sched: Replace post_schedule with a balance callback list
[deliverable/linux.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
029632fb
PZ
6#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
b6366f04 9#include <linux/irq_work.h>
9f3660c2 10#include <linux/tick.h>
f809ca9a 11#include <linux/slab.h>
029632fb 12
391e43da 13#include "cpupri.h"
6bfd6d72 14#include "cpudeadline.h"
60fed789 15#include "cpuacct.h"
029632fb 16
45ceebf7 17struct rq;
442bf3aa 18struct cpuidle_state;
45ceebf7 19
da0c1e65
KT
20/* task_struct::on_rq states: */
21#define TASK_ON_RQ_QUEUED 1
cca26e80 22#define TASK_ON_RQ_MIGRATING 2
da0c1e65 23
029632fb
PZ
24extern __read_mostly int scheduler_running;
25
45ceebf7
PG
26extern unsigned long calc_load_update;
27extern atomic_long_t calc_load_tasks;
28
3289bdb4 29extern void calc_global_load_tick(struct rq *this_rq);
45ceebf7 30extern long calc_load_fold_active(struct rq *this_rq);
3289bdb4
PZ
31
32#ifdef CONFIG_SMP
45ceebf7 33extern void update_cpu_load_active(struct rq *this_rq);
3289bdb4
PZ
34#else
35static inline void update_cpu_load_active(struct rq *this_rq) { }
36#endif
45ceebf7 37
029632fb
PZ
38/*
39 * Helpers for converting nanosecond timing to jiffy resolution
40 */
41#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
42
cc1f4b1f
LZ
43/*
44 * Increase resolution of nice-level calculations for 64-bit architectures.
45 * The extra resolution improves shares distribution and load balancing of
46 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
47 * hierarchies, especially on larger systems. This is not a user-visible change
48 * and does not change the user-interface for setting shares/weights.
49 *
50 * We increase resolution only if we have enough bits to allow this increased
51 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
52 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
53 * increased costs.
54 */
55#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
56# define SCHED_LOAD_RESOLUTION 10
57# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
58# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
59#else
60# define SCHED_LOAD_RESOLUTION 0
61# define scale_load(w) (w)
62# define scale_load_down(w) (w)
63#endif
64
65#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
66#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
67
029632fb
PZ
68#define NICE_0_LOAD SCHED_LOAD_SCALE
69#define NICE_0_SHIFT SCHED_LOAD_SHIFT
70
332ac17e
DF
71/*
72 * Single value that decides SCHED_DEADLINE internal math precision.
73 * 10 -> just above 1us
74 * 9 -> just above 0.5us
75 */
76#define DL_SCALE (10)
77
029632fb
PZ
78/*
79 * These are the 'tuning knobs' of the scheduler:
029632fb 80 */
029632fb
PZ
81
82/*
83 * single value that denotes runtime == period, ie unlimited time.
84 */
85#define RUNTIME_INF ((u64)~0ULL)
86
d50dde5a
DF
87static inline int fair_policy(int policy)
88{
89 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
90}
91
029632fb
PZ
92static inline int rt_policy(int policy)
93{
d50dde5a 94 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
95}
96
aab03e05
DF
97static inline int dl_policy(int policy)
98{
99 return policy == SCHED_DEADLINE;
100}
101
029632fb
PZ
102static inline int task_has_rt_policy(struct task_struct *p)
103{
104 return rt_policy(p->policy);
105}
106
aab03e05
DF
107static inline int task_has_dl_policy(struct task_struct *p)
108{
109 return dl_policy(p->policy);
110}
111
332ac17e 112static inline bool dl_time_before(u64 a, u64 b)
2d3d891d
DF
113{
114 return (s64)(a - b) < 0;
115}
116
117/*
118 * Tells if entity @a should preempt entity @b.
119 */
332ac17e
DF
120static inline bool
121dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
122{
123 return dl_time_before(a->deadline, b->deadline);
124}
125
029632fb
PZ
126/*
127 * This is the priority-queue data structure of the RT scheduling class:
128 */
129struct rt_prio_array {
130 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
131 struct list_head queue[MAX_RT_PRIO];
132};
133
134struct rt_bandwidth {
135 /* nests inside the rq lock: */
136 raw_spinlock_t rt_runtime_lock;
137 ktime_t rt_period;
138 u64 rt_runtime;
139 struct hrtimer rt_period_timer;
4cfafd30 140 unsigned int rt_period_active;
029632fb 141};
a5e7be3b
JL
142
143void __dl_clear_params(struct task_struct *p);
144
332ac17e
DF
145/*
146 * To keep the bandwidth of -deadline tasks and groups under control
147 * we need some place where:
148 * - store the maximum -deadline bandwidth of the system (the group);
149 * - cache the fraction of that bandwidth that is currently allocated.
150 *
151 * This is all done in the data structure below. It is similar to the
152 * one used for RT-throttling (rt_bandwidth), with the main difference
153 * that, since here we are only interested in admission control, we
154 * do not decrease any runtime while the group "executes", neither we
155 * need a timer to replenish it.
156 *
157 * With respect to SMP, the bandwidth is given on a per-CPU basis,
158 * meaning that:
159 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
160 * - dl_total_bw array contains, in the i-eth element, the currently
161 * allocated bandwidth on the i-eth CPU.
162 * Moreover, groups consume bandwidth on each CPU, while tasks only
163 * consume bandwidth on the CPU they're running on.
164 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
165 * that will be shown the next time the proc or cgroup controls will
166 * be red. It on its turn can be changed by writing on its own
167 * control.
