perf, x86: Fix __initconst vs const
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5 143 /* nests inside the rq lock: */
0986b11b 144 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
0986b11b 181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
0986b11b 203 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 219 }
0986b11b 220 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
7c941438 236#ifdef CONFIG_CGROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
68318b8e 246 struct cgroup_subsys_state css;
6c415b92 247
052f1dc7 248#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq;
253 unsigned long shares;
052f1dc7
PZ
254#endif
255
256#ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq;
259
d0b27fa7 260 struct rt_bandwidth rt_bandwidth;
052f1dc7 261#endif
6b2d7700 262
ae8393e5 263 struct rcu_head rcu;
6f505b16 264 struct list_head list;
f473aa5e
PZ
265
266 struct task_group *parent;
267 struct list_head siblings;
268 struct list_head children;
29f59db3
SV
269};
270
eff766a6 271#define root_task_group init_task_group
6f505b16 272
8ed36996 273/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
274 * a task group's cpu shares.
275 */
8ed36996 276static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 277
e9036b36
CG
278#ifdef CONFIG_FAIR_GROUP_SCHED
279
57310a98
PZ
280#ifdef CONFIG_SMP
281static int root_task_group_empty(void)
282{
283 return list_empty(&root_task_group.children);
284}
285#endif
286
052f1dc7 287# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 288
cb4ad1ff 289/*
2e084786
LJ
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
cb4ad1ff
MX
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
296 */
18d95a28 297#define MIN_SHARES 2
2e084786 298#define MAX_SHARES (1UL << 18)
18d95a28 299
052f1dc7
PZ
300static int init_task_group_load = INIT_TASK_GROUP_LOAD;
301#endif
302
29f59db3 303/* Default task group.
3a252015 304 * Every task in system belong to this group at bootup.
29f59db3 305 */
434d53b0 306struct task_group init_task_group;
29f59db3
SV
307
308/* return group to which a task belongs */
4cf86d77 309static inline struct task_group *task_group(struct task_struct *p)
29f59db3 310{
4cf86d77 311 struct task_group *tg;
9b5b7751 312
7c941438 313#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css);
24e377a8 316#else
41a2d6cf 317 tg = &init_task_group;
24e377a8 318#endif
9b5b7751 319 return tg;
29f59db3
SV
320}
321
322/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 323static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 324{
052f1dc7 325#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu];
052f1dc7 328#endif
6f505b16 329
052f1dc7 330#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 333#endif
29f59db3
SV
334}
335
336#else
337
6f505b16 338static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
339static inline struct task_group *task_group(struct task_struct *p)
340{
341 return NULL;
342}
29f59db3 343
7c941438 344#endif /* CONFIG_CGROUP_SCHED */
29f59db3 345
6aa645ea
IM
346/* CFS-related fields in a runqueue */
347struct cfs_rq {
348 struct load_weight load;
349 unsigned long nr_running;
350
6aa645ea 351 u64 exec_clock;
e9acbff6 352 u64 min_vruntime;
6aa645ea
IM
353
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
4a55bd5e
PZ
356
357 struct list_head tasks;
358 struct list_head *balance_iterator;
359
360 /*
361 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
362 * It is set to NULL otherwise (i.e when none are currently running).
363 */
4793241b 364 struct sched_entity *curr, *next, *last;
ddc97297 365
5ac5c4d6 366 unsigned int nr_spread_over;
ddc97297 367
62160e3f 368#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
370
41a2d6cf
IM
371 /*
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
375 *
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
378 */
41a2d6cf
IM
379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
381
382#ifdef CONFIG_SMP
c09595f6 383 /*
c8cba857 384 * the part of load.weight contributed by tasks
c09595f6 385 */
c8cba857 386 unsigned long task_weight;
c09595f6 387
c8cba857
PZ
388 /*
389 * h_load = weight * f(tg)
390 *
391 * Where f(tg) is the recursive weight fraction assigned to
392 * this group.
393 */
394 unsigned long h_load;
c09595f6 395
c8cba857
PZ
396 /*
397 * this cpu's part of tg->shares
398 */
399 unsigned long shares;
f1d239f7
PZ
400
401 /*
402 * load.weight at the time we set shares
403 */
404 unsigned long rq_weight;
c09595f6 405#endif
6aa645ea
IM
406#endif
407};
1da177e4 408
6aa645ea
IM
409/* Real-Time classes' related field in a runqueue: */
410struct rt_rq {
411 struct rt_prio_array active;
63489e45 412 unsigned long rt_nr_running;
052f1dc7 413#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
414 struct {
415 int curr; /* highest queued rt task prio */
398a153b 416#ifdef CONFIG_SMP
e864c499 417 int next; /* next highest */
398a153b 418#endif
e864c499 419 } highest_prio;
6f505b16 420#endif
fa85ae24 421#ifdef CONFIG_SMP
73fe6aae 422 unsigned long rt_nr_migratory;
a1ba4d8b 423 unsigned long rt_nr_total;
a22d7fc1 424 int overloaded;
917b627d 425 struct plist_head pushable_tasks;
fa85ae24 426#endif
6f505b16 427 int rt_throttled;
fa85ae24 428 u64 rt_time;
ac086bc2 429 u64 rt_runtime;
ea736ed5 430 /* Nests inside the rq lock: */
0986b11b 431 raw_spinlock_t rt_runtime_lock;
6f505b16 432
052f1dc7 433#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
434 unsigned long rt_nr_boosted;
435
6f505b16
PZ
436 struct rq *rq;
437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg;
6f505b16 439#endif
6aa645ea
IM
440};
441
57d885fe
GH
442#ifdef CONFIG_SMP
443
444/*
445 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
446 * variables. Each exclusive cpuset essentially defines an island domain by
447 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
448 * exclusive cpuset is created, we also create and attach a new root-domain
449 * object.
450 *
57d885fe
GH
451 */
452struct root_domain {
453 atomic_t refcount;
c6c4927b
RR
454 cpumask_var_t span;
455 cpumask_var_t online;
637f5085 456
0eab9146 457 /*
637f5085
GH
458 * The "RT overload" flag: it gets set if a CPU has more than
459 * one runnable RT task.
460 */
c6c4927b 461 cpumask_var_t rto_mask;
0eab9146 462 atomic_t rto_count;
6e0534f2
GH
463#ifdef CONFIG_SMP
464 struct cpupri cpupri;
465#endif
57d885fe
GH
466};
467
dc938520
GH
468/*
469 * By default the system creates a single root-domain with all cpus as
470 * members (mimicking the global state we have today).
471 */
57d885fe
GH
472static struct root_domain def_root_domain;
473
474#endif
475
1da177e4
LT
476/*
477 * This is the main, per-CPU runqueue data structure.
478 *
479 * Locking rule: those places that want to lock multiple runqueues
480 * (such as the load balancing or the thread migration code), lock
481 * acquire operations must be ordered by ascending &runqueue.
482 */
70b97a7f 483struct rq {
d8016491 484 /* runqueue lock: */
05fa785c 485 raw_spinlock_t lock;
1da177e4
LT
486
487 /*
488 * nr_running and cpu_load should be in the same cacheline because
489 * remote CPUs use both these fields when doing load calculation.
490 */
491 unsigned long nr_running;
6aa645ea
IM
492 #define CPU_LOAD_IDX_MAX 5
493 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
494#ifdef CONFIG_NO_HZ
495 unsigned char in_nohz_recently;
496#endif
d8016491
IM
497 /* capture load from *all* tasks on this cpu: */
498 struct load_weight load;
6aa645ea
IM
499 unsigned long nr_load_updates;
500 u64 nr_switches;
501
502 struct cfs_rq cfs;
6f505b16 503 struct rt_rq rt;
6f505b16 504
6aa645ea 505#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
506 /* list of leaf cfs_rq on this cpu: */
507 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
508#endif
509#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 510 struct list_head leaf_rt_rq_list;
1da177e4 511#endif
1da177e4
LT
512
513 /*
514 * This is part of a global counter where only the total sum
515 * over all CPUs matters. A task can increase this counter on
516 * one CPU and if it got migrated afterwards it may decrease
517 * it on another CPU. Always updated under the runqueue lock:
518 */
519 unsigned long nr_uninterruptible;
520
36c8b586 521 struct task_struct *curr, *idle;
c9819f45 522 unsigned long next_balance;
1da177e4 523 struct mm_struct *prev_mm;
6aa645ea 524
3e51f33f 525 u64 clock;
6aa645ea 526
1da177e4
LT
527 atomic_t nr_iowait;
528
529#ifdef CONFIG_SMP
0eab9146 530 struct root_domain *rd;
1da177e4
LT
531 struct sched_domain *sd;
532
a0a522ce 533 unsigned char idle_at_tick;
1da177e4 534 /* For active balancing */
3f029d3c 535 int post_schedule;
1da177e4
LT
536 int active_balance;
537 int push_cpu;
d8016491
IM
538 /* cpu of this runqueue: */
539 int cpu;
1f11eb6a 540 int online;
1da177e4 541
a8a51d5e 542 unsigned long avg_load_per_task;
1da177e4 543
36c8b586 544 struct task_struct *migration_thread;
1da177e4 545 struct list_head migration_queue;
e9e9250b
PZ
546
547 u64 rt_avg;
548 u64 age_stamp;
1b9508f6
MG
549 u64 idle_stamp;
550 u64 avg_idle;
1da177e4
LT
551#endif
552
dce48a84
TG
553 /* calc_load related fields */
554 unsigned long calc_load_update;
555 long calc_load_active;
556
8f4d37ec 557#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
558#ifdef CONFIG_SMP
559 int hrtick_csd_pending;
560 struct call_single_data hrtick_csd;
561#endif
8f4d37ec
PZ
562 struct hrtimer hrtick_timer;
563#endif
564
1da177e4
LT
565#ifdef CONFIG_SCHEDSTATS
566 /* latency stats */
567 struct sched_info rq_sched_info;
9c2c4802
KC
568 unsigned long long rq_cpu_time;
569 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
570
571 /* sys_sched_yield() stats */
480b9434 572 unsigned int yld_count;
1da177e4
LT
573
574 /* schedule() stats */
480b9434
KC
575 unsigned int sched_switch;
576 unsigned int sched_count;
577 unsigned int sched_goidle;
1da177e4
LT
578
579 /* try_to_wake_up() stats */
480b9434
KC
580 unsigned int ttwu_count;
581 unsigned int ttwu_local;
b8efb561
IM
582
583 /* BKL stats */
480b9434 584 unsigned int bkl_count;
1da177e4
LT
585#endif
586};
587
f34e3b61 588static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 589
7d478721
PZ
590static inline
591void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 592{
7d478721 593 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
594}
595
0a2966b4
CL
596static inline int cpu_of(struct rq *rq)
597{
598#ifdef CONFIG_SMP
599 return rq->cpu;
600#else
601 return 0;
602#endif
603}
604
497f0ab3 605#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
606 rcu_dereference_check((p), \
607 rcu_read_lock_sched_held() || \
608 lockdep_is_held(&sched_domains_mutex))
609
674311d5
NP
610/*
611 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 612 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
613 *
614 * The domain tree of any CPU may only be accessed from within
615 * preempt-disabled sections.
616 */
48f24c4d 617#define for_each_domain(cpu, __sd) \
497f0ab3 618 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
619
620#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
621#define this_rq() (&__get_cpu_var(runqueues))
622#define task_rq(p) cpu_rq(task_cpu(p))
623#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 624#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 625
aa9c4c0f 626inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
627{
628 rq->clock = sched_clock_cpu(cpu_of(rq));
629}
630
bf5c91ba
IM
631/*
632 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
633 */
634#ifdef CONFIG_SCHED_DEBUG
635# define const_debug __read_mostly
636#else
637# define const_debug static const
638#endif
639
017730c1
IM
640/**
641 * runqueue_is_locked
e17b38bf 642 * @cpu: the processor in question.
017730c1
IM
643 *
644 * Returns true if the current cpu runqueue is locked.
645 * This interface allows printk to be called with the runqueue lock
646 * held and know whether or not it is OK to wake up the klogd.
647 */
89f19f04 648int runqueue_is_locked(int cpu)
017730c1 649{
05fa785c 650 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
651}
652
bf5c91ba
IM
653/*
654 * Debugging: various feature bits
655 */
f00b45c1
PZ
656
657#define SCHED_FEAT(name, enabled) \
658 __SCHED_FEAT_##name ,
659
bf5c91ba 660enum {
f00b45c1 661#include "sched_features.h"
bf5c91ba
IM
662};
663
f00b45c1
PZ
664#undef SCHED_FEAT
665
666#define SCHED_FEAT(name, enabled) \
667 (1UL << __SCHED_FEAT_##name) * enabled |
668
bf5c91ba 669const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
670#include "sched_features.h"
671 0;
672
673#undef SCHED_FEAT
674
675#ifdef CONFIG_SCHED_DEBUG
676#define SCHED_FEAT(name, enabled) \
677 #name ,
678
983ed7a6 679static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
680#include "sched_features.h"
681 NULL
682};
683
684#undef SCHED_FEAT
685
34f3a814 686static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 687{
f00b45c1
PZ
688 int i;
689
690 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
691 if (!(sysctl_sched_features & (1UL << i)))
692 seq_puts(m, "NO_");
693 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 694 }
34f3a814 695 seq_puts(m, "\n");
f00b45c1 696
34f3a814 697 return 0;
f00b45c1
PZ
698}
699
700static ssize_t
701sched_feat_write(struct file *filp, const char __user *ubuf,
702 size_t cnt, loff_t *ppos)
703{
704 char buf[64];
705 char *cmp = buf;
706 int neg = 0;
707 int i;
708
709 if (cnt > 63)
710 cnt = 63;
711
712 if (copy_from_user(&buf, ubuf, cnt))
713 return -EFAULT;
714
715 buf[cnt] = 0;
716
c24b7c52 717 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
718 neg = 1;
719 cmp += 3;
720 }
721
722 for (i = 0; sched_feat_names[i]; i++) {
723 int len = strlen(sched_feat_names[i]);
724
725 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
726 if (neg)
727 sysctl_sched_features &= ~(1UL << i);
728 else
729 sysctl_sched_features |= (1UL << i);
730 break;
731 }
732 }
733
734 if (!sched_feat_names[i])
735 return -EINVAL;
736
42994724 737 *ppos += cnt;
f00b45c1
PZ
738
739 return cnt;
740}
741
34f3a814
LZ
742static int sched_feat_open(struct inode *inode, struct file *filp)
743{
744 return single_open(filp, sched_feat_show, NULL);
745}
746
828c0950 747static const struct file_operations sched_feat_fops = {
34f3a814
LZ
748 .open = sched_feat_open,
749 .write = sched_feat_write,
750 .read = seq_read,
751 .llseek = seq_lseek,
752 .release = single_release,
f00b45c1
PZ
753};
754
755static __init int sched_init_debug(void)
756{
f00b45c1
PZ
757 debugfs_create_file("sched_features", 0644, NULL, NULL,
758 &sched_feat_fops);
759
760 return 0;
761}
762late_initcall(sched_init_debug);
763
764#endif
765
766#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 767
b82d9fdd
PZ
768/*
769 * Number of tasks to iterate in a single balance run.
770 * Limited because this is done with IRQs disabled.
771 */
772const_debug unsigned int sysctl_sched_nr_migrate = 32;
773
2398f2c6
PZ
774/*
775 * ratelimit for updating the group shares.
55cd5340 776 * default: 0.25ms
2398f2c6 777 */
55cd5340 778unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 779unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 780
ffda12a1
PZ
781/*
782 * Inject some fuzzyness into changing the per-cpu group shares
783 * this avoids remote rq-locks at the expense of fairness.
784 * default: 4
785 */
786unsigned int sysctl_sched_shares_thresh = 4;
787
e9e9250b
PZ
788/*
789 * period over which we average the RT time consumption, measured
790 * in ms.
791 *
792 * default: 1s
793 */
794const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
795
fa85ae24 796/*
9f0c1e56 797 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
798 * default: 1s
799 */
9f0c1e56 800unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 801
6892b75e
IM
802static __read_mostly int scheduler_running;
803
9f0c1e56
PZ
804/*
805 * part of the period that we allow rt tasks to run in us.
806 * default: 0.95s
807 */
808int sysctl_sched_rt_runtime = 950000;
fa85ae24 809
d0b27fa7
PZ
810static inline u64 global_rt_period(void)
811{
812 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
813}
814
815static inline u64 global_rt_runtime(void)
816{
e26873bb 817 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
818 return RUNTIME_INF;
819
820 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
821}
fa85ae24 822
1da177e4 823#ifndef prepare_arch_switch
4866cde0
NP
824# define prepare_arch_switch(next) do { } while (0)
825#endif
826#ifndef finish_arch_switch
827# define finish_arch_switch(prev) do { } while (0)
828#endif
829
051a1d1a
DA
830static inline int task_current(struct rq *rq, struct task_struct *p)
831{
832 return rq->curr == p;
833}
834
4866cde0 835#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 836static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 837{
051a1d1a 838 return task_current(rq, p);
4866cde0
NP
839}
840
70b97a7f 841static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
842{
843}
844
70b97a7f 845static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 846{
da04c035
IM
847#ifdef CONFIG_DEBUG_SPINLOCK
848 /* this is a valid case when another task releases the spinlock */
849 rq->lock.owner = current;
850#endif
8a25d5de
IM
851 /*
852 * If we are tracking spinlock dependencies then we have to
853 * fix up the runqueue lock - which gets 'carried over' from
854 * prev into current:
855 */
856 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
857
05fa785c 858 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
859}
860
861#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 862static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
863{
864#ifdef CONFIG_SMP
865 return p->oncpu;
866#else
051a1d1a 867 return task_current(rq, p);
4866cde0
NP
868#endif
869}
870
70b97a7f 871static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
872{
873#ifdef CONFIG_SMP
874 /*
875 * We can optimise this out completely for !SMP, because the
876 * SMP rebalancing from interrupt is the only thing that cares
877 * here.
878 */
879 next->oncpu = 1;
880#endif
881#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 882 raw_spin_unlock_irq(&rq->lock);
4866cde0 883#else
05fa785c 884 raw_spin_unlock(&rq->lock);
4866cde0
NP
885#endif
886}
887
70b97a7f 888static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
889{
890#ifdef CONFIG_SMP
891 /*
892 * After ->oncpu is cleared, the task can be moved to a different CPU.
893 * We must ensure this doesn't happen until the switch is completely
894 * finished.
895 */
896 smp_wmb();
897 prev->oncpu = 0;
898#endif
899#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
900 local_irq_enable();
1da177e4 901#endif
4866cde0
NP
902}
903#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 904
0970d299
PZ
905/*
906 * Check whether the task is waking, we use this to synchronize against
907 * ttwu() so that task_cpu() reports a stable number.
908 *
909 * We need to make an exception for PF_STARTING tasks because the fork
910 * path might require task_rq_lock() to work, eg. it can call
911 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
912 */
913static inline int task_is_waking(struct task_struct *p)
914{
915 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
916}
917
b29739f9
IM
918/*
919 * __task_rq_lock - lock the runqueue a given task resides on.
920 * Must be called interrupts disabled.
921 */
70b97a7f 922static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
923 __acquires(rq->lock)
924{
0970d299
PZ
925 struct rq *rq;
926
3a5c359a 927 for (;;) {
0970d299
PZ
928 while (task_is_waking(p))
929 cpu_relax();
930 rq = task_rq(p);
05fa785c 931 raw_spin_lock(&rq->lock);
0970d299 932 if (likely(rq == task_rq(p) && !task_is_waking(p)))
3a5c359a 933 return rq;
05fa785c 934 raw_spin_unlock(&rq->lock);
b29739f9 935 }
b29739f9
IM
936}
937
1da177e4
LT
938/*
939 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 940 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
941 * explicitly disabling preemption.
942 */
70b97a7f 943static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
944 __acquires(rq->lock)
945{
70b97a7f 946 struct rq *rq;
1da177e4 947
3a5c359a 948 for (;;) {
0970d299
PZ
949 while (task_is_waking(p))
950 cpu_relax();
3a5c359a
AK
951 local_irq_save(*flags);
952 rq = task_rq(p);
05fa785c 953 raw_spin_lock(&rq->lock);
0970d299 954 if (likely(rq == task_rq(p) && !task_is_waking(p)))
3a5c359a 955 return rq;
05fa785c 956 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 957 }
1da177e4
LT
958}
959
ad474cac
ON
960void task_rq_unlock_wait(struct task_struct *p)
961{
962 struct rq *rq = task_rq(p);
963
964 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 965 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
966}
967
a9957449 968static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
969 __releases(rq->lock)
970{
05fa785c 971 raw_spin_unlock(&rq->lock);
b29739f9
IM
972}
973
70b97a7f 974static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
975 __releases(rq->lock)
976{
05fa785c 977 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
978}
979
1da177e4 980/*
cc2a73b5 981 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 982 */
a9957449 983static struct rq *this_rq_lock(void)
1da177e4
LT
984 __acquires(rq->lock)
985{
70b97a7f 986 struct rq *rq;
1da177e4
LT
987
988 local_irq_disable();
989 rq = this_rq();
05fa785c 990 raw_spin_lock(&rq->lock);
1da177e4
LT
991
992 return rq;
993}
994
8f4d37ec
PZ
995#ifdef CONFIG_SCHED_HRTICK
996/*
997 * Use HR-timers to deliver accurate preemption points.
998 *
999 * Its all a bit involved since we cannot program an hrt while holding the
1000 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1001 * reschedule event.
1002 *
1003 * When we get rescheduled we reprogram the hrtick_timer outside of the
1004 * rq->lock.
1005 */
8f4d37ec
PZ
1006
1007/*
1008 * Use hrtick when:
1009 * - enabled by features
1010 * - hrtimer is actually high res
1011 */
1012static inline int hrtick_enabled(struct rq *rq)
1013{
1014 if (!sched_feat(HRTICK))
1015 return 0;
ba42059f 1016 if (!cpu_active(cpu_of(rq)))
b328ca18 1017 return 0;
8f4d37ec
PZ
1018 return hrtimer_is_hres_active(&rq->hrtick_timer);
1019}
1020
8f4d37ec
PZ
1021static void hrtick_clear(struct rq *rq)
1022{
1023 if (hrtimer_active(&rq->hrtick_timer))
1024 hrtimer_cancel(&rq->hrtick_timer);
1025}
1026
8f4d37ec
PZ
1027/*
1028 * High-resolution timer tick.
1029 * Runs from hardirq context with interrupts disabled.
1030 */
1031static enum hrtimer_restart hrtick(struct hrtimer *timer)
1032{
1033 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1034
1035 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1036
05fa785c 1037 raw_spin_lock(&rq->lock);
3e51f33f 1038 update_rq_clock(rq);
8f4d37ec 1039 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1040 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1041
1042 return HRTIMER_NORESTART;
1043}
1044
95e904c7 1045#ifdef CONFIG_SMP
31656519
PZ
1046/*
1047 * called from hardirq (IPI) context
1048 */
1049static void __hrtick_start(void *arg)
b328ca18 1050{
31656519 1051 struct rq *rq = arg;
b328ca18 1052
05fa785c 1053 raw_spin_lock(&rq->lock);
31656519
PZ
1054 hrtimer_restart(&rq->hrtick_timer);
1055 rq->hrtick_csd_pending = 0;
05fa785c 1056 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1057}
1058
31656519
PZ
1059/*
1060 * Called to set the hrtick timer state.
1061 *
1062 * called with rq->lock held and irqs disabled
1063 */
1064static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1065{
31656519
PZ
1066 struct hrtimer *timer = &rq->hrtick_timer;
1067 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1068
cc584b21 1069 hrtimer_set_expires(timer, time);
31656519
PZ
1070
1071 if (rq == this_rq()) {
1072 hrtimer_restart(timer);
1073 } else if (!rq->hrtick_csd_pending) {
6e275637 1074 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1075 rq->hrtick_csd_pending = 1;
1076 }
b328ca18
PZ
1077}
1078
1079static int
1080hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1081{
1082 int cpu = (int)(long)hcpu;
1083
1084 switch (action) {
1085 case CPU_UP_CANCELED:
1086 case CPU_UP_CANCELED_FROZEN:
1087 case CPU_DOWN_PREPARE:
1088 case CPU_DOWN_PREPARE_FROZEN:
1089 case CPU_DEAD:
1090 case CPU_DEAD_FROZEN:
31656519 1091 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1092 return NOTIFY_OK;
1093 }
1094
1095 return NOTIFY_DONE;
1096}
1097
fa748203 1098static __init void init_hrtick(void)
b328ca18
PZ
1099{
1100 hotcpu_notifier(hotplug_hrtick, 0);
1101}
31656519
PZ
1102#else
1103/*
1104 * Called to set the hrtick timer state.
1105 *
1106 * called with rq->lock held and irqs disabled
1107 */
1108static void hrtick_start(struct rq *rq, u64 delay)
1109{
7f1e2ca9 1110 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1111 HRTIMER_MODE_REL_PINNED, 0);
31656519 1112}
b328ca18 1113
006c75f1 1114static inline void init_hrtick(void)
8f4d37ec 1115{
8f4d37ec 1116}
31656519 1117#endif /* CONFIG_SMP */
8f4d37ec 1118
31656519 1119static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1120{
31656519
PZ
1121#ifdef CONFIG_SMP
1122 rq->hrtick_csd_pending = 0;
8f4d37ec 1123
31656519
PZ
1124 rq->hrtick_csd.flags = 0;
1125 rq->hrtick_csd.func = __hrtick_start;
1126 rq->hrtick_csd.info = rq;
1127#endif
8f4d37ec 1128
31656519
PZ
1129 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1130 rq->hrtick_timer.function = hrtick;
8f4d37ec 1131}
006c75f1 1132#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1133static inline void hrtick_clear(struct rq *rq)
1134{
1135}
1136
8f4d37ec
PZ
1137static inline void init_rq_hrtick(struct rq *rq)
1138{
1139}
1140
b328ca18
PZ
1141static inline void init_hrtick(void)
1142{
1143}
006c75f1 1144#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1145
c24d20db
IM
1146/*
1147 * resched_task - mark a task 'to be rescheduled now'.
1148 *
1149 * On UP this means the setting of the need_resched flag, on SMP it
1150 * might also involve a cross-CPU call to trigger the scheduler on
1151 * the target CPU.
1152 */
1153#ifdef CONFIG_SMP
1154
1155#ifndef tsk_is_polling
1156#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1157#endif
1158
31656519 1159static void resched_task(struct task_struct *p)
c24d20db
IM
1160{
1161 int cpu;
1162
05fa785c 1163 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1164
5ed0cec0 1165 if (test_tsk_need_resched(p))
c24d20db
IM
1166 return;
1167
5ed0cec0 1168 set_tsk_need_resched(p);
c24d20db
IM
1169
1170 cpu = task_cpu(p);
1171 if (cpu == smp_processor_id())
1172 return;
1173
1174 /* NEED_RESCHED must be visible before we test polling */
1175 smp_mb();
1176 if (!tsk_is_polling(p))
1177 smp_send_reschedule(cpu);
1178}
1179
1180static void resched_cpu(int cpu)
1181{
1182 struct rq *rq = cpu_rq(cpu);
1183 unsigned long flags;
1184
05fa785c 1185 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1186 return;
1187 resched_task(cpu_curr(cpu));
05fa785c 1188 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1189}
06d8308c
TG
1190
1191#ifdef CONFIG_NO_HZ
1192/*
1193 * When add_timer_on() enqueues a timer into the timer wheel of an
1194 * idle CPU then this timer might expire before the next timer event
1195 * which is scheduled to wake up that CPU. In case of a completely
1196 * idle system the next event might even be infinite time into the
1197 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1198 * leaves the inner idle loop so the newly added timer is taken into
1199 * account when the CPU goes back to idle and evaluates the timer
1200 * wheel for the next timer event.
1201 */
1202void wake_up_idle_cpu(int cpu)
1203{
1204 struct rq *rq = cpu_rq(cpu);
1205
1206 if (cpu == smp_processor_id())
1207 return;
1208
1209 /*
1210 * This is safe, as this function is called with the timer
1211 * wheel base lock of (cpu) held. When the CPU is on the way
1212 * to idle and has not yet set rq->curr to idle then it will
1213 * be serialized on the timer wheel base lock and take the new
1214 * timer into account automatically.
1215 */
1216 if (rq->curr != rq->idle)
1217 return;
1218
1219 /*
1220 * We can set TIF_RESCHED on the idle task of the other CPU
1221 * lockless. The worst case is that the other CPU runs the
1222 * idle task through an additional NOOP schedule()
1223 */
5ed0cec0 1224 set_tsk_need_resched(rq->idle);
06d8308c
TG
1225
1226 /* NEED_RESCHED must be visible before we test polling */
1227 smp_mb();
1228 if (!tsk_is_polling(rq->idle))
1229 smp_send_reschedule(cpu);
1230}
6d6bc0ad 1231#endif /* CONFIG_NO_HZ */
06d8308c 1232
e9e9250b
PZ
1233static u64 sched_avg_period(void)
1234{
1235 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1236}
1237
1238static void sched_avg_update(struct rq *rq)
1239{
1240 s64 period = sched_avg_period();
1241
1242 while ((s64)(rq->clock - rq->age_stamp) > period) {
1243 rq->age_stamp += period;
1244 rq->rt_avg /= 2;
1245 }
1246}
1247
1248static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1249{
1250 rq->rt_avg += rt_delta;
1251 sched_avg_update(rq);
1252}
1253
6d6bc0ad 1254#else /* !CONFIG_SMP */
31656519 1255static void resched_task(struct task_struct *p)
c24d20db 1256{
05fa785c 1257 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1258 set_tsk_need_resched(p);
c24d20db 1259}
e9e9250b
PZ
1260
1261static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1262{
1263}
6d6bc0ad 1264#endif /* CONFIG_SMP */
c24d20db 1265
45bf76df
IM
1266#if BITS_PER_LONG == 32
1267# define WMULT_CONST (~0UL)
1268#else
1269# define WMULT_CONST (1UL << 32)
1270#endif
1271
1272#define WMULT_SHIFT 32
1273
194081eb
IM
1274/*
1275 * Shift right and round:
1276 */
cf2ab469 1277#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1278
a7be37ac
PZ
1279/*
1280 * delta *= weight / lw
1281 */
cb1c4fc9 1282static unsigned long
45bf76df
IM
1283calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1284 struct load_weight *lw)
1285{
1286 u64 tmp;
1287
7a232e03
LJ
1288 if (!lw->inv_weight) {
1289 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1290 lw->inv_weight = 1;
1291 else
1292 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1293 / (lw->weight+1);
1294 }
45bf76df
IM
1295
1296 tmp = (u64)delta_exec * weight;
1297 /*
1298 * Check whether we'd overflow the 64-bit multiplication:
1299 */
194081eb 1300 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1301 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1302 WMULT_SHIFT/2);
1303 else
cf2ab469 1304 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1305
ecf691da 1306 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1307}
1308
1091985b 1309static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1310{
1311 lw->weight += inc;
e89996ae 1312 lw->inv_weight = 0;
45bf76df
IM
1313}
1314
1091985b 1315static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1316{
1317 lw->weight -= dec;
e89996ae 1318 lw->inv_weight = 0;
45bf76df
IM
1319}
1320
2dd73a4f
PW
1321/*
1322 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1323 * of tasks with abnormal "nice" values across CPUs the contribution that
1324 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1325 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1326 * scaled version of the new time slice allocation that they receive on time
1327 * slice expiry etc.
