sched: Make sched entity usage tracking scale-invariant
[deliverable/linux.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
029632fb
PZ
6#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
b6366f04 9#include <linux/irq_work.h>
9f3660c2 10#include <linux/tick.h>
f809ca9a 11#include <linux/slab.h>
029632fb 12
391e43da 13#include "cpupri.h"
6bfd6d72 14#include "cpudeadline.h"
60fed789 15#include "cpuacct.h"
029632fb 16
45ceebf7 17struct rq;
442bf3aa 18struct cpuidle_state;
45ceebf7 19
da0c1e65
KT
20/* task_struct::on_rq states: */
21#define TASK_ON_RQ_QUEUED 1
cca26e80 22#define TASK_ON_RQ_MIGRATING 2
da0c1e65 23
029632fb
PZ
24extern __read_mostly int scheduler_running;
25
45ceebf7
PG
26extern unsigned long calc_load_update;
27extern atomic_long_t calc_load_tasks;
28
29extern long calc_load_fold_active(struct rq *this_rq);
30extern void update_cpu_load_active(struct rq *this_rq);
31
029632fb
PZ
32/*
33 * Helpers for converting nanosecond timing to jiffy resolution
34 */
35#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
36
cc1f4b1f
LZ
37/*
38 * Increase resolution of nice-level calculations for 64-bit architectures.
39 * The extra resolution improves shares distribution and load balancing of
40 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
41 * hierarchies, especially on larger systems. This is not a user-visible change
42 * and does not change the user-interface for setting shares/weights.
43 *
44 * We increase resolution only if we have enough bits to allow this increased
45 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
46 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
47 * increased costs.
48 */
49#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
50# define SCHED_LOAD_RESOLUTION 10
51# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
52# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
53#else
54# define SCHED_LOAD_RESOLUTION 0
55# define scale_load(w) (w)
56# define scale_load_down(w) (w)
57#endif
58
59#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
60#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
61
029632fb
PZ
62#define NICE_0_LOAD SCHED_LOAD_SCALE
63#define NICE_0_SHIFT SCHED_LOAD_SHIFT
64
332ac17e
DF
65/*
66 * Single value that decides SCHED_DEADLINE internal math precision.
67 * 10 -> just above 1us
68 * 9 -> just above 0.5us
69 */
70#define DL_SCALE (10)
71
029632fb
PZ
72/*
73 * These are the 'tuning knobs' of the scheduler:
029632fb 74 */
029632fb
PZ
75
76/*
77 * single value that denotes runtime == period, ie unlimited time.
78 */
79#define RUNTIME_INF ((u64)~0ULL)
80
d50dde5a
DF
81static inline int fair_policy(int policy)
82{
83 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
84}
85
029632fb
PZ
86static inline int rt_policy(int policy)
87{
d50dde5a 88 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
89}
90
aab03e05
DF
91static inline int dl_policy(int policy)
92{
93 return policy == SCHED_DEADLINE;
94}
95
029632fb
PZ
96static inline int task_has_rt_policy(struct task_struct *p)
97{
98 return rt_policy(p->policy);
99}
100
aab03e05
DF
101static inline int task_has_dl_policy(struct task_struct *p)
102{
103 return dl_policy(p->policy);
104}
105
332ac17e 106static inline bool dl_time_before(u64 a, u64 b)
2d3d891d
DF
107{
108 return (s64)(a - b) < 0;
109}
110
111/*
112 * Tells if entity @a should preempt entity @b.
113 */
332ac17e
DF
114static inline bool
115dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
116{
117 return dl_time_before(a->deadline, b->deadline);
118}
119
029632fb
PZ
120/*
121 * This is the priority-queue data structure of the RT scheduling class:
122 */
123struct rt_prio_array {
124 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
125 struct list_head queue[MAX_RT_PRIO];
126};
127
128struct rt_bandwidth {
129 /* nests inside the rq lock: */
130 raw_spinlock_t rt_runtime_lock;
131 ktime_t rt_period;
132 u64 rt_runtime;
133 struct hrtimer rt_period_timer;
134};
a5e7be3b
JL
135
136void __dl_clear_params(struct task_struct *p);
137
332ac17e
DF
138/*
139 * To keep the bandwidth of -deadline tasks and groups under control
140 * we need some place where:
141 * - store the maximum -deadline bandwidth of the system (the group);
142 * - cache the fraction of that bandwidth that is currently allocated.
143 *
144 * This is all done in the data structure below. It is similar to the
145 * one used for RT-throttling (rt_bandwidth), with the main difference
146 * that, since here we are only interested in admission control, we
147 * do not decrease any runtime while the group "executes", neither we
148 * need a timer to replenish it.
149 *
150 * With respect to SMP, the bandwidth is given on a per-CPU basis,
151 * meaning that:
152 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
153 * - dl_total_bw array contains, in the i-eth element, the currently
154 * allocated bandwidth on the i-eth CPU.
155 * Moreover, groups consume bandwidth on each CPU, while tasks only
156 * consume bandwidth on the CPU they're running on.
157 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
158 * that will be shown the next time the proc or cgroup controls will
159 * be red. It on its turn can be changed by writing on its own
160 * control.
161 */
162struct dl_bandwidth {
163 raw_spinlock_t dl_runtime_lock;
164 u64 dl_runtime;
165 u64 dl_period;
166};
167
168static inline int dl_bandwidth_enabled(void)
169{
1724813d 170 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
171}
172
173extern struct dl_bw *dl_bw_of(int i);
174
175struct dl_bw {
176 raw_spinlock_t lock;
177 u64 bw, total_bw;
178};
179
7f51412a
JL
180static inline
181void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
182{
183 dl_b->total_bw -= tsk_bw;
184}
185
186static inline
187void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
188{
189 dl_b->total_bw += tsk_bw;
190}
191
192static inline
193bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
194{
195 return dl_b->bw != -1 &&
196 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
197}
198
029632fb
PZ
199extern struct mutex sched_domains_mutex;
200
201#ifdef CONFIG_CGROUP_SCHED
202
203#include <linux/cgroup.h>
204
205struct cfs_rq;
206struct rt_rq;
207
35cf4e50 208extern struct list_head task_groups;
029632fb
PZ
209
210struct cfs_bandwidth {
211#ifdef CONFIG_CFS_BANDWIDTH
212 raw_spinlock_t lock;
213 ktime_t period;
214 u64 quota, runtime;
9c58c79a 215 s64 hierarchical_quota;
029632fb
PZ
216 u64 runtime_expires;
217
218 int idle, timer_active;
219 struct hrtimer period_timer, slack_timer;
220 struct list_head throttled_cfs_rq;
221
222 /* statistics */
223 int nr_periods, nr_throttled;
224 u64 throttled_time;
225#endif
226};
227
228/* task group related information */
229struct task_group {
230 struct cgroup_subsys_state css;
231
232#ifdef CONFIG_FAIR_GROUP_SCHED
233 /* schedulable entities of this group on each cpu */
234 struct sched_entity **se;
235 /* runqueue "owned" by this group on each cpu */
236 struct cfs_rq **cfs_rq;
237 unsigned long shares;
238
fa6bddeb 239#ifdef CONFIG_SMP
bf5b986e 240 atomic_long_t load_avg;
bb17f655 241 atomic_t runnable_avg;
029632fb 242#endif
fa6bddeb 243#endif
029632fb
PZ
244
245#ifdef CONFIG_RT_GROUP_SCHED
246 struct sched_rt_entity **rt_se;
247 struct rt_rq **rt_rq;
248
249 struct rt_bandwidth rt_bandwidth;
250#endif
251
252 struct rcu_head rcu;
253 struct list_head list;
254
255 struct task_group *parent;
256 struct list_head siblings;
257 struct list_head children;
258
259#ifdef CONFIG_SCHED_AUTOGROUP
260 struct autogroup *autogroup;
261#endif
262
263 struct cfs_bandwidth cfs_bandwidth;
264};
265
266#ifdef CONFIG_FAIR_GROUP_SCHED
267#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
268
269/*
270 * A weight of 0 or 1 can cause arithmetics problems.