168 */
169struct dl_bandwidth {
170 raw_spinlock_t dl_runtime_lock;
171 u64 dl_runtime;
172 u64 dl_period;
173};
174
175static inline int dl_bandwidth_enabled(void)
176{
1724813d 177 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
178}
179
180extern struct dl_bw *dl_bw_of(int i);
181
182struct dl_bw {
183 raw_spinlock_t lock;
184 u64 bw, total_bw;
185};
186
7f51412a
JL
187static inline
188void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
189{
190 dl_b->total_bw -= tsk_bw;
191}
192
193static inline
194void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
195{
196 dl_b->total_bw += tsk_bw;
197}
198
199static inline
200bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
201{
202 return dl_b->bw != -1 &&
203 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
204}
205
029632fb
PZ
206extern struct mutex sched_domains_mutex;
207
208#ifdef CONFIG_CGROUP_SCHED
209
210#include <linux/cgroup.h>
211
212struct cfs_rq;
213struct rt_rq;
214
35cf4e50 215extern struct list_head task_groups;
029632fb
PZ
216
217struct cfs_bandwidth {
218#ifdef CONFIG_CFS_BANDWIDTH
219 raw_spinlock_t lock;
220 ktime_t period;
221 u64 quota, runtime;
9c58c79a 222 s64 hierarchical_quota;
029632fb
PZ
223 u64 runtime_expires;
224
4cfafd30 225 int idle, period_active;
029632fb
PZ
226 struct hrtimer period_timer, slack_timer;
227 struct list_head throttled_cfs_rq;
228
229 /* statistics */
230 int nr_periods, nr_throttled;
231 u64 throttled_time;
232#endif
233};
234
235/* task group related information */
236struct task_group {
237 struct cgroup_subsys_state css;
238
239#ifdef CONFIG_FAIR_GROUP_SCHED
240 /* schedulable entities of this group on each cpu */
241 struct sched_entity **se;
242 /* runqueue "owned" by this group on each cpu */
243 struct cfs_rq **cfs_rq;
244 unsigned long shares;
245
fa6bddeb 246#ifdef CONFIG_SMP
bf5b986e 247 atomic_long_t load_avg;
bb17f655 248 atomic_t runnable_avg;
029632fb 249#endif
fa6bddeb 250#endif
029632fb
PZ
251
252#ifdef CONFIG_RT_GROUP_SCHED
253 struct sched_rt_entity **rt_se;
254 struct rt_rq **rt_rq;
255
256 struct rt_bandwidth rt_bandwidth;
257#endif
258
259 struct rcu_head rcu;
260 struct list_head list;
261
262 struct task_group *parent;
263 struct list_head siblings;
264 struct list_head children;
265
266#ifdef CONFIG_SCHED_AUTOGROUP
267 struct autogroup *autogroup;
268#endif
269
270 struct cfs_bandwidth cfs_bandwidth;
271};
272
273#ifdef CONFIG_FAIR_GROUP_SCHED
274#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
275
276/*
277 * A weight of 0 or 1 can cause arithmetics problems.
278 * A weight of a cfs_rq is the sum of weights of which entities
279 * are queued on this cfs_rq, so a weight of a entity should not be
280 * too large, so as the shares value of a task group.
281 * (The default weight is 1024 - so there's no practical
282 * limitation from this.)
283 */
284#define MIN_SHARES (1UL << 1)
285#define MAX_SHARES (1UL << 18)
286#endif
287
029632fb
PZ
288typedef int (*tg_visitor)(struct task_group *, void *);
289
290extern int walk_tg_tree_from(struct task_group *from,
291 tg_visitor down, tg_visitor up, void *data);
292
293/*
294 * Iterate the full tree, calling @down when first entering a node and @up when
295 * leaving it for the final time.
296 *
297 * Caller must hold rcu_lock or sufficient equivalent.
298 */
299static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
300{
301 return walk_tg_tree_from(&root_task_group, down, up, data);
302}
303
304extern int tg_nop(struct task_group *tg, void *data);
305
306extern void free_fair_sched_group(struct task_group *tg);
307extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
308extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
309extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
310 struct sched_entity *se, int cpu,
311 struct sched_entity *parent);
312extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
313extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
314
315extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 316extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
317extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
318
319extern void free_rt_sched_group(struct task_group *tg);
320extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
321extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
322 struct sched_rt_entity *rt_se, int cpu,
323 struct sched_rt_entity *parent);
324
25cc7da7
LZ
325extern struct task_group *sched_create_group(struct task_group *parent);
326extern void sched_online_group(struct task_group *tg,
327 struct task_group *parent);
328extern void sched_destroy_group(struct task_group *tg);
329extern void sched_offline_group(struct task_group *tg);
330
331extern void sched_move_task(struct task_struct *tsk);
332
333#ifdef CONFIG_FAIR_GROUP_SCHED
334extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
335#endif
336
029632fb
PZ
337#else /* CONFIG_CGROUP_SCHED */
338
339struct cfs_bandwidth { };
340
341#endif /* CONFIG_CGROUP_SCHED */
342
343/* CFS-related fields in a runqueue */
344struct cfs_rq {
345 struct load_weight load;
c82513e5 346 unsigned int nr_running, h_nr_running;
029632fb
PZ
347
348 u64 exec_clock;
349 u64 min_vruntime;
350#ifndef CONFIG_64BIT
351 u64 min_vruntime_copy;
352#endif
353
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
356
029632fb
PZ
357 /*
358 * 'curr' points to currently running entity on this cfs_rq.
359 * It is set to NULL otherwise (i.e when none are currently running).
360 */
361 struct sched_entity *curr, *next, *last, *skip;
362
363#ifdef CONFIG_SCHED_DEBUG
364 unsigned int nr_spread_over;
365#endif
366
2dac754e
PT
367#ifdef CONFIG_SMP
368 /*
369 * CFS Load tracking
370 * Under CFS, load is tracked on a per-entity basis and aggregated up.
371 * This allows for the description of both thread and group usage (in
372 * the FAIR_GROUP_SCHED case).
36ee28e4
VG
373 * runnable_load_avg is the sum of the load_avg_contrib of the
374 * sched_entities on the rq.
375 * blocked_load_avg is similar to runnable_load_avg except that its
376 * the blocked sched_entities on the rq.
377 * utilization_load_avg is the sum of the average running time of the
378 * sched_entities on the rq.
2dac754e 379 */
36ee28e4 380 unsigned long runnable_load_avg, blocked_load_avg, utilization_load_avg;
2509940f 381 atomic64_t decay_counter;
9ee474f5 382 u64 last_decay;
2509940f 383 atomic_long_t removed_load;
141965c7 384
c566e8e9 385#ifdef CONFIG_FAIR_GROUP_SCHED
141965c7 386 /* Required to track per-cpu representation of a task_group */
bb17f655 387 u32 tg_runnable_contrib;
bf5b986e 388 unsigned long tg_load_contrib;
82958366
PT
389
390 /*
391 * h_load = weight * f(tg)
392 *
393 * Where f(tg) is the recursive weight fraction assigned to
394 * this group.
395 */
396 unsigned long h_load;
68520796
VD
397 u64 last_h_load_update;
398 struct sched_entity *h_load_next;
399#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
400#endif /* CONFIG_SMP */
401
029632fb
PZ
402#ifdef CONFIG_FAIR_GROUP_SCHED
403 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
404
405 /*
406 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
407 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
408 * (like users, containers etc.)
409 *
410 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
411 * list is used during load balance.