1328 */
1329
cce7ade8
PZ
1330#define WEIGHT_IDLEPRIO 3
1331#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1332
1333/*
1334 * Nice levels are multiplicative, with a gentle 10% change for every
1335 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1336 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1337 * that remained on nice 0.
1338 *
1339 * The "10% effect" is relative and cumulative: from _any_ nice level,
1340 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1341 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1342 * If a task goes up by ~10% and another task goes down by ~10% then
1343 * the relative distance between them is ~25%.)
dd41f596
IM
1344 */
1345static const int prio_to_weight[40] = {
254753dc
IM
1346 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1347 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1348 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1349 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1350 /* 0 */ 1024, 820, 655, 526, 423,
1351 /* 5 */ 335, 272, 215, 172, 137,
1352 /* 10 */ 110, 87, 70, 56, 45,
1353 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1354};
1355
5714d2de
IM
1356/*
1357 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1358 *
1359 * In cases where the weight does not change often, we can use the
1360 * precalculated inverse to speed up arithmetics by turning divisions
1361 * into multiplications:
1362 */
dd41f596 1363static const u32 prio_to_wmult[40] = {
254753dc
IM
1364 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1365 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1366 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1367 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1368 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1369 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1370 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1371 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1372};
2dd73a4f 1373
ef12fefa
BR
1374/* Time spent by the tasks of the cpu accounting group executing in ... */
1375enum cpuacct_stat_index {
1376 CPUACCT_STAT_USER, /* ... user mode */
1377 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1378
1379 CPUACCT_STAT_NSTATS,
1380};
1381
d842de87
SV
1382#ifdef CONFIG_CGROUP_CPUACCT
1383static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1384static void cpuacct_update_stats(struct task_struct *tsk,
1385 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1386#else
1387static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1388static inline void cpuacct_update_stats(struct task_struct *tsk,
1389 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1390#endif
1391
18d95a28
PZ
1392static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1393{
1394 update_load_add(&rq->load, load);
1395}
1396
1397static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1398{
1399 update_load_sub(&rq->load, load);
1400}
1401
7940ca36 1402#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1403typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1404
1405/*
1406 * Iterate the full tree, calling @down when first entering a node and @up when
1407 * leaving it for the final time.
1408 */
eb755805 1409static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1410{
1411 struct task_group *parent, *child;
eb755805 1412 int ret;
c09595f6
PZ
1413
1414 rcu_read_lock();
1415 parent = &root_task_group;
1416down:
eb755805
PZ
1417 ret = (*down)(parent, data);
1418 if (ret)
1419 goto out_unlock;
c09595f6
PZ
1420 list_for_each_entry_rcu(child, &parent->children, siblings) {
1421 parent = child;
1422 goto down;
1423
1424up:
1425 continue;
1426 }
eb755805
PZ
1427 ret = (*up)(parent, data);
1428 if (ret)
1429 goto out_unlock;
c09595f6
PZ
1430
1431 child = parent;
1432 parent = parent->parent;
1433 if (parent)
1434 goto up;
eb755805 1435out_unlock:
c09595f6 1436 rcu_read_unlock();
eb755805
PZ
1437
1438 return ret;
c09595f6
PZ
1439}
1440
eb755805
PZ
1441static int tg_nop(struct task_group *tg, void *data)
1442{
1443 return 0;
c09595f6 1444}
eb755805
PZ
1445#endif
1446
1447#ifdef CONFIG_SMP
f5f08f39
PZ
1448/* Used instead of source_load when we know the type == 0 */
1449static unsigned long weighted_cpuload(const int cpu)
1450{
1451 return cpu_rq(cpu)->load.weight;
1452}
1453
1454/*
1455 * Return a low guess at the load of a migration-source cpu weighted
1456 * according to the scheduling class and "nice" value.
1457 *
1458 * We want to under-estimate the load of migration sources, to
1459 * balance conservatively.
1460 */
1461static unsigned long source_load(int cpu, int type)
1462{
1463 struct rq *rq = cpu_rq(cpu);
1464 unsigned long total = weighted_cpuload(cpu);
1465
1466 if (type == 0 || !sched_feat(LB_BIAS))
1467 return total;
1468
1469 return min(rq->cpu_load[type-1], total);
1470}
1471
1472/*
1473 * Return a high guess at the load of a migration-target cpu weighted
1474 * according to the scheduling class and "nice" value.
1475 */
1476static unsigned long target_load(int cpu, int type)
1477{
1478 struct rq *rq = cpu_rq(cpu);
1479 unsigned long total = weighted_cpuload(cpu);
1480
1481 if (type == 0 || !sched_feat(LB_BIAS))
1482 return total;
1483
1484 return max(rq->cpu_load[type-1], total);
1485}
1486
ae154be1
PZ
1487static struct sched_group *group_of(int cpu)
1488{
d11c563d 1489 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
ae154be1
PZ
1490
1491 if (!sd)
1492 return NULL;
1493
1494 return sd->groups;
1495}
1496
1497static unsigned long power_of(int cpu)
1498{
1499 struct sched_group *group = group_of(cpu);
1500
1501 if (!group)
1502 return SCHED_LOAD_SCALE;
1503
1504 return group->cpu_power;
1505}
1506
eb755805
PZ
1507static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1508
1509static unsigned long cpu_avg_load_per_task(int cpu)
1510{
1511 struct rq *rq = cpu_rq(cpu);
af6d596f 1512 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1513
4cd42620
SR
1514 if (nr_running)
1515 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1516 else
1517 rq->avg_load_per_task = 0;
eb755805
PZ
1518
1519 return rq->avg_load_per_task;
1520}
1521
1522#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1523
43cf38eb 1524static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1525
c09595f6
PZ
1526static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1527
1528/*
1529 * Calculate and set the cpu's group shares.
1530 */
34d76c41
PZ
1531static void update_group_shares_cpu(struct task_group *tg, int cpu,
1532 unsigned long sd_shares,
1533 unsigned long sd_rq_weight,
4a6cc4bd 1534 unsigned long *usd_rq_weight)
18d95a28 1535{
34d76c41 1536 unsigned long shares, rq_weight;
a5004278 1537 int boost = 0;
c09595f6 1538
4a6cc4bd 1539 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1540 if (!rq_weight) {
1541 boost = 1;
1542 rq_weight = NICE_0_LOAD;
1543 }
c8cba857 1544
c09595f6 1545 /*
a8af7246
PZ
1546 * \Sum_j shares_j * rq_weight_i
1547 * shares_i = -----------------------------
1548 * \Sum_j rq_weight_j
c09595f6 1549 */
ec4e0e2f 1550 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1551 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1552
ffda12a1
PZ
1553 if (abs(shares - tg->se[cpu]->load.weight) >
1554 sysctl_sched_shares_thresh) {
1555 struct rq *rq = cpu_rq(cpu);
1556 unsigned long flags;
c09595f6 1557
05fa785c 1558 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1559 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1560 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1561 __set_se_shares(tg->se[cpu], shares);
05fa785c 1562 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1563 }
18d95a28 1564}
c09595f6
PZ
1565
1566/*
c8cba857
PZ
1567 * Re-compute the task group their per cpu shares over the given domain.
1568 * This needs to be done in a bottom-up fashion because the rq weight of a
1569 * parent group depends on the shares of its child groups.
c09595f6 1570 */
eb755805 1571static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1572{
cd8ad40d 1573 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1574 unsigned long *usd_rq_weight;
eb755805 1575 struct sched_domain *sd = data;
34d76c41 1576 unsigned long flags;
c8cba857 1577 int i;
c09595f6 1578
34d76c41
PZ
1579 if (!tg->se[0])
1580 return 0;
1581
1582 local_irq_save(flags);
4a6cc4bd 1583 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1584
758b2cdc 1585 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1586 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1587 usd_rq_weight[i] = weight;
34d76c41 1588
cd8ad40d 1589 rq_weight += weight;
ec4e0e2f
KC
1590 /*
1591 * If there are currently no tasks on the cpu pretend there
1592 * is one of average load so that when a new task gets to
1593 * run here it will not get delayed by group starvation.
1594 */
ec4e0e2f
KC
1595 if (!weight)
1596 weight = NICE_0_LOAD;
1597
cd8ad40d 1598 sum_weight += weight;
c8cba857 1599 shares += tg->cfs_rq[i]->shares;
c09595f6 1600 }
c09595f6 1601
cd8ad40d
PZ
1602 if (!rq_weight)
1603 rq_weight = sum_weight;
1604
c8cba857
PZ
1605 if ((!shares && rq_weight) || shares > tg->shares)
1606 shares = tg->shares;
1607
1608 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1609 shares = tg->shares;
c09595f6 1610
758b2cdc 1611 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1612 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1613
1614 local_irq_restore(flags);
eb755805
PZ
1615
1616 return 0;
c09595f6
PZ
1617}
1618
1619/*
c8cba857
PZ
1620 * Compute the cpu's hierarchical load factor for each task group.
1621 * This needs to be done in a top-down fashion because the load of a child
1622 * group is a fraction of its parents load.
c09595f6 1623 */
eb755805 1624static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1625{
c8cba857 1626 unsigned long load;
eb755805 1627 long cpu = (long)data;
c09595f6 1628
c8cba857
PZ
1629 if (!tg->parent) {
1630 load = cpu_rq(cpu)->load.weight;
1631 } else {
1632 load = tg->parent->cfs_rq[cpu]->h_load;
1633 load *= tg->cfs_rq[cpu]->shares;
1634 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1635 }
c09595f6 1636
c8cba857 1637 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1638
eb755805 1639 return 0;
c09595f6
PZ
1640}
1641
c8cba857 1642static void update_shares(struct sched_domain *sd)
4d8d595d 1643{
e7097159
PZ
1644 s64 elapsed;
1645 u64 now;
1646
1647 if (root_task_group_empty())
1648 return;
1649
1650 now = cpu_clock(raw_smp_processor_id());
1651 elapsed = now - sd->last_update;
2398f2c6
PZ
1652
1653 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1654 sd->last_update = now;
eb755805 1655 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1656 }
4d8d595d
PZ
1657}
1658
eb755805 1659static void update_h_load(long cpu)
c09595f6 1660{
e7097159
PZ
1661 if (root_task_group_empty())
1662 return;
1663
eb755805 1664 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1665}
1666
c09595f6
PZ
1667#else
1668
c8cba857 1669static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1670{
1671}
1672
18d95a28
PZ
1673#endif
1674
8f45e2b5
GH
1675#ifdef CONFIG_PREEMPT
1676
b78bb868
PZ
1677static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1678
70574a99 1679/*
8f45e2b5
GH
1680 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1681 * way at the expense of forcing extra atomic operations in all
1682 * invocations. This assures that the double_lock is acquired using the
1683 * same underlying policy as the spinlock_t on this architecture, which
1684 * reduces latency compared to the unfair variant below. However, it
1685 * also adds more overhead and therefore may reduce throughput.
70574a99 1686 */
8f45e2b5
GH
1687static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1688 __releases(this_rq->lock)
1689 __acquires(busiest->lock)
1690 __acquires(this_rq->lock)
1691{
05fa785c 1692 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1693 double_rq_lock(this_rq, busiest);
1694
1695 return 1;
1696}
1697
1698#else
1699/*
1700 * Unfair double_lock_balance: Optimizes throughput at the expense of
1701 * latency by eliminating extra atomic operations when the locks are
1702 * already in proper order on entry. This favors lower cpu-ids and will
1703 * grant the double lock to lower cpus over higher ids under contention,
1704 * regardless of entry order into the function.
1705 */
1706static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1707 __releases(this_rq->lock)
1708 __acquires(busiest->lock)
1709 __acquires(this_rq->lock)
1710{
1711 int ret = 0;
1712
05fa785c 1713 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1714 if (busiest < this_rq) {
05fa785c
TG
1715 raw_spin_unlock(&this_rq->lock);
1716 raw_spin_lock(&busiest->lock);
1717 raw_spin_lock_nested(&this_rq->lock,
1718 SINGLE_DEPTH_NESTING);
70574a99
AD
1719 ret = 1;
1720 } else
05fa785c
TG
1721 raw_spin_lock_nested(&busiest->lock,
1722 SINGLE_DEPTH_NESTING);
70574a99
AD
1723 }
1724 return ret;
1725}
1726
8f45e2b5
GH
1727#endif /* CONFIG_PREEMPT */
1728
1729/*
1730 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1731 */
1732static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1733{
1734 if (unlikely(!irqs_disabled())) {
1735 /* printk() doesn't work good under rq->lock */
05fa785c 1736 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1737 BUG_ON(1);
1738 }
1739
1740 return _double_lock_balance(this_rq, busiest);
1741}
1742
70574a99
AD
1743static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1744 __releases(busiest->lock)
1745{
05fa785c 1746 raw_spin_unlock(&busiest->lock);
70574a99
AD
1747 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1748}
1e3c88bd
PZ
1749
1750/*
1751 * double_rq_lock - safely lock two runqueues
1752 *
1753 * Note this does not disable interrupts like task_rq_lock,
1754 * you need to do so manually before calling.
1755 */
1756static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1757 __acquires(rq1->lock)
1758 __acquires(rq2->lock)
1759{
1760 BUG_ON(!irqs_disabled());
1761 if (rq1 == rq2) {
1762 raw_spin_lock(&rq1->lock);
1763 __acquire(rq2->lock); /* Fake it out ;) */
1764 } else {
1765 if (rq1 < rq2) {
1766 raw_spin_lock(&rq1->lock);
1767 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1768 } else {
1769 raw_spin_lock(&rq2->lock);
1770 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1771 }
1772 }
1773 update_rq_clock(rq1);
1774 update_rq_clock(rq2);
1775}
1776
1777/*
1778 * double_rq_unlock - safely unlock two runqueues
1779 *
1780 * Note this does not restore interrupts like task_rq_unlock,
1781 * you need to do so manually after calling.
1782 */
1783static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1784 __releases(rq1->lock)
1785 __releases(rq2->lock)
1786{
1787 raw_spin_unlock(&rq1->lock);
1788 if (rq1 != rq2)
1789 raw_spin_unlock(&rq2->lock);
1790 else
1791 __release(rq2->lock);
1792}
1793
18d95a28
PZ
1794#endif
1795
30432094 1796#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1797static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1798{
30432094 1799#ifdef CONFIG_SMP
34e83e85
IM
1800 cfs_rq->shares = shares;
1801#endif
1802}
30432094 1803#endif
e7693a36 1804
dce48a84 1805static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1806static void update_sysctl(void);
acb4a848 1807static int get_update_sysctl_factor(void);
dce48a84 1808
cd29fe6f
PZ
1809static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1810{
1811 set_task_rq(p, cpu);
1812#ifdef CONFIG_SMP
1813 /*
1814 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1815 * successfuly executed on another CPU. We must ensure that updates of
1816 * per-task data have been completed by this moment.
1817 */
1818 smp_wmb();
1819 task_thread_info(p)->cpu = cpu;
1820#endif
1821}
dce48a84 1822
1e3c88bd 1823static const struct sched_class rt_sched_class;
dd41f596
IM
1824
1825#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1826#define for_each_class(class) \
1827 for (class = sched_class_highest; class; class = class->next)
dd41f596 1828
1e3c88bd
PZ
1829#include "sched_stats.h"
1830
c09595f6 1831static void inc_nr_running(struct rq *rq)
9c217245
IM
1832{
1833 rq->nr_running++;
9c217245
IM
1834}
1835
c09595f6 1836static void dec_nr_running(struct rq *rq)
9c217245
IM
1837{
1838 rq->nr_running--;
9c217245
IM
1839}
1840
45bf76df
IM
1841static void set_load_weight(struct task_struct *p)
1842{
1843 if (task_has_rt_policy(p)) {
dd41f596
IM
1844 p->se.load.weight = prio_to_weight[0] * 2;
1845 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1846 return;
1847 }
45bf76df 1848
dd41f596
IM
1849 /*
1850 * SCHED_IDLE tasks get minimal weight:
1851 */
1852 if (p->policy == SCHED_IDLE) {
1853 p->se.load.weight = WEIGHT_IDLEPRIO;
1854 p->se.load.inv_weight = WMULT_IDLEPRIO;
1855 return;
1856 }
71f8bd46 1857
dd41f596
IM
1858 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1859 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1860}
1861
2087a1ad
GH
1862static void update_avg(u64 *avg, u64 sample)
1863{
1864 s64 diff = sample - *avg;
1865 *avg += diff >> 3;
1866}
1867
ea87bb78
TG
1868static void
1869enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
71f8bd46 1870{
831451ac
PZ
1871 if (wakeup)
1872 p->se.start_runtime = p->se.sum_exec_runtime;
1873
dd41f596 1874 sched_info_queued(p);
ea87bb78 1875 p->sched_class->enqueue_task(rq, p, wakeup, head);
dd41f596 1876 p->se.on_rq = 1;
71f8bd46
IM
1877}
1878
69be72c1 1879static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1880{
831451ac
PZ
1881 if (sleep) {
1882 if (p->se.last_wakeup) {
1883 update_avg(&p->se.avg_overlap,
1884 p->se.sum_exec_runtime - p->se.last_wakeup);
1885 p->se.last_wakeup = 0;
1886 } else {
1887 update_avg(&p->se.avg_wakeup,
1888 sysctl_sched_wakeup_granularity);
1889 }
2087a1ad
GH
1890 }
1891
46ac22ba 1892 sched_info_dequeued(p);
f02231e5 1893 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1894 p->se.on_rq = 0;
71f8bd46
IM
1895}
1896
1e3c88bd
PZ
1897/*
1898 * activate_task - move a task to the runqueue.
1899 */
1900static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1901{
1902 if (task_contributes_to_load(p))
1903 rq->nr_uninterruptible--;
1904
ea87bb78 1905 enqueue_task(rq, p, wakeup, false);
1e3c88bd
PZ
1906 inc_nr_running(rq);
1907}
1908
1909/*
1910 * deactivate_task - remove a task from the runqueue.
1911 */
1912static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1913{
1914 if (task_contributes_to_load(p))
1915 rq->nr_uninterruptible++;
1916
1917 dequeue_task(rq, p, sleep);
1918 dec_nr_running(rq);
1919}
1920
1921#include "sched_idletask.c"
1922#include "sched_fair.c"
1923#include "sched_rt.c"
1924#ifdef CONFIG_SCHED_DEBUG
1925# include "sched_debug.c"
1926#endif
1927
14531189 1928/*
dd41f596 1929 * __normal_prio - return the priority that is based on the static prio
14531189 1930 */
14531189
IM
1931static inline int __normal_prio(struct task_struct *p)
1932{
dd41f596 1933 return p->static_prio;
14531189
IM
1934}
1935
b29739f9
IM
1936/*
1937 * Calculate the expected normal priority: i.e. priority
1938 * without taking RT-inheritance into account. Might be
1939 * boosted by interactivity modifiers. Changes upon fork,
1940 * setprio syscalls, and whenever the interactivity
1941 * estimator recalculates.
1942 */
36c8b586 1943static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1944{
1945 int prio;
1946
e05606d3 1947 if (task_has_rt_policy(p))
b29739f9
IM
1948 prio = MAX_RT_PRIO-1 - p->rt_priority;
1949 else
1950 prio = __normal_prio(p);
1951 return prio;
1952}
1953
1954/*
1955 * Calculate the current priority, i.e. the priority
1956 * taken into account by the scheduler. This value might
1957 * be boosted by RT tasks, or might be boosted by
1958 * interactivity modifiers. Will be RT if the task got
1959 * RT-boosted. If not then it returns p->normal_prio.
1960 */
36c8b586 1961static int effective_prio(struct task_struct *p)
b29739f9
IM
1962{
1963 p->normal_prio = normal_prio(p);
1964 /*
1965 * If we are RT tasks or we were boosted to RT priority,
1966 * keep the priority unchanged. Otherwise, update priority
1967 * to the normal priority:
1968 */
1969 if (!rt_prio(p->prio))
1970 return p->normal_prio;
1971 return p->prio;
1972}
1973
1da177e4
LT
1974/**
1975 * task_curr - is this task currently executing on a CPU?
1976 * @p: the task in question.
1977 */
36c8b586 1978inline int task_curr(const struct task_struct *p)
1da177e4
LT
1979{
1980 return cpu_curr(task_cpu(p)) == p;
1981}
1982
cb469845
SR
1983static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1984 const struct sched_class *prev_class,
1985 int oldprio, int running)
1986{
1987 if (prev_class != p->sched_class) {
1988 if (prev_class->switched_from)
1989 prev_class->switched_from(rq, p, running);
1990 p->sched_class->switched_to(rq, p, running);
1991 } else
1992 p->sched_class->prio_changed(rq, p, oldprio, running);
1993}
1994
1da177e4 1995#ifdef CONFIG_SMP
cc367732
IM
1996/*
1997 * Is this task likely cache-hot:
1998 */
e7693a36 1999static int
cc367732
IM
2000task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2001{
2002 s64 delta;
2003
e6c8fba7
PZ
2004 if (p->sched_class != &fair_sched_class)
2005 return 0;
2006
f540a608
IM
2007 /*
2008 * Buddy candidates are cache hot:
2009 */
f685ceac 2010 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2011 (&p->se == cfs_rq_of(&p->se)->next ||
2012 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2013 return 1;
2014
6bc1665b
IM
2015 if (sysctl_sched_migration_cost == -1)
2016 return 1;
2017 if (sysctl_sched_migration_cost == 0)
2018 return 0;
2019
cc367732
IM
2020 delta = now - p->se.exec_start;
2021
2022 return delta < (s64)sysctl_sched_migration_cost;
2023}
2024
dd41f596 2025void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2026{
e2912009
PZ
2027#ifdef CONFIG_SCHED_DEBUG
2028 /*
2029 * We should never call set_task_cpu() on a blocked task,
2030 * ttwu() will sort out the placement.
2031 */
077614ee
PZ
2032 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2033 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2034#endif
2035
de1d7286 2036 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2037
0c69774e
PZ
2038 if (task_cpu(p) != new_cpu) {
2039 p->se.nr_migrations++;
2040 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2041 }
dd41f596
IM
2042
2043 __set_task_cpu(p, new_cpu);
c65cc870
IM
2044}
2045
70b97a7f 2046struct migration_req {
1da177e4 2047 struct list_head list;
1da177e4 2048
36c8b586 2049 struct task_struct *task;
1da177e4
LT
2050 int dest_cpu;
2051
1da177e4 2052 struct completion done;
70b97a7f 2053};
1da177e4
LT
2054
2055/*
2056 * The task's runqueue lock must be held.
2057 * Returns true if you have to wait for migration thread.
2058 */
36c8b586 2059static int
70b97a7f 2060migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2061{
70b97a7f 2062 struct rq *rq = task_rq(p);
1da177e4
LT
2063
2064 /*
2065 * If the task is not on a runqueue (and not running), then
e2912009 2066 * the next wake-up will properly place the task.
1da177e4 2067 */
e2912009 2068 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2069 return 0;
1da177e4
LT
2070
2071 init_completion(&req->done);
1da177e4
LT
2072 req->task = p;
2073 req->dest_cpu = dest_cpu;
2074 list_add(&req->list, &rq->migration_queue);
48f24c4d 2075
1da177e4
LT
2076 return 1;
2077}
2078
2079/*
2080 * wait_task_inactive - wait for a thread to unschedule.
2081 *
85ba2d86
RM
2082 * If @match_state is nonzero, it's the @p->state value just checked and
2083 * not expected to change. If it changes, i.e. @p might have woken up,
2084 * then return zero. When we succeed in waiting for @p to be off its CPU,
2085 * we return a positive number (its total switch count). If a second call
2086 * a short while later returns the same number, the caller can be sure that
2087 * @p has remained unscheduled the whole time.
2088 *
1da177e4
LT
2089 * The caller must ensure that the task *will* unschedule sometime soon,
2090 * else this function might spin for a *long* time. This function can't
2091 * be called with interrupts off, or it may introduce deadlock with
2092 * smp_call_function() if an IPI is sent by the same process we are
2093 * waiting to become inactive.
2094 */
85ba2d86 2095unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2096{
2097 unsigned long flags;
dd41f596 2098 int running, on_rq;
85ba2d86 2099 unsigned long ncsw;
70b97a7f 2100 struct rq *rq;
1da177e4 2101
3a5c359a
AK
2102 for (;;) {
2103 /*
2104 * We do the initial early heuristics without holding
2105 * any task-queue locks at all. We'll only try to get
2106 * the runqueue lock when things look like they will
2107 * work out!
2108 */
2109 rq = task_rq(p);
fa490cfd 2110
3a5c359a
AK
2111 /*
2112 * If the task is actively running on another CPU
2113 * still, just relax and busy-wait without holding
2114 * any locks.
2115 *
2116 * NOTE! Since we don't hold any locks, it's not
2117 * even sure that "rq" stays as the right runqueue!
2118 * But we don't care, since "task_running()" will
2119 * return false if the runqueue has changed and p
2120 * is actually now running somewhere else!
2121 */
85ba2d86
RM
2122 while (task_running(rq, p)) {
2123 if (match_state && unlikely(p->state != match_state))
2124 return 0;
3a5c359a 2125 cpu_relax();
85ba2d86 2126 }
fa490cfd 2127
3a5c359a
AK
2128 /*
2129 * Ok, time to look more closely! We need the rq
2130 * lock now, to be *sure*. If we're wrong, we'll
2131 * just go back and repeat.
2132 */
2133 rq = task_rq_lock(p, &flags);
0a16b607 2134 trace_sched_wait_task(rq, p);
3a5c359a
AK
2135 running = task_running(rq, p);
2136 on_rq = p->se.on_rq;
85ba2d86 2137 ncsw = 0;
f31e11d8 2138 if (!match_state || p->state == match_state)
93dcf55f 2139 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2140 task_rq_unlock(rq, &flags);
fa490cfd 2141
85ba2d86
RM
2142 /*
2143 * If it changed from the expected state, bail out now.
2144 */
2145 if (unlikely(!ncsw))
2146 break;
2147
3a5c359a
AK
2148 /*
2149 * Was it really running after all now that we
2150 * checked with the proper locks actually held?
2151 *
2152 * Oops. Go back and try again..
2153 */
2154 if (unlikely(running)) {
2155 cpu_relax();
2156 continue;
2157 }
fa490cfd 2158
3a5c359a
AK
2159 /*
2160 * It's not enough that it's not actively running,
2161 * it must be off the runqueue _entirely_, and not
2162 * preempted!
2163 *
80dd99b3 2164 * So if it was still runnable (but just not actively
3a5c359a
AK
2165 * running right now), it's preempted, and we should
2166 * yield - it could be a while.
2167 */
2168 if (unlikely(on_rq)) {
2169 schedule_timeout_uninterruptible(1);
2170 continue;
2171 }
fa490cfd 2172
3a5c359a
AK
2173 /*
2174 * Ahh, all good. It wasn't running, and it wasn't
2175 * runnable, which means that it will never become
2176 * running in the future either. We're all done!
2177 */
2178 break;
2179 }
85ba2d86
RM
2180
2181 return ncsw;
1da177e4
LT
2182}
2183
2184/***
2185 * kick_process - kick a running thread to enter/exit the kernel
2186 * @p: the to-be-kicked thread
2187 *
2188 * Cause a process which is running on another CPU to enter
2189 * kernel-mode, without any delay. (to get signals handled.)
2190 *
2191 * NOTE: this function doesnt have to take the runqueue lock,
2192 * because all it wants to ensure is that the remote task enters
2193 * the kernel. If the IPI races and the task has been migrated
2194 * to another CPU then no harm is done and the purpose has been
2195 * achieved as well.
2196 */
36c8b586 2197void kick_process(struct task_struct *p)
1da177e4
LT
2198{
2199 int cpu;
2200
2201 preempt_disable();
2202 cpu = task_cpu(p);
2203 if ((cpu != smp_processor_id()) && task_curr(p))
2204 smp_send_reschedule(cpu);
2205 preempt_enable();
2206}
b43e3521 2207EXPORT_SYMBOL_GPL(kick_process);
476d139c 2208#endif /* CONFIG_SMP */
1da177e4 2209
0793a61d
TG
2210/**
2211 * task_oncpu_function_call - call a function on the cpu on which a task runs
2212 * @p: the task to evaluate
2213 * @func: the function to be called
2214 * @info: the function call argument
2215 *
2216 * Calls the function @func when the task is currently running. This might
2217 * be on the current CPU, which just calls the function directly
2218 */
2219void task_oncpu_function_call(struct task_struct *p,
2220 void (*func) (void *info), void *info)
2221{
2222 int cpu;
2223
2224 preempt_disable();
2225 cpu = task_cpu(p);
2226 if (task_curr(p))
2227 smp_call_function_single(cpu, func, info, 1);
2228 preempt_enable();
2229}
2230
970b13ba 2231#ifdef CONFIG_SMP
5da9a0fb
PZ
2232static int select_fallback_rq(int cpu, struct task_struct *p)
2233{
2234 int dest_cpu;
2235 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2236
2237 /* Look for allowed, online CPU in same node. */
2238 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2239 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2240 return dest_cpu;
2241
2242 /* Any allowed, online CPU? */
2243 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2244 if (dest_cpu < nr_cpu_ids)
2245 return dest_cpu;
2246
2247 /* No more Mr. Nice Guy. */
2248 if (dest_cpu >= nr_cpu_ids) {
2249 rcu_read_lock();
2250 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2251 rcu_read_unlock();
2252 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2253
2254 /*
2255 * Don't tell them about moving exiting tasks or
2256 * kernel threads (both mm NULL), since they never
2257 * leave kernel.
2258 */
2259 if (p->mm && printk_ratelimit()) {
2260 printk(KERN_INFO "process %d (%s) no "
2261 "longer affine to cpu%d\n",
2262 task_pid_nr(p), p->comm, cpu);
2263 }
2264 }
2265
2266 return dest_cpu;
2267}
2268
e2912009 2269/*
fabf318e
PZ
2270 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2271 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2272 * by:
e2912009 2273 *
fabf318e
PZ
2274 * exec: is unstable, retry loop
2275 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
e2912009 2276 */
970b13ba
PZ
2277static inline
2278int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2279{
e2912009
PZ
2280 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2281
2282 /*
2283 * In order not to call set_task_cpu() on a blocking task we need
2284 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2285 * cpu.
2286 *
2287 * Since this is common to all placement strategies, this lives here.
2288 *
2289 * [ this allows ->select_task() to simply return task_cpu(p) and
2290 * not worry about this generic constraint ]
2291 */
2292 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2293 !cpu_online(cpu)))
5da9a0fb 2294 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2295
2296 return cpu;
970b13ba
PZ
2297}
2298#endif
2299
1da177e4
LT
2300/***
2301 * try_to_wake_up - wake up a thread
2302 * @p: the to-be-woken-up thread
2303 * @state: the mask of task states that can be woken
2304 * @sync: do a synchronous wakeup?
2305 *
2306 * Put it on the run-queue if it's not already there. The "current"
2307 * thread is always on the run-queue (except when the actual
2308 * re-schedule is in progress), and as such you're allowed to do
2309 * the simpler "current->state = TASK_RUNNING" to mark yourself
2310 * runnable without the overhead of this.
2311 *
2312 * returns failure only if the task is already active.
