Merge tag 'ntb-4.4' of git://github.com/jonmason/ntb
[deliverable/linux.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
029632fb
PZ
6#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
b6366f04 9#include <linux/irq_work.h>
9f3660c2 10#include <linux/tick.h>
f809ca9a 11#include <linux/slab.h>
029632fb 12
391e43da 13#include "cpupri.h"
6bfd6d72 14#include "cpudeadline.h"
60fed789 15#include "cpuacct.h"
029632fb 16
45ceebf7 17struct rq;
442bf3aa 18struct cpuidle_state;
45ceebf7 19
da0c1e65
KT
20/* task_struct::on_rq states: */
21#define TASK_ON_RQ_QUEUED 1
cca26e80 22#define TASK_ON_RQ_MIGRATING 2
da0c1e65 23
029632fb
PZ
24extern __read_mostly int scheduler_running;
25
45ceebf7
PG
26extern unsigned long calc_load_update;
27extern atomic_long_t calc_load_tasks;
28
3289bdb4 29extern void calc_global_load_tick(struct rq *this_rq);
45ceebf7 30extern long calc_load_fold_active(struct rq *this_rq);
3289bdb4
PZ
31
32#ifdef CONFIG_SMP
45ceebf7 33extern void update_cpu_load_active(struct rq *this_rq);
3289bdb4
PZ
34#else
35static inline void update_cpu_load_active(struct rq *this_rq) { }
36#endif
45ceebf7 37
029632fb
PZ
38/*
39 * Helpers for converting nanosecond timing to jiffy resolution
40 */
41#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
42
cc1f4b1f
LZ
43/*
44 * Increase resolution of nice-level calculations for 64-bit architectures.
45 * The extra resolution improves shares distribution and load balancing of
46 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
47 * hierarchies, especially on larger systems. This is not a user-visible change
48 * and does not change the user-interface for setting shares/weights.
49 *
50 * We increase resolution only if we have enough bits to allow this increased
51 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
52 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
53 * increased costs.
54 */
55#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
56# define SCHED_LOAD_RESOLUTION 10
57# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
58# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
59#else
60# define SCHED_LOAD_RESOLUTION 0
61# define scale_load(w) (w)
62# define scale_load_down(w) (w)
63#endif
64
65#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
66#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
67
029632fb
PZ
68#define NICE_0_LOAD SCHED_LOAD_SCALE
69#define NICE_0_SHIFT SCHED_LOAD_SHIFT
70
332ac17e
DF
71/*
72 * Single value that decides SCHED_DEADLINE internal math precision.
73 * 10 -> just above 1us
74 * 9 -> just above 0.5us
75 */
76#define DL_SCALE (10)
77
029632fb
PZ
78/*
79 * These are the 'tuning knobs' of the scheduler:
029632fb 80 */
029632fb
PZ
81
82/*
83 * single value that denotes runtime == period, ie unlimited time.
84 */
85#define RUNTIME_INF ((u64)~0ULL)
86
20f9cd2a
HA
87static inline int idle_policy(int policy)
88{
89 return policy == SCHED_IDLE;
90}
d50dde5a
DF
91static inline int fair_policy(int policy)
92{
93 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
94}
95
029632fb
PZ
96static inline int rt_policy(int policy)
97{
d50dde5a 98 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
99}
100
aab03e05
DF
101static inline int dl_policy(int policy)
102{
103 return policy == SCHED_DEADLINE;
104}
20f9cd2a
HA
105static inline bool valid_policy(int policy)
106{
107 return idle_policy(policy) || fair_policy(policy) ||
108 rt_policy(policy) || dl_policy(policy);
109}
aab03e05 110
029632fb
PZ
111static inline int task_has_rt_policy(struct task_struct *p)
112{
113 return rt_policy(p->policy);
114}
115
aab03e05
DF
116static inline int task_has_dl_policy(struct task_struct *p)
117{
118 return dl_policy(p->policy);
119}
120
2d3d891d
DF
121/*
122 * Tells if entity @a should preempt entity @b.
123 */
332ac17e
DF
124static inline bool
125dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
126{
127 return dl_time_before(a->deadline, b->deadline);
128}
129
029632fb
PZ
130/*
131 * This is the priority-queue data structure of the RT scheduling class:
132 */
133struct rt_prio_array {
134 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
135 struct list_head queue[MAX_RT_PRIO];
136};
137
138struct rt_bandwidth {
139 /* nests inside the rq lock: */
140 raw_spinlock_t rt_runtime_lock;
141 ktime_t rt_period;
142 u64 rt_runtime;
143 struct hrtimer rt_period_timer;
4cfafd30 144 unsigned int rt_period_active;
029632fb 145};
a5e7be3b
JL
146
147void __dl_clear_params(struct task_struct *p);
148
332ac17e
DF
149/*
150 * To keep the bandwidth of -deadline tasks and groups under control
151 * we need some place where:
152 * - store the maximum -deadline bandwidth of the system (the group);
153 * - cache the fraction of that bandwidth that is currently allocated.
154 *
155 * This is all done in the data structure below. It is similar to the
156 * one used for RT-throttling (rt_bandwidth), with the main difference
157 * that, since here we are only interested in admission control, we
158 * do not decrease any runtime while the group "executes", neither we
159 * need a timer to replenish it.
160 *
161 * With respect to SMP, the bandwidth is given on a per-CPU basis,
162 * meaning that:
163 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
164 * - dl_total_bw array contains, in the i-eth element, the currently
165 * allocated bandwidth on the i-eth CPU.
166 * Moreover, groups consume bandwidth on each CPU, while tasks only
167 * consume bandwidth on the CPU they're running on.
168 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
169 * that will be shown the next time the proc or cgroup controls will
170 * be red. It on its turn can be changed by writing on its own
171 * control.