412 */
413 int on_list;
414 struct list_head leaf_cfs_rq_list;
415 struct task_group *tg; /* group that "owns" this runqueue */
416
029632fb
PZ
417#ifdef CONFIG_CFS_BANDWIDTH
418 int runtime_enabled;
419 u64 runtime_expires;
420 s64 runtime_remaining;
421
f1b17280
PT
422 u64 throttled_clock, throttled_clock_task;
423 u64 throttled_clock_task_time;
029632fb
PZ
424 int throttled, throttle_count;
425 struct list_head throttled_list;
426#endif /* CONFIG_CFS_BANDWIDTH */
427#endif /* CONFIG_FAIR_GROUP_SCHED */
428};
429
430static inline int rt_bandwidth_enabled(void)
431{
432 return sysctl_sched_rt_runtime >= 0;
433}
434
b6366f04
SR
435/* RT IPI pull logic requires IRQ_WORK */
436#ifdef CONFIG_IRQ_WORK
437# define HAVE_RT_PUSH_IPI
438#endif
439
029632fb
PZ
440/* Real-Time classes' related field in a runqueue: */
441struct rt_rq {
442 struct rt_prio_array active;
c82513e5 443 unsigned int rt_nr_running;
029632fb
PZ
444#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
445 struct {
446 int curr; /* highest queued rt task prio */
447#ifdef CONFIG_SMP
448 int next; /* next highest */
449#endif
450 } highest_prio;
451#endif
452#ifdef CONFIG_SMP
453 unsigned long rt_nr_migratory;
454 unsigned long rt_nr_total;
455 int overloaded;
456 struct plist_head pushable_tasks;
b6366f04
SR
457#ifdef HAVE_RT_PUSH_IPI
458 int push_flags;
459 int push_cpu;
460 struct irq_work push_work;
461 raw_spinlock_t push_lock;
029632fb 462#endif
b6366f04 463#endif /* CONFIG_SMP */
f4ebcbc0
KT
464 int rt_queued;
465
029632fb
PZ
466 int rt_throttled;
467 u64 rt_time;
468 u64 rt_runtime;
469 /* Nests inside the rq lock: */
470 raw_spinlock_t rt_runtime_lock;
471
472#ifdef CONFIG_RT_GROUP_SCHED
473 unsigned long rt_nr_boosted;
474
475 struct rq *rq;
029632fb
PZ
476 struct task_group *tg;
477#endif
478};
479
aab03e05
DF
480/* Deadline class' related fields in a runqueue */
481struct dl_rq {
482 /* runqueue is an rbtree, ordered by deadline */
483 struct rb_root rb_root;
484 struct rb_node *rb_leftmost;
485
486 unsigned long dl_nr_running;
1baca4ce
JL
487
488#ifdef CONFIG_SMP
489 /*
490 * Deadline values of the currently executing and the
491 * earliest ready task on this rq. Caching these facilitates
492 * the decision wether or not a ready but not running task
493 * should migrate somewhere else.
494 */
495 struct {
496 u64 curr;
497 u64 next;
498 } earliest_dl;
499
500 unsigned long dl_nr_migratory;
1baca4ce
JL
501 int overloaded;
502
503 /*
504 * Tasks on this rq that can be pushed away. They are kept in
505 * an rb-tree, ordered by tasks' deadlines, with caching
506 * of the leftmost (earliest deadline) element.
507 */
508 struct rb_root pushable_dl_tasks_root;
509 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
510#else
511 struct dl_bw dl_bw;
1baca4ce 512#endif
aab03e05
DF
513};
514
029632fb
PZ
515#ifdef CONFIG_SMP
516
517/*
518 * We add the notion of a root-domain which will be used to define per-domain
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
521 * exclusive cpuset is created, we also create and attach a new root-domain
522 * object.
523 *
524 */
525struct root_domain {
526 atomic_t refcount;
527 atomic_t rto_count;
528 struct rcu_head rcu;
529 cpumask_var_t span;
530 cpumask_var_t online;
531
4486edd1
TC
532 /* Indicate more than one runnable task for any CPU */
533 bool overload;
534
1baca4ce
JL
535 /*
536 * The bit corresponding to a CPU gets set here if such CPU has more
537 * than one runnable -deadline task (as it is below for RT tasks).
538 */
539 cpumask_var_t dlo_mask;
540 atomic_t dlo_count;
332ac17e 541 struct dl_bw dl_bw;
6bfd6d72 542 struct cpudl cpudl;
1baca4ce 543
029632fb
PZ
544 /*
545 * The "RT overload" flag: it gets set if a CPU has more than
546 * one runnable RT task.
547 */
548 cpumask_var_t rto_mask;
549 struct cpupri cpupri;
550};
551
552extern struct root_domain def_root_domain;
553
554#endif /* CONFIG_SMP */
555
556/*
557 * This is the main, per-CPU runqueue data structure.
558 *
559 * Locking rule: those places that want to lock multiple runqueues
560 * (such as the load balancing or the thread migration code), lock
561 * acquire operations must be ordered by ascending &runqueue.
562 */
563struct rq {
564 /* runqueue lock: */
565 raw_spinlock_t lock;
566
567 /*
568 * nr_running and cpu_load should be in the same cacheline because
569 * remote CPUs use both these fields when doing load calculation.
570 */
c82513e5 571 unsigned int nr_running;
0ec8aa00
PZ
572#ifdef CONFIG_NUMA_BALANCING
573 unsigned int nr_numa_running;
574 unsigned int nr_preferred_running;
575#endif
029632fb
PZ
576 #define CPU_LOAD_IDX_MAX 5
577 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
578 unsigned long last_load_update_tick;
3451d024 579#ifdef CONFIG_NO_HZ_COMMON
029632fb 580 u64 nohz_stamp;
1c792db7 581 unsigned long nohz_flags;
265f22a9
FW
582#endif
583#ifdef CONFIG_NO_HZ_FULL
584 unsigned long last_sched_tick;
029632fb 585#endif
029632fb
PZ
586 /* capture load from *all* tasks on this cpu: */
587 struct load_weight load;
588 unsigned long nr_load_updates;
589 u64 nr_switches;
590
591 struct cfs_rq cfs;
592 struct rt_rq rt;
aab03e05 593 struct dl_rq dl;
029632fb
PZ
594
595#ifdef CONFIG_FAIR_GROUP_SCHED
596 /* list of leaf cfs_rq on this cpu: */
597 struct list_head leaf_cfs_rq_list;
f5f9739d
DE
598
599 struct sched_avg avg;
a35b6466
PZ
600#endif /* CONFIG_FAIR_GROUP_SCHED */
601
029632fb
PZ
602 /*
603 * This is part of a global counter where only the total sum
604 * over all CPUs matters. A task can increase this counter on
605 * one CPU and if it got migrated afterwards it may decrease
606 * it on another CPU. Always updated under the runqueue lock:
607 */
608 unsigned long nr_uninterruptible;
609
610 struct task_struct *curr, *idle, *stop;
611 unsigned long next_balance;
612 struct mm_struct *prev_mm;
613
9edfbfed 614 unsigned int clock_skip_update;
029632fb
PZ
615 u64 clock;
616 u64 clock_task;
617
618 atomic_t nr_iowait;
619
620#ifdef CONFIG_SMP
621 struct root_domain *rd;
622 struct sched_domain *sd;
623
ced549fa 624 unsigned long cpu_capacity;
ca6d75e6 625 unsigned long cpu_capacity_orig;
029632fb 626
e3fca9e7
PZ