2313 */
7d478721
PZ
2314static int try_to_wake_up(struct task_struct *p, unsigned int state,
2315 int wake_flags)
1da177e4 2316{
cc367732 2317 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2318 unsigned long flags;
ab3b3aa5 2319 struct rq *rq;
1da177e4 2320
b85d0667 2321 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2322 wake_flags &= ~WF_SYNC;
2398f2c6 2323
e9c84311 2324 this_cpu = get_cpu();
2398f2c6 2325
04e2f174 2326 smp_wmb();
ab3b3aa5 2327 rq = task_rq_lock(p, &flags);
03e89e45 2328 update_rq_clock(rq);
e9c84311 2329 if (!(p->state & state))
1da177e4
LT
2330 goto out;
2331
dd41f596 2332 if (p->se.on_rq)
1da177e4
LT
2333 goto out_running;
2334
2335 cpu = task_cpu(p);
cc367732 2336 orig_cpu = cpu;
1da177e4
LT
2337
2338#ifdef CONFIG_SMP
2339 if (unlikely(task_running(rq, p)))
2340 goto out_activate;
2341
e9c84311
PZ
2342 /*
2343 * In order to handle concurrent wakeups and release the rq->lock
2344 * we put the task in TASK_WAKING state.
eb24073b
IM
2345 *
2346 * First fix up the nr_uninterruptible count:
e9c84311 2347 */
eb24073b
IM
2348 if (task_contributes_to_load(p))
2349 rq->nr_uninterruptible--;
e9c84311 2350 p->state = TASK_WAKING;
efbbd05a
PZ
2351
2352 if (p->sched_class->task_waking)
2353 p->sched_class->task_waking(rq, p);
2354
ab19cb23 2355 __task_rq_unlock(rq);
e9c84311 2356
970b13ba 2357 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
0970d299
PZ
2358 if (cpu != orig_cpu) {
2359 /*
2360 * Since we migrate the task without holding any rq->lock,
2361 * we need to be careful with task_rq_lock(), since that
2362 * might end up locking an invalid rq.
2363 */
5d2f5a61 2364 set_task_cpu(p, cpu);
0970d299 2365 }
ab19cb23 2366
0970d299
PZ
2367 rq = cpu_rq(cpu);
2368 raw_spin_lock(&rq->lock);
ab19cb23 2369 update_rq_clock(rq);
f5dc3753 2370
0970d299
PZ
2371 /*
2372 * We migrated the task without holding either rq->lock, however
2373 * since the task is not on the task list itself, nobody else
2374 * will try and migrate the task, hence the rq should match the
2375 * cpu we just moved it to.
2376 */
2377 WARN_ON(task_cpu(p) != cpu);
e9c84311 2378 WARN_ON(p->state != TASK_WAKING);
1da177e4 2379
e7693a36
GH
2380#ifdef CONFIG_SCHEDSTATS
2381 schedstat_inc(rq, ttwu_count);
2382 if (cpu == this_cpu)
2383 schedstat_inc(rq, ttwu_local);
2384 else {
2385 struct sched_domain *sd;
2386 for_each_domain(this_cpu, sd) {
758b2cdc 2387 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2388 schedstat_inc(sd, ttwu_wake_remote);
2389 break;
2390 }
2391 }
2392 }
6d6bc0ad 2393#endif /* CONFIG_SCHEDSTATS */
e7693a36 2394
1da177e4
LT
2395out_activate:
2396#endif /* CONFIG_SMP */
cc367732 2397 schedstat_inc(p, se.nr_wakeups);
7d478721 2398 if (wake_flags & WF_SYNC)
cc367732
IM
2399 schedstat_inc(p, se.nr_wakeups_sync);
2400 if (orig_cpu != cpu)
2401 schedstat_inc(p, se.nr_wakeups_migrate);
2402 if (cpu == this_cpu)
2403 schedstat_inc(p, se.nr_wakeups_local);
2404 else
2405 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2406 activate_task(rq, p, 1);
1da177e4
LT
2407 success = 1;
2408
831451ac
PZ
2409 /*
2410 * Only attribute actual wakeups done by this task.
2411 */
2412 if (!in_interrupt()) {
2413 struct sched_entity *se = &current->se;
2414 u64 sample = se->sum_exec_runtime;
2415
2416 if (se->last_wakeup)
2417 sample -= se->last_wakeup;
2418 else
2419 sample -= se->start_runtime;
2420 update_avg(&se->avg_wakeup, sample);
2421
2422 se->last_wakeup = se->sum_exec_runtime;
2423 }
2424
1da177e4 2425out_running:
468a15bb 2426 trace_sched_wakeup(rq, p, success);
7d478721 2427 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2428
1da177e4 2429 p->state = TASK_RUNNING;
9a897c5a 2430#ifdef CONFIG_SMP
efbbd05a
PZ
2431 if (p->sched_class->task_woken)
2432 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2433
2434 if (unlikely(rq->idle_stamp)) {
2435 u64 delta = rq->clock - rq->idle_stamp;
2436 u64 max = 2*sysctl_sched_migration_cost;
2437
2438 if (delta > max)
2439 rq->avg_idle = max;
2440 else
2441 update_avg(&rq->avg_idle, delta);
2442 rq->idle_stamp = 0;
2443 }
9a897c5a 2444#endif
1da177e4
LT
2445out:
2446 task_rq_unlock(rq, &flags);
e9c84311 2447 put_cpu();
1da177e4
LT
2448
2449 return success;
2450}
2451
50fa610a
DH
2452/**
2453 * wake_up_process - Wake up a specific process
2454 * @p: The process to be woken up.
2455 *
2456 * Attempt to wake up the nominated process and move it to the set of runnable
2457 * processes. Returns 1 if the process was woken up, 0 if it was already
2458 * running.
2459 *
2460 * It may be assumed that this function implies a write memory barrier before
2461 * changing the task state if and only if any tasks are woken up.
2462 */
7ad5b3a5 2463int wake_up_process(struct task_struct *p)
1da177e4 2464{
d9514f6c 2465 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2466}
1da177e4
LT
2467EXPORT_SYMBOL(wake_up_process);
2468
7ad5b3a5 2469int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2470{
2471 return try_to_wake_up(p, state, 0);
2472}
2473
1da177e4
LT
2474/*
2475 * Perform scheduler related setup for a newly forked process p.
2476 * p is forked by current.
dd41f596
IM
2477 *
2478 * __sched_fork() is basic setup used by init_idle() too:
2479 */
2480static void __sched_fork(struct task_struct *p)
2481{
dd41f596
IM
2482 p->se.exec_start = 0;
2483 p->se.sum_exec_runtime = 0;
f6cf891c 2484 p->se.prev_sum_exec_runtime = 0;
6c594c21 2485 p->se.nr_migrations = 0;
4ae7d5ce
IM
2486 p->se.last_wakeup = 0;
2487 p->se.avg_overlap = 0;
831451ac
PZ
2488 p->se.start_runtime = 0;
2489 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2490
2491#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2492 p->se.wait_start = 0;
2493 p->se.wait_max = 0;
2494 p->se.wait_count = 0;
2495 p->se.wait_sum = 0;
2496
2497 p->se.sleep_start = 0;
2498 p->se.sleep_max = 0;
2499 p->se.sum_sleep_runtime = 0;
2500
2501 p->se.block_start = 0;
2502 p->se.block_max = 0;
2503 p->se.exec_max = 0;
2504 p->se.slice_max = 0;
2505
2506 p->se.nr_migrations_cold = 0;
2507 p->se.nr_failed_migrations_affine = 0;
2508 p->se.nr_failed_migrations_running = 0;
2509 p->se.nr_failed_migrations_hot = 0;
2510 p->se.nr_forced_migrations = 0;
7793527b
LDM
2511
2512 p->se.nr_wakeups = 0;
2513 p->se.nr_wakeups_sync = 0;
2514 p->se.nr_wakeups_migrate = 0;
2515 p->se.nr_wakeups_local = 0;
2516 p->se.nr_wakeups_remote = 0;
2517 p->se.nr_wakeups_affine = 0;
2518 p->se.nr_wakeups_affine_attempts = 0;
2519 p->se.nr_wakeups_passive = 0;
2520 p->se.nr_wakeups_idle = 0;
2521
6cfb0d5d 2522#endif
476d139c 2523
fa717060 2524 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2525 p->se.on_rq = 0;
4a55bd5e 2526 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2527
e107be36
AK
2528#ifdef CONFIG_PREEMPT_NOTIFIERS
2529 INIT_HLIST_HEAD(&p->preempt_notifiers);
2530#endif
dd41f596
IM
2531}
2532
2533/*
2534 * fork()/clone()-time setup:
2535 */
2536void sched_fork(struct task_struct *p, int clone_flags)
2537{
2538 int cpu = get_cpu();
2539
2540 __sched_fork(p);
06b83b5f
PZ
2541 /*
2542 * We mark the process as waking here. This guarantees that
2543 * nobody will actually run it, and a signal or other external
2544 * event cannot wake it up and insert it on the runqueue either.
2545 */
2546 p->state = TASK_WAKING;
dd41f596 2547
b9dc29e7
MG
2548 /*
2549 * Revert to default priority/policy on fork if requested.
2550 */
2551 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2552 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2553 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2554 p->normal_prio = p->static_prio;
2555 }
b9dc29e7 2556
6c697bdf
MG
2557 if (PRIO_TO_NICE(p->static_prio) < 0) {
2558 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2559 p->normal_prio = p->static_prio;
6c697bdf
MG
2560 set_load_weight(p);
2561 }
2562
b9dc29e7
MG
2563 /*
2564 * We don't need the reset flag anymore after the fork. It has
2565 * fulfilled its duty:
2566 */
2567 p->sched_reset_on_fork = 0;
2568 }
ca94c442 2569
f83f9ac2
PW
2570 /*
2571 * Make sure we do not leak PI boosting priority to the child.
2572 */
2573 p->prio = current->normal_prio;
2574
2ddbf952
HS
2575 if (!rt_prio(p->prio))
2576 p->sched_class = &fair_sched_class;
b29739f9 2577
cd29fe6f
PZ
2578 if (p->sched_class->task_fork)
2579 p->sched_class->task_fork(p);
2580
5f3edc1b
PZ
2581 set_task_cpu(p, cpu);
2582
52f17b6c 2583#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2584 if (likely(sched_info_on()))
52f17b6c 2585 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2586#endif
d6077cb8 2587#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2588 p->oncpu = 0;
2589#endif
1da177e4 2590#ifdef CONFIG_PREEMPT
4866cde0 2591 /* Want to start with kernel preemption disabled. */
a1261f54 2592 task_thread_info(p)->preempt_count = 1;
1da177e4 2593#endif
917b627d
GH
2594 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2595
476d139c 2596 put_cpu();
1da177e4
LT
2597}
2598
2599/*
2600 * wake_up_new_task - wake up a newly created task for the first time.
2601 *
2602 * This function will do some initial scheduler statistics housekeeping
2603 * that must be done for every newly created context, then puts the task
2604 * on the runqueue and wakes it.
2605 */
7ad5b3a5 2606void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2607{
2608 unsigned long flags;
dd41f596 2609 struct rq *rq;
c890692b 2610 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2611
2612#ifdef CONFIG_SMP
2613 /*
2614 * Fork balancing, do it here and not earlier because:
2615 * - cpus_allowed can change in the fork path
2616 * - any previously selected cpu might disappear through hotplug
2617 *
2618 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2619 * ->cpus_allowed is stable, we have preemption disabled, meaning
2620 * cpu_online_mask is stable.
2621 */
2622 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2623 set_task_cpu(p, cpu);
2624#endif
1da177e4 2625
0970d299
PZ
2626 /*
2627 * Since the task is not on the rq and we still have TASK_WAKING set
2628 * nobody else will migrate this task.
2629 */
2630 rq = cpu_rq(cpu);
2631 raw_spin_lock_irqsave(&rq->lock, flags);
2632
06b83b5f
PZ
2633 BUG_ON(p->state != TASK_WAKING);
2634 p->state = TASK_RUNNING;
a8e504d2 2635 update_rq_clock(rq);
cd29fe6f 2636 activate_task(rq, p, 0);
c71dd42d 2637 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2638 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2639#ifdef CONFIG_SMP
efbbd05a
PZ
2640 if (p->sched_class->task_woken)
2641 p->sched_class->task_woken(rq, p);
9a897c5a 2642#endif
dd41f596 2643 task_rq_unlock(rq, &flags);
fabf318e 2644 put_cpu();
1da177e4
LT
2645}
2646
e107be36
AK
2647#ifdef CONFIG_PREEMPT_NOTIFIERS
2648
2649/**
80dd99b3 2650 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2651 * @notifier: notifier struct to register
e107be36
AK
2652 */
2653void preempt_notifier_register(struct preempt_notifier *notifier)
2654{
2655 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2656}
2657EXPORT_SYMBOL_GPL(preempt_notifier_register);
2658
2659/**
2660 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2661 * @notifier: notifier struct to unregister
e107be36
AK
2662 *
2663 * This is safe to call from within a preemption notifier.
2664 */
2665void preempt_notifier_unregister(struct preempt_notifier *notifier)
2666{
2667 hlist_del(&notifier->link);
2668}
2669EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2670
2671static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2672{
2673 struct preempt_notifier *notifier;
2674 struct hlist_node *node;
2675
2676 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2677 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2678}
2679
2680static void
2681fire_sched_out_preempt_notifiers(struct task_struct *curr,
2682 struct task_struct *next)
2683{
2684 struct preempt_notifier *notifier;
2685 struct hlist_node *node;
2686
2687 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2688 notifier->ops->sched_out(notifier, next);
2689}
2690
6d6bc0ad 2691#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2692
2693static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2694{
2695}
2696
2697static void
2698fire_sched_out_preempt_notifiers(struct task_struct *curr,
2699 struct task_struct *next)
2700{
2701}
2702
6d6bc0ad 2703#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2704
4866cde0
NP
2705/**
2706 * prepare_task_switch - prepare to switch tasks
2707 * @rq: the runqueue preparing to switch
421cee29 2708 * @prev: the current task that is being switched out
4866cde0
NP
2709 * @next: the task we are going to switch to.
2710 *
2711 * This is called with the rq lock held and interrupts off. It must
2712 * be paired with a subsequent finish_task_switch after the context
2713 * switch.
2714 *
2715 * prepare_task_switch sets up locking and calls architecture specific
2716 * hooks.
2717 */
e107be36
AK
2718static inline void
2719prepare_task_switch(struct rq *rq, struct task_struct *prev,
2720 struct task_struct *next)
4866cde0 2721{
e107be36 2722 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2723 prepare_lock_switch(rq, next);
2724 prepare_arch_switch(next);
2725}
2726
1da177e4
LT
2727/**
2728 * finish_task_switch - clean up after a task-switch
344babaa 2729 * @rq: runqueue associated with task-switch
1da177e4
LT
2730 * @prev: the thread we just switched away from.
2731 *
4866cde0
NP
2732 * finish_task_switch must be called after the context switch, paired
2733 * with a prepare_task_switch call before the context switch.
2734 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2735 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2736 *
2737 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2738 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2739 * with the lock held can cause deadlocks; see schedule() for
2740 * details.)
2741 */
a9957449 2742static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2743 __releases(rq->lock)
2744{
1da177e4 2745 struct mm_struct *mm = rq->prev_mm;
55a101f8 2746 long prev_state;
1da177e4
LT
2747
2748 rq->prev_mm = NULL;
2749
2750 /*
2751 * A task struct has one reference for the use as "current".
c394cc9f 2752 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2753 * schedule one last time. The schedule call will never return, and
2754 * the scheduled task must drop that reference.
c394cc9f 2755 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2756 * still held, otherwise prev could be scheduled on another cpu, die
2757 * there before we look at prev->state, and then the reference would
2758 * be dropped twice.
2759 * Manfred Spraul <manfred@colorfullife.com>
2760 */
55a101f8 2761 prev_state = prev->state;
4866cde0 2762 finish_arch_switch(prev);
8381f65d
JI
2763#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2764 local_irq_disable();
2765#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2766 perf_event_task_sched_in(current);
8381f65d
JI
2767#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2768 local_irq_enable();
2769#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2770 finish_lock_switch(rq, prev);
e8fa1362 2771
e107be36 2772 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2773 if (mm)
2774 mmdrop(mm);
c394cc9f 2775 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2776 /*
2777 * Remove function-return probe instances associated with this
2778 * task and put them back on the free list.
9761eea8 2779 */
c6fd91f0 2780 kprobe_flush_task(prev);
1da177e4 2781 put_task_struct(prev);
c6fd91f0 2782 }
1da177e4
LT
2783}
2784
3f029d3c
GH
2785#ifdef CONFIG_SMP
2786
2787/* assumes rq->lock is held */
2788static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2789{
2790 if (prev->sched_class->pre_schedule)
2791 prev->sched_class->pre_schedule(rq, prev);
2792}
2793
2794/* rq->lock is NOT held, but preemption is disabled */
2795static inline void post_schedule(struct rq *rq)
2796{
2797 if (rq->post_schedule) {
2798 unsigned long flags;
2799
05fa785c 2800 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2801 if (rq->curr->sched_class->post_schedule)
2802 rq->curr->sched_class->post_schedule(rq);
05fa785c 2803 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2804
2805 rq->post_schedule = 0;
2806 }
2807}
2808
2809#else
da19ab51 2810
3f029d3c
GH
2811static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2812{
2813}
2814
2815static inline void post_schedule(struct rq *rq)
2816{
1da177e4
LT
2817}
2818
3f029d3c
GH
2819#endif
2820
1da177e4
LT
2821/**
2822 * schedule_tail - first thing a freshly forked thread must call.
2823 * @prev: the thread we just switched away from.
2824 */
36c8b586 2825asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2826 __releases(rq->lock)
2827{
70b97a7f
IM
2828 struct rq *rq = this_rq();
2829
4866cde0 2830 finish_task_switch(rq, prev);
da19ab51 2831
3f029d3c
GH
2832 /*
2833 * FIXME: do we need to worry about rq being invalidated by the
2834 * task_switch?
2835 */
2836 post_schedule(rq);
70b97a7f 2837
4866cde0
NP
2838#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2839 /* In this case, finish_task_switch does not reenable preemption */
2840 preempt_enable();
2841#endif
1da177e4 2842 if (current->set_child_tid)
b488893a 2843 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2844}
2845
2846/*
2847 * context_switch - switch to the new MM and the new
2848 * thread's register state.
2849 */
dd41f596 2850static inline void
70b97a7f 2851context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2852 struct task_struct *next)
1da177e4 2853{
dd41f596 2854 struct mm_struct *mm, *oldmm;
1da177e4 2855
e107be36 2856 prepare_task_switch(rq, prev, next);
0a16b607 2857 trace_sched_switch(rq, prev, next);
dd41f596
IM
2858 mm = next->mm;
2859 oldmm = prev->active_mm;
9226d125
ZA
2860 /*
2861 * For paravirt, this is coupled with an exit in switch_to to
2862 * combine the page table reload and the switch backend into
2863 * one hypercall.
2864 */
224101ed 2865 arch_start_context_switch(prev);
9226d125 2866
710390d9 2867 if (likely(!mm)) {
1da177e4
LT
2868 next->active_mm = oldmm;
2869 atomic_inc(&oldmm->mm_count);
2870 enter_lazy_tlb(oldmm, next);
2871 } else
2872 switch_mm(oldmm, mm, next);
2873
710390d9 2874 if (likely(!prev->mm)) {
1da177e4 2875 prev->active_mm = NULL;
1da177e4
LT
2876 rq->prev_mm = oldmm;
2877 }
3a5f5e48
IM
2878 /*
2879 * Since the runqueue lock will be released by the next
2880 * task (which is an invalid locking op but in the case
2881 * of the scheduler it's an obvious special-case), so we
2882 * do an early lockdep release here:
2883 */
2884#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2885 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2886#endif
1da177e4
LT
2887
2888 /* Here we just switch the register state and the stack. */
2889 switch_to(prev, next, prev);
2890
dd41f596
IM
2891 barrier();
2892 /*
2893 * this_rq must be evaluated again because prev may have moved
2894 * CPUs since it called schedule(), thus the 'rq' on its stack
2895 * frame will be invalid.
2896 */
2897 finish_task_switch(this_rq(), prev);
1da177e4
LT
2898}
2899
2900/*
2901 * nr_running, nr_uninterruptible and nr_context_switches:
2902 *
2903 * externally visible scheduler statistics: current number of runnable
2904 * threads, current number of uninterruptible-sleeping threads, total
2905 * number of context switches performed since bootup.
2906 */
2907unsigned long nr_running(void)
2908{
2909 unsigned long i, sum = 0;
2910
2911 for_each_online_cpu(i)
2912 sum += cpu_rq(i)->nr_running;
2913
2914 return sum;
f711f609 2915}
1da177e4
LT
2916
2917unsigned long nr_uninterruptible(void)
f711f609 2918{
1da177e4 2919 unsigned long i, sum = 0;
f711f609 2920
0a945022 2921 for_each_possible_cpu(i)
1da177e4 2922 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2923
2924 /*
1da177e4
LT
2925 * Since we read the counters lockless, it might be slightly
2926 * inaccurate. Do not allow it to go below zero though:
f711f609 2927 */
1da177e4
LT
2928 if (unlikely((long)sum < 0))
2929 sum = 0;
f711f609 2930
1da177e4 2931 return sum;
f711f609 2932}
f711f609 2933
1da177e4 2934unsigned long long nr_context_switches(void)
46cb4b7c 2935{
cc94abfc
SR
2936 int i;
2937 unsigned long long sum = 0;
46cb4b7c 2938
0a945022 2939 for_each_possible_cpu(i)
1da177e4 2940 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2941
1da177e4
LT
2942 return sum;
2943}
483b4ee6 2944
1da177e4
LT
2945unsigned long nr_iowait(void)
2946{
2947 unsigned long i, sum = 0;
483b4ee6 2948
0a945022 2949 for_each_possible_cpu(i)
1da177e4 2950 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2951
1da177e4
LT
2952 return sum;
2953}
483b4ee6 2954
69d25870
AV
2955unsigned long nr_iowait_cpu(void)
2956{
2957 struct rq *this = this_rq();
2958 return atomic_read(&this->nr_iowait);
2959}
46cb4b7c 2960
69d25870
AV
2961unsigned long this_cpu_load(void)
2962{
2963 struct rq *this = this_rq();
2964 return this->cpu_load[0];
2965}
e790fb0b 2966
46cb4b7c 2967
dce48a84
TG
2968/* Variables and functions for calc_load */
2969static atomic_long_t calc_load_tasks;
2970static unsigned long calc_load_update;
2971unsigned long avenrun[3];
2972EXPORT_SYMBOL(avenrun);
46cb4b7c 2973
2d02494f
TG
2974/**
2975 * get_avenrun - get the load average array
2976 * @loads: pointer to dest load array
2977 * @offset: offset to add
2978 * @shift: shift count to shift the result left
2979 *
2980 * These values are estimates at best, so no need for locking.
2981 */
2982void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2983{
2984 loads[0] = (avenrun[0] + offset) << shift;
2985 loads[1] = (avenrun[1] + offset) << shift;
2986 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2987}
46cb4b7c 2988
dce48a84
TG
2989static unsigned long
2990calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2991{
dce48a84
TG
2992 load *= exp;
2993 load += active * (FIXED_1 - exp);
2994 return load >> FSHIFT;
2995}
46cb4b7c
SS
2996
2997/*
dce48a84
TG
2998 * calc_load - update the avenrun load estimates 10 ticks after the
2999 * CPUs have updated calc_load_tasks.
7835b98b 3000 */
dce48a84 3001void calc_global_load(void)
7835b98b 3002{
dce48a84
TG
3003 unsigned long upd = calc_load_update + 10;
3004 long active;
1da177e4 3005
dce48a84
TG
3006 if (time_before(jiffies, upd))
3007 return;
1da177e4 3008
dce48a84
TG
3009 active = atomic_long_read(&calc_load_tasks);
3010 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3011
dce48a84
TG
3012 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3013 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3014 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3015
dce48a84
TG
3016 calc_load_update += LOAD_FREQ;
3017}
1da177e4 3018
dce48a84
TG
3019/*
3020 * Either called from update_cpu_load() or from a cpu going idle
3021 */
3022static void calc_load_account_active(struct rq *this_rq)
3023{
3024 long nr_active, delta;
08c183f3 3025
dce48a84
TG
3026 nr_active = this_rq->nr_running;
3027 nr_active += (long) this_rq->nr_uninterruptible;
783609c6 3028
dce48a84
TG
3029 if (nr_active != this_rq->calc_load_active) {
3030 delta = nr_active - this_rq->calc_load_active;
3031 this_rq->calc_load_active = nr_active;
3032 atomic_long_add(delta, &calc_load_tasks);
1da177e4 3033 }
46cb4b7c
SS
3034}
3035
3036/*
dd41f596
IM
3037 * Update rq->cpu_load[] statistics. This function is usually called every
3038 * scheduler tick (TICK_NSEC).
46cb4b7c 3039 */
dd41f596 3040static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3041{
495eca49 3042 unsigned long this_load = this_rq->load.weight;
dd41f596 3043 int i, scale;
46cb4b7c 3044
dd41f596 3045 this_rq->nr_load_updates++;
46cb4b7c 3046
dd41f596
IM
3047 /* Update our load: */
3048 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3049 unsigned long old_load, new_load;
7d1e6a9b 3050
dd41f596 3051 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3052
dd41f596
IM
3053 old_load = this_rq->cpu_load[i];
3054 new_load = this_load;
a25707f3
IM
3055 /*
3056 * Round up the averaging division if load is increasing. This
3057 * prevents us from getting stuck on 9 if the load is 10, for
3058 * example.
3059 */
3060 if (new_load > old_load)
3061 new_load += scale-1;
dd41f596
IM
3062 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3063 }
46cb4b7c 3064
dce48a84
TG
3065 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3066 this_rq->calc_load_update += LOAD_FREQ;
3067 calc_load_account_active(this_rq);
46cb4b7c 3068 }
46cb4b7c
SS
3069}
3070
dd41f596 3071#ifdef CONFIG_SMP
8a0be9ef 3072
46cb4b7c 3073/*
38022906
PZ
3074 * sched_exec - execve() is a valuable balancing opportunity, because at
3075 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3076 */
38022906 3077void sched_exec(void)
46cb4b7c 3078{
38022906 3079 struct task_struct *p = current;
70b97a7f 3080 struct migration_req req;
38022906 3081 int dest_cpu, this_cpu;
1da177e4 3082 unsigned long flags;
70b97a7f 3083 struct rq *rq;
46cb4b7c 3084
38022906
PZ
3085again:
3086 this_cpu = get_cpu();
3087 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3088 if (dest_cpu == this_cpu) {
3089 put_cpu();
3090 return;
46cb4b7c
SS
3091 }
3092
1da177e4 3093 rq = task_rq_lock(p, &flags);
38022906
PZ
3094 put_cpu();
3095
46cb4b7c 3096 /*
38022906 3097 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3098 */
96f874e2 3099 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
38022906
PZ
3100 || unlikely(!cpu_active(dest_cpu))) {
3101 task_rq_unlock(rq, &flags);
3102 goto again;
46cb4b7c
SS
3103 }
3104
1da177e4
LT
3105 /* force the process onto the specified CPU */
3106 if (migrate_task(p, dest_cpu, &req)) {
3107 /* Need to wait for migration thread (might exit: take ref). */
3108 struct task_struct *mt = rq->migration_thread;
dd41f596 3109
1da177e4
LT
3110 get_task_struct(mt);
3111 task_rq_unlock(rq, &flags);
3112 wake_up_process(mt);
3113 put_task_struct(mt);
3114 wait_for_completion(&req.done);
dd41f596 3115
1da177e4
LT
3116 return;
3117 }
1da177e4 3118 task_rq_unlock(rq, &flags);
1da177e4 3119}
dd41f596 3120
1da177e4
LT
3121#endif
3122
1da177e4
LT
3123DEFINE_PER_CPU(struct kernel_stat, kstat);
3124
3125EXPORT_PER_CPU_SYMBOL(kstat);
3126
3127/*
c5f8d995 3128 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3129 * @p in case that task is currently running.
c5f8d995
HS
3130 *
3131 * Called with task_rq_lock() held on @rq.
1da177e4 3132 */
c5f8d995
HS
3133static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3134{
3135 u64 ns = 0;
3136
3137 if (task_current(rq, p)) {
3138 update_rq_clock(rq);
3139 ns = rq->clock - p->se.exec_start;
3140 if ((s64)ns < 0)
3141 ns = 0;
3142 }
3143
3144 return ns;
3145}
3146
bb34d92f 3147unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3148{
1da177e4 3149 unsigned long flags;
41b86e9c 3150 struct rq *rq;
bb34d92f 3151 u64 ns = 0;
48f24c4d 3152
41b86e9c 3153 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3154 ns = do_task_delta_exec(p, rq);
3155 task_rq_unlock(rq, &flags);
1508487e 3156
c5f8d995
HS
3157 return ns;
3158}
f06febc9 3159
c5f8d995
HS
3160/*
3161 * Return accounted runtime for the task.
3162 * In case the task is currently running, return the runtime plus current's
3163 * pending runtime that have not been accounted yet.
3164 */
3165unsigned long long task_sched_runtime(struct task_struct *p)
3166{
3167 unsigned long flags;
3168 struct rq *rq;
3169 u64 ns = 0;
3170
3171 rq = task_rq_lock(p, &flags);
3172 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3173 task_rq_unlock(rq, &flags);
3174
3175 return ns;
3176}
48f24c4d 3177
c5f8d995
HS
3178/*
3179 * Return sum_exec_runtime for the thread group.
3180 * In case the task is currently running, return the sum plus current's
3181 * pending runtime that have not been accounted yet.
3182 *
3183 * Note that the thread group might have other running tasks as well,
3184 * so the return value not includes other pending runtime that other
3185 * running tasks might have.
3186 */
3187unsigned long long thread_group_sched_runtime(struct task_struct *p)
3188{
3189 struct task_cputime totals;
3190 unsigned long flags;
3191 struct rq *rq;
3192 u64 ns;
3193
3194 rq = task_rq_lock(p, &flags);
3195 thread_group_cputime(p, &totals);
3196 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3197 task_rq_unlock(rq, &flags);
48f24c4d 3198
1da177e4
LT
3199 return ns;
3200}
3201
1da177e4
LT
3202/*
3203 * Account user cpu time to a process.
3204 * @p: the process that the cpu time gets accounted to
1da177e4 3205 * @cputime: the cpu time spent in user space since the last update
457533a7 3206 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3207 */
457533a7
MS
3208void account_user_time(struct task_struct *p, cputime_t cputime,
3209 cputime_t cputime_scaled)
1da177e4
LT
3210{
3211 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3212 cputime64_t tmp;
3213
457533a7 3214 /* Add user time to process. */
1da177e4 3215 p->utime = cputime_add(p->utime, cputime);
457533a7 3216 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3217 account_group_user_time(p, cputime);
1da177e4
LT
3218
3219 /* Add user time to cpustat. */
3220 tmp = cputime_to_cputime64(cputime);
3221 if (TASK_NICE(p) > 0)
3222 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3223 else
3224 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3225
3226 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3227 /* Account for user time used */
3228 acct_update_integrals(p);
1da177e4
LT
3229}
3230
94886b84
LV
3231/*
3232 * Account guest cpu time to a process.