172 */
173struct dl_bandwidth {
174 raw_spinlock_t dl_runtime_lock;
175 u64 dl_runtime;
176 u64 dl_period;
177};
178
179static inline int dl_bandwidth_enabled(void)
180{
1724813d 181 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
182}
183
184extern struct dl_bw *dl_bw_of(int i);
185
186struct dl_bw {
187 raw_spinlock_t lock;
188 u64 bw, total_bw;
189};
190
7f51412a
JL
191static inline
192void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
193{
194 dl_b->total_bw -= tsk_bw;
195}
196
197static inline
198void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
199{
200 dl_b->total_bw += tsk_bw;
201}
202
203static inline
204bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
205{
206 return dl_b->bw != -1 &&
207 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
208}
209
029632fb
PZ
210extern struct mutex sched_domains_mutex;
211
212#ifdef CONFIG_CGROUP_SCHED
213
214#include <linux/cgroup.h>
215
216struct cfs_rq;
217struct rt_rq;
218
35cf4e50 219extern struct list_head task_groups;
029632fb
PZ
220
221struct cfs_bandwidth {
222#ifdef CONFIG_CFS_BANDWIDTH
223 raw_spinlock_t lock;
224 ktime_t period;
225 u64 quota, runtime;
9c58c79a 226 s64 hierarchical_quota;
029632fb
PZ
227 u64 runtime_expires;
228
4cfafd30 229 int idle, period_active;
029632fb
PZ
230 struct hrtimer period_timer, slack_timer;
231 struct list_head throttled_cfs_rq;
232
233 /* statistics */
234 int nr_periods, nr_throttled;
235 u64 throttled_time;
236#endif
237};
238
239/* task group related information */
240struct task_group {
241 struct cgroup_subsys_state css;
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244 /* schedulable entities of this group on each cpu */
245 struct sched_entity **se;
246 /* runqueue "owned" by this group on each cpu */
247 struct cfs_rq **cfs_rq;
248 unsigned long shares;
249
fa6bddeb 250#ifdef CONFIG_SMP
bf5b986e 251 atomic_long_t load_avg;
029632fb 252#endif
fa6bddeb 253#endif
029632fb
PZ
254
255#ifdef CONFIG_RT_GROUP_SCHED
256 struct sched_rt_entity **rt_se;
257 struct rt_rq **rt_rq;
258
259 struct rt_bandwidth rt_bandwidth;
260#endif
261
262 struct rcu_head rcu;
263 struct list_head list;
264
265 struct task_group *parent;
266 struct list_head siblings;
267 struct list_head children;
268
269#ifdef CONFIG_SCHED_AUTOGROUP
270 struct autogroup *autogroup;
271#endif
272
273 struct cfs_bandwidth cfs_bandwidth;
274};
275
276#ifdef CONFIG_FAIR_GROUP_SCHED
277#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
278
279/*
280 * A weight of 0 or 1 can cause arithmetics problems.
281 * A weight of a cfs_rq is the sum of weights of which entities
282 * are queued on this cfs_rq, so a weight of a entity should not be
283 * too large, so as the shares value of a task group.
284 * (The default weight is 1024 - so there's no practical
285 * limitation from this.)
286 */
287#define MIN_SHARES (1UL << 1)
288#define MAX_SHARES (1UL << 18)
289#endif
290
029632fb
PZ
291typedef int (*tg_visitor)(struct task_group *, void *);
292
293extern int walk_tg_tree_from(struct task_group *from,
294 tg_visitor down, tg_visitor up, void *data);
295
296/*
297 * Iterate the full tree, calling @down when first entering a node and @up when
298 * leaving it for the final time.
299 *
300 * Caller must hold rcu_lock or sufficient equivalent.
301 */
302static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
303{
304 return walk_tg_tree_from(&root_task_group, down, up, data);
305}
306
307extern int tg_nop(struct task_group *tg, void *data);
308
309extern void free_fair_sched_group(struct task_group *tg);
310extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
311extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
312extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
313 struct sched_entity *se, int cpu,
314 struct sched_entity *parent);
315extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
316extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
317
318extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 319extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
320extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
321
322extern void free_rt_sched_group(struct task_group *tg);
323extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
324extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
325 struct sched_rt_entity *rt_se, int cpu,
326 struct sched_rt_entity *parent);
327
25cc7da7
LZ
328extern struct task_group *sched_create_group(struct task_group *parent);
329extern void sched_online_group(struct task_group *tg,
330 struct task_group *parent);
331extern void sched_destroy_group(struct task_group *tg);
332extern void sched_offline_group(struct task_group *tg);
333
334extern void sched_move_task(struct task_struct *tsk);
335
336#ifdef CONFIG_FAIR_GROUP_SCHED
337extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
338#endif
339
029632fb
PZ
340#else /* CONFIG_CGROUP_SCHED */
341
342struct cfs_bandwidth { };
343
344#endif /* CONFIG_CGROUP_SCHED */
345
346/* CFS-related fields in a runqueue */
347struct cfs_rq {
348 struct load_weight load;
c82513e5 349 unsigned int nr_running, h_nr_running;
029632fb
PZ
350
351 u64 exec_clock;
352 u64 min_vruntime;
353#ifndef CONFIG_64BIT
354 u64 min_vruntime_copy;
355#endif
356
357 struct rb_root tasks_timeline;
358 struct rb_node *rb_leftmost;
359
029632fb
PZ
360 /*
361 * 'curr' points to currently running entity on this cfs_rq.
362 * It is set to NULL otherwise (i.e when none are currently running).
363 */
364 struct sched_entity *curr, *next, *last, *skip;
365
366#ifdef CONFIG_SCHED_DEBUG
367 unsigned int nr_spread_over;
368#endif
369
2dac754e
PT
370#ifdef CONFIG_SMP
371 /*
9d89c257 372 * CFS load tracking
2dac754e 373 */
9d89c257 374 struct sched_avg avg;
13962234
YD
375 u64 runnable_load_sum;
376 unsigned long runnable_load_avg;
c566e8e9 377#ifdef CONFIG_FAIR_GROUP_SCHED
9d89c257
YD
378 unsigned long tg_load_avg_contrib;
379#endif
380 atomic_long_t removed_load_avg, removed_util_avg;
381#ifndef CONFIG_64BIT
382 u64 load_last_update_time_copy;
383#endif
82958366 384
9d89c257 385#ifdef CONFIG_FAIR_GROUP_SCHED
82958366
PT
386 /*
387 * h_load = weight * f(tg)
388 *
389 * Where f(tg) is the recursive weight fraction assigned to
390 * this group.
391 */
392 unsigned long h_load;
68520796
VD
393 u64 last_h_load_update;
394 struct sched_entity *h_load_next;
395#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
396#endif /* CONFIG_SMP */
397
029632fb
PZ
398#ifdef CONFIG_FAIR_GROUP_SCHED
399 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
400
401 /*
402 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
403 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
404 * (like users, containers etc.)
405 *
406 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
407 * list is used during load balance.
