Merge branch 'genirq-v28-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
d7876a08 99 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 100 */
d6322faf 101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 102
6aa645ea
IM
103#define NICE_0_LOAD SCHED_LOAD_SCALE
104#define NICE_0_SHIFT SCHED_LOAD_SHIFT
105
1da177e4
LT
106/*
107 * These are the 'tuning knobs' of the scheduler:
108 *
a4ec24b4 109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
110 * Timeslices get refilled after they expire.
111 */
1da177e4 112#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 113
d0b27fa7
PZ
114/*
115 * single value that denotes runtime == period, ie unlimited time.
116 */
117#define RUNTIME_INF ((u64)~0ULL)
118
5517d86b
ED
119#ifdef CONFIG_SMP
120/*
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 */
124static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125{
126 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127}
128
129/*
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
132 */
133static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134{
135 sg->__cpu_power += val;
136 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137}
138#endif
139
e05606d3
IM
140static inline int rt_policy(int policy)
141{
3f33a7ce 142 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
143 return 1;
144 return 0;
145}
146
147static inline int task_has_rt_policy(struct task_struct *p)
148{
149 return rt_policy(p->policy);
150}
151
1da177e4 152/*
6aa645ea 153 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 154 */
6aa645ea
IM
155struct rt_prio_array {
156 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157 struct list_head queue[MAX_RT_PRIO];
158};
159
d0b27fa7 160struct rt_bandwidth {
ea736ed5
IM
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
d0b27fa7
PZ
166};
167
168static struct rt_bandwidth def_rt_bandwidth;
169
170static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171
172static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173{
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
179
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183
184 if (!overrun)
185 break;
186
187 idle = do_sched_rt_period_timer(rt_b, overrun);
188 }
189
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191}
192
193static
194void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195{
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
198
ac086bc2
PZ
199 spin_lock_init(&rt_b->rt_runtime_lock);
200
d0b27fa7
PZ
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
ccc7dadf 204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
d0b27fa7
PZ
205}
206
c8bfff6d
KH
207static inline int rt_bandwidth_enabled(void)
208{
209 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
210}
211
212static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
213{
214 ktime_t now;
215
0b148fa0 216 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
217 return;
218
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 return;
221
222 spin_lock(&rt_b->rt_runtime_lock);
223 for (;;) {
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 break;
226
227 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
228 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
229 hrtimer_start(&rt_b->rt_period_timer,
230 rt_b->rt_period_timer.expires,
231 HRTIMER_MODE_ABS);
232 }
233 spin_unlock(&rt_b->rt_runtime_lock);
234}
235
236#ifdef CONFIG_RT_GROUP_SCHED
237static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
238{
239 hrtimer_cancel(&rt_b->rt_period_timer);
240}
241#endif
242
712555ee
HC
243/*
244 * sched_domains_mutex serializes calls to arch_init_sched_domains,
245 * detach_destroy_domains and partition_sched_domains.
246 */
247static DEFINE_MUTEX(sched_domains_mutex);
248
052f1dc7 249#ifdef CONFIG_GROUP_SCHED
29f59db3 250
68318b8e
SV
251#include <linux/cgroup.h>
252
29f59db3
SV
253struct cfs_rq;
254
6f505b16
PZ
255static LIST_HEAD(task_groups);
256
29f59db3 257/* task group related information */
4cf86d77 258struct task_group {
052f1dc7 259#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
260 struct cgroup_subsys_state css;
261#endif
052f1dc7
PZ
262
263#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
264 /* schedulable entities of this group on each cpu */
265 struct sched_entity **se;
266 /* runqueue "owned" by this group on each cpu */
267 struct cfs_rq **cfs_rq;
268 unsigned long shares;
052f1dc7
PZ
269#endif
270
271#ifdef CONFIG_RT_GROUP_SCHED
272 struct sched_rt_entity **rt_se;
273 struct rt_rq **rt_rq;
274
d0b27fa7 275 struct rt_bandwidth rt_bandwidth;
052f1dc7 276#endif
6b2d7700 277
ae8393e5 278 struct rcu_head rcu;
6f505b16 279 struct list_head list;
f473aa5e
PZ
280
281 struct task_group *parent;
282 struct list_head siblings;
283 struct list_head children;
29f59db3
SV
284};
285
354d60c2 286#ifdef CONFIG_USER_SCHED
eff766a6
PZ
287
288/*
289 * Root task group.
290 * Every UID task group (including init_task_group aka UID-0) will
291 * be a child to this group.
292 */
293struct task_group root_task_group;
294
052f1dc7 295#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
296/* Default task group's sched entity on each cpu */
297static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
298/* Default task group's cfs_rq on each cpu */
299static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 300#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
301
302#ifdef CONFIG_RT_GROUP_SCHED
303static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
304static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 305#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 306#else /* !CONFIG_USER_SCHED */
eff766a6 307#define root_task_group init_task_group
9a7e0b18 308#endif /* CONFIG_USER_SCHED */
6f505b16 309
8ed36996 310/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
311 * a task group's cpu shares.
312 */
8ed36996 313static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 314
052f1dc7 315#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
316#ifdef CONFIG_USER_SCHED
317# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 318#else /* !CONFIG_USER_SCHED */
052f1dc7 319# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 320#endif /* CONFIG_USER_SCHED */
052f1dc7 321
cb4ad1ff 322/*
2e084786
LJ
323 * A weight of 0 or 1 can cause arithmetics problems.
324 * A weight of a cfs_rq is the sum of weights of which entities
325 * are queued on this cfs_rq, so a weight of a entity should not be
326 * too large, so as the shares value of a task group.
cb4ad1ff
MX
327 * (The default weight is 1024 - so there's no practical
328 * limitation from this.)
329 */
18d95a28 330#define MIN_SHARES 2
2e084786 331#define MAX_SHARES (1UL << 18)
18d95a28 332
052f1dc7
PZ
333static int init_task_group_load = INIT_TASK_GROUP_LOAD;
334#endif
335
29f59db3 336/* Default task group.
3a252015 337 * Every task in system belong to this group at bootup.
29f59db3 338 */
434d53b0 339struct task_group init_task_group;
29f59db3
SV
340
341/* return group to which a task belongs */
4cf86d77 342static inline struct task_group *task_group(struct task_struct *p)
29f59db3 343{
4cf86d77 344 struct task_group *tg;
9b5b7751 345
052f1dc7 346#ifdef CONFIG_USER_SCHED
24e377a8 347 tg = p->user->tg;
052f1dc7 348#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
349 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
350 struct task_group, css);
24e377a8 351#else
41a2d6cf 352 tg = &init_task_group;
24e377a8 353#endif
9b5b7751 354 return tg;
29f59db3
SV
355}
356
357/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 358static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 359{
052f1dc7 360#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
361 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
362 p->se.parent = task_group(p)->se[cpu];
052f1dc7 363#endif
6f505b16 364
052f1dc7 365#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
366 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
367 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 368#endif
29f59db3
SV
369}
370
371#else
372
6f505b16 373static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
374static inline struct task_group *task_group(struct task_struct *p)
375{
376 return NULL;
377}
29f59db3 378
052f1dc7 379#endif /* CONFIG_GROUP_SCHED */
29f59db3 380
6aa645ea
IM
381/* CFS-related fields in a runqueue */
382struct cfs_rq {
383 struct load_weight load;
384 unsigned long nr_running;
385
6aa645ea 386 u64 exec_clock;
e9acbff6 387 u64 min_vruntime;
103638d9 388 u64 pair_start;
6aa645ea
IM
389
390 struct rb_root tasks_timeline;
391 struct rb_node *rb_leftmost;
4a55bd5e
PZ
392
393 struct list_head tasks;
394 struct list_head *balance_iterator;
395
396 /*
397 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
398 * It is set to NULL otherwise (i.e when none are currently running).
399 */
aa2ac252 400 struct sched_entity *curr, *next;
ddc97297
PZ
401
402 unsigned long nr_spread_over;
403
62160e3f 404#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
405 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
406
41a2d6cf
IM
407 /*
408 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
409 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
410 * (like users, containers etc.)
411 *
412 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
413 * list is used during load balance.
414 */
41a2d6cf
IM
415 struct list_head leaf_cfs_rq_list;
416 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
417
418#ifdef CONFIG_SMP
c09595f6 419 /*
c8cba857 420 * the part of load.weight contributed by tasks
c09595f6 421 */
c8cba857 422 unsigned long task_weight;
c09595f6 423
c8cba857
PZ
424 /*
425 * h_load = weight * f(tg)
426 *
427 * Where f(tg) is the recursive weight fraction assigned to
428 * this group.
429 */
430 unsigned long h_load;
c09595f6 431
c8cba857
PZ
432 /*
433 * this cpu's part of tg->shares
434 */
435 unsigned long shares;
f1d239f7
PZ
436
437 /*
438 * load.weight at the time we set shares
439 */
440 unsigned long rq_weight;
c09595f6 441#endif
6aa645ea
IM
442#endif
443};
1da177e4 444
6aa645ea
IM
445/* Real-Time classes' related field in a runqueue: */
446struct rt_rq {
447 struct rt_prio_array active;
63489e45 448 unsigned long rt_nr_running;
052f1dc7 449#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
450 int highest_prio; /* highest queued rt task prio */
451#endif
fa85ae24 452#ifdef CONFIG_SMP
73fe6aae 453 unsigned long rt_nr_migratory;
a22d7fc1 454 int overloaded;
fa85ae24 455#endif
6f505b16 456 int rt_throttled;
fa85ae24 457 u64 rt_time;
ac086bc2 458 u64 rt_runtime;
ea736ed5 459 /* Nests inside the rq lock: */
ac086bc2 460 spinlock_t rt_runtime_lock;
6f505b16 461
052f1dc7 462#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
463 unsigned long rt_nr_boosted;
464
6f505b16
PZ
465 struct rq *rq;
466 struct list_head leaf_rt_rq_list;
467 struct task_group *tg;
468 struct sched_rt_entity *rt_se;
469#endif
6aa645ea
IM
470};
471
57d885fe
GH
472#ifdef CONFIG_SMP
473
474/*
475 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
476 * variables. Each exclusive cpuset essentially defines an island domain by
477 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
478 * exclusive cpuset is created, we also create and attach a new root-domain
479 * object.
480 *
57d885fe
GH
481 */
482struct root_domain {
483 atomic_t refcount;
484 cpumask_t span;
485 cpumask_t online;
637f5085 486
0eab9146 487 /*
637f5085
GH
488 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task.
490 */
491 cpumask_t rto_mask;
0eab9146 492 atomic_t rto_count;
6e0534f2
GH
493#ifdef CONFIG_SMP
494 struct cpupri cpupri;
495#endif
57d885fe
GH
496};
497
dc938520
GH
498/*
499 * By default the system creates a single root-domain with all cpus as
500 * members (mimicking the global state we have today).
501 */
57d885fe
GH
502static struct root_domain def_root_domain;
503
504#endif
505
1da177e4
LT
506/*
507 * This is the main, per-CPU runqueue data structure.
508 *
509 * Locking rule: those places that want to lock multiple runqueues
510 * (such as the load balancing or the thread migration code), lock
511 * acquire operations must be ordered by ascending &runqueue.
512 */
70b97a7f 513struct rq {
d8016491
IM
514 /* runqueue lock: */
515 spinlock_t lock;
1da177e4
LT
516
517 /*
518 * nr_running and cpu_load should be in the same cacheline because
519 * remote CPUs use both these fields when doing load calculation.
520 */
521 unsigned long nr_running;
6aa645ea
IM
522 #define CPU_LOAD_IDX_MAX 5
523 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 524 unsigned char idle_at_tick;
46cb4b7c 525#ifdef CONFIG_NO_HZ
15934a37 526 unsigned long last_tick_seen;
46cb4b7c
SS
527 unsigned char in_nohz_recently;
528#endif
d8016491
IM
529 /* capture load from *all* tasks on this cpu: */
530 struct load_weight load;
6aa645ea
IM
531 unsigned long nr_load_updates;
532 u64 nr_switches;
533
534 struct cfs_rq cfs;
6f505b16 535 struct rt_rq rt;
6f505b16 536
6aa645ea 537#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
538 /* list of leaf cfs_rq on this cpu: */
539 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
540#endif
541#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 542 struct list_head leaf_rt_rq_list;
1da177e4 543#endif
1da177e4
LT
544
545 /*
546 * This is part of a global counter where only the total sum
547 * over all CPUs matters. A task can increase this counter on
548 * one CPU and if it got migrated afterwards it may decrease
549 * it on another CPU. Always updated under the runqueue lock:
550 */
551 unsigned long nr_uninterruptible;
552
36c8b586 553 struct task_struct *curr, *idle;
c9819f45 554 unsigned long next_balance;
1da177e4 555 struct mm_struct *prev_mm;
6aa645ea 556
3e51f33f 557 u64 clock;
6aa645ea 558
1da177e4
LT
559 atomic_t nr_iowait;
560
561#ifdef CONFIG_SMP
0eab9146 562 struct root_domain *rd;
1da177e4
LT
563 struct sched_domain *sd;
564
565 /* For active balancing */
566 int active_balance;
567 int push_cpu;
d8016491
IM
568 /* cpu of this runqueue: */
569 int cpu;
1f11eb6a 570 int online;
1da177e4 571
a8a51d5e 572 unsigned long avg_load_per_task;
1da177e4 573
36c8b586 574 struct task_struct *migration_thread;
1da177e4
LT
575 struct list_head migration_queue;
576#endif
577
8f4d37ec 578#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
579#ifdef CONFIG_SMP
580 int hrtick_csd_pending;
581 struct call_single_data hrtick_csd;
582#endif
8f4d37ec
PZ
583 struct hrtimer hrtick_timer;
584#endif
585
1da177e4
LT
586#ifdef CONFIG_SCHEDSTATS
587 /* latency stats */
588 struct sched_info rq_sched_info;
589
590 /* sys_sched_yield() stats */
480b9434
KC
591 unsigned int yld_exp_empty;
592 unsigned int yld_act_empty;
593 unsigned int yld_both_empty;
594 unsigned int yld_count;
1da177e4
LT
595
596 /* schedule() stats */
480b9434
KC
597 unsigned int sched_switch;
598 unsigned int sched_count;
599 unsigned int sched_goidle;
1da177e4
LT
600
601 /* try_to_wake_up() stats */
480b9434
KC
602 unsigned int ttwu_count;
603 unsigned int ttwu_local;
b8efb561
IM
604
605 /* BKL stats */
480b9434 606 unsigned int bkl_count;
1da177e4
LT
607#endif
608};
609
f34e3b61 610static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 611
15afe09b 612static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 613{
15afe09b 614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
615}
616
0a2966b4
CL
617static inline int cpu_of(struct rq *rq)
618{
619#ifdef CONFIG_SMP
620 return rq->cpu;
621#else
622 return 0;
623#endif
624}
625
674311d5
NP
626/*
627 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 628 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
629 *
630 * The domain tree of any CPU may only be accessed from within
631 * preempt-disabled sections.
632 */
48f24c4d
IM
633#define for_each_domain(cpu, __sd) \
634 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
635
636#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
637#define this_rq() (&__get_cpu_var(runqueues))
638#define task_rq(p) cpu_rq(task_cpu(p))
639#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
640
3e51f33f
PZ
641static inline void update_rq_clock(struct rq *rq)
642{
643 rq->clock = sched_clock_cpu(cpu_of(rq));
644}
645
bf5c91ba
IM
646/*
647 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
648 */
649#ifdef CONFIG_SCHED_DEBUG
650# define const_debug __read_mostly
651#else
652# define const_debug static const
653#endif
654
017730c1
IM
655/**
656 * runqueue_is_locked
657 *
658 * Returns true if the current cpu runqueue is locked.
659 * This interface allows printk to be called with the runqueue lock
660 * held and know whether or not it is OK to wake up the klogd.
661 */
662int runqueue_is_locked(void)
663{
664 int cpu = get_cpu();
665 struct rq *rq = cpu_rq(cpu);
666 int ret;
667
668 ret = spin_is_locked(&rq->lock);
669 put_cpu();
670 return ret;
671}
672
bf5c91ba
IM
673/*
674 * Debugging: various feature bits
675 */
f00b45c1
PZ
676
677#define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
679
bf5c91ba 680enum {
f00b45c1 681#include "sched_features.h"
bf5c91ba
IM
682};
683
f00b45c1
PZ
684#undef SCHED_FEAT
685
686#define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
688
bf5c91ba 689const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
690#include "sched_features.h"
691 0;
692
693#undef SCHED_FEAT
694
695#ifdef CONFIG_SCHED_DEBUG
696#define SCHED_FEAT(name, enabled) \
697 #name ,
698
983ed7a6 699static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
700#include "sched_features.h"
701 NULL
702};
703
704#undef SCHED_FEAT
705
983ed7a6 706static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
707{
708 filp->private_data = inode->i_private;
709 return 0;
710}
711
712static ssize_t
713sched_feat_read(struct file *filp, char __user *ubuf,
714 size_t cnt, loff_t *ppos)
715{
716 char *buf;
717 int r = 0;
718 int len = 0;
719 int i;
720
721 for (i = 0; sched_feat_names[i]; i++) {
722 len += strlen(sched_feat_names[i]);
723 len += 4;
724 }
725
726 buf = kmalloc(len + 2, GFP_KERNEL);
727 if (!buf)
728 return -ENOMEM;
729
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (sysctl_sched_features & (1UL << i))
732 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
733 else
c24b7c52 734 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
735 }
736
737 r += sprintf(buf + r, "\n");
738 WARN_ON(r >= len + 2);
739
740 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
741
742 kfree(buf);
743
744 return r;
745}
746
747static ssize_t
748sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
750{
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
755
756 if (cnt > 63)
757 cnt = 63;
758
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
761
762 buf[cnt] = 0;
763
c24b7c52 764 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
765 neg = 1;
766 cmp += 3;
767 }
768
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
771
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
778 }
779 }
780
781 if (!sched_feat_names[i])
782 return -EINVAL;
783
784 filp->f_pos += cnt;
785
786 return cnt;
787}
788
789static struct file_operations sched_feat_fops = {
790 .open = sched_feat_open,
791 .read = sched_feat_read,
792 .write = sched_feat_write,
793};
794
795static __init int sched_init_debug(void)
796{
f00b45c1
PZ
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801}
802late_initcall(sched_init_debug);
803
804#endif
805
806#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 807
b82d9fdd
PZ
808/*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
2398f2c6
PZ
814/*
815 * ratelimit for updating the group shares.
55cd5340 816 * default: 0.25ms
2398f2c6 817 */
55cd5340 818unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 819
fa85ae24 820/*
9f0c1e56 821 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
822 * default: 1s
823 */
9f0c1e56 824unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 825
6892b75e
IM
826static __read_mostly int scheduler_running;
827
9f0c1e56
PZ
828/*
829 * part of the period that we allow rt tasks to run in us.
830 * default: 0.95s
831 */
832int sysctl_sched_rt_runtime = 950000;
fa85ae24 833
d0b27fa7
PZ
834static inline u64 global_rt_period(void)
835{
836 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
837}
838
839static inline u64 global_rt_runtime(void)
840{
e26873bb 841 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
842 return RUNTIME_INF;
843
844 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
845}
fa85ae24 846
1da177e4 847#ifndef prepare_arch_switch
4866cde0
NP
848# define prepare_arch_switch(next) do { } while (0)
849#endif
850#ifndef finish_arch_switch
851# define finish_arch_switch(prev) do { } while (0)
852#endif
853
051a1d1a
DA
854static inline int task_current(struct rq *rq, struct task_struct *p)
855{
856 return rq->curr == p;
857}
858
4866cde0 859#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 860static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 861{
051a1d1a 862 return task_current(rq, p);
4866cde0
NP
863}
864
70b97a7f 865static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
866{
867}
868
70b97a7f 869static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 870{
da04c035
IM
871#ifdef CONFIG_DEBUG_SPINLOCK
872 /* this is a valid case when another task releases the spinlock */
873 rq->lock.owner = current;
874#endif
8a25d5de
IM
875 /*
876 * If we are tracking spinlock dependencies then we have to
877 * fix up the runqueue lock - which gets 'carried over' from
878 * prev into current:
879 */
880 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
881
4866cde0
NP
882 spin_unlock_irq(&rq->lock);
883}
884
885#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 886static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
887{
888#ifdef CONFIG_SMP
889 return p->oncpu;
890#else
051a1d1a 891 return task_current(rq, p);
4866cde0
NP
892#endif
893}
894
70b97a7f 895static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
896{
897#ifdef CONFIG_SMP
898 /*
899 * We can optimise this out completely for !SMP, because the
900 * SMP rebalancing from interrupt is the only thing that cares
901 * here.
902 */
903 next->oncpu = 1;
904#endif
905#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
906 spin_unlock_irq(&rq->lock);
907#else
908 spin_unlock(&rq->lock);
909#endif
910}
911
70b97a7f 912static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
913{
914#ifdef CONFIG_SMP
915 /*
916 * After ->oncpu is cleared, the task can be moved to a different CPU.
917 * We must ensure this doesn't happen until the switch is completely
918 * finished.
919 */
920 smp_wmb();
921 prev->oncpu = 0;
922#endif
923#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
924 local_irq_enable();
1da177e4 925#endif
4866cde0
NP
926}
927#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 928
b29739f9
IM
929/*
930 * __task_rq_lock - lock the runqueue a given task resides on.
931 * Must be called interrupts disabled.
932 */
70b97a7f 933static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
934 __acquires(rq->lock)
935{
3a5c359a
AK
936 for (;;) {
937 struct rq *rq = task_rq(p);
938 spin_lock(&rq->lock);
939 if (likely(rq == task_rq(p)))
940 return rq;
b29739f9 941 spin_unlock(&rq->lock);
b29739f9 942 }
b29739f9
IM
943}
944
1da177e4
LT
945/*
946 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 947 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
948 * explicitly disabling preemption.
949 */
70b97a7f 950static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
951 __acquires(rq->lock)
952{
70b97a7f 953 struct rq *rq;
1da177e4 954
3a5c359a
AK
955 for (;;) {
956 local_irq_save(*flags);
957 rq = task_rq(p);
958 spin_lock(&rq->lock);
959 if (likely(rq == task_rq(p)))
960 return rq;
1da177e4 961 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 962 }
1da177e4
LT
963}
964
a9957449 965static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
966 __releases(rq->lock)
967{
968 spin_unlock(&rq->lock);
969}
970
70b97a7f 971static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
972 __releases(rq->lock)
973{
974 spin_unlock_irqrestore(&rq->lock, *flags);
975}
976
1da177e4 977/*
cc2a73b5 978 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 979 */
a9957449 980static struct rq *this_rq_lock(void)
1da177e4
LT
981 __acquires(rq->lock)
982{
70b97a7f 983 struct rq *rq;
1da177e4
LT
984
985 local_irq_disable();
986 rq = this_rq();
987 spin_lock(&rq->lock);
988
989 return rq;
990}
991
8f4d37ec
PZ
992#ifdef CONFIG_SCHED_HRTICK
993/*
994 * Use HR-timers to deliver accurate preemption points.
995 *
996 * Its all a bit involved since we cannot program an hrt while holding the
997 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
998 * reschedule event.
999 *
1000 * When we get rescheduled we reprogram the hrtick_timer outside of the
1001 * rq->lock.
1002 */
8f4d37ec
PZ
1003
1004/*
1005 * Use hrtick when:
1006 * - enabled by features
1007 * - hrtimer is actually high res
1008 */
1009static inline int hrtick_enabled(struct rq *rq)
1010{
1011 if (!sched_feat(HRTICK))
1012 return 0;
ba42059f 1013 if (!cpu_active(cpu_of(rq)))
b328ca18 1014 return 0;
8f4d37ec
PZ
1015 return hrtimer_is_hres_active(&rq->hrtick_timer);
1016}
1017
8f4d37ec
PZ
1018static void hrtick_clear(struct rq *rq)
1019{
1020 if (hrtimer_active(&rq->hrtick_timer))
1021 hrtimer_cancel(&rq->hrtick_timer);
1022}
1023
8f4d37ec
PZ
1024/*
1025 * High-resolution timer tick.
1026 * Runs from hardirq context with interrupts disabled.
1027 */
1028static enum hrtimer_restart hrtick(struct hrtimer *timer)
1029{
1030 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1031
1032 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1033
1034 spin_lock(&rq->lock);
3e51f33f 1035 update_rq_clock(rq);
8f4d37ec
PZ
1036 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1037 spin_unlock(&rq->lock);
1038
1039 return HRTIMER_NORESTART;
1040}
1041
95e904c7 1042#ifdef CONFIG_SMP
31656519
PZ
1043/*
1044 * called from hardirq (IPI) context
1045 */
1046static void __hrtick_start(void *arg)
b328ca18 1047{
31656519 1048 struct rq *rq = arg;
b328ca18 1049
31656519
PZ
1050 spin_lock(&rq->lock);
1051 hrtimer_restart(&rq->hrtick_timer);
1052 rq->hrtick_csd_pending = 0;
1053 spin_unlock(&rq->lock);
b328ca18
PZ
1054}
1055
31656519
PZ
1056/*
1057 * Called to set the hrtick timer state.
1058 *
1059 * called with rq->lock held and irqs disabled
1060 */
1061static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1062{
31656519
PZ
1063 struct hrtimer *timer = &rq->hrtick_timer;
1064 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1065
31656519
PZ
1066 timer->expires = time;
1067
1068 if (rq == this_rq()) {
1069 hrtimer_restart(timer);
1070 } else if (!rq->hrtick_csd_pending) {
1071 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1072 rq->hrtick_csd_pending = 1;
1073 }
b328ca18
PZ
1074}
1075
1076static int
1077hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1078{
1079 int cpu = (int)(long)hcpu;
1080
1081 switch (action) {
1082 case CPU_UP_CANCELED:
1083 case CPU_UP_CANCELED_FROZEN:
1084 case CPU_DOWN_PREPARE:
1085 case CPU_DOWN_PREPARE_FROZEN:
1086 case CPU_DEAD:
1087 case CPU_DEAD_FROZEN:
31656519 1088 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1089 return NOTIFY_OK;
1090 }
1091
1092 return NOTIFY_DONE;
1093}
1094
fa748203 1095static __init void init_hrtick(void)
b328ca18
PZ
1096{
1097 hotcpu_notifier(hotplug_hrtick, 0);
1098}
31656519
PZ
1099#else
1100/*
1101 * Called to set the hrtick timer state.
1102 *
1103 * called with rq->lock held and irqs disabled
1104 */
1105static void hrtick_start(struct rq *rq, u64 delay)
1106{
1107 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1108}
b328ca18 1109
006c75f1 1110static inline void init_hrtick(void)
8f4d37ec 1111{
8f4d37ec 1112}
31656519 1113#endif /* CONFIG_SMP */
8f4d37ec 1114
31656519 1115static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1116{
31656519
PZ
1117#ifdef CONFIG_SMP
1118 rq->hrtick_csd_pending = 0;
8f4d37ec 1119
31656519
PZ
1120 rq->hrtick_csd.flags = 0;
1121 rq->hrtick_csd.func = __hrtick_start;
1122 rq->hrtick_csd.info = rq;
1123#endif
8f4d37ec 1124
31656519
PZ
1125 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1126 rq->hrtick_timer.function = hrtick;
ccc7dadf 1127 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
8f4d37ec 1128}
006c75f1 1129#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1130static inline void hrtick_clear(struct rq *rq)
1131{
1132}
1133
8f4d37ec
PZ
1134static inline void init_rq_hrtick(struct rq *rq)
1135{
1136}
1137
b328ca18
PZ
1138static inline void init_hrtick(void)
1139{
1140}
006c75f1 1141#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1142
c24d20db
IM
1143/*
1144 * resched_task - mark a task 'to be rescheduled now'.
1145 *
1146 * On UP this means the setting of the need_resched flag, on SMP it
1147 * might also involve a cross-CPU call to trigger the scheduler on
1148 * the target CPU.
1149 */
1150#ifdef CONFIG_SMP
1151
1152#ifndef tsk_is_polling
1153#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1154#endif
1155
31656519 1156static void resched_task(struct task_struct *p)
c24d20db
IM
1157{
1158 int cpu;
1159
1160 assert_spin_locked(&task_rq(p)->lock);
1161
31656519 1162 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1163 return;
1164
31656519 1165 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1166
1167 cpu = task_cpu(p);
1168 if (cpu == smp_processor_id())
1169 return;
1170
1171 /* NEED_RESCHED must be visible before we test polling */
1172 smp_mb();
1173 if (!tsk_is_polling(p))
1174 smp_send_reschedule(cpu);
1175}
1176
1177static void resched_cpu(int cpu)
1178{
1179 struct rq *rq = cpu_rq(cpu);
1180 unsigned long flags;
1181
1182 if (!spin_trylock_irqsave(&rq->lock, flags))
1183 return;
1184 resched_task(cpu_curr(cpu));
1185 spin_unlock_irqrestore(&rq->lock, flags);
1186}
06d8308c
TG
1187
1188#ifdef CONFIG_NO_HZ
1189/*
1190 * When add_timer_on() enqueues a timer into the timer wheel of an
1191 * idle CPU then this timer might expire before the next timer event
1192 * which is scheduled to wake up that CPU. In case of a completely
1193 * idle system the next event might even be infinite time into the
1194 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1195 * leaves the inner idle loop so the newly added timer is taken into
1196 * account when the CPU goes back to idle and evaluates the timer
1197 * wheel for the next timer event.
1198 */
1199void wake_up_idle_cpu(int cpu)
1200{
1201 struct rq *rq = cpu_rq(cpu);
1202
1203 if (cpu == smp_processor_id())
1204 return;
1205
1206 /*
1207 * This is safe, as this function is called with the timer
1208 * wheel base lock of (cpu) held. When the CPU is on the way
1209 * to idle and has not yet set rq->curr to idle then it will
1210 * be serialized on the timer wheel base lock and take the new
1211 * timer into account automatically.
1212 */
1213 if (rq->curr != rq->idle)
1214 return;
1215
1216 /*
1217 * We can set TIF_RESCHED on the idle task of the other CPU
1218 * lockless. The worst case is that the other CPU runs the
1219 * idle task through an additional NOOP schedule()
1220 */
1221 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1222
1223 /* NEED_RESCHED must be visible before we test polling */
1224 smp_mb();
1225 if (!tsk_is_polling(rq->idle))
1226 smp_send_reschedule(cpu);
1227}
6d6bc0ad 1228#endif /* CONFIG_NO_HZ */
06d8308c 1229
6d6bc0ad 1230#else /* !CONFIG_SMP */
31656519 1231static void resched_task(struct task_struct *p)
c24d20db
IM
1232{
1233 assert_spin_locked(&task_rq(p)->lock);
31656519 1234 set_tsk_need_resched(p);
c24d20db 1235}
6d6bc0ad 1236#endif /* CONFIG_SMP */
c24d20db 1237
45bf76df
IM
1238#if BITS_PER_LONG == 32
1239# define WMULT_CONST (~0UL)
1240#else
1241# define WMULT_CONST (1UL << 32)
1242#endif
1243
1244#define WMULT_SHIFT 32
1245
194081eb
IM
1246/*
1247 * Shift right and round:
1248 */
cf2ab469 1249#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1250
a7be37ac
PZ
1251/*
1252 * delta *= weight / lw
1253 */
cb1c4fc9 1254static unsigned long
45bf76df
IM
1255calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1256 struct load_weight *lw)
1257{
1258 u64 tmp;
1259
7a232e03
LJ
1260 if (!lw->inv_weight) {
1261 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1262 lw->inv_weight = 1;
1263 else
1264 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1265 / (lw->weight+1);
1266 }
45bf76df
IM
1267
1268 tmp = (u64)delta_exec * weight;
1269 /*
1270 * Check whether we'd overflow the 64-bit multiplication:
1271 */
194081eb 1272 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1273 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1274 WMULT_SHIFT/2);
1275 else
cf2ab469 1276 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1277
ecf691da 1278 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1279}
1280
1091985b 1281static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1282{
1283 lw->weight += inc;
e89996ae 1284 lw->inv_weight = 0;
45bf76df
IM
1285}
1286
1091985b 1287static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1288{
1289 lw->weight -= dec;
e89996ae 1290 lw->inv_weight = 0;
45bf76df
IM
1291}
1292
2dd73a4f
PW
1293/*
1294 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1295 * of tasks with abnormal "nice" values across CPUs the contribution that
1296 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1297 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1298 * scaled version of the new time slice allocation that they receive on time
1299 * slice expiry etc.
1300 */
1301
dd41f596
IM
1302#define WEIGHT_IDLEPRIO 2
1303#define WMULT_IDLEPRIO (1 << 31)
1304
1305/*
1306 * Nice levels are multiplicative, with a gentle 10% change for every
1307 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1308 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1309 * that remained on nice 0.
1310 *
1311 * The "10% effect" is relative and cumulative: from _any_ nice level,
1312 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1313 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1314 * If a task goes up by ~10% and another task goes down by ~10% then
1315 * the relative distance between them is ~25%.)
dd41f596
IM
1316 */
1317static const int prio_to_weight[40] = {
254753dc
IM
1318 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1319 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1320 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1321 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1322 /* 0 */ 1024, 820, 655, 526, 423,
1323 /* 5 */ 335, 272, 215, 172, 137,
1324 /* 10 */ 110, 87, 70, 56, 45,
1325 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1326};
1327
5714d2de
IM
1328/*
1329 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1330 *
1331 * In cases where the weight does not change often, we can use the
1332 * precalculated inverse to speed up arithmetics by turning divisions
1333 * into multiplications:
1334 */
dd41f596 1335static const u32 prio_to_wmult[40] = {
254753dc
IM
1336 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1337 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1338 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1339 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1340 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1341 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1342 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1343 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1344};
2dd73a4f 1345
dd41f596
IM
1346static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1347
1348/*
1349 * runqueue iterator, to support SMP load-balancing between different
1350 * scheduling classes, without having to expose their internal data
1351 * structures to the load-balancing proper:
1352 */
1353struct rq_iterator {
1354 void *arg;
1355 struct task_struct *(*start)(void *);
1356 struct task_struct *(*next)(void *);
1357};
1358
e1d1484f
PW
1359#ifdef CONFIG_SMP
1360static unsigned long
1361balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1362 unsigned long max_load_move, struct sched_domain *sd,
1363 enum cpu_idle_type idle, int *all_pinned,
1364 int *this_best_prio, struct rq_iterator *iterator);
1365
1366static int
1367iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1368 struct sched_domain *sd, enum cpu_idle_type idle,
1369 struct rq_iterator *iterator);
e1d1484f 1370#endif
dd41f596 1371
d842de87
SV
1372#ifdef CONFIG_CGROUP_CPUACCT
1373static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1374#else
1375static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1376#endif
1377
18d95a28
PZ
1378static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1379{
1380 update_load_add(&rq->load, load);
1381}
1382
1383static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1384{
1385 update_load_sub(&rq->load, load);
1386}
1387
7940ca36 1388#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1389typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1390
1391/*
1392 * Iterate the full tree, calling @down when first entering a node and @up when
1393 * leaving it for the final time.
1394 */
eb755805 1395static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1396{
1397 struct task_group *parent, *child;
eb755805 1398 int ret;
c09595f6
PZ
1399
1400 rcu_read_lock();
1401 parent = &root_task_group;
1402down:
eb755805
PZ
1403 ret = (*down)(parent, data);
1404 if (ret)
1405 goto out_unlock;
c09595f6
PZ
1406 list_for_each_entry_rcu(child, &parent->children, siblings) {
1407 parent = child;
1408 goto down;
1409
1410up:
1411 continue;
1412 }
eb755805
PZ
1413 ret = (*up)(parent, data);
1414 if (ret)
1415 goto out_unlock;
c09595f6
PZ
1416
1417 child = parent;
1418 parent = parent->parent;
1419 if (parent)
1420 goto up;
eb755805 1421out_unlock:
c09595f6 1422 rcu_read_unlock();
eb755805
PZ
1423
1424 return ret;
c09595f6
PZ
1425}
1426
eb755805
PZ
1427static int tg_nop(struct task_group *tg, void *data)
1428{
1429 return 0;
c09595f6 1430}
eb755805
PZ
1431#endif
1432
1433#ifdef CONFIG_SMP
1434static unsigned long source_load(int cpu, int type);
1435static unsigned long target_load(int cpu, int type);
1436static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1437
1438static unsigned long cpu_avg_load_per_task(int cpu)
1439{
1440 struct rq *rq = cpu_rq(cpu);
1441
1442 if (rq->nr_running)
1443 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1444
1445 return rq->avg_load_per_task;
1446}
1447
1448#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1449
c09595f6
PZ
1450static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1451
1452/*
1453 * Calculate and set the cpu's group shares.