271 * A weight of a cfs_rq is the sum of weights of which entities
272 * are queued on this cfs_rq, so a weight of a entity should not be
273 * too large, so as the shares value of a task group.
274 * (The default weight is 1024 - so there's no practical
275 * limitation from this.)
276 */
277#define MIN_SHARES (1UL << 1)
278#define MAX_SHARES (1UL << 18)
279#endif
280
029632fb
PZ
281typedef int (*tg_visitor)(struct task_group *, void *);
282
283extern int walk_tg_tree_from(struct task_group *from,
284 tg_visitor down, tg_visitor up, void *data);
285
286/*
287 * Iterate the full tree, calling @down when first entering a node and @up when
288 * leaving it for the final time.
289 *
290 * Caller must hold rcu_lock or sufficient equivalent.
291 */
292static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
293{
294 return walk_tg_tree_from(&root_task_group, down, up, data);
295}
296
297extern int tg_nop(struct task_group *tg, void *data);
298
299extern void free_fair_sched_group(struct task_group *tg);
300extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
301extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
302extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
303 struct sched_entity *se, int cpu,
304 struct sched_entity *parent);
305extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
306extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
307
308extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
09dc4ab0 309extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
029632fb
PZ
310extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
311
312extern void free_rt_sched_group(struct task_group *tg);
313extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
314extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
315 struct sched_rt_entity *rt_se, int cpu,
316 struct sched_rt_entity *parent);
317
25cc7da7
LZ
318extern struct task_group *sched_create_group(struct task_group *parent);
319extern void sched_online_group(struct task_group *tg,
320 struct task_group *parent);
321extern void sched_destroy_group(struct task_group *tg);
322extern void sched_offline_group(struct task_group *tg);
323
324extern void sched_move_task(struct task_struct *tsk);
325
326#ifdef CONFIG_FAIR_GROUP_SCHED
327extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
328#endif
329
029632fb
PZ
330#else /* CONFIG_CGROUP_SCHED */
331
332struct cfs_bandwidth { };
333
334#endif /* CONFIG_CGROUP_SCHED */
335
336/* CFS-related fields in a runqueue */
337struct cfs_rq {
338 struct load_weight load;
c82513e5 339 unsigned int nr_running, h_nr_running;
029632fb
PZ
340
341 u64 exec_clock;
342 u64 min_vruntime;
343#ifndef CONFIG_64BIT
344 u64 min_vruntime_copy;
345#endif
346
347 struct rb_root tasks_timeline;
348 struct rb_node *rb_leftmost;
349
029632fb
PZ
350 /*
351 * 'curr' points to currently running entity on this cfs_rq.
352 * It is set to NULL otherwise (i.e when none are currently running).
353 */
354 struct sched_entity *curr, *next, *last, *skip;
355
356#ifdef CONFIG_SCHED_DEBUG
357 unsigned int nr_spread_over;
358#endif
359
2dac754e
PT
360#ifdef CONFIG_SMP
361 /*
362 * CFS Load tracking
363 * Under CFS, load is tracked on a per-entity basis and aggregated up.
364 * This allows for the description of both thread and group usage (in
365 * the FAIR_GROUP_SCHED case).
36ee28e4
VG
366 * runnable_load_avg is the sum of the load_avg_contrib of the
367 * sched_entities on the rq.
368 * blocked_load_avg is similar to runnable_load_avg except that its
369 * the blocked sched_entities on the rq.
370 * utilization_load_avg is the sum of the average running time of the
371 * sched_entities on the rq.
2dac754e 372 */
36ee28e4 373 unsigned long runnable_load_avg, blocked_load_avg, utilization_load_avg;
2509940f 374 atomic64_t decay_counter;
9ee474f5 375 u64 last_decay;
2509940f 376 atomic_long_t removed_load;
141965c7 377
c566e8e9 378#ifdef CONFIG_FAIR_GROUP_SCHED
141965c7 379 /* Required to track per-cpu representation of a task_group */
bb17f655 380 u32 tg_runnable_contrib;
bf5b986e 381 unsigned long tg_load_contrib;
82958366
PT
382
383 /*
384 * h_load = weight * f(tg)
385 *
386 * Where f(tg) is the recursive weight fraction assigned to
387 * this group.
388 */
389 unsigned long h_load;
68520796
VD
390 u64 last_h_load_update;
391 struct sched_entity *h_load_next;
392#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
393#endif /* CONFIG_SMP */
394
029632fb
PZ
395#ifdef CONFIG_FAIR_GROUP_SCHED
396 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
397
398 /*
399 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
400 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
401 * (like users, containers etc.)
402 *
403 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
404 * list is used during load balance.