627 struct callback_head *balance_callback;
628
029632fb
PZ
629 unsigned char idle_balance;
630 /* For active balancing */
029632fb
PZ
631 int active_balance;
632 int push_cpu;
633 struct cpu_stop_work active_balance_work;
634 /* cpu of this runqueue: */
635 int cpu;
636 int online;
637
367456c7
PZ
638 struct list_head cfs_tasks;
639
029632fb
PZ
640 u64 rt_avg;
641 u64 age_stamp;
642 u64 idle_stamp;
643 u64 avg_idle;
9bd721c5
JL
644
645 /* This is used to determine avg_idle's max value */
646 u64 max_idle_balance_cost;
029632fb
PZ
647#endif
648
649#ifdef CONFIG_IRQ_TIME_ACCOUNTING
650 u64 prev_irq_time;
651#endif
652#ifdef CONFIG_PARAVIRT
653 u64 prev_steal_time;
654#endif
655#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
656 u64 prev_steal_time_rq;
657#endif
658
659 /* calc_load related fields */
660 unsigned long calc_load_update;
661 long calc_load_active;
662
663#ifdef CONFIG_SCHED_HRTICK
664#ifdef CONFIG_SMP
665 int hrtick_csd_pending;
666 struct call_single_data hrtick_csd;
667#endif
668 struct hrtimer hrtick_timer;
669#endif
670
671#ifdef CONFIG_SCHEDSTATS
672 /* latency stats */
673 struct sched_info rq_sched_info;
674 unsigned long long rq_cpu_time;
675 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
676
677 /* sys_sched_yield() stats */
678 unsigned int yld_count;
679
680 /* schedule() stats */
029632fb
PZ
681 unsigned int sched_count;
682 unsigned int sched_goidle;
683
684 /* try_to_wake_up() stats */
685 unsigned int ttwu_count;
686 unsigned int ttwu_local;
687#endif
688
689#ifdef CONFIG_SMP
690 struct llist_head wake_list;
691#endif
442bf3aa
DL
692
693#ifdef CONFIG_CPU_IDLE
694 /* Must be inspected within a rcu lock section */
695 struct cpuidle_state *idle_state;
696#endif
029632fb
PZ
697};
698
699static inline int cpu_of(struct rq *rq)
700{
701#ifdef CONFIG_SMP
702 return rq->cpu;
703#else
704 return 0;
705#endif
706}
707
8b06c55b 708DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 709
518cd623 710#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 711#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
712#define task_rq(p) cpu_rq(task_cpu(p))
713#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 714#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 715
cebde6d6
PZ
716static inline u64 __rq_clock_broken(struct rq *rq)
717{
316c1608 718 return READ_ONCE(rq->clock);
cebde6d6
PZ
719}
720
78becc27
FW
721static inline u64 rq_clock(struct rq *rq)
722{
cebde6d6 723 lockdep_assert_held(&rq->lock);
78becc27
FW
724 return rq->clock;
725}
726
727static inline u64 rq_clock_task(struct rq *rq)
728{
cebde6d6 729 lockdep_assert_held(&rq->lock);
78becc27
FW
730 return rq->clock_task;
731}
732
9edfbfed
PZ
733#define RQCF_REQ_SKIP 0x01
734#define RQCF_ACT_SKIP 0x02
735
736static inline void rq_clock_skip_update(struct rq *rq, bool skip)
737{
738 lockdep_assert_held(&rq->lock);
739 if (skip)
740 rq->clock_skip_update |= RQCF_REQ_SKIP;
741 else
742 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
743}
744
9942f79b 745#ifdef CONFIG_NUMA
e3fe70b1
RR
746enum numa_topology_type {
747 NUMA_DIRECT,
748 NUMA_GLUELESS_MESH,
749 NUMA_BACKPLANE,
750};
751extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
752extern int sched_max_numa_distance;
753extern bool find_numa_distance(int distance);
754#endif
755
f809ca9a 756#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
757/* The regions in numa_faults array from task_struct */
758enum numa_faults_stats {
759 NUMA_MEM = 0,
760 NUMA_CPU,
761 NUMA_MEMBUF,
762 NUMA_CPUBUF
763};
0ec8aa00 764extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 765extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 766extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
767#endif /* CONFIG_NUMA_BALANCING */
768
518cd623
PZ
769#ifdef CONFIG_SMP
770
e3fca9e7
PZ
771static inline void
772queue_balance_callback(struct rq *rq,
773 struct callback_head *head,
774 void (*func)(struct rq *rq))
775{
776 lockdep_assert_held(&rq->lock);
777
778 if (unlikely(head->next))
779 return;
780
781 head->func = (void (*)(struct callback_head *))func;
782 head->next = rq->balance_callback;
783 rq->balance_callback = head;
784}
785
e3baac47
PZ
786extern void sched_ttwu_pending(void);
787
029632fb
PZ
788#define rcu_dereference_check_sched_domain(p) \
789 rcu_dereference_check((p), \
790 lockdep_is_held(&sched_domains_mutex))
791
792/*
793 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
794 * See detach_destroy_domains: synchronize_sched for details.
795 *
796 * The domain tree of any CPU may only be accessed from within
797 * preempt-disabled sections.
798 */
799#define for_each_domain(cpu, __sd) \
518cd623
PZ
800 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
801 __sd; __sd = __sd->parent)
029632fb 802
77e81365
SS
803#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
804
518cd623
PZ
805/**
806 * highest_flag_domain - Return highest sched_domain containing flag.
807 * @cpu: The cpu whose highest level of sched domain is to
808 * be returned.
809 * @flag: The flag to check for the highest sched_domain
810 * for the given cpu.
811 *
812 * Returns the highest sched_domain of a cpu which contains the given flag.
813 */
814static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
815{
816 struct sched_domain *sd, *hsd = NULL;
817
818 for_each_domain(cpu, sd) {
819 if (!(sd->flags & flag))
820 break;
821 hsd = sd;
822 }
823
824 return hsd;
825}
826
fb13c7ee
MG
827static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
828{
829 struct sched_domain *sd;
830
831 for_each_domain(cpu, sd) {
832 if (sd->flags & flag)
833 break;
834 }
835
836 return sd;
837}
838
518cd623 839DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 840DECLARE_PER_CPU(int, sd_llc_size);
518cd623 841DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 842DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
843DECLARE_PER_CPU(struct sched_domain *, sd_busy);
844DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 845
63b2ca30 846struct sched_group_capacity {
5e6521ea
LZ
847 atomic_t ref;
848 /*
63b2ca30
NP
849 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
850 * for a single CPU.
