static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1529 __releases(busiest->lock)
1530{
1531 raw_spin_unlock(&busiest->lock);
1532 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1533}
1534
74602315
PZ
1535static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1536{
1537 if (l1 > l2)
1538 swap(l1, l2);
1539
1540 spin_lock(l1);
1541 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1542}
1543
60e69eed
MG
1544static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1545{
1546 if (l1 > l2)
1547 swap(l1, l2);
1548
1549 spin_lock_irq(l1);
1550 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1551}
1552
74602315
PZ
1553static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1554{
1555 if (l1 > l2)
1556 swap(l1, l2);
1557
1558 raw_spin_lock(l1);
1559 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1560}
1561
029632fb
PZ
1562/*
1563 * double_rq_lock - safely lock two runqueues
1564 *
1565 * Note this does not disable interrupts like task_rq_lock,
1566 * you need to do so manually before calling.
1567 */
1568static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1569 __acquires(rq1->lock)
1570 __acquires(rq2->lock)
1571{
1572 BUG_ON(!irqs_disabled());
1573 if (rq1 == rq2) {
1574 raw_spin_lock(&rq1->lock);
1575 __acquire(rq2->lock); /* Fake it out ;) */
1576 } else {
1577 if (rq1 < rq2) {
1578 raw_spin_lock(&rq1->lock);
1579 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1580 } else {
1581 raw_spin_lock(&rq2->lock);
1582 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1583 }
1584 }
1585}
1586
1587/*
1588 * double_rq_unlock - safely unlock two runqueues
1589 *
1590 * Note this does not restore interrupts like task_rq_unlock,
1591 * you need to do so manually after calling.
1592 */
1593static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1594 __releases(rq1->lock)
1595 __releases(rq2->lock)
1596{
1597 raw_spin_unlock(&rq1->lock);
1598 if (rq1 != rq2)
1599 raw_spin_unlock(&rq2->lock);
1600 else
1601 __release(rq2->lock);
1602}
1603
1604#else /* CONFIG_SMP */
1605
1606/*
1607 * double_rq_lock - safely lock two runqueues
1608 *
1609 * Note this does not disable interrupts like task_rq_lock,
1610 * you need to do so manually before calling.
1611 */
1612static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1613 __acquires(rq1->lock)
1614 __acquires(rq2->lock)
1615{
1616 BUG_ON(!irqs_disabled());
1617 BUG_ON(rq1 != rq2);
1618 raw_spin_lock(&rq1->lock);
1619 __acquire(rq2->lock); /* Fake it out ;) */
1620}
1621
1622/*
1623 * double_rq_unlock - safely unlock two runqueues
1624 *
1625 * Note this does not restore interrupts like task_rq_unlock,
1626 * you need to do so manually after calling.
1627 */
1628static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1629 __releases(rq1->lock)
1630 __releases(rq2->lock)
1631{
1632 BUG_ON(rq1 != rq2);
1633 raw_spin_unlock(&rq1->lock);
1634 __release(rq2->lock);
1635}
1636
1637#endif
1638
1639extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1640extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1641extern void print_cfs_stats(struct seq_file *m, int cpu);
1642extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 1643extern void print_dl_stats(struct seq_file *m, int cpu);
029632fb
PZ
1644
1645extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1646extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
aab03e05 1647extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
029632fb 1648
1ee14e6c
BS
1649extern void cfs_bandwidth_usage_inc(void);
1650extern void cfs_bandwidth_usage_dec(void);
1c792db7 1651
3451d024 1652#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1653enum rq_nohz_flag_bits {
1654 NOHZ_TICK_STOPPED,
1655 NOHZ_BALANCE_KICK,
1656};
1657
1658#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1659#endif
73fbec60
FW
1660
1661#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1662
1663DECLARE_PER_CPU(u64, cpu_hardirq_time);
1664DECLARE_PER_CPU(u64, cpu_softirq_time);
1665
1666#ifndef CONFIG_64BIT
1667DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1668
1669static inline void irq_time_write_begin(void)
1670{
1671 __this_cpu_inc(irq_time_seq.sequence);
1672 smp_wmb();
1673}
1674
1675static inline void irq_time_write_end(void)
1676{
1677 smp_wmb();
1678 __this_cpu_inc(irq_time_seq.sequence);
1679}
1680
1681static inline u64 irq_time_read(int cpu)
1682{
1683 u64 irq_time;
1684 unsigned seq;
1685
1686 do {
1687 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1688 irq_time = per_cpu(cpu_softirq_time, cpu) +
1689 per_cpu(cpu_hardirq_time, cpu);
1690 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1691
1692 return irq_time;
1693}
1694#else /* CONFIG_64BIT */
1695static inline void irq_time_write_begin(void)
1696{
1697}
1698
1699static inline void irq_time_write_end(void)
1700{
1701}
1702
1703static inline u64 irq_time_read(int cpu)
1704{
1705 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1706}
1707#endif /* CONFIG_64BIT */
1708#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
This page took 0.191057 seconds and 5 git commands to generate.