405 */
406 int on_list;
407 struct list_head leaf_cfs_rq_list;
408 struct task_group *tg; /* group that "owns" this runqueue */
409
029632fb
PZ
410#ifdef CONFIG_CFS_BANDWIDTH
411 int runtime_enabled;
412 u64 runtime_expires;
413 s64 runtime_remaining;
414
f1b17280
PT
415 u64 throttled_clock, throttled_clock_task;
416 u64 throttled_clock_task_time;
029632fb
PZ
417 int throttled, throttle_count;
418 struct list_head throttled_list;
419#endif /* CONFIG_CFS_BANDWIDTH */
420#endif /* CONFIG_FAIR_GROUP_SCHED */
421};
422
423static inline int rt_bandwidth_enabled(void)
424{
425 return sysctl_sched_rt_runtime >= 0;
426}
427
b6366f04
SR
428/* RT IPI pull logic requires IRQ_WORK */
429#ifdef CONFIG_IRQ_WORK
430# define HAVE_RT_PUSH_IPI
431#endif
432
029632fb
PZ
433/* Real-Time classes' related field in a runqueue: */
434struct rt_rq {
435 struct rt_prio_array active;
c82513e5 436 unsigned int rt_nr_running;
029632fb
PZ
437#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
438 struct {
439 int curr; /* highest queued rt task prio */
440#ifdef CONFIG_SMP
441 int next; /* next highest */
442#endif
443 } highest_prio;
444#endif
445#ifdef CONFIG_SMP
446 unsigned long rt_nr_migratory;
447 unsigned long rt_nr_total;
448 int overloaded;
449 struct plist_head pushable_tasks;
b6366f04
SR
450#ifdef HAVE_RT_PUSH_IPI
451 int push_flags;
452 int push_cpu;
453 struct irq_work push_work;
454 raw_spinlock_t push_lock;
029632fb 455#endif
b6366f04 456#endif /* CONFIG_SMP */
f4ebcbc0
KT
457 int rt_queued;
458
029632fb
PZ
459 int rt_throttled;
460 u64 rt_time;
461 u64 rt_runtime;
462 /* Nests inside the rq lock: */
463 raw_spinlock_t rt_runtime_lock;
464
465#ifdef CONFIG_RT_GROUP_SCHED
466 unsigned long rt_nr_boosted;
467
468 struct rq *rq;
029632fb
PZ
469 struct task_group *tg;
470#endif
471};
472
aab03e05
DF
473/* Deadline class' related fields in a runqueue */
474struct dl_rq {
475 /* runqueue is an rbtree, ordered by deadline */
476 struct rb_root rb_root;
477 struct rb_node *rb_leftmost;
478
479 unsigned long dl_nr_running;
1baca4ce
JL
480
481#ifdef CONFIG_SMP
482 /*
483 * Deadline values of the currently executing and the
484 * earliest ready task on this rq. Caching these facilitates
485 * the decision wether or not a ready but not running task
486 * should migrate somewhere else.
487 */
488 struct {
489 u64 curr;
490 u64 next;
491 } earliest_dl;
492
493 unsigned long dl_nr_migratory;
1baca4ce
JL
494 int overloaded;
495
496 /*
497 * Tasks on this rq that can be pushed away. They are kept in
498 * an rb-tree, ordered by tasks' deadlines, with caching
499 * of the leftmost (earliest deadline) element.
500 */
501 struct rb_root pushable_dl_tasks_root;
502 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
503#else
504 struct dl_bw dl_bw;
1baca4ce 505#endif
aab03e05
DF
506};
507
029632fb
PZ
508#ifdef CONFIG_SMP
509
510/*
511 * We add the notion of a root-domain which will be used to define per-domain
512 * variables. Each exclusive cpuset essentially defines an island domain by
513 * fully partitioning the member cpus from any other cpuset. Whenever a new
514 * exclusive cpuset is created, we also create and attach a new root-domain
515 * object.
516 *
517 */
518struct root_domain {
519 atomic_t refcount;
520 atomic_t rto_count;
521 struct rcu_head rcu;
522 cpumask_var_t span;
523 cpumask_var_t online;
524
4486edd1
TC
525 /* Indicate more than one runnable task for any CPU */
526 bool overload;
527
1baca4ce
JL
528 /*
529 * The bit corresponding to a CPU gets set here if such CPU has more
530 * than one runnable -deadline task (as it is below for RT tasks).
531 */
532 cpumask_var_t dlo_mask;
533 atomic_t dlo_count;
332ac17e 534 struct dl_bw dl_bw;
6bfd6d72 535 struct cpudl cpudl;
1baca4ce 536
029632fb
PZ
537 /*
538 * The "RT overload" flag: it gets set if a CPU has more than
539 * one runnable RT task.
540 */
541 cpumask_var_t rto_mask;
542 struct cpupri cpupri;
543};
544
545extern struct root_domain def_root_domain;
546
547#endif /* CONFIG_SMP */
548
549/*
550 * This is the main, per-CPU runqueue data structure.
551 *
552 * Locking rule: those places that want to lock multiple runqueues
553 * (such as the load balancing or the thread migration code), lock
554 * acquire operations must be ordered by ascending &runqueue.
555 */
556struct rq {
557 /* runqueue lock: */
558 raw_spinlock_t lock;
559
560 /*
561 * nr_running and cpu_load should be in the same cacheline because
562 * remote CPUs use both these fields when doing load calculation.