5e6521ea 851 */
dc7ff76e 852 unsigned int capacity;
5e6521ea 853 unsigned long next_update;
63b2ca30 854 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
855 /*
856 * Number of busy cpus in this group.
857 */
858 atomic_t nr_busy_cpus;
859
860 unsigned long cpumask[0]; /* iteration mask */
861};
862
863struct sched_group {
864 struct sched_group *next; /* Must be a circular list */
865 atomic_t ref;
866
867 unsigned int group_weight;
63b2ca30 868 struct sched_group_capacity *sgc;
5e6521ea
LZ
869
870 /*
871 * The CPUs this group covers.
872 *
873 * NOTE: this field is variable length. (Allocated dynamically
874 * by attaching extra space to the end of the structure,
875 * depending on how many CPUs the kernel has booted up with)
876 */
877 unsigned long cpumask[0];
878};
879
880static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
881{
882 return to_cpumask(sg->cpumask);
883}
884
885/*
886 * cpumask masking which cpus in the group are allowed to iterate up the domain
887 * tree.
888 */
889static inline struct cpumask *sched_group_mask(struct sched_group *sg)
890{
63b2ca30 891 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
892}
893
894/**
895 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
896 * @group: The group whose first cpu is to be returned.
897 */
898static inline unsigned int group_first_cpu(struct sched_group *group)
899{
900 return cpumask_first(sched_group_cpus(group));
901}
902
c1174876
PZ
903extern int group_balance_cpu(struct sched_group *sg);
904
e3baac47
PZ
905#else
906
907static inline void sched_ttwu_pending(void) { }
908
518cd623 909#endif /* CONFIG_SMP */
029632fb 910
391e43da
PZ
911#include "stats.h"
912#include "auto_group.h"
029632fb
PZ
913
914#ifdef CONFIG_CGROUP_SCHED
915
916/*
917 * Return the group to which this tasks belongs.
918 *
8af01f56
TH
919 * We cannot use task_css() and friends because the cgroup subsystem
920 * changes that value before the cgroup_subsys::attach() method is called,
921 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
922 *
923 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
924 * core changes this before calling sched_move_task().
925 *
926 * Instead we use a 'copy' which is updated from sched_move_task() while
927 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
928 */
929static inline struct task_group *task_group(struct task_struct *p)
930{
8323f26c 931 return p->sched_task_group;
029632fb
PZ
932}
933
934/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
935static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
936{
937#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
938 struct task_group *tg = task_group(p);
939#endif
940
941#ifdef CONFIG_FAIR_GROUP_SCHED
942 p->se.cfs_rq = tg->cfs_rq[cpu];
943 p->se.parent = tg->se[cpu];
944#endif
945
946#ifdef CONFIG_RT_GROUP_SCHED
947 p->rt.rt_rq = tg->rt_rq[cpu];
948 p->rt.parent = tg->rt_se[cpu];
949#endif
950}
951
952#else /* CONFIG_CGROUP_SCHED */
953
954static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
955static inline struct task_group *task_group(struct task_struct *p)
956{
957 return NULL;
958}
959
960#endif /* CONFIG_CGROUP_SCHED */
961
962static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
963{
964 set_task_rq(p, cpu);
965#ifdef CONFIG_SMP
966 /*
967 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
968 * successfuly executed on another CPU. We must ensure that updates of
969 * per-task data have been completed by this moment.
970 */
971 smp_wmb();
972 task_thread_info(p)->cpu = cpu;
ac66f547 973 p->wake_cpu = cpu;
029632fb
PZ
974#endif
975}
976
977/*
978 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
979 */
980#ifdef CONFIG_SCHED_DEBUG
c5905afb 981# include <linux/static_key.h>
029632fb
PZ
982# define const_debug __read_mostly
983#else
984# define const_debug const
985#endif
986
987extern const_debug unsigned int sysctl_sched_features;
988
989#define SCHED_FEAT(name, enabled) \
990 __SCHED_FEAT_##name ,
991
992enum {
391e43da 993#include "features.h"
f8b6d1cc 994 __SCHED_FEAT_NR,
029632fb
PZ
995};
996
997#undef SCHED_FEAT
998
f8b6d1cc 999#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 1000#define SCHED_FEAT(name, enabled) \
c5905afb 1001static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1002{ \
6e76ea8a 1003 return static_key_##enabled(key); \
f8b6d1cc
PZ
1004}
1005
1006#include "features.h"
1007
1008#undef SCHED_FEAT
1009
c5905afb 1010extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
1011#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1012#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 1013#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 1014#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1015
cbee9f88
PZ
1016#ifdef CONFIG_NUMA_BALANCING
1017#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
1018#ifdef CONFIG_SCHED_DEBUG
1019#define numabalancing_enabled sched_feat_numa(NUMA)
1020#else
1021extern bool numabalancing_enabled;
1022#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
1023#else
1024#define sched_feat_numa(x) (0)
3105b86a
MG
1025#define numabalancing_enabled (0)
1026#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 1027
029632fb
PZ
1028static inline u64 global_rt_period(void)
1029{
1030 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1031}
1032
1033static inline u64 global_rt_runtime(void)
1034{
1035 if (sysctl_sched_rt_runtime < 0)
1036 return RUNTIME_INF;
1037
1038 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1039}
1040
029632fb
PZ
1041static inline int task_current(struct rq *rq, struct task_struct *p)
1042{
1043 return rq->curr == p;
1044}
1045
1046static inline int task_running(struct rq *rq, struct task_struct *p)
1047{
1048#ifdef CONFIG_SMP
1049 return p->on_cpu;
1050#else
1051 return task_current(rq, p);
1052#endif
1053}
1054
da0c1e65
KT
1055static inline int task_on_rq_queued(struct task_struct *p)
1056{
1057 return p->on_rq == TASK_ON_RQ_QUEUED;
1058}
029632fb 1059
cca26e80
KT
1060static inline int task_on_rq_migrating(struct task_struct *p)
1061{
1062 return p->on_rq == TASK_ON_RQ_MIGRATING;
1063}
1064
029632fb
PZ
1065#ifndef prepare_arch_switch
1066# define prepare_arch_switch(next) do { } while (0)
1067#endif
1068#ifndef finish_arch_switch
1069# define finish_arch_switch(prev) do { } while (0)
1070#endif
01f23e16
CM
1071#ifndef finish_arch_post_lock_switch
1072# define finish_arch_post_lock_switch() do { } while (0)
1073#endif
029632fb 1074
029632fb
PZ
1075static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1076{
1077#ifdef CONFIG_SMP
1078 /*
1079 * We can optimise this out completely for !SMP, because the
1080 * SMP rebalancing from interrupt is the only thing that cares
1081 * here.