408 */
409 int on_list;
410 struct list_head leaf_cfs_rq_list;
411 struct task_group *tg; /* group that "owns" this runqueue */
412
029632fb
PZ
413#ifdef CONFIG_CFS_BANDWIDTH
414 int runtime_enabled;
415 u64 runtime_expires;
416 s64 runtime_remaining;
417
f1b17280
PT
418 u64 throttled_clock, throttled_clock_task;
419 u64 throttled_clock_task_time;
029632fb
PZ
420 int throttled, throttle_count;
421 struct list_head throttled_list;
422#endif /* CONFIG_CFS_BANDWIDTH */
423#endif /* CONFIG_FAIR_GROUP_SCHED */
424};
425
426static inline int rt_bandwidth_enabled(void)
427{
428 return sysctl_sched_rt_runtime >= 0;
429}
430
b6366f04
SR
431/* RT IPI pull logic requires IRQ_WORK */
432#ifdef CONFIG_IRQ_WORK
433# define HAVE_RT_PUSH_IPI
434#endif
435
029632fb
PZ
436/* Real-Time classes' related field in a runqueue: */
437struct rt_rq {
438 struct rt_prio_array active;
c82513e5 439 unsigned int rt_nr_running;
029632fb
PZ
440#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
441 struct {
442 int curr; /* highest queued rt task prio */
443#ifdef CONFIG_SMP
444 int next; /* next highest */
445#endif
446 } highest_prio;
447#endif
448#ifdef CONFIG_SMP
449 unsigned long rt_nr_migratory;
450 unsigned long rt_nr_total;
451 int overloaded;
452 struct plist_head pushable_tasks;
b6366f04
SR
453#ifdef HAVE_RT_PUSH_IPI
454 int push_flags;
455 int push_cpu;
456 struct irq_work push_work;
457 raw_spinlock_t push_lock;
029632fb 458#endif
b6366f04 459#endif /* CONFIG_SMP */
f4ebcbc0
KT
460 int rt_queued;
461
029632fb
PZ
462 int rt_throttled;
463 u64 rt_time;
464 u64 rt_runtime;
465 /* Nests inside the rq lock: */
466 raw_spinlock_t rt_runtime_lock;
467
468#ifdef CONFIG_RT_GROUP_SCHED
469 unsigned long rt_nr_boosted;
470
471 struct rq *rq;
029632fb
PZ
472 struct task_group *tg;
473#endif
474};
475
aab03e05
DF
476/* Deadline class' related fields in a runqueue */
477struct dl_rq {
478 /* runqueue is an rbtree, ordered by deadline */
479 struct rb_root rb_root;
480 struct rb_node *rb_leftmost;
481
482 unsigned long dl_nr_running;
1baca4ce
JL
483
484#ifdef CONFIG_SMP
485 /*
486 * Deadline values of the currently executing and the
487 * earliest ready task on this rq. Caching these facilitates
488 * the decision wether or not a ready but not running task
489 * should migrate somewhere else.
490 */
491 struct {
492 u64 curr;
493 u64 next;
494 } earliest_dl;
495
496 unsigned long dl_nr_migratory;
1baca4ce
JL
497 int overloaded;
498
499 /*
500 * Tasks on this rq that can be pushed away. They are kept in
501 * an rb-tree, ordered by tasks' deadlines, with caching
502 * of the leftmost (earliest deadline) element.
503 */
504 struct rb_root pushable_dl_tasks_root;
505 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
506#else
507 struct dl_bw dl_bw;
1baca4ce 508#endif
aab03e05
DF
509};
510
029632fb
PZ
511#ifdef CONFIG_SMP
512
513/*
514 * We add the notion of a root-domain which will be used to define per-domain
515 * variables. Each exclusive cpuset essentially defines an island domain by
516 * fully partitioning the member cpus from any other cpuset. Whenever a new
517 * exclusive cpuset is created, we also create and attach a new root-domain
518 * object.
519 *
520 */
521struct root_domain {
522 atomic_t refcount;
523 atomic_t rto_count;
524 struct rcu_head rcu;
525 cpumask_var_t span;
526 cpumask_var_t online;
527
4486edd1
TC
528 /* Indicate more than one runnable task for any CPU */
529 bool overload;
530
1baca4ce
JL
531 /*
532 * The bit corresponding to a CPU gets set here if such CPU has more
533 * than one runnable -deadline task (as it is below for RT tasks).
534 */
535 cpumask_var_t dlo_mask;
536 atomic_t dlo_count;
332ac17e 537 struct dl_bw dl_bw;
6bfd6d72 538 struct cpudl cpudl;
1baca4ce 539
029632fb
PZ
540 /*
541 * The "RT overload" flag: it gets set if a CPU has more than
542 * one runnable RT task.
543 */
544 cpumask_var_t rto_mask;
545 struct cpupri cpupri;
546};
547
548extern struct root_domain def_root_domain;
549
550#endif /* CONFIG_SMP */
551
552/*
553 * This is the main, per-CPU runqueue data structure.
554 *
555 * Locking rule: those places that want to lock multiple runqueues
556 * (such as the load balancing or the thread migration code), lock
557 * acquire operations must be ordered by ascending &runqueue.
558 */
559struct rq {
560 /* runqueue lock: */
561 raw_spinlock_t lock;
562
563 /*
564 * nr_running and cpu_load should be in the same cacheline because
565 * remote CPUs use both these fields when doing load calculation.
566 */
c82513e5 567 unsigned int nr_running;
0ec8aa00
PZ
568#ifdef CONFIG_NUMA_BALANCING
569 unsigned int nr_numa_running;
570 unsigned int nr_preferred_running;
571#endif
029632fb
PZ
572 #define CPU_LOAD_IDX_MAX 5
573 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
574 unsigned long last_load_update_tick;
3451d024 575#ifdef CONFIG_NO_HZ_COMMON
029632fb 576 u64 nohz_stamp;
1c792db7 577 unsigned long nohz_flags;
265f22a9
FW
578#endif
579#ifdef CONFIG_NO_HZ_FULL
580 unsigned long last_sched_tick;
029632fb 581#endif
029632fb
PZ
582 /* capture load from *all* tasks on this cpu: */
583 struct load_weight load;
584 unsigned long nr_load_updates;
585 u64 nr_switches;
586
587 struct cfs_rq cfs;
588 struct rt_rq rt;
aab03e05 589 struct dl_rq dl;
029632fb
PZ
590
591#ifdef CONFIG_FAIR_GROUP_SCHED
592 /* list of leaf cfs_rq on this cpu: */
593 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
594#endif /* CONFIG_FAIR_GROUP_SCHED */
595
029632fb
PZ
596 /*
597 * This is part of a global counter where only the total sum
598 * over all CPUs matters. A task can increase this counter on
599 * one CPU and if it got migrated afterwards it may decrease
600 * it on another CPU. Always updated under the runqueue lock:
601 */
602 unsigned long nr_uninterruptible;
603
604 struct task_struct *curr, *idle, *stop;
605 unsigned long next_balance;
606 struct mm_struct *prev_mm;
607
9edfbfed 608 unsigned int clock_skip_update;
029632fb
PZ
609 u64 clock;
610 u64 clock_task;
611
612 atomic_t nr_iowait;
613
614#ifdef CONFIG_SMP
615 struct root_domain *rd;
616 struct sched_domain *sd;
617
ced549fa 618 unsigned long cpu_capacity;
ca6d75e6 619 unsigned long cpu_capacity_orig;
029632fb 620
e3fca9e7
PZ
621 struct callback_head *balance_callback;
622
029632fb
PZ
623 unsigned char idle_balance;
624 /* For active balancing */
029632fb
PZ
625 int active_balance;
626 int push_cpu;
627 struct cpu_stop_work active_balance_work;
628 /* cpu of this runqueue: */