1454 */
1455static void
b6a86c74 1456__update_group_shares_cpu(struct task_group *tg, int cpu,
c8cba857 1457 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1458{
c09595f6
PZ
1459 int boost = 0;
1460 unsigned long shares;
1461 unsigned long rq_weight;
1462
c8cba857 1463 if (!tg->se[cpu])
c09595f6
PZ
1464 return;
1465
c8cba857 1466 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1467
1468 /*
1469 * If there are currently no tasks on the cpu pretend there is one of
1470 * average load so that when a new task gets to run here it will not
1471 * get delayed by group starvation.
1472 */
1473 if (!rq_weight) {
1474 boost = 1;
1475 rq_weight = NICE_0_LOAD;
1476 }
1477
c8cba857
PZ
1478 if (unlikely(rq_weight > sd_rq_weight))
1479 rq_weight = sd_rq_weight;
1480
c09595f6
PZ
1481 /*
1482 * \Sum shares * rq_weight
1483 * shares = -----------------------
1484 * \Sum rq_weight
1485 *
1486 */
c8cba857 1487 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
c09595f6
PZ
1488
1489 /*
1490 * record the actual number of shares, not the boosted amount.
1491 */
c8cba857 1492 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
f1d239f7 1493 tg->cfs_rq[cpu]->rq_weight = rq_weight;
c09595f6
PZ
1494
1495 if (shares < MIN_SHARES)
1496 shares = MIN_SHARES;
1497 else if (shares > MAX_SHARES)
1498 shares = MAX_SHARES;
1499
c8cba857 1500 __set_se_shares(tg->se[cpu], shares);
18d95a28 1501}
c09595f6
PZ
1502
1503/*
c8cba857
PZ
1504 * Re-compute the task group their per cpu shares over the given domain.
1505 * This needs to be done in a bottom-up fashion because the rq weight of a
1506 * parent group depends on the shares of its child groups.
c09595f6 1507 */
eb755805 1508static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1509{
c8cba857
PZ
1510 unsigned long rq_weight = 0;
1511 unsigned long shares = 0;
eb755805 1512 struct sched_domain *sd = data;
c8cba857 1513 int i;
c09595f6 1514
c8cba857
PZ
1515 for_each_cpu_mask(i, sd->span) {
1516 rq_weight += tg->cfs_rq[i]->load.weight;
1517 shares += tg->cfs_rq[i]->shares;
c09595f6 1518 }
c09595f6 1519
c8cba857
PZ
1520 if ((!shares && rq_weight) || shares > tg->shares)
1521 shares = tg->shares;
1522
1523 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1524 shares = tg->shares;
c09595f6 1525
cd80917e
PZ
1526 if (!rq_weight)
1527 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1528
c09595f6
PZ
1529 for_each_cpu_mask(i, sd->span) {
1530 struct rq *rq = cpu_rq(i);
1531 unsigned long flags;
1532
1533 spin_lock_irqsave(&rq->lock, flags);
c8cba857 1534 __update_group_shares_cpu(tg, i, shares, rq_weight);
c09595f6
PZ
1535 spin_unlock_irqrestore(&rq->lock, flags);
1536 }
eb755805
PZ
1537
1538 return 0;
c09595f6
PZ
1539}
1540
1541/*
c8cba857
PZ
1542 * Compute the cpu's hierarchical load factor for each task group.
1543 * This needs to be done in a top-down fashion because the load of a child
1544 * group is a fraction of its parents load.
c09595f6 1545 */
eb755805 1546static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1547{
c8cba857 1548 unsigned long load;
eb755805 1549 long cpu = (long)data;
c09595f6 1550
c8cba857
PZ
1551 if (!tg->parent) {
1552 load = cpu_rq(cpu)->load.weight;
1553 } else {
1554 load = tg->parent->cfs_rq[cpu]->h_load;
1555 load *= tg->cfs_rq[cpu]->shares;
1556 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1557 }
c09595f6 1558
c8cba857 1559 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1560
eb755805 1561 return 0;
c09595f6
PZ
1562}
1563
c8cba857 1564static void update_shares(struct sched_domain *sd)
4d8d595d 1565{
2398f2c6
PZ
1566 u64 now = cpu_clock(raw_smp_processor_id());
1567 s64 elapsed = now - sd->last_update;
1568
1569 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1570 sd->last_update = now;
eb755805 1571 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1572 }
4d8d595d
PZ
1573}
1574
3e5459b4
PZ
1575static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1576{
1577 spin_unlock(&rq->lock);
1578 update_shares(sd);
1579 spin_lock(&rq->lock);
1580}
1581
eb755805 1582static void update_h_load(long cpu)
c09595f6 1583{
eb755805 1584 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1585}
1586
c09595f6
PZ
1587#else
1588
c8cba857 1589static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1590{
1591}
1592
3e5459b4
PZ
1593static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1594{
1595}
1596
18d95a28
PZ
1597#endif
1598
18d95a28
PZ
1599#endif
1600
30432094 1601#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1602static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1603{
30432094 1604#ifdef CONFIG_SMP
34e83e85
IM
1605 cfs_rq->shares = shares;
1606#endif
1607}
30432094 1608#endif
e7693a36 1609
dd41f596 1610#include "sched_stats.h"
dd41f596 1611#include "sched_idletask.c"
5522d5d5
IM
1612#include "sched_fair.c"
1613#include "sched_rt.c"
dd41f596
IM
1614#ifdef CONFIG_SCHED_DEBUG
1615# include "sched_debug.c"
1616#endif
1617
1618#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1619#define for_each_class(class) \
1620 for (class = sched_class_highest; class; class = class->next)
dd41f596 1621
c09595f6 1622static void inc_nr_running(struct rq *rq)
9c217245
IM
1623{
1624 rq->nr_running++;
9c217245
IM
1625}
1626
c09595f6 1627static void dec_nr_running(struct rq *rq)
9c217245
IM
1628{
1629 rq->nr_running--;
9c217245
IM
1630}
1631
45bf76df
IM
1632static void set_load_weight(struct task_struct *p)
1633{
1634 if (task_has_rt_policy(p)) {
dd41f596
IM
1635 p->se.load.weight = prio_to_weight[0] * 2;
1636 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1637 return;
1638 }
45bf76df 1639
dd41f596
IM
1640 /*
1641 * SCHED_IDLE tasks get minimal weight:
1642 */
1643 if (p->policy == SCHED_IDLE) {
1644 p->se.load.weight = WEIGHT_IDLEPRIO;
1645 p->se.load.inv_weight = WMULT_IDLEPRIO;
1646 return;
1647 }
71f8bd46 1648
dd41f596
IM
1649 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1650 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1651}
1652
2087a1ad
GH
1653static void update_avg(u64 *avg, u64 sample)
1654{
1655 s64 diff = sample - *avg;
1656 *avg += diff >> 3;
1657}
1658
8159f87e 1659static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1660{
dd41f596 1661 sched_info_queued(p);
fd390f6a 1662 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1663 p->se.on_rq = 1;
71f8bd46
IM
1664}
1665
69be72c1 1666static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1667{
2087a1ad
GH
1668 if (sleep && p->se.last_wakeup) {
1669 update_avg(&p->se.avg_overlap,
1670 p->se.sum_exec_runtime - p->se.last_wakeup);
1671 p->se.last_wakeup = 0;
1672 }
1673
46ac22ba 1674 sched_info_dequeued(p);
f02231e5 1675 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1676 p->se.on_rq = 0;
71f8bd46
IM
1677}
1678
14531189 1679/*
dd41f596 1680 * __normal_prio - return the priority that is based on the static prio
14531189 1681 */
14531189
IM
1682static inline int __normal_prio(struct task_struct *p)
1683{
dd41f596 1684 return p->static_prio;
14531189
IM
1685}
1686
b29739f9
IM
1687/*
1688 * Calculate the expected normal priority: i.e. priority
1689 * without taking RT-inheritance into account. Might be
1690 * boosted by interactivity modifiers. Changes upon fork,
1691 * setprio syscalls, and whenever the interactivity
1692 * estimator recalculates.
1693 */
36c8b586 1694static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1695{
1696 int prio;
1697
e05606d3 1698 if (task_has_rt_policy(p))
b29739f9
IM
1699 prio = MAX_RT_PRIO-1 - p->rt_priority;
1700 else
1701 prio = __normal_prio(p);
1702 return prio;
1703}
1704
1705/*
1706 * Calculate the current priority, i.e. the priority
1707 * taken into account by the scheduler. This value might
1708 * be boosted by RT tasks, or might be boosted by
1709 * interactivity modifiers. Will be RT if the task got
1710 * RT-boosted. If not then it returns p->normal_prio.
1711 */
36c8b586 1712static int effective_prio(struct task_struct *p)
b29739f9
IM
1713{
1714 p->normal_prio = normal_prio(p);
1715 /*
1716 * If we are RT tasks or we were boosted to RT priority,
1717 * keep the priority unchanged. Otherwise, update priority
1718 * to the normal priority:
1719 */
1720 if (!rt_prio(p->prio))
1721 return p->normal_prio;
1722 return p->prio;
1723}
1724
1da177e4 1725/*
dd41f596 1726 * activate_task - move a task to the runqueue.
1da177e4 1727 */
dd41f596 1728static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1729{
d9514f6c 1730 if (task_contributes_to_load(p))
dd41f596 1731 rq->nr_uninterruptible--;
1da177e4 1732
8159f87e 1733 enqueue_task(rq, p, wakeup);
c09595f6 1734 inc_nr_running(rq);
1da177e4
LT
1735}
1736
1da177e4
LT
1737/*
1738 * deactivate_task - remove a task from the runqueue.
1739 */
2e1cb74a 1740static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1741{
d9514f6c 1742 if (task_contributes_to_load(p))
dd41f596
IM
1743 rq->nr_uninterruptible++;
1744
69be72c1 1745 dequeue_task(rq, p, sleep);
c09595f6 1746 dec_nr_running(rq);
1da177e4
LT
1747}
1748
1da177e4
LT
1749/**
1750 * task_curr - is this task currently executing on a CPU?
1751 * @p: the task in question.
1752 */
36c8b586 1753inline int task_curr(const struct task_struct *p)
1da177e4
LT
1754{
1755 return cpu_curr(task_cpu(p)) == p;
1756}
1757
dd41f596
IM
1758static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1759{
6f505b16 1760 set_task_rq(p, cpu);
dd41f596 1761#ifdef CONFIG_SMP
ce96b5ac
DA
1762 /*
1763 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1764 * successfuly executed on another CPU. We must ensure that updates of
1765 * per-task data have been completed by this moment.
1766 */
1767 smp_wmb();
dd41f596 1768 task_thread_info(p)->cpu = cpu;
dd41f596 1769#endif
2dd73a4f
PW
1770}
1771
cb469845
SR
1772static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1773 const struct sched_class *prev_class,
1774 int oldprio, int running)
1775{
1776 if (prev_class != p->sched_class) {
1777 if (prev_class->switched_from)
1778 prev_class->switched_from(rq, p, running);
1779 p->sched_class->switched_to(rq, p, running);
1780 } else
1781 p->sched_class->prio_changed(rq, p, oldprio, running);
1782}
1783
1da177e4 1784#ifdef CONFIG_SMP
c65cc870 1785
e958b360
TG
1786/* Used instead of source_load when we know the type == 0 */
1787static unsigned long weighted_cpuload(const int cpu)
1788{
1789 return cpu_rq(cpu)->load.weight;
1790}
1791
cc367732
IM
1792/*
1793 * Is this task likely cache-hot:
1794 */
e7693a36 1795static int
cc367732
IM
1796task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1797{
1798 s64 delta;
1799
f540a608
IM
1800 /*
1801 * Buddy candidates are cache hot:
1802 */
d25ce4cd 1803 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1804 return 1;
1805
cc367732
IM
1806 if (p->sched_class != &fair_sched_class)
1807 return 0;
1808
6bc1665b
IM
1809 if (sysctl_sched_migration_cost == -1)
1810 return 1;
1811 if (sysctl_sched_migration_cost == 0)
1812 return 0;
1813
cc367732
IM
1814 delta = now - p->se.exec_start;
1815
1816 return delta < (s64)sysctl_sched_migration_cost;
1817}
1818
1819
dd41f596 1820void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1821{
dd41f596
IM
1822 int old_cpu = task_cpu(p);
1823 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1824 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1825 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1826 u64 clock_offset;
dd41f596
IM
1827
1828 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1829
1830#ifdef CONFIG_SCHEDSTATS
1831 if (p->se.wait_start)
1832 p->se.wait_start -= clock_offset;
dd41f596
IM
1833 if (p->se.sleep_start)
1834 p->se.sleep_start -= clock_offset;
1835 if (p->se.block_start)
1836 p->se.block_start -= clock_offset;
cc367732
IM
1837 if (old_cpu != new_cpu) {
1838 schedstat_inc(p, se.nr_migrations);
1839 if (task_hot(p, old_rq->clock, NULL))
1840 schedstat_inc(p, se.nr_forced2_migrations);
1841 }
6cfb0d5d 1842#endif
2830cf8c
SV
1843 p->se.vruntime -= old_cfsrq->min_vruntime -
1844 new_cfsrq->min_vruntime;
dd41f596
IM
1845
1846 __set_task_cpu(p, new_cpu);
c65cc870
IM
1847}
1848
70b97a7f 1849struct migration_req {
1da177e4 1850 struct list_head list;
1da177e4 1851
36c8b586 1852 struct task_struct *task;
1da177e4
LT
1853 int dest_cpu;
1854
1da177e4 1855 struct completion done;
70b97a7f 1856};
1da177e4
LT
1857
1858/*
1859 * The task's runqueue lock must be held.
1860 * Returns true if you have to wait for migration thread.
1861 */
36c8b586 1862static int
70b97a7f 1863migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1864{
70b97a7f 1865 struct rq *rq = task_rq(p);
1da177e4
LT
1866
1867 /*
1868 * If the task is not on a runqueue (and not running), then
1869 * it is sufficient to simply update the task's cpu field.
1870 */
dd41f596 1871 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1872 set_task_cpu(p, dest_cpu);
1873 return 0;
1874 }
1875
1876 init_completion(&req->done);
1da177e4
LT
1877 req->task = p;
1878 req->dest_cpu = dest_cpu;
1879 list_add(&req->list, &rq->migration_queue);
48f24c4d 1880
1da177e4
LT
1881 return 1;
1882}
1883
1884/*
1885 * wait_task_inactive - wait for a thread to unschedule.
1886 *
85ba2d86
RM
1887 * If @match_state is nonzero, it's the @p->state value just checked and
1888 * not expected to change. If it changes, i.e. @p might have woken up,
1889 * then return zero. When we succeed in waiting for @p to be off its CPU,
1890 * we return a positive number (its total switch count). If a second call
1891 * a short while later returns the same number, the caller can be sure that
1892 * @p has remained unscheduled the whole time.
1893 *
1da177e4
LT
1894 * The caller must ensure that the task *will* unschedule sometime soon,
1895 * else this function might spin for a *long* time. This function can't
1896 * be called with interrupts off, or it may introduce deadlock with
1897 * smp_call_function() if an IPI is sent by the same process we are
1898 * waiting to become inactive.
1899 */
85ba2d86 1900unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1901{
1902 unsigned long flags;
dd41f596 1903 int running, on_rq;
85ba2d86 1904 unsigned long ncsw;
70b97a7f 1905 struct rq *rq;
1da177e4 1906
3a5c359a
AK
1907 for (;;) {
1908 /*
1909 * We do the initial early heuristics without holding
1910 * any task-queue locks at all. We'll only try to get
1911 * the runqueue lock when things look like they will
1912 * work out!
1913 */
1914 rq = task_rq(p);
fa490cfd 1915
3a5c359a
AK
1916 /*
1917 * If the task is actively running on another CPU
1918 * still, just relax and busy-wait without holding
1919 * any locks.
1920 *
1921 * NOTE! Since we don't hold any locks, it's not
1922 * even sure that "rq" stays as the right runqueue!
1923 * But we don't care, since "task_running()" will
1924 * return false if the runqueue has changed and p
1925 * is actually now running somewhere else!
1926 */
85ba2d86
RM
1927 while (task_running(rq, p)) {
1928 if (match_state && unlikely(p->state != match_state))
1929 return 0;
3a5c359a 1930 cpu_relax();
85ba2d86 1931 }
fa490cfd 1932
3a5c359a
AK
1933 /*
1934 * Ok, time to look more closely! We need the rq
1935 * lock now, to be *sure*. If we're wrong, we'll
1936 * just go back and repeat.
1937 */
1938 rq = task_rq_lock(p, &flags);
1939 running = task_running(rq, p);
1940 on_rq = p->se.on_rq;
85ba2d86 1941 ncsw = 0;
f31e11d8 1942 if (!match_state || p->state == match_state)
93dcf55f 1943 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1944 task_rq_unlock(rq, &flags);
fa490cfd 1945
85ba2d86
RM
1946 /*
1947 * If it changed from the expected state, bail out now.
1948 */
1949 if (unlikely(!ncsw))
1950 break;
1951
3a5c359a
AK
1952 /*
1953 * Was it really running after all now that we
1954 * checked with the proper locks actually held?
1955 *
1956 * Oops. Go back and try again..
1957 */
1958 if (unlikely(running)) {
1959 cpu_relax();
1960 continue;
1961 }
fa490cfd 1962
3a5c359a
AK
1963 /*
1964 * It's not enough that it's not actively running,
1965 * it must be off the runqueue _entirely_, and not
1966 * preempted!
1967 *
1968 * So if it wa still runnable (but just not actively
1969 * running right now), it's preempted, and we should
1970 * yield - it could be a while.
1971 */
1972 if (unlikely(on_rq)) {
1973 schedule_timeout_uninterruptible(1);
1974 continue;
1975 }
fa490cfd 1976
3a5c359a
AK
1977 /*
1978 * Ahh, all good. It wasn't running, and it wasn't
1979 * runnable, which means that it will never become
1980 * running in the future either. We're all done!
1981 */
1982 break;
1983 }
85ba2d86
RM
1984
1985 return ncsw;
1da177e4
LT
1986}
1987
1988/***
1989 * kick_process - kick a running thread to enter/exit the kernel
1990 * @p: the to-be-kicked thread
1991 *
1992 * Cause a process which is running on another CPU to enter
1993 * kernel-mode, without any delay. (to get signals handled.)
1994 *
1995 * NOTE: this function doesnt have to take the runqueue lock,
1996 * because all it wants to ensure is that the remote task enters
1997 * the kernel. If the IPI races and the task has been migrated
1998 * to another CPU then no harm is done and the purpose has been
1999 * achieved as well.
2000 */
36c8b586 2001void kick_process(struct task_struct *p)
1da177e4
LT
2002{
2003 int cpu;
2004
2005 preempt_disable();
2006 cpu = task_cpu(p);
2007 if ((cpu != smp_processor_id()) && task_curr(p))
2008 smp_send_reschedule(cpu);
2009 preempt_enable();
2010}
2011
2012/*
2dd73a4f
PW
2013 * Return a low guess at the load of a migration-source cpu weighted
2014 * according to the scheduling class and "nice" value.
1da177e4
LT
2015 *
2016 * We want to under-estimate the load of migration sources, to
2017 * balance conservatively.
2018 */
a9957449 2019static unsigned long source_load(int cpu, int type)
1da177e4 2020{
70b97a7f 2021 struct rq *rq = cpu_rq(cpu);
dd41f596 2022 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2023
93b75217 2024 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2025 return total;
b910472d 2026
dd41f596 2027 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2028}
2029
2030/*
2dd73a4f
PW
2031 * Return a high guess at the load of a migration-target cpu weighted
2032 * according to the scheduling class and "nice" value.
1da177e4 2033 */
a9957449 2034static unsigned long target_load(int cpu, int type)
1da177e4 2035{
70b97a7f 2036 struct rq *rq = cpu_rq(cpu);
dd41f596 2037 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2038
93b75217 2039 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2040 return total;
3b0bd9bc 2041
dd41f596 2042 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2043}
2044
147cbb4b
NP
2045/*
2046 * find_idlest_group finds and returns the least busy CPU group within the
2047 * domain.
2048 */
2049static struct sched_group *
2050find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2051{
2052 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2053 unsigned long min_load = ULONG_MAX, this_load = 0;
2054 int load_idx = sd->forkexec_idx;
2055 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2056
2057 do {
2058 unsigned long load, avg_load;
2059 int local_group;
2060 int i;
2061
da5a5522
BD
2062 /* Skip over this group if it has no CPUs allowed */
2063 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2064 continue;
da5a5522 2065
147cbb4b 2066 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2067
2068 /* Tally up the load of all CPUs in the group */
2069 avg_load = 0;
2070
363ab6f1 2071 for_each_cpu_mask_nr(i, group->cpumask) {
147cbb4b
NP
2072 /* Bias balancing toward cpus of our domain */
2073 if (local_group)
2074 load = source_load(i, load_idx);
2075 else
2076 load = target_load(i, load_idx);
2077
2078 avg_load += load;
2079 }
2080
2081 /* Adjust by relative CPU power of the group */
5517d86b
ED
2082 avg_load = sg_div_cpu_power(group,
2083 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2084
2085 if (local_group) {
2086 this_load = avg_load;
2087 this = group;
2088 } else if (avg_load < min_load) {
2089 min_load = avg_load;
2090 idlest = group;
2091 }
3a5c359a 2092 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2093
2094 if (!idlest || 100*this_load < imbalance*min_load)
2095 return NULL;
2096 return idlest;
2097}
2098
2099/*
0feaece9 2100 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2101 */
95cdf3b7 2102static int
7c16ec58
MT
2103find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2104 cpumask_t *tmp)
147cbb4b
NP
2105{
2106 unsigned long load, min_load = ULONG_MAX;
2107 int idlest = -1;
2108 int i;
2109
da5a5522 2110 /* Traverse only the allowed CPUs */
7c16ec58 2111 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2112
363ab6f1 2113 for_each_cpu_mask_nr(i, *tmp) {
2dd73a4f 2114 load = weighted_cpuload(i);
147cbb4b
NP
2115
2116 if (load < min_load || (load == min_load && i == this_cpu)) {
2117 min_load = load;
2118 idlest = i;
2119 }
2120 }
2121
2122 return idlest;
2123}
2124
476d139c
NP
2125/*
2126 * sched_balance_self: balance the current task (running on cpu) in domains
2127 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2128 * SD_BALANCE_EXEC.
2129 *
2130 * Balance, ie. select the least loaded group.
2131 *
2132 * Returns the target CPU number, or the same CPU if no balancing is needed.
2133 *
2134 * preempt must be disabled.
2135 */
2136static int sched_balance_self(int cpu, int flag)
2137{
2138 struct task_struct *t = current;
2139 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2140
c96d145e 2141 for_each_domain(cpu, tmp) {
9761eea8
IM
2142 /*
2143 * If power savings logic is enabled for a domain, stop there.
2144 */
5c45bf27
SS
2145 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2146 break;
476d139c
NP
2147 if (tmp->flags & flag)
2148 sd = tmp;
c96d145e 2149 }
476d139c 2150
039a1c41
PZ
2151 if (sd)
2152 update_shares(sd);
2153
476d139c 2154 while (sd) {
7c16ec58 2155 cpumask_t span, tmpmask;
476d139c 2156 struct sched_group *group;
1a848870
SS
2157 int new_cpu, weight;
2158
2159 if (!(sd->flags & flag)) {
2160 sd = sd->child;
2161 continue;
2162 }
476d139c
NP
2163
2164 span = sd->span;
2165 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2166 if (!group) {
2167 sd = sd->child;
2168 continue;
2169 }
476d139c 2170
7c16ec58 2171 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2172 if (new_cpu == -1 || new_cpu == cpu) {
2173 /* Now try balancing at a lower domain level of cpu */
2174 sd = sd->child;
2175 continue;
2176 }
476d139c 2177
1a848870 2178 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2179 cpu = new_cpu;
476d139c
NP
2180 sd = NULL;
2181 weight = cpus_weight(span);
2182 for_each_domain(cpu, tmp) {
2183 if (weight <= cpus_weight(tmp->span))
2184 break;
2185 if (tmp->flags & flag)
2186 sd = tmp;
2187 }
2188 /* while loop will break here if sd == NULL */
2189 }
2190
2191 return cpu;
2192}
2193
2194#endif /* CONFIG_SMP */
1da177e4 2195
1da177e4
LT
2196/***
2197 * try_to_wake_up - wake up a thread
2198 * @p: the to-be-woken-up thread
2199 * @state: the mask of task states that can be woken
2200 * @sync: do a synchronous wakeup?
2201 *
2202 * Put it on the run-queue if it's not already there. The "current"
2203 * thread is always on the run-queue (except when the actual
2204 * re-schedule is in progress), and as such you're allowed to do
2205 * the simpler "current->state = TASK_RUNNING" to mark yourself
2206 * runnable without the overhead of this.
2207 *
2208 * returns failure only if the task is already active.
2209 */
36c8b586 2210static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2211{
cc367732 2212 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2213 unsigned long flags;
2214 long old_state;
70b97a7f 2215 struct rq *rq;
1da177e4 2216
b85d0667
IM
2217 if (!sched_feat(SYNC_WAKEUPS))
2218 sync = 0;
2219
2398f2c6
PZ
2220#ifdef CONFIG_SMP
2221 if (sched_feat(LB_WAKEUP_UPDATE)) {
2222 struct sched_domain *sd;
2223
2224 this_cpu = raw_smp_processor_id();
2225 cpu = task_cpu(p);
2226
2227 for_each_domain(this_cpu, sd) {
2228 if (cpu_isset(cpu, sd->span)) {
2229 update_shares(sd);
2230 break;
2231 }
2232 }
2233 }
2234#endif
2235
04e2f174 2236 smp_wmb();
1da177e4
LT
2237 rq = task_rq_lock(p, &flags);
2238 old_state = p->state;
2239 if (!(old_state & state))
2240 goto out;
2241
dd41f596 2242 if (p->se.on_rq)
1da177e4
LT
2243 goto out_running;
2244
2245 cpu = task_cpu(p);
cc367732 2246 orig_cpu = cpu;
1da177e4
LT
2247 this_cpu = smp_processor_id();
2248
2249#ifdef CONFIG_SMP
2250 if (unlikely(task_running(rq, p)))
2251 goto out_activate;
2252
5d2f5a61
DA
2253 cpu = p->sched_class->select_task_rq(p, sync);
2254 if (cpu != orig_cpu) {
2255 set_task_cpu(p, cpu);
1da177e4
LT
2256 task_rq_unlock(rq, &flags);
2257 /* might preempt at this point */
2258 rq = task_rq_lock(p, &flags);
2259 old_state = p->state;
2260 if (!(old_state & state))
2261 goto out;
dd41f596 2262 if (p->se.on_rq)
1da177e4
LT
2263 goto out_running;
2264
2265 this_cpu = smp_processor_id();
2266 cpu = task_cpu(p);
2267 }
2268
e7693a36
GH
2269#ifdef CONFIG_SCHEDSTATS
2270 schedstat_inc(rq, ttwu_count);
2271 if (cpu == this_cpu)
2272 schedstat_inc(rq, ttwu_local);
2273 else {
2274 struct sched_domain *sd;
2275 for_each_domain(this_cpu, sd) {
2276 if (cpu_isset(cpu, sd->span)) {
2277 schedstat_inc(sd, ttwu_wake_remote);
2278 break;
2279 }
2280 }
2281 }
6d6bc0ad 2282#endif /* CONFIG_SCHEDSTATS */
e7693a36 2283
1da177e4
LT
2284out_activate:
2285#endif /* CONFIG_SMP */
cc367732
IM
2286 schedstat_inc(p, se.nr_wakeups);
2287 if (sync)
2288 schedstat_inc(p, se.nr_wakeups_sync);
2289 if (orig_cpu != cpu)
2290 schedstat_inc(p, se.nr_wakeups_migrate);
2291 if (cpu == this_cpu)
2292 schedstat_inc(p, se.nr_wakeups_local);
2293 else
2294 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2295 update_rq_clock(rq);
dd41f596 2296 activate_task(rq, p, 1);
1da177e4
LT
2297 success = 1;
2298
2299out_running:
5b82a1b0
MD
2300 trace_mark(kernel_sched_wakeup,
2301 "pid %d state %ld ## rq %p task %p rq->curr %p",
2302 p->pid, p->state, rq, p, rq->curr);
15afe09b 2303 check_preempt_curr(rq, p, sync);
4ae7d5ce 2304
1da177e4 2305 p->state = TASK_RUNNING;
9a897c5a
SR
2306#ifdef CONFIG_SMP
2307 if (p->sched_class->task_wake_up)
2308 p->sched_class->task_wake_up(rq, p);
2309#endif
1da177e4 2310out:
2087a1ad
GH
2311 current->se.last_wakeup = current->se.sum_exec_runtime;
2312
1da177e4
LT
2313 task_rq_unlock(rq, &flags);
2314
2315 return success;
2316}
2317
7ad5b3a5 2318int wake_up_process(struct task_struct *p)
1da177e4 2319{
d9514f6c 2320 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2321}
1da177e4
LT
2322EXPORT_SYMBOL(wake_up_process);
2323
7ad5b3a5 2324int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2325{
2326 return try_to_wake_up(p, state, 0);
2327}
2328
1da177e4
LT
2329/*
2330 * Perform scheduler related setup for a newly forked process p.
2331 * p is forked by current.
dd41f596
IM
2332 *
2333 * __sched_fork() is basic setup used by init_idle() too:
2334 */
2335static void __sched_fork(struct task_struct *p)
2336{
dd41f596
IM
2337 p->se.exec_start = 0;
2338 p->se.sum_exec_runtime = 0;
f6cf891c 2339 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2340 p->se.last_wakeup = 0;
2341 p->se.avg_overlap = 0;
6cfb0d5d
IM
2342
2343#ifdef CONFIG_SCHEDSTATS
2344 p->se.wait_start = 0;
dd41f596
IM
2345 p->se.sum_sleep_runtime = 0;
2346 p->se.sleep_start = 0;
dd41f596
IM
2347 p->se.block_start = 0;
2348 p->se.sleep_max = 0;
2349 p->se.block_max = 0;
2350 p->se.exec_max = 0;
eba1ed4b 2351 p->se.slice_max = 0;
dd41f596 2352 p->se.wait_max = 0;
6cfb0d5d 2353#endif
476d139c 2354
fa717060 2355 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2356 p->se.on_rq = 0;
4a55bd5e 2357 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2358
e107be36
AK
2359#ifdef CONFIG_PREEMPT_NOTIFIERS
2360 INIT_HLIST_HEAD(&p->preempt_notifiers);
2361#endif
2362
1da177e4
LT
2363 /*
2364 * We mark the process as running here, but have not actually
2365 * inserted it onto the runqueue yet. This guarantees that
2366 * nobody will actually run it, and a signal or other external
2367 * event cannot wake it up and insert it on the runqueue either.
2368 */
2369 p->state = TASK_RUNNING;
dd41f596
IM
2370}
2371
2372/*
2373 * fork()/clone()-time setup:
2374 */
2375void sched_fork(struct task_struct *p, int clone_flags)
2376{
2377 int cpu = get_cpu();
2378
2379 __sched_fork(p);
2380
2381#ifdef CONFIG_SMP
2382 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2383#endif
02e4bac2 2384 set_task_cpu(p, cpu);
b29739f9
IM
2385
2386 /*
2387 * Make sure we do not leak PI boosting priority to the child:
2388 */
2389 p->prio = current->normal_prio;
2ddbf952
HS
2390 if (!rt_prio(p->prio))
2391 p->sched_class = &fair_sched_class;
b29739f9 2392
52f17b6c 2393#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2394 if (likely(sched_info_on()))
52f17b6c 2395 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2396#endif
d6077cb8 2397#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2398 p->oncpu = 0;
2399#endif
1da177e4 2400#ifdef CONFIG_PREEMPT
4866cde0 2401 /* Want to start with kernel preemption disabled. */
a1261f54 2402 task_thread_info(p)->preempt_count = 1;
1da177e4 2403#endif
476d139c 2404 put_cpu();
1da177e4
LT
2405}
2406
2407/*
2408 * wake_up_new_task - wake up a newly created task for the first time.
2409 *
2410 * This function will do some initial scheduler statistics housekeeping
2411 * that must be done for every newly created context, then puts the task
2412 * on the runqueue and wakes it.
2413 */
7ad5b3a5 2414void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2415{
2416 unsigned long flags;
dd41f596 2417 struct rq *rq;
1da177e4
LT
2418
2419 rq = task_rq_lock(p, &flags);
147cbb4b 2420 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2421 update_rq_clock(rq);
1da177e4
LT
2422
2423 p->prio = effective_prio(p);
2424
b9dca1e0 2425 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2426 activate_task(rq, p, 0);
1da177e4 2427 } else {
1da177e4 2428 /*
dd41f596
IM
2429 * Let the scheduling class do new task startup
2430 * management (if any):
1da177e4 2431 */
ee0827d8 2432 p->sched_class->task_new(rq, p);
c09595f6 2433 inc_nr_running(rq);
1da177e4 2434 }
5b82a1b0
MD
2435 trace_mark(kernel_sched_wakeup_new,
2436 "pid %d state %ld ## rq %p task %p rq->curr %p",
2437 p->pid, p->state, rq, p, rq->curr);
15afe09b 2438 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2439#ifdef CONFIG_SMP
2440 if (p->sched_class->task_wake_up)
2441 p->sched_class->task_wake_up(rq, p);
2442#endif
dd41f596 2443 task_rq_unlock(rq, &flags);
1da177e4
LT
2444}
2445
e107be36
AK
2446#ifdef CONFIG_PREEMPT_NOTIFIERS
2447
2448/**
421cee29
RD
2449 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2450 * @notifier: notifier struct to register
e107be36
AK
2451 */
2452void preempt_notifier_register(struct preempt_notifier *notifier)
2453{
2454 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2455}
2456EXPORT_SYMBOL_GPL(preempt_notifier_register);
2457
2458/**
2459 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2460 * @notifier: notifier struct to unregister
e107be36
AK
2461 *
2462 * This is safe to call from within a preemption notifier.
2463 */
2464void preempt_notifier_unregister(struct preempt_notifier *notifier)
2465{
2466 hlist_del(&notifier->link);
2467}
2468EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2469
2470static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2471{
2472 struct preempt_notifier *notifier;
2473 struct hlist_node *node;
2474
2475 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2476 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2477}
2478
2479static void
2480fire_sched_out_preempt_notifiers(struct task_struct *curr,
2481 struct task_struct *next)
2482{
2483 struct preempt_notifier *notifier;
2484 struct hlist_node *node;
2485
2486 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2487 notifier->ops->sched_out(notifier, next);
2488}
2489
6d6bc0ad 2490#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2491
2492static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2493{
2494}
2495
2496static void
2497fire_sched_out_preempt_notifiers(struct task_struct *curr,
2498 struct task_struct *next)
2499{
2500}
2501
6d6bc0ad 2502#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2503
4866cde0
NP
2504/**
2505 * prepare_task_switch - prepare to switch tasks
2506 * @rq: the runqueue preparing to switch
421cee29 2507 * @prev: the current task that is being switched out
4866cde0
NP
2508 * @next: the task we are going to switch to.
2509 *
2510 * This is called with the rq lock held and interrupts off. It must
2511 * be paired with a subsequent finish_task_switch after the context
2512 * switch.
2513 *
2514 * prepare_task_switch sets up locking and calls architecture specific
2515 * hooks.
2516 */
e107be36
AK
2517static inline void
2518prepare_task_switch(struct rq *rq, struct task_struct *prev,
2519 struct task_struct *next)
4866cde0 2520{
e107be36 2521 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2522 prepare_lock_switch(rq, next);
2523 prepare_arch_switch(next);
2524}
2525
1da177e4
LT
2526/**
2527 * finish_task_switch - clean up after a task-switch
344babaa 2528 * @rq: runqueue associated with task-switch
1da177e4
LT
2529 * @prev: the thread we just switched away from.