563 */
c82513e5 564 unsigned int nr_running;
0ec8aa00
PZ
565#ifdef CONFIG_NUMA_BALANCING
566 unsigned int nr_numa_running;
567 unsigned int nr_preferred_running;
568#endif
029632fb
PZ
569 #define CPU_LOAD_IDX_MAX 5
570 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
571 unsigned long last_load_update_tick;
3451d024 572#ifdef CONFIG_NO_HZ_COMMON
029632fb 573 u64 nohz_stamp;
1c792db7 574 unsigned long nohz_flags;
265f22a9
FW
575#endif
576#ifdef CONFIG_NO_HZ_FULL
577 unsigned long last_sched_tick;
029632fb 578#endif
029632fb
PZ
579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load;
581 unsigned long nr_load_updates;
582 u64 nr_switches;
583
584 struct cfs_rq cfs;
585 struct rt_rq rt;
aab03e05 586 struct dl_rq dl;
029632fb
PZ
587
588#ifdef CONFIG_FAIR_GROUP_SCHED
589 /* list of leaf cfs_rq on this cpu: */
590 struct list_head leaf_cfs_rq_list;
f5f9739d
DE
591
592 struct sched_avg avg;
a35b6466
PZ
593#endif /* CONFIG_FAIR_GROUP_SCHED */
594
029632fb
PZ
595 /*
596 * This is part of a global counter where only the total sum
597 * over all CPUs matters. A task can increase this counter on
598 * one CPU and if it got migrated afterwards it may decrease
599 * it on another CPU. Always updated under the runqueue lock:
600 */
601 unsigned long nr_uninterruptible;
602
603 struct task_struct *curr, *idle, *stop;
604 unsigned long next_balance;
605 struct mm_struct *prev_mm;
606
9edfbfed 607 unsigned int clock_skip_update;
029632fb
PZ
608 u64 clock;
609 u64 clock_task;
610
611 atomic_t nr_iowait;
612
613#ifdef CONFIG_SMP
614 struct root_domain *rd;
615 struct sched_domain *sd;
616
ced549fa 617 unsigned long cpu_capacity;
029632fb
PZ
618
619 unsigned char idle_balance;
620 /* For active balancing */
621 int post_schedule;
622 int active_balance;
623 int push_cpu;
624 struct cpu_stop_work active_balance_work;
625 /* cpu of this runqueue: */
626 int cpu;
627 int online;
628
367456c7
PZ
629 struct list_head cfs_tasks;
630
029632fb
PZ
631 u64 rt_avg;
632 u64 age_stamp;
633 u64 idle_stamp;
634 u64 avg_idle;
9bd721c5
JL
635
636 /* This is used to determine avg_idle's max value */
637 u64 max_idle_balance_cost;
029632fb
PZ
638#endif
639
640#ifdef CONFIG_IRQ_TIME_ACCOUNTING
641 u64 prev_irq_time;
642#endif
643#ifdef CONFIG_PARAVIRT
644 u64 prev_steal_time;
645#endif
646#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
647 u64 prev_steal_time_rq;
648#endif
649
650 /* calc_load related fields */
651 unsigned long calc_load_update;
652 long calc_load_active;
653
654#ifdef CONFIG_SCHED_HRTICK
655#ifdef CONFIG_SMP
656 int hrtick_csd_pending;
657 struct call_single_data hrtick_csd;
658#endif
659 struct hrtimer hrtick_timer;
660#endif
661
662#ifdef CONFIG_SCHEDSTATS
663 /* latency stats */
664 struct sched_info rq_sched_info;
665 unsigned long long rq_cpu_time;
666 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
667
668 /* sys_sched_yield() stats */
669 unsigned int yld_count;
670
671 /* schedule() stats */
029632fb
PZ
672 unsigned int sched_count;
673 unsigned int sched_goidle;
674
675 /* try_to_wake_up() stats */
676 unsigned int ttwu_count;
677 unsigned int ttwu_local;
678#endif
679
680#ifdef CONFIG_SMP
681 struct llist_head wake_list;
682#endif
442bf3aa
DL
683
684#ifdef CONFIG_CPU_IDLE
685 /* Must be inspected within a rcu lock section */
686 struct cpuidle_state *idle_state;
687#endif
029632fb
PZ
688};
689
690static inline int cpu_of(struct rq *rq)
691{
692#ifdef CONFIG_SMP
693 return rq->cpu;
694#else
695 return 0;
696#endif
697}
698
8b06c55b 699DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 700
518cd623 701#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 702#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
703#define task_rq(p) cpu_rq(task_cpu(p))
704#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 705#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 706
cebde6d6
PZ
707static inline u64 __rq_clock_broken(struct rq *rq)
708{
709 return ACCESS_ONCE(rq->clock);
710}
711
78becc27
FW
712static inline u64 rq_clock(struct rq *rq)
713{
cebde6d6 714 lockdep_assert_held(&rq->lock);
78becc27
FW
715 return rq->clock;
716}
717
718static inline u64 rq_clock_task(struct rq *rq)
719{
cebde6d6 720 lockdep_assert_held(&rq->lock);
78becc27
FW
721 return rq->clock_task;
722}
723
9edfbfed
PZ
724#define RQCF_REQ_SKIP 0x01
725#define RQCF_ACT_SKIP 0x02
726
727static inline void rq_clock_skip_update(struct rq *rq, bool skip)
728{
729 lockdep_assert_held(&rq->lock);
730 if (skip)
731 rq->clock_skip_update |= RQCF_REQ_SKIP;
732 else
733 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
734}
735
9942f79b 736#ifdef CONFIG_NUMA
e3fe70b1
RR
737enum numa_topology_type {
738 NUMA_DIRECT,
739 NUMA_GLUELESS_MESH,
740 NUMA_BACKPLANE,
741};
742extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
743extern int sched_max_numa_distance;
744extern bool find_numa_distance(int distance);
745#endif
746
f809ca9a 747#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
748/* The regions in numa_faults array from task_struct */
749enum numa_faults_stats {
750 NUMA_MEM = 0,
751 NUMA_CPU,
752 NUMA_MEMBUF,
753 NUMA_CPUBUF
754};
0ec8aa00 755extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 756extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 757extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
758#endif /* CONFIG_NUMA_BALANCING */
759
518cd623
PZ
760#ifdef CONFIG_SMP
761
e3baac47
PZ
762extern void sched_ttwu_pending(void);
763
029632fb
PZ
764#define rcu_dereference_check_sched_domain(p) \
765 rcu_dereference_check((p), \
766 lockdep_is_held(&sched_domains_mutex))
767
768/*
769 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
770 * See detach_destroy_domains: synchronize_sched for details.
771 *
772 * The domain tree of any CPU may only be accessed from within
773 * preempt-disabled sections.
774 */
775#define for_each_domain(cpu, __sd) \
518cd623
PZ
776 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
777 __sd; __sd = __sd->parent)
029632fb 778
77e81365
SS
779#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
780
518cd623
PZ
781/**
782 * highest_flag_domain - Return highest sched_domain containing flag.
783 * @cpu: The cpu whose highest level of sched domain is to
784 * be returned.
785 * @flag: The flag to check for the highest sched_domain
786 * for the given cpu.
787 *
788 * Returns the highest sched_domain of a cpu which contains the given flag.
789 */
790static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
791{
792 struct sched_domain *sd, *hsd = NULL;
793
794 for_each_domain(cpu, sd) {
795 if (!(sd->flags & flag))
796 break;
797 hsd = sd;
798 }
799
800 return hsd;
801}
802
fb13c7ee
MG
803static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
804{
805 struct sched_domain *sd;
806
807 for_each_domain(cpu, sd) {
808 if (sd->flags & flag)
809 break;
810 }
811
812 return sd;
813}
814
518cd623 815DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 816DECLARE_PER_CPU(int, sd_llc_size);
518cd623 817DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 818DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
819DECLARE_PER_CPU(struct sched_domain *, sd_busy);
820DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 821
63b2ca30 822struct sched_group_capacity {
5e6521ea
LZ
823 atomic_t ref;
824 /*
63b2ca30
NP
825 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
826 * for a single CPU.
5e6521ea 827 */
63b2ca30 828 unsigned int capacity, capacity_orig;
5e6521ea 829 unsigned long next_update;
63b2ca30 830 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
831 /*
832 * Number of busy cpus in this group.