629 int cpu;
630 int online;
631
367456c7
PZ
632 struct list_head cfs_tasks;
633
029632fb
PZ
634 u64 rt_avg;
635 u64 age_stamp;
636 u64 idle_stamp;
637 u64 avg_idle;
9bd721c5
JL
638
639 /* This is used to determine avg_idle's max value */
640 u64 max_idle_balance_cost;
029632fb
PZ
641#endif
642
643#ifdef CONFIG_IRQ_TIME_ACCOUNTING
644 u64 prev_irq_time;
645#endif
646#ifdef CONFIG_PARAVIRT
647 u64 prev_steal_time;
648#endif
649#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
650 u64 prev_steal_time_rq;
651#endif
652
653 /* calc_load related fields */
654 unsigned long calc_load_update;
655 long calc_load_active;
656
657#ifdef CONFIG_SCHED_HRTICK
658#ifdef CONFIG_SMP
659 int hrtick_csd_pending;
660 struct call_single_data hrtick_csd;
661#endif
662 struct hrtimer hrtick_timer;
663#endif
664
665#ifdef CONFIG_SCHEDSTATS
666 /* latency stats */
667 struct sched_info rq_sched_info;
668 unsigned long long rq_cpu_time;
669 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
670
671 /* sys_sched_yield() stats */
672 unsigned int yld_count;
673
674 /* schedule() stats */
029632fb
PZ
675 unsigned int sched_count;
676 unsigned int sched_goidle;
677
678 /* try_to_wake_up() stats */
679 unsigned int ttwu_count;
680 unsigned int ttwu_local;
681#endif
682
683#ifdef CONFIG_SMP
684 struct llist_head wake_list;
685#endif
442bf3aa
DL
686
687#ifdef CONFIG_CPU_IDLE
688 /* Must be inspected within a rcu lock section */
689 struct cpuidle_state *idle_state;
690#endif
029632fb
PZ
691};
692
693static inline int cpu_of(struct rq *rq)
694{
695#ifdef CONFIG_SMP
696 return rq->cpu;
697#else
698 return 0;
699#endif
700}
701
8b06c55b 702DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 703
518cd623 704#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 705#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
706#define task_rq(p) cpu_rq(task_cpu(p))
707#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 708#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 709
cebde6d6
PZ
710static inline u64 __rq_clock_broken(struct rq *rq)
711{
316c1608 712 return READ_ONCE(rq->clock);
cebde6d6
PZ
713}
714
78becc27
FW
715static inline u64 rq_clock(struct rq *rq)
716{
cebde6d6 717 lockdep_assert_held(&rq->lock);
78becc27
FW
718 return rq->clock;
719}
720
721static inline u64 rq_clock_task(struct rq *rq)
722{
cebde6d6 723 lockdep_assert_held(&rq->lock);
78becc27
FW
724 return rq->clock_task;
725}
726
9edfbfed
PZ
727#define RQCF_REQ_SKIP 0x01
728#define RQCF_ACT_SKIP 0x02
729
730static inline void rq_clock_skip_update(struct rq *rq, bool skip)
731{
732 lockdep_assert_held(&rq->lock);
733 if (skip)
734 rq->clock_skip_update |= RQCF_REQ_SKIP;
735 else
736 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
737}
738
9942f79b 739#ifdef CONFIG_NUMA
e3fe70b1
RR
740enum numa_topology_type {
741 NUMA_DIRECT,
742 NUMA_GLUELESS_MESH,
743 NUMA_BACKPLANE,
744};
745extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
746extern int sched_max_numa_distance;
747extern bool find_numa_distance(int distance);
748#endif
749
f809ca9a 750#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
751/* The regions in numa_faults array from task_struct */
752enum numa_faults_stats {
753 NUMA_MEM = 0,
754 NUMA_CPU,
755 NUMA_MEMBUF,
756 NUMA_CPUBUF
757};
0ec8aa00 758extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 759extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 760extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
761#endif /* CONFIG_NUMA_BALANCING */
762
518cd623
PZ
763#ifdef CONFIG_SMP
764
e3fca9e7
PZ
765static inline void
766queue_balance_callback(struct rq *rq,
767 struct callback_head *head,
768 void (*func)(struct rq *rq))
769{
770 lockdep_assert_held(&rq->lock);
771
772 if (unlikely(head->next))
773 return;
774
775 head->func = (void (*)(struct callback_head *))func;
776 head->next = rq->balance_callback;
777 rq->balance_callback = head;
778}
779
e3baac47
PZ
780extern void sched_ttwu_pending(void);
781
029632fb
PZ
782#define rcu_dereference_check_sched_domain(p) \
783 rcu_dereference_check((p), \
784 lockdep_is_held(&sched_domains_mutex))
785
786/*
787 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
788 * See detach_destroy_domains: synchronize_sched for details.
789 *
790 * The domain tree of any CPU may only be accessed from within
791 * preempt-disabled sections.
792 */
793#define for_each_domain(cpu, __sd) \
518cd623
PZ
794 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
795 __sd; __sd = __sd->parent)
029632fb 796
77e81365
SS
797#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
798
518cd623
PZ
799/**
800 * highest_flag_domain - Return highest sched_domain containing flag.
801 * @cpu: The cpu whose highest level of sched domain is to
802 * be returned.
803 * @flag: The flag to check for the highest sched_domain
804 * for the given cpu.
805 *
806 * Returns the highest sched_domain of a cpu which contains the given flag.
807 */
808static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
809{
810 struct sched_domain *sd, *hsd = NULL;
811
812 for_each_domain(cpu, sd) {
813 if (!(sd->flags & flag))
814 break;
815 hsd = sd;
816 }
817
818 return hsd;
819}
820
fb13c7ee
MG
821static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
822{
823 struct sched_domain *sd;
824
825 for_each_domain(cpu, sd) {
826 if (sd->flags & flag)
827 break;
828 }
829
830 return sd;
831}
832
518cd623 833DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 834DECLARE_PER_CPU(int, sd_llc_size);
518cd623 835DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 836DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
837DECLARE_PER_CPU(struct sched_domain *, sd_busy);
838DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 839
63b2ca30 840struct sched_group_capacity {
5e6521ea
LZ
841 atomic_t ref;
842 /*
63b2ca30
NP
843 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
844 * for a single CPU.
5e6521ea 845 */
dc7ff76e 846 unsigned int capacity;
5e6521ea 847 unsigned long next_update;
63b2ca30 848 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
849 /*
850 * Number of busy cpus in this group.
851 */
852 atomic_t nr_busy_cpus;
853
854 unsigned long cpumask[0]; /* iteration mask */
855};
856
857struct sched_group {
858 struct sched_group *next; /* Must be a circular list */
859 atomic_t ref;
860
861 unsigned int group_weight;
63b2ca30 862 struct sched_group_capacity *sgc;
5e6521ea
LZ
863
864 /*
865 * The CPUs this group covers.