2530 *
4866cde0
NP
2531 * finish_task_switch must be called after the context switch, paired
2532 * with a prepare_task_switch call before the context switch.
2533 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2534 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2535 *
2536 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2537 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2538 * with the lock held can cause deadlocks; see schedule() for
2539 * details.)
2540 */
a9957449 2541static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2542 __releases(rq->lock)
2543{
1da177e4 2544 struct mm_struct *mm = rq->prev_mm;
55a101f8 2545 long prev_state;
1da177e4
LT
2546
2547 rq->prev_mm = NULL;
2548
2549 /*
2550 * A task struct has one reference for the use as "current".
c394cc9f 2551 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2552 * schedule one last time. The schedule call will never return, and
2553 * the scheduled task must drop that reference.
c394cc9f 2554 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2555 * still held, otherwise prev could be scheduled on another cpu, die
2556 * there before we look at prev->state, and then the reference would
2557 * be dropped twice.
2558 * Manfred Spraul <manfred@colorfullife.com>
2559 */
55a101f8 2560 prev_state = prev->state;
4866cde0
NP
2561 finish_arch_switch(prev);
2562 finish_lock_switch(rq, prev);
9a897c5a
SR
2563#ifdef CONFIG_SMP
2564 if (current->sched_class->post_schedule)
2565 current->sched_class->post_schedule(rq);
2566#endif
e8fa1362 2567
e107be36 2568 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2569 if (mm)
2570 mmdrop(mm);
c394cc9f 2571 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2572 /*
2573 * Remove function-return probe instances associated with this
2574 * task and put them back on the free list.
9761eea8 2575 */
c6fd91f0 2576 kprobe_flush_task(prev);
1da177e4 2577 put_task_struct(prev);
c6fd91f0 2578 }
1da177e4
LT
2579}
2580
2581/**
2582 * schedule_tail - first thing a freshly forked thread must call.
2583 * @prev: the thread we just switched away from.
2584 */
36c8b586 2585asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2586 __releases(rq->lock)
2587{
70b97a7f
IM
2588 struct rq *rq = this_rq();
2589
4866cde0
NP
2590 finish_task_switch(rq, prev);
2591#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2592 /* In this case, finish_task_switch does not reenable preemption */
2593 preempt_enable();
2594#endif
1da177e4 2595 if (current->set_child_tid)
b488893a 2596 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2597}
2598
2599/*
2600 * context_switch - switch to the new MM and the new
2601 * thread's register state.
2602 */
dd41f596 2603static inline void
70b97a7f 2604context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2605 struct task_struct *next)
1da177e4 2606{
dd41f596 2607 struct mm_struct *mm, *oldmm;
1da177e4 2608
e107be36 2609 prepare_task_switch(rq, prev, next);
5b82a1b0
MD
2610 trace_mark(kernel_sched_schedule,
2611 "prev_pid %d next_pid %d prev_state %ld "
2612 "## rq %p prev %p next %p",
2613 prev->pid, next->pid, prev->state,
2614 rq, prev, next);
dd41f596
IM
2615 mm = next->mm;
2616 oldmm = prev->active_mm;
9226d125
ZA
2617 /*
2618 * For paravirt, this is coupled with an exit in switch_to to
2619 * combine the page table reload and the switch backend into
2620 * one hypercall.
2621 */
2622 arch_enter_lazy_cpu_mode();
2623
dd41f596 2624 if (unlikely(!mm)) {
1da177e4
LT
2625 next->active_mm = oldmm;
2626 atomic_inc(&oldmm->mm_count);
2627 enter_lazy_tlb(oldmm, next);
2628 } else
2629 switch_mm(oldmm, mm, next);
2630
dd41f596 2631 if (unlikely(!prev->mm)) {
1da177e4 2632 prev->active_mm = NULL;
1da177e4
LT
2633 rq->prev_mm = oldmm;
2634 }
3a5f5e48
IM
2635 /*
2636 * Since the runqueue lock will be released by the next
2637 * task (which is an invalid locking op but in the case
2638 * of the scheduler it's an obvious special-case), so we
2639 * do an early lockdep release here:
2640 */
2641#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2642 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2643#endif
1da177e4
LT
2644
2645 /* Here we just switch the register state and the stack. */
2646 switch_to(prev, next, prev);
2647
dd41f596
IM
2648 barrier();
2649 /*
2650 * this_rq must be evaluated again because prev may have moved
2651 * CPUs since it called schedule(), thus the 'rq' on its stack
2652 * frame will be invalid.
2653 */
2654 finish_task_switch(this_rq(), prev);
1da177e4
LT
2655}
2656
2657/*
2658 * nr_running, nr_uninterruptible and nr_context_switches:
2659 *
2660 * externally visible scheduler statistics: current number of runnable
2661 * threads, current number of uninterruptible-sleeping threads, total
2662 * number of context switches performed since bootup.
2663 */
2664unsigned long nr_running(void)
2665{
2666 unsigned long i, sum = 0;
2667
2668 for_each_online_cpu(i)
2669 sum += cpu_rq(i)->nr_running;
2670
2671 return sum;
2672}
2673
2674unsigned long nr_uninterruptible(void)
2675{
2676 unsigned long i, sum = 0;
2677
0a945022 2678 for_each_possible_cpu(i)
1da177e4
LT
2679 sum += cpu_rq(i)->nr_uninterruptible;
2680
2681 /*
2682 * Since we read the counters lockless, it might be slightly
2683 * inaccurate. Do not allow it to go below zero though:
2684 */
2685 if (unlikely((long)sum < 0))
2686 sum = 0;
2687
2688 return sum;
2689}
2690
2691unsigned long long nr_context_switches(void)
2692{
cc94abfc
SR
2693 int i;
2694 unsigned long long sum = 0;
1da177e4 2695
0a945022 2696 for_each_possible_cpu(i)
1da177e4
LT
2697 sum += cpu_rq(i)->nr_switches;
2698
2699 return sum;
2700}
2701
2702unsigned long nr_iowait(void)
2703{
2704 unsigned long i, sum = 0;
2705
0a945022 2706 for_each_possible_cpu(i)
1da177e4
LT
2707 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2708
2709 return sum;
2710}
2711
db1b1fef
JS
2712unsigned long nr_active(void)
2713{
2714 unsigned long i, running = 0, uninterruptible = 0;
2715
2716 for_each_online_cpu(i) {
2717 running += cpu_rq(i)->nr_running;
2718 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2719 }
2720
2721 if (unlikely((long)uninterruptible < 0))
2722 uninterruptible = 0;
2723
2724 return running + uninterruptible;
2725}
2726
48f24c4d 2727/*
dd41f596
IM
2728 * Update rq->cpu_load[] statistics. This function is usually called every
2729 * scheduler tick (TICK_NSEC).
48f24c4d 2730 */
dd41f596 2731static void update_cpu_load(struct rq *this_rq)
48f24c4d 2732{
495eca49 2733 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2734 int i, scale;
2735
2736 this_rq->nr_load_updates++;
dd41f596
IM
2737
2738 /* Update our load: */
2739 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2740 unsigned long old_load, new_load;
2741
2742 /* scale is effectively 1 << i now, and >> i divides by scale */
2743
2744 old_load = this_rq->cpu_load[i];
2745 new_load = this_load;
a25707f3
IM
2746 /*
2747 * Round up the averaging division if load is increasing. This
2748 * prevents us from getting stuck on 9 if the load is 10, for
2749 * example.
2750 */
2751 if (new_load > old_load)
2752 new_load += scale-1;
dd41f596
IM
2753 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2754 }
48f24c4d
IM
2755}
2756
dd41f596
IM
2757#ifdef CONFIG_SMP
2758
1da177e4
LT
2759/*
2760 * double_rq_lock - safely lock two runqueues
2761 *
2762 * Note this does not disable interrupts like task_rq_lock,
2763 * you need to do so manually before calling.
2764 */
70b97a7f 2765static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2766 __acquires(rq1->lock)
2767 __acquires(rq2->lock)
2768{
054b9108 2769 BUG_ON(!irqs_disabled());
1da177e4
LT
2770 if (rq1 == rq2) {
2771 spin_lock(&rq1->lock);
2772 __acquire(rq2->lock); /* Fake it out ;) */
2773 } else {
c96d145e 2774 if (rq1 < rq2) {
1da177e4 2775 spin_lock(&rq1->lock);
5e710e37 2776 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2777 } else {
2778 spin_lock(&rq2->lock);
5e710e37 2779 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2780 }
2781 }
6e82a3be
IM
2782 update_rq_clock(rq1);
2783 update_rq_clock(rq2);
1da177e4
LT
2784}
2785
2786/*
2787 * double_rq_unlock - safely unlock two runqueues
2788 *
2789 * Note this does not restore interrupts like task_rq_unlock,
2790 * you need to do so manually after calling.
2791 */
70b97a7f 2792static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2793 __releases(rq1->lock)
2794 __releases(rq2->lock)
2795{
2796 spin_unlock(&rq1->lock);
2797 if (rq1 != rq2)
2798 spin_unlock(&rq2->lock);
2799 else
2800 __release(rq2->lock);
2801}
2802
2803/*
2804 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2805 */
e8fa1362 2806static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2807 __releases(this_rq->lock)
2808 __acquires(busiest->lock)
2809 __acquires(this_rq->lock)
2810{
e8fa1362
SR
2811 int ret = 0;
2812
054b9108
KK
2813 if (unlikely(!irqs_disabled())) {
2814 /* printk() doesn't work good under rq->lock */
2815 spin_unlock(&this_rq->lock);
2816 BUG_ON(1);
2817 }
1da177e4 2818 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2819 if (busiest < this_rq) {
1da177e4
LT
2820 spin_unlock(&this_rq->lock);
2821 spin_lock(&busiest->lock);
5e710e37 2822 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
e8fa1362 2823 ret = 1;
1da177e4 2824 } else
5e710e37 2825 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1da177e4 2826 }
e8fa1362 2827 return ret;
1da177e4
LT
2828}
2829
1b12bbc7
PZ
2830static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2831 __releases(busiest->lock)
2832{
2833 spin_unlock(&busiest->lock);
2834 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2835}
2836
1da177e4
LT
2837/*
2838 * If dest_cpu is allowed for this process, migrate the task to it.
2839 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2840 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2841 * the cpu_allowed mask is restored.
2842 */
36c8b586 2843static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2844{
70b97a7f 2845 struct migration_req req;
1da177e4 2846 unsigned long flags;
70b97a7f 2847 struct rq *rq;
1da177e4
LT
2848
2849 rq = task_rq_lock(p, &flags);
2850 if (!cpu_isset(dest_cpu, p->cpus_allowed)
e761b772 2851 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2852 goto out;
2853
2854 /* force the process onto the specified CPU */
2855 if (migrate_task(p, dest_cpu, &req)) {
2856 /* Need to wait for migration thread (might exit: take ref). */
2857 struct task_struct *mt = rq->migration_thread;
36c8b586 2858
1da177e4
LT
2859 get_task_struct(mt);
2860 task_rq_unlock(rq, &flags);
2861 wake_up_process(mt);
2862 put_task_struct(mt);
2863 wait_for_completion(&req.done);
36c8b586 2864
1da177e4
LT
2865 return;
2866 }
2867out:
2868 task_rq_unlock(rq, &flags);
2869}
2870
2871/*
476d139c
NP
2872 * sched_exec - execve() is a valuable balancing opportunity, because at
2873 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2874 */
2875void sched_exec(void)
2876{
1da177e4 2877 int new_cpu, this_cpu = get_cpu();
476d139c 2878 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2879 put_cpu();
476d139c
NP
2880 if (new_cpu != this_cpu)
2881 sched_migrate_task(current, new_cpu);
1da177e4
LT
2882}
2883
2884/*
2885 * pull_task - move a task from a remote runqueue to the local runqueue.
2886 * Both runqueues must be locked.
2887 */
dd41f596
IM
2888static void pull_task(struct rq *src_rq, struct task_struct *p,
2889 struct rq *this_rq, int this_cpu)
1da177e4 2890{
2e1cb74a 2891 deactivate_task(src_rq, p, 0);
1da177e4 2892 set_task_cpu(p, this_cpu);
dd41f596 2893 activate_task(this_rq, p, 0);
1da177e4
LT
2894 /*
2895 * Note that idle threads have a prio of MAX_PRIO, for this test
2896 * to be always true for them.
2897 */
15afe09b 2898 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2899}
2900
2901/*
2902 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2903 */
858119e1 2904static
70b97a7f 2905int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2906 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2907 int *all_pinned)
1da177e4
LT
2908{
2909 /*
2910 * We do not migrate tasks that are:
2911 * 1) running (obviously), or
2912 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2913 * 3) are cache-hot on their current CPU.
2914 */
cc367732
IM
2915 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2916 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2917 return 0;
cc367732 2918 }
81026794
NP
2919 *all_pinned = 0;
2920
cc367732
IM
2921 if (task_running(rq, p)) {
2922 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2923 return 0;
cc367732 2924 }
1da177e4 2925
da84d961
IM
2926 /*
2927 * Aggressive migration if:
2928 * 1) task is cache cold, or
2929 * 2) too many balance attempts have failed.
2930 */
2931
6bc1665b
IM
2932 if (!task_hot(p, rq->clock, sd) ||
2933 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2934#ifdef CONFIG_SCHEDSTATS
cc367732 2935 if (task_hot(p, rq->clock, sd)) {
da84d961 2936 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2937 schedstat_inc(p, se.nr_forced_migrations);
2938 }
da84d961
IM
2939#endif
2940 return 1;
2941 }
2942
cc367732
IM
2943 if (task_hot(p, rq->clock, sd)) {
2944 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2945 return 0;
cc367732 2946 }
1da177e4
LT
2947 return 1;
2948}
2949
e1d1484f
PW
2950static unsigned long
2951balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2952 unsigned long max_load_move, struct sched_domain *sd,
2953 enum cpu_idle_type idle, int *all_pinned,
2954 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2955{
051c6764 2956 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2957 struct task_struct *p;
2958 long rem_load_move = max_load_move;
1da177e4 2959
e1d1484f 2960 if (max_load_move == 0)
1da177e4
LT
2961 goto out;
2962
81026794
NP
2963 pinned = 1;
2964
1da177e4 2965 /*
dd41f596 2966 * Start the load-balancing iterator:
1da177e4 2967 */
dd41f596
IM
2968 p = iterator->start(iterator->arg);
2969next:
b82d9fdd 2970 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2971 goto out;
051c6764
PZ
2972
2973 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2974 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2975 p = iterator->next(iterator->arg);
2976 goto next;
1da177e4
LT
2977 }
2978
dd41f596 2979 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2980 pulled++;
dd41f596 2981 rem_load_move -= p->se.load.weight;
1da177e4 2982
2dd73a4f 2983 /*
b82d9fdd 2984 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2985 */
e1d1484f 2986 if (rem_load_move > 0) {
a4ac01c3
PW
2987 if (p->prio < *this_best_prio)
2988 *this_best_prio = p->prio;
dd41f596
IM
2989 p = iterator->next(iterator->arg);
2990 goto next;
1da177e4
LT
2991 }
2992out:
2993 /*
e1d1484f 2994 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2995 * so we can safely collect pull_task() stats here rather than
2996 * inside pull_task().
2997 */
2998 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2999
3000 if (all_pinned)
3001 *all_pinned = pinned;
e1d1484f
PW
3002
3003 return max_load_move - rem_load_move;
1da177e4
LT
3004}
3005
dd41f596 3006/*
43010659
PW
3007 * move_tasks tries to move up to max_load_move weighted load from busiest to
3008 * this_rq, as part of a balancing operation within domain "sd".
3009 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3010 *
3011 * Called with both runqueues locked.
3012 */
3013static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3014 unsigned long max_load_move,
dd41f596
IM
3015 struct sched_domain *sd, enum cpu_idle_type idle,
3016 int *all_pinned)
3017{
5522d5d5 3018 const struct sched_class *class = sched_class_highest;
43010659 3019 unsigned long total_load_moved = 0;
a4ac01c3 3020 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3021
3022 do {
43010659
PW
3023 total_load_moved +=
3024 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3025 max_load_move - total_load_moved,
a4ac01c3 3026 sd, idle, all_pinned, &this_best_prio);
dd41f596 3027 class = class->next;
c4acb2c0
GH
3028
3029 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3030 break;
3031
43010659 3032 } while (class && max_load_move > total_load_moved);
dd41f596 3033
43010659
PW
3034 return total_load_moved > 0;
3035}
3036
e1d1484f
PW
3037static int
3038iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3039 struct sched_domain *sd, enum cpu_idle_type idle,
3040 struct rq_iterator *iterator)
3041{
3042 struct task_struct *p = iterator->start(iterator->arg);
3043 int pinned = 0;
3044
3045 while (p) {
3046 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3047 pull_task(busiest, p, this_rq, this_cpu);
3048 /*
3049 * Right now, this is only the second place pull_task()
3050 * is called, so we can safely collect pull_task()
3051 * stats here rather than inside pull_task().
3052 */
3053 schedstat_inc(sd, lb_gained[idle]);
3054
3055 return 1;
3056 }
3057 p = iterator->next(iterator->arg);
3058 }
3059
3060 return 0;
3061}
3062
43010659
PW
3063/*
3064 * move_one_task tries to move exactly one task from busiest to this_rq, as
3065 * part of active balancing operations within "domain".
3066 * Returns 1 if successful and 0 otherwise.
3067 *
3068 * Called with both runqueues locked.
3069 */
3070static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3071 struct sched_domain *sd, enum cpu_idle_type idle)
3072{
5522d5d5 3073 const struct sched_class *class;
43010659
PW
3074
3075 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3076 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3077 return 1;
3078
3079 return 0;
dd41f596
IM
3080}
3081
1da177e4
LT
3082/*
3083 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3084 * domain. It calculates and returns the amount of weighted load which
3085 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3086 */
3087static struct sched_group *
3088find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3089 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3090 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3091{
3092 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3093 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3094 unsigned long max_pull;
2dd73a4f
PW
3095 unsigned long busiest_load_per_task, busiest_nr_running;
3096 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3097 int load_idx, group_imb = 0;
5c45bf27
SS
3098#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3099 int power_savings_balance = 1;
3100 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3101 unsigned long min_nr_running = ULONG_MAX;
3102 struct sched_group *group_min = NULL, *group_leader = NULL;
3103#endif
1da177e4
LT
3104
3105 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3106 busiest_load_per_task = busiest_nr_running = 0;
3107 this_load_per_task = this_nr_running = 0;
408ed066 3108
d15bcfdb 3109 if (idle == CPU_NOT_IDLE)
7897986b 3110 load_idx = sd->busy_idx;
d15bcfdb 3111 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3112 load_idx = sd->newidle_idx;
3113 else
3114 load_idx = sd->idle_idx;
1da177e4
LT
3115
3116 do {
908a7c1b 3117 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3118 int local_group;
3119 int i;
908a7c1b 3120 int __group_imb = 0;
783609c6 3121 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3122 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3123 unsigned long sum_avg_load_per_task;
3124 unsigned long avg_load_per_task;
1da177e4
LT
3125
3126 local_group = cpu_isset(this_cpu, group->cpumask);
3127
783609c6
SS
3128 if (local_group)
3129 balance_cpu = first_cpu(group->cpumask);
3130
1da177e4 3131 /* Tally up the load of all CPUs in the group */
2dd73a4f 3132 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3133 sum_avg_load_per_task = avg_load_per_task = 0;
3134
908a7c1b
KC
3135 max_cpu_load = 0;
3136 min_cpu_load = ~0UL;
1da177e4 3137
363ab6f1 3138 for_each_cpu_mask_nr(i, group->cpumask) {
0a2966b4
CL
3139 struct rq *rq;
3140
3141 if (!cpu_isset(i, *cpus))
3142 continue;
3143
3144 rq = cpu_rq(i);
2dd73a4f 3145
9439aab8 3146 if (*sd_idle && rq->nr_running)
5969fe06
NP
3147 *sd_idle = 0;
3148
1da177e4 3149 /* Bias balancing toward cpus of our domain */
783609c6
SS
3150 if (local_group) {
3151 if (idle_cpu(i) && !first_idle_cpu) {
3152 first_idle_cpu = 1;
3153 balance_cpu = i;
3154 }
3155
a2000572 3156 load = target_load(i, load_idx);
908a7c1b 3157 } else {
a2000572 3158 load = source_load(i, load_idx);
908a7c1b
KC
3159 if (load > max_cpu_load)
3160 max_cpu_load = load;
3161 if (min_cpu_load > load)
3162 min_cpu_load = load;
3163 }
1da177e4
LT
3164
3165 avg_load += load;
2dd73a4f 3166 sum_nr_running += rq->nr_running;
dd41f596 3167 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3168
3169 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3170 }
3171
783609c6
SS
3172 /*
3173 * First idle cpu or the first cpu(busiest) in this sched group
3174 * is eligible for doing load balancing at this and above
9439aab8
SS
3175 * domains. In the newly idle case, we will allow all the cpu's
3176 * to do the newly idle load balance.
783609c6 3177 */
9439aab8
SS
3178 if (idle != CPU_NEWLY_IDLE && local_group &&
3179 balance_cpu != this_cpu && balance) {
783609c6
SS
3180 *balance = 0;
3181 goto ret;
3182 }
3183
1da177e4 3184 total_load += avg_load;
5517d86b 3185 total_pwr += group->__cpu_power;
1da177e4
LT
3186
3187 /* Adjust by relative CPU power of the group */
5517d86b
ED
3188 avg_load = sg_div_cpu_power(group,
3189 avg_load * SCHED_LOAD_SCALE);
1da177e4 3190
408ed066
PZ
3191
3192 /*
3193 * Consider the group unbalanced when the imbalance is larger
3194 * than the average weight of two tasks.
3195 *
3196 * APZ: with cgroup the avg task weight can vary wildly and
3197 * might not be a suitable number - should we keep a
3198 * normalized nr_running number somewhere that negates
3199 * the hierarchy?
3200 */
3201 avg_load_per_task = sg_div_cpu_power(group,
3202 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3203
3204 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3205 __group_imb = 1;
3206
5517d86b 3207 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3208
1da177e4
LT
3209 if (local_group) {
3210 this_load = avg_load;
3211 this = group;
2dd73a4f
PW
3212 this_nr_running = sum_nr_running;
3213 this_load_per_task = sum_weighted_load;
3214 } else if (avg_load > max_load &&
908a7c1b 3215 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3216 max_load = avg_load;
3217 busiest = group;
2dd73a4f
PW
3218 busiest_nr_running = sum_nr_running;
3219 busiest_load_per_task = sum_weighted_load;
908a7c1b 3220 group_imb = __group_imb;
1da177e4 3221 }
5c45bf27
SS
3222
3223#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3224 /*
3225 * Busy processors will not participate in power savings
3226 * balance.
3227 */
dd41f596
IM
3228 if (idle == CPU_NOT_IDLE ||
3229 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3230 goto group_next;
5c45bf27
SS
3231
3232 /*
3233 * If the local group is idle or completely loaded
3234 * no need to do power savings balance at this domain
3235 */
3236 if (local_group && (this_nr_running >= group_capacity ||
3237 !this_nr_running))
3238 power_savings_balance = 0;
3239
dd41f596 3240 /*
5c45bf27
SS
3241 * If a group is already running at full capacity or idle,
3242 * don't include that group in power savings calculations
dd41f596
IM
3243 */
3244 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3245 || !sum_nr_running)
dd41f596 3246 goto group_next;
5c45bf27 3247
dd41f596 3248 /*
5c45bf27 3249 * Calculate the group which has the least non-idle load.
dd41f596
IM
3250 * This is the group from where we need to pick up the load
3251 * for saving power
3252 */
3253 if ((sum_nr_running < min_nr_running) ||
3254 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3255 first_cpu(group->cpumask) <
3256 first_cpu(group_min->cpumask))) {
dd41f596
IM
3257 group_min = group;
3258 min_nr_running = sum_nr_running;
5c45bf27
SS
3259 min_load_per_task = sum_weighted_load /
3260 sum_nr_running;
dd41f596 3261 }
5c45bf27 3262
dd41f596 3263 /*
5c45bf27 3264 * Calculate the group which is almost near its
dd41f596
IM
3265 * capacity but still has some space to pick up some load
3266 * from other group and save more power
3267 */
3268 if (sum_nr_running <= group_capacity - 1) {
3269 if (sum_nr_running > leader_nr_running ||
3270 (sum_nr_running == leader_nr_running &&
3271 first_cpu(group->cpumask) >
3272 first_cpu(group_leader->cpumask))) {
3273 group_leader = group;
3274 leader_nr_running = sum_nr_running;
3275 }
48f24c4d 3276 }
5c45bf27
SS
3277group_next:
3278#endif
1da177e4
LT
3279 group = group->next;
3280 } while (group != sd->groups);
3281
2dd73a4f 3282 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3283 goto out_balanced;
3284
3285 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3286
3287 if (this_load >= avg_load ||
3288 100*max_load <= sd->imbalance_pct*this_load)
3289 goto out_balanced;
3290
2dd73a4f 3291 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3292 if (group_imb)
3293 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3294
1da177e4
LT
3295 /*
3296 * We're trying to get all the cpus to the average_load, so we don't
3297 * want to push ourselves above the average load, nor do we wish to
3298 * reduce the max loaded cpu below the average load, as either of these
3299 * actions would just result in more rebalancing later, and ping-pong
3300 * tasks around. Thus we look for the minimum possible imbalance.
3301 * Negative imbalances (*we* are more loaded than anyone else) will
3302 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3303 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3304 * appear as very large values with unsigned longs.
3305 */
2dd73a4f
PW
3306 if (max_load <= busiest_load_per_task)
3307 goto out_balanced;
3308
3309 /*
3310 * In the presence of smp nice balancing, certain scenarios can have
3311 * max load less than avg load(as we skip the groups at or below
3312 * its cpu_power, while calculating max_load..)
3313 */
3314 if (max_load < avg_load) {
3315 *imbalance = 0;
3316 goto small_imbalance;
3317 }
0c117f1b
SS
3318
3319 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3320 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3321
1da177e4 3322 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3323 *imbalance = min(max_pull * busiest->__cpu_power,
3324 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3325 / SCHED_LOAD_SCALE;
3326
2dd73a4f
PW
3327 /*
3328 * if *imbalance is less than the average load per runnable task
3329 * there is no gaurantee that any tasks will be moved so we'll have
3330 * a think about bumping its value to force at least one task to be
3331 * moved
3332 */
7fd0d2dd 3333 if (*imbalance < busiest_load_per_task) {
48f24c4d 3334 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3335 unsigned int imbn;
3336
3337small_imbalance:
3338 pwr_move = pwr_now = 0;
3339 imbn = 2;
3340 if (this_nr_running) {
3341 this_load_per_task /= this_nr_running;
3342 if (busiest_load_per_task > this_load_per_task)
3343 imbn = 1;
3344 } else
408ed066 3345 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3346
408ed066 3347 if (max_load - this_load + 2*busiest_load_per_task >=
dd41f596 3348 busiest_load_per_task * imbn) {
2dd73a4f 3349 *imbalance = busiest_load_per_task;
1da177e4
LT
3350 return busiest;
3351 }
3352
3353 /*
3354 * OK, we don't have enough imbalance to justify moving tasks,
3355 * however we may be able to increase total CPU power used by
3356 * moving them.
3357 */
3358
5517d86b
ED
3359 pwr_now += busiest->__cpu_power *
3360 min(busiest_load_per_task, max_load);
3361 pwr_now += this->__cpu_power *
3362 min(this_load_per_task, this_load);
1da177e4
LT
3363 pwr_now /= SCHED_LOAD_SCALE;
3364
3365 /* Amount of load we'd subtract */
5517d86b
ED
3366 tmp = sg_div_cpu_power(busiest,
3367 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3368 if (max_load > tmp)
5517d86b 3369 pwr_move += busiest->__cpu_power *
2dd73a4f 3370 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3371
3372 /* Amount of load we'd add */
5517d86b 3373 if (max_load * busiest->__cpu_power <
33859f7f 3374 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3375 tmp = sg_div_cpu_power(this,
3376 max_load * busiest->__cpu_power);
1da177e4 3377 else
5517d86b
ED
3378 tmp = sg_div_cpu_power(this,
3379 busiest_load_per_task * SCHED_LOAD_SCALE);
3380 pwr_move += this->__cpu_power *
3381 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3382 pwr_move /= SCHED_LOAD_SCALE;
3383
3384 /* Move if we gain throughput */
7fd0d2dd
SS
3385 if (pwr_move > pwr_now)
3386 *imbalance = busiest_load_per_task;
1da177e4
LT
3387 }
3388
1da177e4
LT
3389 return busiest;
3390
3391out_balanced:
5c45bf27 3392#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3393 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3394 goto ret;
1da177e4 3395
5c45bf27
SS
3396 if (this == group_leader && group_leader != group_min) {
3397 *imbalance = min_load_per_task;
3398 return group_min;
3399 }
5c45bf27 3400#endif
783609c6 3401ret:
1da177e4
LT
3402 *imbalance = 0;
3403 return NULL;
3404}
3405
3406/*
3407 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3408 */
70b97a7f 3409static struct rq *
d15bcfdb 3410find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3411 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3412{
70b97a7f 3413 struct rq *busiest = NULL, *rq;
2dd73a4f 3414 unsigned long max_load = 0;
1da177e4
LT
3415 int i;
3416
363ab6f1 3417 for_each_cpu_mask_nr(i, group->cpumask) {
dd41f596 3418 unsigned long wl;
0a2966b4
CL
3419
3420 if (!cpu_isset(i, *cpus))
3421 continue;
3422
48f24c4d 3423 rq = cpu_rq(i);
dd41f596 3424 wl = weighted_cpuload(i);
2dd73a4f 3425
dd41f596 3426 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3427 continue;
1da177e4 3428
dd41f596
IM
3429 if (wl > max_load) {
3430 max_load = wl;
48f24c4d 3431 busiest = rq;
1da177e4
LT
3432 }
3433 }
3434
3435 return busiest;
3436}
3437
77391d71
NP
3438/*
3439 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3440 * so long as it is large enough.
3441 */
3442#define MAX_PINNED_INTERVAL 512
3443
1da177e4
LT
3444/*
3445 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3446 * tasks if there is an imbalance.
1da177e4 3447 */
70b97a7f 3448static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3449 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3450 int *balance, cpumask_t *cpus)
1da177e4 3451{
43010659 3452 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3453 struct sched_group *group;
1da177e4 3454 unsigned long imbalance;
70b97a7f 3455 struct rq *busiest;
fe2eea3f 3456 unsigned long flags;
5969fe06 3457
7c16ec58
MT
3458 cpus_setall(*cpus);
3459
89c4710e
SS
3460 /*
3461 * When power savings policy is enabled for the parent domain, idle
3462 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3463 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3464 * portraying it as CPU_NOT_IDLE.
89c4710e 3465 */
d15bcfdb 3466 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3467 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3468 sd_idle = 1;
1da177e4 3469
2d72376b 3470 schedstat_inc(sd, lb_count[idle]);
1da177e4 3471
0a2966b4 3472redo:
c8cba857 3473 update_shares(sd);
0a2966b4 3474 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3475 cpus, balance);
783609c6 3476
06066714 3477 if (*balance == 0)
783609c6 3478 goto out_balanced;
783609c6 3479
1da177e4
LT
3480 if (!group) {
3481 schedstat_inc(sd, lb_nobusyg[idle]);
3482 goto out_balanced;
3483 }
3484
7c16ec58 3485 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3486 if (!busiest) {
3487 schedstat_inc(sd, lb_nobusyq[idle]);
3488 goto out_balanced;
3489 }
3490
db935dbd 3491 BUG_ON(busiest == this_rq);
1da177e4
LT
3492
3493 schedstat_add(sd, lb_imbalance[idle], imbalance);
3494
43010659 3495 ld_moved = 0;
1da177e4
LT
3496 if (busiest->nr_running > 1) {
3497 /*
3498 * Attempt to move tasks. If find_busiest_group has found
3499 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3500 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3501 * correctly treated as an imbalance.
3502 */
fe2eea3f 3503 local_irq_save(flags);
e17224bf 3504 double_rq_lock(this_rq, busiest);
43010659 3505 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3506 imbalance, sd, idle, &all_pinned);
e17224bf 3507 double_rq_unlock(this_rq, busiest);
fe2eea3f 3508 local_irq_restore(flags);
81026794 3509
46cb4b7c
SS
3510 /*
3511 * some other cpu did the load balance for us.
3512 */
43010659 3513 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3514 resched_cpu(this_cpu);
3515
81026794 3516 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3517 if (unlikely(all_pinned)) {
7c16ec58
MT
3518 cpu_clear(cpu_of(busiest), *cpus);
3519 if (!cpus_empty(*cpus))
0a2966b4 3520 goto redo;
81026794 3521 goto out_balanced;
0a2966b4 3522 }
1da177e4 3523 }
81026794 3524
43010659 3525 if (!ld_moved) {
1da177e4
LT
3526 schedstat_inc(sd, lb_failed[idle]);
3527 sd->nr_balance_failed++;
3528
3529 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3530
fe2eea3f 3531 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3532
3533 /* don't kick the migration_thread, if the curr
3534 * task on busiest cpu can't be moved to this_cpu
3535 */
3536 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3537 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3538 all_pinned = 1;
3539 goto out_one_pinned;
3540 }
3541
1da177e4
LT
3542 if (!busiest->active_balance) {
3543 busiest->active_balance = 1;
3544 busiest->push_cpu = this_cpu;
81026794 3545 active_balance = 1;
1da177e4 3546 }
fe2eea3f 3547 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3548 if (active_balance)
1da177e4
LT
3549 wake_up_process(busiest->migration_thread);
3550
3551 /*
3552 * We've kicked active balancing, reset the failure
3553 * counter.
3554 */
39507451 3555 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3556 }
81026794 3557 } else
1da177e4
LT
3558 sd->nr_balance_failed = 0;
3559
81026794 3560 if (likely(!active_balance)) {
1da177e4
LT
3561 /* We were unbalanced, so reset the balancing interval */
3562 sd->balance_interval = sd->min_interval;
81026794
NP
3563 } else {
3564 /*
3565 * If we've begun active balancing, start to back off. This
3566 * case may not be covered by the all_pinned logic if there
3567 * is only 1 task on the busy runqueue (because we don't call
3568 * move_tasks).
3569 */
3570 if (sd->balance_interval < sd->max_interval)
3571 sd->balance_interval *= 2;
1da177e4
LT
3572 }
3573
43010659 3574 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3575 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3576 ld_moved = -1;
3577
3578 goto out;
1da177e4
LT
3579
3580out_balanced:
1da177e4
LT
3581 schedstat_inc(sd, lb_balanced[idle]);
3582
16cfb1c0 3583 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3584
3585out_one_pinned:
1da177e4 3586 /* tune up the balancing interval */
77391d71
NP
3587 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3588 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3589 sd->balance_interval *= 2;
3590
48f24c4d 3591 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3592 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3593 ld_moved = -1;
3594 else
3595 ld_moved = 0;
3596out:
c8cba857
PZ
3597 if (ld_moved)
3598 update_shares(sd);
c09595f6 3599 return ld_moved;
1da177e4
LT
3600}
3601
3602/*
3603 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3604 * tasks if there is an imbalance.
3605 *
d15bcfdb 3606 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3607 * this_rq is locked.