3233 * @p: the process that the cpu time gets accounted to
3234 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3235 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3236 */
457533a7
MS
3237static void account_guest_time(struct task_struct *p, cputime_t cputime,
3238 cputime_t cputime_scaled)
94886b84
LV
3239{
3240 cputime64_t tmp;
3241 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3242
3243 tmp = cputime_to_cputime64(cputime);
3244
457533a7 3245 /* Add guest time to process. */
94886b84 3246 p->utime = cputime_add(p->utime, cputime);
457533a7 3247 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3248 account_group_user_time(p, cputime);
94886b84
LV
3249 p->gtime = cputime_add(p->gtime, cputime);
3250
457533a7 3251 /* Add guest time to cpustat. */
ce0e7b28
RO
3252 if (TASK_NICE(p) > 0) {
3253 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3254 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3255 } else {
3256 cpustat->user = cputime64_add(cpustat->user, tmp);
3257 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3258 }
94886b84
LV
3259}
3260
1da177e4
LT
3261/*
3262 * Account system cpu time to a process.
3263 * @p: the process that the cpu time gets accounted to
3264 * @hardirq_offset: the offset to subtract from hardirq_count()
3265 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3266 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3267 */
3268void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3269 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3270{
3271 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3272 cputime64_t tmp;
3273
983ed7a6 3274 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3275 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3276 return;
3277 }
94886b84 3278
457533a7 3279 /* Add system time to process. */
1da177e4 3280 p->stime = cputime_add(p->stime, cputime);
457533a7 3281 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3282 account_group_system_time(p, cputime);
1da177e4
LT
3283
3284 /* Add system time to cpustat. */
3285 tmp = cputime_to_cputime64(cputime);
3286 if (hardirq_count() - hardirq_offset)
3287 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3288 else if (softirq_count())
3289 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3290 else
79741dd3
MS
3291 cpustat->system = cputime64_add(cpustat->system, tmp);
3292
ef12fefa
BR
3293 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3294
1da177e4
LT
3295 /* Account for system time used */
3296 acct_update_integrals(p);
1da177e4
LT
3297}
3298
c66f08be 3299/*
1da177e4 3300 * Account for involuntary wait time.
1da177e4 3301 * @steal: the cpu time spent in involuntary wait
c66f08be 3302 */
79741dd3 3303void account_steal_time(cputime_t cputime)
c66f08be 3304{
79741dd3
MS
3305 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3306 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3307
3308 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3309}
3310
1da177e4 3311/*
79741dd3
MS
3312 * Account for idle time.
3313 * @cputime: the cpu time spent in idle wait
1da177e4 3314 */
79741dd3 3315void account_idle_time(cputime_t cputime)
1da177e4
LT
3316{
3317 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3318 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3319 struct rq *rq = this_rq();
1da177e4 3320
79741dd3
MS
3321 if (atomic_read(&rq->nr_iowait) > 0)
3322 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3323 else
3324 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3325}
3326
79741dd3
MS
3327#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3328
3329/*
3330 * Account a single tick of cpu time.
3331 * @p: the process that the cpu time gets accounted to
3332 * @user_tick: indicates if the tick is a user or a system tick
3333 */
3334void account_process_tick(struct task_struct *p, int user_tick)
3335{
a42548a1 3336 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3337 struct rq *rq = this_rq();
3338
3339 if (user_tick)
a42548a1 3340 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3341 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3342 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3343 one_jiffy_scaled);
3344 else
a42548a1 3345 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3346}
3347
3348/*
3349 * Account multiple ticks of steal time.
3350 * @p: the process from which the cpu time has been stolen
3351 * @ticks: number of stolen ticks
3352 */
3353void account_steal_ticks(unsigned long ticks)
3354{
3355 account_steal_time(jiffies_to_cputime(ticks));
3356}
3357
3358/*
3359 * Account multiple ticks of idle time.
3360 * @ticks: number of stolen ticks
3361 */
3362void account_idle_ticks(unsigned long ticks)
3363{
3364 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3365}
3366
79741dd3
MS
3367#endif
3368
49048622
BS
3369/*
3370 * Use precise platform statistics if available:
3371 */
3372#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3373void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3374{
d99ca3b9
HS
3375 *ut = p->utime;
3376 *st = p->stime;
49048622
BS
3377}
3378
0cf55e1e 3379void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3380{
0cf55e1e
HS
3381 struct task_cputime cputime;
3382
3383 thread_group_cputime(p, &cputime);
3384
3385 *ut = cputime.utime;
3386 *st = cputime.stime;
49048622
BS
3387}
3388#else
761b1d26
HS
3389
3390#ifndef nsecs_to_cputime
b7b20df9 3391# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3392#endif
3393
d180c5bc 3394void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3395{
d99ca3b9 3396 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3397
3398 /*
3399 * Use CFS's precise accounting:
3400 */
d180c5bc 3401 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3402
3403 if (total) {
d180c5bc
HS
3404 u64 temp;
3405
3406 temp = (u64)(rtime * utime);
49048622 3407 do_div(temp, total);
d180c5bc
HS
3408 utime = (cputime_t)temp;
3409 } else
3410 utime = rtime;
49048622 3411
d180c5bc
HS
3412 /*
3413 * Compare with previous values, to keep monotonicity:
3414 */
761b1d26 3415 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3416 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3417
d99ca3b9
HS
3418 *ut = p->prev_utime;
3419 *st = p->prev_stime;
49048622
BS
3420}
3421
0cf55e1e
HS
3422/*
3423 * Must be called with siglock held.
3424 */
3425void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3426{
0cf55e1e
HS
3427 struct signal_struct *sig = p->signal;
3428 struct task_cputime cputime;
3429 cputime_t rtime, utime, total;
49048622 3430
0cf55e1e 3431 thread_group_cputime(p, &cputime);
49048622 3432
0cf55e1e
HS
3433 total = cputime_add(cputime.utime, cputime.stime);
3434 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3435
0cf55e1e
HS
3436 if (total) {
3437 u64 temp;
49048622 3438
0cf55e1e
HS
3439 temp = (u64)(rtime * cputime.utime);
3440 do_div(temp, total);
3441 utime = (cputime_t)temp;
3442 } else
3443 utime = rtime;
3444
3445 sig->prev_utime = max(sig->prev_utime, utime);
3446 sig->prev_stime = max(sig->prev_stime,
3447 cputime_sub(rtime, sig->prev_utime));
3448
3449 *ut = sig->prev_utime;
3450 *st = sig->prev_stime;
49048622 3451}
49048622 3452#endif
49048622 3453
7835b98b
CL
3454/*
3455 * This function gets called by the timer code, with HZ frequency.
3456 * We call it with interrupts disabled.
3457 *
3458 * It also gets called by the fork code, when changing the parent's
3459 * timeslices.
3460 */
3461void scheduler_tick(void)
3462{
7835b98b
CL
3463 int cpu = smp_processor_id();
3464 struct rq *rq = cpu_rq(cpu);
dd41f596 3465 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3466
3467 sched_clock_tick();
dd41f596 3468
05fa785c 3469 raw_spin_lock(&rq->lock);
3e51f33f 3470 update_rq_clock(rq);
f1a438d8 3471 update_cpu_load(rq);
fa85ae24 3472 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3473 raw_spin_unlock(&rq->lock);
7835b98b 3474
49f47433 3475 perf_event_task_tick(curr);
e220d2dc 3476
e418e1c2 3477#ifdef CONFIG_SMP
dd41f596
IM
3478 rq->idle_at_tick = idle_cpu(cpu);
3479 trigger_load_balance(rq, cpu);
e418e1c2 3480#endif
1da177e4
LT
3481}
3482
132380a0 3483notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3484{
3485 if (in_lock_functions(addr)) {
3486 addr = CALLER_ADDR2;
3487 if (in_lock_functions(addr))
3488 addr = CALLER_ADDR3;
3489 }
3490 return addr;
3491}
1da177e4 3492
7e49fcce
SR
3493#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3494 defined(CONFIG_PREEMPT_TRACER))
3495
43627582 3496void __kprobes add_preempt_count(int val)
1da177e4 3497{
6cd8a4bb 3498#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3499 /*
3500 * Underflow?
3501 */
9a11b49a
IM
3502 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3503 return;
6cd8a4bb 3504#endif
1da177e4 3505 preempt_count() += val;
6cd8a4bb 3506#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3507 /*
3508 * Spinlock count overflowing soon?
3509 */
33859f7f
MOS
3510 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3511 PREEMPT_MASK - 10);
6cd8a4bb
SR
3512#endif
3513 if (preempt_count() == val)
3514 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3515}
3516EXPORT_SYMBOL(add_preempt_count);
3517
43627582 3518void __kprobes sub_preempt_count(int val)
1da177e4 3519{
6cd8a4bb 3520#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3521 /*
3522 * Underflow?
3523 */
01e3eb82 3524 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3525 return;
1da177e4
LT
3526 /*
3527 * Is the spinlock portion underflowing?
3528 */
9a11b49a
IM
3529 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3530 !(preempt_count() & PREEMPT_MASK)))
3531 return;
6cd8a4bb 3532#endif
9a11b49a 3533
6cd8a4bb
SR
3534 if (preempt_count() == val)
3535 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3536 preempt_count() -= val;
3537}
3538EXPORT_SYMBOL(sub_preempt_count);
3539
3540#endif
3541
3542/*
dd41f596 3543 * Print scheduling while atomic bug:
1da177e4 3544 */
dd41f596 3545static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3546{
838225b4
SS
3547 struct pt_regs *regs = get_irq_regs();
3548
3df0fc5b
PZ
3549 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3550 prev->comm, prev->pid, preempt_count());
838225b4 3551
dd41f596 3552 debug_show_held_locks(prev);
e21f5b15 3553 print_modules();
dd41f596
IM
3554 if (irqs_disabled())
3555 print_irqtrace_events(prev);
838225b4
SS
3556
3557 if (regs)
3558 show_regs(regs);
3559 else
3560 dump_stack();
dd41f596 3561}
1da177e4 3562
dd41f596
IM
3563/*
3564 * Various schedule()-time debugging checks and statistics:
3565 */
3566static inline void schedule_debug(struct task_struct *prev)
3567{
1da177e4 3568 /*
41a2d6cf 3569 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3570 * schedule() atomically, we ignore that path for now.
3571 * Otherwise, whine if we are scheduling when we should not be.
3572 */
3f33a7ce 3573 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3574 __schedule_bug(prev);
3575
1da177e4
LT
3576 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3577
2d72376b 3578 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3579#ifdef CONFIG_SCHEDSTATS
3580 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3581 schedstat_inc(this_rq(), bkl_count);
3582 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3583 }
3584#endif
dd41f596
IM
3585}
3586
6cecd084 3587static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3588{
6cecd084
PZ
3589 if (prev->state == TASK_RUNNING) {
3590 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 3591
6cecd084
PZ
3592 runtime -= prev->se.prev_sum_exec_runtime;
3593 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
3594
3595 /*
3596 * In order to avoid avg_overlap growing stale when we are
3597 * indeed overlapping and hence not getting put to sleep, grow
3598 * the avg_overlap on preemption.
3599 *
3600 * We use the average preemption runtime because that
3601 * correlates to the amount of cache footprint a task can
3602 * build up.
3603 */
6cecd084 3604 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 3605 }
6cecd084 3606 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3607}
3608
dd41f596
IM
3609/*
3610 * Pick up the highest-prio task:
3611 */
3612static inline struct task_struct *
b67802ea 3613pick_next_task(struct rq *rq)
dd41f596 3614{
5522d5d5 3615 const struct sched_class *class;
dd41f596 3616 struct task_struct *p;
1da177e4
LT
3617
3618 /*
dd41f596
IM
3619 * Optimization: we know that if all tasks are in
3620 * the fair class we can call that function directly:
1da177e4 3621 */
dd41f596 3622 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3623 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3624 if (likely(p))
3625 return p;
1da177e4
LT
3626 }
3627
dd41f596
IM
3628 class = sched_class_highest;
3629 for ( ; ; ) {
fb8d4724 3630 p = class->pick_next_task(rq);
dd41f596
IM
3631 if (p)
3632 return p;
3633 /*
3634 * Will never be NULL as the idle class always
3635 * returns a non-NULL p:
3636 */
3637 class = class->next;
3638 }
3639}
1da177e4 3640
dd41f596
IM
3641/*
3642 * schedule() is the main scheduler function.
3643 */
ff743345 3644asmlinkage void __sched schedule(void)
dd41f596
IM
3645{
3646 struct task_struct *prev, *next;
67ca7bde 3647 unsigned long *switch_count;
dd41f596 3648 struct rq *rq;
31656519 3649 int cpu;
dd41f596 3650
ff743345
PZ
3651need_resched:
3652 preempt_disable();
dd41f596
IM
3653 cpu = smp_processor_id();
3654 rq = cpu_rq(cpu);
d6714c22 3655 rcu_sched_qs(cpu);
dd41f596
IM
3656 prev = rq->curr;
3657 switch_count = &prev->nivcsw;
3658
3659 release_kernel_lock(prev);
3660need_resched_nonpreemptible:
3661
3662 schedule_debug(prev);
1da177e4 3663
31656519 3664 if (sched_feat(HRTICK))
f333fdc9 3665 hrtick_clear(rq);
8f4d37ec 3666
05fa785c 3667 raw_spin_lock_irq(&rq->lock);
3e51f33f 3668 update_rq_clock(rq);
1e819950 3669 clear_tsk_need_resched(prev);
1da177e4 3670
1da177e4 3671 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3672 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3673 prev->state = TASK_RUNNING;
16882c1e 3674 else
2e1cb74a 3675 deactivate_task(rq, prev, 1);
dd41f596 3676 switch_count = &prev->nvcsw;
1da177e4
LT
3677 }
3678
3f029d3c 3679 pre_schedule(rq, prev);
f65eda4f 3680
dd41f596 3681 if (unlikely(!rq->nr_running))
1da177e4 3682 idle_balance(cpu, rq);
1da177e4 3683
df1c99d4 3684 put_prev_task(rq, prev);
b67802ea 3685 next = pick_next_task(rq);
1da177e4 3686
1da177e4 3687 if (likely(prev != next)) {
673a90a1 3688 sched_info_switch(prev, next);
49f47433 3689 perf_event_task_sched_out(prev, next);
673a90a1 3690
1da177e4
LT
3691 rq->nr_switches++;
3692 rq->curr = next;
3693 ++*switch_count;
3694
dd41f596 3695 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3696 /*
3697 * the context switch might have flipped the stack from under
3698 * us, hence refresh the local variables.
3699 */
3700 cpu = smp_processor_id();
3701 rq = cpu_rq(cpu);
1da177e4 3702 } else
05fa785c 3703 raw_spin_unlock_irq(&rq->lock);
1da177e4 3704
3f029d3c 3705 post_schedule(rq);
1da177e4 3706
6d558c3a
YZ
3707 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3708 prev = rq->curr;
3709 switch_count = &prev->nivcsw;
1da177e4 3710 goto need_resched_nonpreemptible;
6d558c3a 3711 }
8f4d37ec 3712
1da177e4 3713 preempt_enable_no_resched();
ff743345 3714 if (need_resched())
1da177e4
LT
3715 goto need_resched;
3716}
1da177e4
LT
3717EXPORT_SYMBOL(schedule);
3718
c08f7829 3719#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3720/*
3721 * Look out! "owner" is an entirely speculative pointer
3722 * access and not reliable.
3723 */
3724int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3725{
3726 unsigned int cpu;
3727 struct rq *rq;
3728
3729 if (!sched_feat(OWNER_SPIN))
3730 return 0;
3731
3732#ifdef CONFIG_DEBUG_PAGEALLOC
3733 /*
3734 * Need to access the cpu field knowing that
3735 * DEBUG_PAGEALLOC could have unmapped it if
3736 * the mutex owner just released it and exited.
3737 */
3738 if (probe_kernel_address(&owner->cpu, cpu))
3739 goto out;
3740#else
3741 cpu = owner->cpu;
3742#endif
3743
3744 /*
3745 * Even if the access succeeded (likely case),
3746 * the cpu field may no longer be valid.
3747 */
3748 if (cpu >= nr_cpumask_bits)
3749 goto out;
3750
3751 /*
3752 * We need to validate that we can do a
3753 * get_cpu() and that we have the percpu area.
3754 */
3755 if (!cpu_online(cpu))
3756 goto out;
3757
3758 rq = cpu_rq(cpu);
3759
3760 for (;;) {
3761 /*
3762 * Owner changed, break to re-assess state.
3763 */
3764 if (lock->owner != owner)
3765 break;
3766
3767 /*
3768 * Is that owner really running on that cpu?
3769 */
3770 if (task_thread_info(rq->curr) != owner || need_resched())
3771 return 0;
3772
3773 cpu_relax();
3774 }
3775out:
3776 return 1;
3777}
3778#endif
3779
1da177e4
LT
3780#ifdef CONFIG_PREEMPT
3781/*
2ed6e34f 3782 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3783 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3784 * occur there and call schedule directly.
3785 */
3786asmlinkage void __sched preempt_schedule(void)
3787{
3788 struct thread_info *ti = current_thread_info();
6478d880 3789
1da177e4
LT
3790 /*
3791 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3792 * we do not want to preempt the current task. Just return..
1da177e4 3793 */
beed33a8 3794 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3795 return;
3796
3a5c359a
AK
3797 do {
3798 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3799 schedule();
3a5c359a 3800 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3801
3a5c359a
AK
3802 /*
3803 * Check again in case we missed a preemption opportunity
3804 * between schedule and now.
3805 */
3806 barrier();
5ed0cec0 3807 } while (need_resched());
1da177e4 3808}
1da177e4
LT
3809EXPORT_SYMBOL(preempt_schedule);
3810
3811/*
2ed6e34f 3812 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3813 * off of irq context.
3814 * Note, that this is called and return with irqs disabled. This will
3815 * protect us against recursive calling from irq.
3816 */
3817asmlinkage void __sched preempt_schedule_irq(void)
3818{
3819 struct thread_info *ti = current_thread_info();
6478d880 3820
2ed6e34f 3821 /* Catch callers which need to be fixed */
1da177e4
LT
3822 BUG_ON(ti->preempt_count || !irqs_disabled());
3823
3a5c359a
AK
3824 do {
3825 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3826 local_irq_enable();
3827 schedule();
3828 local_irq_disable();
3a5c359a 3829 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3830
3a5c359a
AK
3831 /*
3832 * Check again in case we missed a preemption opportunity
3833 * between schedule and now.
3834 */
3835 barrier();
5ed0cec0 3836 } while (need_resched());
1da177e4
LT
3837}
3838
3839#endif /* CONFIG_PREEMPT */
3840
63859d4f 3841int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3842 void *key)
1da177e4 3843{
63859d4f 3844 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3845}
1da177e4
LT
3846EXPORT_SYMBOL(default_wake_function);
3847
3848/*
41a2d6cf
IM
3849 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3850 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3851 * number) then we wake all the non-exclusive tasks and one exclusive task.
3852 *
3853 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3854 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3855 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3856 */
78ddb08f 3857static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3858 int nr_exclusive, int wake_flags, void *key)
1da177e4 3859{
2e45874c 3860 wait_queue_t *curr, *next;
1da177e4 3861
2e45874c 3862 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3863 unsigned flags = curr->flags;
3864
63859d4f 3865 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3866 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3867 break;
3868 }
3869}
3870
3871/**
3872 * __wake_up - wake up threads blocked on a waitqueue.
3873 * @q: the waitqueue
3874 * @mode: which threads
3875 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3876 * @key: is directly passed to the wakeup function
50fa610a
DH
3877 *
3878 * It may be assumed that this function implies a write memory barrier before
3879 * changing the task state if and only if any tasks are woken up.
1da177e4 3880 */
7ad5b3a5 3881void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3882 int nr_exclusive, void *key)
1da177e4
LT
3883{
3884 unsigned long flags;
3885
3886 spin_lock_irqsave(&q->lock, flags);
3887 __wake_up_common(q, mode, nr_exclusive, 0, key);
3888 spin_unlock_irqrestore(&q->lock, flags);
3889}
1da177e4
LT
3890EXPORT_SYMBOL(__wake_up);
3891
3892/*
3893 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3894 */
7ad5b3a5 3895void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3896{
3897 __wake_up_common(q, mode, 1, 0, NULL);
3898}
3899
4ede816a
DL
3900void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3901{
3902 __wake_up_common(q, mode, 1, 0, key);
3903}
3904
1da177e4 3905/**
4ede816a 3906 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3907 * @q: the waitqueue
3908 * @mode: which threads
3909 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3910 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3911 *
3912 * The sync wakeup differs that the waker knows that it will schedule
3913 * away soon, so while the target thread will be woken up, it will not
3914 * be migrated to another CPU - ie. the two threads are 'synchronized'
3915 * with each other. This can prevent needless bouncing between CPUs.
3916 *
3917 * On UP it can prevent extra preemption.
50fa610a
DH
3918 *
3919 * It may be assumed that this function implies a write memory barrier before
3920 * changing the task state if and only if any tasks are woken up.
1da177e4 3921 */
4ede816a
DL
3922void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3923 int nr_exclusive, void *key)
1da177e4
LT
3924{
3925 unsigned long flags;
7d478721 3926 int wake_flags = WF_SYNC;
1da177e4
LT
3927
3928 if (unlikely(!q))
3929 return;
3930
3931 if (unlikely(!nr_exclusive))
7d478721 3932 wake_flags = 0;
1da177e4
LT
3933
3934 spin_lock_irqsave(&q->lock, flags);
7d478721 3935 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3936 spin_unlock_irqrestore(&q->lock, flags);
3937}
4ede816a
DL
3938EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3939
3940/*
3941 * __wake_up_sync - see __wake_up_sync_key()
3942 */
3943void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3944{
3945 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3946}
1da177e4
LT
3947EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3948
65eb3dc6
KD
3949/**
3950 * complete: - signals a single thread waiting on this completion
3951 * @x: holds the state of this particular completion
3952 *
3953 * This will wake up a single thread waiting on this completion. Threads will be
3954 * awakened in the same order in which they were queued.
3955 *
3956 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3957 *
3958 * It may be assumed that this function implies a write memory barrier before
3959 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3960 */
b15136e9 3961void complete(struct completion *x)
1da177e4
LT
3962{
3963 unsigned long flags;
3964
3965 spin_lock_irqsave(&x->wait.lock, flags);
3966 x->done++;
d9514f6c 3967 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3968 spin_unlock_irqrestore(&x->wait.lock, flags);
3969}
3970EXPORT_SYMBOL(complete);
3971
65eb3dc6
KD
3972/**
3973 * complete_all: - signals all threads waiting on this completion
3974 * @x: holds the state of this particular completion
3975 *
3976 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3977 *
3978 * It may be assumed that this function implies a write memory barrier before
3979 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3980 */
b15136e9 3981void complete_all(struct completion *x)
1da177e4
LT
3982{
3983 unsigned long flags;
3984
3985 spin_lock_irqsave(&x->wait.lock, flags);
3986 x->done += UINT_MAX/2;
d9514f6c 3987 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3988 spin_unlock_irqrestore(&x->wait.lock, flags);
3989}
3990EXPORT_SYMBOL(complete_all);
3991
8cbbe86d
AK
3992static inline long __sched
3993do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3994{
1da177e4
LT
3995 if (!x->done) {
3996 DECLARE_WAITQUEUE(wait, current);
3997
3998 wait.flags |= WQ_FLAG_EXCLUSIVE;
3999 __add_wait_queue_tail(&x->wait, &wait);
4000 do {
94d3d824 4001 if (signal_pending_state(state, current)) {
ea71a546
ON
4002 timeout = -ERESTARTSYS;
4003 break;
8cbbe86d
AK
4004 }
4005 __set_current_state(state);
1da177e4
LT
4006 spin_unlock_irq(&x->wait.lock);
4007 timeout = schedule_timeout(timeout);
4008 spin_lock_irq(&x->wait.lock);
ea71a546 4009 } while (!x->done && timeout);
1da177e4 4010 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4011 if (!x->done)
4012 return timeout;
1da177e4
LT
4013 }
4014 x->done--;
ea71a546 4015 return timeout ?: 1;
1da177e4 4016}
1da177e4 4017
8cbbe86d
AK
4018static long __sched
4019wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4020{
1da177e4
LT
4021 might_sleep();
4022
4023 spin_lock_irq(&x->wait.lock);
8cbbe86d 4024 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4025 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4026 return timeout;
4027}
1da177e4 4028
65eb3dc6
KD
4029/**
4030 * wait_for_completion: - waits for completion of a task
4031 * @x: holds the state of this particular completion
4032 *
4033 * This waits to be signaled for completion of a specific task. It is NOT
4034 * interruptible and there is no timeout.
4035 *
4036 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4037 * and interrupt capability. Also see complete().
4038 */
b15136e9 4039void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4040{
4041 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4042}
8cbbe86d 4043EXPORT_SYMBOL(wait_for_completion);
1da177e4 4044
65eb3dc6
KD
4045/**
4046 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4047 * @x: holds the state of this particular completion
4048 * @timeout: timeout value in jiffies
4049 *
4050 * This waits for either a completion of a specific task to be signaled or for a
4051 * specified timeout to expire. The timeout is in jiffies. It is not
4052 * interruptible.
4053 */
b15136e9 4054unsigned long __sched
8cbbe86d 4055wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4056{
8cbbe86d 4057 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4058}
8cbbe86d 4059EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4060
65eb3dc6
KD
4061/**
4062 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4063 * @x: holds the state of this particular completion
4064 *
4065 * This waits for completion of a specific task to be signaled. It is
4066 * interruptible.
4067 */
8cbbe86d 4068int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4069{
51e97990
AK
4070 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4071 if (t == -ERESTARTSYS)
4072 return t;
4073 return 0;
0fec171c 4074}
8cbbe86d 4075EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4076
65eb3dc6
KD
4077/**
4078 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4079 * @x: holds the state of this particular completion
4080 * @timeout: timeout value in jiffies
4081 *
4082 * This waits for either a completion of a specific task to be signaled or for a
4083 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4084 */
b15136e9 4085unsigned long __sched
8cbbe86d
AK
4086wait_for_completion_interruptible_timeout(struct completion *x,
4087 unsigned long timeout)
0fec171c 4088{
8cbbe86d 4089 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4090}
8cbbe86d 4091EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4092
65eb3dc6
KD
4093/**
4094 * wait_for_completion_killable: - waits for completion of a task (killable)
4095 * @x: holds the state of this particular completion
4096 *
4097 * This waits to be signaled for completion of a specific task. It can be
4098 * interrupted by a kill signal.
4099 */
009e577e
MW
4100int __sched wait_for_completion_killable(struct completion *x)
4101{
4102 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4103 if (t == -ERESTARTSYS)
4104 return t;
4105 return 0;
4106}
4107EXPORT_SYMBOL(wait_for_completion_killable);
4108
be4de352
DC
4109/**
4110 * try_wait_for_completion - try to decrement a completion without blocking
4111 * @x: completion structure
4112 *
4113 * Returns: 0 if a decrement cannot be done without blocking
4114 * 1 if a decrement succeeded.
4115 *
4116 * If a completion is being used as a counting completion,
4117 * attempt to decrement the counter without blocking. This
4118 * enables us to avoid waiting if the resource the completion
4119 * is protecting is not available.
4120 */
4121bool try_wait_for_completion(struct completion *x)
4122{
7539a3b3 4123 unsigned long flags;
be4de352
DC
4124 int ret = 1;
4125
7539a3b3 4126 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4127 if (!x->done)
4128 ret = 0;
4129 else
4130 x->done--;
7539a3b3 4131 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4132 return ret;
4133}
4134EXPORT_SYMBOL(try_wait_for_completion);
4135
4136/**
4137 * completion_done - Test to see if a completion has any waiters
4138 * @x: completion structure
4139 *
4140 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4141 * 1 if there are no waiters.
4142 *
4143 */
4144bool completion_done(struct completion *x)
4145{
7539a3b3 4146 unsigned long flags;
be4de352
DC
4147 int ret = 1;
4148
7539a3b3 4149 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4150 if (!x->done)
4151 ret = 0;
7539a3b3 4152 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4153 return ret;
4154}
4155EXPORT_SYMBOL(completion_done);
4156
8cbbe86d
AK
4157static long __sched
4158sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4159{
0fec171c
IM
4160 unsigned long flags;
4161 wait_queue_t wait;
4162
4163 init_waitqueue_entry(&wait, current);
1da177e4 4164
8cbbe86d 4165 __set_current_state(state);
1da177e4 4166
8cbbe86d
AK
4167 spin_lock_irqsave(&q->lock, flags);
4168 __add_wait_queue(q, &wait);
4169 spin_unlock(&q->lock);
4170 timeout = schedule_timeout(timeout);
4171 spin_lock_irq(&q->lock);
4172 __remove_wait_queue(q, &wait);
4173 spin_unlock_irqrestore(&q->lock, flags);
4174
4175 return timeout;
4176}
4177
4178void __sched interruptible_sleep_on(wait_queue_head_t *q)
4179{
4180 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4181}
1da177e4
LT
4182EXPORT_SYMBOL(interruptible_sleep_on);
4183
0fec171c 4184long __sched
95cdf3b7 4185interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4186{
8cbbe86d 4187 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4188}
1da177e4
LT
4189EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4190
0fec171c 4191void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4192{
8cbbe86d 4193 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4194}
1da177e4
LT
4195EXPORT_SYMBOL(sleep_on);
4196
0fec171c 4197long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4198{
8cbbe86d 4199 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4200}
1da177e4
LT
4201EXPORT_SYMBOL(sleep_on_timeout);
4202
b29739f9
IM
4203#ifdef CONFIG_RT_MUTEXES
4204
4205/*
4206 * rt_mutex_setprio - set the current priority of a task
4207 * @p: task
4208 * @prio: prio value (kernel-internal form)
4209 *
4210 * This function changes the 'effective' priority of a task. It does
4211 * not touch ->normal_prio like __setscheduler().
4212 *
4213 * Used by the rt_mutex code to implement priority inheritance logic.
4214 */
36c8b586 4215void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4216{
4217 unsigned long flags;
83b699ed 4218 int oldprio, on_rq, running;
70b97a7f 4219 struct rq *rq;
83ab0aa0 4220 const struct sched_class *prev_class;
b29739f9
IM
4221
4222 BUG_ON(prio < 0 || prio > MAX_PRIO);
4223
4224 rq = task_rq_lock(p, &flags);
a8e504d2 4225 update_rq_clock(rq);
b29739f9 4226
d5f9f942 4227 oldprio = p->prio;
83ab0aa0 4228 prev_class = p->sched_class;
dd41f596 4229 on_rq = p->se.on_rq;
051a1d1a 4230 running = task_current(rq, p);
0e1f3483 4231 if (on_rq)
69be72c1 4232 dequeue_task(rq, p, 0);
0e1f3483
HS
4233 if (running)
4234 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4235
4236 if (rt_prio(prio))
4237 p->sched_class = &rt_sched_class;
4238 else
4239 p->sched_class = &fair_sched_class;
4240
b29739f9
IM
4241 p->prio = prio;
4242
0e1f3483
HS
4243 if (running)
4244 p->sched_class->set_curr_task(rq);
dd41f596 4245 if (on_rq) {
60db48ca 4246 enqueue_task(rq, p, 0, oldprio < prio);
cb469845
SR
4247
4248 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4249 }
4250 task_rq_unlock(rq, &flags);
4251}
4252
4253#endif
4254
36c8b586 4255void set_user_nice(struct task_struct *p, long nice)
1da177e4 4256{
dd41f596 4257 int old_prio, delta, on_rq;
1da177e4 4258 unsigned long flags;
70b97a7f 4259 struct rq *rq;
1da177e4
LT
4260
4261 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4262 return;
4263 /*
4264 * We have to be careful, if called from sys_setpriority(),
4265 * the task might be in the middle of scheduling on another CPU.