866 *
867 * NOTE: this field is variable length. (Allocated dynamically
868 * by attaching extra space to the end of the structure,
869 * depending on how many CPUs the kernel has booted up with)
870 */
871 unsigned long cpumask[0];
872};
873
874static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
875{
876 return to_cpumask(sg->cpumask);
877}
878
879/*
880 * cpumask masking which cpus in the group are allowed to iterate up the domain
881 * tree.
882 */
883static inline struct cpumask *sched_group_mask(struct sched_group *sg)
884{
63b2ca30 885 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
886}
887
888/**
889 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
890 * @group: The group whose first cpu is to be returned.
891 */
892static inline unsigned int group_first_cpu(struct sched_group *group)
893{
894 return cpumask_first(sched_group_cpus(group));
895}
896
c1174876
PZ
897extern int group_balance_cpu(struct sched_group *sg);
898
e3baac47
PZ
899#else
900
901static inline void sched_ttwu_pending(void) { }
902
518cd623 903#endif /* CONFIG_SMP */
029632fb 904
391e43da
PZ
905#include "stats.h"
906#include "auto_group.h"
029632fb
PZ
907
908#ifdef CONFIG_CGROUP_SCHED
909
910/*
911 * Return the group to which this tasks belongs.
912 *
8af01f56
TH
913 * We cannot use task_css() and friends because the cgroup subsystem
914 * changes that value before the cgroup_subsys::attach() method is called,
915 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
916 *
917 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
918 * core changes this before calling sched_move_task().
919 *
920 * Instead we use a 'copy' which is updated from sched_move_task() while
921 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
922 */
923static inline struct task_group *task_group(struct task_struct *p)
924{
8323f26c 925 return p->sched_task_group;
029632fb
PZ
926}
927
928/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
929static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
930{
931#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
932 struct task_group *tg = task_group(p);
933#endif
934
935#ifdef CONFIG_FAIR_GROUP_SCHED
936 p->se.cfs_rq = tg->cfs_rq[cpu];
937 p->se.parent = tg->se[cpu];
938#endif
939
940#ifdef CONFIG_RT_GROUP_SCHED
941 p->rt.rt_rq = tg->rt_rq[cpu];
942 p->rt.parent = tg->rt_se[cpu];
943#endif
944}
945
946#else /* CONFIG_CGROUP_SCHED */
947
948static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
949static inline struct task_group *task_group(struct task_struct *p)
950{
951 return NULL;
952}
953
954#endif /* CONFIG_CGROUP_SCHED */
955
956static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
957{
958 set_task_rq(p, cpu);
959#ifdef CONFIG_SMP
960 /*
961 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
962 * successfuly executed on another CPU. We must ensure that updates of
963 * per-task data have been completed by this moment.
964 */
965 smp_wmb();
966 task_thread_info(p)->cpu = cpu;
ac66f547 967 p->wake_cpu = cpu;
029632fb
PZ
968#endif
969}
970
971/*
972 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
973 */
974#ifdef CONFIG_SCHED_DEBUG
c5905afb 975# include <linux/static_key.h>
029632fb
PZ
976# define const_debug __read_mostly
977#else
978# define const_debug const
979#endif
980
981extern const_debug unsigned int sysctl_sched_features;
982
983#define SCHED_FEAT(name, enabled) \
984 __SCHED_FEAT_##name ,
985
986enum {
391e43da 987#include "features.h"
f8b6d1cc 988 __SCHED_FEAT_NR,
029632fb
PZ
989};
990
991#undef SCHED_FEAT
992
f8b6d1cc 993#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 994#define SCHED_FEAT(name, enabled) \
c5905afb 995static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 996{ \
6e76ea8a 997 return static_key_##enabled(key); \
f8b6d1cc
PZ
998}
999
1000#include "features.h"
1001
1002#undef SCHED_FEAT
1003
c5905afb 1004extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
1005#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1006#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 1007#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 1008#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1009
2a595721 1010extern struct static_key_false sched_numa_balancing;
cbee9f88 1011
029632fb
PZ
1012static inline u64 global_rt_period(void)
1013{
1014 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1015}
1016
1017static inline u64 global_rt_runtime(void)
1018{
1019 if (sysctl_sched_rt_runtime < 0)
1020 return RUNTIME_INF;
1021
1022 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1023}
1024
029632fb
PZ
1025static inline int task_current(struct rq *rq, struct task_struct *p)
1026{
1027 return rq->curr == p;
1028}
1029
1030static inline int task_running(struct rq *rq, struct task_struct *p)
1031{
1032#ifdef CONFIG_SMP
1033 return p->on_cpu;
1034#else
1035 return task_current(rq, p);
1036#endif
1037}
1038
da0c1e65
KT
1039static inline int task_on_rq_queued(struct task_struct *p)
1040{
1041 return p->on_rq == TASK_ON_RQ_QUEUED;
1042}
029632fb 1043
cca26e80
KT
1044static inline int task_on_rq_migrating(struct task_struct *p)
1045{
1046 return p->on_rq == TASK_ON_RQ_MIGRATING;
1047}
1048
029632fb
PZ
1049#ifndef prepare_arch_switch
1050# define prepare_arch_switch(next) do { } while (0)
1051#endif
01f23e16
CM
1052#ifndef finish_arch_post_lock_switch
1053# define finish_arch_post_lock_switch() do { } while (0)
1054#endif
029632fb 1055
029632fb
PZ
1056static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1057{
1058#ifdef CONFIG_SMP
1059 /*
1060 * We can optimise this out completely for !SMP, because the
1061 * SMP rebalancing from interrupt is the only thing that cares
1062 * here.
1063 */
1064 next->on_cpu = 1;
1065#endif
1066}
1067
1068static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1069{
1070#ifdef CONFIG_SMP
1071 /*
1072 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1073 * We must ensure this doesn't happen until the switch is completely
1074 * finished.
95913d97
PZ
1075 *
1076 * Pairs with the control dependency and rmb in try_to_wake_up().
029632fb 1077 */
95913d97 1078 smp_store_release(&prev->on_cpu, 0);
029632fb
PZ
1079#endif
1080#ifdef CONFIG_DEBUG_SPINLOCK
1081 /* this is a valid case when another task releases the spinlock */
1082 rq->lock.owner = current;
1083#endif
1084 /*
1085 * If we are tracking spinlock dependencies then we have to
1086 * fix up the runqueue lock - which gets 'carried over' from
1087 * prev into current:
1088 */
1089 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1090
1091 raw_spin_unlock_irq(&rq->lock);
1092}
1093
b13095f0
LZ
1094/*
1095 * wake flags
1096 */
1097#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1098#define WF_FORK 0x02 /* child wakeup after fork */
1099#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1100
029632fb
PZ
1101/*
1102 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1103 * of tasks with abnormal "nice" values across CPUs the contribution that
1104 * each task makes to its run queue's load is weighted according to its
1105 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1106 * scaled version of the new time slice allocation that they receive on time
1107 * slice expiry etc.