3608 */
48f24c4d 3609static int
7c16ec58
MT
3610load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3611 cpumask_t *cpus)
1da177e4
LT
3612{
3613 struct sched_group *group;
70b97a7f 3614 struct rq *busiest = NULL;
1da177e4 3615 unsigned long imbalance;
43010659 3616 int ld_moved = 0;
5969fe06 3617 int sd_idle = 0;
969bb4e4 3618 int all_pinned = 0;
7c16ec58
MT
3619
3620 cpus_setall(*cpus);
5969fe06 3621
89c4710e
SS
3622 /*
3623 * When power savings policy is enabled for the parent domain, idle
3624 * sibling can pick up load irrespective of busy siblings. In this case,
3625 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3626 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3627 */
3628 if (sd->flags & SD_SHARE_CPUPOWER &&
3629 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3630 sd_idle = 1;
1da177e4 3631
2d72376b 3632 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3633redo:
3e5459b4 3634 update_shares_locked(this_rq, sd);
d15bcfdb 3635 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3636 &sd_idle, cpus, NULL);
1da177e4 3637 if (!group) {
d15bcfdb 3638 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3639 goto out_balanced;
1da177e4
LT
3640 }
3641
7c16ec58 3642 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3643 if (!busiest) {
d15bcfdb 3644 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3645 goto out_balanced;
1da177e4
LT
3646 }
3647
db935dbd
NP
3648 BUG_ON(busiest == this_rq);
3649
d15bcfdb 3650 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3651
43010659 3652 ld_moved = 0;
d6d5cfaf
NP
3653 if (busiest->nr_running > 1) {
3654 /* Attempt to move tasks */
3655 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3656 /* this_rq->clock is already updated */
3657 update_rq_clock(busiest);
43010659 3658 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3659 imbalance, sd, CPU_NEWLY_IDLE,
3660 &all_pinned);
1b12bbc7 3661 double_unlock_balance(this_rq, busiest);
0a2966b4 3662
969bb4e4 3663 if (unlikely(all_pinned)) {
7c16ec58
MT
3664 cpu_clear(cpu_of(busiest), *cpus);
3665 if (!cpus_empty(*cpus))
0a2966b4
CL
3666 goto redo;
3667 }
d6d5cfaf
NP
3668 }
3669
43010659 3670 if (!ld_moved) {
d15bcfdb 3671 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3672 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3673 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3674 return -1;
3675 } else
16cfb1c0 3676 sd->nr_balance_failed = 0;
1da177e4 3677
3e5459b4 3678 update_shares_locked(this_rq, sd);
43010659 3679 return ld_moved;
16cfb1c0
NP
3680
3681out_balanced:
d15bcfdb 3682 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3683 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3684 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3685 return -1;
16cfb1c0 3686 sd->nr_balance_failed = 0;
48f24c4d 3687
16cfb1c0 3688 return 0;
1da177e4
LT
3689}
3690
3691/*
3692 * idle_balance is called by schedule() if this_cpu is about to become
3693 * idle. Attempts to pull tasks from other CPUs.
3694 */
70b97a7f 3695static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3696{
3697 struct sched_domain *sd;
dd41f596
IM
3698 int pulled_task = -1;
3699 unsigned long next_balance = jiffies + HZ;
7c16ec58 3700 cpumask_t tmpmask;
1da177e4
LT
3701
3702 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3703 unsigned long interval;
3704
3705 if (!(sd->flags & SD_LOAD_BALANCE))
3706 continue;
3707
3708 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3709 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3710 pulled_task = load_balance_newidle(this_cpu, this_rq,
3711 sd, &tmpmask);
92c4ca5c
CL
3712
3713 interval = msecs_to_jiffies(sd->balance_interval);
3714 if (time_after(next_balance, sd->last_balance + interval))
3715 next_balance = sd->last_balance + interval;
3716 if (pulled_task)
3717 break;
1da177e4 3718 }
dd41f596 3719 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3720 /*
3721 * We are going idle. next_balance may be set based on
3722 * a busy processor. So reset next_balance.
3723 */
3724 this_rq->next_balance = next_balance;
dd41f596 3725 }
1da177e4
LT
3726}
3727
3728/*
3729 * active_load_balance is run by migration threads. It pushes running tasks
3730 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3731 * running on each physical CPU where possible, and avoids physical /
3732 * logical imbalances.
3733 *
3734 * Called with busiest_rq locked.
3735 */
70b97a7f 3736static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3737{
39507451 3738 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3739 struct sched_domain *sd;
3740 struct rq *target_rq;
39507451 3741
48f24c4d 3742 /* Is there any task to move? */
39507451 3743 if (busiest_rq->nr_running <= 1)
39507451
NP
3744 return;
3745
3746 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3747
3748 /*
39507451 3749 * This condition is "impossible", if it occurs
41a2d6cf 3750 * we need to fix it. Originally reported by
39507451 3751 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3752 */
39507451 3753 BUG_ON(busiest_rq == target_rq);
1da177e4 3754
39507451
NP
3755 /* move a task from busiest_rq to target_rq */
3756 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3757 update_rq_clock(busiest_rq);
3758 update_rq_clock(target_rq);
39507451
NP
3759
3760 /* Search for an sd spanning us and the target CPU. */
c96d145e 3761 for_each_domain(target_cpu, sd) {
39507451 3762 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3763 cpu_isset(busiest_cpu, sd->span))
39507451 3764 break;
c96d145e 3765 }
39507451 3766
48f24c4d 3767 if (likely(sd)) {
2d72376b 3768 schedstat_inc(sd, alb_count);
39507451 3769
43010659
PW
3770 if (move_one_task(target_rq, target_cpu, busiest_rq,
3771 sd, CPU_IDLE))
48f24c4d
IM
3772 schedstat_inc(sd, alb_pushed);
3773 else
3774 schedstat_inc(sd, alb_failed);
3775 }
1b12bbc7 3776 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3777}
3778
46cb4b7c
SS
3779#ifdef CONFIG_NO_HZ
3780static struct {
3781 atomic_t load_balancer;
41a2d6cf 3782 cpumask_t cpu_mask;
46cb4b7c
SS
3783} nohz ____cacheline_aligned = {
3784 .load_balancer = ATOMIC_INIT(-1),
3785 .cpu_mask = CPU_MASK_NONE,
3786};
3787
7835b98b 3788/*
46cb4b7c
SS
3789 * This routine will try to nominate the ilb (idle load balancing)
3790 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3791 * load balancing on behalf of all those cpus. If all the cpus in the system
3792 * go into this tickless mode, then there will be no ilb owner (as there is
3793 * no need for one) and all the cpus will sleep till the next wakeup event
3794 * arrives...
3795 *
3796 * For the ilb owner, tick is not stopped. And this tick will be used
3797 * for idle load balancing. ilb owner will still be part of
3798 * nohz.cpu_mask..
7835b98b 3799 *
46cb4b7c
SS
3800 * While stopping the tick, this cpu will become the ilb owner if there
3801 * is no other owner. And will be the owner till that cpu becomes busy
3802 * or if all cpus in the system stop their ticks at which point
3803 * there is no need for ilb owner.
3804 *
3805 * When the ilb owner becomes busy, it nominates another owner, during the
3806 * next busy scheduler_tick()
3807 */
3808int select_nohz_load_balancer(int stop_tick)
3809{
3810 int cpu = smp_processor_id();
3811
3812 if (stop_tick) {
3813 cpu_set(cpu, nohz.cpu_mask);
3814 cpu_rq(cpu)->in_nohz_recently = 1;
3815
3816 /*
3817 * If we are going offline and still the leader, give up!
3818 */
e761b772 3819 if (!cpu_active(cpu) &&
46cb4b7c
SS
3820 atomic_read(&nohz.load_balancer) == cpu) {
3821 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3822 BUG();
3823 return 0;
3824 }
3825
3826 /* time for ilb owner also to sleep */
3827 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3828 if (atomic_read(&nohz.load_balancer) == cpu)
3829 atomic_set(&nohz.load_balancer, -1);
3830 return 0;
3831 }
3832
3833 if (atomic_read(&nohz.load_balancer) == -1) {
3834 /* make me the ilb owner */
3835 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3836 return 1;
3837 } else if (atomic_read(&nohz.load_balancer) == cpu)
3838 return 1;
3839 } else {
3840 if (!cpu_isset(cpu, nohz.cpu_mask))
3841 return 0;
3842
3843 cpu_clear(cpu, nohz.cpu_mask);
3844
3845 if (atomic_read(&nohz.load_balancer) == cpu)
3846 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3847 BUG();
3848 }
3849 return 0;
3850}
3851#endif
3852
3853static DEFINE_SPINLOCK(balancing);
3854
3855/*
7835b98b
CL
3856 * It checks each scheduling domain to see if it is due to be balanced,
3857 * and initiates a balancing operation if so.
3858 *
3859 * Balancing parameters are set up in arch_init_sched_domains.
3860 */
a9957449 3861static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3862{
46cb4b7c
SS
3863 int balance = 1;
3864 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3865 unsigned long interval;
3866 struct sched_domain *sd;
46cb4b7c 3867 /* Earliest time when we have to do rebalance again */
c9819f45 3868 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3869 int update_next_balance = 0;
d07355f5 3870 int need_serialize;
7c16ec58 3871 cpumask_t tmp;
1da177e4 3872
46cb4b7c 3873 for_each_domain(cpu, sd) {
1da177e4
LT
3874 if (!(sd->flags & SD_LOAD_BALANCE))
3875 continue;
3876
3877 interval = sd->balance_interval;
d15bcfdb 3878 if (idle != CPU_IDLE)
1da177e4
LT
3879 interval *= sd->busy_factor;
3880
3881 /* scale ms to jiffies */
3882 interval = msecs_to_jiffies(interval);
3883 if (unlikely(!interval))
3884 interval = 1;
dd41f596
IM
3885 if (interval > HZ*NR_CPUS/10)
3886 interval = HZ*NR_CPUS/10;
3887
d07355f5 3888 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3889
d07355f5 3890 if (need_serialize) {
08c183f3
CL
3891 if (!spin_trylock(&balancing))
3892 goto out;
3893 }
3894
c9819f45 3895 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3896 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3897 /*
3898 * We've pulled tasks over so either we're no
5969fe06
NP
3899 * longer idle, or one of our SMT siblings is
3900 * not idle.
3901 */
d15bcfdb 3902 idle = CPU_NOT_IDLE;
1da177e4 3903 }
1bd77f2d 3904 sd->last_balance = jiffies;
1da177e4 3905 }
d07355f5 3906 if (need_serialize)
08c183f3
CL
3907 spin_unlock(&balancing);
3908out:
f549da84 3909 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3910 next_balance = sd->last_balance + interval;
f549da84
SS
3911 update_next_balance = 1;
3912 }
783609c6
SS
3913
3914 /*
3915 * Stop the load balance at this level. There is another
3916 * CPU in our sched group which is doing load balancing more
3917 * actively.
3918 */
3919 if (!balance)
3920 break;
1da177e4 3921 }
f549da84
SS
3922
3923 /*
3924 * next_balance will be updated only when there is a need.
3925 * When the cpu is attached to null domain for ex, it will not be
3926 * updated.
3927 */
3928 if (likely(update_next_balance))
3929 rq->next_balance = next_balance;
46cb4b7c
SS
3930}
3931
3932/*
3933 * run_rebalance_domains is triggered when needed from the scheduler tick.
3934 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3935 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3936 */
3937static void run_rebalance_domains(struct softirq_action *h)
3938{
dd41f596
IM
3939 int this_cpu = smp_processor_id();
3940 struct rq *this_rq = cpu_rq(this_cpu);
3941 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3942 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3943
dd41f596 3944 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3945
3946#ifdef CONFIG_NO_HZ
3947 /*
3948 * If this cpu is the owner for idle load balancing, then do the
3949 * balancing on behalf of the other idle cpus whose ticks are
3950 * stopped.
3951 */
dd41f596
IM
3952 if (this_rq->idle_at_tick &&
3953 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3954 cpumask_t cpus = nohz.cpu_mask;
3955 struct rq *rq;
3956 int balance_cpu;
3957
dd41f596 3958 cpu_clear(this_cpu, cpus);
363ab6f1 3959 for_each_cpu_mask_nr(balance_cpu, cpus) {
46cb4b7c
SS
3960 /*
3961 * If this cpu gets work to do, stop the load balancing
3962 * work being done for other cpus. Next load
3963 * balancing owner will pick it up.
3964 */
3965 if (need_resched())
3966 break;
3967
de0cf899 3968 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3969
3970 rq = cpu_rq(balance_cpu);
dd41f596
IM
3971 if (time_after(this_rq->next_balance, rq->next_balance))
3972 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3973 }
3974 }
3975#endif
3976}
3977
3978/*
3979 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3980 *
3981 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3982 * idle load balancing owner or decide to stop the periodic load balancing,
3983 * if the whole system is idle.
3984 */
dd41f596 3985static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3986{
46cb4b7c
SS
3987#ifdef CONFIG_NO_HZ
3988 /*
3989 * If we were in the nohz mode recently and busy at the current
3990 * scheduler tick, then check if we need to nominate new idle
3991 * load balancer.
3992 */
3993 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3994 rq->in_nohz_recently = 0;
3995
3996 if (atomic_read(&nohz.load_balancer) == cpu) {
3997 cpu_clear(cpu, nohz.cpu_mask);
3998 atomic_set(&nohz.load_balancer, -1);
3999 }
4000
4001 if (atomic_read(&nohz.load_balancer) == -1) {
4002 /*
4003 * simple selection for now: Nominate the
4004 * first cpu in the nohz list to be the next
4005 * ilb owner.
4006 *
4007 * TBD: Traverse the sched domains and nominate
4008 * the nearest cpu in the nohz.cpu_mask.
4009 */
4010 int ilb = first_cpu(nohz.cpu_mask);
4011
434d53b0 4012 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4013 resched_cpu(ilb);
4014 }
4015 }
4016
4017 /*
4018 * If this cpu is idle and doing idle load balancing for all the
4019 * cpus with ticks stopped, is it time for that to stop?
4020 */
4021 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4022 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4023 resched_cpu(cpu);
4024 return;
4025 }
4026
4027 /*
4028 * If this cpu is idle and the idle load balancing is done by
4029 * someone else, then no need raise the SCHED_SOFTIRQ
4030 */
4031 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4032 cpu_isset(cpu, nohz.cpu_mask))
4033 return;
4034#endif
4035 if (time_after_eq(jiffies, rq->next_balance))
4036 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4037}
dd41f596
IM
4038
4039#else /* CONFIG_SMP */
4040
1da177e4
LT
4041/*
4042 * on UP we do not need to balance between CPUs:
4043 */
70b97a7f 4044static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4045{
4046}
dd41f596 4047
1da177e4
LT
4048#endif
4049
1da177e4
LT
4050DEFINE_PER_CPU(struct kernel_stat, kstat);
4051
4052EXPORT_PER_CPU_SYMBOL(kstat);
4053
4054/*
f06febc9
FM
4055 * Return any ns on the sched_clock that have not yet been banked in
4056 * @p in case that task is currently running.
1da177e4 4057 */
bb34d92f 4058unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4059{
1da177e4 4060 unsigned long flags;
41b86e9c 4061 struct rq *rq;
bb34d92f 4062 u64 ns = 0;
48f24c4d 4063
41b86e9c 4064 rq = task_rq_lock(p, &flags);
1508487e 4065
051a1d1a 4066 if (task_current(rq, p)) {
f06febc9
FM
4067 u64 delta_exec;
4068
a8e504d2
IM
4069 update_rq_clock(rq);
4070 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4071 if ((s64)delta_exec > 0)
bb34d92f 4072 ns = delta_exec;
41b86e9c 4073 }
48f24c4d 4074
41b86e9c 4075 task_rq_unlock(rq, &flags);
48f24c4d 4076
1da177e4
LT
4077 return ns;
4078}
4079
1da177e4
LT
4080/*
4081 * Account user cpu time to a process.
4082 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4083 * @cputime: the cpu time spent in user space since the last update
4084 */
4085void account_user_time(struct task_struct *p, cputime_t cputime)
4086{
4087 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4088 cputime64_t tmp;
4089
4090 p->utime = cputime_add(p->utime, cputime);
f06febc9 4091 account_group_user_time(p, cputime);
1da177e4
LT
4092
4093 /* Add user time to cpustat. */
4094 tmp = cputime_to_cputime64(cputime);
4095 if (TASK_NICE(p) > 0)
4096 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4097 else
4098 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4099 /* Account for user time used */
4100 acct_update_integrals(p);
1da177e4
LT
4101}
4102
94886b84
LV
4103/*
4104 * Account guest cpu time to a process.
4105 * @p: the process that the cpu time gets accounted to
4106 * @cputime: the cpu time spent in virtual machine since the last update
4107 */
f7402e03 4108static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4109{
4110 cputime64_t tmp;
4111 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4112
4113 tmp = cputime_to_cputime64(cputime);
4114
4115 p->utime = cputime_add(p->utime, cputime);
f06febc9 4116 account_group_user_time(p, cputime);
94886b84
LV
4117 p->gtime = cputime_add(p->gtime, cputime);
4118
4119 cpustat->user = cputime64_add(cpustat->user, tmp);
4120 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4121}
4122
c66f08be
MN
4123/*
4124 * Account scaled user cpu time to a process.
4125 * @p: the process that the cpu time gets accounted to
4126 * @cputime: the cpu time spent in user space since the last update
4127 */
4128void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4129{
4130 p->utimescaled = cputime_add(p->utimescaled, cputime);
4131}
4132
1da177e4
LT
4133/*
4134 * Account system cpu time to a process.
4135 * @p: the process that the cpu time gets accounted to
4136 * @hardirq_offset: the offset to subtract from hardirq_count()
4137 * @cputime: the cpu time spent in kernel space since the last update
4138 */
4139void account_system_time(struct task_struct *p, int hardirq_offset,
4140 cputime_t cputime)
4141{
4142 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4143 struct rq *rq = this_rq();
1da177e4
LT
4144 cputime64_t tmp;
4145
983ed7a6
HH
4146 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4147 account_guest_time(p, cputime);
4148 return;
4149 }
94886b84 4150
1da177e4 4151 p->stime = cputime_add(p->stime, cputime);
f06febc9 4152 account_group_system_time(p, cputime);
1da177e4
LT
4153
4154 /* Add system time to cpustat. */
4155 tmp = cputime_to_cputime64(cputime);
4156 if (hardirq_count() - hardirq_offset)
4157 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4158 else if (softirq_count())
4159 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4160 else if (p != rq->idle)
1da177e4 4161 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4162 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4163 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4164 else
4165 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4166 /* Account for system time used */
4167 acct_update_integrals(p);
1da177e4
LT
4168}
4169
c66f08be
MN
4170/*
4171 * Account scaled system cpu time to a process.
4172 * @p: the process that the cpu time gets accounted to
4173 * @hardirq_offset: the offset to subtract from hardirq_count()
4174 * @cputime: the cpu time spent in kernel space since the last update
4175 */
4176void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4177{
4178 p->stimescaled = cputime_add(p->stimescaled, cputime);
4179}
4180
1da177e4
LT
4181/*
4182 * Account for involuntary wait time.
4183 * @p: the process from which the cpu time has been stolen
4184 * @steal: the cpu time spent in involuntary wait
4185 */
4186void account_steal_time(struct task_struct *p, cputime_t steal)
4187{
4188 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4189 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4190 struct rq *rq = this_rq();
1da177e4
LT
4191
4192 if (p == rq->idle) {
4193 p->stime = cputime_add(p->stime, steal);
f06febc9 4194 account_group_system_time(p, steal);
1da177e4
LT
4195 if (atomic_read(&rq->nr_iowait) > 0)
4196 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4197 else
4198 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4199 } else
1da177e4
LT
4200 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4201}
4202
49048622
BS
4203/*
4204 * Use precise platform statistics if available:
4205 */
4206#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4207cputime_t task_utime(struct task_struct *p)
4208{
4209 return p->utime;
4210}
4211
4212cputime_t task_stime(struct task_struct *p)
4213{
4214 return p->stime;
4215}
4216#else
4217cputime_t task_utime(struct task_struct *p)
4218{
4219 clock_t utime = cputime_to_clock_t(p->utime),
4220 total = utime + cputime_to_clock_t(p->stime);
4221 u64 temp;
4222
4223 /*
4224 * Use CFS's precise accounting:
4225 */
4226 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4227
4228 if (total) {
4229 temp *= utime;
4230 do_div(temp, total);
4231 }
4232 utime = (clock_t)temp;
4233
4234 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4235 return p->prev_utime;
4236}
4237
4238cputime_t task_stime(struct task_struct *p)
4239{
4240 clock_t stime;
4241
4242 /*
4243 * Use CFS's precise accounting. (we subtract utime from
4244 * the total, to make sure the total observed by userspace
4245 * grows monotonically - apps rely on that):
4246 */
4247 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4248 cputime_to_clock_t(task_utime(p));
4249
4250 if (stime >= 0)
4251 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4252
4253 return p->prev_stime;
4254}
4255#endif
4256
4257inline cputime_t task_gtime(struct task_struct *p)
4258{
4259 return p->gtime;
4260}
4261
7835b98b
CL
4262/*
4263 * This function gets called by the timer code, with HZ frequency.
4264 * We call it with interrupts disabled.
4265 *
4266 * It also gets called by the fork code, when changing the parent's
4267 * timeslices.
4268 */
4269void scheduler_tick(void)
4270{
7835b98b
CL
4271 int cpu = smp_processor_id();
4272 struct rq *rq = cpu_rq(cpu);
dd41f596 4273 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4274
4275 sched_clock_tick();
dd41f596
IM
4276
4277 spin_lock(&rq->lock);
3e51f33f 4278 update_rq_clock(rq);
f1a438d8 4279 update_cpu_load(rq);
fa85ae24 4280 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4281 spin_unlock(&rq->lock);
7835b98b 4282
e418e1c2 4283#ifdef CONFIG_SMP
dd41f596
IM
4284 rq->idle_at_tick = idle_cpu(cpu);
4285 trigger_load_balance(rq, cpu);
e418e1c2 4286#endif
1da177e4
LT
4287}
4288
6cd8a4bb
SR
4289#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4290 defined(CONFIG_PREEMPT_TRACER))
4291
4292static inline unsigned long get_parent_ip(unsigned long addr)
4293{
4294 if (in_lock_functions(addr)) {
4295 addr = CALLER_ADDR2;
4296 if (in_lock_functions(addr))
4297 addr = CALLER_ADDR3;
4298 }
4299 return addr;
4300}
1da177e4 4301
43627582 4302void __kprobes add_preempt_count(int val)
1da177e4 4303{
6cd8a4bb 4304#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4305 /*
4306 * Underflow?
4307 */
9a11b49a
IM
4308 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4309 return;
6cd8a4bb 4310#endif
1da177e4 4311 preempt_count() += val;
6cd8a4bb 4312#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4313 /*
4314 * Spinlock count overflowing soon?
4315 */
33859f7f
MOS
4316 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4317 PREEMPT_MASK - 10);
6cd8a4bb
SR
4318#endif
4319 if (preempt_count() == val)
4320 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4321}
4322EXPORT_SYMBOL(add_preempt_count);
4323
43627582 4324void __kprobes sub_preempt_count(int val)
1da177e4 4325{
6cd8a4bb 4326#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4327 /*
4328 * Underflow?
4329 */
9a11b49a
IM
4330 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4331 return;
1da177e4
LT
4332 /*
4333 * Is the spinlock portion underflowing?
4334 */
9a11b49a
IM
4335 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4336 !(preempt_count() & PREEMPT_MASK)))
4337 return;
6cd8a4bb 4338#endif
9a11b49a 4339
6cd8a4bb
SR
4340 if (preempt_count() == val)
4341 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4342 preempt_count() -= val;
4343}
4344EXPORT_SYMBOL(sub_preempt_count);
4345
4346#endif
4347
4348/*
dd41f596 4349 * Print scheduling while atomic bug:
1da177e4 4350 */
dd41f596 4351static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4352{
838225b4
SS
4353 struct pt_regs *regs = get_irq_regs();
4354
4355 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4356 prev->comm, prev->pid, preempt_count());
4357
dd41f596 4358 debug_show_held_locks(prev);
e21f5b15 4359 print_modules();
dd41f596
IM
4360 if (irqs_disabled())
4361 print_irqtrace_events(prev);
838225b4
SS
4362
4363 if (regs)
4364 show_regs(regs);
4365 else
4366 dump_stack();
dd41f596 4367}
1da177e4 4368
dd41f596
IM
4369/*
4370 * Various schedule()-time debugging checks and statistics:
4371 */
4372static inline void schedule_debug(struct task_struct *prev)
4373{
1da177e4 4374 /*
41a2d6cf 4375 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4376 * schedule() atomically, we ignore that path for now.
4377 * Otherwise, whine if we are scheduling when we should not be.
4378 */
3f33a7ce 4379 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4380 __schedule_bug(prev);
4381
1da177e4
LT
4382 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4383
2d72376b 4384 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4385#ifdef CONFIG_SCHEDSTATS
4386 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4387 schedstat_inc(this_rq(), bkl_count);
4388 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4389 }
4390#endif
dd41f596
IM
4391}
4392
4393/*
4394 * Pick up the highest-prio task:
4395 */
4396static inline struct task_struct *
ff95f3df 4397pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4398{
5522d5d5 4399 const struct sched_class *class;
dd41f596 4400 struct task_struct *p;
1da177e4
LT
4401
4402 /*
dd41f596
IM
4403 * Optimization: we know that if all tasks are in
4404 * the fair class we can call that function directly:
1da177e4 4405 */
dd41f596 4406 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4407 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4408 if (likely(p))
4409 return p;
1da177e4
LT
4410 }
4411
dd41f596
IM
4412 class = sched_class_highest;
4413 for ( ; ; ) {
fb8d4724 4414 p = class->pick_next_task(rq);
dd41f596
IM
4415 if (p)
4416 return p;
4417 /*
4418 * Will never be NULL as the idle class always
4419 * returns a non-NULL p:
4420 */
4421 class = class->next;
4422 }
4423}
1da177e4 4424
dd41f596
IM
4425/*
4426 * schedule() is the main scheduler function.
4427 */
4428asmlinkage void __sched schedule(void)
4429{
4430 struct task_struct *prev, *next;
67ca7bde 4431 unsigned long *switch_count;
dd41f596 4432 struct rq *rq;
31656519 4433 int cpu;
dd41f596
IM
4434
4435need_resched:
4436 preempt_disable();
4437 cpu = smp_processor_id();
4438 rq = cpu_rq(cpu);
4439 rcu_qsctr_inc(cpu);
4440 prev = rq->curr;
4441 switch_count = &prev->nivcsw;
4442
4443 release_kernel_lock(prev);
4444need_resched_nonpreemptible:
4445
4446 schedule_debug(prev);
1da177e4 4447
31656519 4448 if (sched_feat(HRTICK))
f333fdc9 4449 hrtick_clear(rq);
8f4d37ec 4450
1e819950
IM
4451 /*
4452 * Do the rq-clock update outside the rq lock:
4453 */
4454 local_irq_disable();
3e51f33f 4455 update_rq_clock(rq);
1e819950
IM
4456 spin_lock(&rq->lock);
4457 clear_tsk_need_resched(prev);
1da177e4 4458
1da177e4 4459 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4460 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4461 prev->state = TASK_RUNNING;
16882c1e 4462 else
2e1cb74a 4463 deactivate_task(rq, prev, 1);
dd41f596 4464 switch_count = &prev->nvcsw;
1da177e4
LT
4465 }
4466
9a897c5a
SR
4467#ifdef CONFIG_SMP
4468 if (prev->sched_class->pre_schedule)
4469 prev->sched_class->pre_schedule(rq, prev);
4470#endif
f65eda4f 4471
dd41f596 4472 if (unlikely(!rq->nr_running))
1da177e4 4473 idle_balance(cpu, rq);
1da177e4 4474
31ee529c 4475 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4476 next = pick_next_task(rq, prev);
1da177e4 4477
1da177e4 4478 if (likely(prev != next)) {
673a90a1
DS
4479 sched_info_switch(prev, next);
4480
1da177e4
LT
4481 rq->nr_switches++;
4482 rq->curr = next;
4483 ++*switch_count;
4484
dd41f596 4485 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4486 /*
4487 * the context switch might have flipped the stack from under
4488 * us, hence refresh the local variables.
4489 */
4490 cpu = smp_processor_id();
4491 rq = cpu_rq(cpu);
1da177e4
LT
4492 } else
4493 spin_unlock_irq(&rq->lock);
4494
8f4d37ec 4495 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4496 goto need_resched_nonpreemptible;
8f4d37ec 4497
1da177e4
LT
4498 preempt_enable_no_resched();
4499 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4500 goto need_resched;
4501}
1da177e4
LT
4502EXPORT_SYMBOL(schedule);
4503
4504#ifdef CONFIG_PREEMPT
4505/*
2ed6e34f 4506 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4507 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4508 * occur there and call schedule directly.
4509 */
4510asmlinkage void __sched preempt_schedule(void)
4511{
4512 struct thread_info *ti = current_thread_info();
6478d880 4513
1da177e4
LT
4514 /*
4515 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4516 * we do not want to preempt the current task. Just return..
1da177e4 4517 */
beed33a8 4518 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4519 return;
4520
3a5c359a
AK
4521 do {
4522 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4523 schedule();
3a5c359a 4524 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4525
3a5c359a
AK
4526 /*
4527 * Check again in case we missed a preemption opportunity
4528 * between schedule and now.
4529 */
4530 barrier();
4531 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4532}
1da177e4
LT
4533EXPORT_SYMBOL(preempt_schedule);
4534
4535/*
2ed6e34f 4536 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4537 * off of irq context.
4538 * Note, that this is called and return with irqs disabled. This will
4539 * protect us against recursive calling from irq.
4540 */
4541asmlinkage void __sched preempt_schedule_irq(void)
4542{
4543 struct thread_info *ti = current_thread_info();
6478d880 4544
2ed6e34f 4545 /* Catch callers which need to be fixed */
1da177e4
LT
4546 BUG_ON(ti->preempt_count || !irqs_disabled());
4547
3a5c359a
AK
4548 do {
4549 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4550 local_irq_enable();
4551 schedule();
4552 local_irq_disable();
3a5c359a 4553 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4554
3a5c359a
AK
4555 /*
4556 * Check again in case we missed a preemption opportunity
4557 * between schedule and now.
4558 */
4559 barrier();
4560 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4561}
4562
4563#endif /* CONFIG_PREEMPT */
4564
95cdf3b7
IM
4565int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4566 void *key)
1da177e4 4567{
48f24c4d 4568 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4569}
1da177e4
LT
4570EXPORT_SYMBOL(default_wake_function);
4571
4572/*
41a2d6cf
IM
4573 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4574 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4575 * number) then we wake all the non-exclusive tasks and one exclusive task.
4576 *
4577 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4578 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4579 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4580 */
4581static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4582 int nr_exclusive, int sync, void *key)
4583{
2e45874c 4584 wait_queue_t *curr, *next;
1da177e4 4585
2e45874c 4586 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4587 unsigned flags = curr->flags;
4588
1da177e4 4589 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4590 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4591 break;
4592 }
4593}
4594
4595/**
4596 * __wake_up - wake up threads blocked on a waitqueue.
4597 * @q: the waitqueue
4598 * @mode: which threads
4599 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4600 * @key: is directly passed to the wakeup function
1da177e4 4601 */
7ad5b3a5 4602void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4603 int nr_exclusive, void *key)
1da177e4
LT
4604{
4605 unsigned long flags;
4606
4607 spin_lock_irqsave(&q->lock, flags);
4608 __wake_up_common(q, mode, nr_exclusive, 0, key);
4609 spin_unlock_irqrestore(&q->lock, flags);
4610}
1da177e4
LT
4611EXPORT_SYMBOL(__wake_up);
4612
4613/*
4614 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4615 */
7ad5b3a5 4616void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4617{
4618 __wake_up_common(q, mode, 1, 0, NULL);
4619}
4620
4621/**
67be2dd1 4622 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4623 * @q: the waitqueue
4624 * @mode: which threads
4625 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4626 *
4627 * The sync wakeup differs that the waker knows that it will schedule
4628 * away soon, so while the target thread will be woken up, it will not
4629 * be migrated to another CPU - ie. the two threads are 'synchronized'
4630 * with each other. This can prevent needless bouncing between CPUs.
4631 *
4632 * On UP it can prevent extra preemption.
4633 */
7ad5b3a5 4634void
95cdf3b7 4635__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4636{
4637 unsigned long flags;
4638 int sync = 1;
4639
4640 if (unlikely(!q))
4641 return;
4642
4643 if (unlikely(!nr_exclusive))
4644 sync = 0;
4645
4646 spin_lock_irqsave(&q->lock, flags);
4647 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4648 spin_unlock_irqrestore(&q->lock, flags);
4649}
4650EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4651
65eb3dc6
KD
4652/**
4653 * complete: - signals a single thread waiting on this completion
4654 * @x: holds the state of this particular completion
4655 *
4656 * This will wake up a single thread waiting on this completion. Threads will be
4657 * awakened in the same order in which they were queued.
4658 *
4659 * See also complete_all(), wait_for_completion() and related routines.
4660 */
b15136e9 4661void complete(struct completion *x)
1da177e4
LT
4662{
4663 unsigned long flags;
4664
4665 spin_lock_irqsave(&x->wait.lock, flags);
4666 x->done++;
d9514f6c 4667 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4668 spin_unlock_irqrestore(&x->wait.lock, flags);
4669}
4670EXPORT_SYMBOL(complete);
4671
65eb3dc6
KD
4672/**
4673 * complete_all: - signals all threads waiting on this completion
4674 * @x: holds the state of this particular completion
4675 *
4676 * This will wake up all threads waiting on this particular completion event.
4677 */
b15136e9 4678void complete_all(struct completion *x)
1da177e4
LT
4679{
4680 unsigned long flags;
4681
4682 spin_lock_irqsave(&x->wait.lock, flags);
4683 x->done += UINT_MAX/2;
d9514f6c 4684 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4685 spin_unlock_irqrestore(&x->wait.lock, flags);
4686}
4687EXPORT_SYMBOL(complete_all);
4688
8cbbe86d
AK
4689static inline long __sched
4690do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4691{
1da177e4
LT
4692 if (!x->done) {
4693 DECLARE_WAITQUEUE(wait, current);
4694
4695 wait.flags |= WQ_FLAG_EXCLUSIVE;
4696 __add_wait_queue_tail(&x->wait, &wait);
4697 do {
94d3d824 4698 if (signal_pending_state(state, current)) {
ea71a546
ON
4699 timeout = -ERESTARTSYS;
4700 break;
8cbbe86d
AK
4701 }
4702 __set_current_state(state);
1da177e4
LT
4703 spin_unlock_irq(&x->wait.lock);
4704 timeout = schedule_timeout(timeout);
4705 spin_lock_irq(&x->wait.lock);
ea71a546 4706 } while (!x->done && timeout);
1da177e4 4707 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4708 if (!x->done)
4709 return timeout;
1da177e4
LT
4710 }
4711 x->done--;
ea71a546 4712 return timeout ?: 1;
1da177e4 4713}
1da177e4 4714
8cbbe86d
AK
4715static long __sched
4716wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4717{
1da177e4
LT
4718 might_sleep();
4719
4720 spin_lock_irq(&x->wait.lock);
8cbbe86d 4721 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4722 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4723 return timeout;
4724}
1da177e4 4725
65eb3dc6
KD
4726/**
4727 * wait_for_completion: - waits for completion of a task
4728 * @x: holds the state of this particular completion
4729 *
4730 * This waits to be signaled for completion of a specific task. It is NOT
4731 * interruptible and there is no timeout.
4732 *
4733 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4734 * and interrupt capability. Also see complete().
4735 */
b15136e9 4736void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4737{
4738 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4739}
8cbbe86d 4740EXPORT_SYMBOL(wait_for_completion);
1da177e4 4741
65eb3dc6
KD
4742/**
4743 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4744 * @x: holds the state of this particular completion
4745 * @timeout: timeout value in jiffies
4746 *
4747 * This waits for either a completion of a specific task to be signaled or for a
4748 * specified timeout to expire. The timeout is in jiffies. It is not
4749 * interruptible.
4750 */
b15136e9 4751unsigned long __sched
8cbbe86d 4752wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4753{
8cbbe86d 4754 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4755}
8cbbe86d 4756EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4757
65eb3dc6
KD
4758/**
4759 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4760 * @x: holds the state of this particular completion
4761 *
4762 * This waits for completion of a specific task to be signaled. It is
4763 * interruptible.
4764 */
8cbbe86d 4765int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4766{
51e97990
AK
4767 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4768 if (t == -ERESTARTSYS)
4769 return t;
4770 return 0;
0fec171c 4771}
8cbbe86d 4772EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4773
65eb3dc6
KD
4774/**
4775 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4776 * @x: holds the state of this particular completion
4777 * @timeout: timeout value in jiffies
4778 *
4779 * This waits for either a completion of a specific task to be signaled or for a
4780 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4781 */
b15136e9 4782unsigned long __sched
8cbbe86d
AK
4783wait_for_completion_interruptible_timeout(struct completion *x,
4784 unsigned long timeout)
0fec171c 4785{
8cbbe86d 4786 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4787}
8cbbe86d 4788EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4789
65eb3dc6
KD
4790/**
4791 * wait_for_completion_killable: - waits for completion of a task (killable)
4792 * @x: holds the state of this particular completion
4793 *
4794 * This waits to be signaled for completion of a specific task. It can be
4795 * interrupted by a kill signal.