1082 */
1083 next->on_cpu = 1;
1084#endif
1085}
1086
1087static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1088{
1089#ifdef CONFIG_SMP
1090 /*
1091 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1092 * We must ensure this doesn't happen until the switch is completely
1093 * finished.
1094 */
1095 smp_wmb();
1096 prev->on_cpu = 0;
1097#endif
1098#ifdef CONFIG_DEBUG_SPINLOCK
1099 /* this is a valid case when another task releases the spinlock */
1100 rq->lock.owner = current;
1101#endif
1102 /*
1103 * If we are tracking spinlock dependencies then we have to
1104 * fix up the runqueue lock - which gets 'carried over' from
1105 * prev into current:
1106 */
1107 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1108
1109 raw_spin_unlock_irq(&rq->lock);
1110}
1111
b13095f0
LZ
1112/*
1113 * wake flags
1114 */
1115#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1116#define WF_FORK 0x02 /* child wakeup after fork */
1117#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1118
029632fb
PZ
1119/*
1120 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1121 * of tasks with abnormal "nice" values across CPUs the contribution that
1122 * each task makes to its run queue's load is weighted according to its
1123 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1124 * scaled version of the new time slice allocation that they receive on time
1125 * slice expiry etc.
1126 */
1127
1128#define WEIGHT_IDLEPRIO 3
1129#define WMULT_IDLEPRIO 1431655765
1130
1131/*
1132 * Nice levels are multiplicative, with a gentle 10% change for every
1133 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1134 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1135 * that remained on nice 0.
1136 *
1137 * The "10% effect" is relative and cumulative: from _any_ nice level,
1138 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1139 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1140 * If a task goes up by ~10% and another task goes down by ~10% then
1141 * the relative distance between them is ~25%.)
1142 */
1143static const int prio_to_weight[40] = {
1144 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1145 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1146 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1147 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1148 /* 0 */ 1024, 820, 655, 526, 423,
1149 /* 5 */ 335, 272, 215, 172, 137,
1150 /* 10 */ 110, 87, 70, 56, 45,
1151 /* 15 */ 36, 29, 23, 18, 15,
1152};
1153
1154/*
1155 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1156 *
1157 * In cases where the weight does not change often, we can use the
1158 * precalculated inverse to speed up arithmetics by turning divisions
1159 * into multiplications:
1160 */
1161static const u32 prio_to_wmult[40] = {
1162 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1163 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1164 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1165 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1166 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1167 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1168 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1169 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1170};
1171
c82ba9fa
LZ
1172#define ENQUEUE_WAKEUP 1
1173#define ENQUEUE_HEAD 2
1174#ifdef CONFIG_SMP
1175#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1176#else
1177#define ENQUEUE_WAKING 0
1178#endif
aab03e05 1179#define ENQUEUE_REPLENISH 8
c82ba9fa
LZ
1180
1181#define DEQUEUE_SLEEP 1
1182
37e117c0
PZ
1183#define RETRY_TASK ((void *)-1UL)
1184
c82ba9fa
LZ
1185struct sched_class {
1186 const struct sched_class *next;
1187
1188 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1189 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1190 void (*yield_task) (struct rq *rq);
1191 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1192
1193 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1194
606dba2e
PZ
1195 /*
1196 * It is the responsibility of the pick_next_task() method that will
1197 * return the next task to call put_prev_task() on the @prev task or
1198 * something equivalent.
37e117c0
PZ
1199 *
1200 * May return RETRY_TASK when it finds a higher prio class has runnable
1201 * tasks.
606dba2e
PZ
1202 */
1203 struct task_struct * (*pick_next_task) (struct rq *rq,
1204 struct task_struct *prev);
c82ba9fa
LZ
1205 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1206
1207#ifdef CONFIG_SMP
ac66f547 1208 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
c82ba9fa
LZ
1209 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1210
c82ba9fa
LZ
1211 void (*task_waking) (struct task_struct *task);
1212 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1213
1214 void (*set_cpus_allowed)(struct task_struct *p,
1215 const struct cpumask *newmask);
1216
1217 void (*rq_online)(struct rq *rq);
1218 void (*rq_offline)(struct rq *rq);
1219#endif
1220
1221 void (*set_curr_task) (struct rq *rq);
1222 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1223 void (*task_fork) (struct task_struct *p);
e6c390f2 1224 void (*task_dead) (struct task_struct *p);
c82ba9fa 1225
67dfa1b7
KT
1226 /*
1227 * The switched_from() call is allowed to drop rq->lock, therefore we
1228 * cannot assume the switched_from/switched_to pair is serliazed by
1229 * rq->lock. They are however serialized by p->pi_lock.
1230 */
c82ba9fa
LZ
1231 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1232 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1233 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1234 int oldprio);
1235
1236 unsigned int (*get_rr_interval) (struct rq *rq,
1237 struct task_struct *task);
1238
6e998916
SG
1239 void (*update_curr) (struct rq *rq);
1240
c82ba9fa
LZ
1241#ifdef CONFIG_FAIR_GROUP_SCHED
1242 void (*task_move_group) (struct task_struct *p, int on_rq);
1243#endif
1244};
029632fb 1245
3f1d2a31
PZ
1246static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1247{
1248 prev->sched_class->put_prev_task(rq, prev);
1249}
1250
029632fb
PZ
1251#define sched_class_highest (&stop_sched_class)
1252#define for_each_class(class) \
1253 for (class = sched_class_highest; class; class = class->next)
1254
1255extern const struct sched_class stop_sched_class;
aab03e05 1256extern const struct sched_class dl_sched_class;
029632fb
PZ
1257extern const struct sched_class rt_sched_class;
1258extern const struct sched_class fair_sched_class;
1259extern const struct sched_class idle_sched_class;
1260
1261
1262#ifdef CONFIG_SMP
1263
63b2ca30 1264extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1265
7caff66f 1266extern void trigger_load_balance(struct rq *rq);
029632fb 1267
642dbc39
VG
1268extern void idle_enter_fair(struct rq *this_rq);
1269extern void idle_exit_fair(struct rq *this_rq);
642dbc39 1270
dc877341
PZ
1271#else
1272
1273static inline void idle_enter_fair(struct rq *rq) { }
1274static inline void idle_exit_fair(struct rq *rq) { }
1275
029632fb
PZ
1276#endif
1277
442bf3aa
DL
1278#ifdef CONFIG_CPU_IDLE
1279static inline void idle_set_state(struct rq *rq,
1280 struct cpuidle_state *idle_state)
1281{
1282 rq->idle_state = idle_state;
1283}
1284
1285static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1286{
1287 WARN_ON(!rcu_read_lock_held());
1288 return rq->idle_state;
1289}
1290#else
1291static inline void idle_set_state(struct rq *rq,
1292 struct cpuidle_state *idle_state)
1293{
1294}
1295
1296static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1297{
1298 return NULL;
1299}
1300#endif
1301
029632fb
PZ
1302extern void sysrq_sched_debug_show(void);
1303extern void sched_init_granularity(void);
1304extern void update_max_interval(void);
1baca4ce
JL
1305
1306extern void init_sched_dl_class(void);
029632fb
PZ
1307extern void init_sched_rt_class(void);
1308extern void init_sched_fair_class(void);
332ac17e 1309extern void init_sched_dl_class(void);
029632fb 1310
8875125e 1311extern void resched_curr(struct rq *rq);
029632fb
PZ
1312extern void resched_cpu(int cpu);
1313
1314extern struct rt_bandwidth def_rt_bandwidth;
1315extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1316
332ac17e
DF
1317extern struct dl_bandwidth def_dl_bandwidth;
1318extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1319extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1320
332ac17e
DF
1321unsigned long to_ratio(u64 period, u64 runtime);
1322
a75cdaa9
AS
1323extern void init_task_runnable_average(struct task_struct *p);
1324
72465447 1325static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1326{
72465447
KT
1327 unsigned prev_nr = rq->nr_running;
1328
1329 rq->nr_running = prev_nr + count;
9f3660c2 1330
72465447 1331 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1332#ifdef CONFIG_SMP
1333 if (!rq->rd->overload)
1334 rq->rd->overload = true;
1335#endif
1336
1337#ifdef CONFIG_NO_HZ_FULL
9f3660c2 1338 if (tick_nohz_full_cpu(rq->cpu)) {
3882ec64
FW
1339 /*
1340 * Tick is needed if more than one task runs on a CPU.