833 */
834 atomic_t nr_busy_cpus;
835
836 unsigned long cpumask[0]; /* iteration mask */
837};
838
839struct sched_group {
840 struct sched_group *next; /* Must be a circular list */
841 atomic_t ref;
842
843 unsigned int group_weight;
63b2ca30 844 struct sched_group_capacity *sgc;
5e6521ea
LZ
845
846 /*
847 * The CPUs this group covers.
848 *
849 * NOTE: this field is variable length. (Allocated dynamically
850 * by attaching extra space to the end of the structure,
851 * depending on how many CPUs the kernel has booted up with)
852 */
853 unsigned long cpumask[0];
854};
855
856static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
857{
858 return to_cpumask(sg->cpumask);
859}
860
861/*
862 * cpumask masking which cpus in the group are allowed to iterate up the domain
863 * tree.
864 */
865static inline struct cpumask *sched_group_mask(struct sched_group *sg)
866{
63b2ca30 867 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
868}
869
870/**
871 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
872 * @group: The group whose first cpu is to be returned.
873 */
874static inline unsigned int group_first_cpu(struct sched_group *group)
875{
876 return cpumask_first(sched_group_cpus(group));
877}
878
c1174876
PZ
879extern int group_balance_cpu(struct sched_group *sg);
880
e3baac47
PZ
881#else
882
883static inline void sched_ttwu_pending(void) { }
884
518cd623 885#endif /* CONFIG_SMP */
029632fb 886
391e43da
PZ
887#include "stats.h"
888#include "auto_group.h"
029632fb
PZ
889
890#ifdef CONFIG_CGROUP_SCHED
891
892/*
893 * Return the group to which this tasks belongs.
894 *
8af01f56
TH
895 * We cannot use task_css() and friends because the cgroup subsystem
896 * changes that value before the cgroup_subsys::attach() method is called,
897 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
898 *
899 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
900 * core changes this before calling sched_move_task().
901 *
902 * Instead we use a 'copy' which is updated from sched_move_task() while
903 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
904 */
905static inline struct task_group *task_group(struct task_struct *p)
906{
8323f26c 907 return p->sched_task_group;
029632fb
PZ
908}
909
910/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
911static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
912{
913#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
914 struct task_group *tg = task_group(p);
915#endif
916
917#ifdef CONFIG_FAIR_GROUP_SCHED
918 p->se.cfs_rq = tg->cfs_rq[cpu];
919 p->se.parent = tg->se[cpu];
920#endif
921
922#ifdef CONFIG_RT_GROUP_SCHED
923 p->rt.rt_rq = tg->rt_rq[cpu];
924 p->rt.parent = tg->rt_se[cpu];
925#endif
926}
927
928#else /* CONFIG_CGROUP_SCHED */
929
930static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
931static inline struct task_group *task_group(struct task_struct *p)
932{
933 return NULL;
934}
935
936#endif /* CONFIG_CGROUP_SCHED */
937
938static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
939{
940 set_task_rq(p, cpu);
941#ifdef CONFIG_SMP
942 /*
943 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
944 * successfuly executed on another CPU. We must ensure that updates of
945 * per-task data have been completed by this moment.
946 */
947 smp_wmb();
948 task_thread_info(p)->cpu = cpu;
ac66f547 949 p->wake_cpu = cpu;
029632fb
PZ
950#endif
951}
952
953/*
954 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
955 */
956#ifdef CONFIG_SCHED_DEBUG
c5905afb 957# include <linux/static_key.h>
029632fb
PZ
958# define const_debug __read_mostly
959#else
960# define const_debug const
961#endif
962
963extern const_debug unsigned int sysctl_sched_features;
964
965#define SCHED_FEAT(name, enabled) \
966 __SCHED_FEAT_##name ,
967
968enum {
391e43da 969#include "features.h"
f8b6d1cc 970 __SCHED_FEAT_NR,
029632fb
PZ
971};
972
973#undef SCHED_FEAT
974
f8b6d1cc 975#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 976#define SCHED_FEAT(name, enabled) \
c5905afb 977static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 978{ \
6e76ea8a 979 return static_key_##enabled(key); \
f8b6d1cc
PZ
980}
981
982#include "features.h"
983
984#undef SCHED_FEAT
985
c5905afb 986extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
987#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
988#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 989#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 990#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 991
cbee9f88
PZ
992#ifdef CONFIG_NUMA_BALANCING
993#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
994#ifdef CONFIG_SCHED_DEBUG
995#define numabalancing_enabled sched_feat_numa(NUMA)
996#else
997extern bool numabalancing_enabled;
998#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
999#else
1000#define sched_feat_numa(x) (0)
3105b86a
MG
1001#define numabalancing_enabled (0)
1002#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 1003
029632fb
PZ
1004static inline u64 global_rt_period(void)
1005{
1006 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1007}
1008
1009static inline u64 global_rt_runtime(void)
1010{
1011 if (sysctl_sched_rt_runtime < 0)
1012 return RUNTIME_INF;
1013
1014 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1015}
1016
029632fb
PZ
1017static inline int task_current(struct rq *rq, struct task_struct *p)
1018{
1019 return rq->curr == p;
1020}
1021
1022static inline int task_running(struct rq *rq, struct task_struct *p)
1023{
1024#ifdef CONFIG_SMP
1025 return p->on_cpu;
1026#else
1027 return task_current(rq, p);
1028#endif
1029}
1030
da0c1e65
KT
1031static inline int task_on_rq_queued(struct task_struct *p)
1032{
1033 return p->on_rq == TASK_ON_RQ_QUEUED;
1034}
029632fb 1035
cca26e80
KT
1036static inline int task_on_rq_migrating(struct task_struct *p)
1037{
1038 return p->on_rq == TASK_ON_RQ_MIGRATING;
1039}
1040
029632fb
PZ
1041#ifndef prepare_arch_switch
1042# define prepare_arch_switch(next) do { } while (0)
1043#endif
1044#ifndef finish_arch_switch
1045# define finish_arch_switch(prev) do { } while (0)
1046#endif
01f23e16
CM
1047#ifndef finish_arch_post_lock_switch
1048# define finish_arch_post_lock_switch() do { } while (0)
1049#endif
029632fb 1050
029632fb
PZ
1051static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1052{
1053#ifdef CONFIG_SMP
1054 /*
1055 * We can optimise this out completely for !SMP, because the
1056 * SMP rebalancing from interrupt is the only thing that cares
1057 * here.
1058 */
1059 next->on_cpu = 1;
1060#endif
1061}
1062
1063static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1064{
1065#ifdef CONFIG_SMP
1066 /*
1067 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1068 * We must ensure this doesn't happen until the switch is completely
1069 * finished.