4796 */
009e577e
MW
4797int __sched wait_for_completion_killable(struct completion *x)
4798{
4799 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4800 if (t == -ERESTARTSYS)
4801 return t;
4802 return 0;
4803}
4804EXPORT_SYMBOL(wait_for_completion_killable);
4805
be4de352
DC
4806/**
4807 * try_wait_for_completion - try to decrement a completion without blocking
4808 * @x: completion structure
4809 *
4810 * Returns: 0 if a decrement cannot be done without blocking
4811 * 1 if a decrement succeeded.
4812 *
4813 * If a completion is being used as a counting completion,
4814 * attempt to decrement the counter without blocking. This
4815 * enables us to avoid waiting if the resource the completion
4816 * is protecting is not available.
4817 */
4818bool try_wait_for_completion(struct completion *x)
4819{
4820 int ret = 1;
4821
4822 spin_lock_irq(&x->wait.lock);
4823 if (!x->done)
4824 ret = 0;
4825 else
4826 x->done--;
4827 spin_unlock_irq(&x->wait.lock);
4828 return ret;
4829}
4830EXPORT_SYMBOL(try_wait_for_completion);
4831
4832/**
4833 * completion_done - Test to see if a completion has any waiters
4834 * @x: completion structure
4835 *
4836 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4837 * 1 if there are no waiters.
4838 *
4839 */
4840bool completion_done(struct completion *x)
4841{
4842 int ret = 1;
4843
4844 spin_lock_irq(&x->wait.lock);
4845 if (!x->done)
4846 ret = 0;
4847 spin_unlock_irq(&x->wait.lock);
4848 return ret;
4849}
4850EXPORT_SYMBOL(completion_done);
4851
8cbbe86d
AK
4852static long __sched
4853sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4854{
0fec171c
IM
4855 unsigned long flags;
4856 wait_queue_t wait;
4857
4858 init_waitqueue_entry(&wait, current);
1da177e4 4859
8cbbe86d 4860 __set_current_state(state);
1da177e4 4861
8cbbe86d
AK
4862 spin_lock_irqsave(&q->lock, flags);
4863 __add_wait_queue(q, &wait);
4864 spin_unlock(&q->lock);
4865 timeout = schedule_timeout(timeout);
4866 spin_lock_irq(&q->lock);
4867 __remove_wait_queue(q, &wait);
4868 spin_unlock_irqrestore(&q->lock, flags);
4869
4870 return timeout;
4871}
4872
4873void __sched interruptible_sleep_on(wait_queue_head_t *q)
4874{
4875 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4876}
1da177e4
LT
4877EXPORT_SYMBOL(interruptible_sleep_on);
4878
0fec171c 4879long __sched
95cdf3b7 4880interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4881{
8cbbe86d 4882 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4883}
1da177e4
LT
4884EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4885
0fec171c 4886void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4887{
8cbbe86d 4888 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4889}
1da177e4
LT
4890EXPORT_SYMBOL(sleep_on);
4891
0fec171c 4892long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4893{
8cbbe86d 4894 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4895}
1da177e4
LT
4896EXPORT_SYMBOL(sleep_on_timeout);
4897
b29739f9
IM
4898#ifdef CONFIG_RT_MUTEXES
4899
4900/*
4901 * rt_mutex_setprio - set the current priority of a task
4902 * @p: task
4903 * @prio: prio value (kernel-internal form)
4904 *
4905 * This function changes the 'effective' priority of a task. It does
4906 * not touch ->normal_prio like __setscheduler().
4907 *
4908 * Used by the rt_mutex code to implement priority inheritance logic.
4909 */
36c8b586 4910void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4911{
4912 unsigned long flags;
83b699ed 4913 int oldprio, on_rq, running;
70b97a7f 4914 struct rq *rq;
cb469845 4915 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4916
4917 BUG_ON(prio < 0 || prio > MAX_PRIO);
4918
4919 rq = task_rq_lock(p, &flags);
a8e504d2 4920 update_rq_clock(rq);
b29739f9 4921
d5f9f942 4922 oldprio = p->prio;
dd41f596 4923 on_rq = p->se.on_rq;
051a1d1a 4924 running = task_current(rq, p);
0e1f3483 4925 if (on_rq)
69be72c1 4926 dequeue_task(rq, p, 0);
0e1f3483
HS
4927 if (running)
4928 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4929
4930 if (rt_prio(prio))
4931 p->sched_class = &rt_sched_class;
4932 else
4933 p->sched_class = &fair_sched_class;
4934
b29739f9
IM
4935 p->prio = prio;
4936
0e1f3483
HS
4937 if (running)
4938 p->sched_class->set_curr_task(rq);
dd41f596 4939 if (on_rq) {
8159f87e 4940 enqueue_task(rq, p, 0);
cb469845
SR
4941
4942 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4943 }
4944 task_rq_unlock(rq, &flags);
4945}
4946
4947#endif
4948
36c8b586 4949void set_user_nice(struct task_struct *p, long nice)
1da177e4 4950{
dd41f596 4951 int old_prio, delta, on_rq;
1da177e4 4952 unsigned long flags;
70b97a7f 4953 struct rq *rq;
1da177e4
LT
4954
4955 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4956 return;
4957 /*
4958 * We have to be careful, if called from sys_setpriority(),
4959 * the task might be in the middle of scheduling on another CPU.
4960 */
4961 rq = task_rq_lock(p, &flags);
a8e504d2 4962 update_rq_clock(rq);
1da177e4
LT
4963 /*
4964 * The RT priorities are set via sched_setscheduler(), but we still
4965 * allow the 'normal' nice value to be set - but as expected
4966 * it wont have any effect on scheduling until the task is
dd41f596 4967 * SCHED_FIFO/SCHED_RR:
1da177e4 4968 */
e05606d3 4969 if (task_has_rt_policy(p)) {
1da177e4
LT
4970 p->static_prio = NICE_TO_PRIO(nice);
4971 goto out_unlock;
4972 }
dd41f596 4973 on_rq = p->se.on_rq;
c09595f6 4974 if (on_rq)
69be72c1 4975 dequeue_task(rq, p, 0);
1da177e4 4976
1da177e4 4977 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4978 set_load_weight(p);
b29739f9
IM
4979 old_prio = p->prio;
4980 p->prio = effective_prio(p);
4981 delta = p->prio - old_prio;
1da177e4 4982
dd41f596 4983 if (on_rq) {
8159f87e 4984 enqueue_task(rq, p, 0);
1da177e4 4985 /*
d5f9f942
AM
4986 * If the task increased its priority or is running and
4987 * lowered its priority, then reschedule its CPU:
1da177e4 4988 */
d5f9f942 4989 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4990 resched_task(rq->curr);
4991 }
4992out_unlock:
4993 task_rq_unlock(rq, &flags);
4994}
1da177e4
LT
4995EXPORT_SYMBOL(set_user_nice);
4996
e43379f1
MM
4997/*
4998 * can_nice - check if a task can reduce its nice value
4999 * @p: task
5000 * @nice: nice value
5001 */
36c8b586 5002int can_nice(const struct task_struct *p, const int nice)
e43379f1 5003{
024f4747
MM
5004 /* convert nice value [19,-20] to rlimit style value [1,40] */
5005 int nice_rlim = 20 - nice;
48f24c4d 5006
e43379f1
MM
5007 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5008 capable(CAP_SYS_NICE));
5009}
5010
1da177e4
LT
5011#ifdef __ARCH_WANT_SYS_NICE
5012
5013/*
5014 * sys_nice - change the priority of the current process.
5015 * @increment: priority increment
5016 *
5017 * sys_setpriority is a more generic, but much slower function that
5018 * does similar things.
5019 */
5020asmlinkage long sys_nice(int increment)
5021{
48f24c4d 5022 long nice, retval;
1da177e4
LT
5023
5024 /*
5025 * Setpriority might change our priority at the same moment.
5026 * We don't have to worry. Conceptually one call occurs first
5027 * and we have a single winner.
5028 */
e43379f1
MM
5029 if (increment < -40)
5030 increment = -40;
1da177e4
LT
5031 if (increment > 40)
5032 increment = 40;
5033
5034 nice = PRIO_TO_NICE(current->static_prio) + increment;
5035 if (nice < -20)
5036 nice = -20;
5037 if (nice > 19)
5038 nice = 19;
5039
e43379f1
MM
5040 if (increment < 0 && !can_nice(current, nice))
5041 return -EPERM;
5042
1da177e4
LT
5043 retval = security_task_setnice(current, nice);
5044 if (retval)
5045 return retval;
5046
5047 set_user_nice(current, nice);
5048 return 0;
5049}
5050
5051#endif
5052
5053/**
5054 * task_prio - return the priority value of a given task.
5055 * @p: the task in question.
5056 *
5057 * This is the priority value as seen by users in /proc.
5058 * RT tasks are offset by -200. Normal tasks are centered
5059 * around 0, value goes from -16 to +15.
5060 */
36c8b586 5061int task_prio(const struct task_struct *p)
1da177e4
LT
5062{
5063 return p->prio - MAX_RT_PRIO;
5064}
5065
5066/**
5067 * task_nice - return the nice value of a given task.
5068 * @p: the task in question.
5069 */
36c8b586 5070int task_nice(const struct task_struct *p)
1da177e4
LT
5071{
5072 return TASK_NICE(p);
5073}
150d8bed 5074EXPORT_SYMBOL(task_nice);
1da177e4
LT
5075
5076/**
5077 * idle_cpu - is a given cpu idle currently?
5078 * @cpu: the processor in question.
5079 */
5080int idle_cpu(int cpu)
5081{
5082 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5083}
5084
1da177e4
LT
5085/**
5086 * idle_task - return the idle task for a given cpu.
5087 * @cpu: the processor in question.
5088 */
36c8b586 5089struct task_struct *idle_task(int cpu)
1da177e4
LT
5090{
5091 return cpu_rq(cpu)->idle;
5092}
5093
5094/**
5095 * find_process_by_pid - find a process with a matching PID value.
5096 * @pid: the pid in question.
5097 */
a9957449 5098static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5099{
228ebcbe 5100 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5101}
5102
5103/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5104static void
5105__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5106{
dd41f596 5107 BUG_ON(p->se.on_rq);
48f24c4d 5108
1da177e4 5109 p->policy = policy;
dd41f596
IM
5110 switch (p->policy) {
5111 case SCHED_NORMAL:
5112 case SCHED_BATCH:
5113 case SCHED_IDLE:
5114 p->sched_class = &fair_sched_class;
5115 break;
5116 case SCHED_FIFO:
5117 case SCHED_RR:
5118 p->sched_class = &rt_sched_class;
5119 break;
5120 }
5121
1da177e4 5122 p->rt_priority = prio;
b29739f9
IM
5123 p->normal_prio = normal_prio(p);
5124 /* we are holding p->pi_lock already */
5125 p->prio = rt_mutex_getprio(p);
2dd73a4f 5126 set_load_weight(p);
1da177e4
LT
5127}
5128
961ccddd
RR
5129static int __sched_setscheduler(struct task_struct *p, int policy,
5130 struct sched_param *param, bool user)
1da177e4 5131{
83b699ed 5132 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5133 unsigned long flags;
cb469845 5134 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5135 struct rq *rq;
1da177e4 5136
66e5393a
SR
5137 /* may grab non-irq protected spin_locks */
5138 BUG_ON(in_interrupt());
1da177e4
LT
5139recheck:
5140 /* double check policy once rq lock held */
5141 if (policy < 0)
5142 policy = oldpolicy = p->policy;
5143 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5144 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5145 policy != SCHED_IDLE)
b0a9499c 5146 return -EINVAL;
1da177e4
LT
5147 /*
5148 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5149 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5150 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5151 */
5152 if (param->sched_priority < 0 ||
95cdf3b7 5153 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5154 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5155 return -EINVAL;
e05606d3 5156 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5157 return -EINVAL;
5158
37e4ab3f
OC
5159 /*
5160 * Allow unprivileged RT tasks to decrease priority:
5161 */
961ccddd 5162 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5163 if (rt_policy(policy)) {
8dc3e909 5164 unsigned long rlim_rtprio;
8dc3e909
ON
5165
5166 if (!lock_task_sighand(p, &flags))
5167 return -ESRCH;
5168 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5169 unlock_task_sighand(p, &flags);
5170
5171 /* can't set/change the rt policy */
5172 if (policy != p->policy && !rlim_rtprio)
5173 return -EPERM;
5174
5175 /* can't increase priority */
5176 if (param->sched_priority > p->rt_priority &&
5177 param->sched_priority > rlim_rtprio)
5178 return -EPERM;
5179 }
dd41f596
IM
5180 /*
5181 * Like positive nice levels, dont allow tasks to
5182 * move out of SCHED_IDLE either:
5183 */
5184 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5185 return -EPERM;
5fe1d75f 5186
37e4ab3f
OC
5187 /* can't change other user's priorities */
5188 if ((current->euid != p->euid) &&
5189 (current->euid != p->uid))
5190 return -EPERM;
5191 }
1da177e4 5192
725aad24 5193 if (user) {
b68aa230 5194#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5195 /*
5196 * Do not allow realtime tasks into groups that have no runtime
5197 * assigned.
5198 */
9a7e0b18
PZ
5199 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5200 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5201 return -EPERM;
b68aa230
PZ
5202#endif
5203
725aad24
JF
5204 retval = security_task_setscheduler(p, policy, param);
5205 if (retval)
5206 return retval;
5207 }
5208
b29739f9
IM
5209 /*
5210 * make sure no PI-waiters arrive (or leave) while we are
5211 * changing the priority of the task:
5212 */
5213 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5214 /*
5215 * To be able to change p->policy safely, the apropriate
5216 * runqueue lock must be held.
5217 */
b29739f9 5218 rq = __task_rq_lock(p);
1da177e4
LT
5219 /* recheck policy now with rq lock held */
5220 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5221 policy = oldpolicy = -1;
b29739f9
IM
5222 __task_rq_unlock(rq);
5223 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5224 goto recheck;
5225 }
2daa3577 5226 update_rq_clock(rq);
dd41f596 5227 on_rq = p->se.on_rq;
051a1d1a 5228 running = task_current(rq, p);
0e1f3483 5229 if (on_rq)
2e1cb74a 5230 deactivate_task(rq, p, 0);
0e1f3483
HS
5231 if (running)
5232 p->sched_class->put_prev_task(rq, p);
f6b53205 5233
1da177e4 5234 oldprio = p->prio;
dd41f596 5235 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5236
0e1f3483
HS
5237 if (running)
5238 p->sched_class->set_curr_task(rq);
dd41f596
IM
5239 if (on_rq) {
5240 activate_task(rq, p, 0);
cb469845
SR
5241
5242 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5243 }
b29739f9
IM
5244 __task_rq_unlock(rq);
5245 spin_unlock_irqrestore(&p->pi_lock, flags);
5246
95e02ca9
TG
5247 rt_mutex_adjust_pi(p);
5248
1da177e4
LT
5249 return 0;
5250}
961ccddd
RR
5251
5252/**
5253 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5254 * @p: the task in question.
5255 * @policy: new policy.
5256 * @param: structure containing the new RT priority.
5257 *
5258 * NOTE that the task may be already dead.
5259 */
5260int sched_setscheduler(struct task_struct *p, int policy,
5261 struct sched_param *param)
5262{
5263 return __sched_setscheduler(p, policy, param, true);
5264}
1da177e4
LT
5265EXPORT_SYMBOL_GPL(sched_setscheduler);
5266
961ccddd
RR
5267/**
5268 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5269 * @p: the task in question.
5270 * @policy: new policy.
5271 * @param: structure containing the new RT priority.
5272 *
5273 * Just like sched_setscheduler, only don't bother checking if the
5274 * current context has permission. For example, this is needed in
5275 * stop_machine(): we create temporary high priority worker threads,
5276 * but our caller might not have that capability.
5277 */
5278int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5279 struct sched_param *param)
5280{
5281 return __sched_setscheduler(p, policy, param, false);
5282}
5283
95cdf3b7
IM
5284static int
5285do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5286{
1da177e4
LT
5287 struct sched_param lparam;
5288 struct task_struct *p;
36c8b586 5289 int retval;
1da177e4
LT
5290
5291 if (!param || pid < 0)
5292 return -EINVAL;
5293 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5294 return -EFAULT;
5fe1d75f
ON
5295
5296 rcu_read_lock();
5297 retval = -ESRCH;
1da177e4 5298 p = find_process_by_pid(pid);
5fe1d75f
ON
5299 if (p != NULL)
5300 retval = sched_setscheduler(p, policy, &lparam);
5301 rcu_read_unlock();
36c8b586 5302
1da177e4
LT
5303 return retval;
5304}
5305
5306/**
5307 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5308 * @pid: the pid in question.
5309 * @policy: new policy.
5310 * @param: structure containing the new RT priority.
5311 */
41a2d6cf
IM
5312asmlinkage long
5313sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5314{
c21761f1
JB
5315 /* negative values for policy are not valid */
5316 if (policy < 0)
5317 return -EINVAL;
5318
1da177e4
LT
5319 return do_sched_setscheduler(pid, policy, param);
5320}
5321
5322/**
5323 * sys_sched_setparam - set/change the RT priority of a thread
5324 * @pid: the pid in question.
5325 * @param: structure containing the new RT priority.
5326 */
5327asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5328{
5329 return do_sched_setscheduler(pid, -1, param);
5330}
5331
5332/**
5333 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5334 * @pid: the pid in question.
5335 */
5336asmlinkage long sys_sched_getscheduler(pid_t pid)
5337{
36c8b586 5338 struct task_struct *p;
3a5c359a 5339 int retval;
1da177e4
LT
5340
5341 if (pid < 0)
3a5c359a 5342 return -EINVAL;
1da177e4
LT
5343
5344 retval = -ESRCH;
5345 read_lock(&tasklist_lock);
5346 p = find_process_by_pid(pid);
5347 if (p) {
5348 retval = security_task_getscheduler(p);
5349 if (!retval)
5350 retval = p->policy;
5351 }
5352 read_unlock(&tasklist_lock);
1da177e4
LT
5353 return retval;
5354}
5355
5356/**
5357 * sys_sched_getscheduler - get the RT priority of a thread
5358 * @pid: the pid in question.
5359 * @param: structure containing the RT priority.
5360 */
5361asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5362{
5363 struct sched_param lp;
36c8b586 5364 struct task_struct *p;
3a5c359a 5365 int retval;
1da177e4
LT
5366
5367 if (!param || pid < 0)
3a5c359a 5368 return -EINVAL;
1da177e4
LT
5369
5370 read_lock(&tasklist_lock);
5371 p = find_process_by_pid(pid);
5372 retval = -ESRCH;
5373 if (!p)
5374 goto out_unlock;
5375
5376 retval = security_task_getscheduler(p);
5377 if (retval)
5378 goto out_unlock;
5379
5380 lp.sched_priority = p->rt_priority;
5381 read_unlock(&tasklist_lock);
5382
5383 /*
5384 * This one might sleep, we cannot do it with a spinlock held ...
5385 */
5386 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5387
1da177e4
LT
5388 return retval;
5389
5390out_unlock:
5391 read_unlock(&tasklist_lock);
5392 return retval;
5393}
5394
b53e921b 5395long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5396{
1da177e4 5397 cpumask_t cpus_allowed;
b53e921b 5398 cpumask_t new_mask = *in_mask;
36c8b586
IM
5399 struct task_struct *p;
5400 int retval;
1da177e4 5401
95402b38 5402 get_online_cpus();
1da177e4
LT
5403 read_lock(&tasklist_lock);
5404
5405 p = find_process_by_pid(pid);
5406 if (!p) {
5407 read_unlock(&tasklist_lock);
95402b38 5408 put_online_cpus();
1da177e4
LT
5409 return -ESRCH;
5410 }
5411
5412 /*
5413 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5414 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5415 * usage count and then drop tasklist_lock.
5416 */
5417 get_task_struct(p);
5418 read_unlock(&tasklist_lock);
5419
5420 retval = -EPERM;
5421 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5422 !capable(CAP_SYS_NICE))
5423 goto out_unlock;
5424
e7834f8f
DQ
5425 retval = security_task_setscheduler(p, 0, NULL);
5426 if (retval)
5427 goto out_unlock;
5428
f9a86fcb 5429 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5430 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5431 again:
7c16ec58 5432 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5433
8707d8b8 5434 if (!retval) {
f9a86fcb 5435 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5436 if (!cpus_subset(new_mask, cpus_allowed)) {
5437 /*
5438 * We must have raced with a concurrent cpuset
5439 * update. Just reset the cpus_allowed to the
5440 * cpuset's cpus_allowed
5441 */
5442 new_mask = cpus_allowed;
5443 goto again;
5444 }
5445 }
1da177e4
LT
5446out_unlock:
5447 put_task_struct(p);
95402b38 5448 put_online_cpus();
1da177e4
LT
5449 return retval;
5450}
5451
5452static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5453 cpumask_t *new_mask)
5454{
5455 if (len < sizeof(cpumask_t)) {
5456 memset(new_mask, 0, sizeof(cpumask_t));
5457 } else if (len > sizeof(cpumask_t)) {
5458 len = sizeof(cpumask_t);
5459 }
5460 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5461}
5462
5463/**
5464 * sys_sched_setaffinity - set the cpu affinity of a process
5465 * @pid: pid of the process
5466 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5467 * @user_mask_ptr: user-space pointer to the new cpu mask
5468 */
5469asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5470 unsigned long __user *user_mask_ptr)
5471{
5472 cpumask_t new_mask;
5473 int retval;
5474
5475 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5476 if (retval)
5477 return retval;
5478
b53e921b 5479 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5480}
5481
1da177e4
LT
5482long sched_getaffinity(pid_t pid, cpumask_t *mask)
5483{
36c8b586 5484 struct task_struct *p;
1da177e4 5485 int retval;
1da177e4 5486
95402b38 5487 get_online_cpus();
1da177e4
LT
5488 read_lock(&tasklist_lock);
5489
5490 retval = -ESRCH;
5491 p = find_process_by_pid(pid);
5492 if (!p)
5493 goto out_unlock;
5494
e7834f8f
DQ
5495 retval = security_task_getscheduler(p);
5496 if (retval)
5497 goto out_unlock;
5498
2f7016d9 5499 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5500
5501out_unlock:
5502 read_unlock(&tasklist_lock);
95402b38 5503 put_online_cpus();
1da177e4 5504
9531b62f 5505 return retval;
1da177e4
LT
5506}
5507
5508/**
5509 * sys_sched_getaffinity - get the cpu affinity of a process
5510 * @pid: pid of the process
5511 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5512 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5513 */
5514asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5515 unsigned long __user *user_mask_ptr)
5516{
5517 int ret;
5518 cpumask_t mask;
5519
5520 if (len < sizeof(cpumask_t))
5521 return -EINVAL;
5522
5523 ret = sched_getaffinity(pid, &mask);
5524 if (ret < 0)
5525 return ret;
5526
5527 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5528 return -EFAULT;
5529
5530 return sizeof(cpumask_t);
5531}
5532
5533/**
5534 * sys_sched_yield - yield the current processor to other threads.
5535 *
dd41f596
IM
5536 * This function yields the current CPU to other tasks. If there are no
5537 * other threads running on this CPU then this function will return.
1da177e4
LT
5538 */
5539asmlinkage long sys_sched_yield(void)
5540{
70b97a7f 5541 struct rq *rq = this_rq_lock();
1da177e4 5542
2d72376b 5543 schedstat_inc(rq, yld_count);
4530d7ab 5544 current->sched_class->yield_task(rq);
1da177e4
LT
5545
5546 /*
5547 * Since we are going to call schedule() anyway, there's
5548 * no need to preempt or enable interrupts:
5549 */
5550 __release(rq->lock);
8a25d5de 5551 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5552 _raw_spin_unlock(&rq->lock);
5553 preempt_enable_no_resched();
5554
5555 schedule();
5556
5557 return 0;
5558}
5559
e7b38404 5560static void __cond_resched(void)
1da177e4 5561{
8e0a43d8
IM
5562#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5563 __might_sleep(__FILE__, __LINE__);
5564#endif
5bbcfd90
IM
5565 /*
5566 * The BKS might be reacquired before we have dropped
5567 * PREEMPT_ACTIVE, which could trigger a second
5568 * cond_resched() call.
5569 */
1da177e4
LT
5570 do {
5571 add_preempt_count(PREEMPT_ACTIVE);
5572 schedule();
5573 sub_preempt_count(PREEMPT_ACTIVE);
5574 } while (need_resched());
5575}
5576
02b67cc3 5577int __sched _cond_resched(void)
1da177e4 5578{
9414232f
IM
5579 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5580 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5581 __cond_resched();
5582 return 1;
5583 }
5584 return 0;
5585}
02b67cc3 5586EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5587
5588/*
5589 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5590 * call schedule, and on return reacquire the lock.
5591 *
41a2d6cf 5592 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5593 * operations here to prevent schedule() from being called twice (once via
5594 * spin_unlock(), once by hand).
5595 */
95cdf3b7 5596int cond_resched_lock(spinlock_t *lock)
1da177e4 5597{
95c354fe 5598 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5599 int ret = 0;
5600
95c354fe 5601 if (spin_needbreak(lock) || resched) {
1da177e4 5602 spin_unlock(lock);
95c354fe
NP
5603 if (resched && need_resched())
5604 __cond_resched();
5605 else
5606 cpu_relax();
6df3cecb 5607 ret = 1;
1da177e4 5608 spin_lock(lock);
1da177e4 5609 }
6df3cecb 5610 return ret;
1da177e4 5611}
1da177e4
LT
5612EXPORT_SYMBOL(cond_resched_lock);
5613
5614int __sched cond_resched_softirq(void)
5615{
5616 BUG_ON(!in_softirq());
5617
9414232f 5618 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5619 local_bh_enable();
1da177e4
LT
5620 __cond_resched();
5621 local_bh_disable();
5622 return 1;
5623 }
5624 return 0;
5625}
1da177e4
LT
5626EXPORT_SYMBOL(cond_resched_softirq);
5627
1da177e4
LT
5628/**
5629 * yield - yield the current processor to other threads.
5630 *
72fd4a35 5631 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5632 * thread runnable and calls sys_sched_yield().
5633 */
5634void __sched yield(void)
5635{
5636 set_current_state(TASK_RUNNING);
5637 sys_sched_yield();
5638}
1da177e4
LT
5639EXPORT_SYMBOL(yield);
5640
5641/*
41a2d6cf 5642 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5643 * that process accounting knows that this is a task in IO wait state.
5644 *
5645 * But don't do that if it is a deliberate, throttling IO wait (this task
5646 * has set its backing_dev_info: the queue against which it should throttle)
5647 */
5648void __sched io_schedule(void)
5649{
70b97a7f 5650 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5651
0ff92245 5652 delayacct_blkio_start();
1da177e4
LT
5653 atomic_inc(&rq->nr_iowait);
5654 schedule();
5655 atomic_dec(&rq->nr_iowait);
0ff92245 5656 delayacct_blkio_end();
1da177e4 5657}
1da177e4
LT
5658EXPORT_SYMBOL(io_schedule);
5659
5660long __sched io_schedule_timeout(long timeout)
5661{
70b97a7f 5662 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5663 long ret;
5664
0ff92245 5665 delayacct_blkio_start();
1da177e4
LT
5666 atomic_inc(&rq->nr_iowait);
5667 ret = schedule_timeout(timeout);
5668 atomic_dec(&rq->nr_iowait);
0ff92245 5669 delayacct_blkio_end();
1da177e4
LT
5670 return ret;
5671}
5672
5673/**
5674 * sys_sched_get_priority_max - return maximum RT priority.
5675 * @policy: scheduling class.
5676 *
5677 * this syscall returns the maximum rt_priority that can be used
5678 * by a given scheduling class.
5679 */
5680asmlinkage long sys_sched_get_priority_max(int policy)
5681{
5682 int ret = -EINVAL;
5683
5684 switch (policy) {
5685 case SCHED_FIFO:
5686 case SCHED_RR:
5687 ret = MAX_USER_RT_PRIO-1;
5688 break;
5689 case SCHED_NORMAL:
b0a9499c 5690 case SCHED_BATCH:
dd41f596 5691 case SCHED_IDLE:
1da177e4
LT
5692 ret = 0;
5693 break;
5694 }
5695 return ret;
5696}
5697
5698/**
5699 * sys_sched_get_priority_min - return minimum RT priority.
5700 * @policy: scheduling class.
5701 *
5702 * this syscall returns the minimum rt_priority that can be used
5703 * by a given scheduling class.
5704 */
5705asmlinkage long sys_sched_get_priority_min(int policy)
5706{
5707 int ret = -EINVAL;
5708
5709 switch (policy) {
5710 case SCHED_FIFO:
5711 case SCHED_RR:
5712 ret = 1;
5713 break;
5714 case SCHED_NORMAL:
b0a9499c 5715 case SCHED_BATCH:
dd41f596 5716 case SCHED_IDLE:
1da177e4
LT
5717 ret = 0;
5718 }
5719 return ret;
5720}
5721
5722/**
5723 * sys_sched_rr_get_interval - return the default timeslice of a process.
5724 * @pid: pid of the process.
5725 * @interval: userspace pointer to the timeslice value.
5726 *
5727 * this syscall writes the default timeslice value of a given process
5728 * into the user-space timespec buffer. A value of '0' means infinity.
5729 */
5730asmlinkage
5731long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5732{
36c8b586 5733 struct task_struct *p;
a4ec24b4 5734 unsigned int time_slice;
3a5c359a 5735 int retval;
1da177e4 5736 struct timespec t;
1da177e4
LT
5737
5738 if (pid < 0)
3a5c359a 5739 return -EINVAL;
1da177e4
LT
5740
5741 retval = -ESRCH;
5742 read_lock(&tasklist_lock);
5743 p = find_process_by_pid(pid);
5744 if (!p)
5745 goto out_unlock;
5746
5747 retval = security_task_getscheduler(p);
5748 if (retval)
5749 goto out_unlock;
5750
77034937
IM
5751 /*
5752 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5753 * tasks that are on an otherwise idle runqueue:
5754 */
5755 time_slice = 0;
5756 if (p->policy == SCHED_RR) {
a4ec24b4 5757 time_slice = DEF_TIMESLICE;
1868f958 5758 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5759 struct sched_entity *se = &p->se;
5760 unsigned long flags;
5761 struct rq *rq;
5762
5763 rq = task_rq_lock(p, &flags);
77034937
IM
5764 if (rq->cfs.load.weight)
5765 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5766 task_rq_unlock(rq, &flags);
5767 }
1da177e4 5768 read_unlock(&tasklist_lock);
a4ec24b4 5769 jiffies_to_timespec(time_slice, &t);
1da177e4 5770 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5771 return retval;
3a5c359a 5772
1da177e4
LT
5773out_unlock:
5774 read_unlock(&tasklist_lock);
5775 return retval;
5776}
5777
7c731e0a 5778static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5779
82a1fcb9 5780void sched_show_task(struct task_struct *p)
1da177e4 5781{
1da177e4 5782 unsigned long free = 0;
36c8b586 5783 unsigned state;
1da177e4 5784
1da177e4 5785 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5786 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5787 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5788#if BITS_PER_LONG == 32
1da177e4 5789 if (state == TASK_RUNNING)
cc4ea795 5790 printk(KERN_CONT " running ");
1da177e4 5791 else
cc4ea795 5792 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5793#else
5794 if (state == TASK_RUNNING)
cc4ea795 5795 printk(KERN_CONT " running task ");
1da177e4 5796 else
cc4ea795 5797 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5798#endif
5799#ifdef CONFIG_DEBUG_STACK_USAGE
5800 {
10ebffde 5801 unsigned long *n = end_of_stack(p);
1da177e4
LT
5802 while (!*n)
5803 n++;
10ebffde 5804 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5805 }
5806#endif
ba25f9dc 5807 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5808 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5809
5fb5e6de 5810 show_stack(p, NULL);
1da177e4
LT
5811}
5812
e59e2ae2 5813void show_state_filter(unsigned long state_filter)
1da177e4 5814{
36c8b586 5815 struct task_struct *g, *p;
1da177e4 5816
4bd77321
IM
5817#if BITS_PER_LONG == 32
5818 printk(KERN_INFO
5819 " task PC stack pid father\n");
1da177e4 5820#else
4bd77321
IM
5821 printk(KERN_INFO
5822 " task PC stack pid father\n");
1da177e4
LT
5823#endif
5824 read_lock(&tasklist_lock);
5825 do_each_thread(g, p) {
5826 /*
5827 * reset the NMI-timeout, listing all files on a slow
5828 * console might take alot of time:
5829 */
5830 touch_nmi_watchdog();
39bc89fd 5831 if (!state_filter || (p->state & state_filter))
82a1fcb9 5832 sched_show_task(p);
1da177e4
LT
5833 } while_each_thread(g, p);
5834
04c9167f
JF
5835 touch_all_softlockup_watchdogs();
5836
dd41f596
IM
5837#ifdef CONFIG_SCHED_DEBUG
5838 sysrq_sched_debug_show();
5839#endif
1da177e4 5840 read_unlock(&tasklist_lock);
e59e2ae2
IM
5841 /*
5842 * Only show locks if all tasks are dumped:
5843 */
5844 if (state_filter == -1)
5845 debug_show_all_locks();
1da177e4
LT
5846}
5847
1df21055
IM
5848void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5849{
dd41f596 5850 idle->sched_class = &idle_sched_class;
1df21055
IM
5851}
5852
f340c0d1
IM
5853/**
5854 * init_idle - set up an idle thread for a given CPU
5855 * @idle: task in question
5856 * @cpu: cpu the idle task belongs to
5857 *
5858 * NOTE: this function does not set the idle thread's NEED_RESCHED
5859 * flag, to make booting more robust.
5860 */
5c1e1767 5861void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5862{
70b97a7f 5863 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5864 unsigned long flags;
5865
dd41f596
IM
5866 __sched_fork(idle);
5867 idle->se.exec_start = sched_clock();
5868
b29739f9 5869 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5870 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5871 __set_task_cpu(idle, cpu);
1da177e4
LT
5872
5873 spin_lock_irqsave(&rq->lock, flags);
5874 rq->curr = rq->idle = idle;
4866cde0
NP
5875#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5876 idle->oncpu = 1;
5877#endif
1da177e4
LT
5878 spin_unlock_irqrestore(&rq->lock, flags);
5879
5880 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5881#if defined(CONFIG_PREEMPT)
5882 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5883#else
a1261f54 5884 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5885#endif
dd41f596
IM
5886 /*
5887 * The idle tasks have their own, simple scheduling class:
5888 */
5889 idle->sched_class = &idle_sched_class;
1da177e4
LT
5890}
5891
5892/*
5893 * In a system that switches off the HZ timer nohz_cpu_mask
5894 * indicates which cpus entered this state. This is used
5895 * in the rcu update to wait only for active cpus. For system
5896 * which do not switch off the HZ timer nohz_cpu_mask should
5897 * always be CPU_MASK_NONE.
5898 */
5899cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5900
19978ca6
IM
5901/*
5902 * Increase the granularity value when there are more CPUs,
5903 * because with more CPUs the 'effective latency' as visible
5904 * to users decreases. But the relationship is not linear,
5905 * so pick a second-best guess by going with the log2 of the
5906 * number of CPUs.
5907 *
5908 * This idea comes from the SD scheduler of Con Kolivas:
5909 */
5910static inline void sched_init_granularity(void)
5911{
5912 unsigned int factor = 1 + ilog2(num_online_cpus());
5913 const unsigned long limit = 200000000;
5914
5915 sysctl_sched_min_granularity *= factor;
5916 if (sysctl_sched_min_granularity > limit)
5917 sysctl_sched_min_granularity = limit;
5918
5919 sysctl_sched_latency *= factor;
5920 if (sysctl_sched_latency > limit)
5921 sysctl_sched_latency = limit;
5922
5923 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
5924
5925 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
5926}
5927
1da177e4
LT
5928#ifdef CONFIG_SMP
5929/*
5930 * This is how migration works:
5931 *
70b97a7f 5932 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5933 * runqueue and wake up that CPU's migration thread.
5934 * 2) we down() the locked semaphore => thread blocks.