1341 * Send the target an IPI to kick it out of nohz mode.
1342 *
1343 * We assume that IPI implies full memory barrier and the
1344 * new value of rq->nr_running is visible on reception
1345 * from the target.
1346 */
fd2ac4f4 1347 tick_nohz_full_kick_cpu(rq->cpu);
9f3660c2 1348 }
9f3660c2 1349#endif
4486edd1 1350 }
029632fb
PZ
1351}
1352
72465447 1353static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1354{
72465447 1355 rq->nr_running -= count;
029632fb
PZ
1356}
1357
265f22a9
FW
1358static inline void rq_last_tick_reset(struct rq *rq)
1359{
1360#ifdef CONFIG_NO_HZ_FULL
1361 rq->last_sched_tick = jiffies;
1362#endif
1363}
1364
029632fb
PZ
1365extern void update_rq_clock(struct rq *rq);
1366
1367extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1368extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1369
1370extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1371
1372extern const_debug unsigned int sysctl_sched_time_avg;
1373extern const_debug unsigned int sysctl_sched_nr_migrate;
1374extern const_debug unsigned int sysctl_sched_migration_cost;
1375
1376static inline u64 sched_avg_period(void)
1377{
1378 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1379}
1380
029632fb
PZ
1381#ifdef CONFIG_SCHED_HRTICK
1382
1383/*
1384 * Use hrtick when:
1385 * - enabled by features
1386 * - hrtimer is actually high res
1387 */
1388static inline int hrtick_enabled(struct rq *rq)
1389{
1390 if (!sched_feat(HRTICK))
1391 return 0;
1392 if (!cpu_active(cpu_of(rq)))
1393 return 0;
1394 return hrtimer_is_hres_active(&rq->hrtick_timer);
1395}
1396
1397void hrtick_start(struct rq *rq, u64 delay);
1398
b39e66ea
MG
1399#else
1400
1401static inline int hrtick_enabled(struct rq *rq)
1402{
1403 return 0;
1404}
1405
029632fb
PZ
1406#endif /* CONFIG_SCHED_HRTICK */
1407
1408#ifdef CONFIG_SMP
1409extern void sched_avg_update(struct rq *rq);
dfbca41f
PZ
1410
1411#ifndef arch_scale_freq_capacity
1412static __always_inline
1413unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1414{
1415 return SCHED_CAPACITY_SCALE;
1416}
1417#endif
b5b4860d 1418
029632fb
PZ
1419static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1420{
b5b4860d 1421 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
029632fb
PZ
1422 sched_avg_update(rq);
1423}
1424#else
1425static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1426static inline void sched_avg_update(struct rq *rq) { }
1427#endif
1428
3960c8c0
PZ
1429/*
1430 * __task_rq_lock - lock the rq @p resides on.
1431 */
1432static inline struct rq *__task_rq_lock(struct task_struct *p)
1433 __acquires(rq->lock)
1434{
1435 struct rq *rq;
1436
1437 lockdep_assert_held(&p->pi_lock);
1438
1439 for (;;) {
1440 rq = task_rq(p);
1441 raw_spin_lock(&rq->lock);
1442 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1443 return rq;
1444 raw_spin_unlock(&rq->lock);
1445
1446 while (unlikely(task_on_rq_migrating(p)))
1447 cpu_relax();
1448 }
1449}
1450
1451/*
1452 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1453 */
1454static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1455 __acquires(p->pi_lock)
1456 __acquires(rq->lock)
1457{
1458 struct rq *rq;
1459
1460 for (;;) {
1461 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1462 rq = task_rq(p);
1463 raw_spin_lock(&rq->lock);
1464 /*
1465 * move_queued_task() task_rq_lock()
1466 *
1467 * ACQUIRE (rq->lock)
1468 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
1469 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
1470 * [S] ->cpu = new_cpu [L] task_rq()
1471 * [L] ->on_rq
1472 * RELEASE (rq->lock)
1473 *
1474 * If we observe the old cpu in task_rq_lock, the acquire of
1475 * the old rq->lock will fully serialize against the stores.
1476 *
1477 * If we observe the new cpu in task_rq_lock, the acquire will
1478 * pair with the WMB to ensure we must then also see migrating.
1479 */
1480 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1481 return rq;
1482 raw_spin_unlock(&rq->lock);
1483 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1484
1485 while (unlikely(task_on_rq_migrating(p)))
1486 cpu_relax();
1487 }
1488}
1489
1490static inline void __task_rq_unlock(struct rq *rq)
1491 __releases(rq->lock)
1492{
1493 raw_spin_unlock(&rq->lock);
1494}
1495
1496static inline void
1497task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1498 __releases(rq->lock)
1499 __releases(p->pi_lock)
1500{
1501 raw_spin_unlock(&rq->lock);
1502 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1503}
1504
029632fb
PZ
1505#ifdef CONFIG_SMP
1506#ifdef CONFIG_PREEMPT
1507
1508static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1509
1510/*
1511 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1512 * way at the expense of forcing extra atomic operations in all
1513 * invocations. This assures that the double_lock is acquired using the
1514 * same underlying policy as the spinlock_t on this architecture, which
1515 * reduces latency compared to the unfair variant below. However, it
1516 * also adds more overhead and therefore may reduce throughput.