4266 */
4267 rq = task_rq_lock(p, &flags);
a8e504d2 4268 update_rq_clock(rq);
1da177e4
LT
4269 /*
4270 * The RT priorities are set via sched_setscheduler(), but we still
4271 * allow the 'normal' nice value to be set - but as expected
4272 * it wont have any effect on scheduling until the task is
dd41f596 4273 * SCHED_FIFO/SCHED_RR:
1da177e4 4274 */
e05606d3 4275 if (task_has_rt_policy(p)) {
1da177e4
LT
4276 p->static_prio = NICE_TO_PRIO(nice);
4277 goto out_unlock;
4278 }
dd41f596 4279 on_rq = p->se.on_rq;
c09595f6 4280 if (on_rq)
69be72c1 4281 dequeue_task(rq, p, 0);
1da177e4 4282
1da177e4 4283 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4284 set_load_weight(p);
b29739f9
IM
4285 old_prio = p->prio;
4286 p->prio = effective_prio(p);
4287 delta = p->prio - old_prio;
1da177e4 4288
dd41f596 4289 if (on_rq) {
ea87bb78 4290 enqueue_task(rq, p, 0, false);
1da177e4 4291 /*
d5f9f942
AM
4292 * If the task increased its priority or is running and
4293 * lowered its priority, then reschedule its CPU:
1da177e4 4294 */
d5f9f942 4295 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4296 resched_task(rq->curr);
4297 }
4298out_unlock:
4299 task_rq_unlock(rq, &flags);
4300}
1da177e4
LT
4301EXPORT_SYMBOL(set_user_nice);
4302
e43379f1
MM
4303/*
4304 * can_nice - check if a task can reduce its nice value
4305 * @p: task
4306 * @nice: nice value
4307 */
36c8b586 4308int can_nice(const struct task_struct *p, const int nice)
e43379f1 4309{
024f4747
MM
4310 /* convert nice value [19,-20] to rlimit style value [1,40] */
4311 int nice_rlim = 20 - nice;
48f24c4d 4312
78d7d407 4313 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4314 capable(CAP_SYS_NICE));
4315}
4316
1da177e4
LT
4317#ifdef __ARCH_WANT_SYS_NICE
4318
4319/*
4320 * sys_nice - change the priority of the current process.
4321 * @increment: priority increment
4322 *
4323 * sys_setpriority is a more generic, but much slower function that
4324 * does similar things.
4325 */
5add95d4 4326SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4327{
48f24c4d 4328 long nice, retval;
1da177e4
LT
4329
4330 /*
4331 * Setpriority might change our priority at the same moment.
4332 * We don't have to worry. Conceptually one call occurs first
4333 * and we have a single winner.
4334 */
e43379f1
MM
4335 if (increment < -40)
4336 increment = -40;
1da177e4
LT
4337 if (increment > 40)
4338 increment = 40;
4339
2b8f836f 4340 nice = TASK_NICE(current) + increment;
1da177e4
LT
4341 if (nice < -20)
4342 nice = -20;
4343 if (nice > 19)
4344 nice = 19;
4345
e43379f1
MM
4346 if (increment < 0 && !can_nice(current, nice))
4347 return -EPERM;
4348
1da177e4
LT
4349 retval = security_task_setnice(current, nice);
4350 if (retval)
4351 return retval;
4352
4353 set_user_nice(current, nice);
4354 return 0;
4355}
4356
4357#endif
4358
4359/**
4360 * task_prio - return the priority value of a given task.
4361 * @p: the task in question.
4362 *
4363 * This is the priority value as seen by users in /proc.
4364 * RT tasks are offset by -200. Normal tasks are centered
4365 * around 0, value goes from -16 to +15.
4366 */
36c8b586 4367int task_prio(const struct task_struct *p)
1da177e4
LT
4368{
4369 return p->prio - MAX_RT_PRIO;
4370}
4371
4372/**
4373 * task_nice - return the nice value of a given task.
4374 * @p: the task in question.
4375 */
36c8b586 4376int task_nice(const struct task_struct *p)
1da177e4
LT
4377{
4378 return TASK_NICE(p);
4379}
150d8bed 4380EXPORT_SYMBOL(task_nice);
1da177e4
LT
4381
4382/**
4383 * idle_cpu - is a given cpu idle currently?
4384 * @cpu: the processor in question.
4385 */
4386int idle_cpu(int cpu)
4387{
4388 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4389}
4390
1da177e4
LT
4391/**
4392 * idle_task - return the idle task for a given cpu.
4393 * @cpu: the processor in question.
4394 */
36c8b586 4395struct task_struct *idle_task(int cpu)
1da177e4
LT
4396{
4397 return cpu_rq(cpu)->idle;
4398}
4399
4400/**
4401 * find_process_by_pid - find a process with a matching PID value.
4402 * @pid: the pid in question.
4403 */
a9957449 4404static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4405{
228ebcbe 4406 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4407}
4408
4409/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4410static void
4411__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4412{
dd41f596 4413 BUG_ON(p->se.on_rq);
48f24c4d 4414
1da177e4
LT
4415 p->policy = policy;
4416 p->rt_priority = prio;
b29739f9
IM
4417 p->normal_prio = normal_prio(p);
4418 /* we are holding p->pi_lock already */
4419 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4420 if (rt_prio(p->prio))
4421 p->sched_class = &rt_sched_class;
4422 else
4423 p->sched_class = &fair_sched_class;
2dd73a4f 4424 set_load_weight(p);
1da177e4
LT
4425}
4426
c69e8d9c
DH
4427/*
4428 * check the target process has a UID that matches the current process's
4429 */
4430static bool check_same_owner(struct task_struct *p)
4431{
4432 const struct cred *cred = current_cred(), *pcred;
4433 bool match;
4434
4435 rcu_read_lock();
4436 pcred = __task_cred(p);
4437 match = (cred->euid == pcred->euid ||
4438 cred->euid == pcred->uid);
4439 rcu_read_unlock();
4440 return match;
4441}
4442
961ccddd
RR
4443static int __sched_setscheduler(struct task_struct *p, int policy,
4444 struct sched_param *param, bool user)
1da177e4 4445{
83b699ed 4446 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4447 unsigned long flags;
83ab0aa0 4448 const struct sched_class *prev_class;
70b97a7f 4449 struct rq *rq;
ca94c442 4450 int reset_on_fork;
1da177e4 4451
66e5393a
SR
4452 /* may grab non-irq protected spin_locks */
4453 BUG_ON(in_interrupt());
1da177e4
LT
4454recheck:
4455 /* double check policy once rq lock held */
ca94c442
LP
4456 if (policy < 0) {
4457 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4458 policy = oldpolicy = p->policy;
ca94c442
LP
4459 } else {
4460 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4461 policy &= ~SCHED_RESET_ON_FORK;
4462
4463 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4464 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4465 policy != SCHED_IDLE)
4466 return -EINVAL;
4467 }
4468
1da177e4
LT
4469 /*
4470 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4471 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4472 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4473 */
4474 if (param->sched_priority < 0 ||
95cdf3b7 4475 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4476 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4477 return -EINVAL;
e05606d3 4478 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4479 return -EINVAL;
4480
37e4ab3f
OC
4481 /*
4482 * Allow unprivileged RT tasks to decrease priority:
4483 */
961ccddd 4484 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4485 if (rt_policy(policy)) {
8dc3e909 4486 unsigned long rlim_rtprio;
8dc3e909
ON
4487
4488 if (!lock_task_sighand(p, &flags))
4489 return -ESRCH;
78d7d407 4490 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4491 unlock_task_sighand(p, &flags);
4492
4493 /* can't set/change the rt policy */
4494 if (policy != p->policy && !rlim_rtprio)
4495 return -EPERM;
4496
4497 /* can't increase priority */
4498 if (param->sched_priority > p->rt_priority &&
4499 param->sched_priority > rlim_rtprio)
4500 return -EPERM;
4501 }
dd41f596
IM
4502 /*
4503 * Like positive nice levels, dont allow tasks to
4504 * move out of SCHED_IDLE either:
4505 */
4506 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4507 return -EPERM;
5fe1d75f 4508
37e4ab3f 4509 /* can't change other user's priorities */
c69e8d9c 4510 if (!check_same_owner(p))
37e4ab3f 4511 return -EPERM;
ca94c442
LP
4512
4513 /* Normal users shall not reset the sched_reset_on_fork flag */
4514 if (p->sched_reset_on_fork && !reset_on_fork)
4515 return -EPERM;
37e4ab3f 4516 }
1da177e4 4517
725aad24 4518 if (user) {
b68aa230 4519#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
4520 /*
4521 * Do not allow realtime tasks into groups that have no runtime
4522 * assigned.
4523 */
9a7e0b18
PZ
4524 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4525 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 4526 return -EPERM;
b68aa230
PZ
4527#endif
4528
725aad24
JF
4529 retval = security_task_setscheduler(p, policy, param);
4530 if (retval)
4531 return retval;
4532 }
4533
b29739f9
IM
4534 /*
4535 * make sure no PI-waiters arrive (or leave) while we are
4536 * changing the priority of the task:
4537 */
1d615482 4538 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4539 /*
4540 * To be able to change p->policy safely, the apropriate
4541 * runqueue lock must be held.
4542 */
b29739f9 4543 rq = __task_rq_lock(p);
1da177e4
LT
4544 /* recheck policy now with rq lock held */
4545 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4546 policy = oldpolicy = -1;
b29739f9 4547 __task_rq_unlock(rq);
1d615482 4548 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4549 goto recheck;
4550 }
2daa3577 4551 update_rq_clock(rq);
dd41f596 4552 on_rq = p->se.on_rq;
051a1d1a 4553 running = task_current(rq, p);
0e1f3483 4554 if (on_rq)
2e1cb74a 4555 deactivate_task(rq, p, 0);
0e1f3483
HS
4556 if (running)
4557 p->sched_class->put_prev_task(rq, p);
f6b53205 4558
ca94c442
LP
4559 p->sched_reset_on_fork = reset_on_fork;
4560
1da177e4 4561 oldprio = p->prio;
83ab0aa0 4562 prev_class = p->sched_class;
dd41f596 4563 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4564
0e1f3483
HS
4565 if (running)
4566 p->sched_class->set_curr_task(rq);
dd41f596
IM
4567 if (on_rq) {
4568 activate_task(rq, p, 0);
cb469845
SR
4569
4570 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4571 }
b29739f9 4572 __task_rq_unlock(rq);
1d615482 4573 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4574
95e02ca9
TG
4575 rt_mutex_adjust_pi(p);
4576
1da177e4
LT
4577 return 0;
4578}
961ccddd
RR
4579
4580/**
4581 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4582 * @p: the task in question.
4583 * @policy: new policy.
4584 * @param: structure containing the new RT priority.
4585 *
4586 * NOTE that the task may be already dead.
4587 */
4588int sched_setscheduler(struct task_struct *p, int policy,
4589 struct sched_param *param)
4590{
4591 return __sched_setscheduler(p, policy, param, true);
4592}
1da177e4
LT
4593EXPORT_SYMBOL_GPL(sched_setscheduler);
4594
961ccddd
RR
4595/**
4596 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4597 * @p: the task in question.
4598 * @policy: new policy.
4599 * @param: structure containing the new RT priority.
4600 *
4601 * Just like sched_setscheduler, only don't bother checking if the
4602 * current context has permission. For example, this is needed in
4603 * stop_machine(): we create temporary high priority worker threads,
4604 * but our caller might not have that capability.
4605 */
4606int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4607 struct sched_param *param)
4608{
4609 return __sched_setscheduler(p, policy, param, false);
4610}
4611
95cdf3b7
IM
4612static int
4613do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4614{
1da177e4
LT
4615 struct sched_param lparam;
4616 struct task_struct *p;
36c8b586 4617 int retval;
1da177e4
LT
4618
4619 if (!param || pid < 0)
4620 return -EINVAL;
4621 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4622 return -EFAULT;
5fe1d75f
ON
4623
4624 rcu_read_lock();
4625 retval = -ESRCH;
1da177e4 4626 p = find_process_by_pid(pid);
5fe1d75f
ON
4627 if (p != NULL)
4628 retval = sched_setscheduler(p, policy, &lparam);
4629 rcu_read_unlock();
36c8b586 4630
1da177e4
LT
4631 return retval;
4632}
4633
4634/**
4635 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4636 * @pid: the pid in question.
4637 * @policy: new policy.
4638 * @param: structure containing the new RT priority.
4639 */
5add95d4
HC
4640SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4641 struct sched_param __user *, param)
1da177e4 4642{
c21761f1
JB
4643 /* negative values for policy are not valid */
4644 if (policy < 0)
4645 return -EINVAL;
4646
1da177e4
LT
4647 return do_sched_setscheduler(pid, policy, param);
4648}
4649
4650/**
4651 * sys_sched_setparam - set/change the RT priority of a thread
4652 * @pid: the pid in question.
4653 * @param: structure containing the new RT priority.
4654 */
5add95d4 4655SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4656{
4657 return do_sched_setscheduler(pid, -1, param);
4658}
4659
4660/**
4661 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4662 * @pid: the pid in question.
4663 */
5add95d4 4664SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4665{
36c8b586 4666 struct task_struct *p;
3a5c359a 4667 int retval;
1da177e4
LT
4668
4669 if (pid < 0)
3a5c359a 4670 return -EINVAL;
1da177e4
LT
4671
4672 retval = -ESRCH;
5fe85be0 4673 rcu_read_lock();
1da177e4
LT
4674 p = find_process_by_pid(pid);
4675 if (p) {
4676 retval = security_task_getscheduler(p);
4677 if (!retval)
ca94c442
LP
4678 retval = p->policy
4679 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4680 }
5fe85be0 4681 rcu_read_unlock();
1da177e4
LT
4682 return retval;
4683}
4684
4685/**
ca94c442 4686 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4687 * @pid: the pid in question.
4688 * @param: structure containing the RT priority.
4689 */
5add95d4 4690SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4691{
4692 struct sched_param lp;
36c8b586 4693 struct task_struct *p;
3a5c359a 4694 int retval;
1da177e4
LT
4695
4696 if (!param || pid < 0)
3a5c359a 4697 return -EINVAL;
1da177e4 4698
5fe85be0 4699 rcu_read_lock();
1da177e4
LT
4700 p = find_process_by_pid(pid);
4701 retval = -ESRCH;
4702 if (!p)
4703 goto out_unlock;
4704
4705 retval = security_task_getscheduler(p);
4706 if (retval)
4707 goto out_unlock;
4708
4709 lp.sched_priority = p->rt_priority;
5fe85be0 4710 rcu_read_unlock();
1da177e4
LT
4711
4712 /*
4713 * This one might sleep, we cannot do it with a spinlock held ...
4714 */
4715 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4716
1da177e4
LT
4717 return retval;
4718
4719out_unlock:
5fe85be0 4720 rcu_read_unlock();
1da177e4
LT
4721 return retval;
4722}
4723
96f874e2 4724long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4725{
5a16f3d3 4726 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4727 struct task_struct *p;
4728 int retval;
1da177e4 4729
95402b38 4730 get_online_cpus();
23f5d142 4731 rcu_read_lock();
1da177e4
LT
4732
4733 p = find_process_by_pid(pid);
4734 if (!p) {
23f5d142 4735 rcu_read_unlock();
95402b38 4736 put_online_cpus();
1da177e4
LT
4737 return -ESRCH;
4738 }
4739
23f5d142 4740 /* Prevent p going away */
1da177e4 4741 get_task_struct(p);
23f5d142 4742 rcu_read_unlock();
1da177e4 4743
5a16f3d3
RR
4744 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4745 retval = -ENOMEM;
4746 goto out_put_task;
4747 }
4748 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4749 retval = -ENOMEM;
4750 goto out_free_cpus_allowed;
4751 }
1da177e4 4752 retval = -EPERM;
c69e8d9c 4753 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4754 goto out_unlock;
4755
e7834f8f
DQ
4756 retval = security_task_setscheduler(p, 0, NULL);
4757 if (retval)
4758 goto out_unlock;
4759
5a16f3d3
RR
4760 cpuset_cpus_allowed(p, cpus_allowed);
4761 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4762 again:
5a16f3d3 4763 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4764
8707d8b8 4765 if (!retval) {
5a16f3d3
RR
4766 cpuset_cpus_allowed(p, cpus_allowed);
4767 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4768 /*
4769 * We must have raced with a concurrent cpuset
4770 * update. Just reset the cpus_allowed to the
4771 * cpuset's cpus_allowed
4772 */
5a16f3d3 4773 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4774 goto again;
4775 }
4776 }
1da177e4 4777out_unlock:
5a16f3d3
RR
4778 free_cpumask_var(new_mask);
4779out_free_cpus_allowed:
4780 free_cpumask_var(cpus_allowed);
4781out_put_task:
1da177e4 4782 put_task_struct(p);
95402b38 4783 put_online_cpus();
1da177e4
LT
4784 return retval;
4785}
4786
4787static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4788 struct cpumask *new_mask)
1da177e4 4789{
96f874e2
RR
4790 if (len < cpumask_size())
4791 cpumask_clear(new_mask);
4792 else if (len > cpumask_size())
4793 len = cpumask_size();
4794
1da177e4
LT
4795 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4796}
4797
4798/**
4799 * sys_sched_setaffinity - set the cpu affinity of a process
4800 * @pid: pid of the process
4801 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4802 * @user_mask_ptr: user-space pointer to the new cpu mask
4803 */
5add95d4
HC
4804SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4805 unsigned long __user *, user_mask_ptr)
1da177e4 4806{
5a16f3d3 4807 cpumask_var_t new_mask;
1da177e4
LT
4808 int retval;
4809
5a16f3d3
RR
4810 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4811 return -ENOMEM;
1da177e4 4812
5a16f3d3
RR
4813 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4814 if (retval == 0)
4815 retval = sched_setaffinity(pid, new_mask);
4816 free_cpumask_var(new_mask);
4817 return retval;
1da177e4
LT
4818}
4819
96f874e2 4820long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4821{
36c8b586 4822 struct task_struct *p;
31605683
TG
4823 unsigned long flags;
4824 struct rq *rq;
1da177e4 4825 int retval;
1da177e4 4826
95402b38 4827 get_online_cpus();
23f5d142 4828 rcu_read_lock();
1da177e4
LT
4829
4830 retval = -ESRCH;
4831 p = find_process_by_pid(pid);
4832 if (!p)
4833 goto out_unlock;
4834
e7834f8f
DQ
4835 retval = security_task_getscheduler(p);
4836 if (retval)
4837 goto out_unlock;
4838
31605683 4839 rq = task_rq_lock(p, &flags);
96f874e2 4840 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4841 task_rq_unlock(rq, &flags);
1da177e4
LT
4842
4843out_unlock:
23f5d142 4844 rcu_read_unlock();
95402b38 4845 put_online_cpus();
1da177e4 4846
9531b62f 4847 return retval;
1da177e4
LT
4848}
4849
4850/**
4851 * sys_sched_getaffinity - get the cpu affinity of a process
4852 * @pid: pid of the process
4853 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4854 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4855 */
5add95d4
HC
4856SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4857 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4858{
4859 int ret;
f17c8607 4860 cpumask_var_t mask;
1da177e4 4861
cd3d8031
KM
4862 if (len < nr_cpu_ids)
4863 return -EINVAL;
4864 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4865 return -EINVAL;
4866
f17c8607
RR
4867 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4868 return -ENOMEM;
1da177e4 4869
f17c8607
RR
4870 ret = sched_getaffinity(pid, mask);
4871 if (ret == 0) {
8bc037fb 4872 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4873
4874 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4875 ret = -EFAULT;
4876 else
cd3d8031 4877 ret = retlen;
f17c8607
RR
4878 }
4879 free_cpumask_var(mask);
1da177e4 4880
f17c8607 4881 return ret;
1da177e4
LT
4882}
4883
4884/**
4885 * sys_sched_yield - yield the current processor to other threads.
4886 *
dd41f596
IM
4887 * This function yields the current CPU to other tasks. If there are no
4888 * other threads running on this CPU then this function will return.
1da177e4 4889 */
5add95d4 4890SYSCALL_DEFINE0(sched_yield)
1da177e4 4891{
70b97a7f 4892 struct rq *rq = this_rq_lock();
1da177e4 4893
2d72376b 4894 schedstat_inc(rq, yld_count);
4530d7ab 4895 current->sched_class->yield_task(rq);
1da177e4
LT
4896
4897 /*
4898 * Since we are going to call schedule() anyway, there's
4899 * no need to preempt or enable interrupts:
4900 */
4901 __release(rq->lock);
8a25d5de 4902 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4903 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4904 preempt_enable_no_resched();
4905
4906 schedule();
4907
4908 return 0;
4909}
4910
d86ee480
PZ
4911static inline int should_resched(void)
4912{
4913 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4914}
4915
e7b38404 4916static void __cond_resched(void)
1da177e4 4917{
e7aaaa69
FW
4918 add_preempt_count(PREEMPT_ACTIVE);
4919 schedule();
4920 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4921}
4922
02b67cc3 4923int __sched _cond_resched(void)
1da177e4 4924{
d86ee480 4925 if (should_resched()) {
1da177e4
LT
4926 __cond_resched();
4927 return 1;
4928 }
4929 return 0;
4930}
02b67cc3 4931EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4932
4933/*
613afbf8 4934 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4935 * call schedule, and on return reacquire the lock.
4936 *
41a2d6cf 4937 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4938 * operations here to prevent schedule() from being called twice (once via
4939 * spin_unlock(), once by hand).
4940 */
613afbf8 4941int __cond_resched_lock(spinlock_t *lock)
1da177e4 4942{
d86ee480 4943 int resched = should_resched();
6df3cecb
JK
4944 int ret = 0;
4945
f607c668
PZ
4946 lockdep_assert_held(lock);
4947
95c354fe 4948 if (spin_needbreak(lock) || resched) {
1da177e4 4949 spin_unlock(lock);
d86ee480 4950 if (resched)
95c354fe
NP
4951 __cond_resched();
4952 else
4953 cpu_relax();
6df3cecb 4954 ret = 1;
1da177e4 4955 spin_lock(lock);
1da177e4 4956 }
6df3cecb 4957 return ret;
1da177e4 4958}
613afbf8 4959EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4960
613afbf8 4961int __sched __cond_resched_softirq(void)
1da177e4
LT
4962{
4963 BUG_ON(!in_softirq());
4964
d86ee480 4965 if (should_resched()) {
98d82567 4966 local_bh_enable();
1da177e4
LT
4967 __cond_resched();
4968 local_bh_disable();
4969 return 1;
4970 }
4971 return 0;
4972}
613afbf8 4973EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4974
1da177e4
LT
4975/**
4976 * yield - yield the current processor to other threads.
4977 *
72fd4a35 4978 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4979 * thread runnable and calls sys_sched_yield().
4980 */
4981void __sched yield(void)
4982{
4983 set_current_state(TASK_RUNNING);
4984 sys_sched_yield();
4985}
1da177e4
LT
4986EXPORT_SYMBOL(yield);
4987
4988/*
41a2d6cf 4989 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4990 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4991 */
4992void __sched io_schedule(void)
4993{
54d35f29 4994 struct rq *rq = raw_rq();
1da177e4 4995
0ff92245 4996 delayacct_blkio_start();
1da177e4 4997 atomic_inc(&rq->nr_iowait);
8f0dfc34 4998 current->in_iowait = 1;
1da177e4 4999 schedule();
8f0dfc34 5000 current->in_iowait = 0;
1da177e4 5001 atomic_dec(&rq->nr_iowait);
0ff92245 5002 delayacct_blkio_end();
1da177e4 5003}
1da177e4
LT
5004EXPORT_SYMBOL(io_schedule);
5005
5006long __sched io_schedule_timeout(long timeout)
5007{
54d35f29 5008 struct rq *rq = raw_rq();
1da177e4
LT
5009 long ret;
5010
0ff92245 5011 delayacct_blkio_start();
1da177e4 5012 atomic_inc(&rq->nr_iowait);
8f0dfc34 5013 current->in_iowait = 1;
1da177e4 5014 ret = schedule_timeout(timeout);
8f0dfc34 5015 current->in_iowait = 0;
1da177e4 5016 atomic_dec(&rq->nr_iowait);
0ff92245 5017 delayacct_blkio_end();
1da177e4
LT
5018 return ret;
5019}
5020
5021/**
5022 * sys_sched_get_priority_max - return maximum RT priority.
5023 * @policy: scheduling class.
5024 *
5025 * this syscall returns the maximum rt_priority that can be used
5026 * by a given scheduling class.
5027 */
5add95d4 5028SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5029{
5030 int ret = -EINVAL;
5031
5032 switch (policy) {
5033 case SCHED_FIFO:
5034 case SCHED_RR:
5035 ret = MAX_USER_RT_PRIO-1;
5036 break;
5037 case SCHED_NORMAL:
b0a9499c 5038 case SCHED_BATCH:
dd41f596 5039 case SCHED_IDLE:
1da177e4
LT
5040 ret = 0;
5041 break;
5042 }
5043 return ret;
5044}
5045
5046/**
5047 * sys_sched_get_priority_min - return minimum RT priority.
5048 * @policy: scheduling class.
5049 *
5050 * this syscall returns the minimum rt_priority that can be used
5051 * by a given scheduling class.
5052 */
5add95d4 5053SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5054{
5055 int ret = -EINVAL;
5056
5057 switch (policy) {
5058 case SCHED_FIFO:
5059 case SCHED_RR:
5060 ret = 1;
5061 break;
5062 case SCHED_NORMAL:
b0a9499c 5063 case SCHED_BATCH:
dd41f596 5064 case SCHED_IDLE:
1da177e4
LT
5065 ret = 0;
5066 }
5067 return ret;
5068}
5069
5070/**
5071 * sys_sched_rr_get_interval - return the default timeslice of a process.
5072 * @pid: pid of the process.
5073 * @interval: userspace pointer to the timeslice value.
5074 *
5075 * this syscall writes the default timeslice value of a given process
5076 * into the user-space timespec buffer. A value of '0' means infinity.
5077 */
17da2bd9 5078SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5079 struct timespec __user *, interval)
1da177e4 5080{
36c8b586 5081 struct task_struct *p;
a4ec24b4 5082 unsigned int time_slice;
dba091b9
TG
5083 unsigned long flags;
5084 struct rq *rq;
3a5c359a 5085 int retval;
1da177e4 5086 struct timespec t;
1da177e4
LT
5087
5088 if (pid < 0)
3a5c359a 5089 return -EINVAL;
1da177e4
LT
5090
5091 retval = -ESRCH;
1a551ae7 5092 rcu_read_lock();
1da177e4
LT
5093 p = find_process_by_pid(pid);
5094 if (!p)
5095 goto out_unlock;
5096
5097 retval = security_task_getscheduler(p);
5098 if (retval)
5099 goto out_unlock;
5100
dba091b9
TG
5101 rq = task_rq_lock(p, &flags);
5102 time_slice = p->sched_class->get_rr_interval(rq, p);
5103 task_rq_unlock(rq, &flags);
a4ec24b4 5104
1a551ae7 5105 rcu_read_unlock();
a4ec24b4 5106 jiffies_to_timespec(time_slice, &t);
1da177e4 5107 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5108 return retval;
3a5c359a 5109
1da177e4 5110out_unlock:
1a551ae7 5111 rcu_read_unlock();
1da177e4
LT
5112 return retval;
5113}
5114
7c731e0a 5115static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5116
82a1fcb9 5117void sched_show_task(struct task_struct *p)
1da177e4 5118{
1da177e4 5119 unsigned long free = 0;
36c8b586 5120 unsigned state;
1da177e4 5121
1da177e4 5122 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5123 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5124 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5125#if BITS_PER_LONG == 32
1da177e4 5126 if (state == TASK_RUNNING)
3df0fc5b 5127 printk(KERN_CONT " running ");
1da177e4 5128 else
3df0fc5b 5129 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5130#else
5131 if (state == TASK_RUNNING)
3df0fc5b 5132 printk(KERN_CONT " running task ");
1da177e4 5133 else
3df0fc5b 5134 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5135#endif
5136#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5137 free = stack_not_used(p);
1da177e4 5138#endif
3df0fc5b 5139 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5140 task_pid_nr(p), task_pid_nr(p->real_parent),
5141 (unsigned long)task_thread_info(p)->flags);
1da177e4 5142
5fb5e6de 5143 show_stack(p, NULL);
1da177e4
LT
5144}
5145
e59e2ae2 5146void show_state_filter(unsigned long state_filter)
1da177e4 5147{
36c8b586 5148 struct task_struct *g, *p;
1da177e4 5149
4bd77321 5150#if BITS_PER_LONG == 32
3df0fc5b
PZ
5151 printk(KERN_INFO
5152 " task PC stack pid father\n");
1da177e4 5153#else
3df0fc5b
PZ
5154 printk(KERN_INFO
5155 " task PC stack pid father\n");
1da177e4
LT
5156#endif
5157 read_lock(&tasklist_lock);
5158 do_each_thread(g, p) {
5159 /*
5160 * reset the NMI-timeout, listing all files on a slow
5161 * console might take alot of time:
5162 */
5163 touch_nmi_watchdog();
39bc89fd 5164 if (!state_filter || (p->state & state_filter))
82a1fcb9 5165 sched_show_task(p);
1da177e4
LT
5166 } while_each_thread(g, p);
5167
04c9167f
JF
5168 touch_all_softlockup_watchdogs();
5169
dd41f596
IM
5170#ifdef CONFIG_SCHED_DEBUG
5171 sysrq_sched_debug_show();
5172#endif
1da177e4 5173 read_unlock(&tasklist_lock);
e59e2ae2
IM
5174 /*
5175 * Only show locks if all tasks are dumped:
5176 */
93335a21 5177 if (!state_filter)
e59e2ae2 5178 debug_show_all_locks();
1da177e4
LT
5179}
5180
1df21055
IM
5181void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5182{
dd41f596 5183 idle->sched_class = &idle_sched_class;
1df21055
IM
5184}
5185
f340c0d1
IM
5186/**
5187 * init_idle - set up an idle thread for a given CPU
5188 * @idle: task in question
5189 * @cpu: cpu the idle task belongs to
5190 *
5191 * NOTE: this function does not set the idle thread's NEED_RESCHED
5192 * flag, to make booting more robust.