1070 */
1071 smp_wmb();
1072 prev->on_cpu = 0;
1073#endif
1074#ifdef CONFIG_DEBUG_SPINLOCK
1075 /* this is a valid case when another task releases the spinlock */
1076 rq->lock.owner = current;
1077#endif
1078 /*
1079 * If we are tracking spinlock dependencies then we have to
1080 * fix up the runqueue lock - which gets 'carried over' from
1081 * prev into current:
1082 */
1083 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1084
1085 raw_spin_unlock_irq(&rq->lock);
1086}
1087
b13095f0
LZ
1088/*
1089 * wake flags
1090 */
1091#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1092#define WF_FORK 0x02 /* child wakeup after fork */
1093#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1094
029632fb
PZ
1095/*
1096 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1097 * of tasks with abnormal "nice" values across CPUs the contribution that
1098 * each task makes to its run queue's load is weighted according to its
1099 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1100 * scaled version of the new time slice allocation that they receive on time
1101 * slice expiry etc.
1102 */
1103
1104#define WEIGHT_IDLEPRIO 3
1105#define WMULT_IDLEPRIO 1431655765
1106
1107/*
1108 * Nice levels are multiplicative, with a gentle 10% change for every
1109 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1110 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1111 * that remained on nice 0.
1112 *
1113 * The "10% effect" is relative and cumulative: from _any_ nice level,
1114 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1115 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1116 * If a task goes up by ~10% and another task goes down by ~10% then
1117 * the relative distance between them is ~25%.)
1118 */
1119static const int prio_to_weight[40] = {
1120 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1121 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1122 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1123 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1124 /* 0 */ 1024, 820, 655, 526, 423,
1125 /* 5 */ 335, 272, 215, 172, 137,
1126 /* 10 */ 110, 87, 70, 56, 45,
1127 /* 15 */ 36, 29, 23, 18, 15,
1128};
1129
1130/*
1131 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1132 *
1133 * In cases where the weight does not change often, we can use the
1134 * precalculated inverse to speed up arithmetics by turning divisions
1135 * into multiplications:
1136 */
1137static const u32 prio_to_wmult[40] = {
1138 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1139 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1140 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1141 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1142 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1143 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1144 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1145 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1146};
1147
c82ba9fa
LZ
1148#define ENQUEUE_WAKEUP 1
1149#define ENQUEUE_HEAD 2
1150#ifdef CONFIG_SMP
1151#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1152#else
1153#define ENQUEUE_WAKING 0
1154#endif
aab03e05 1155#define ENQUEUE_REPLENISH 8
c82ba9fa
LZ
1156
1157#define DEQUEUE_SLEEP 1
1158
37e117c0
PZ
1159#define RETRY_TASK ((void *)-1UL)
1160
c82ba9fa
LZ
1161struct sched_class {
1162 const struct sched_class *next;
1163
1164 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1165 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1166 void (*yield_task) (struct rq *rq);
1167 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1168
1169 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1170
606dba2e
PZ
1171 /*
1172 * It is the responsibility of the pick_next_task() method that will
1173 * return the next task to call put_prev_task() on the @prev task or
1174 * something equivalent.
37e117c0
PZ
1175 *
1176 * May return RETRY_TASK when it finds a higher prio class has runnable
1177 * tasks.
606dba2e
PZ
1178 */
1179 struct task_struct * (*pick_next_task) (struct rq *rq,
1180 struct task_struct *prev);
c82ba9fa
LZ
1181 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1182
1183#ifdef CONFIG_SMP
ac66f547 1184 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
c82ba9fa
LZ
1185 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1186
c82ba9fa
LZ
1187 void (*post_schedule) (struct rq *this_rq);
1188 void (*task_waking) (struct task_struct *task);
1189 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1190
1191 void (*set_cpus_allowed)(struct task_struct *p,
1192 const struct cpumask *newmask);
1193
1194 void (*rq_online)(struct rq *rq);
1195 void (*rq_offline)(struct rq *rq);
1196#endif
1197
1198 void (*set_curr_task) (struct rq *rq);
1199 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1200 void (*task_fork) (struct task_struct *p);
e6c390f2 1201 void (*task_dead) (struct task_struct *p);
c82ba9fa 1202
67dfa1b7
KT
1203 /*
1204 * The switched_from() call is allowed to drop rq->lock, therefore we
1205 * cannot assume the switched_from/switched_to pair is serliazed by
1206 * rq->lock. They are however serialized by p->pi_lock.
1207 */
c82ba9fa
LZ
1208 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1209 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1210 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1211 int oldprio);
1212
1213 unsigned int (*get_rr_interval) (struct rq *rq,
1214 struct task_struct *task);
1215
6e998916
SG
1216 void (*update_curr) (struct rq *rq);
1217
c82ba9fa
LZ
1218#ifdef CONFIG_FAIR_GROUP_SCHED
1219 void (*task_move_group) (struct task_struct *p, int on_rq);
1220#endif
1221};
029632fb 1222
3f1d2a31
PZ
1223static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1224{
1225 prev->sched_class->put_prev_task(rq, prev);
1226}
1227
029632fb
PZ
1228#define sched_class_highest (&stop_sched_class)
1229#define for_each_class(class) \
1230 for (class = sched_class_highest; class; class = class->next)
1231
1232extern const struct sched_class stop_sched_class;
aab03e05 1233extern const struct sched_class dl_sched_class;
029632fb
PZ
1234extern const struct sched_class rt_sched_class;
1235extern const struct sched_class fair_sched_class;
1236extern const struct sched_class idle_sched_class;
1237
1238
1239#ifdef CONFIG_SMP
1240
63b2ca30 1241extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1242
7caff66f 1243extern void trigger_load_balance(struct rq *rq);
029632fb 1244
642dbc39
VG
1245extern void idle_enter_fair(struct rq *this_rq);
1246extern void idle_exit_fair(struct rq *this_rq);
642dbc39 1247
dc877341
PZ
1248#else
1249
1250static inline void idle_enter_fair(struct rq *rq) { }
1251static inline void idle_exit_fair(struct rq *rq) { }
1252
029632fb
PZ
1253#endif
1254
442bf3aa
DL
1255#ifdef CONFIG_CPU_IDLE
1256static inline void idle_set_state(struct rq *rq,
1257 struct cpuidle_state *idle_state)
1258{
1259 rq->idle_state = idle_state;
1260}
1261
1262static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1263{
1264 WARN_ON(!rcu_read_lock_held());
1265 return rq->idle_state;
1266}
1267#else
1268static inline void idle_set_state(struct rq *rq,
1269 struct cpuidle_state *idle_state)
1270{
1271}
1272
1273static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1274{
1275 return NULL;
1276}
1277#endif
1278
029632fb
PZ
1279extern void sysrq_sched_debug_show(void);
1280extern void sched_init_granularity(void);
1281extern void update_max_interval(void);
1baca4ce
JL
1282
1283extern void init_sched_dl_class(void);
029632fb
PZ
1284extern void init_sched_rt_class(void);
1285extern void init_sched_fair_class(void);
332ac17e 1286extern void init_sched_dl_class(void);
029632fb 1287
8875125e 1288extern void resched_curr(struct rq *rq);
029632fb
PZ
1289extern void resched_cpu(int cpu);
1290
1291extern struct rt_bandwidth def_rt_bandwidth;
1292extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1293
332ac17e
DF
1294extern struct dl_bandwidth def_dl_bandwidth;
1295extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1296extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1297
332ac17e
DF
1298unsigned long to_ratio(u64 period, u64 runtime);
1299
556061b0 1300extern void update_idle_cpu_load(struct rq *this_rq);
029632fb 1301
a75cdaa9
AS
1302extern void init_task_runnable_average(struct task_struct *p);
1303
72465447 1304static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1305{
72465447
KT
1306 unsigned prev_nr = rq->nr_running;
1307
1308 rq->nr_running = prev_nr + count;
9f3660c2 1309
72465447 1310 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1311#ifdef CONFIG_SMP
1312 if (!rq->rd->overload)
1313 rq->rd->overload = true;
1314#endif
1315
1316#ifdef CONFIG_NO_HZ_FULL
9f3660c2 1317 if (tick_nohz_full_cpu(rq->cpu)) {
3882ec64
FW
1318 /*
1319 * Tick is needed if more than one task runs on a CPU.