1108 */
1109
1110#define WEIGHT_IDLEPRIO 3
1111#define WMULT_IDLEPRIO 1431655765
1112
1113/*
1114 * Nice levels are multiplicative, with a gentle 10% change for every
1115 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1116 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1117 * that remained on nice 0.
1118 *
1119 * The "10% effect" is relative and cumulative: from _any_ nice level,
1120 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1121 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1122 * If a task goes up by ~10% and another task goes down by ~10% then
1123 * the relative distance between them is ~25%.)
1124 */
1125static const int prio_to_weight[40] = {
1126 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1127 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1128 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1129 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1130 /* 0 */ 1024, 820, 655, 526, 423,
1131 /* 5 */ 335, 272, 215, 172, 137,
1132 /* 10 */ 110, 87, 70, 56, 45,
1133 /* 15 */ 36, 29, 23, 18, 15,
1134};
1135
1136/*
1137 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1138 *
1139 * In cases where the weight does not change often, we can use the
1140 * precalculated inverse to speed up arithmetics by turning divisions
1141 * into multiplications:
1142 */
1143static const u32 prio_to_wmult[40] = {
1144 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1145 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1146 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1147 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1148 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1149 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1150 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1151 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1152};
1153
1de64443
PZ
1154#define ENQUEUE_WAKEUP 0x01
1155#define ENQUEUE_HEAD 0x02
c82ba9fa 1156#ifdef CONFIG_SMP
1de64443 1157#define ENQUEUE_WAKING 0x04 /* sched_class::task_waking was called */
c82ba9fa 1158#else
1de64443 1159#define ENQUEUE_WAKING 0x00
c82ba9fa 1160#endif
1de64443
PZ
1161#define ENQUEUE_REPLENISH 0x08
1162#define ENQUEUE_RESTORE 0x10
c82ba9fa 1163
1de64443
PZ
1164#define DEQUEUE_SLEEP 0x01
1165#define DEQUEUE_SAVE 0x02
c82ba9fa 1166
37e117c0
PZ
1167#define RETRY_TASK ((void *)-1UL)
1168
c82ba9fa
LZ
1169struct sched_class {
1170 const struct sched_class *next;
1171
1172 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1173 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1174 void (*yield_task) (struct rq *rq);
1175 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1176
1177 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1178
606dba2e
PZ
1179 /*
1180 * It is the responsibility of the pick_next_task() method that will
1181 * return the next task to call put_prev_task() on the @prev task or
1182 * something equivalent.
37e117c0
PZ
1183 *
1184 * May return RETRY_TASK when it finds a higher prio class has runnable
1185 * tasks.
606dba2e
PZ
1186 */
1187 struct task_struct * (*pick_next_task) (struct rq *rq,
1188 struct task_struct *prev);
c82ba9fa
LZ
1189 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1190
1191#ifdef CONFIG_SMP
ac66f547 1192 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
5a4fd036 1193 void (*migrate_task_rq)(struct task_struct *p);
c82ba9fa 1194
c82ba9fa
LZ
1195 void (*task_waking) (struct task_struct *task);
1196 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1197
1198 void (*set_cpus_allowed)(struct task_struct *p,
1199 const struct cpumask *newmask);
1200
1201 void (*rq_online)(struct rq *rq);
1202 void (*rq_offline)(struct rq *rq);
1203#endif
1204
1205 void (*set_curr_task) (struct rq *rq);
1206 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1207 void (*task_fork) (struct task_struct *p);
e6c390f2 1208 void (*task_dead) (struct task_struct *p);
c82ba9fa 1209
67dfa1b7
KT
1210 /*
1211 * The switched_from() call is allowed to drop rq->lock, therefore we
1212 * cannot assume the switched_from/switched_to pair is serliazed by
1213 * rq->lock. They are however serialized by p->pi_lock.
1214 */
c82ba9fa
LZ
1215 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1216 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1217 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1218 int oldprio);
1219
1220 unsigned int (*get_rr_interval) (struct rq *rq,
1221 struct task_struct *task);
1222
6e998916
SG
1223 void (*update_curr) (struct rq *rq);
1224
c82ba9fa 1225#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 1226 void (*task_move_group) (struct task_struct *p);
c82ba9fa
LZ
1227#endif
1228};
029632fb 1229
3f1d2a31
PZ
1230static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1231{
1232 prev->sched_class->put_prev_task(rq, prev);
1233}
1234
029632fb
PZ
1235#define sched_class_highest (&stop_sched_class)
1236#define for_each_class(class) \
1237 for (class = sched_class_highest; class; class = class->next)
1238
1239extern const struct sched_class stop_sched_class;
aab03e05 1240extern const struct sched_class dl_sched_class;
029632fb
PZ
1241extern const struct sched_class rt_sched_class;
1242extern const struct sched_class fair_sched_class;
1243extern const struct sched_class idle_sched_class;
1244
1245
1246#ifdef CONFIG_SMP
1247
63b2ca30 1248extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1249
7caff66f 1250extern void trigger_load_balance(struct rq *rq);
029632fb 1251
642dbc39
VG
1252extern void idle_enter_fair(struct rq *this_rq);
1253extern void idle_exit_fair(struct rq *this_rq);
642dbc39 1254
c5b28038
PZ
1255extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1256
dc877341
PZ
1257#else
1258
1259static inline void idle_enter_fair(struct rq *rq) { }
1260static inline void idle_exit_fair(struct rq *rq) { }
1261
029632fb
PZ
1262#endif
1263
442bf3aa
DL
1264#ifdef CONFIG_CPU_IDLE
1265static inline void idle_set_state(struct rq *rq,
1266 struct cpuidle_state *idle_state)
1267{
1268 rq->idle_state = idle_state;
1269}
1270
1271static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1272{
1273 WARN_ON(!rcu_read_lock_held());
1274 return rq->idle_state;
1275}
1276#else
1277static inline void idle_set_state(struct rq *rq,
1278 struct cpuidle_state *idle_state)
1279{
1280}
1281
1282static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1283{
1284 return NULL;
1285}
1286#endif
1287
029632fb
PZ
1288extern void sysrq_sched_debug_show(void);
1289extern void sched_init_granularity(void);
1290extern void update_max_interval(void);
1baca4ce
JL
1291
1292extern void init_sched_dl_class(void);
029632fb
PZ
1293extern void init_sched_rt_class(void);
1294extern void init_sched_fair_class(void);
1295
8875125e 1296extern void resched_curr(struct rq *rq);
029632fb
PZ
1297extern void resched_cpu(int cpu);
1298
1299extern struct rt_bandwidth def_rt_bandwidth;
1300extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1301
332ac17e
DF
1302extern struct dl_bandwidth def_dl_bandwidth;
1303extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1304extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1305
332ac17e
DF
1306unsigned long to_ratio(u64 period, u64 runtime);
1307
540247fb 1308extern void init_entity_runnable_average(struct sched_entity *se);
a75cdaa9 1309
72465447 1310static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1311{
72465447
KT
1312 unsigned prev_nr = rq->nr_running;
1313
1314 rq->nr_running = prev_nr + count;
9f3660c2 1315
72465447 1316 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1317#ifdef CONFIG_SMP
1318 if (!rq->rd->overload)
1319 rq->rd->overload = true;
1320#endif
1321
1322#ifdef CONFIG_NO_HZ_FULL
9f3660c2 1323 if (tick_nohz_full_cpu(rq->cpu)) {
3882ec64
FW
1324 /*
1325 * Tick is needed if more than one task runs on a CPU.