5935 * 3) migration thread wakes up (implicitly it forces the migrated
5936 * thread off the CPU)
5937 * 4) it gets the migration request and checks whether the migrated
5938 * task is still in the wrong runqueue.
5939 * 5) if it's in the wrong runqueue then the migration thread removes
5940 * it and puts it into the right queue.
5941 * 6) migration thread up()s the semaphore.
5942 * 7) we wake up and the migration is done.
5943 */
5944
5945/*
5946 * Change a given task's CPU affinity. Migrate the thread to a
5947 * proper CPU and schedule it away if the CPU it's executing on
5948 * is removed from the allowed bitmask.
5949 *
5950 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5951 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5952 * call is not atomic; no spinlocks may be held.
5953 */
cd8ba7cd 5954int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5955{
70b97a7f 5956 struct migration_req req;
1da177e4 5957 unsigned long flags;
70b97a7f 5958 struct rq *rq;
48f24c4d 5959 int ret = 0;
1da177e4
LT
5960
5961 rq = task_rq_lock(p, &flags);
cd8ba7cd 5962 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5963 ret = -EINVAL;
5964 goto out;
5965 }
5966
9985b0ba
DR
5967 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5968 !cpus_equal(p->cpus_allowed, *new_mask))) {
5969 ret = -EINVAL;
5970 goto out;
5971 }
5972
73fe6aae 5973 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5974 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5975 else {
cd8ba7cd
MT
5976 p->cpus_allowed = *new_mask;
5977 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5978 }
5979
1da177e4 5980 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5981 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5982 goto out;
5983
cd8ba7cd 5984 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5985 /* Need help from migration thread: drop lock and wait. */
5986 task_rq_unlock(rq, &flags);
5987 wake_up_process(rq->migration_thread);
5988 wait_for_completion(&req.done);
5989 tlb_migrate_finish(p->mm);
5990 return 0;
5991 }
5992out:
5993 task_rq_unlock(rq, &flags);
48f24c4d 5994
1da177e4
LT
5995 return ret;
5996}
cd8ba7cd 5997EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5998
5999/*
41a2d6cf 6000 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6001 * this because either it can't run here any more (set_cpus_allowed()
6002 * away from this CPU, or CPU going down), or because we're
6003 * attempting to rebalance this task on exec (sched_exec).
6004 *
6005 * So we race with normal scheduler movements, but that's OK, as long
6006 * as the task is no longer on this CPU.
efc30814
KK
6007 *
6008 * Returns non-zero if task was successfully migrated.
1da177e4 6009 */
efc30814 6010static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6011{
70b97a7f 6012 struct rq *rq_dest, *rq_src;
dd41f596 6013 int ret = 0, on_rq;
1da177e4 6014
e761b772 6015 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6016 return ret;
1da177e4
LT
6017
6018 rq_src = cpu_rq(src_cpu);
6019 rq_dest = cpu_rq(dest_cpu);
6020
6021 double_rq_lock(rq_src, rq_dest);
6022 /* Already moved. */
6023 if (task_cpu(p) != src_cpu)
b1e38734 6024 goto done;
1da177e4
LT
6025 /* Affinity changed (again). */
6026 if (!cpu_isset(dest_cpu, p->cpus_allowed))
b1e38734 6027 goto fail;
1da177e4 6028
dd41f596 6029 on_rq = p->se.on_rq;
6e82a3be 6030 if (on_rq)
2e1cb74a 6031 deactivate_task(rq_src, p, 0);
6e82a3be 6032
1da177e4 6033 set_task_cpu(p, dest_cpu);
dd41f596
IM
6034 if (on_rq) {
6035 activate_task(rq_dest, p, 0);
15afe09b 6036 check_preempt_curr(rq_dest, p, 0);
1da177e4 6037 }
b1e38734 6038done:
efc30814 6039 ret = 1;
b1e38734 6040fail:
1da177e4 6041 double_rq_unlock(rq_src, rq_dest);
efc30814 6042 return ret;
1da177e4
LT
6043}
6044
6045/*
6046 * migration_thread - this is a highprio system thread that performs
6047 * thread migration by bumping thread off CPU then 'pushing' onto
6048 * another runqueue.
6049 */
95cdf3b7 6050static int migration_thread(void *data)
1da177e4 6051{
1da177e4 6052 int cpu = (long)data;
70b97a7f 6053 struct rq *rq;
1da177e4
LT
6054
6055 rq = cpu_rq(cpu);
6056 BUG_ON(rq->migration_thread != current);
6057
6058 set_current_state(TASK_INTERRUPTIBLE);
6059 while (!kthread_should_stop()) {
70b97a7f 6060 struct migration_req *req;
1da177e4 6061 struct list_head *head;
1da177e4 6062
1da177e4
LT
6063 spin_lock_irq(&rq->lock);
6064
6065 if (cpu_is_offline(cpu)) {
6066 spin_unlock_irq(&rq->lock);
6067 goto wait_to_die;
6068 }
6069
6070 if (rq->active_balance) {
6071 active_load_balance(rq, cpu);
6072 rq->active_balance = 0;
6073 }
6074
6075 head = &rq->migration_queue;
6076
6077 if (list_empty(head)) {
6078 spin_unlock_irq(&rq->lock);
6079 schedule();
6080 set_current_state(TASK_INTERRUPTIBLE);
6081 continue;
6082 }
70b97a7f 6083 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6084 list_del_init(head->next);
6085
674311d5
NP
6086 spin_unlock(&rq->lock);
6087 __migrate_task(req->task, cpu, req->dest_cpu);
6088 local_irq_enable();
1da177e4
LT
6089
6090 complete(&req->done);
6091 }
6092 __set_current_state(TASK_RUNNING);
6093 return 0;
6094
6095wait_to_die:
6096 /* Wait for kthread_stop */
6097 set_current_state(TASK_INTERRUPTIBLE);
6098 while (!kthread_should_stop()) {
6099 schedule();
6100 set_current_state(TASK_INTERRUPTIBLE);
6101 }
6102 __set_current_state(TASK_RUNNING);
6103 return 0;
6104}
6105
6106#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6107
6108static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6109{
6110 int ret;
6111
6112 local_irq_disable();
6113 ret = __migrate_task(p, src_cpu, dest_cpu);
6114 local_irq_enable();
6115 return ret;
6116}
6117
054b9108 6118/*
3a4fa0a2 6119 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
6120 * NOTE: interrupts should be disabled by the caller
6121 */
48f24c4d 6122static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6123{
efc30814 6124 unsigned long flags;
1da177e4 6125 cpumask_t mask;
70b97a7f
IM
6126 struct rq *rq;
6127 int dest_cpu;
1da177e4 6128
3a5c359a
AK
6129 do {
6130 /* On same node? */
6131 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6132 cpus_and(mask, mask, p->cpus_allowed);
6133 dest_cpu = any_online_cpu(mask);
6134
6135 /* On any allowed CPU? */
434d53b0 6136 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6137 dest_cpu = any_online_cpu(p->cpus_allowed);
6138
6139 /* No more Mr. Nice Guy. */
434d53b0 6140 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6141 cpumask_t cpus_allowed;
6142
6143 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6144 /*
6145 * Try to stay on the same cpuset, where the
6146 * current cpuset may be a subset of all cpus.
6147 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6148 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6149 * called within calls to cpuset_lock/cpuset_unlock.
6150 */
3a5c359a 6151 rq = task_rq_lock(p, &flags);
470fd646 6152 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6153 dest_cpu = any_online_cpu(p->cpus_allowed);
6154 task_rq_unlock(rq, &flags);
1da177e4 6155
3a5c359a
AK
6156 /*
6157 * Don't tell them about moving exiting tasks or
6158 * kernel threads (both mm NULL), since they never
6159 * leave kernel.
6160 */
41a2d6cf 6161 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6162 printk(KERN_INFO "process %d (%s) no "
6163 "longer affine to cpu%d\n",
41a2d6cf
IM
6164 task_pid_nr(p), p->comm, dead_cpu);
6165 }
3a5c359a 6166 }
f7b4cddc 6167 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6168}
6169
6170/*
6171 * While a dead CPU has no uninterruptible tasks queued at this point,
6172 * it might still have a nonzero ->nr_uninterruptible counter, because
6173 * for performance reasons the counter is not stricly tracking tasks to
6174 * their home CPUs. So we just add the counter to another CPU's counter,
6175 * to keep the global sum constant after CPU-down:
6176 */
70b97a7f 6177static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6178{
7c16ec58 6179 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6180 unsigned long flags;
6181
6182 local_irq_save(flags);
6183 double_rq_lock(rq_src, rq_dest);
6184 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6185 rq_src->nr_uninterruptible = 0;
6186 double_rq_unlock(rq_src, rq_dest);
6187 local_irq_restore(flags);
6188}
6189
6190/* Run through task list and migrate tasks from the dead cpu. */
6191static void migrate_live_tasks(int src_cpu)
6192{
48f24c4d 6193 struct task_struct *p, *t;
1da177e4 6194
f7b4cddc 6195 read_lock(&tasklist_lock);
1da177e4 6196
48f24c4d
IM
6197 do_each_thread(t, p) {
6198 if (p == current)
1da177e4
LT
6199 continue;
6200
48f24c4d
IM
6201 if (task_cpu(p) == src_cpu)
6202 move_task_off_dead_cpu(src_cpu, p);
6203 } while_each_thread(t, p);
1da177e4 6204
f7b4cddc 6205 read_unlock(&tasklist_lock);
1da177e4
LT
6206}
6207
dd41f596
IM
6208/*
6209 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6210 * It does so by boosting its priority to highest possible.
6211 * Used by CPU offline code.
1da177e4
LT
6212 */
6213void sched_idle_next(void)
6214{
48f24c4d 6215 int this_cpu = smp_processor_id();
70b97a7f 6216 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6217 struct task_struct *p = rq->idle;
6218 unsigned long flags;
6219
6220 /* cpu has to be offline */
48f24c4d 6221 BUG_ON(cpu_online(this_cpu));
1da177e4 6222
48f24c4d
IM
6223 /*
6224 * Strictly not necessary since rest of the CPUs are stopped by now
6225 * and interrupts disabled on the current cpu.
1da177e4
LT
6226 */
6227 spin_lock_irqsave(&rq->lock, flags);
6228
dd41f596 6229 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6230
94bc9a7b
DA
6231 update_rq_clock(rq);
6232 activate_task(rq, p, 0);
1da177e4
LT
6233
6234 spin_unlock_irqrestore(&rq->lock, flags);
6235}
6236
48f24c4d
IM
6237/*
6238 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6239 * offline.
6240 */
6241void idle_task_exit(void)
6242{
6243 struct mm_struct *mm = current->active_mm;
6244
6245 BUG_ON(cpu_online(smp_processor_id()));
6246
6247 if (mm != &init_mm)
6248 switch_mm(mm, &init_mm, current);
6249 mmdrop(mm);
6250}
6251
054b9108 6252/* called under rq->lock with disabled interrupts */
36c8b586 6253static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6254{
70b97a7f 6255 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6256
6257 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6258 BUG_ON(!p->exit_state);
1da177e4
LT
6259
6260 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6261 BUG_ON(p->state == TASK_DEAD);
1da177e4 6262
48f24c4d 6263 get_task_struct(p);
1da177e4
LT
6264
6265 /*
6266 * Drop lock around migration; if someone else moves it,
41a2d6cf 6267 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6268 * fine.
6269 */
f7b4cddc 6270 spin_unlock_irq(&rq->lock);
48f24c4d 6271 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6272 spin_lock_irq(&rq->lock);
1da177e4 6273
48f24c4d 6274 put_task_struct(p);
1da177e4
LT
6275}
6276
6277/* release_task() removes task from tasklist, so we won't find dead tasks. */
6278static void migrate_dead_tasks(unsigned int dead_cpu)
6279{
70b97a7f 6280 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6281 struct task_struct *next;
48f24c4d 6282
dd41f596
IM
6283 for ( ; ; ) {
6284 if (!rq->nr_running)
6285 break;
a8e504d2 6286 update_rq_clock(rq);
ff95f3df 6287 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6288 if (!next)
6289 break;
79c53799 6290 next->sched_class->put_prev_task(rq, next);
dd41f596 6291 migrate_dead(dead_cpu, next);
e692ab53 6292
1da177e4
LT
6293 }
6294}
6295#endif /* CONFIG_HOTPLUG_CPU */
6296
e692ab53
NP
6297#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6298
6299static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6300 {
6301 .procname = "sched_domain",
c57baf1e 6302 .mode = 0555,
e0361851 6303 },
38605cae 6304 {0, },
e692ab53
NP
6305};
6306
6307static struct ctl_table sd_ctl_root[] = {
e0361851 6308 {
c57baf1e 6309 .ctl_name = CTL_KERN,
e0361851 6310 .procname = "kernel",
c57baf1e 6311 .mode = 0555,
e0361851
AD
6312 .child = sd_ctl_dir,
6313 },
38605cae 6314 {0, },
e692ab53
NP
6315};
6316
6317static struct ctl_table *sd_alloc_ctl_entry(int n)
6318{
6319 struct ctl_table *entry =
5cf9f062 6320 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6321
e692ab53
NP
6322 return entry;
6323}
6324
6382bc90
MM
6325static void sd_free_ctl_entry(struct ctl_table **tablep)
6326{
cd790076 6327 struct ctl_table *entry;
6382bc90 6328
cd790076
MM
6329 /*
6330 * In the intermediate directories, both the child directory and
6331 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6332 * will always be set. In the lowest directory the names are
cd790076
MM
6333 * static strings and all have proc handlers.
6334 */
6335 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6336 if (entry->child)
6337 sd_free_ctl_entry(&entry->child);
cd790076
MM
6338 if (entry->proc_handler == NULL)
6339 kfree(entry->procname);
6340 }
6382bc90
MM
6341
6342 kfree(*tablep);
6343 *tablep = NULL;
6344}
6345
e692ab53 6346static void
e0361851 6347set_table_entry(struct ctl_table *entry,
e692ab53
NP
6348 const char *procname, void *data, int maxlen,
6349 mode_t mode, proc_handler *proc_handler)
6350{
e692ab53
NP
6351 entry->procname = procname;
6352 entry->data = data;
6353 entry->maxlen = maxlen;
6354 entry->mode = mode;
6355 entry->proc_handler = proc_handler;
6356}
6357
6358static struct ctl_table *
6359sd_alloc_ctl_domain_table(struct sched_domain *sd)
6360{
a5d8c348 6361 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6362
ad1cdc1d
MM
6363 if (table == NULL)
6364 return NULL;
6365
e0361851 6366 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6367 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6368 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6369 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6370 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6371 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6372 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6373 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6374 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6375 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6376 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6377 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6378 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6379 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6380 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6381 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6382 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6383 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6384 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6385 &sd->cache_nice_tries,
6386 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6387 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6388 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6389 set_table_entry(&table[11], "name", sd->name,
6390 CORENAME_MAX_SIZE, 0444, proc_dostring);
6391 /* &table[12] is terminator */
e692ab53
NP
6392
6393 return table;
6394}
6395
9a4e7159 6396static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6397{
6398 struct ctl_table *entry, *table;
6399 struct sched_domain *sd;
6400 int domain_num = 0, i;
6401 char buf[32];
6402
6403 for_each_domain(cpu, sd)
6404 domain_num++;
6405 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6406 if (table == NULL)
6407 return NULL;
e692ab53
NP
6408
6409 i = 0;
6410 for_each_domain(cpu, sd) {
6411 snprintf(buf, 32, "domain%d", i);
e692ab53 6412 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6413 entry->mode = 0555;
e692ab53
NP
6414 entry->child = sd_alloc_ctl_domain_table(sd);
6415 entry++;
6416 i++;
6417 }
6418 return table;
6419}
6420
6421static struct ctl_table_header *sd_sysctl_header;
6382bc90 6422static void register_sched_domain_sysctl(void)
e692ab53
NP
6423{
6424 int i, cpu_num = num_online_cpus();
6425 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6426 char buf[32];
6427
7378547f
MM
6428 WARN_ON(sd_ctl_dir[0].child);
6429 sd_ctl_dir[0].child = entry;
6430
ad1cdc1d
MM
6431 if (entry == NULL)
6432 return;
6433
97b6ea7b 6434 for_each_online_cpu(i) {
e692ab53 6435 snprintf(buf, 32, "cpu%d", i);
e692ab53 6436 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6437 entry->mode = 0555;
e692ab53 6438 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6439 entry++;
e692ab53 6440 }
7378547f
MM
6441
6442 WARN_ON(sd_sysctl_header);
e692ab53
NP
6443 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6444}
6382bc90 6445
7378547f 6446/* may be called multiple times per register */
6382bc90
MM
6447static void unregister_sched_domain_sysctl(void)
6448{
7378547f
MM
6449 if (sd_sysctl_header)
6450 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6451 sd_sysctl_header = NULL;
7378547f
MM
6452 if (sd_ctl_dir[0].child)
6453 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6454}
e692ab53 6455#else
6382bc90
MM
6456static void register_sched_domain_sysctl(void)
6457{
6458}
6459static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6460{
6461}
6462#endif
6463
1f11eb6a
GH
6464static void set_rq_online(struct rq *rq)
6465{
6466 if (!rq->online) {
6467 const struct sched_class *class;
6468
6469 cpu_set(rq->cpu, rq->rd->online);
6470 rq->online = 1;
6471
6472 for_each_class(class) {
6473 if (class->rq_online)
6474 class->rq_online(rq);
6475 }
6476 }
6477}
6478
6479static void set_rq_offline(struct rq *rq)
6480{
6481 if (rq->online) {
6482 const struct sched_class *class;
6483
6484 for_each_class(class) {
6485 if (class->rq_offline)
6486 class->rq_offline(rq);
6487 }
6488
6489 cpu_clear(rq->cpu, rq->rd->online);
6490 rq->online = 0;
6491 }
6492}
6493
1da177e4
LT
6494/*
6495 * migration_call - callback that gets triggered when a CPU is added.
6496 * Here we can start up the necessary migration thread for the new CPU.
6497 */
48f24c4d
IM
6498static int __cpuinit
6499migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6500{
1da177e4 6501 struct task_struct *p;
48f24c4d 6502 int cpu = (long)hcpu;
1da177e4 6503 unsigned long flags;
70b97a7f 6504 struct rq *rq;
1da177e4
LT
6505
6506 switch (action) {
5be9361c 6507
1da177e4 6508 case CPU_UP_PREPARE:
8bb78442 6509 case CPU_UP_PREPARE_FROZEN:
dd41f596 6510 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6511 if (IS_ERR(p))
6512 return NOTIFY_BAD;
1da177e4
LT
6513 kthread_bind(p, cpu);
6514 /* Must be high prio: stop_machine expects to yield to it. */
6515 rq = task_rq_lock(p, &flags);
dd41f596 6516 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6517 task_rq_unlock(rq, &flags);
6518 cpu_rq(cpu)->migration_thread = p;
6519 break;
48f24c4d 6520
1da177e4 6521 case CPU_ONLINE:
8bb78442 6522 case CPU_ONLINE_FROZEN:
3a4fa0a2 6523 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6524 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6525
6526 /* Update our root-domain */
6527 rq = cpu_rq(cpu);
6528 spin_lock_irqsave(&rq->lock, flags);
6529 if (rq->rd) {
6530 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6531
6532 set_rq_online(rq);
1f94ef59
GH
6533 }
6534 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6535 break;
48f24c4d 6536
1da177e4
LT
6537#ifdef CONFIG_HOTPLUG_CPU
6538 case CPU_UP_CANCELED:
8bb78442 6539 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6540 if (!cpu_rq(cpu)->migration_thread)
6541 break;
41a2d6cf 6542 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6543 kthread_bind(cpu_rq(cpu)->migration_thread,
6544 any_online_cpu(cpu_online_map));
1da177e4
LT
6545 kthread_stop(cpu_rq(cpu)->migration_thread);
6546 cpu_rq(cpu)->migration_thread = NULL;
6547 break;
48f24c4d 6548
1da177e4 6549 case CPU_DEAD:
8bb78442 6550 case CPU_DEAD_FROZEN:
470fd646 6551 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6552 migrate_live_tasks(cpu);
6553 rq = cpu_rq(cpu);
6554 kthread_stop(rq->migration_thread);
6555 rq->migration_thread = NULL;
6556 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6557 spin_lock_irq(&rq->lock);
a8e504d2 6558 update_rq_clock(rq);
2e1cb74a 6559 deactivate_task(rq, rq->idle, 0);
1da177e4 6560 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6561 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6562 rq->idle->sched_class = &idle_sched_class;
1da177e4 6563 migrate_dead_tasks(cpu);
d2da272a 6564 spin_unlock_irq(&rq->lock);
470fd646 6565 cpuset_unlock();
1da177e4
LT
6566 migrate_nr_uninterruptible(rq);
6567 BUG_ON(rq->nr_running != 0);
6568
41a2d6cf
IM
6569 /*
6570 * No need to migrate the tasks: it was best-effort if
6571 * they didn't take sched_hotcpu_mutex. Just wake up
6572 * the requestors.
6573 */
1da177e4
LT
6574 spin_lock_irq(&rq->lock);
6575 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6576 struct migration_req *req;
6577
1da177e4 6578 req = list_entry(rq->migration_queue.next,
70b97a7f 6579 struct migration_req, list);
1da177e4
LT
6580 list_del_init(&req->list);
6581 complete(&req->done);
6582 }
6583 spin_unlock_irq(&rq->lock);
6584 break;
57d885fe 6585
08f503b0
GH
6586 case CPU_DYING:
6587 case CPU_DYING_FROZEN:
57d885fe
GH
6588 /* Update our root-domain */
6589 rq = cpu_rq(cpu);
6590 spin_lock_irqsave(&rq->lock, flags);
6591 if (rq->rd) {
6592 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6593 set_rq_offline(rq);
57d885fe
GH
6594 }
6595 spin_unlock_irqrestore(&rq->lock, flags);
6596 break;
1da177e4
LT
6597#endif
6598 }
6599 return NOTIFY_OK;
6600}
6601
6602/* Register at highest priority so that task migration (migrate_all_tasks)
6603 * happens before everything else.
6604 */
26c2143b 6605static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6606 .notifier_call = migration_call,
6607 .priority = 10
6608};
6609
7babe8db 6610static int __init migration_init(void)
1da177e4
LT
6611{
6612 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6613 int err;
48f24c4d
IM
6614
6615 /* Start one for the boot CPU: */
07dccf33
AM
6616 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6617 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6618 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6619 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6620
6621 return err;
1da177e4 6622}
7babe8db 6623early_initcall(migration_init);
1da177e4
LT
6624#endif
6625
6626#ifdef CONFIG_SMP
476f3534 6627
3e9830dc 6628#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6629
099f98c8
GS
6630static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6631{
6632 switch (lvl) {
6633 case SD_LV_NONE:
6634 return "NONE";
6635 case SD_LV_SIBLING:
6636 return "SIBLING";
6637 case SD_LV_MC:
6638 return "MC";
6639 case SD_LV_CPU:
6640 return "CPU";
6641 case SD_LV_NODE:
6642 return "NODE";
6643 case SD_LV_ALLNODES:
6644 return "ALLNODES";
6645 case SD_LV_MAX:
6646 return "MAX";
6647
6648 }
6649 return "MAX";
6650}
6651
7c16ec58
MT
6652static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6653 cpumask_t *groupmask)
1da177e4 6654{
4dcf6aff 6655 struct sched_group *group = sd->groups;
434d53b0 6656 char str[256];
1da177e4 6657
434d53b0 6658 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6659 cpus_clear(*groupmask);
4dcf6aff
IM
6660
6661 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6662
6663 if (!(sd->flags & SD_LOAD_BALANCE)) {
6664 printk("does not load-balance\n");
6665 if (sd->parent)
6666 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6667 " has parent");
6668 return -1;
41c7ce9a
NP
6669 }
6670
099f98c8
GS
6671 printk(KERN_CONT "span %s level %s\n",
6672 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6673
6674 if (!cpu_isset(cpu, sd->span)) {
6675 printk(KERN_ERR "ERROR: domain->span does not contain "
6676 "CPU%d\n", cpu);
6677 }
6678 if (!cpu_isset(cpu, group->cpumask)) {
6679 printk(KERN_ERR "ERROR: domain->groups does not contain"
6680 " CPU%d\n", cpu);
6681 }
1da177e4 6682
4dcf6aff 6683 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6684 do {
4dcf6aff
IM
6685 if (!group) {
6686 printk("\n");
6687 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6688 break;
6689 }
6690
4dcf6aff
IM
6691 if (!group->__cpu_power) {
6692 printk(KERN_CONT "\n");
6693 printk(KERN_ERR "ERROR: domain->cpu_power not "
6694 "set\n");
6695 break;
6696 }
1da177e4 6697
4dcf6aff
IM
6698 if (!cpus_weight(group->cpumask)) {
6699 printk(KERN_CONT "\n");
6700 printk(KERN_ERR "ERROR: empty group\n");
6701 break;
6702 }
1da177e4 6703
7c16ec58 6704 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6705 printk(KERN_CONT "\n");
6706 printk(KERN_ERR "ERROR: repeated CPUs\n");
6707 break;
6708 }
1da177e4 6709
7c16ec58 6710 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6711
434d53b0 6712 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6713 printk(KERN_CONT " %s", str);
1da177e4 6714
4dcf6aff
IM
6715 group = group->next;
6716 } while (group != sd->groups);
6717 printk(KERN_CONT "\n");
1da177e4 6718
7c16ec58 6719 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6720 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6721
7c16ec58 6722 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6723 printk(KERN_ERR "ERROR: parent span is not a superset "
6724 "of domain->span\n");
6725 return 0;
6726}
1da177e4 6727
4dcf6aff
IM
6728static void sched_domain_debug(struct sched_domain *sd, int cpu)
6729{
7c16ec58 6730 cpumask_t *groupmask;
4dcf6aff 6731 int level = 0;
1da177e4 6732
4dcf6aff
IM
6733 if (!sd) {
6734 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6735 return;
6736 }
1da177e4 6737
4dcf6aff
IM
6738 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6739
7c16ec58
MT
6740 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6741 if (!groupmask) {
6742 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6743 return;
6744 }
6745
4dcf6aff 6746 for (;;) {
7c16ec58 6747 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6748 break;
1da177e4
LT
6749 level++;
6750 sd = sd->parent;
33859f7f 6751 if (!sd)
4dcf6aff
IM
6752 break;
6753 }
7c16ec58 6754 kfree(groupmask);
1da177e4 6755}
6d6bc0ad 6756#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6757# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6758#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6759
1a20ff27 6760static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6761{
6762 if (cpus_weight(sd->span) == 1)
6763 return 1;
6764
6765 /* Following flags need at least 2 groups */
6766 if (sd->flags & (SD_LOAD_BALANCE |
6767 SD_BALANCE_NEWIDLE |
6768 SD_BALANCE_FORK |
89c4710e
SS
6769 SD_BALANCE_EXEC |
6770 SD_SHARE_CPUPOWER |
6771 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6772 if (sd->groups != sd->groups->next)
6773 return 0;
6774 }
6775
6776 /* Following flags don't use groups */
6777 if (sd->flags & (SD_WAKE_IDLE |
6778 SD_WAKE_AFFINE |
6779 SD_WAKE_BALANCE))
6780 return 0;
6781
6782 return 1;
6783}
6784
48f24c4d
IM
6785static int
6786sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6787{
6788 unsigned long cflags = sd->flags, pflags = parent->flags;
6789
6790 if (sd_degenerate(parent))
6791 return 1;
6792
6793 if (!cpus_equal(sd->span, parent->span))
6794 return 0;
6795
6796 /* Does parent contain flags not in child? */
6797 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6798 if (cflags & SD_WAKE_AFFINE)
6799 pflags &= ~SD_WAKE_BALANCE;
6800 /* Flags needing groups don't count if only 1 group in parent */
6801 if (parent->groups == parent->groups->next) {
6802 pflags &= ~(SD_LOAD_BALANCE |
6803 SD_BALANCE_NEWIDLE |
6804 SD_BALANCE_FORK |
89c4710e
SS
6805 SD_BALANCE_EXEC |
6806 SD_SHARE_CPUPOWER |
6807 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6808 }
6809 if (~cflags & pflags)
6810 return 0;
6811
6812 return 1;
6813}
6814
57d885fe
GH
6815static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6816{
6817 unsigned long flags;
57d885fe
GH
6818
6819 spin_lock_irqsave(&rq->lock, flags);
6820
6821 if (rq->rd) {
6822 struct root_domain *old_rd = rq->rd;
6823
1f11eb6a
GH
6824 if (cpu_isset(rq->cpu, old_rd->online))
6825 set_rq_offline(rq);
57d885fe 6826
dc938520 6827 cpu_clear(rq->cpu, old_rd->span);
dc938520 6828
57d885fe
GH
6829 if (atomic_dec_and_test(&old_rd->refcount))
6830 kfree(old_rd);
6831 }
6832
6833 atomic_inc(&rd->refcount);
6834 rq->rd = rd;
6835
dc938520 6836 cpu_set(rq->cpu, rd->span);
1f94ef59 6837 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6838 set_rq_online(rq);
57d885fe
GH
6839
6840 spin_unlock_irqrestore(&rq->lock, flags);
6841}
6842
dc938520 6843static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6844{
6845 memset(rd, 0, sizeof(*rd));
6846
dc938520
GH
6847 cpus_clear(rd->span);
6848 cpus_clear(rd->online);
6e0534f2
GH
6849
6850 cpupri_init(&rd->cpupri);
57d885fe
GH
6851}
6852
6853static void init_defrootdomain(void)
6854{
dc938520 6855 init_rootdomain(&def_root_domain);
57d885fe
GH
6856 atomic_set(&def_root_domain.refcount, 1);
6857}
6858
dc938520 6859static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6860{
6861 struct root_domain *rd;
6862
6863 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6864 if (!rd)
6865 return NULL;
6866
dc938520 6867 init_rootdomain(rd);
57d885fe
GH
6868
6869 return rd;
6870}
6871
1da177e4 6872/*
0eab9146 6873 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6874 * hold the hotplug lock.
6875 */
0eab9146
IM
6876static void
6877cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6878{
70b97a7f 6879 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6880 struct sched_domain *tmp;
6881
6882 /* Remove the sched domains which do not contribute to scheduling. */
6883 for (tmp = sd; tmp; tmp = tmp->parent) {
6884 struct sched_domain *parent = tmp->parent;
6885 if (!parent)
6886 break;
1a848870 6887 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6888 tmp->parent = parent->parent;
1a848870
SS
6889 if (parent->parent)
6890 parent->parent->child = tmp;
6891 }
245af2c7
SS
6892 }
6893
1a848870 6894 if (sd && sd_degenerate(sd)) {
245af2c7 6895 sd = sd->parent;
1a848870
SS
6896 if (sd)
6897 sd->child = NULL;
6898 }
1da177e4
LT
6899
6900 sched_domain_debug(sd, cpu);
6901
57d885fe 6902 rq_attach_root(rq, rd);
674311d5 6903 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6904}
6905
6906/* cpus with isolated domains */
67af63a6 6907static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6908
6909/* Setup the mask of cpus configured for isolated domains */
6910static int __init isolated_cpu_setup(char *str)
6911{
13b40c1e
MT
6912 static int __initdata ints[NR_CPUS];
6913 int i;
1da177e4
LT
6914
6915 str = get_options(str, ARRAY_SIZE(ints), ints);
6916 cpus_clear(cpu_isolated_map);
6917 for (i = 1; i <= ints[0]; i++)
6918 if (ints[i] < NR_CPUS)
6919 cpu_set(ints[i], cpu_isolated_map);
6920 return 1;
6921}
6922
8927f494 6923__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6924
6925/*
6711cab4
SS
6926 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6927 * to a function which identifies what group(along with sched group) a CPU
6928 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6929 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6930 *
6931 * init_sched_build_groups will build a circular linked list of the groups
6932 * covered by the given span, and will set each group's ->cpumask correctly,
6933 * and ->cpu_power to 0.
6934 */
a616058b 6935static void
7c16ec58 6936init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6937 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6938 struct sched_group **sg,
6939 cpumask_t *tmpmask),
6940 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6941{
6942 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6943 int i;
6944
7c16ec58
MT
6945 cpus_clear(*covered);
6946
363ab6f1 6947 for_each_cpu_mask_nr(i, *span) {
6711cab4 6948 struct sched_group *sg;
7c16ec58 6949 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6950 int j;
6951
7c16ec58 6952 if (cpu_isset(i, *covered))
1da177e4
LT
6953 continue;
6954
7c16ec58 6955 cpus_clear(sg->cpumask);
5517d86b 6956 sg->__cpu_power = 0;
1da177e4 6957
363ab6f1 6958 for_each_cpu_mask_nr(j, *span) {
7c16ec58 6959 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6960 continue;
6961
7c16ec58 6962 cpu_set(j, *covered);
1da177e4
LT
6963 cpu_set(j, sg->cpumask);
6964 }
6965 if (!first)
6966 first = sg;
6967 if (last)
6968 last->next = sg;
6969 last = sg;
6970 }
6971 last->next = first;
6972}
6973
9c1cfda2 6974#define SD_NODES_PER_DOMAIN 16
1da177e4 6975
9c1cfda2 6976#ifdef CONFIG_NUMA
198e2f18 6977
9c1cfda2
JH
6978/**
6979 * find_next_best_node - find the next node to include in a sched_domain
6980 * @node: node whose sched_domain we're building
6981 * @used_nodes: nodes already in the sched_domain
6982 *
41a2d6cf 6983 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6984 * finds the closest node not already in the @used_nodes map.
6985 *
6986 * Should use nodemask_t.
6987 */
c5f59f08 6988static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6989{
6990 int i, n, val, min_val, best_node = 0;
6991
6992 min_val = INT_MAX;
6993
076ac2af 6994 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6995 /* Start at @node */
076ac2af 6996 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6997
6998 if (!nr_cpus_node(n))
6999 continue;
7000
7001 /* Skip already used nodes */
c5f59f08 7002 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7003 continue;
7004
7005 /* Simple min distance search */
7006 val = node_distance(node, n);
7007
7008 if (val < min_val) {
7009 min_val = val;
7010 best_node = n;
7011 }
7012 }
7013
c5f59f08 7014 node_set(best_node, *used_nodes);
9c1cfda2
JH
7015 return best_node;
7016}
7017
7018/**
7019 * sched_domain_node_span - get a cpumask for a node's sched_domain
7020 * @node: node whose cpumask we're constructing
73486722 7021 * @span: resulting cpumask
9c1cfda2 7022 *
41a2d6cf 7023 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7024 * should be one that prevents unnecessary balancing, but also spreads tasks
7025 * out optimally.