1320 * Send the target an IPI to kick it out of nohz mode.
1321 *
1322 * We assume that IPI implies full memory barrier and the
1323 * new value of rq->nr_running is visible on reception
1324 * from the target.
1325 */
fd2ac4f4 1326 tick_nohz_full_kick_cpu(rq->cpu);
9f3660c2 1327 }
9f3660c2 1328#endif
4486edd1 1329 }
029632fb
PZ
1330}
1331
72465447 1332static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1333{
72465447 1334 rq->nr_running -= count;
029632fb
PZ
1335}
1336
265f22a9
FW
1337static inline void rq_last_tick_reset(struct rq *rq)
1338{
1339#ifdef CONFIG_NO_HZ_FULL
1340 rq->last_sched_tick = jiffies;
1341#endif
1342}
1343
029632fb
PZ
1344extern void update_rq_clock(struct rq *rq);
1345
1346extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1347extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1348
1349extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1350
1351extern const_debug unsigned int sysctl_sched_time_avg;
1352extern const_debug unsigned int sysctl_sched_nr_migrate;
1353extern const_debug unsigned int sysctl_sched_migration_cost;
1354
1355static inline u64 sched_avg_period(void)
1356{
1357 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1358}
1359
029632fb
PZ
1360#ifdef CONFIG_SCHED_HRTICK
1361
1362/*
1363 * Use hrtick when:
1364 * - enabled by features
1365 * - hrtimer is actually high res
1366 */
1367static inline int hrtick_enabled(struct rq *rq)
1368{
1369 if (!sched_feat(HRTICK))
1370 return 0;
1371 if (!cpu_active(cpu_of(rq)))
1372 return 0;
1373 return hrtimer_is_hres_active(&rq->hrtick_timer);
1374}
1375
1376void hrtick_start(struct rq *rq, u64 delay);
1377
b39e66ea
MG
1378#else
1379
1380static inline int hrtick_enabled(struct rq *rq)
1381{
1382 return 0;
1383}
1384
029632fb
PZ
1385#endif /* CONFIG_SCHED_HRTICK */
1386
1387#ifdef CONFIG_SMP
1388extern void sched_avg_update(struct rq *rq);
1389static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1390{
1391 rq->rt_avg += rt_delta;
1392 sched_avg_update(rq);
1393}
1394#else
1395static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1396static inline void sched_avg_update(struct rq *rq) { }
1397#endif
1398
1399extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1400
3960c8c0
PZ
1401/*
1402 * __task_rq_lock - lock the rq @p resides on.
1403 */
1404static inline struct rq *__task_rq_lock(struct task_struct *p)
1405 __acquires(rq->lock)
1406{
1407 struct rq *rq;
1408
1409 lockdep_assert_held(&p->pi_lock);
1410
1411 for (;;) {
1412 rq = task_rq(p);
1413 raw_spin_lock(&rq->lock);
1414 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1415 return rq;
1416 raw_spin_unlock(&rq->lock);
1417
1418 while (unlikely(task_on_rq_migrating(p)))
1419 cpu_relax();
1420 }
1421}
1422
1423/*
1424 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1425 */
1426static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1427 __acquires(p->pi_lock)
1428 __acquires(rq->lock)
1429{
1430 struct rq *rq;
1431
1432 for (;;) {
1433 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1434 rq = task_rq(p);
1435 raw_spin_lock(&rq->lock);
1436 /*
1437 * move_queued_task() task_rq_lock()
1438 *
1439 * ACQUIRE (rq->lock)
1440 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
1441 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
1442 * [S] ->cpu = new_cpu [L] task_rq()
1443 * [L] ->on_rq
1444 * RELEASE (rq->lock)
1445 *
1446 * If we observe the old cpu in task_rq_lock, the acquire of
1447 * the old rq->lock will fully serialize against the stores.
1448 *
1449 * If we observe the new cpu in task_rq_lock, the acquire will
1450 * pair with the WMB to ensure we must then also see migrating.
1451 */
1452 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1453 return rq;
1454 raw_spin_unlock(&rq->lock);
1455 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1456
1457 while (unlikely(task_on_rq_migrating(p)))
1458 cpu_relax();
1459 }
1460}
1461
1462static inline void __task_rq_unlock(struct rq *rq)
1463 __releases(rq->lock)
1464{
1465 raw_spin_unlock(&rq->lock);
1466}
1467
1468static inline void
1469task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1470 __releases(rq->lock)
1471 __releases(p->pi_lock)
1472{
1473 raw_spin_unlock(&rq->lock);
1474 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1475}
1476
029632fb
PZ
1477#ifdef CONFIG_SMP
1478#ifdef CONFIG_PREEMPT
1479
1480static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1481
1482/*
1483 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1484 * way at the expense of forcing extra atomic operations in all
1485 * invocations. This assures that the double_lock is acquired using the
1486 * same underlying policy as the spinlock_t on this architecture, which
1487 * reduces latency compared to the unfair variant below. However, it
1488 * also adds more overhead and therefore may reduce throughput.