5193 */
5c1e1767 5194void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5195{
70b97a7f 5196 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5197 unsigned long flags;
5198
05fa785c 5199 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5200
dd41f596 5201 __sched_fork(idle);
06b83b5f 5202 idle->state = TASK_RUNNING;
dd41f596
IM
5203 idle->se.exec_start = sched_clock();
5204
96f874e2 5205 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5206 __set_task_cpu(idle, cpu);
1da177e4 5207
1da177e4 5208 rq->curr = rq->idle = idle;
4866cde0
NP
5209#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5210 idle->oncpu = 1;
5211#endif
05fa785c 5212 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5213
5214 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5215#if defined(CONFIG_PREEMPT)
5216 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5217#else
a1261f54 5218 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5219#endif
dd41f596
IM
5220 /*
5221 * The idle tasks have their own, simple scheduling class:
5222 */
5223 idle->sched_class = &idle_sched_class;
fb52607a 5224 ftrace_graph_init_task(idle);
1da177e4
LT
5225}
5226
5227/*
5228 * In a system that switches off the HZ timer nohz_cpu_mask
5229 * indicates which cpus entered this state. This is used
5230 * in the rcu update to wait only for active cpus. For system
5231 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5232 * always be CPU_BITS_NONE.
1da177e4 5233 */
6a7b3dc3 5234cpumask_var_t nohz_cpu_mask;
1da177e4 5235
19978ca6
IM
5236/*
5237 * Increase the granularity value when there are more CPUs,
5238 * because with more CPUs the 'effective latency' as visible
5239 * to users decreases. But the relationship is not linear,
5240 * so pick a second-best guess by going with the log2 of the
5241 * number of CPUs.
5242 *
5243 * This idea comes from the SD scheduler of Con Kolivas:
5244 */
acb4a848 5245static int get_update_sysctl_factor(void)
19978ca6 5246{
4ca3ef71 5247 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5248 unsigned int factor;
5249
5250 switch (sysctl_sched_tunable_scaling) {
5251 case SCHED_TUNABLESCALING_NONE:
5252 factor = 1;
5253 break;
5254 case SCHED_TUNABLESCALING_LINEAR:
5255 factor = cpus;
5256 break;
5257 case SCHED_TUNABLESCALING_LOG:
5258 default:
5259 factor = 1 + ilog2(cpus);
5260 break;
5261 }
19978ca6 5262
acb4a848
CE
5263 return factor;
5264}
19978ca6 5265
acb4a848
CE
5266static void update_sysctl(void)
5267{
5268 unsigned int factor = get_update_sysctl_factor();
19978ca6 5269
0bcdcf28
CE
5270#define SET_SYSCTL(name) \
5271 (sysctl_##name = (factor) * normalized_sysctl_##name)
5272 SET_SYSCTL(sched_min_granularity);
5273 SET_SYSCTL(sched_latency);
5274 SET_SYSCTL(sched_wakeup_granularity);
5275 SET_SYSCTL(sched_shares_ratelimit);
5276#undef SET_SYSCTL
5277}
55cd5340 5278
0bcdcf28
CE
5279static inline void sched_init_granularity(void)
5280{
5281 update_sysctl();
19978ca6
IM
5282}
5283
1da177e4
LT
5284#ifdef CONFIG_SMP
5285/*
5286 * This is how migration works:
5287 *
70b97a7f 5288 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5289 * runqueue and wake up that CPU's migration thread.
5290 * 2) we down() the locked semaphore => thread blocks.
5291 * 3) migration thread wakes up (implicitly it forces the migrated
5292 * thread off the CPU)
5293 * 4) it gets the migration request and checks whether the migrated
5294 * task is still in the wrong runqueue.
5295 * 5) if it's in the wrong runqueue then the migration thread removes
5296 * it and puts it into the right queue.
5297 * 6) migration thread up()s the semaphore.
5298 * 7) we wake up and the migration is done.
5299 */
5300
5301/*
5302 * Change a given task's CPU affinity. Migrate the thread to a
5303 * proper CPU and schedule it away if the CPU it's executing on
5304 * is removed from the allowed bitmask.
5305 *
5306 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5307 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5308 * call is not atomic; no spinlocks may be held.
5309 */
96f874e2 5310int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 5311{
70b97a7f 5312 struct migration_req req;
1da177e4 5313 unsigned long flags;
70b97a7f 5314 struct rq *rq;
48f24c4d 5315 int ret = 0;
1da177e4
LT
5316
5317 rq = task_rq_lock(p, &flags);
e2912009 5318
6ad4c188 5319 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5320 ret = -EINVAL;
5321 goto out;
5322 }
5323
9985b0ba 5324 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5325 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5326 ret = -EINVAL;
5327 goto out;
5328 }
5329
73fe6aae 5330 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5331 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5332 else {
96f874e2
RR
5333 cpumask_copy(&p->cpus_allowed, new_mask);
5334 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5335 }
5336
1da177e4 5337 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5338 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5339 goto out;
5340
6ad4c188 5341 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 5342 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
5343 struct task_struct *mt = rq->migration_thread;
5344
5345 get_task_struct(mt);
1da177e4
LT
5346 task_rq_unlock(rq, &flags);
5347 wake_up_process(rq->migration_thread);
693525e3 5348 put_task_struct(mt);
1da177e4
LT
5349 wait_for_completion(&req.done);
5350 tlb_migrate_finish(p->mm);
5351 return 0;
5352 }
5353out:
5354 task_rq_unlock(rq, &flags);
48f24c4d 5355
1da177e4
LT
5356 return ret;
5357}
cd8ba7cd 5358EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5359
5360/*
41a2d6cf 5361 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5362 * this because either it can't run here any more (set_cpus_allowed()
5363 * away from this CPU, or CPU going down), or because we're
5364 * attempting to rebalance this task on exec (sched_exec).
5365 *
5366 * So we race with normal scheduler movements, but that's OK, as long
5367 * as the task is no longer on this CPU.
efc30814
KK
5368 *
5369 * Returns non-zero if task was successfully migrated.
1da177e4 5370 */
efc30814 5371static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5372{
70b97a7f 5373 struct rq *rq_dest, *rq_src;
e2912009 5374 int ret = 0;
1da177e4 5375
e761b772 5376 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5377 return ret;
1da177e4
LT
5378
5379 rq_src = cpu_rq(src_cpu);
5380 rq_dest = cpu_rq(dest_cpu);
5381
5382 double_rq_lock(rq_src, rq_dest);
5383 /* Already moved. */
5384 if (task_cpu(p) != src_cpu)
b1e38734 5385 goto done;
1da177e4 5386 /* Affinity changed (again). */
96f874e2 5387 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5388 goto fail;
1da177e4 5389
e2912009
PZ
5390 /*
5391 * If we're not on a rq, the next wake-up will ensure we're
5392 * placed properly.
5393 */
5394 if (p->se.on_rq) {
2e1cb74a 5395 deactivate_task(rq_src, p, 0);
e2912009 5396 set_task_cpu(p, dest_cpu);
dd41f596 5397 activate_task(rq_dest, p, 0);
15afe09b 5398 check_preempt_curr(rq_dest, p, 0);
1da177e4 5399 }
b1e38734 5400done:
efc30814 5401 ret = 1;
b1e38734 5402fail:
1da177e4 5403 double_rq_unlock(rq_src, rq_dest);
efc30814 5404 return ret;
1da177e4
LT
5405}
5406
03b042bf
PM
5407#define RCU_MIGRATION_IDLE 0
5408#define RCU_MIGRATION_NEED_QS 1
5409#define RCU_MIGRATION_GOT_QS 2
5410#define RCU_MIGRATION_MUST_SYNC 3
5411
1da177e4
LT
5412/*
5413 * migration_thread - this is a highprio system thread that performs
5414 * thread migration by bumping thread off CPU then 'pushing' onto
5415 * another runqueue.
5416 */
95cdf3b7 5417static int migration_thread(void *data)
1da177e4 5418{
03b042bf 5419 int badcpu;
1da177e4 5420 int cpu = (long)data;
70b97a7f 5421 struct rq *rq;
1da177e4
LT
5422
5423 rq = cpu_rq(cpu);
5424 BUG_ON(rq->migration_thread != current);
5425
5426 set_current_state(TASK_INTERRUPTIBLE);
5427 while (!kthread_should_stop()) {
70b97a7f 5428 struct migration_req *req;
1da177e4 5429 struct list_head *head;
1da177e4 5430
05fa785c 5431 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
5432
5433 if (cpu_is_offline(cpu)) {
05fa785c 5434 raw_spin_unlock_irq(&rq->lock);
371cbb38 5435 break;
1da177e4
LT
5436 }
5437
5438 if (rq->active_balance) {
5439 active_load_balance(rq, cpu);
5440 rq->active_balance = 0;
5441 }
5442
5443 head = &rq->migration_queue;
5444
5445 if (list_empty(head)) {
05fa785c 5446 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5447 schedule();
5448 set_current_state(TASK_INTERRUPTIBLE);
5449 continue;
5450 }
70b97a7f 5451 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5452 list_del_init(head->next);
5453
03b042bf 5454 if (req->task != NULL) {
05fa785c 5455 raw_spin_unlock(&rq->lock);
03b042bf
PM
5456 __migrate_task(req->task, cpu, req->dest_cpu);
5457 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5458 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 5459 raw_spin_unlock(&rq->lock);
03b042bf
PM
5460 } else {
5461 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 5462 raw_spin_unlock(&rq->lock);
03b042bf
PM
5463 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5464 }
674311d5 5465 local_irq_enable();
1da177e4
LT
5466
5467 complete(&req->done);
5468 }
5469 __set_current_state(TASK_RUNNING);
1da177e4 5470
1da177e4
LT
5471 return 0;
5472}
5473
5474#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5475
5476static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5477{
5478 int ret;
5479
5480 local_irq_disable();
5481 ret = __migrate_task(p, src_cpu, dest_cpu);
5482 local_irq_enable();
5483 return ret;
5484}
5485
054b9108 5486/*
3a4fa0a2 5487 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5488 */
48f24c4d 5489static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5490{
70b97a7f 5491 int dest_cpu;
e76bd8d9
RR
5492
5493again:
5da9a0fb 5494 dest_cpu = select_fallback_rq(dead_cpu, p);
e76bd8d9 5495
e76bd8d9
RR
5496 /* It can have affinity changed while we were choosing. */
5497 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5498 goto again;
1da177e4
LT
5499}
5500
5501/*
5502 * While a dead CPU has no uninterruptible tasks queued at this point,
5503 * it might still have a nonzero ->nr_uninterruptible counter, because
5504 * for performance reasons the counter is not stricly tracking tasks to
5505 * their home CPUs. So we just add the counter to another CPU's counter,
5506 * to keep the global sum constant after CPU-down:
5507 */
70b97a7f 5508static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5509{
6ad4c188 5510 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5511 unsigned long flags;
5512
5513 local_irq_save(flags);
5514 double_rq_lock(rq_src, rq_dest);
5515 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5516 rq_src->nr_uninterruptible = 0;
5517 double_rq_unlock(rq_src, rq_dest);
5518 local_irq_restore(flags);
5519}
5520
5521/* Run through task list and migrate tasks from the dead cpu. */
5522static void migrate_live_tasks(int src_cpu)
5523{
48f24c4d 5524 struct task_struct *p, *t;
1da177e4 5525
f7b4cddc 5526 read_lock(&tasklist_lock);
1da177e4 5527
48f24c4d
IM
5528 do_each_thread(t, p) {
5529 if (p == current)
1da177e4
LT
5530 continue;
5531
48f24c4d
IM
5532 if (task_cpu(p) == src_cpu)
5533 move_task_off_dead_cpu(src_cpu, p);
5534 } while_each_thread(t, p);
1da177e4 5535
f7b4cddc 5536 read_unlock(&tasklist_lock);
1da177e4
LT
5537}
5538
dd41f596
IM
5539/*
5540 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5541 * It does so by boosting its priority to highest possible.
5542 * Used by CPU offline code.
1da177e4
LT
5543 */
5544void sched_idle_next(void)
5545{
48f24c4d 5546 int this_cpu = smp_processor_id();
70b97a7f 5547 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5548 struct task_struct *p = rq->idle;
5549 unsigned long flags;
5550
5551 /* cpu has to be offline */
48f24c4d 5552 BUG_ON(cpu_online(this_cpu));
1da177e4 5553
48f24c4d
IM
5554 /*
5555 * Strictly not necessary since rest of the CPUs are stopped by now
5556 * and interrupts disabled on the current cpu.
1da177e4 5557 */
05fa785c 5558 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5559
dd41f596 5560 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5561
94bc9a7b
DA
5562 update_rq_clock(rq);
5563 activate_task(rq, p, 0);
1da177e4 5564
05fa785c 5565 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5566}
5567
48f24c4d
IM
5568/*
5569 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5570 * offline.
5571 */
5572void idle_task_exit(void)
5573{
5574 struct mm_struct *mm = current->active_mm;
5575
5576 BUG_ON(cpu_online(smp_processor_id()));
5577
5578 if (mm != &init_mm)
5579 switch_mm(mm, &init_mm, current);
5580 mmdrop(mm);
5581}
5582
054b9108 5583/* called under rq->lock with disabled interrupts */
36c8b586 5584static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5585{
70b97a7f 5586 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5587
5588 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5589 BUG_ON(!p->exit_state);
1da177e4
LT
5590
5591 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5592 BUG_ON(p->state == TASK_DEAD);
1da177e4 5593
48f24c4d 5594 get_task_struct(p);
1da177e4
LT
5595
5596 /*
5597 * Drop lock around migration; if someone else moves it,
41a2d6cf 5598 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5599 * fine.
5600 */
05fa785c 5601 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5602 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5603 raw_spin_lock_irq(&rq->lock);
1da177e4 5604
48f24c4d 5605 put_task_struct(p);
1da177e4
LT
5606}
5607
5608/* release_task() removes task from tasklist, so we won't find dead tasks. */
5609static void migrate_dead_tasks(unsigned int dead_cpu)
5610{
70b97a7f 5611 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5612 struct task_struct *next;
48f24c4d 5613
dd41f596
IM
5614 for ( ; ; ) {
5615 if (!rq->nr_running)
5616 break;
a8e504d2 5617 update_rq_clock(rq);
b67802ea 5618 next = pick_next_task(rq);
dd41f596
IM
5619 if (!next)
5620 break;
79c53799 5621 next->sched_class->put_prev_task(rq, next);
dd41f596 5622 migrate_dead(dead_cpu, next);
e692ab53 5623
1da177e4
LT
5624 }
5625}
dce48a84
TG
5626
5627/*
5628 * remove the tasks which were accounted by rq from calc_load_tasks.
5629 */
5630static void calc_global_load_remove(struct rq *rq)
5631{
5632 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5633 rq->calc_load_active = 0;
dce48a84 5634}
1da177e4
LT
5635#endif /* CONFIG_HOTPLUG_CPU */
5636
e692ab53
NP
5637#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5638
5639static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5640 {
5641 .procname = "sched_domain",
c57baf1e 5642 .mode = 0555,
e0361851 5643 },
56992309 5644 {}
e692ab53
NP
5645};
5646
5647static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5648 {
5649 .procname = "kernel",
c57baf1e 5650 .mode = 0555,
e0361851
AD
5651 .child = sd_ctl_dir,
5652 },
56992309 5653 {}
e692ab53
NP
5654};
5655
5656static struct ctl_table *sd_alloc_ctl_entry(int n)
5657{
5658 struct ctl_table *entry =
5cf9f062 5659 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5660
e692ab53
NP
5661 return entry;
5662}
5663
6382bc90
MM
5664static void sd_free_ctl_entry(struct ctl_table **tablep)
5665{
cd790076 5666 struct ctl_table *entry;
6382bc90 5667
cd790076
MM
5668 /*
5669 * In the intermediate directories, both the child directory and
5670 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5671 * will always be set. In the lowest directory the names are
cd790076
MM
5672 * static strings and all have proc handlers.
5673 */
5674 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5675 if (entry->child)
5676 sd_free_ctl_entry(&entry->child);
cd790076
MM
5677 if (entry->proc_handler == NULL)
5678 kfree(entry->procname);
5679 }
6382bc90
MM
5680
5681 kfree(*tablep);
5682 *tablep = NULL;
5683}
5684
e692ab53 5685static void
e0361851 5686set_table_entry(struct ctl_table *entry,
e692ab53
NP
5687 const char *procname, void *data, int maxlen,
5688 mode_t mode, proc_handler *proc_handler)
5689{
e692ab53
NP
5690 entry->procname = procname;
5691 entry->data = data;
5692 entry->maxlen = maxlen;
5693 entry->mode = mode;
5694 entry->proc_handler = proc_handler;
5695}
5696
5697static struct ctl_table *
5698sd_alloc_ctl_domain_table(struct sched_domain *sd)
5699{
a5d8c348 5700 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5701
ad1cdc1d
MM
5702 if (table == NULL)
5703 return NULL;
5704
e0361851 5705 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5706 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5707 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5708 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5709 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5710 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5711 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5712 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5713 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5714 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5715 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5716 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5717 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5718 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5719 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5720 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5721 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5722 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5723 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5724 &sd->cache_nice_tries,
5725 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5726 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5727 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5728 set_table_entry(&table[11], "name", sd->name,
5729 CORENAME_MAX_SIZE, 0444, proc_dostring);
5730 /* &table[12] is terminator */
e692ab53
NP
5731
5732 return table;
5733}
5734
9a4e7159 5735static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5736{
5737 struct ctl_table *entry, *table;
5738 struct sched_domain *sd;
5739 int domain_num = 0, i;
5740 char buf[32];
5741
5742 for_each_domain(cpu, sd)
5743 domain_num++;
5744 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5745 if (table == NULL)
5746 return NULL;
e692ab53
NP
5747
5748 i = 0;
5749 for_each_domain(cpu, sd) {
5750 snprintf(buf, 32, "domain%d", i);
e692ab53 5751 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5752 entry->mode = 0555;
e692ab53
NP
5753 entry->child = sd_alloc_ctl_domain_table(sd);
5754 entry++;
5755 i++;
5756 }
5757 return table;
5758}
5759
5760static struct ctl_table_header *sd_sysctl_header;
6382bc90 5761static void register_sched_domain_sysctl(void)
e692ab53 5762{
6ad4c188 5763 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5764 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5765 char buf[32];
5766
7378547f
MM
5767 WARN_ON(sd_ctl_dir[0].child);
5768 sd_ctl_dir[0].child = entry;
5769
ad1cdc1d
MM
5770 if (entry == NULL)
5771 return;
5772
6ad4c188 5773 for_each_possible_cpu(i) {
e692ab53 5774 snprintf(buf, 32, "cpu%d", i);
e692ab53 5775 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5776 entry->mode = 0555;
e692ab53 5777 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5778 entry++;
e692ab53 5779 }
7378547f
MM
5780
5781 WARN_ON(sd_sysctl_header);
e692ab53
NP
5782 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5783}
6382bc90 5784
7378547f 5785/* may be called multiple times per register */
6382bc90
MM
5786static void unregister_sched_domain_sysctl(void)
5787{
7378547f
MM
5788 if (sd_sysctl_header)
5789 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5790 sd_sysctl_header = NULL;
7378547f
MM
5791 if (sd_ctl_dir[0].child)
5792 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5793}
e692ab53 5794#else
6382bc90
MM
5795static void register_sched_domain_sysctl(void)
5796{
5797}
5798static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5799{
5800}
5801#endif
5802
1f11eb6a
GH
5803static void set_rq_online(struct rq *rq)
5804{
5805 if (!rq->online) {
5806 const struct sched_class *class;
5807
c6c4927b 5808 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5809 rq->online = 1;
5810
5811 for_each_class(class) {
5812 if (class->rq_online)
5813 class->rq_online(rq);
5814 }
5815 }
5816}
5817
5818static void set_rq_offline(struct rq *rq)
5819{
5820 if (rq->online) {
5821 const struct sched_class *class;
5822
5823 for_each_class(class) {
5824 if (class->rq_offline)
5825 class->rq_offline(rq);
5826 }
5827
c6c4927b 5828 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5829 rq->online = 0;
5830 }
5831}
5832
1da177e4
LT
5833/*
5834 * migration_call - callback that gets triggered when a CPU is added.
5835 * Here we can start up the necessary migration thread for the new CPU.
5836 */
48f24c4d
IM
5837static int __cpuinit
5838migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5839{
1da177e4 5840 struct task_struct *p;
48f24c4d 5841 int cpu = (long)hcpu;
1da177e4 5842 unsigned long flags;
70b97a7f 5843 struct rq *rq;
1da177e4
LT
5844
5845 switch (action) {
5be9361c 5846
1da177e4 5847 case CPU_UP_PREPARE:
8bb78442 5848 case CPU_UP_PREPARE_FROZEN:
dd41f596 5849 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5850 if (IS_ERR(p))
5851 return NOTIFY_BAD;
1da177e4
LT
5852 kthread_bind(p, cpu);
5853 /* Must be high prio: stop_machine expects to yield to it. */
5854 rq = task_rq_lock(p, &flags);
dd41f596 5855 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 5856 task_rq_unlock(rq, &flags);
371cbb38 5857 get_task_struct(p);
1da177e4 5858 cpu_rq(cpu)->migration_thread = p;
a468d389 5859 rq->calc_load_update = calc_load_update;
1da177e4 5860 break;
48f24c4d 5861
1da177e4 5862 case CPU_ONLINE:
8bb78442 5863 case CPU_ONLINE_FROZEN:
3a4fa0a2 5864 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5865 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
5866
5867 /* Update our root-domain */
5868 rq = cpu_rq(cpu);
05fa785c 5869 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5870 if (rq->rd) {
c6c4927b 5871 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5872
5873 set_rq_online(rq);
1f94ef59 5874 }
05fa785c 5875 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5876 break;
48f24c4d 5877
1da177e4
LT
5878#ifdef CONFIG_HOTPLUG_CPU
5879 case CPU_UP_CANCELED:
8bb78442 5880 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5881 if (!cpu_rq(cpu)->migration_thread)
5882 break;
41a2d6cf 5883 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 5884 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 5885 cpumask_any(cpu_online_mask));
1da177e4 5886 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 5887 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
5888 cpu_rq(cpu)->migration_thread = NULL;
5889 break;
48f24c4d 5890
1da177e4 5891 case CPU_DEAD:
8bb78442 5892 case CPU_DEAD_FROZEN:
470fd646 5893 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5894 migrate_live_tasks(cpu);
5895 rq = cpu_rq(cpu);
5896 kthread_stop(rq->migration_thread);
371cbb38 5897 put_task_struct(rq->migration_thread);
1da177e4
LT
5898 rq->migration_thread = NULL;
5899 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5900 raw_spin_lock_irq(&rq->lock);
a8e504d2 5901 update_rq_clock(rq);
2e1cb74a 5902 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5903 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5904 rq->idle->sched_class = &idle_sched_class;
1da177e4 5905 migrate_dead_tasks(cpu);
05fa785c 5906 raw_spin_unlock_irq(&rq->lock);
470fd646 5907 cpuset_unlock();
1da177e4
LT
5908 migrate_nr_uninterruptible(rq);
5909 BUG_ON(rq->nr_running != 0);
dce48a84 5910 calc_global_load_remove(rq);
41a2d6cf
IM
5911 /*
5912 * No need to migrate the tasks: it was best-effort if
5913 * they didn't take sched_hotcpu_mutex. Just wake up
5914 * the requestors.
5915 */
05fa785c 5916 raw_spin_lock_irq(&rq->lock);
1da177e4 5917 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5918 struct migration_req *req;
5919
1da177e4 5920 req = list_entry(rq->migration_queue.next,
70b97a7f 5921 struct migration_req, list);
1da177e4 5922 list_del_init(&req->list);
05fa785c 5923 raw_spin_unlock_irq(&rq->lock);
1da177e4 5924 complete(&req->done);
05fa785c 5925 raw_spin_lock_irq(&rq->lock);
1da177e4 5926 }
05fa785c 5927 raw_spin_unlock_irq(&rq->lock);
1da177e4 5928 break;
57d885fe 5929
08f503b0
GH
5930 case CPU_DYING:
5931 case CPU_DYING_FROZEN:
57d885fe
GH
5932 /* Update our root-domain */
5933 rq = cpu_rq(cpu);
05fa785c 5934 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5935 if (rq->rd) {
c6c4927b 5936 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5937 set_rq_offline(rq);
57d885fe 5938 }
05fa785c 5939 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5940 break;
1da177e4
LT
5941#endif
5942 }
5943 return NOTIFY_OK;
5944}
5945
f38b0820
PM
5946/*
5947 * Register at high priority so that task migration (migrate_all_tasks)
5948 * happens before everything else. This has to be lower priority than
cdd6c482 5949 * the notifier in the perf_event subsystem, though.
1da177e4 5950 */
26c2143b 5951static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5952 .notifier_call = migration_call,
5953 .priority = 10
5954};
5955
7babe8db 5956static int __init migration_init(void)
1da177e4
LT
5957{
5958 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5959 int err;
48f24c4d
IM
5960
5961 /* Start one for the boot CPU: */
07dccf33
AM
5962 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5963 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5964 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5965 register_cpu_notifier(&migration_notifier);
7babe8db 5966
a004cd42 5967 return 0;
1da177e4 5968}
7babe8db 5969early_initcall(migration_init);
1da177e4
LT
5970#endif
5971
5972#ifdef CONFIG_SMP
476f3534 5973
3e9830dc 5974#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5975
f6630114
MT
5976static __read_mostly int sched_domain_debug_enabled;
5977
5978static int __init sched_domain_debug_setup(char *str)
5979{
5980 sched_domain_debug_enabled = 1;
5981
5982 return 0;
5983}
5984early_param("sched_debug", sched_domain_debug_setup);
5985
7c16ec58 5986static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5987 struct cpumask *groupmask)
1da177e4 5988{
4dcf6aff 5989 struct sched_group *group = sd->groups;
434d53b0 5990 char str[256];
1da177e4 5991
968ea6d8 5992 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5993 cpumask_clear(groupmask);
4dcf6aff
IM
5994
5995 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5996
5997 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5998 printk("does not load-balance\n");
4dcf6aff 5999 if (sd->parent)
3df0fc5b
PZ
6000 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6001 " has parent");
4dcf6aff 6002 return -1;
41c7ce9a
NP
6003 }
6004
3df0fc5b 6005 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6006
758b2cdc 6007 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6008 printk(KERN_ERR "ERROR: domain->span does not contain "
6009 "CPU%d\n", cpu);
4dcf6aff 6010 }
758b2cdc 6011 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6012 printk(KERN_ERR "ERROR: domain->groups does not contain"
6013 " CPU%d\n", cpu);
4dcf6aff 6014 }
1da177e4 6015
4dcf6aff 6016 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6017 do {
4dcf6aff 6018 if (!group) {
3df0fc5b
PZ
6019 printk("\n");
6020 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6021 break;
6022 }
6023
18a3885f 6024 if (!group->cpu_power) {
3df0fc5b
PZ
6025 printk(KERN_CONT "\n");
6026 printk(KERN_ERR "ERROR: domain->cpu_power not "
6027 "set\n");
4dcf6aff
IM
6028 break;
6029 }
1da177e4 6030
758b2cdc 6031 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6032 printk(KERN_CONT "\n");
6033 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6034 break;
6035 }
1da177e4 6036
758b2cdc 6037 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6038 printk(KERN_CONT "\n");
6039 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6040 break;
6041 }
1da177e4 6042
758b2cdc 6043 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6044
968ea6d8 6045 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6046
3df0fc5b 6047 printk(KERN_CONT " %s", str);
18a3885f 6048 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6049 printk(KERN_CONT " (cpu_power = %d)",
6050 group->cpu_power);
381512cf 6051 }
1da177e4 6052
4dcf6aff
IM
6053 group = group->next;
6054 } while (group != sd->groups);
3df0fc5b 6055 printk(KERN_CONT "\n");
1da177e4 6056
758b2cdc 6057 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6058 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6059
758b2cdc
RR
6060 if (sd->parent &&
6061 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6062 printk(KERN_ERR "ERROR: parent span is not a superset "
6063 "of domain->span\n");
4dcf6aff
IM
6064 return 0;
6065}
1da177e4 6066
4dcf6aff
IM
6067static void sched_domain_debug(struct sched_domain *sd, int cpu)
6068{
d5dd3db1 6069 cpumask_var_t groupmask;
4dcf6aff 6070 int level = 0;
1da177e4 6071
f6630114
MT
6072 if (!sched_domain_debug_enabled)
6073 return;
6074
4dcf6aff
IM
6075 if (!sd) {
6076 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6077 return;
6078 }
1da177e4 6079
4dcf6aff
IM
6080 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6081
d5dd3db1 6082 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6083 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6084 return;
6085 }
6086
4dcf6aff 6087 for (;;) {
7c16ec58 6088 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6089 break;
1da177e4
LT
6090 level++;
6091 sd = sd->parent;
33859f7f 6092 if (!sd)
4dcf6aff
IM
6093 break;
6094 }
d5dd3db1 6095 free_cpumask_var(groupmask);
1da177e4 6096}
6d6bc0ad 6097#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6098# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6099#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6100
1a20ff27 6101static int sd_degenerate(struct sched_domain *sd)
245af2c7 6102{
758b2cdc 6103 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6104 return 1;
6105
6106 /* Following flags need at least 2 groups */
6107 if (sd->flags & (SD_LOAD_BALANCE |
6108 SD_BALANCE_NEWIDLE |
6109 SD_BALANCE_FORK |
89c4710e
SS
6110 SD_BALANCE_EXEC |
6111 SD_SHARE_CPUPOWER |
6112 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6113 if (sd->groups != sd->groups->next)
6114 return 0;
6115 }
6116
6117 /* Following flags don't use groups */
c88d5910 6118 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6119 return 0;
6120
6121 return 1;
6122}
6123
48f24c4d
IM
6124static int
6125sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6126{
6127 unsigned long cflags = sd->flags, pflags = parent->flags;
6128
6129 if (sd_degenerate(parent))
6130 return 1;
6131
758b2cdc 6132 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6133 return 0;
6134
245af2c7
SS
6135 /* Flags needing groups don't count if only 1 group in parent */
6136 if (parent->groups == parent->groups->next) {
6137 pflags &= ~(SD_LOAD_BALANCE |
6138 SD_BALANCE_NEWIDLE |
6139 SD_BALANCE_FORK |
89c4710e
SS
6140 SD_BALANCE_EXEC |
6141 SD_SHARE_CPUPOWER |
6142 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6143 if (nr_node_ids == 1)
6144 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6145 }
6146 if (~cflags & pflags)
6147 return 0;
6148
6149 return 1;
6150}
6151
c6c4927b
RR
6152static void free_rootdomain(struct root_domain *rd)
6153{
047106ad
PZ
6154 synchronize_sched();
6155
68e74568
RR
6156 cpupri_cleanup(&rd->cpupri);
6157
c6c4927b
RR
6158 free_cpumask_var(rd->rto_mask);
6159 free_cpumask_var(rd->online);
6160 free_cpumask_var(rd->span);
6161 kfree(rd);
6162}
6163
57d885fe
GH
6164static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6165{
a0490fa3 6166 struct root_domain *old_rd = NULL;
57d885fe 6167 unsigned long flags;
57d885fe 6168
05fa785c 6169 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6170
6171 if (rq->rd) {
a0490fa3 6172 old_rd = rq->rd;
57d885fe 6173
c6c4927b 6174 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6175 set_rq_offline(rq);
57d885fe 6176
c6c4927b 6177 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6178
a0490fa3
IM
6179 /*
6180 * If we dont want to free the old_rt yet then
6181 * set old_rd to NULL to skip the freeing later
6182 * in this function:
6183 */
6184 if (!atomic_dec_and_test(&old_rd->refcount))
6185 old_rd = NULL;
57d885fe
GH
6186 }
6187
6188 atomic_inc(&rd->refcount);
6189 rq->rd = rd;
6190
c6c4927b 6191 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6192 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6193 set_rq_online(rq);
57d885fe 6194
05fa785c 6195 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6196
6197 if (old_rd)
6198 free_rootdomain(old_rd);
57d885fe
GH
6199}
6200
fd5e1b5d 6201static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6202{
36b7b6d4
PE
6203 gfp_t gfp = GFP_KERNEL;
6204
57d885fe
GH
6205 memset(rd, 0, sizeof(*rd));
6206
36b7b6d4
PE
6207 if (bootmem)
6208 gfp = GFP_NOWAIT;
c6c4927b 6209
36b7b6d4 6210 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6211 goto out;
36b7b6d4 6212 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6213 goto free_span;
36b7b6d4 6214 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6215 goto free_online;
6e0534f2 6216
0fb53029 6217 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6218 goto free_rto_mask;
c6c4927b 6219 return 0;
6e0534f2 6220
68e74568
RR
6221free_rto_mask:
6222 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6223free_online:
6224 free_cpumask_var(rd->online);
6225free_span:
6226 free_cpumask_var(rd->span);
0c910d28 6227out:
c6c4927b 6228 return -ENOMEM;
57d885fe
GH
6229}
6230
6231static void init_defrootdomain(void)
6232{
c6c4927b
RR
6233 init_rootdomain(&def_root_domain, true);
6234
57d885fe
GH
6235 atomic_set(&def_root_domain.refcount, 1);
6236}
6237
dc938520 6238static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6239{
6240 struct root_domain *rd;
6241
6242 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6243 if (!rd)
6244 return NULL;
6245
c6c4927b
RR
6246 if (init_rootdomain(rd, false) != 0) {
6247 kfree(rd);
6248 return NULL;
6249 }
57d885fe
GH
6250
6251 return rd;
6252}
6253
1da177e4 6254/*
0eab9146 6255 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6256 * hold the hotplug lock.