7026 */
4bdbaad3 7027static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 7028{
c5f59f08 7029 nodemask_t used_nodes;
c5f59f08 7030 node_to_cpumask_ptr(nodemask, node);
48f24c4d 7031 int i;
9c1cfda2 7032
4bdbaad3 7033 cpus_clear(*span);
c5f59f08 7034 nodes_clear(used_nodes);
9c1cfda2 7035
4bdbaad3 7036 cpus_or(*span, *span, *nodemask);
c5f59f08 7037 node_set(node, used_nodes);
9c1cfda2
JH
7038
7039 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7040 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7041
c5f59f08 7042 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 7043 cpus_or(*span, *span, *nodemask);
9c1cfda2 7044 }
9c1cfda2 7045}
6d6bc0ad 7046#endif /* CONFIG_NUMA */
9c1cfda2 7047
5c45bf27 7048int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7049
9c1cfda2 7050/*
48f24c4d 7051 * SMT sched-domains:
9c1cfda2 7052 */
1da177e4
LT
7053#ifdef CONFIG_SCHED_SMT
7054static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 7055static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 7056
41a2d6cf 7057static int
7c16ec58
MT
7058cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7059 cpumask_t *unused)
1da177e4 7060{
6711cab4
SS
7061 if (sg)
7062 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
7063 return cpu;
7064}
6d6bc0ad 7065#endif /* CONFIG_SCHED_SMT */
1da177e4 7066
48f24c4d
IM
7067/*
7068 * multi-core sched-domains:
7069 */
1e9f28fa
SS
7070#ifdef CONFIG_SCHED_MC
7071static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 7072static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 7073#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7074
7075#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7076static int
7c16ec58
MT
7077cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7078 cpumask_t *mask)
1e9f28fa 7079{
6711cab4 7080 int group;
7c16ec58
MT
7081
7082 *mask = per_cpu(cpu_sibling_map, cpu);
7083 cpus_and(*mask, *mask, *cpu_map);
7084 group = first_cpu(*mask);
6711cab4
SS
7085 if (sg)
7086 *sg = &per_cpu(sched_group_core, group);
7087 return group;
1e9f28fa
SS
7088}
7089#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7090static int
7c16ec58
MT
7091cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7092 cpumask_t *unused)
1e9f28fa 7093{
6711cab4
SS
7094 if (sg)
7095 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
7096 return cpu;
7097}
7098#endif
7099
1da177e4 7100static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 7101static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 7102
41a2d6cf 7103static int
7c16ec58
MT
7104cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7105 cpumask_t *mask)
1da177e4 7106{
6711cab4 7107 int group;
48f24c4d 7108#ifdef CONFIG_SCHED_MC
7c16ec58
MT
7109 *mask = cpu_coregroup_map(cpu);
7110 cpus_and(*mask, *mask, *cpu_map);
7111 group = first_cpu(*mask);
1e9f28fa 7112#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
7113 *mask = per_cpu(cpu_sibling_map, cpu);
7114 cpus_and(*mask, *mask, *cpu_map);
7115 group = first_cpu(*mask);
1da177e4 7116#else
6711cab4 7117 group = cpu;
1da177e4 7118#endif
6711cab4
SS
7119 if (sg)
7120 *sg = &per_cpu(sched_group_phys, group);
7121 return group;
1da177e4
LT
7122}
7123
7124#ifdef CONFIG_NUMA
1da177e4 7125/*
9c1cfda2
JH
7126 * The init_sched_build_groups can't handle what we want to do with node
7127 * groups, so roll our own. Now each node has its own list of groups which
7128 * gets dynamically allocated.
1da177e4 7129 */
9c1cfda2 7130static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7131static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7132
9c1cfda2 7133static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7134static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7135
6711cab4 7136static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7137 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7138{
6711cab4
SS
7139 int group;
7140
7c16ec58
MT
7141 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7142 cpus_and(*nodemask, *nodemask, *cpu_map);
7143 group = first_cpu(*nodemask);
6711cab4
SS
7144
7145 if (sg)
7146 *sg = &per_cpu(sched_group_allnodes, group);
7147 return group;
1da177e4 7148}
6711cab4 7149
08069033
SS
7150static void init_numa_sched_groups_power(struct sched_group *group_head)
7151{
7152 struct sched_group *sg = group_head;
7153 int j;
7154
7155 if (!sg)
7156 return;
3a5c359a 7157 do {
363ab6f1 7158 for_each_cpu_mask_nr(j, sg->cpumask) {
3a5c359a 7159 struct sched_domain *sd;
08069033 7160
3a5c359a
AK
7161 sd = &per_cpu(phys_domains, j);
7162 if (j != first_cpu(sd->groups->cpumask)) {
7163 /*
7164 * Only add "power" once for each
7165 * physical package.
7166 */
7167 continue;
7168 }
08069033 7169
3a5c359a
AK
7170 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7171 }
7172 sg = sg->next;
7173 } while (sg != group_head);
08069033 7174}
6d6bc0ad 7175#endif /* CONFIG_NUMA */
1da177e4 7176
a616058b 7177#ifdef CONFIG_NUMA
51888ca2 7178/* Free memory allocated for various sched_group structures */
7c16ec58 7179static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7180{
a616058b 7181 int cpu, i;
51888ca2 7182
363ab6f1 7183 for_each_cpu_mask_nr(cpu, *cpu_map) {
51888ca2
SV
7184 struct sched_group **sched_group_nodes
7185 = sched_group_nodes_bycpu[cpu];
7186
51888ca2
SV
7187 if (!sched_group_nodes)
7188 continue;
7189
076ac2af 7190 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7191 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7192
7c16ec58
MT
7193 *nodemask = node_to_cpumask(i);
7194 cpus_and(*nodemask, *nodemask, *cpu_map);
7195 if (cpus_empty(*nodemask))
51888ca2
SV
7196 continue;
7197
7198 if (sg == NULL)
7199 continue;
7200 sg = sg->next;
7201next_sg:
7202 oldsg = sg;
7203 sg = sg->next;
7204 kfree(oldsg);
7205 if (oldsg != sched_group_nodes[i])
7206 goto next_sg;
7207 }
7208 kfree(sched_group_nodes);
7209 sched_group_nodes_bycpu[cpu] = NULL;
7210 }
51888ca2 7211}
6d6bc0ad 7212#else /* !CONFIG_NUMA */
7c16ec58 7213static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7214{
7215}
6d6bc0ad 7216#endif /* CONFIG_NUMA */
51888ca2 7217
89c4710e
SS
7218/*
7219 * Initialize sched groups cpu_power.
7220 *
7221 * cpu_power indicates the capacity of sched group, which is used while
7222 * distributing the load between different sched groups in a sched domain.
7223 * Typically cpu_power for all the groups in a sched domain will be same unless
7224 * there are asymmetries in the topology. If there are asymmetries, group
7225 * having more cpu_power will pickup more load compared to the group having
7226 * less cpu_power.
7227 *
7228 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7229 * the maximum number of tasks a group can handle in the presence of other idle
7230 * or lightly loaded groups in the same sched domain.
7231 */
7232static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7233{
7234 struct sched_domain *child;
7235 struct sched_group *group;
7236
7237 WARN_ON(!sd || !sd->groups);
7238
7239 if (cpu != first_cpu(sd->groups->cpumask))
7240 return;
7241
7242 child = sd->child;
7243
5517d86b
ED
7244 sd->groups->__cpu_power = 0;
7245
89c4710e
SS
7246 /*
7247 * For perf policy, if the groups in child domain share resources
7248 * (for example cores sharing some portions of the cache hierarchy
7249 * or SMT), then set this domain groups cpu_power such that each group
7250 * can handle only one task, when there are other idle groups in the
7251 * same sched domain.
7252 */
7253 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7254 (child->flags &
7255 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7256 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7257 return;
7258 }
7259
89c4710e
SS
7260 /*
7261 * add cpu_power of each child group to this groups cpu_power
7262 */
7263 group = child->groups;
7264 do {
5517d86b 7265 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7266 group = group->next;
7267 } while (group != child->groups);
7268}
7269
7c16ec58
MT
7270/*
7271 * Initializers for schedule domains
7272 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7273 */
7274
a5d8c348
IM
7275#ifdef CONFIG_SCHED_DEBUG
7276# define SD_INIT_NAME(sd, type) sd->name = #type
7277#else
7278# define SD_INIT_NAME(sd, type) do { } while (0)
7279#endif
7280
7c16ec58 7281#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7282
7c16ec58
MT
7283#define SD_INIT_FUNC(type) \
7284static noinline void sd_init_##type(struct sched_domain *sd) \
7285{ \
7286 memset(sd, 0, sizeof(*sd)); \
7287 *sd = SD_##type##_INIT; \
1d3504fc 7288 sd->level = SD_LV_##type; \
a5d8c348 7289 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7290}
7291
7292SD_INIT_FUNC(CPU)
7293#ifdef CONFIG_NUMA
7294 SD_INIT_FUNC(ALLNODES)
7295 SD_INIT_FUNC(NODE)
7296#endif
7297#ifdef CONFIG_SCHED_SMT
7298 SD_INIT_FUNC(SIBLING)
7299#endif
7300#ifdef CONFIG_SCHED_MC
7301 SD_INIT_FUNC(MC)
7302#endif
7303
7304/*
7305 * To minimize stack usage kmalloc room for cpumasks and share the
7306 * space as the usage in build_sched_domains() dictates. Used only
7307 * if the amount of space is significant.
7308 */
7309struct allmasks {
7310 cpumask_t tmpmask; /* make this one first */
7311 union {
7312 cpumask_t nodemask;
7313 cpumask_t this_sibling_map;
7314 cpumask_t this_core_map;
7315 };
7316 cpumask_t send_covered;
7317
7318#ifdef CONFIG_NUMA
7319 cpumask_t domainspan;
7320 cpumask_t covered;
7321 cpumask_t notcovered;
7322#endif
7323};
7324
7325#if NR_CPUS > 128
7326#define SCHED_CPUMASK_ALLOC 1
7327#define SCHED_CPUMASK_FREE(v) kfree(v)
7328#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7329#else
7330#define SCHED_CPUMASK_ALLOC 0
7331#define SCHED_CPUMASK_FREE(v)
7332#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7333#endif
7334
7335#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7336 ((unsigned long)(a) + offsetof(struct allmasks, v))
7337
1d3504fc
HS
7338static int default_relax_domain_level = -1;
7339
7340static int __init setup_relax_domain_level(char *str)
7341{
30e0e178
LZ
7342 unsigned long val;
7343
7344 val = simple_strtoul(str, NULL, 0);
7345 if (val < SD_LV_MAX)
7346 default_relax_domain_level = val;
7347
1d3504fc
HS
7348 return 1;
7349}
7350__setup("relax_domain_level=", setup_relax_domain_level);
7351
7352static void set_domain_attribute(struct sched_domain *sd,
7353 struct sched_domain_attr *attr)
7354{
7355 int request;
7356
7357 if (!attr || attr->relax_domain_level < 0) {
7358 if (default_relax_domain_level < 0)
7359 return;
7360 else
7361 request = default_relax_domain_level;
7362 } else
7363 request = attr->relax_domain_level;
7364 if (request < sd->level) {
7365 /* turn off idle balance on this domain */
7366 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7367 } else {
7368 /* turn on idle balance on this domain */
7369 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7370 }
7371}
7372
1da177e4 7373/*
1a20ff27
DG
7374 * Build sched domains for a given set of cpus and attach the sched domains
7375 * to the individual cpus
1da177e4 7376 */
1d3504fc
HS
7377static int __build_sched_domains(const cpumask_t *cpu_map,
7378 struct sched_domain_attr *attr)
1da177e4
LT
7379{
7380 int i;
57d885fe 7381 struct root_domain *rd;
7c16ec58
MT
7382 SCHED_CPUMASK_DECLARE(allmasks);
7383 cpumask_t *tmpmask;
d1b55138
JH
7384#ifdef CONFIG_NUMA
7385 struct sched_group **sched_group_nodes = NULL;
6711cab4 7386 int sd_allnodes = 0;
d1b55138
JH
7387
7388 /*
7389 * Allocate the per-node list of sched groups
7390 */
076ac2af 7391 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7392 GFP_KERNEL);
d1b55138
JH
7393 if (!sched_group_nodes) {
7394 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7395 return -ENOMEM;
d1b55138 7396 }
d1b55138 7397#endif
1da177e4 7398
dc938520 7399 rd = alloc_rootdomain();
57d885fe
GH
7400 if (!rd) {
7401 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7402#ifdef CONFIG_NUMA
7403 kfree(sched_group_nodes);
7404#endif
57d885fe
GH
7405 return -ENOMEM;
7406 }
7407
7c16ec58
MT
7408#if SCHED_CPUMASK_ALLOC
7409 /* get space for all scratch cpumask variables */
7410 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7411 if (!allmasks) {
7412 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7413 kfree(rd);
7414#ifdef CONFIG_NUMA
7415 kfree(sched_group_nodes);
7416#endif
7417 return -ENOMEM;
7418 }
7419#endif
7420 tmpmask = (cpumask_t *)allmasks;
7421
7422
7423#ifdef CONFIG_NUMA
7424 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7425#endif
7426
1da177e4 7427 /*
1a20ff27 7428 * Set up domains for cpus specified by the cpu_map.
1da177e4 7429 */
363ab6f1 7430 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4 7431 struct sched_domain *sd = NULL, *p;
7c16ec58 7432 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7433
7c16ec58
MT
7434 *nodemask = node_to_cpumask(cpu_to_node(i));
7435 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7436
7437#ifdef CONFIG_NUMA
dd41f596 7438 if (cpus_weight(*cpu_map) >
7c16ec58 7439 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7440 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7441 SD_INIT(sd, ALLNODES);
1d3504fc 7442 set_domain_attribute(sd, attr);
9c1cfda2 7443 sd->span = *cpu_map;
7c16ec58 7444 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7445 p = sd;
6711cab4 7446 sd_allnodes = 1;
9c1cfda2
JH
7447 } else
7448 p = NULL;
7449
1da177e4 7450 sd = &per_cpu(node_domains, i);
7c16ec58 7451 SD_INIT(sd, NODE);
1d3504fc 7452 set_domain_attribute(sd, attr);
4bdbaad3 7453 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7454 sd->parent = p;
1a848870
SS
7455 if (p)
7456 p->child = sd;
9c1cfda2 7457 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7458#endif
7459
7460 p = sd;
7461 sd = &per_cpu(phys_domains, i);
7c16ec58 7462 SD_INIT(sd, CPU);
1d3504fc 7463 set_domain_attribute(sd, attr);
7c16ec58 7464 sd->span = *nodemask;
1da177e4 7465 sd->parent = p;
1a848870
SS
7466 if (p)
7467 p->child = sd;
7c16ec58 7468 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7469
1e9f28fa
SS
7470#ifdef CONFIG_SCHED_MC
7471 p = sd;
7472 sd = &per_cpu(core_domains, i);
7c16ec58 7473 SD_INIT(sd, MC);
1d3504fc 7474 set_domain_attribute(sd, attr);
1e9f28fa
SS
7475 sd->span = cpu_coregroup_map(i);
7476 cpus_and(sd->span, sd->span, *cpu_map);
7477 sd->parent = p;
1a848870 7478 p->child = sd;
7c16ec58 7479 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7480#endif
7481
1da177e4
LT
7482#ifdef CONFIG_SCHED_SMT
7483 p = sd;
7484 sd = &per_cpu(cpu_domains, i);
7c16ec58 7485 SD_INIT(sd, SIBLING);
1d3504fc 7486 set_domain_attribute(sd, attr);
d5a7430d 7487 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7488 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7489 sd->parent = p;
1a848870 7490 p->child = sd;
7c16ec58 7491 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7492#endif
7493 }
7494
7495#ifdef CONFIG_SCHED_SMT
7496 /* Set up CPU (sibling) groups */
363ab6f1 7497 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7498 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7499 SCHED_CPUMASK_VAR(send_covered, allmasks);
7500
7501 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7502 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7503 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7504 continue;
7505
dd41f596 7506 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7507 &cpu_to_cpu_group,
7508 send_covered, tmpmask);
1da177e4
LT
7509 }
7510#endif
7511
1e9f28fa
SS
7512#ifdef CONFIG_SCHED_MC
7513 /* Set up multi-core groups */
363ab6f1 7514 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7515 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7516 SCHED_CPUMASK_VAR(send_covered, allmasks);
7517
7518 *this_core_map = cpu_coregroup_map(i);
7519 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7520 if (i != first_cpu(*this_core_map))
1e9f28fa 7521 continue;
7c16ec58 7522
dd41f596 7523 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7524 &cpu_to_core_group,
7525 send_covered, tmpmask);
1e9f28fa
SS
7526 }
7527#endif
7528
1da177e4 7529 /* Set up physical groups */
076ac2af 7530 for (i = 0; i < nr_node_ids; i++) {
7c16ec58
MT
7531 SCHED_CPUMASK_VAR(nodemask, allmasks);
7532 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7533
7c16ec58
MT
7534 *nodemask = node_to_cpumask(i);
7535 cpus_and(*nodemask, *nodemask, *cpu_map);
7536 if (cpus_empty(*nodemask))
1da177e4
LT
7537 continue;
7538
7c16ec58
MT
7539 init_sched_build_groups(nodemask, cpu_map,
7540 &cpu_to_phys_group,
7541 send_covered, tmpmask);
1da177e4
LT
7542 }
7543
7544#ifdef CONFIG_NUMA
7545 /* Set up node groups */
7c16ec58
MT
7546 if (sd_allnodes) {
7547 SCHED_CPUMASK_VAR(send_covered, allmasks);
7548
7549 init_sched_build_groups(cpu_map, cpu_map,
7550 &cpu_to_allnodes_group,
7551 send_covered, tmpmask);
7552 }
9c1cfda2 7553
076ac2af 7554 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7555 /* Set up node groups */
7556 struct sched_group *sg, *prev;
7c16ec58
MT
7557 SCHED_CPUMASK_VAR(nodemask, allmasks);
7558 SCHED_CPUMASK_VAR(domainspan, allmasks);
7559 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7560 int j;
7561
7c16ec58
MT
7562 *nodemask = node_to_cpumask(i);
7563 cpus_clear(*covered);
7564
7565 cpus_and(*nodemask, *nodemask, *cpu_map);
7566 if (cpus_empty(*nodemask)) {
d1b55138 7567 sched_group_nodes[i] = NULL;
9c1cfda2 7568 continue;
d1b55138 7569 }
9c1cfda2 7570
4bdbaad3 7571 sched_domain_node_span(i, domainspan);
7c16ec58 7572 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7573
15f0b676 7574 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7575 if (!sg) {
7576 printk(KERN_WARNING "Can not alloc domain group for "
7577 "node %d\n", i);
7578 goto error;
7579 }
9c1cfda2 7580 sched_group_nodes[i] = sg;
363ab6f1 7581 for_each_cpu_mask_nr(j, *nodemask) {
9c1cfda2 7582 struct sched_domain *sd;
9761eea8 7583
9c1cfda2
JH
7584 sd = &per_cpu(node_domains, j);
7585 sd->groups = sg;
9c1cfda2 7586 }
5517d86b 7587 sg->__cpu_power = 0;
7c16ec58 7588 sg->cpumask = *nodemask;
51888ca2 7589 sg->next = sg;
7c16ec58 7590 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7591 prev = sg;
7592
076ac2af 7593 for (j = 0; j < nr_node_ids; j++) {
7c16ec58 7594 SCHED_CPUMASK_VAR(notcovered, allmasks);
076ac2af 7595 int n = (i + j) % nr_node_ids;
c5f59f08 7596 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7597
7c16ec58
MT
7598 cpus_complement(*notcovered, *covered);
7599 cpus_and(*tmpmask, *notcovered, *cpu_map);
7600 cpus_and(*tmpmask, *tmpmask, *domainspan);
7601 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7602 break;
7603
7c16ec58
MT
7604 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7605 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7606 continue;
7607
15f0b676
SV
7608 sg = kmalloc_node(sizeof(struct sched_group),
7609 GFP_KERNEL, i);
9c1cfda2
JH
7610 if (!sg) {
7611 printk(KERN_WARNING
7612 "Can not alloc domain group for node %d\n", j);
51888ca2 7613 goto error;
9c1cfda2 7614 }
5517d86b 7615 sg->__cpu_power = 0;
7c16ec58 7616 sg->cpumask = *tmpmask;
51888ca2 7617 sg->next = prev->next;
7c16ec58 7618 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7619 prev->next = sg;
7620 prev = sg;
7621 }
9c1cfda2 7622 }
1da177e4
LT
7623#endif
7624
7625 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7626#ifdef CONFIG_SCHED_SMT
363ab6f1 7627 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7628 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7629
89c4710e 7630 init_sched_groups_power(i, sd);
5c45bf27 7631 }
1da177e4 7632#endif
1e9f28fa 7633#ifdef CONFIG_SCHED_MC
363ab6f1 7634 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7635 struct sched_domain *sd = &per_cpu(core_domains, i);
7636
89c4710e 7637 init_sched_groups_power(i, sd);
5c45bf27
SS
7638 }
7639#endif
1e9f28fa 7640
363ab6f1 7641 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7642 struct sched_domain *sd = &per_cpu(phys_domains, i);
7643
89c4710e 7644 init_sched_groups_power(i, sd);
1da177e4
LT
7645 }
7646
9c1cfda2 7647#ifdef CONFIG_NUMA
076ac2af 7648 for (i = 0; i < nr_node_ids; i++)
08069033 7649 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7650
6711cab4
SS
7651 if (sd_allnodes) {
7652 struct sched_group *sg;
f712c0c7 7653
7c16ec58
MT
7654 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7655 tmpmask);
f712c0c7
SS
7656 init_numa_sched_groups_power(sg);
7657 }
9c1cfda2
JH
7658#endif
7659
1da177e4 7660 /* Attach the domains */
363ab6f1 7661 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4
LT
7662 struct sched_domain *sd;
7663#ifdef CONFIG_SCHED_SMT
7664 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7665#elif defined(CONFIG_SCHED_MC)
7666 sd = &per_cpu(core_domains, i);
1da177e4
LT
7667#else
7668 sd = &per_cpu(phys_domains, i);
7669#endif
57d885fe 7670 cpu_attach_domain(sd, rd, i);
1da177e4 7671 }
51888ca2 7672
7c16ec58 7673 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7674 return 0;
7675
a616058b 7676#ifdef CONFIG_NUMA
51888ca2 7677error:
7c16ec58
MT
7678 free_sched_groups(cpu_map, tmpmask);
7679 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7680 return -ENOMEM;
a616058b 7681#endif
1da177e4 7682}
029190c5 7683
1d3504fc
HS
7684static int build_sched_domains(const cpumask_t *cpu_map)
7685{
7686 return __build_sched_domains(cpu_map, NULL);
7687}
7688
029190c5
PJ
7689static cpumask_t *doms_cur; /* current sched domains */
7690static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7691static struct sched_domain_attr *dattr_cur;
7692 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7693
7694/*
7695 * Special case: If a kmalloc of a doms_cur partition (array of
7696 * cpumask_t) fails, then fallback to a single sched domain,
7697 * as determined by the single cpumask_t fallback_doms.
7698 */
7699static cpumask_t fallback_doms;
7700
22e52b07
HC
7701void __attribute__((weak)) arch_update_cpu_topology(void)
7702{
7703}
7704
1a20ff27 7705/*
41a2d6cf 7706 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7707 * For now this just excludes isolated cpus, but could be used to
7708 * exclude other special cases in the future.
1a20ff27 7709 */
51888ca2 7710static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7711{
7378547f
MM
7712 int err;
7713
22e52b07 7714 arch_update_cpu_topology();
029190c5
PJ
7715 ndoms_cur = 1;
7716 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7717 if (!doms_cur)
7718 doms_cur = &fallback_doms;
7719 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7720 dattr_cur = NULL;
7378547f 7721 err = build_sched_domains(doms_cur);
6382bc90 7722 register_sched_domain_sysctl();
7378547f
MM
7723
7724 return err;
1a20ff27
DG
7725}
7726
7c16ec58
MT
7727static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7728 cpumask_t *tmpmask)
1da177e4 7729{
7c16ec58 7730 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7731}
1da177e4 7732
1a20ff27
DG
7733/*
7734 * Detach sched domains from a group of cpus specified in cpu_map
7735 * These cpus will now be attached to the NULL domain
7736 */
858119e1 7737static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7738{
7c16ec58 7739 cpumask_t tmpmask;
1a20ff27
DG
7740 int i;
7741
6382bc90
MM
7742 unregister_sched_domain_sysctl();
7743
363ab6f1 7744 for_each_cpu_mask_nr(i, *cpu_map)
57d885fe 7745 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7746 synchronize_sched();
7c16ec58 7747 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7748}
7749
1d3504fc
HS
7750/* handle null as "default" */
7751static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7752 struct sched_domain_attr *new, int idx_new)
7753{
7754 struct sched_domain_attr tmp;
7755
7756 /* fast path */
7757 if (!new && !cur)
7758 return 1;
7759
7760 tmp = SD_ATTR_INIT;
7761 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7762 new ? (new + idx_new) : &tmp,
7763 sizeof(struct sched_domain_attr));
7764}
7765
029190c5
PJ
7766/*
7767 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7768 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7769 * doms_new[] to the current sched domain partitioning, doms_cur[].
7770 * It destroys each deleted domain and builds each new domain.
7771 *
7772 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7773 * The masks don't intersect (don't overlap.) We should setup one
7774 * sched domain for each mask. CPUs not in any of the cpumasks will
7775 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7776 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7777 * it as it is.
7778 *
41a2d6cf
IM
7779 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7780 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7781 * failed the kmalloc call, then it can pass in doms_new == NULL,
7782 * and partition_sched_domains() will fallback to the single partition
e761b772 7783 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7784 *
dfb512ec
MK
7785 * If doms_new==NULL it will be replaced with cpu_online_map.
7786 * ndoms_new==0 is a special case for destroying existing domains.
7787 * It will not create the default domain.
7788 *
029190c5
PJ
7789 * Call with hotplug lock held
7790 */
1d3504fc
HS
7791void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7792 struct sched_domain_attr *dattr_new)
029190c5 7793{
dfb512ec 7794 int i, j, n;
029190c5 7795
712555ee 7796 mutex_lock(&sched_domains_mutex);
a1835615 7797
7378547f
MM
7798 /* always unregister in case we don't destroy any domains */
7799 unregister_sched_domain_sysctl();
7800
dfb512ec 7801 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7802
7803 /* Destroy deleted domains */
7804 for (i = 0; i < ndoms_cur; i++) {
dfb512ec 7805 for (j = 0; j < n; j++) {
1d3504fc
HS
7806 if (cpus_equal(doms_cur[i], doms_new[j])
7807 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7808 goto match1;
7809 }
7810 /* no match - a current sched domain not in new doms_new[] */
7811 detach_destroy_domains(doms_cur + i);
7812match1:
7813 ;
7814 }
7815
e761b772
MK
7816 if (doms_new == NULL) {
7817 ndoms_cur = 0;
e761b772
MK
7818 doms_new = &fallback_doms;
7819 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7820 dattr_new = NULL;
7821 }
7822
029190c5
PJ
7823 /* Build new domains */
7824 for (i = 0; i < ndoms_new; i++) {
7825 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7826 if (cpus_equal(doms_new[i], doms_cur[j])
7827 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7828 goto match2;
7829 }
7830 /* no match - add a new doms_new */
1d3504fc
HS
7831 __build_sched_domains(doms_new + i,
7832 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7833match2:
7834 ;
7835 }
7836
7837 /* Remember the new sched domains */
7838 if (doms_cur != &fallback_doms)
7839 kfree(doms_cur);
1d3504fc 7840 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7841 doms_cur = doms_new;
1d3504fc 7842 dattr_cur = dattr_new;
029190c5 7843 ndoms_cur = ndoms_new;
7378547f
MM
7844
7845 register_sched_domain_sysctl();
a1835615 7846
712555ee 7847 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7848}
7849
5c45bf27 7850#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7851int arch_reinit_sched_domains(void)
5c45bf27 7852{
95402b38 7853 get_online_cpus();
dfb512ec
MK
7854
7855 /* Destroy domains first to force the rebuild */
7856 partition_sched_domains(0, NULL, NULL);
7857
e761b772 7858 rebuild_sched_domains();
95402b38 7859 put_online_cpus();
dfb512ec 7860
e761b772 7861 return 0;
5c45bf27
SS
7862}
7863
7864static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7865{
7866 int ret;
7867
7868 if (buf[0] != '0' && buf[0] != '1')
7869 return -EINVAL;
7870
7871 if (smt)
7872 sched_smt_power_savings = (buf[0] == '1');
7873 else
7874 sched_mc_power_savings = (buf[0] == '1');
7875
7876 ret = arch_reinit_sched_domains();
7877
7878 return ret ? ret : count;
7879}
7880
5c45bf27 7881#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7882static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7883 char *page)
5c45bf27
SS
7884{
7885 return sprintf(page, "%u\n", sched_mc_power_savings);
7886}
f718cd4a 7887static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7888 const char *buf, size_t count)
5c45bf27
SS
7889{
7890 return sched_power_savings_store(buf, count, 0);
7891}
f718cd4a
AK
7892static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7893 sched_mc_power_savings_show,
7894 sched_mc_power_savings_store);
5c45bf27
SS
7895#endif
7896
7897#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7898static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7899 char *page)
5c45bf27
SS
7900{
7901 return sprintf(page, "%u\n", sched_smt_power_savings);
7902}
f718cd4a 7903static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7904 const char *buf, size_t count)
5c45bf27
SS
7905{
7906 return sched_power_savings_store(buf, count, 1);
7907}
f718cd4a
AK
7908static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7909 sched_smt_power_savings_show,
6707de00
AB
7910 sched_smt_power_savings_store);
7911#endif
7912
7913int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7914{
7915 int err = 0;
7916
7917#ifdef CONFIG_SCHED_SMT
7918 if (smt_capable())
7919 err = sysfs_create_file(&cls->kset.kobj,
7920 &attr_sched_smt_power_savings.attr);
7921#endif
7922#ifdef CONFIG_SCHED_MC
7923 if (!err && mc_capable())
7924 err = sysfs_create_file(&cls->kset.kobj,
7925 &attr_sched_mc_power_savings.attr);
7926#endif
7927 return err;
7928}
6d6bc0ad 7929#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7930
e761b772 7931#ifndef CONFIG_CPUSETS
1da177e4 7932/*
e761b772
MK
7933 * Add online and remove offline CPUs from the scheduler domains.
7934 * When cpusets are enabled they take over this function.
1da177e4
LT
7935 */
7936static int update_sched_domains(struct notifier_block *nfb,
7937 unsigned long action, void *hcpu)
e761b772
MK
7938{
7939 switch (action) {
7940 case CPU_ONLINE:
7941 case CPU_ONLINE_FROZEN:
7942 case CPU_DEAD:
7943 case CPU_DEAD_FROZEN:
dfb512ec 7944 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7945 return NOTIFY_OK;
7946
7947 default:
7948 return NOTIFY_DONE;
7949 }
7950}
7951#endif
7952
7953static int update_runtime(struct notifier_block *nfb,
7954 unsigned long action, void *hcpu)
1da177e4 7955{
7def2be1
PZ
7956 int cpu = (int)(long)hcpu;
7957
1da177e4 7958 switch (action) {
1da177e4 7959 case CPU_DOWN_PREPARE:
8bb78442 7960 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7961 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7962 return NOTIFY_OK;
7963
1da177e4 7964 case CPU_DOWN_FAILED:
8bb78442 7965 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7966 case CPU_ONLINE:
8bb78442 7967 case CPU_ONLINE_FROZEN:
7def2be1 7968 enable_runtime(cpu_rq(cpu));
e761b772
MK
7969 return NOTIFY_OK;
7970
1da177e4
LT
7971 default:
7972 return NOTIFY_DONE;
7973 }
1da177e4 7974}
1da177e4
LT
7975
7976void __init sched_init_smp(void)
7977{
5c1e1767
NP
7978 cpumask_t non_isolated_cpus;
7979
434d53b0
MT
7980#if defined(CONFIG_NUMA)
7981 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7982 GFP_KERNEL);
7983 BUG_ON(sched_group_nodes_bycpu == NULL);
7984#endif
95402b38 7985 get_online_cpus();
712555ee 7986 mutex_lock(&sched_domains_mutex);
1a20ff27 7987 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7988 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7989 if (cpus_empty(non_isolated_cpus))
7990 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7991 mutex_unlock(&sched_domains_mutex);
95402b38 7992 put_online_cpus();
e761b772
MK
7993
7994#ifndef CONFIG_CPUSETS
1da177e4
LT
7995 /* XXX: Theoretical race here - CPU may be hotplugged now */
7996 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7997#endif
7998
7999 /* RT runtime code needs to handle some hotplug events */
8000 hotcpu_notifier(update_runtime, 0);
8001
b328ca18 8002 init_hrtick();
5c1e1767
NP
8003
8004 /* Move init over to a non-isolated CPU */
7c16ec58 8005 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 8006 BUG();
19978ca6 8007 sched_init_granularity();
1da177e4
LT
8008}
8009#else
8010void __init sched_init_smp(void)
8011{
19978ca6 8012 sched_init_granularity();
1da177e4
LT
8013}
8014#endif /* CONFIG_SMP */
8015
8016int in_sched_functions(unsigned long addr)
8017{
1da177e4
LT
8018 return in_lock_functions(addr) ||
8019 (addr >= (unsigned long)__sched_text_start
8020 && addr < (unsigned long)__sched_text_end);
8021}
8022
a9957449 8023static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8024{
8025 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8026 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8027#ifdef CONFIG_FAIR_GROUP_SCHED
8028 cfs_rq->rq = rq;
8029#endif
67e9fb2a 8030 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8031}
8032
fa85ae24
PZ
8033static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8034{
8035 struct rt_prio_array *array;
8036 int i;
8037
8038 array = &rt_rq->active;
8039 for (i = 0; i < MAX_RT_PRIO; i++) {
8040 INIT_LIST_HEAD(array->queue + i);
8041 __clear_bit(i, array->bitmap);
8042 }
8043 /* delimiter for bitsearch: */
8044 __set_bit(MAX_RT_PRIO, array->bitmap);
8045
052f1dc7 8046#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8047 rt_rq->highest_prio = MAX_RT_PRIO;
8048#endif
fa85ae24
PZ
8049#ifdef CONFIG_SMP
8050 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8051 rt_rq->overloaded = 0;
8052#endif
8053
8054 rt_rq->rt_time = 0;
8055 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8056 rt_rq->rt_runtime = 0;
8057 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8058
052f1dc7 8059#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8060 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8061 rt_rq->rq = rq;
8062#endif
fa85ae24
PZ
8063}
8064
6f505b16 8065#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8066static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8067 struct sched_entity *se, int cpu, int add,
8068 struct sched_entity *parent)
6f505b16 8069{
ec7dc8ac 8070 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8071 tg->cfs_rq[cpu] = cfs_rq;
8072 init_cfs_rq(cfs_rq, rq);
8073 cfs_rq->tg = tg;
8074 if (add)
8075 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8076
8077 tg->se[cpu] = se;
354d60c2
DG
8078 /* se could be NULL for init_task_group */
8079 if (!se)
8080 return;
8081
ec7dc8ac
DG
8082 if (!parent)
8083 se->cfs_rq = &rq->cfs;
8084 else
8085 se->cfs_rq = parent->my_q;
8086
6f505b16
PZ
8087 se->my_q = cfs_rq;
8088 se->load.weight = tg->shares;
e05510d0 8089 se->load.inv_weight = 0;
ec7dc8ac 8090 se->parent = parent;
6f505b16 8091}
052f1dc7 8092#endif
6f505b16 8093
052f1dc7 8094#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8095static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8096 struct sched_rt_entity *rt_se, int cpu, int add,
8097 struct sched_rt_entity *parent)
6f505b16 8098{
ec7dc8ac
DG
8099 struct rq *rq = cpu_rq(cpu);
8100
6f505b16
PZ
8101 tg->rt_rq[cpu] = rt_rq;
8102 init_rt_rq(rt_rq, rq);
8103 rt_rq->tg = tg;
8104 rt_rq->rt_se = rt_se;
ac086bc2 8105 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8106 if (add)
8107 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8108
8109 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8110 if (!rt_se)
8111 return;
8112
ec7dc8ac
DG
8113 if (!parent)
8114 rt_se->rt_rq = &rq->rt;
8115 else
8116 rt_se->rt_rq = parent->my_q;
8117
6f505b16 8118 rt_se->my_q = rt_rq;
ec7dc8ac 8119 rt_se->parent = parent;
6f505b16
PZ
8120 INIT_LIST_HEAD(&rt_se->run_list);
8121}
8122#endif
8123
1da177e4
LT
8124void __init sched_init(void)
8125{
dd41f596 8126 int i, j;
434d53b0
MT
8127 unsigned long alloc_size = 0, ptr;
8128
8129#ifdef CONFIG_FAIR_GROUP_SCHED
8130 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8131#endif
8132#ifdef CONFIG_RT_GROUP_SCHED
8133 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8134#endif
8135#ifdef CONFIG_USER_SCHED
8136 alloc_size *= 2;
434d53b0
MT
8137#endif
8138 /*
8139 * As sched_init() is called before page_alloc is setup,
8140 * we use alloc_bootmem().