1326 * Send the target an IPI to kick it out of nohz mode.
1327 *
1328 * We assume that IPI implies full memory barrier and the
1329 * new value of rq->nr_running is visible on reception
1330 * from the target.
1331 */
fd2ac4f4 1332 tick_nohz_full_kick_cpu(rq->cpu);
9f3660c2 1333 }
9f3660c2 1334#endif
4486edd1 1335 }
029632fb
PZ
1336}
1337
72465447 1338static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1339{
72465447 1340 rq->nr_running -= count;
029632fb
PZ
1341}
1342
265f22a9
FW
1343static inline void rq_last_tick_reset(struct rq *rq)
1344{
1345#ifdef CONFIG_NO_HZ_FULL
1346 rq->last_sched_tick = jiffies;
1347#endif
1348}
1349
029632fb
PZ
1350extern void update_rq_clock(struct rq *rq);
1351
1352extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1353extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1354
1355extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1356
1357extern const_debug unsigned int sysctl_sched_time_avg;
1358extern const_debug unsigned int sysctl_sched_nr_migrate;
1359extern const_debug unsigned int sysctl_sched_migration_cost;
1360
1361static inline u64 sched_avg_period(void)
1362{
1363 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1364}
1365
029632fb
PZ
1366#ifdef CONFIG_SCHED_HRTICK
1367
1368/*
1369 * Use hrtick when:
1370 * - enabled by features
1371 * - hrtimer is actually high res
1372 */
1373static inline int hrtick_enabled(struct rq *rq)
1374{
1375 if (!sched_feat(HRTICK))
1376 return 0;
1377 if (!cpu_active(cpu_of(rq)))
1378 return 0;
1379 return hrtimer_is_hres_active(&rq->hrtick_timer);
1380}
1381
1382void hrtick_start(struct rq *rq, u64 delay);
1383
b39e66ea
MG
1384#else
1385
1386static inline int hrtick_enabled(struct rq *rq)
1387{
1388 return 0;
1389}
1390
029632fb
PZ
1391#endif /* CONFIG_SCHED_HRTICK */
1392
1393#ifdef CONFIG_SMP
1394extern void sched_avg_update(struct rq *rq);
dfbca41f
PZ
1395
1396#ifndef arch_scale_freq_capacity
1397static __always_inline
1398unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1399{
1400 return SCHED_CAPACITY_SCALE;
1401}
1402#endif
b5b4860d 1403
8cd5601c
MR
1404#ifndef arch_scale_cpu_capacity
1405static __always_inline
1406unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1407{
e3279a2e 1408 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
8cd5601c
MR
1409 return sd->smt_gain / sd->span_weight;
1410
1411 return SCHED_CAPACITY_SCALE;
1412}
1413#endif
1414
029632fb
PZ
1415static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1416{
b5b4860d 1417 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
029632fb
PZ
1418 sched_avg_update(rq);
1419}
1420#else
1421static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1422static inline void sched_avg_update(struct rq *rq) { }
1423#endif
1424
3960c8c0
PZ
1425/*
1426 * __task_rq_lock - lock the rq @p resides on.
1427 */
1428static inline struct rq *__task_rq_lock(struct task_struct *p)
1429 __acquires(rq->lock)
1430{
1431 struct rq *rq;
1432
1433 lockdep_assert_held(&p->pi_lock);
1434
1435 for (;;) {
1436 rq = task_rq(p);
1437 raw_spin_lock(&rq->lock);
cbce1a68
PZ
1438 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1439 lockdep_pin_lock(&rq->lock);
3960c8c0 1440 return rq;
cbce1a68 1441 }
3960c8c0
PZ
1442 raw_spin_unlock(&rq->lock);
1443
1444 while (unlikely(task_on_rq_migrating(p)))
1445 cpu_relax();
1446 }
1447}
1448
1449/*
1450 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1451 */
1452static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1453 __acquires(p->pi_lock)
1454 __acquires(rq->lock)
1455{
1456 struct rq *rq;
1457
1458 for (;;) {
1459 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1460 rq = task_rq(p);
1461 raw_spin_lock(&rq->lock);
1462 /*
1463 * move_queued_task() task_rq_lock()
1464 *
1465 * ACQUIRE (rq->lock)
1466 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
1467 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
1468 * [S] ->cpu = new_cpu [L] task_rq()
1469 * [L] ->on_rq
1470 * RELEASE (rq->lock)
1471 *
1472 * If we observe the old cpu in task_rq_lock, the acquire of
1473 * the old rq->lock will fully serialize against the stores.
1474 *
1475 * If we observe the new cpu in task_rq_lock, the acquire will
1476 * pair with the WMB to ensure we must then also see migrating.
1477 */
cbce1a68
PZ
1478 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1479 lockdep_pin_lock(&rq->lock);
3960c8c0 1480 return rq;
cbce1a68 1481 }
3960c8c0
PZ
1482 raw_spin_unlock(&rq->lock);
1483 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1484
1485 while (unlikely(task_on_rq_migrating(p)))
1486 cpu_relax();
1487 }
1488}
1489
1490static inline void __task_rq_unlock(struct rq *rq)
1491 __releases(rq->lock)
1492{
cbce1a68 1493 lockdep_unpin_lock(&rq->lock);
3960c8c0
PZ
1494 raw_spin_unlock(&rq->lock);
1495}
1496
1497static inline void
1498task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1499 __releases(rq->lock)
1500 __releases(p->pi_lock)
1501{
cbce1a68 1502 lockdep_unpin_lock(&rq->lock);
3960c8c0
PZ
1503 raw_spin_unlock(&rq->lock);
1504 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1505}
1506
029632fb
PZ
1507#ifdef CONFIG_SMP
1508#ifdef CONFIG_PREEMPT
1509
1510static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1511
1512/*
1513 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1514 * way at the expense of forcing extra atomic operations in all
1515 * invocations. This assures that the double_lock is acquired using the
1516 * same underlying policy as the spinlock_t on this architecture, which
1517 * reduces latency compared to the unfair variant below. However, it
1518 * also adds more overhead and therefore may reduce throughput.