6257 */
0eab9146
IM
6258static void
6259cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6260{
70b97a7f 6261 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6262 struct sched_domain *tmp;
6263
6264 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6265 for (tmp = sd; tmp; ) {
245af2c7
SS
6266 struct sched_domain *parent = tmp->parent;
6267 if (!parent)
6268 break;
f29c9b1c 6269
1a848870 6270 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6271 tmp->parent = parent->parent;
1a848870
SS
6272 if (parent->parent)
6273 parent->parent->child = tmp;
f29c9b1c
LZ
6274 } else
6275 tmp = tmp->parent;
245af2c7
SS
6276 }
6277
1a848870 6278 if (sd && sd_degenerate(sd)) {
245af2c7 6279 sd = sd->parent;
1a848870
SS
6280 if (sd)
6281 sd->child = NULL;
6282 }
1da177e4
LT
6283
6284 sched_domain_debug(sd, cpu);
6285
57d885fe 6286 rq_attach_root(rq, rd);
674311d5 6287 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6288}
6289
6290/* cpus with isolated domains */
dcc30a35 6291static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6292
6293/* Setup the mask of cpus configured for isolated domains */
6294static int __init isolated_cpu_setup(char *str)
6295{
bdddd296 6296 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6297 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6298 return 1;
6299}
6300
8927f494 6301__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6302
6303/*
6711cab4
SS
6304 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6305 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6306 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6307 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6308 *
6309 * init_sched_build_groups will build a circular linked list of the groups
6310 * covered by the given span, and will set each group's ->cpumask correctly,
6311 * and ->cpu_power to 0.
6312 */
a616058b 6313static void
96f874e2
RR
6314init_sched_build_groups(const struct cpumask *span,
6315 const struct cpumask *cpu_map,
6316 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6317 struct sched_group **sg,
96f874e2
RR
6318 struct cpumask *tmpmask),
6319 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6320{
6321 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6322 int i;
6323
96f874e2 6324 cpumask_clear(covered);
7c16ec58 6325
abcd083a 6326 for_each_cpu(i, span) {
6711cab4 6327 struct sched_group *sg;
7c16ec58 6328 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6329 int j;
6330
758b2cdc 6331 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6332 continue;
6333
758b2cdc 6334 cpumask_clear(sched_group_cpus(sg));
18a3885f 6335 sg->cpu_power = 0;
1da177e4 6336
abcd083a 6337 for_each_cpu(j, span) {
7c16ec58 6338 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6339 continue;
6340
96f874e2 6341 cpumask_set_cpu(j, covered);
758b2cdc 6342 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6343 }
6344 if (!first)
6345 first = sg;
6346 if (last)
6347 last->next = sg;
6348 last = sg;
6349 }
6350 last->next = first;
6351}
6352
9c1cfda2 6353#define SD_NODES_PER_DOMAIN 16
1da177e4 6354
9c1cfda2 6355#ifdef CONFIG_NUMA
198e2f18 6356
9c1cfda2
JH
6357/**
6358 * find_next_best_node - find the next node to include in a sched_domain
6359 * @node: node whose sched_domain we're building
6360 * @used_nodes: nodes already in the sched_domain
6361 *
41a2d6cf 6362 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6363 * finds the closest node not already in the @used_nodes map.
6364 *
6365 * Should use nodemask_t.
6366 */
c5f59f08 6367static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6368{
6369 int i, n, val, min_val, best_node = 0;
6370
6371 min_val = INT_MAX;
6372
076ac2af 6373 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6374 /* Start at @node */
076ac2af 6375 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6376
6377 if (!nr_cpus_node(n))
6378 continue;
6379
6380 /* Skip already used nodes */
c5f59f08 6381 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6382 continue;
6383
6384 /* Simple min distance search */
6385 val = node_distance(node, n);
6386
6387 if (val < min_val) {
6388 min_val = val;
6389 best_node = n;
6390 }
6391 }
6392
c5f59f08 6393 node_set(best_node, *used_nodes);
9c1cfda2
JH
6394 return best_node;
6395}
6396
6397/**
6398 * sched_domain_node_span - get a cpumask for a node's sched_domain
6399 * @node: node whose cpumask we're constructing
73486722 6400 * @span: resulting cpumask
9c1cfda2 6401 *
41a2d6cf 6402 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6403 * should be one that prevents unnecessary balancing, but also spreads tasks
6404 * out optimally.
6405 */
96f874e2 6406static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6407{
c5f59f08 6408 nodemask_t used_nodes;
48f24c4d 6409 int i;
9c1cfda2 6410
6ca09dfc 6411 cpumask_clear(span);
c5f59f08 6412 nodes_clear(used_nodes);
9c1cfda2 6413
6ca09dfc 6414 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6415 node_set(node, used_nodes);
9c1cfda2
JH
6416
6417 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6418 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6419
6ca09dfc 6420 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6421 }
9c1cfda2 6422}
6d6bc0ad 6423#endif /* CONFIG_NUMA */
9c1cfda2 6424
5c45bf27 6425int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6426
6c99e9ad
RR
6427/*
6428 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6429 *
6430 * ( See the the comments in include/linux/sched.h:struct sched_group
6431 * and struct sched_domain. )
6c99e9ad
RR
6432 */
6433struct static_sched_group {
6434 struct sched_group sg;
6435 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6436};
6437
6438struct static_sched_domain {
6439 struct sched_domain sd;
6440 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6441};
6442
49a02c51
AH
6443struct s_data {
6444#ifdef CONFIG_NUMA
6445 int sd_allnodes;
6446 cpumask_var_t domainspan;
6447 cpumask_var_t covered;
6448 cpumask_var_t notcovered;
6449#endif
6450 cpumask_var_t nodemask;
6451 cpumask_var_t this_sibling_map;
6452 cpumask_var_t this_core_map;
6453 cpumask_var_t send_covered;
6454 cpumask_var_t tmpmask;
6455 struct sched_group **sched_group_nodes;
6456 struct root_domain *rd;
6457};
6458
2109b99e
AH
6459enum s_alloc {
6460 sa_sched_groups = 0,
6461 sa_rootdomain,
6462 sa_tmpmask,
6463 sa_send_covered,
6464 sa_this_core_map,
6465 sa_this_sibling_map,
6466 sa_nodemask,
6467 sa_sched_group_nodes,
6468#ifdef CONFIG_NUMA
6469 sa_notcovered,
6470 sa_covered,
6471 sa_domainspan,
6472#endif
6473 sa_none,
6474};
6475
9c1cfda2 6476/*
48f24c4d 6477 * SMT sched-domains:
9c1cfda2 6478 */
1da177e4 6479#ifdef CONFIG_SCHED_SMT
6c99e9ad 6480static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6481static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6482
41a2d6cf 6483static int
96f874e2
RR
6484cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6485 struct sched_group **sg, struct cpumask *unused)
1da177e4 6486{
6711cab4 6487 if (sg)
1871e52c 6488 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6489 return cpu;
6490}
6d6bc0ad 6491#endif /* CONFIG_SCHED_SMT */
1da177e4 6492
48f24c4d
IM
6493/*
6494 * multi-core sched-domains:
6495 */
1e9f28fa 6496#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6497static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6498static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6499#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6500
6501#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6502static int
96f874e2
RR
6503cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6504 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6505{
6711cab4 6506 int group;
7c16ec58 6507
c69fc56d 6508 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6509 group = cpumask_first(mask);
6711cab4 6510 if (sg)
6c99e9ad 6511 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6512 return group;
1e9f28fa
SS
6513}
6514#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6515static int
96f874e2
RR
6516cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6517 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6518{
6711cab4 6519 if (sg)
6c99e9ad 6520 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6521 return cpu;
6522}
6523#endif
6524
6c99e9ad
RR
6525static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6526static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6527
41a2d6cf 6528static int
96f874e2
RR
6529cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6530 struct sched_group **sg, struct cpumask *mask)
1da177e4 6531{
6711cab4 6532 int group;
48f24c4d 6533#ifdef CONFIG_SCHED_MC
6ca09dfc 6534 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6535 group = cpumask_first(mask);
1e9f28fa 6536#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6537 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6538 group = cpumask_first(mask);
1da177e4 6539#else
6711cab4 6540 group = cpu;
1da177e4 6541#endif
6711cab4 6542 if (sg)
6c99e9ad 6543 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6544 return group;
1da177e4
LT
6545}
6546
6547#ifdef CONFIG_NUMA
1da177e4 6548/*
9c1cfda2
JH
6549 * The init_sched_build_groups can't handle what we want to do with node
6550 * groups, so roll our own. Now each node has its own list of groups which
6551 * gets dynamically allocated.
1da177e4 6552 */
62ea9ceb 6553static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6554static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6555
62ea9ceb 6556static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6557static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6558
96f874e2
RR
6559static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6560 struct sched_group **sg,
6561 struct cpumask *nodemask)
9c1cfda2 6562{
6711cab4
SS
6563 int group;
6564
6ca09dfc 6565 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6566 group = cpumask_first(nodemask);
6711cab4
SS
6567
6568 if (sg)
6c99e9ad 6569 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6570 return group;
1da177e4 6571}
6711cab4 6572
08069033
SS
6573static void init_numa_sched_groups_power(struct sched_group *group_head)
6574{
6575 struct sched_group *sg = group_head;
6576 int j;
6577
6578 if (!sg)
6579 return;
3a5c359a 6580 do {
758b2cdc 6581 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6582 struct sched_domain *sd;
08069033 6583
6c99e9ad 6584 sd = &per_cpu(phys_domains, j).sd;
13318a71 6585 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6586 /*
6587 * Only add "power" once for each
6588 * physical package.
6589 */
6590 continue;
6591 }
08069033 6592
18a3885f 6593 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6594 }
6595 sg = sg->next;
6596 } while (sg != group_head);
08069033 6597}
0601a88d
AH
6598
6599static int build_numa_sched_groups(struct s_data *d,
6600 const struct cpumask *cpu_map, int num)
6601{
6602 struct sched_domain *sd;
6603 struct sched_group *sg, *prev;
6604 int n, j;
6605
6606 cpumask_clear(d->covered);
6607 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6608 if (cpumask_empty(d->nodemask)) {
6609 d->sched_group_nodes[num] = NULL;
6610 goto out;
6611 }
6612
6613 sched_domain_node_span(num, d->domainspan);
6614 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6615
6616 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6617 GFP_KERNEL, num);
6618 if (!sg) {
3df0fc5b
PZ
6619 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6620 num);
0601a88d
AH
6621 return -ENOMEM;
6622 }
6623 d->sched_group_nodes[num] = sg;
6624
6625 for_each_cpu(j, d->nodemask) {
6626 sd = &per_cpu(node_domains, j).sd;
6627 sd->groups = sg;
6628 }
6629
18a3885f 6630 sg->cpu_power = 0;
0601a88d
AH
6631 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6632 sg->next = sg;
6633 cpumask_or(d->covered, d->covered, d->nodemask);
6634
6635 prev = sg;
6636 for (j = 0; j < nr_node_ids; j++) {
6637 n = (num + j) % nr_node_ids;
6638 cpumask_complement(d->notcovered, d->covered);
6639 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6640 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6641 if (cpumask_empty(d->tmpmask))
6642 break;
6643 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6644 if (cpumask_empty(d->tmpmask))
6645 continue;
6646 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6647 GFP_KERNEL, num);
6648 if (!sg) {
3df0fc5b
PZ
6649 printk(KERN_WARNING
6650 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6651 return -ENOMEM;
6652 }
18a3885f 6653 sg->cpu_power = 0;
0601a88d
AH
6654 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6655 sg->next = prev->next;
6656 cpumask_or(d->covered, d->covered, d->tmpmask);
6657 prev->next = sg;
6658 prev = sg;
6659 }
6660out:
6661 return 0;
6662}
6d6bc0ad 6663#endif /* CONFIG_NUMA */
1da177e4 6664
a616058b 6665#ifdef CONFIG_NUMA
51888ca2 6666/* Free memory allocated for various sched_group structures */
96f874e2
RR
6667static void free_sched_groups(const struct cpumask *cpu_map,
6668 struct cpumask *nodemask)
51888ca2 6669{
a616058b 6670 int cpu, i;
51888ca2 6671
abcd083a 6672 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6673 struct sched_group **sched_group_nodes
6674 = sched_group_nodes_bycpu[cpu];
6675
51888ca2
SV
6676 if (!sched_group_nodes)
6677 continue;
6678
076ac2af 6679 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6680 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6681
6ca09dfc 6682 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6683 if (cpumask_empty(nodemask))
51888ca2
SV
6684 continue;
6685
6686 if (sg == NULL)
6687 continue;
6688 sg = sg->next;
6689next_sg:
6690 oldsg = sg;
6691 sg = sg->next;
6692 kfree(oldsg);
6693 if (oldsg != sched_group_nodes[i])
6694 goto next_sg;
6695 }
6696 kfree(sched_group_nodes);
6697 sched_group_nodes_bycpu[cpu] = NULL;
6698 }
51888ca2 6699}
6d6bc0ad 6700#else /* !CONFIG_NUMA */
96f874e2
RR
6701static void free_sched_groups(const struct cpumask *cpu_map,
6702 struct cpumask *nodemask)
a616058b
SS
6703{
6704}
6d6bc0ad 6705#endif /* CONFIG_NUMA */
51888ca2 6706
89c4710e
SS
6707/*
6708 * Initialize sched groups cpu_power.
6709 *
6710 * cpu_power indicates the capacity of sched group, which is used while
6711 * distributing the load between different sched groups in a sched domain.
6712 * Typically cpu_power for all the groups in a sched domain will be same unless
6713 * there are asymmetries in the topology. If there are asymmetries, group
6714 * having more cpu_power will pickup more load compared to the group having
6715 * less cpu_power.
89c4710e
SS
6716 */
6717static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6718{
6719 struct sched_domain *child;
6720 struct sched_group *group;
f93e65c1
PZ
6721 long power;
6722 int weight;
89c4710e
SS
6723
6724 WARN_ON(!sd || !sd->groups);
6725
13318a71 6726 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6727 return;
6728
6729 child = sd->child;
6730
18a3885f 6731 sd->groups->cpu_power = 0;
5517d86b 6732
f93e65c1
PZ
6733 if (!child) {
6734 power = SCHED_LOAD_SCALE;
6735 weight = cpumask_weight(sched_domain_span(sd));
6736 /*
6737 * SMT siblings share the power of a single core.
a52bfd73
PZ
6738 * Usually multiple threads get a better yield out of
6739 * that one core than a single thread would have,
6740 * reflect that in sd->smt_gain.
f93e65c1 6741 */
a52bfd73
PZ
6742 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6743 power *= sd->smt_gain;
f93e65c1 6744 power /= weight;
a52bfd73
PZ
6745 power >>= SCHED_LOAD_SHIFT;
6746 }
18a3885f 6747 sd->groups->cpu_power += power;
89c4710e
SS
6748 return;
6749 }
6750
89c4710e 6751 /*
f93e65c1 6752 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6753 */
6754 group = child->groups;
6755 do {
18a3885f 6756 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6757 group = group->next;
6758 } while (group != child->groups);
6759}
6760
7c16ec58
MT
6761/*
6762 * Initializers for schedule domains
6763 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6764 */
6765
a5d8c348
IM
6766#ifdef CONFIG_SCHED_DEBUG
6767# define SD_INIT_NAME(sd, type) sd->name = #type
6768#else
6769# define SD_INIT_NAME(sd, type) do { } while (0)
6770#endif
6771
7c16ec58 6772#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6773
7c16ec58
MT
6774#define SD_INIT_FUNC(type) \
6775static noinline void sd_init_##type(struct sched_domain *sd) \
6776{ \
6777 memset(sd, 0, sizeof(*sd)); \
6778 *sd = SD_##type##_INIT; \
1d3504fc 6779 sd->level = SD_LV_##type; \
a5d8c348 6780 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6781}
6782
6783SD_INIT_FUNC(CPU)
6784#ifdef CONFIG_NUMA
6785 SD_INIT_FUNC(ALLNODES)
6786 SD_INIT_FUNC(NODE)
6787#endif
6788#ifdef CONFIG_SCHED_SMT
6789 SD_INIT_FUNC(SIBLING)
6790#endif
6791#ifdef CONFIG_SCHED_MC
6792 SD_INIT_FUNC(MC)
6793#endif
6794
1d3504fc
HS
6795static int default_relax_domain_level = -1;
6796
6797static int __init setup_relax_domain_level(char *str)
6798{
30e0e178
LZ
6799 unsigned long val;
6800
6801 val = simple_strtoul(str, NULL, 0);
6802 if (val < SD_LV_MAX)
6803 default_relax_domain_level = val;
6804
1d3504fc
HS
6805 return 1;
6806}
6807__setup("relax_domain_level=", setup_relax_domain_level);
6808
6809static void set_domain_attribute(struct sched_domain *sd,
6810 struct sched_domain_attr *attr)
6811{
6812 int request;
6813
6814 if (!attr || attr->relax_domain_level < 0) {
6815 if (default_relax_domain_level < 0)
6816 return;
6817 else
6818 request = default_relax_domain_level;
6819 } else
6820 request = attr->relax_domain_level;
6821 if (request < sd->level) {
6822 /* turn off idle balance on this domain */
c88d5910 6823 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6824 } else {
6825 /* turn on idle balance on this domain */
c88d5910 6826 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6827 }
6828}
6829
2109b99e
AH
6830static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6831 const struct cpumask *cpu_map)
6832{
6833 switch (what) {
6834 case sa_sched_groups:
6835 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6836 d->sched_group_nodes = NULL;
6837 case sa_rootdomain:
6838 free_rootdomain(d->rd); /* fall through */
6839 case sa_tmpmask:
6840 free_cpumask_var(d->tmpmask); /* fall through */
6841 case sa_send_covered:
6842 free_cpumask_var(d->send_covered); /* fall through */
6843 case sa_this_core_map:
6844 free_cpumask_var(d->this_core_map); /* fall through */
6845 case sa_this_sibling_map:
6846 free_cpumask_var(d->this_sibling_map); /* fall through */
6847 case sa_nodemask:
6848 free_cpumask_var(d->nodemask); /* fall through */
6849 case sa_sched_group_nodes:
d1b55138 6850#ifdef CONFIG_NUMA
2109b99e
AH
6851 kfree(d->sched_group_nodes); /* fall through */
6852 case sa_notcovered:
6853 free_cpumask_var(d->notcovered); /* fall through */
6854 case sa_covered:
6855 free_cpumask_var(d->covered); /* fall through */
6856 case sa_domainspan:
6857 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6858#endif
2109b99e
AH
6859 case sa_none:
6860 break;
6861 }
6862}
3404c8d9 6863
2109b99e
AH
6864static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6865 const struct cpumask *cpu_map)
6866{
3404c8d9 6867#ifdef CONFIG_NUMA
2109b99e
AH
6868 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6869 return sa_none;
6870 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6871 return sa_domainspan;
6872 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6873 return sa_covered;
6874 /* Allocate the per-node list of sched groups */
6875 d->sched_group_nodes = kcalloc(nr_node_ids,
6876 sizeof(struct sched_group *), GFP_KERNEL);
6877 if (!d->sched_group_nodes) {
3df0fc5b 6878 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6879 return sa_notcovered;
d1b55138 6880 }
2109b99e 6881 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6882#endif
2109b99e
AH
6883 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6884 return sa_sched_group_nodes;
6885 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6886 return sa_nodemask;
6887 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6888 return sa_this_sibling_map;
6889 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6890 return sa_this_core_map;
6891 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6892 return sa_send_covered;
6893 d->rd = alloc_rootdomain();
6894 if (!d->rd) {
3df0fc5b 6895 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6896 return sa_tmpmask;
57d885fe 6897 }
2109b99e
AH
6898 return sa_rootdomain;
6899}
57d885fe 6900
7f4588f3
AH
6901static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6902 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6903{
6904 struct sched_domain *sd = NULL;
7c16ec58 6905#ifdef CONFIG_NUMA
7f4588f3 6906 struct sched_domain *parent;
1da177e4 6907
7f4588f3
AH
6908 d->sd_allnodes = 0;
6909 if (cpumask_weight(cpu_map) >
6910 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6911 sd = &per_cpu(allnodes_domains, i).sd;
6912 SD_INIT(sd, ALLNODES);
1d3504fc 6913 set_domain_attribute(sd, attr);
7f4588f3
AH
6914 cpumask_copy(sched_domain_span(sd), cpu_map);
6915 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6916 d->sd_allnodes = 1;
6917 }
6918 parent = sd;
6919
6920 sd = &per_cpu(node_domains, i).sd;
6921 SD_INIT(sd, NODE);
6922 set_domain_attribute(sd, attr);
6923 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6924 sd->parent = parent;
6925 if (parent)
6926 parent->child = sd;
6927 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6928#endif
7f4588f3
AH
6929 return sd;
6930}
1da177e4 6931
87cce662
AH
6932static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6933 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6934 struct sched_domain *parent, int i)
6935{
6936 struct sched_domain *sd;
6937 sd = &per_cpu(phys_domains, i).sd;
6938 SD_INIT(sd, CPU);
6939 set_domain_attribute(sd, attr);
6940 cpumask_copy(sched_domain_span(sd), d->nodemask);
6941 sd->parent = parent;
6942 if (parent)
6943 parent->child = sd;
6944 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6945 return sd;
6946}
1da177e4 6947
410c4081
AH
6948static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6949 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6950 struct sched_domain *parent, int i)
6951{
6952 struct sched_domain *sd = parent;
1e9f28fa 6953#ifdef CONFIG_SCHED_MC
410c4081
AH
6954 sd = &per_cpu(core_domains, i).sd;
6955 SD_INIT(sd, MC);
6956 set_domain_attribute(sd, attr);
6957 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6958 sd->parent = parent;
6959 parent->child = sd;
6960 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6961#endif
410c4081
AH
6962 return sd;
6963}
1e9f28fa 6964
d8173535
AH
6965static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6966 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6967 struct sched_domain *parent, int i)
6968{
6969 struct sched_domain *sd = parent;
1da177e4 6970#ifdef CONFIG_SCHED_SMT
d8173535
AH
6971 sd = &per_cpu(cpu_domains, i).sd;
6972 SD_INIT(sd, SIBLING);
6973 set_domain_attribute(sd, attr);
6974 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6975 sd->parent = parent;
6976 parent->child = sd;
6977 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6978#endif
d8173535
AH
6979 return sd;
6980}
1da177e4 6981
0e8e85c9
AH
6982static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6983 const struct cpumask *cpu_map, int cpu)
6984{
6985 switch (l) {
1da177e4 6986#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6987 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6988 cpumask_and(d->this_sibling_map, cpu_map,
6989 topology_thread_cpumask(cpu));
6990 if (cpu == cpumask_first(d->this_sibling_map))
6991 init_sched_build_groups(d->this_sibling_map, cpu_map,
6992 &cpu_to_cpu_group,
6993 d->send_covered, d->tmpmask);
6994 break;
1da177e4 6995#endif
1e9f28fa 6996#ifdef CONFIG_SCHED_MC
a2af04cd
AH
6997 case SD_LV_MC: /* set up multi-core groups */
6998 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6999 if (cpu == cpumask_first(d->this_core_map))
7000 init_sched_build_groups(d->this_core_map, cpu_map,
7001 &cpu_to_core_group,
7002 d->send_covered, d->tmpmask);
7003 break;
1e9f28fa 7004#endif
86548096
AH
7005 case SD_LV_CPU: /* set up physical groups */
7006 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7007 if (!cpumask_empty(d->nodemask))
7008 init_sched_build_groups(d->nodemask, cpu_map,
7009 &cpu_to_phys_group,
7010 d->send_covered, d->tmpmask);
7011 break;
1da177e4 7012#ifdef CONFIG_NUMA
de616e36
AH
7013 case SD_LV_ALLNODES:
7014 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7015 d->send_covered, d->tmpmask);
7016 break;
7017#endif
0e8e85c9
AH
7018 default:
7019 break;
7c16ec58 7020 }
0e8e85c9 7021}
9c1cfda2 7022
2109b99e
AH
7023/*
7024 * Build sched domains for a given set of cpus and attach the sched domains
7025 * to the individual cpus
7026 */
7027static int __build_sched_domains(const struct cpumask *cpu_map,
7028 struct sched_domain_attr *attr)
7029{
7030 enum s_alloc alloc_state = sa_none;
7031 struct s_data d;
294b0c96 7032 struct sched_domain *sd;
2109b99e 7033 int i;
7c16ec58 7034#ifdef CONFIG_NUMA
2109b99e 7035 d.sd_allnodes = 0;
7c16ec58 7036#endif
9c1cfda2 7037
2109b99e
AH
7038 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7039 if (alloc_state != sa_rootdomain)
7040 goto error;
7041 alloc_state = sa_sched_groups;
9c1cfda2 7042
1da177e4 7043 /*
1a20ff27 7044 * Set up domains for cpus specified by the cpu_map.
1da177e4 7045 */
abcd083a 7046 for_each_cpu(i, cpu_map) {
49a02c51
AH
7047 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7048 cpu_map);
9761eea8 7049
7f4588f3 7050 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7051 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7052 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7053 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7054 }
9c1cfda2 7055
abcd083a 7056 for_each_cpu(i, cpu_map) {
0e8e85c9 7057 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7058 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7059 }
9c1cfda2 7060
1da177e4 7061 /* Set up physical groups */
86548096
AH
7062 for (i = 0; i < nr_node_ids; i++)
7063 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7064
1da177e4
LT
7065#ifdef CONFIG_NUMA
7066 /* Set up node groups */
de616e36
AH
7067 if (d.sd_allnodes)
7068 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7069
0601a88d
AH
7070 for (i = 0; i < nr_node_ids; i++)
7071 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7072 goto error;
1da177e4
LT
7073#endif
7074
7075 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7076#ifdef CONFIG_SCHED_SMT
abcd083a 7077 for_each_cpu(i, cpu_map) {
294b0c96 7078 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7079 init_sched_groups_power(i, sd);
5c45bf27 7080 }
1da177e4 7081#endif
1e9f28fa 7082#ifdef CONFIG_SCHED_MC
abcd083a 7083 for_each_cpu(i, cpu_map) {
294b0c96 7084 sd = &per_cpu(core_domains, i).sd;
89c4710e 7085 init_sched_groups_power(i, sd);
5c45bf27
SS
7086 }
7087#endif
1e9f28fa 7088
abcd083a 7089 for_each_cpu(i, cpu_map) {
294b0c96 7090 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7091 init_sched_groups_power(i, sd);
1da177e4
LT
7092 }
7093
9c1cfda2 7094#ifdef CONFIG_NUMA
076ac2af 7095 for (i = 0; i < nr_node_ids; i++)
49a02c51 7096 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7097
49a02c51 7098 if (d.sd_allnodes) {
6711cab4 7099 struct sched_group *sg;
f712c0c7 7100
96f874e2 7101 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7102 d.tmpmask);
f712c0c7
SS
7103 init_numa_sched_groups_power(sg);
7104 }
9c1cfda2
JH
7105#endif
7106
1da177e4 7107 /* Attach the domains */
abcd083a 7108 for_each_cpu(i, cpu_map) {
1da177e4 7109#ifdef CONFIG_SCHED_SMT
6c99e9ad 7110 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7111#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7112 sd = &per_cpu(core_domains, i).sd;
1da177e4 7113#else
6c99e9ad 7114 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7115#endif
49a02c51 7116 cpu_attach_domain(sd, d.rd, i);
1da177e4 7117 }
51888ca2 7118
2109b99e
AH
7119 d.sched_group_nodes = NULL; /* don't free this we still need it */
7120 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7121 return 0;
51888ca2 7122
51888ca2 7123error:
2109b99e
AH
7124 __free_domain_allocs(&d, alloc_state, cpu_map);
7125 return -ENOMEM;
1da177e4 7126}
029190c5 7127
96f874e2 7128static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7129{
7130 return __build_sched_domains(cpu_map, NULL);
7131}
7132
acc3f5d7 7133static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7134static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7135static struct sched_domain_attr *dattr_cur;
7136 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7137
7138/*
7139 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7140 * cpumask) fails, then fallback to a single sched domain,
7141 * as determined by the single cpumask fallback_doms.
029190c5 7142 */
4212823f 7143static cpumask_var_t fallback_doms;
029190c5 7144
ee79d1bd
HC
7145/*
7146 * arch_update_cpu_topology lets virtualized architectures update the
7147 * cpu core maps. It is supposed to return 1 if the topology changed
7148 * or 0 if it stayed the same.
7149 */
7150int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7151{
ee79d1bd 7152 return 0;
22e52b07
HC
7153}
7154
acc3f5d7
RR
7155cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7156{
7157 int i;
7158 cpumask_var_t *doms;
7159
7160 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7161 if (!doms)
7162 return NULL;
7163 for (i = 0; i < ndoms; i++) {
7164 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7165 free_sched_domains(doms, i);
7166 return NULL;
7167 }
7168 }
7169 return doms;
7170}
7171
7172void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7173{
7174 unsigned int i;
7175 for (i = 0; i < ndoms; i++)
7176 free_cpumask_var(doms[i]);
7177 kfree(doms);
7178}
7179
1a20ff27 7180/*
41a2d6cf 7181 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7182 * For now this just excludes isolated cpus, but could be used to
7183 * exclude other special cases in the future.