8141 */
8142 if (alloc_size) {
5a9d3225 8143 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8144
8145#ifdef CONFIG_FAIR_GROUP_SCHED
8146 init_task_group.se = (struct sched_entity **)ptr;
8147 ptr += nr_cpu_ids * sizeof(void **);
8148
8149 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8150 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8151
8152#ifdef CONFIG_USER_SCHED
8153 root_task_group.se = (struct sched_entity **)ptr;
8154 ptr += nr_cpu_ids * sizeof(void **);
8155
8156 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8157 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8158#endif /* CONFIG_USER_SCHED */
8159#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8160#ifdef CONFIG_RT_GROUP_SCHED
8161 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8162 ptr += nr_cpu_ids * sizeof(void **);
8163
8164 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8165 ptr += nr_cpu_ids * sizeof(void **);
8166
8167#ifdef CONFIG_USER_SCHED
8168 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8169 ptr += nr_cpu_ids * sizeof(void **);
8170
8171 root_task_group.rt_rq = (struct rt_rq **)ptr;
8172 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8173#endif /* CONFIG_USER_SCHED */
8174#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8175 }
dd41f596 8176
57d885fe
GH
8177#ifdef CONFIG_SMP
8178 init_defrootdomain();
8179#endif
8180
d0b27fa7
PZ
8181 init_rt_bandwidth(&def_rt_bandwidth,
8182 global_rt_period(), global_rt_runtime());
8183
8184#ifdef CONFIG_RT_GROUP_SCHED
8185 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8186 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8187#ifdef CONFIG_USER_SCHED
8188 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8189 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8190#endif /* CONFIG_USER_SCHED */
8191#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8192
052f1dc7 8193#ifdef CONFIG_GROUP_SCHED
6f505b16 8194 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8195 INIT_LIST_HEAD(&init_task_group.children);
8196
8197#ifdef CONFIG_USER_SCHED
8198 INIT_LIST_HEAD(&root_task_group.children);
8199 init_task_group.parent = &root_task_group;
8200 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8201#endif /* CONFIG_USER_SCHED */
8202#endif /* CONFIG_GROUP_SCHED */
6f505b16 8203
0a945022 8204 for_each_possible_cpu(i) {
70b97a7f 8205 struct rq *rq;
1da177e4
LT
8206
8207 rq = cpu_rq(i);
8208 spin_lock_init(&rq->lock);
7897986b 8209 rq->nr_running = 0;
dd41f596 8210 init_cfs_rq(&rq->cfs, rq);
6f505b16 8211 init_rt_rq(&rq->rt, rq);
dd41f596 8212#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8213 init_task_group.shares = init_task_group_load;
6f505b16 8214 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8215#ifdef CONFIG_CGROUP_SCHED
8216 /*
8217 * How much cpu bandwidth does init_task_group get?
8218 *
8219 * In case of task-groups formed thr' the cgroup filesystem, it
8220 * gets 100% of the cpu resources in the system. This overall
8221 * system cpu resource is divided among the tasks of
8222 * init_task_group and its child task-groups in a fair manner,
8223 * based on each entity's (task or task-group's) weight
8224 * (se->load.weight).
8225 *
8226 * In other words, if init_task_group has 10 tasks of weight
8227 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8228 * then A0's share of the cpu resource is:
8229 *
8230 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8231 *
8232 * We achieve this by letting init_task_group's tasks sit
8233 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8234 */
ec7dc8ac 8235 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8236#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8237 root_task_group.shares = NICE_0_LOAD;
8238 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8239 /*
8240 * In case of task-groups formed thr' the user id of tasks,
8241 * init_task_group represents tasks belonging to root user.
8242 * Hence it forms a sibling of all subsequent groups formed.
8243 * In this case, init_task_group gets only a fraction of overall
8244 * system cpu resource, based on the weight assigned to root
8245 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8246 * by letting tasks of init_task_group sit in a separate cfs_rq
8247 * (init_cfs_rq) and having one entity represent this group of
8248 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8249 */
ec7dc8ac 8250 init_tg_cfs_entry(&init_task_group,
6f505b16 8251 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8252 &per_cpu(init_sched_entity, i), i, 1,
8253 root_task_group.se[i]);
6f505b16 8254
052f1dc7 8255#endif
354d60c2
DG
8256#endif /* CONFIG_FAIR_GROUP_SCHED */
8257
8258 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8259#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8260 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8261#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8262 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8263#elif defined CONFIG_USER_SCHED
eff766a6 8264 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8265 init_tg_rt_entry(&init_task_group,
6f505b16 8266 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8267 &per_cpu(init_sched_rt_entity, i), i, 1,
8268 root_task_group.rt_se[i]);
354d60c2 8269#endif
dd41f596 8270#endif
1da177e4 8271
dd41f596
IM
8272 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8273 rq->cpu_load[j] = 0;
1da177e4 8274#ifdef CONFIG_SMP
41c7ce9a 8275 rq->sd = NULL;
57d885fe 8276 rq->rd = NULL;
1da177e4 8277 rq->active_balance = 0;
dd41f596 8278 rq->next_balance = jiffies;
1da177e4 8279 rq->push_cpu = 0;
0a2966b4 8280 rq->cpu = i;
1f11eb6a 8281 rq->online = 0;
1da177e4
LT
8282 rq->migration_thread = NULL;
8283 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8284 rq_attach_root(rq, &def_root_domain);
1da177e4 8285#endif
8f4d37ec 8286 init_rq_hrtick(rq);
1da177e4 8287 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8288 }
8289
2dd73a4f 8290 set_load_weight(&init_task);
b50f60ce 8291
e107be36
AK
8292#ifdef CONFIG_PREEMPT_NOTIFIERS
8293 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8294#endif
8295
c9819f45 8296#ifdef CONFIG_SMP
962cf36c 8297 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8298#endif
8299
b50f60ce
HC
8300#ifdef CONFIG_RT_MUTEXES
8301 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8302#endif
8303
1da177e4
LT
8304 /*
8305 * The boot idle thread does lazy MMU switching as well:
8306 */
8307 atomic_inc(&init_mm.mm_count);
8308 enter_lazy_tlb(&init_mm, current);
8309
8310 /*
8311 * Make us the idle thread. Technically, schedule() should not be
8312 * called from this thread, however somewhere below it might be,
8313 * but because we are the idle thread, we just pick up running again
8314 * when this runqueue becomes "idle".
8315 */
8316 init_idle(current, smp_processor_id());
dd41f596
IM
8317 /*
8318 * During early bootup we pretend to be a normal task:
8319 */
8320 current->sched_class = &fair_sched_class;
6892b75e
IM
8321
8322 scheduler_running = 1;
1da177e4
LT
8323}
8324
8325#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8326void __might_sleep(char *file, int line)
8327{
48f24c4d 8328#ifdef in_atomic
1da177e4
LT
8329 static unsigned long prev_jiffy; /* ratelimiting */
8330
aef745fc
IM
8331 if ((!in_atomic() && !irqs_disabled()) ||
8332 system_state != SYSTEM_RUNNING || oops_in_progress)
8333 return;
8334 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8335 return;
8336 prev_jiffy = jiffies;
8337
8338 printk(KERN_ERR
8339 "BUG: sleeping function called from invalid context at %s:%d\n",
8340 file, line);
8341 printk(KERN_ERR
8342 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8343 in_atomic(), irqs_disabled(),
8344 current->pid, current->comm);
8345
8346 debug_show_held_locks(current);
8347 if (irqs_disabled())
8348 print_irqtrace_events(current);
8349 dump_stack();
1da177e4
LT
8350#endif
8351}
8352EXPORT_SYMBOL(__might_sleep);
8353#endif
8354
8355#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8356static void normalize_task(struct rq *rq, struct task_struct *p)
8357{
8358 int on_rq;
3e51f33f 8359
3a5e4dc1
AK
8360 update_rq_clock(rq);
8361 on_rq = p->se.on_rq;
8362 if (on_rq)
8363 deactivate_task(rq, p, 0);
8364 __setscheduler(rq, p, SCHED_NORMAL, 0);
8365 if (on_rq) {
8366 activate_task(rq, p, 0);
8367 resched_task(rq->curr);
8368 }
8369}
8370
1da177e4
LT
8371void normalize_rt_tasks(void)
8372{
a0f98a1c 8373 struct task_struct *g, *p;
1da177e4 8374 unsigned long flags;
70b97a7f 8375 struct rq *rq;
1da177e4 8376
4cf5d77a 8377 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8378 do_each_thread(g, p) {
178be793
IM
8379 /*
8380 * Only normalize user tasks:
8381 */
8382 if (!p->mm)
8383 continue;
8384
6cfb0d5d 8385 p->se.exec_start = 0;
6cfb0d5d 8386#ifdef CONFIG_SCHEDSTATS
dd41f596 8387 p->se.wait_start = 0;
dd41f596 8388 p->se.sleep_start = 0;
dd41f596 8389 p->se.block_start = 0;
6cfb0d5d 8390#endif
dd41f596
IM
8391
8392 if (!rt_task(p)) {
8393 /*
8394 * Renice negative nice level userspace
8395 * tasks back to 0:
8396 */
8397 if (TASK_NICE(p) < 0 && p->mm)
8398 set_user_nice(p, 0);
1da177e4 8399 continue;
dd41f596 8400 }
1da177e4 8401
4cf5d77a 8402 spin_lock(&p->pi_lock);
b29739f9 8403 rq = __task_rq_lock(p);
1da177e4 8404
178be793 8405 normalize_task(rq, p);
3a5e4dc1 8406
b29739f9 8407 __task_rq_unlock(rq);
4cf5d77a 8408 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8409 } while_each_thread(g, p);
8410
4cf5d77a 8411 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8412}
8413
8414#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8415
8416#ifdef CONFIG_IA64
8417/*
8418 * These functions are only useful for the IA64 MCA handling.
8419 *
8420 * They can only be called when the whole system has been
8421 * stopped - every CPU needs to be quiescent, and no scheduling
8422 * activity can take place. Using them for anything else would
8423 * be a serious bug, and as a result, they aren't even visible
8424 * under any other configuration.
8425 */
8426
8427/**
8428 * curr_task - return the current task for a given cpu.
8429 * @cpu: the processor in question.
8430 *
8431 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8432 */
36c8b586 8433struct task_struct *curr_task(int cpu)
1df5c10a
LT
8434{
8435 return cpu_curr(cpu);
8436}
8437
8438/**
8439 * set_curr_task - set the current task for a given cpu.
8440 * @cpu: the processor in question.
8441 * @p: the task pointer to set.
8442 *
8443 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8444 * are serviced on a separate stack. It allows the architecture to switch the
8445 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8446 * must be called with all CPU's synchronized, and interrupts disabled, the
8447 * and caller must save the original value of the current task (see
8448 * curr_task() above) and restore that value before reenabling interrupts and
8449 * re-starting the system.
8450 *
8451 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8452 */
36c8b586 8453void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8454{
8455 cpu_curr(cpu) = p;
8456}
8457
8458#endif
29f59db3 8459
bccbe08a
PZ
8460#ifdef CONFIG_FAIR_GROUP_SCHED
8461static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8462{
8463 int i;
8464
8465 for_each_possible_cpu(i) {
8466 if (tg->cfs_rq)
8467 kfree(tg->cfs_rq[i]);
8468 if (tg->se)
8469 kfree(tg->se[i]);
6f505b16
PZ
8470 }
8471
8472 kfree(tg->cfs_rq);
8473 kfree(tg->se);
6f505b16
PZ
8474}
8475
ec7dc8ac
DG
8476static
8477int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8478{
29f59db3 8479 struct cfs_rq *cfs_rq;
ec7dc8ac 8480 struct sched_entity *se, *parent_se;
9b5b7751 8481 struct rq *rq;
29f59db3
SV
8482 int i;
8483
434d53b0 8484 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8485 if (!tg->cfs_rq)
8486 goto err;
434d53b0 8487 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8488 if (!tg->se)
8489 goto err;
052f1dc7
PZ
8490
8491 tg->shares = NICE_0_LOAD;
29f59db3
SV
8492
8493 for_each_possible_cpu(i) {
9b5b7751 8494 rq = cpu_rq(i);
29f59db3 8495
6f505b16
PZ
8496 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8497 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8498 if (!cfs_rq)
8499 goto err;
8500
6f505b16
PZ
8501 se = kmalloc_node(sizeof(struct sched_entity),
8502 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8503 if (!se)
8504 goto err;
8505
ec7dc8ac
DG
8506 parent_se = parent ? parent->se[i] : NULL;
8507 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8508 }
8509
8510 return 1;
8511
8512 err:
8513 return 0;
8514}
8515
8516static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8517{
8518 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8519 &cpu_rq(cpu)->leaf_cfs_rq_list);
8520}
8521
8522static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8523{
8524 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8525}
6d6bc0ad 8526#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8527static inline void free_fair_sched_group(struct task_group *tg)
8528{
8529}
8530
ec7dc8ac
DG
8531static inline
8532int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8533{
8534 return 1;
8535}
8536
8537static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8538{
8539}
8540
8541static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8542{
8543}
6d6bc0ad 8544#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8545
8546#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8547static void free_rt_sched_group(struct task_group *tg)
8548{
8549 int i;
8550
d0b27fa7
PZ
8551 destroy_rt_bandwidth(&tg->rt_bandwidth);
8552
bccbe08a
PZ
8553 for_each_possible_cpu(i) {
8554 if (tg->rt_rq)
8555 kfree(tg->rt_rq[i]);
8556 if (tg->rt_se)
8557 kfree(tg->rt_se[i]);
8558 }
8559
8560 kfree(tg->rt_rq);
8561 kfree(tg->rt_se);
8562}
8563
ec7dc8ac
DG
8564static
8565int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8566{
8567 struct rt_rq *rt_rq;
ec7dc8ac 8568 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8569 struct rq *rq;
8570 int i;
8571
434d53b0 8572 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8573 if (!tg->rt_rq)
8574 goto err;
434d53b0 8575 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8576 if (!tg->rt_se)
8577 goto err;
8578
d0b27fa7
PZ
8579 init_rt_bandwidth(&tg->rt_bandwidth,
8580 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8581
8582 for_each_possible_cpu(i) {
8583 rq = cpu_rq(i);
8584
6f505b16
PZ
8585 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8586 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8587 if (!rt_rq)
8588 goto err;
29f59db3 8589
6f505b16
PZ
8590 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8591 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8592 if (!rt_se)
8593 goto err;
29f59db3 8594
ec7dc8ac
DG
8595 parent_se = parent ? parent->rt_se[i] : NULL;
8596 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8597 }
8598
bccbe08a
PZ
8599 return 1;
8600
8601 err:
8602 return 0;
8603}
8604
8605static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8606{
8607 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8608 &cpu_rq(cpu)->leaf_rt_rq_list);
8609}
8610
8611static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8612{
8613 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8614}
6d6bc0ad 8615#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8616static inline void free_rt_sched_group(struct task_group *tg)
8617{
8618}
8619
ec7dc8ac
DG
8620static inline
8621int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8622{
8623 return 1;
8624}
8625
8626static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8627{
8628}
8629
8630static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8631{
8632}
6d6bc0ad 8633#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8634
d0b27fa7 8635#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8636static void free_sched_group(struct task_group *tg)
8637{
8638 free_fair_sched_group(tg);
8639 free_rt_sched_group(tg);
8640 kfree(tg);
8641}
8642
8643/* allocate runqueue etc for a new task group */
ec7dc8ac 8644struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8645{
8646 struct task_group *tg;
8647 unsigned long flags;
8648 int i;
8649
8650 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8651 if (!tg)
8652 return ERR_PTR(-ENOMEM);
8653
ec7dc8ac 8654 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8655 goto err;
8656
ec7dc8ac 8657 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8658 goto err;
8659
8ed36996 8660 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8661 for_each_possible_cpu(i) {
bccbe08a
PZ
8662 register_fair_sched_group(tg, i);
8663 register_rt_sched_group(tg, i);
9b5b7751 8664 }
6f505b16 8665 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8666
8667 WARN_ON(!parent); /* root should already exist */
8668
8669 tg->parent = parent;
f473aa5e 8670 INIT_LIST_HEAD(&tg->children);
09f2724a 8671 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8672 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8673
9b5b7751 8674 return tg;
29f59db3
SV
8675
8676err:
6f505b16 8677 free_sched_group(tg);
29f59db3
SV
8678 return ERR_PTR(-ENOMEM);
8679}
8680
9b5b7751 8681/* rcu callback to free various structures associated with a task group */
6f505b16 8682static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8683{
29f59db3 8684 /* now it should be safe to free those cfs_rqs */
6f505b16 8685 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8686}
8687
9b5b7751 8688/* Destroy runqueue etc associated with a task group */
4cf86d77 8689void sched_destroy_group(struct task_group *tg)
29f59db3 8690{
8ed36996 8691 unsigned long flags;
9b5b7751 8692 int i;
29f59db3 8693
8ed36996 8694 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8695 for_each_possible_cpu(i) {
bccbe08a
PZ
8696 unregister_fair_sched_group(tg, i);
8697 unregister_rt_sched_group(tg, i);
9b5b7751 8698 }
6f505b16 8699 list_del_rcu(&tg->list);
f473aa5e 8700 list_del_rcu(&tg->siblings);
8ed36996 8701 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8702
9b5b7751 8703 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8704 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8705}
8706
9b5b7751 8707/* change task's runqueue when it moves between groups.
3a252015
IM
8708 * The caller of this function should have put the task in its new group
8709 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8710 * reflect its new group.
9b5b7751
SV
8711 */
8712void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8713{
8714 int on_rq, running;
8715 unsigned long flags;
8716 struct rq *rq;
8717
8718 rq = task_rq_lock(tsk, &flags);
8719
29f59db3
SV
8720 update_rq_clock(rq);
8721
051a1d1a 8722 running = task_current(rq, tsk);
29f59db3
SV
8723 on_rq = tsk->se.on_rq;
8724
0e1f3483 8725 if (on_rq)
29f59db3 8726 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8727 if (unlikely(running))
8728 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8729
6f505b16 8730 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8731
810b3817
PZ
8732#ifdef CONFIG_FAIR_GROUP_SCHED
8733 if (tsk->sched_class->moved_group)
8734 tsk->sched_class->moved_group(tsk);
8735#endif
8736
0e1f3483
HS
8737 if (unlikely(running))
8738 tsk->sched_class->set_curr_task(rq);
8739 if (on_rq)
7074badb 8740 enqueue_task(rq, tsk, 0);
29f59db3 8741
29f59db3
SV
8742 task_rq_unlock(rq, &flags);
8743}
6d6bc0ad 8744#endif /* CONFIG_GROUP_SCHED */
29f59db3 8745
052f1dc7 8746#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8747static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8748{
8749 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8750 int on_rq;
8751
29f59db3 8752 on_rq = se->on_rq;
62fb1851 8753 if (on_rq)
29f59db3
SV
8754 dequeue_entity(cfs_rq, se, 0);
8755
8756 se->load.weight = shares;
e05510d0 8757 se->load.inv_weight = 0;
29f59db3 8758
62fb1851 8759 if (on_rq)
29f59db3 8760 enqueue_entity(cfs_rq, se, 0);
c09595f6 8761}
62fb1851 8762
c09595f6
PZ
8763static void set_se_shares(struct sched_entity *se, unsigned long shares)
8764{
8765 struct cfs_rq *cfs_rq = se->cfs_rq;
8766 struct rq *rq = cfs_rq->rq;
8767 unsigned long flags;
8768
8769 spin_lock_irqsave(&rq->lock, flags);
8770 __set_se_shares(se, shares);
8771 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8772}
8773
8ed36996
PZ
8774static DEFINE_MUTEX(shares_mutex);
8775
4cf86d77 8776int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8777{
8778 int i;
8ed36996 8779 unsigned long flags;
c61935fd 8780
ec7dc8ac
DG
8781 /*
8782 * We can't change the weight of the root cgroup.
8783 */
8784 if (!tg->se[0])
8785 return -EINVAL;
8786
18d95a28
PZ
8787 if (shares < MIN_SHARES)
8788 shares = MIN_SHARES;
cb4ad1ff
MX
8789 else if (shares > MAX_SHARES)
8790 shares = MAX_SHARES;
62fb1851 8791
8ed36996 8792 mutex_lock(&shares_mutex);
9b5b7751 8793 if (tg->shares == shares)
5cb350ba 8794 goto done;
29f59db3 8795
8ed36996 8796 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8797 for_each_possible_cpu(i)
8798 unregister_fair_sched_group(tg, i);
f473aa5e 8799 list_del_rcu(&tg->siblings);
8ed36996 8800 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8801
8802 /* wait for any ongoing reference to this group to finish */
8803 synchronize_sched();
8804
8805 /*
8806 * Now we are free to modify the group's share on each cpu
8807 * w/o tripping rebalance_share or load_balance_fair.
8808 */
9b5b7751 8809 tg->shares = shares;
c09595f6
PZ
8810 for_each_possible_cpu(i) {
8811 /*
8812 * force a rebalance
8813 */
8814 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8815 set_se_shares(tg->se[i], shares);
c09595f6 8816 }
29f59db3 8817
6b2d7700
SV
8818 /*
8819 * Enable load balance activity on this group, by inserting it back on
8820 * each cpu's rq->leaf_cfs_rq_list.
8821 */
8ed36996 8822 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8823 for_each_possible_cpu(i)
8824 register_fair_sched_group(tg, i);
f473aa5e 8825 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8826 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8827done:
8ed36996 8828 mutex_unlock(&shares_mutex);
9b5b7751 8829 return 0;
29f59db3
SV
8830}
8831
5cb350ba
DG
8832unsigned long sched_group_shares(struct task_group *tg)
8833{
8834 return tg->shares;
8835}
052f1dc7 8836#endif
5cb350ba 8837
052f1dc7 8838#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8839/*
9f0c1e56 8840 * Ensure that the real time constraints are schedulable.
6f505b16 8841 */
9f0c1e56
PZ
8842static DEFINE_MUTEX(rt_constraints_mutex);
8843
8844static unsigned long to_ratio(u64 period, u64 runtime)
8845{
8846 if (runtime == RUNTIME_INF)
9a7e0b18 8847 return 1ULL << 20;
9f0c1e56 8848
9a7e0b18 8849 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8850}
8851
9a7e0b18
PZ
8852/* Must be called with tasklist_lock held */
8853static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8854{
9a7e0b18 8855 struct task_struct *g, *p;
b40b2e8e 8856
9a7e0b18
PZ
8857 do_each_thread(g, p) {
8858 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8859 return 1;
8860 } while_each_thread(g, p);
b40b2e8e 8861
9a7e0b18
PZ
8862 return 0;
8863}
b40b2e8e 8864
9a7e0b18
PZ
8865struct rt_schedulable_data {
8866 struct task_group *tg;
8867 u64 rt_period;
8868 u64 rt_runtime;
8869};
b40b2e8e 8870
9a7e0b18
PZ
8871static int tg_schedulable(struct task_group *tg, void *data)
8872{
8873 struct rt_schedulable_data *d = data;
8874 struct task_group *child;
8875 unsigned long total, sum = 0;
8876 u64 period, runtime;
b40b2e8e 8877
9a7e0b18
PZ
8878 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8879 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8880
9a7e0b18
PZ
8881 if (tg == d->tg) {
8882 period = d->rt_period;
8883 runtime = d->rt_runtime;
b40b2e8e 8884 }
b40b2e8e 8885
4653f803
PZ
8886 /*
8887 * Cannot have more runtime than the period.
8888 */
8889 if (runtime > period && runtime != RUNTIME_INF)
8890 return -EINVAL;
6f505b16 8891
4653f803
PZ
8892 /*
8893 * Ensure we don't starve existing RT tasks.
8894 */
9a7e0b18
PZ
8895 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8896 return -EBUSY;
6f505b16 8897
9a7e0b18 8898 total = to_ratio(period, runtime);
6f505b16 8899
4653f803
PZ
8900 /*
8901 * Nobody can have more than the global setting allows.
8902 */
8903 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8904 return -EINVAL;
6f505b16 8905
4653f803
PZ
8906 /*
8907 * The sum of our children's runtime should not exceed our own.
8908 */
9a7e0b18
PZ
8909 list_for_each_entry_rcu(child, &tg->children, siblings) {
8910 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8911 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8912
9a7e0b18
PZ
8913 if (child == d->tg) {
8914 period = d->rt_period;
8915 runtime = d->rt_runtime;
8916 }
6f505b16 8917
9a7e0b18 8918 sum += to_ratio(period, runtime);
9f0c1e56 8919 }
6f505b16 8920
9a7e0b18
PZ
8921 if (sum > total)
8922 return -EINVAL;
8923
8924 return 0;
6f505b16
PZ
8925}
8926
9a7e0b18 8927static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8928{
9a7e0b18
PZ
8929 struct rt_schedulable_data data = {
8930 .tg = tg,
8931 .rt_period = period,
8932 .rt_runtime = runtime,
8933 };
8934
8935 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8936}
8937
d0b27fa7
PZ
8938static int tg_set_bandwidth(struct task_group *tg,
8939 u64 rt_period, u64 rt_runtime)
6f505b16 8940{
ac086bc2 8941 int i, err = 0;
9f0c1e56 8942
9f0c1e56 8943 mutex_lock(&rt_constraints_mutex);
521f1a24 8944 read_lock(&tasklist_lock);
9a7e0b18
PZ
8945 err = __rt_schedulable(tg, rt_period, rt_runtime);
8946 if (err)
9f0c1e56 8947 goto unlock;
ac086bc2
PZ
8948
8949 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8950 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8951 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8952
8953 for_each_possible_cpu(i) {
8954 struct rt_rq *rt_rq = tg->rt_rq[i];
8955
8956 spin_lock(&rt_rq->rt_runtime_lock);
8957 rt_rq->rt_runtime = rt_runtime;
8958 spin_unlock(&rt_rq->rt_runtime_lock);
8959 }
8960 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8961 unlock:
521f1a24 8962 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8963 mutex_unlock(&rt_constraints_mutex);
8964
8965 return err;
6f505b16
PZ
8966}
8967
d0b27fa7
PZ
8968int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8969{
8970 u64 rt_runtime, rt_period;
8971
8972 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8973 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8974 if (rt_runtime_us < 0)
8975 rt_runtime = RUNTIME_INF;
8976
8977 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8978}
8979
9f0c1e56
PZ
8980long sched_group_rt_runtime(struct task_group *tg)
8981{
8982 u64 rt_runtime_us;
8983
d0b27fa7 8984 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8985 return -1;
8986
d0b27fa7 8987 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8988 do_div(rt_runtime_us, NSEC_PER_USEC);
8989 return rt_runtime_us;
8990}
d0b27fa7
PZ
8991
8992int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8993{
8994 u64 rt_runtime, rt_period;
8995
8996 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8997 rt_runtime = tg->rt_bandwidth.rt_runtime;
8998
619b0488
R
8999 if (rt_period == 0)
9000 return -EINVAL;
9001
d0b27fa7
PZ
9002 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9003}
9004
9005long sched_group_rt_period(struct task_group *tg)
9006{
9007 u64 rt_period_us;
9008
9009 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9010 do_div(rt_period_us, NSEC_PER_USEC);
9011 return rt_period_us;
9012}
9013
9014static int sched_rt_global_constraints(void)
9015{
4653f803 9016 u64 runtime, period;
d0b27fa7
PZ
9017 int ret = 0;
9018
ec5d4989
HS
9019 if (sysctl_sched_rt_period <= 0)
9020 return -EINVAL;
9021
4653f803
PZ
9022 runtime = global_rt_runtime();
9023 period = global_rt_period();
9024
9025 /*
9026 * Sanity check on the sysctl variables.
9027 */
9028 if (runtime > period && runtime != RUNTIME_INF)
9029 return -EINVAL;
10b612f4 9030
d0b27fa7 9031 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9032 read_lock(&tasklist_lock);
4653f803 9033 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9034 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9035 mutex_unlock(&rt_constraints_mutex);
9036
9037 return ret;
9038}
6d6bc0ad 9039#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9040static int sched_rt_global_constraints(void)
9041{
ac086bc2
PZ
9042 unsigned long flags;
9043 int i;
9044
ec5d4989
HS
9045 if (sysctl_sched_rt_period <= 0)
9046 return -EINVAL;
9047
ac086bc2
PZ
9048 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9049 for_each_possible_cpu(i) {
9050 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9051
9052 spin_lock(&rt_rq->rt_runtime_lock);
9053 rt_rq->rt_runtime = global_rt_runtime();
9054 spin_unlock(&rt_rq->rt_runtime_lock);
9055 }
9056 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9057
d0b27fa7
PZ
9058 return 0;
9059}
6d6bc0ad 9060#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9061
9062int sched_rt_handler(struct ctl_table *table, int write,
9063 struct file *filp, void __user *buffer, size_t *lenp,
9064 loff_t *ppos)
9065{
9066 int ret;
9067 int old_period, old_runtime;
9068 static DEFINE_MUTEX(mutex);
9069
9070 mutex_lock(&mutex);
9071 old_period = sysctl_sched_rt_period;
9072 old_runtime = sysctl_sched_rt_runtime;
9073
9074 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9075
9076 if (!ret && write) {
9077 ret = sched_rt_global_constraints();
9078 if (ret) {
9079 sysctl_sched_rt_period = old_period;
9080 sysctl_sched_rt_runtime = old_runtime;
9081 } else {
9082 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9083 def_rt_bandwidth.rt_period =
9084 ns_to_ktime(global_rt_period());
9085 }
9086 }
9087 mutex_unlock(&mutex);
9088
9089 return ret;
9090}
68318b8e 9091
052f1dc7 9092#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9093
9094/* return corresponding task_group object of a cgroup */
2b01dfe3 9095static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9096{
2b01dfe3
PM
9097 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9098 struct task_group, css);
68318b8e
SV
9099}
9100
9101static struct cgroup_subsys_state *
2b01dfe3 9102cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9103{
ec7dc8ac 9104 struct task_group *tg, *parent;
68318b8e 9105
2b01dfe3 9106 if (!cgrp->parent) {
68318b8e 9107 /* This is early initialization for the top cgroup */
68318b8e
SV
9108 return &init_task_group.css;
9109 }
9110
ec7dc8ac
DG
9111 parent = cgroup_tg(cgrp->parent);
9112 tg = sched_create_group(parent);
68318b8e
SV
9113 if (IS_ERR(tg))
9114 return ERR_PTR(-ENOMEM);
9115
68318b8e
SV
9116 return &tg->css;
9117}
9118
41a2d6cf
IM
9119static void
9120cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9121{
2b01dfe3 9122 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9123
9124 sched_destroy_group(tg);
9125}
9126
41a2d6cf
IM
9127static int
9128cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9129 struct task_struct *tsk)
68318b8e 9130{
b68aa230
PZ
9131#ifdef CONFIG_RT_GROUP_SCHED
9132 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9133 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9134 return -EINVAL;
9135#else
68318b8e
SV
9136 /* We don't support RT-tasks being in separate groups */
9137 if (tsk->sched_class != &fair_sched_class)
9138 return -EINVAL;
b68aa230 9139#endif
68318b8e
SV
9140
9141 return 0;
9142}
9143
9144static void
2b01dfe3 9145cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9146 struct cgroup *old_cont, struct task_struct *tsk)
9147{
9148 sched_move_task(tsk);
9149}
9150
052f1dc7 9151#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9152static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9153 u64 shareval)
68318b8e 9154{
2b01dfe3 9155 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9156}
9157
f4c753b7 9158static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9159{
2b01dfe3 9160 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9161
9162 return (u64) tg->shares;
9163}
6d6bc0ad 9164#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9165
052f1dc7 9166#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9167static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9168 s64 val)
6f505b16 9169{
06ecb27c 9170 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9171}
9172
06ecb27c 9173static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9174{
06ecb27c 9175 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9176}
d0b27fa7
PZ
9177
9178static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9179 u64 rt_period_us)
9180{
9181 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9182}
9183
9184static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9185{
9186 return sched_group_rt_period(cgroup_tg(cgrp));
9187}
6d6bc0ad 9188#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9189
fe5c7cc2 9190static struct cftype cpu_files[] = {
052f1dc7 9191#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9192 {
9193 .name = "shares",
f4c753b7
PM
9194 .read_u64 = cpu_shares_read_u64,
9195 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9196 },
052f1dc7
PZ
9197#endif
9198#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9199 {
9f0c1e56 9200 .name = "rt_runtime_us",
06ecb27c
PM
9201 .read_s64 = cpu_rt_runtime_read,
9202 .write_s64 = cpu_rt_runtime_write,
6f505b16 9203 },
d0b27fa7
PZ
9204 {
9205 .name = "rt_period_us",
f4c753b7
PM
9206 .read_u64 = cpu_rt_period_read_uint,
9207 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9208 },
052f1dc7 9209#endif
68318b8e
SV
9210};
9211
9212static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9213{
fe5c7cc2 9214 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9215}
9216
9217struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9218 .name = "cpu",
9219 .create = cpu_cgroup_create,
9220 .destroy = cpu_cgroup_destroy,
9221 .can_attach = cpu_cgroup_can_attach,
9222 .attach = cpu_cgroup_attach,
9223 .populate = cpu_cgroup_populate,
9224 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9225 .early_init = 1,
9226};
9227
052f1dc7 9228#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9229
9230#ifdef CONFIG_CGROUP_CPUACCT
9231
9232/*
9233 * CPU accounting code for task groups.
9234 *
9235 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9236 * (balbir@in.ibm.com).
9237 */
9238
9239/* track cpu usage of a group of tasks */
9240struct cpuacct {
9241 struct cgroup_subsys_state css;
9242 /* cpuusage holds pointer to a u64-type object on every cpu */
9243 u64 *cpuusage;
9244};
9245
9246struct cgroup_subsys cpuacct_subsys;
9247
9248/* return cpu accounting group corresponding to this container */
32cd756a 9249static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9250{
32cd756a 9251 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9252 struct cpuacct, css);
9253}
9254
9255/* return cpu accounting group to which this task belongs */
9256static inline struct cpuacct *task_ca(struct task_struct *tsk)
9257{
9258 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9259 struct cpuacct, css);
9260}
9261
9262/* create a new cpu accounting group */
9263static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9264 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9265{
9266 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9267
9268 if (!ca)
9269 return ERR_PTR(-ENOMEM);
9270
9271 ca->cpuusage = alloc_percpu(u64);
9272 if (!ca->cpuusage) {
9273 kfree(ca);
9274 return ERR_PTR(-ENOMEM);
9275 }
9276
9277 return &ca->css;
9278}
9279
9280/* destroy an existing cpu accounting group */
41a2d6cf 9281static void
32cd756a 9282cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9283{
32cd756a 9284 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9285
9286 free_percpu(ca->cpuusage);
9287 kfree(ca);
9288}
9289
9290/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9291static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9292{
32cd756a 9293 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9294 u64 totalcpuusage = 0;
9295 int i;
9296
9297 for_each_possible_cpu(i) {
9298 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9299
9300 /*
9301 * Take rq->lock to make 64-bit addition safe on 32-bit
9302 * platforms.
9303 */
9304 spin_lock_irq(&cpu_rq(i)->lock);
9305 totalcpuusage += *cpuusage;
9306 spin_unlock_irq(&cpu_rq(i)->lock);
9307 }
9308
9309 return totalcpuusage;
9310}
9311
0297b803
DG
9312static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9313 u64 reset)
9314{
9315 struct cpuacct *ca = cgroup_ca(cgrp);
9316 int err = 0;
9317 int i;
9318
9319 if (reset) {
9320 err = -EINVAL;
9321 goto out;
9322 }
9323
9324 for_each_possible_cpu(i) {
9325 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9326
9327 spin_lock_irq(&cpu_rq(i)->lock);
9328 *cpuusage = 0;
9329 spin_unlock_irq(&cpu_rq(i)->lock);
9330 }
9331out:
9332 return err;
9333}
9334
d842de87
SV
9335static struct cftype files[] = {
9336 {
9337 .name = "usage",
f4c753b7
PM
9338 .read_u64 = cpuusage_read,
9339 .write_u64 = cpuusage_write,
d842de87
SV
9340 },
9341};
9342
32cd756a 9343static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9344{
32cd756a 9345 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9346}
9347
9348/*
9349 * charge this task's execution time to its accounting group.
9350 *
9351 * called with rq->lock held.
9352 */
9353static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9354{
9355 struct cpuacct *ca;
9356
9357 if (!cpuacct_subsys.active)
9358 return;
9359
9360 ca = task_ca(tsk);
9361 if (ca) {
9362 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9363
9364 *cpuusage += cputime;
9365 }
9366}
9367
9368struct cgroup_subsys cpuacct_subsys = {
9369 .name = "cpuacct",
9370 .create = cpuacct_create,
9371 .destroy = cpuacct_destroy,
9372 .populate = cpuacct_populate,
9373 .subsys_id = cpuacct_subsys_id,
9374};
9375#endif /* CONFIG_CGROUP_CPUACCT */
This page took 2.522784 seconds and 5 git commands to generate.