1489 */
1490static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1491 __releases(this_rq->lock)
1492 __acquires(busiest->lock)
1493 __acquires(this_rq->lock)
1494{
1495 raw_spin_unlock(&this_rq->lock);
1496 double_rq_lock(this_rq, busiest);
1497
1498 return 1;
1499}
1500
1501#else
1502/*
1503 * Unfair double_lock_balance: Optimizes throughput at the expense of
1504 * latency by eliminating extra atomic operations when the locks are
1505 * already in proper order on entry. This favors lower cpu-ids and will
1506 * grant the double lock to lower cpus over higher ids under contention,
1507 * regardless of entry order into the function.
1508 */
1509static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1510 __releases(this_rq->lock)
1511 __acquires(busiest->lock)
1512 __acquires(this_rq->lock)
1513{
1514 int ret = 0;
1515
1516 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1517 if (busiest < this_rq) {
1518 raw_spin_unlock(&this_rq->lock);
1519 raw_spin_lock(&busiest->lock);
1520 raw_spin_lock_nested(&this_rq->lock,
1521 SINGLE_DEPTH_NESTING);
1522 ret = 1;
1523 } else
1524 raw_spin_lock_nested(&busiest->lock,
1525 SINGLE_DEPTH_NESTING);
1526 }
1527 return ret;
1528}
1529
1530#endif /* CONFIG_PREEMPT */
1531
1532/*
1533 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1534 */
1535static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1536{
1537 if (unlikely(!irqs_disabled())) {
1538 /* printk() doesn't work good under rq->lock */
1539 raw_spin_unlock(&this_rq->lock);
1540 BUG_ON(1);
1541 }
1542
1543 return _double_lock_balance(this_rq, busiest);
1544}
1545
1546static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1547 __releases(busiest->lock)
1548{
1549 raw_spin_unlock(&busiest->lock);
1550 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1551}
1552
74602315
PZ
1553static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1554{
1555 if (l1 > l2)
1556 swap(l1, l2);
1557
1558 spin_lock(l1);
1559 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1560}
1561
60e69eed
MG
1562static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1563{
1564 if (l1 > l2)
1565 swap(l1, l2);
1566
1567 spin_lock_irq(l1);
1568 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1569}
1570
74602315
PZ
1571static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1572{
1573 if (l1 > l2)
1574 swap(l1, l2);
1575
1576 raw_spin_lock(l1);
1577 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1578}
1579
029632fb
PZ
1580/*
1581 * double_rq_lock - safely lock two runqueues
1582 *
1583 * Note this does not disable interrupts like task_rq_lock,
1584 * you need to do so manually before calling.
1585 */
1586static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1587 __acquires(rq1->lock)
1588 __acquires(rq2->lock)
1589{
1590 BUG_ON(!irqs_disabled());
1591 if (rq1 == rq2) {
1592 raw_spin_lock(&rq1->lock);
1593 __acquire(rq2->lock); /* Fake it out ;) */
1594 } else {
1595 if (rq1 < rq2) {
1596 raw_spin_lock(&rq1->lock);
1597 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1598 } else {
1599 raw_spin_lock(&rq2->lock);
1600 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1601 }
1602 }
1603}
1604
1605/*
1606 * double_rq_unlock - safely unlock two runqueues
1607 *
1608 * Note this does not restore interrupts like task_rq_unlock,
1609 * you need to do so manually after calling.
1610 */
1611static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1612 __releases(rq1->lock)
1613 __releases(rq2->lock)
1614{
1615 raw_spin_unlock(&rq1->lock);
1616 if (rq1 != rq2)
1617 raw_spin_unlock(&rq2->lock);
1618 else
1619 __release(rq2->lock);
1620}
1621
1622#else /* CONFIG_SMP */
1623
1624/*
1625 * double_rq_lock - safely lock two runqueues
1626 *
1627 * Note this does not disable interrupts like task_rq_lock,
1628 * you need to do so manually before calling.
1629 */
1630static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1631 __acquires(rq1->lock)
1632 __acquires(rq2->lock)
1633{
1634 BUG_ON(!irqs_disabled());
1635 BUG_ON(rq1 != rq2);
1636 raw_spin_lock(&rq1->lock);
1637 __acquire(rq2->lock); /* Fake it out ;) */
1638}
1639
1640/*
1641 * double_rq_unlock - safely unlock two runqueues
1642 *
1643 * Note this does not restore interrupts like task_rq_unlock,
1644 * you need to do so manually after calling.
1645 */
1646static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1647 __releases(rq1->lock)
1648 __releases(rq2->lock)
1649{
1650 BUG_ON(rq1 != rq2);
1651 raw_spin_unlock(&rq1->lock);
1652 __release(rq2->lock);
1653}
1654
1655#endif
1656
1657extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1658extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1659extern void print_cfs_stats(struct seq_file *m, int cpu);
1660extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 1661extern void print_dl_stats(struct seq_file *m, int cpu);
029632fb
PZ
1662
1663extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1664extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
aab03e05 1665extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
029632fb 1666
1ee14e6c
BS
1667extern void cfs_bandwidth_usage_inc(void);
1668extern void cfs_bandwidth_usage_dec(void);
1c792db7 1669
3451d024 1670#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1671enum rq_nohz_flag_bits {
1672 NOHZ_TICK_STOPPED,
1673 NOHZ_BALANCE_KICK,
1674};
1675
1676#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1677#endif
73fbec60
FW
1678
1679#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1680
1681DECLARE_PER_CPU(u64, cpu_hardirq_time);
1682DECLARE_PER_CPU(u64, cpu_softirq_time);
1683
1684#ifndef CONFIG_64BIT
1685DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1686
1687static inline void irq_time_write_begin(void)
1688{
1689 __this_cpu_inc(irq_time_seq.sequence);
1690 smp_wmb();
1691}
1692
1693static inline void irq_time_write_end(void)
1694{
1695 smp_wmb();
1696 __this_cpu_inc(irq_time_seq.sequence);
1697}
1698
1699static inline u64 irq_time_read(int cpu)
1700{
1701 u64 irq_time;
1702 unsigned seq;
1703
1704 do {
1705 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1706 irq_time = per_cpu(cpu_softirq_time, cpu) +
1707 per_cpu(cpu_hardirq_time, cpu);
1708 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1709
1710 return irq_time;
1711}
1712#else /* CONFIG_64BIT */
1713static inline void irq_time_write_begin(void)
1714{
1715}
1716
1717static inline void irq_time_write_end(void)
1718{
1719}
1720
1721static inline u64 irq_time_read(int cpu)
1722{
1723 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1724}
1725#endif /* CONFIG_64BIT */
1726#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
This page took 0.18756 seconds and 5 git commands to generate.