1519 */
1520static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1521 __releases(this_rq->lock)
1522 __acquires(busiest->lock)
1523 __acquires(this_rq->lock)
1524{
1525 raw_spin_unlock(&this_rq->lock);
1526 double_rq_lock(this_rq, busiest);
1527
1528 return 1;
1529}
1530
1531#else
1532/*
1533 * Unfair double_lock_balance: Optimizes throughput at the expense of
1534 * latency by eliminating extra atomic operations when the locks are
1535 * already in proper order on entry. This favors lower cpu-ids and will
1536 * grant the double lock to lower cpus over higher ids under contention,
1537 * regardless of entry order into the function.
1538 */
1539static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1540 __releases(this_rq->lock)
1541 __acquires(busiest->lock)
1542 __acquires(this_rq->lock)
1543{
1544 int ret = 0;
1545
1546 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1547 if (busiest < this_rq) {
1548 raw_spin_unlock(&this_rq->lock);
1549 raw_spin_lock(&busiest->lock);
1550 raw_spin_lock_nested(&this_rq->lock,
1551 SINGLE_DEPTH_NESTING);
1552 ret = 1;
1553 } else
1554 raw_spin_lock_nested(&busiest->lock,
1555 SINGLE_DEPTH_NESTING);
1556 }
1557 return ret;
1558}
1559
1560#endif /* CONFIG_PREEMPT */
1561
1562/*
1563 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1564 */
1565static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1566{
1567 if (unlikely(!irqs_disabled())) {
1568 /* printk() doesn't work good under rq->lock */
1569 raw_spin_unlock(&this_rq->lock);
1570 BUG_ON(1);
1571 }
1572
1573 return _double_lock_balance(this_rq, busiest);
1574}
1575
1576static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1577 __releases(busiest->lock)
1578{
1579 raw_spin_unlock(&busiest->lock);
1580 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1581}
1582
74602315
PZ
1583static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1584{
1585 if (l1 > l2)
1586 swap(l1, l2);
1587
1588 spin_lock(l1);
1589 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1590}
1591
60e69eed
MG
1592static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1593{
1594 if (l1 > l2)
1595 swap(l1, l2);
1596
1597 spin_lock_irq(l1);
1598 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1599}
1600
74602315
PZ
1601static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1602{
1603 if (l1 > l2)
1604 swap(l1, l2);
1605
1606 raw_spin_lock(l1);
1607 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1608}
1609
029632fb
PZ
1610/*
1611 * double_rq_lock - safely lock two runqueues
1612 *
1613 * Note this does not disable interrupts like task_rq_lock,
1614 * you need to do so manually before calling.
1615 */
1616static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1617 __acquires(rq1->lock)
1618 __acquires(rq2->lock)
1619{
1620 BUG_ON(!irqs_disabled());
1621 if (rq1 == rq2) {
1622 raw_spin_lock(&rq1->lock);
1623 __acquire(rq2->lock); /* Fake it out ;) */
1624 } else {
1625 if (rq1 < rq2) {
1626 raw_spin_lock(&rq1->lock);
1627 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1628 } else {
1629 raw_spin_lock(&rq2->lock);
1630 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1631 }
1632 }
1633}
1634
1635/*
1636 * double_rq_unlock - safely unlock two runqueues
1637 *
1638 * Note this does not restore interrupts like task_rq_unlock,
1639 * you need to do so manually after calling.
1640 */
1641static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1642 __releases(rq1->lock)
1643 __releases(rq2->lock)
1644{
1645 raw_spin_unlock(&rq1->lock);
1646 if (rq1 != rq2)
1647 raw_spin_unlock(&rq2->lock);
1648 else
1649 __release(rq2->lock);
1650}
1651
1652#else /* CONFIG_SMP */
1653
1654/*
1655 * double_rq_lock - safely lock two runqueues
1656 *
1657 * Note this does not disable interrupts like task_rq_lock,
1658 * you need to do so manually before calling.
1659 */
1660static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1661 __acquires(rq1->lock)
1662 __acquires(rq2->lock)
1663{
1664 BUG_ON(!irqs_disabled());
1665 BUG_ON(rq1 != rq2);
1666 raw_spin_lock(&rq1->lock);
1667 __acquire(rq2->lock); /* Fake it out ;) */
1668}
1669
1670/*
1671 * double_rq_unlock - safely unlock two runqueues
1672 *
1673 * Note this does not restore interrupts like task_rq_unlock,
1674 * you need to do so manually after calling.
1675 */
1676static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1677 __releases(rq1->lock)
1678 __releases(rq2->lock)
1679{
1680 BUG_ON(rq1 != rq2);
1681 raw_spin_unlock(&rq1->lock);
1682 __release(rq2->lock);
1683}
1684
1685#endif
1686
1687extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1688extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
1689
1690#ifdef CONFIG_SCHED_DEBUG
029632fb
PZ
1691extern void print_cfs_stats(struct seq_file *m, int cpu);
1692extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 1693extern void print_dl_stats(struct seq_file *m, int cpu);
6b55c965
SD
1694extern void
1695print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
397f2378
SD
1696
1697#ifdef CONFIG_NUMA_BALANCING
1698extern void
1699show_numa_stats(struct task_struct *p, struct seq_file *m);
1700extern void
1701print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1702 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1703#endif /* CONFIG_NUMA_BALANCING */
1704#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
1705
1706extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
1707extern void init_rt_rq(struct rt_rq *rt_rq);
1708extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 1709
1ee14e6c
BS
1710extern void cfs_bandwidth_usage_inc(void);
1711extern void cfs_bandwidth_usage_dec(void);
1c792db7 1712
3451d024 1713#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1714enum rq_nohz_flag_bits {
1715 NOHZ_TICK_STOPPED,
1716 NOHZ_BALANCE_KICK,
1717};
1718
1719#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1720#endif
73fbec60
FW
1721
1722#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1723
1724DECLARE_PER_CPU(u64, cpu_hardirq_time);
1725DECLARE_PER_CPU(u64, cpu_softirq_time);
1726
1727#ifndef CONFIG_64BIT
1728DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1729
1730static inline void irq_time_write_begin(void)
1731{
1732 __this_cpu_inc(irq_time_seq.sequence);
1733 smp_wmb();
1734}
1735
1736static inline void irq_time_write_end(void)
1737{
1738 smp_wmb();
1739 __this_cpu_inc(irq_time_seq.sequence);
1740}
1741
1742static inline u64 irq_time_read(int cpu)
1743{
1744 u64 irq_time;
1745 unsigned seq;
1746
1747 do {
1748 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1749 irq_time = per_cpu(cpu_softirq_time, cpu) +
1750 per_cpu(cpu_hardirq_time, cpu);
1751 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1752
1753 return irq_time;
1754}
1755#else /* CONFIG_64BIT */
1756static inline void irq_time_write_begin(void)
1757{
1758}
1759
1760static inline void irq_time_write_end(void)
1761{
1762}
1763
1764static inline u64 irq_time_read(int cpu)
1765{
1766 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1767}
1768#endif /* CONFIG_64BIT */
1769#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
This page took 0.249794 seconds and 5 git commands to generate.