1517 */
1518static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1519 __releases(this_rq->lock)
1520 __acquires(busiest->lock)
1521 __acquires(this_rq->lock)
1522{
1523 raw_spin_unlock(&this_rq->lock);
1524 double_rq_lock(this_rq, busiest);
1525
1526 return 1;
1527}
1528
1529#else
1530/*
1531 * Unfair double_lock_balance: Optimizes throughput at the expense of
1532 * latency by eliminating extra atomic operations when the locks are
1533 * already in proper order on entry. This favors lower cpu-ids and will
1534 * grant the double lock to lower cpus over higher ids under contention,
1535 * regardless of entry order into the function.
1536 */
1537static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1538 __releases(this_rq->lock)
1539 __acquires(busiest->lock)
1540 __acquires(this_rq->lock)
1541{
1542 int ret = 0;
1543
1544 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1545 if (busiest < this_rq) {
1546 raw_spin_unlock(&this_rq->lock);
1547 raw_spin_lock(&busiest->lock);
1548 raw_spin_lock_nested(&this_rq->lock,
1549 SINGLE_DEPTH_NESTING);
1550 ret = 1;
1551 } else
1552 raw_spin_lock_nested(&busiest->lock,
1553 SINGLE_DEPTH_NESTING);
1554 }
1555 return ret;
1556}
1557
1558#endif /* CONFIG_PREEMPT */
1559
1560/*
1561 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1562 */
1563static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1564{
1565 if (unlikely(!irqs_disabled())) {
1566 /* printk() doesn't work good under rq->lock */
1567 raw_spin_unlock(&this_rq->lock);
1568 BUG_ON(1);
1569 }
1570
1571 return _double_lock_balance(this_rq, busiest);
1572}
1573
1574static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1575 __releases(busiest->lock)
1576{
1577 raw_spin_unlock(&busiest->lock);
1578 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1579}
1580
74602315
PZ
1581static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1582{
1583 if (l1 > l2)
1584 swap(l1, l2);
1585
1586 spin_lock(l1);
1587 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1588}
1589
60e69eed
MG
1590static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1591{
1592 if (l1 > l2)
1593 swap(l1, l2);
1594
1595 spin_lock_irq(l1);
1596 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1597}
1598
74602315
PZ
1599static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1600{
1601 if (l1 > l2)
1602 swap(l1, l2);
1603
1604 raw_spin_lock(l1);
1605 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1606}
1607
029632fb
PZ
1608/*
1609 * double_rq_lock - safely lock two runqueues
1610 *
1611 * Note this does not disable interrupts like task_rq_lock,
1612 * you need to do so manually before calling.
1613 */
1614static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1615 __acquires(rq1->lock)
1616 __acquires(rq2->lock)
1617{
1618 BUG_ON(!irqs_disabled());
1619 if (rq1 == rq2) {
1620 raw_spin_lock(&rq1->lock);
1621 __acquire(rq2->lock); /* Fake it out ;) */
1622 } else {
1623 if (rq1 < rq2) {
1624 raw_spin_lock(&rq1->lock);
1625 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1626 } else {
1627 raw_spin_lock(&rq2->lock);
1628 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1629 }
1630 }
1631}
1632
1633/*
1634 * double_rq_unlock - safely unlock two runqueues
1635 *
1636 * Note this does not restore interrupts like task_rq_unlock,
1637 * you need to do so manually after calling.
1638 */
1639static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1640 __releases(rq1->lock)
1641 __releases(rq2->lock)
1642{
1643 raw_spin_unlock(&rq1->lock);
1644 if (rq1 != rq2)
1645 raw_spin_unlock(&rq2->lock);
1646 else
1647 __release(rq2->lock);
1648}
1649
1650#else /* CONFIG_SMP */
1651
1652/*
1653 * double_rq_lock - safely lock two runqueues
1654 *
1655 * Note this does not disable interrupts like task_rq_lock,
1656 * you need to do so manually before calling.
1657 */
1658static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1659 __acquires(rq1->lock)
1660 __acquires(rq2->lock)
1661{
1662 BUG_ON(!irqs_disabled());
1663 BUG_ON(rq1 != rq2);
1664 raw_spin_lock(&rq1->lock);
1665 __acquire(rq2->lock); /* Fake it out ;) */
1666}
1667
1668/*
1669 * double_rq_unlock - safely unlock two runqueues
1670 *
1671 * Note this does not restore interrupts like task_rq_unlock,
1672 * you need to do so manually after calling.
1673 */
1674static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1675 __releases(rq1->lock)
1676 __releases(rq2->lock)
1677{
1678 BUG_ON(rq1 != rq2);
1679 raw_spin_unlock(&rq1->lock);
1680 __release(rq2->lock);
1681}
1682
1683#endif
1684
1685extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1686extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1687extern void print_cfs_stats(struct seq_file *m, int cpu);
1688extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 1689extern void print_dl_stats(struct seq_file *m, int cpu);
029632fb
PZ
1690
1691extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
1692extern void init_rt_rq(struct rt_rq *rt_rq);
1693extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 1694
1ee14e6c
BS
1695extern void cfs_bandwidth_usage_inc(void);
1696extern void cfs_bandwidth_usage_dec(void);
1c792db7 1697
3451d024 1698#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1699enum rq_nohz_flag_bits {
1700 NOHZ_TICK_STOPPED,
1701 NOHZ_BALANCE_KICK,
1702};
1703
1704#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1705#endif
73fbec60
FW
1706
1707#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1708
1709DECLARE_PER_CPU(u64, cpu_hardirq_time);
1710DECLARE_PER_CPU(u64, cpu_softirq_time);
1711
1712#ifndef CONFIG_64BIT
1713DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1714
1715static inline void irq_time_write_begin(void)
1716{
1717 __this_cpu_inc(irq_time_seq.sequence);
1718 smp_wmb();
1719}
1720
1721static inline void irq_time_write_end(void)
1722{
1723 smp_wmb();
1724 __this_cpu_inc(irq_time_seq.sequence);
1725}
1726
1727static inline u64 irq_time_read(int cpu)
1728{
1729 u64 irq_time;
1730 unsigned seq;
1731
1732 do {
1733 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1734 irq_time = per_cpu(cpu_softirq_time, cpu) +
1735 per_cpu(cpu_hardirq_time, cpu);
1736 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1737
1738 return irq_time;
1739}
1740#else /* CONFIG_64BIT */
1741static inline void irq_time_write_begin(void)
1742{
1743}
1744
1745static inline void irq_time_write_end(void)
1746{
1747}
1748
1749static inline u64 irq_time_read(int cpu)
1750{
1751 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1752}
1753#endif /* CONFIG_64BIT */
1754#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
This page took 0.19869 seconds and 5 git commands to generate.