1a20ff27 7184 */
96f874e2 7185static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7186{
7378547f
MM
7187 int err;
7188
22e52b07 7189 arch_update_cpu_topology();
029190c5 7190 ndoms_cur = 1;
acc3f5d7 7191 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7192 if (!doms_cur)
acc3f5d7
RR
7193 doms_cur = &fallback_doms;
7194 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7195 dattr_cur = NULL;
acc3f5d7 7196 err = build_sched_domains(doms_cur[0]);
6382bc90 7197 register_sched_domain_sysctl();
7378547f
MM
7198
7199 return err;
1a20ff27
DG
7200}
7201
96f874e2
RR
7202static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7203 struct cpumask *tmpmask)
1da177e4 7204{
7c16ec58 7205 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7206}
1da177e4 7207
1a20ff27
DG
7208/*
7209 * Detach sched domains from a group of cpus specified in cpu_map
7210 * These cpus will now be attached to the NULL domain
7211 */
96f874e2 7212static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7213{
96f874e2
RR
7214 /* Save because hotplug lock held. */
7215 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7216 int i;
7217
abcd083a 7218 for_each_cpu(i, cpu_map)
57d885fe 7219 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7220 synchronize_sched();
96f874e2 7221 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7222}
7223
1d3504fc
HS
7224/* handle null as "default" */
7225static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7226 struct sched_domain_attr *new, int idx_new)
7227{
7228 struct sched_domain_attr tmp;
7229
7230 /* fast path */
7231 if (!new && !cur)
7232 return 1;
7233
7234 tmp = SD_ATTR_INIT;
7235 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7236 new ? (new + idx_new) : &tmp,
7237 sizeof(struct sched_domain_attr));
7238}
7239
029190c5
PJ
7240/*
7241 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7242 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7243 * doms_new[] to the current sched domain partitioning, doms_cur[].
7244 * It destroys each deleted domain and builds each new domain.
7245 *
acc3f5d7 7246 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7247 * The masks don't intersect (don't overlap.) We should setup one
7248 * sched domain for each mask. CPUs not in any of the cpumasks will
7249 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7250 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7251 * it as it is.
7252 *
acc3f5d7
RR
7253 * The passed in 'doms_new' should be allocated using
7254 * alloc_sched_domains. This routine takes ownership of it and will
7255 * free_sched_domains it when done with it. If the caller failed the
7256 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7257 * and partition_sched_domains() will fallback to the single partition
7258 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7259 *
96f874e2 7260 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7261 * ndoms_new == 0 is a special case for destroying existing domains,
7262 * and it will not create the default domain.
dfb512ec 7263 *
029190c5
PJ
7264 * Call with hotplug lock held
7265 */
acc3f5d7 7266void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7267 struct sched_domain_attr *dattr_new)
029190c5 7268{
dfb512ec 7269 int i, j, n;
d65bd5ec 7270 int new_topology;
029190c5 7271
712555ee 7272 mutex_lock(&sched_domains_mutex);
a1835615 7273
7378547f
MM
7274 /* always unregister in case we don't destroy any domains */
7275 unregister_sched_domain_sysctl();
7276
d65bd5ec
HC
7277 /* Let architecture update cpu core mappings. */
7278 new_topology = arch_update_cpu_topology();
7279
dfb512ec 7280 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7281
7282 /* Destroy deleted domains */
7283 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7284 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7285 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7286 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7287 goto match1;
7288 }
7289 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7290 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7291match1:
7292 ;
7293 }
7294
e761b772
MK
7295 if (doms_new == NULL) {
7296 ndoms_cur = 0;
acc3f5d7 7297 doms_new = &fallback_doms;
6ad4c188 7298 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7299 WARN_ON_ONCE(dattr_new);
e761b772
MK
7300 }
7301
029190c5
PJ
7302 /* Build new domains */
7303 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7304 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7305 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7306 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7307 goto match2;
7308 }
7309 /* no match - add a new doms_new */
acc3f5d7 7310 __build_sched_domains(doms_new[i],
1d3504fc 7311 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7312match2:
7313 ;
7314 }
7315
7316 /* Remember the new sched domains */
acc3f5d7
RR
7317 if (doms_cur != &fallback_doms)
7318 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7319 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7320 doms_cur = doms_new;
1d3504fc 7321 dattr_cur = dattr_new;
029190c5 7322 ndoms_cur = ndoms_new;
7378547f
MM
7323
7324 register_sched_domain_sysctl();
a1835615 7325
712555ee 7326 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7327}
7328
5c45bf27 7329#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7330static void arch_reinit_sched_domains(void)
5c45bf27 7331{
95402b38 7332 get_online_cpus();
dfb512ec
MK
7333
7334 /* Destroy domains first to force the rebuild */
7335 partition_sched_domains(0, NULL, NULL);
7336
e761b772 7337 rebuild_sched_domains();
95402b38 7338 put_online_cpus();
5c45bf27
SS
7339}
7340
7341static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7342{
afb8a9b7 7343 unsigned int level = 0;
5c45bf27 7344
afb8a9b7
GS
7345 if (sscanf(buf, "%u", &level) != 1)
7346 return -EINVAL;
7347
7348 /*
7349 * level is always be positive so don't check for
7350 * level < POWERSAVINGS_BALANCE_NONE which is 0
7351 * What happens on 0 or 1 byte write,
7352 * need to check for count as well?
7353 */
7354
7355 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7356 return -EINVAL;
7357
7358 if (smt)
afb8a9b7 7359 sched_smt_power_savings = level;
5c45bf27 7360 else
afb8a9b7 7361 sched_mc_power_savings = level;
5c45bf27 7362
c70f22d2 7363 arch_reinit_sched_domains();
5c45bf27 7364
c70f22d2 7365 return count;
5c45bf27
SS
7366}
7367
5c45bf27 7368#ifdef CONFIG_SCHED_MC
f718cd4a 7369static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7370 struct sysdev_class_attribute *attr,
f718cd4a 7371 char *page)
5c45bf27
SS
7372{
7373 return sprintf(page, "%u\n", sched_mc_power_savings);
7374}
f718cd4a 7375static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7376 struct sysdev_class_attribute *attr,
48f24c4d 7377 const char *buf, size_t count)
5c45bf27
SS
7378{
7379 return sched_power_savings_store(buf, count, 0);
7380}
f718cd4a
AK
7381static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7382 sched_mc_power_savings_show,
7383 sched_mc_power_savings_store);
5c45bf27
SS
7384#endif
7385
7386#ifdef CONFIG_SCHED_SMT
f718cd4a 7387static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7388 struct sysdev_class_attribute *attr,
f718cd4a 7389 char *page)
5c45bf27
SS
7390{
7391 return sprintf(page, "%u\n", sched_smt_power_savings);
7392}
f718cd4a 7393static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7394 struct sysdev_class_attribute *attr,
48f24c4d 7395 const char *buf, size_t count)
5c45bf27
SS
7396{
7397 return sched_power_savings_store(buf, count, 1);
7398}
f718cd4a
AK
7399static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7400 sched_smt_power_savings_show,
6707de00
AB
7401 sched_smt_power_savings_store);
7402#endif
7403
39aac648 7404int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7405{
7406 int err = 0;
7407
7408#ifdef CONFIG_SCHED_SMT
7409 if (smt_capable())
7410 err = sysfs_create_file(&cls->kset.kobj,
7411 &attr_sched_smt_power_savings.attr);
7412#endif
7413#ifdef CONFIG_SCHED_MC
7414 if (!err && mc_capable())
7415 err = sysfs_create_file(&cls->kset.kobj,
7416 &attr_sched_mc_power_savings.attr);
7417#endif
7418 return err;
7419}
6d6bc0ad 7420#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7421
e761b772 7422#ifndef CONFIG_CPUSETS
1da177e4 7423/*
e761b772
MK
7424 * Add online and remove offline CPUs from the scheduler domains.
7425 * When cpusets are enabled they take over this function.
1da177e4
LT
7426 */
7427static int update_sched_domains(struct notifier_block *nfb,
7428 unsigned long action, void *hcpu)
e761b772
MK
7429{
7430 switch (action) {
7431 case CPU_ONLINE:
7432 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7433 case CPU_DOWN_PREPARE:
7434 case CPU_DOWN_PREPARE_FROZEN:
7435 case CPU_DOWN_FAILED:
7436 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7437 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7438 return NOTIFY_OK;
7439
7440 default:
7441 return NOTIFY_DONE;
7442 }
7443}
7444#endif
7445
7446static int update_runtime(struct notifier_block *nfb,
7447 unsigned long action, void *hcpu)
1da177e4 7448{
7def2be1
PZ
7449 int cpu = (int)(long)hcpu;
7450
1da177e4 7451 switch (action) {
1da177e4 7452 case CPU_DOWN_PREPARE:
8bb78442 7453 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7454 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7455 return NOTIFY_OK;
7456
1da177e4 7457 case CPU_DOWN_FAILED:
8bb78442 7458 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7459 case CPU_ONLINE:
8bb78442 7460 case CPU_ONLINE_FROZEN:
7def2be1 7461 enable_runtime(cpu_rq(cpu));
e761b772
MK
7462 return NOTIFY_OK;
7463
1da177e4
LT
7464 default:
7465 return NOTIFY_DONE;
7466 }
1da177e4 7467}
1da177e4
LT
7468
7469void __init sched_init_smp(void)
7470{
dcc30a35
RR
7471 cpumask_var_t non_isolated_cpus;
7472
7473 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7474 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7475
434d53b0
MT
7476#if defined(CONFIG_NUMA)
7477 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7478 GFP_KERNEL);
7479 BUG_ON(sched_group_nodes_bycpu == NULL);
7480#endif
95402b38 7481 get_online_cpus();
712555ee 7482 mutex_lock(&sched_domains_mutex);
6ad4c188 7483 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7484 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7485 if (cpumask_empty(non_isolated_cpus))
7486 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7487 mutex_unlock(&sched_domains_mutex);
95402b38 7488 put_online_cpus();
e761b772
MK
7489
7490#ifndef CONFIG_CPUSETS
1da177e4
LT
7491 /* XXX: Theoretical race here - CPU may be hotplugged now */
7492 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7493#endif
7494
7495 /* RT runtime code needs to handle some hotplug events */
7496 hotcpu_notifier(update_runtime, 0);
7497
b328ca18 7498 init_hrtick();
5c1e1767
NP
7499
7500 /* Move init over to a non-isolated CPU */
dcc30a35 7501 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7502 BUG();
19978ca6 7503 sched_init_granularity();
dcc30a35 7504 free_cpumask_var(non_isolated_cpus);
4212823f 7505
0e3900e6 7506 init_sched_rt_class();
1da177e4
LT
7507}
7508#else
7509void __init sched_init_smp(void)
7510{
19978ca6 7511 sched_init_granularity();
1da177e4
LT
7512}
7513#endif /* CONFIG_SMP */
7514
cd1bb94b
AB
7515const_debug unsigned int sysctl_timer_migration = 1;
7516
1da177e4
LT
7517int in_sched_functions(unsigned long addr)
7518{
1da177e4
LT
7519 return in_lock_functions(addr) ||
7520 (addr >= (unsigned long)__sched_text_start
7521 && addr < (unsigned long)__sched_text_end);
7522}
7523
a9957449 7524static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7525{
7526 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7527 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7528#ifdef CONFIG_FAIR_GROUP_SCHED
7529 cfs_rq->rq = rq;
7530#endif
67e9fb2a 7531 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7532}
7533
fa85ae24
PZ
7534static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7535{
7536 struct rt_prio_array *array;
7537 int i;
7538
7539 array = &rt_rq->active;
7540 for (i = 0; i < MAX_RT_PRIO; i++) {
7541 INIT_LIST_HEAD(array->queue + i);
7542 __clear_bit(i, array->bitmap);
7543 }
7544 /* delimiter for bitsearch: */
7545 __set_bit(MAX_RT_PRIO, array->bitmap);
7546
052f1dc7 7547#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7548 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7549#ifdef CONFIG_SMP
e864c499 7550 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7551#endif
48d5e258 7552#endif
fa85ae24
PZ
7553#ifdef CONFIG_SMP
7554 rt_rq->rt_nr_migratory = 0;
fa85ae24 7555 rt_rq->overloaded = 0;
05fa785c 7556 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7557#endif
7558
7559 rt_rq->rt_time = 0;
7560 rt_rq->rt_throttled = 0;
ac086bc2 7561 rt_rq->rt_runtime = 0;
0986b11b 7562 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7563
052f1dc7 7564#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7565 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7566 rt_rq->rq = rq;
7567#endif
fa85ae24
PZ
7568}
7569
6f505b16 7570#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7571static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7572 struct sched_entity *se, int cpu, int add,
7573 struct sched_entity *parent)
6f505b16 7574{
ec7dc8ac 7575 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7576 tg->cfs_rq[cpu] = cfs_rq;
7577 init_cfs_rq(cfs_rq, rq);
7578 cfs_rq->tg = tg;
7579 if (add)
7580 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7581
7582 tg->se[cpu] = se;
354d60c2
DG
7583 /* se could be NULL for init_task_group */
7584 if (!se)
7585 return;
7586
ec7dc8ac
DG
7587 if (!parent)
7588 se->cfs_rq = &rq->cfs;
7589 else
7590 se->cfs_rq = parent->my_q;
7591
6f505b16
PZ
7592 se->my_q = cfs_rq;
7593 se->load.weight = tg->shares;
e05510d0 7594 se->load.inv_weight = 0;
ec7dc8ac 7595 se->parent = parent;
6f505b16 7596}
052f1dc7 7597#endif
6f505b16 7598
052f1dc7 7599#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7600static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7601 struct sched_rt_entity *rt_se, int cpu, int add,
7602 struct sched_rt_entity *parent)
6f505b16 7603{
ec7dc8ac
DG
7604 struct rq *rq = cpu_rq(cpu);
7605
6f505b16
PZ
7606 tg->rt_rq[cpu] = rt_rq;
7607 init_rt_rq(rt_rq, rq);
7608 rt_rq->tg = tg;
ac086bc2 7609 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7610 if (add)
7611 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7612
7613 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7614 if (!rt_se)
7615 return;
7616
ec7dc8ac
DG
7617 if (!parent)
7618 rt_se->rt_rq = &rq->rt;
7619 else
7620 rt_se->rt_rq = parent->my_q;
7621
6f505b16 7622 rt_se->my_q = rt_rq;
ec7dc8ac 7623 rt_se->parent = parent;
6f505b16
PZ
7624 INIT_LIST_HEAD(&rt_se->run_list);
7625}
7626#endif
7627
1da177e4
LT
7628void __init sched_init(void)
7629{
dd41f596 7630 int i, j;
434d53b0
MT
7631 unsigned long alloc_size = 0, ptr;
7632
7633#ifdef CONFIG_FAIR_GROUP_SCHED
7634 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7635#endif
7636#ifdef CONFIG_RT_GROUP_SCHED
7637 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7638#endif
df7c8e84 7639#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7640 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7641#endif
434d53b0 7642 if (alloc_size) {
36b7b6d4 7643 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7644
7645#ifdef CONFIG_FAIR_GROUP_SCHED
7646 init_task_group.se = (struct sched_entity **)ptr;
7647 ptr += nr_cpu_ids * sizeof(void **);
7648
7649 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7650 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7651
6d6bc0ad 7652#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7653#ifdef CONFIG_RT_GROUP_SCHED
7654 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7655 ptr += nr_cpu_ids * sizeof(void **);
7656
7657 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7658 ptr += nr_cpu_ids * sizeof(void **);
7659
6d6bc0ad 7660#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7661#ifdef CONFIG_CPUMASK_OFFSTACK
7662 for_each_possible_cpu(i) {
7663 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7664 ptr += cpumask_size();
7665 }
7666#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7667 }
dd41f596 7668
57d885fe
GH
7669#ifdef CONFIG_SMP
7670 init_defrootdomain();
7671#endif
7672
d0b27fa7
PZ
7673 init_rt_bandwidth(&def_rt_bandwidth,
7674 global_rt_period(), global_rt_runtime());
7675
7676#ifdef CONFIG_RT_GROUP_SCHED
7677 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7678 global_rt_period(), global_rt_runtime());
6d6bc0ad 7679#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7680
7c941438 7681#ifdef CONFIG_CGROUP_SCHED
6f505b16 7682 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7683 INIT_LIST_HEAD(&init_task_group.children);
7684
7c941438 7685#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7686
4a6cc4bd
JK
7687#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7688 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7689 __alignof__(unsigned long));
7690#endif
0a945022 7691 for_each_possible_cpu(i) {
70b97a7f 7692 struct rq *rq;
1da177e4
LT
7693
7694 rq = cpu_rq(i);
05fa785c 7695 raw_spin_lock_init(&rq->lock);
7897986b 7696 rq->nr_running = 0;
dce48a84
TG
7697 rq->calc_load_active = 0;
7698 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7699 init_cfs_rq(&rq->cfs, rq);
6f505b16 7700 init_rt_rq(&rq->rt, rq);
dd41f596 7701#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7702 init_task_group.shares = init_task_group_load;
6f505b16 7703 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7704#ifdef CONFIG_CGROUP_SCHED
7705 /*
7706 * How much cpu bandwidth does init_task_group get?
7707 *
7708 * In case of task-groups formed thr' the cgroup filesystem, it
7709 * gets 100% of the cpu resources in the system. This overall
7710 * system cpu resource is divided among the tasks of
7711 * init_task_group and its child task-groups in a fair manner,
7712 * based on each entity's (task or task-group's) weight
7713 * (se->load.weight).
7714 *
7715 * In other words, if init_task_group has 10 tasks of weight
7716 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7717 * then A0's share of the cpu resource is:
7718 *
0d905bca 7719 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7720 *
7721 * We achieve this by letting init_task_group's tasks sit
7722 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7723 */
ec7dc8ac 7724 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7725#endif
354d60c2
DG
7726#endif /* CONFIG_FAIR_GROUP_SCHED */
7727
7728 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7729#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7730 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7731#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7732 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7733#endif
dd41f596 7734#endif
1da177e4 7735
dd41f596
IM
7736 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7737 rq->cpu_load[j] = 0;
1da177e4 7738#ifdef CONFIG_SMP
41c7ce9a 7739 rq->sd = NULL;
57d885fe 7740 rq->rd = NULL;
3f029d3c 7741 rq->post_schedule = 0;
1da177e4 7742 rq->active_balance = 0;
dd41f596 7743 rq->next_balance = jiffies;
1da177e4 7744 rq->push_cpu = 0;
0a2966b4 7745 rq->cpu = i;
1f11eb6a 7746 rq->online = 0;
1da177e4 7747 rq->migration_thread = NULL;
eae0c9df
MG
7748 rq->idle_stamp = 0;
7749 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 7750 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7751 rq_attach_root(rq, &def_root_domain);
1da177e4 7752#endif
8f4d37ec 7753 init_rq_hrtick(rq);
1da177e4 7754 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7755 }
7756
2dd73a4f 7757 set_load_weight(&init_task);
b50f60ce 7758
e107be36
AK
7759#ifdef CONFIG_PREEMPT_NOTIFIERS
7760 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7761#endif
7762
c9819f45 7763#ifdef CONFIG_SMP
962cf36c 7764 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7765#endif
7766
b50f60ce 7767#ifdef CONFIG_RT_MUTEXES
1d615482 7768 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7769#endif
7770
1da177e4
LT
7771 /*
7772 * The boot idle thread does lazy MMU switching as well:
7773 */
7774 atomic_inc(&init_mm.mm_count);
7775 enter_lazy_tlb(&init_mm, current);
7776
7777 /*
7778 * Make us the idle thread. Technically, schedule() should not be
7779 * called from this thread, however somewhere below it might be,
7780 * but because we are the idle thread, we just pick up running again
7781 * when this runqueue becomes "idle".
7782 */
7783 init_idle(current, smp_processor_id());
dce48a84
TG
7784
7785 calc_load_update = jiffies + LOAD_FREQ;
7786
dd41f596
IM
7787 /*
7788 * During early bootup we pretend to be a normal task:
7789 */
7790 current->sched_class = &fair_sched_class;
6892b75e 7791
6a7b3dc3 7792 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7793 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7794#ifdef CONFIG_SMP
7d1e6a9b 7795#ifdef CONFIG_NO_HZ
49557e62 7796 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7797 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7798#endif
bdddd296
RR
7799 /* May be allocated at isolcpus cmdline parse time */
7800 if (cpu_isolated_map == NULL)
7801 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7802#endif /* SMP */
6a7b3dc3 7803
cdd6c482 7804 perf_event_init();
0d905bca 7805
6892b75e 7806 scheduler_running = 1;
1da177e4
LT
7807}
7808
7809#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7810static inline int preempt_count_equals(int preempt_offset)
7811{
234da7bc 7812 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7813
7814 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7815}
7816
d894837f 7817void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7818{
48f24c4d 7819#ifdef in_atomic
1da177e4
LT
7820 static unsigned long prev_jiffy; /* ratelimiting */
7821
e4aafea2
FW
7822 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7823 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7824 return;
7825 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7826 return;
7827 prev_jiffy = jiffies;
7828
3df0fc5b
PZ
7829 printk(KERN_ERR
7830 "BUG: sleeping function called from invalid context at %s:%d\n",
7831 file, line);
7832 printk(KERN_ERR
7833 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7834 in_atomic(), irqs_disabled(),
7835 current->pid, current->comm);
aef745fc
IM
7836
7837 debug_show_held_locks(current);
7838 if (irqs_disabled())
7839 print_irqtrace_events(current);
7840 dump_stack();
1da177e4
LT
7841#endif
7842}
7843EXPORT_SYMBOL(__might_sleep);
7844#endif
7845
7846#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7847static void normalize_task(struct rq *rq, struct task_struct *p)
7848{
7849 int on_rq;
3e51f33f 7850
3a5e4dc1
AK
7851 update_rq_clock(rq);
7852 on_rq = p->se.on_rq;
7853 if (on_rq)
7854 deactivate_task(rq, p, 0);
7855 __setscheduler(rq, p, SCHED_NORMAL, 0);
7856 if (on_rq) {
7857 activate_task(rq, p, 0);
7858 resched_task(rq->curr);
7859 }
7860}
7861
1da177e4
LT
7862void normalize_rt_tasks(void)
7863{
a0f98a1c 7864 struct task_struct *g, *p;
1da177e4 7865 unsigned long flags;
70b97a7f 7866 struct rq *rq;
1da177e4 7867
4cf5d77a 7868 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7869 do_each_thread(g, p) {
178be793
IM
7870 /*
7871 * Only normalize user tasks:
7872 */
7873 if (!p->mm)
7874 continue;
7875
6cfb0d5d 7876 p->se.exec_start = 0;
6cfb0d5d 7877#ifdef CONFIG_SCHEDSTATS
dd41f596 7878 p->se.wait_start = 0;
dd41f596 7879 p->se.sleep_start = 0;
dd41f596 7880 p->se.block_start = 0;
6cfb0d5d 7881#endif
dd41f596
IM
7882
7883 if (!rt_task(p)) {
7884 /*
7885 * Renice negative nice level userspace
7886 * tasks back to 0:
7887 */
7888 if (TASK_NICE(p) < 0 && p->mm)
7889 set_user_nice(p, 0);
1da177e4 7890 continue;
dd41f596 7891 }
1da177e4 7892
1d615482 7893 raw_spin_lock(&p->pi_lock);
b29739f9 7894 rq = __task_rq_lock(p);
1da177e4 7895
178be793 7896 normalize_task(rq, p);
3a5e4dc1 7897
b29739f9 7898 __task_rq_unlock(rq);
1d615482 7899 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7900 } while_each_thread(g, p);
7901
4cf5d77a 7902 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7903}
7904
7905#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7906
7907#ifdef CONFIG_IA64
7908/*
7909 * These functions are only useful for the IA64 MCA handling.
7910 *
7911 * They can only be called when the whole system has been
7912 * stopped - every CPU needs to be quiescent, and no scheduling
7913 * activity can take place. Using them for anything else would
7914 * be a serious bug, and as a result, they aren't even visible
7915 * under any other configuration.
7916 */
7917
7918/**
7919 * curr_task - return the current task for a given cpu.
7920 * @cpu: the processor in question.
7921 *
7922 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7923 */
36c8b586 7924struct task_struct *curr_task(int cpu)
1df5c10a
LT
7925{
7926 return cpu_curr(cpu);
7927}
7928
7929/**
7930 * set_curr_task - set the current task for a given cpu.
7931 * @cpu: the processor in question.
7932 * @p: the task pointer to set.
7933 *
7934 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7935 * are serviced on a separate stack. It allows the architecture to switch the
7936 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7937 * must be called with all CPU's synchronized, and interrupts disabled, the
7938 * and caller must save the original value of the current task (see
7939 * curr_task() above) and restore that value before reenabling interrupts and
7940 * re-starting the system.
7941 *
7942 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7943 */
36c8b586 7944void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7945{
7946 cpu_curr(cpu) = p;
7947}
7948
7949#endif
29f59db3 7950
bccbe08a
PZ
7951#ifdef CONFIG_FAIR_GROUP_SCHED
7952static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7953{
7954 int i;
7955
7956 for_each_possible_cpu(i) {
7957 if (tg->cfs_rq)
7958 kfree(tg->cfs_rq[i]);
7959 if (tg->se)
7960 kfree(tg->se[i]);
6f505b16
PZ
7961 }
7962
7963 kfree(tg->cfs_rq);
7964 kfree(tg->se);
6f505b16
PZ
7965}
7966
ec7dc8ac
DG
7967static
7968int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7969{
29f59db3 7970 struct cfs_rq *cfs_rq;
eab17229 7971 struct sched_entity *se;
9b5b7751 7972 struct rq *rq;
29f59db3
SV
7973 int i;
7974
434d53b0 7975 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7976 if (!tg->cfs_rq)
7977 goto err;
434d53b0 7978 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7979 if (!tg->se)
7980 goto err;
052f1dc7
PZ
7981
7982 tg->shares = NICE_0_LOAD;
29f59db3
SV
7983
7984 for_each_possible_cpu(i) {
9b5b7751 7985 rq = cpu_rq(i);
29f59db3 7986
eab17229
LZ
7987 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7988 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
7989 if (!cfs_rq)
7990 goto err;
7991
eab17229
LZ
7992 se = kzalloc_node(sizeof(struct sched_entity),
7993 GFP_KERNEL, cpu_to_node(i));
29f59db3 7994 if (!se)
dfc12eb2 7995 goto err_free_rq;
29f59db3 7996
eab17229 7997 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
7998 }
7999
8000 return 1;
8001
dfc12eb2
PC
8002 err_free_rq:
8003 kfree(cfs_rq);
bccbe08a
PZ
8004 err:
8005 return 0;
8006}
8007
8008static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8009{
8010 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8011 &cpu_rq(cpu)->leaf_cfs_rq_list);
8012}
8013
8014static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8015{
8016 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8017}
6d6bc0ad 8018#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8019static inline void free_fair_sched_group(struct task_group *tg)
8020{
8021}
8022
ec7dc8ac
DG
8023static inline
8024int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8025{
8026 return 1;
8027}
8028
8029static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8030{
8031}
8032
8033static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8034{
8035}
6d6bc0ad 8036#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8037
8038#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8039static void free_rt_sched_group(struct task_group *tg)
8040{
8041 int i;
8042
d0b27fa7
PZ
8043 destroy_rt_bandwidth(&tg->rt_bandwidth);
8044
bccbe08a
PZ
8045 for_each_possible_cpu(i) {
8046 if (tg->rt_rq)
8047 kfree(tg->rt_rq[i]);
8048 if (tg->rt_se)
8049 kfree(tg->rt_se[i]);
8050 }
8051
8052 kfree(tg->rt_rq);
8053 kfree(tg->rt_se);
8054}
8055
ec7dc8ac
DG
8056static
8057int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8058{
8059 struct rt_rq *rt_rq;
eab17229 8060 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8061 struct rq *rq;
8062 int i;
8063
434d53b0 8064 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8065 if (!tg->rt_rq)
8066 goto err;
434d53b0 8067 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8068 if (!tg->rt_se)
8069 goto err;
8070
d0b27fa7
PZ
8071 init_rt_bandwidth(&tg->rt_bandwidth,
8072 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8073
8074 for_each_possible_cpu(i) {
8075 rq = cpu_rq(i);
8076
eab17229
LZ
8077 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8078 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8079 if (!rt_rq)
8080 goto err;
29f59db3 8081
eab17229
LZ
8082 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8083 GFP_KERNEL, cpu_to_node(i));
6f505b16 8084 if (!rt_se)
dfc12eb2 8085 goto err_free_rq;
29f59db3 8086
eab17229 8087 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8088 }
8089
bccbe08a
PZ
8090 return 1;
8091
dfc12eb2
PC
8092 err_free_rq:
8093 kfree(rt_rq);
bccbe08a
PZ
8094 err:
8095 return 0;
8096}
8097
8098static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8099{
8100 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8101 &cpu_rq(cpu)->leaf_rt_rq_list);
8102}
8103
8104static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8105{
8106 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8107}
6d6bc0ad 8108#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8109static inline void free_rt_sched_group(struct task_group *tg)
8110{
8111}
8112
ec7dc8ac
DG
8113static inline
8114int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8115{
8116 return 1;
8117}
8118
8119static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8120{
8121}
8122
8123static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8124{
8125}
6d6bc0ad 8126#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8127
7c941438 8128#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8129static void free_sched_group(struct task_group *tg)
8130{
8131 free_fair_sched_group(tg);
8132 free_rt_sched_group(tg);
8133 kfree(tg);
8134}
8135
8136/* allocate runqueue etc for a new task group */
ec7dc8ac 8137struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8138{
8139 struct task_group *tg;
8140 unsigned long flags;
8141 int i;
8142
8143 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8144 if (!tg)
8145 return ERR_PTR(-ENOMEM);
8146
ec7dc8ac 8147 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8148 goto err;
8149
ec7dc8ac 8150 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8151 goto err;
8152
8ed36996 8153 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8154 for_each_possible_cpu(i) {
bccbe08a
PZ
8155 register_fair_sched_group(tg, i);
8156 register_rt_sched_group(tg, i);
9b5b7751 8157 }
6f505b16 8158 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8159
8160 WARN_ON(!parent); /* root should already exist */
8161
8162 tg->parent = parent;
f473aa5e 8163 INIT_LIST_HEAD(&tg->children);
09f2724a 8164 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8165 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8166
9b5b7751 8167 return tg;
29f59db3
SV
8168
8169err:
6f505b16 8170 free_sched_group(tg);
29f59db3
SV
8171 return ERR_PTR(-ENOMEM);
8172}
8173
9b5b7751 8174/* rcu callback to free various structures associated with a task group */
6f505b16 8175static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8176{
29f59db3 8177 /* now it should be safe to free those cfs_rqs */
6f505b16 8178 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8179}
8180
9b5b7751 8181/* Destroy runqueue etc associated with a task group */
4cf86d77 8182void sched_destroy_group(struct task_group *tg)
29f59db3 8183{
8ed36996 8184 unsigned long flags;
9b5b7751 8185 int i;
29f59db3 8186
8ed36996 8187 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8188 for_each_possible_cpu(i) {
bccbe08a
PZ
8189 unregister_fair_sched_group(tg, i);
8190 unregister_rt_sched_group(tg, i);
9b5b7751 8191 }
6f505b16 8192 list_del_rcu(&tg->list);
f473aa5e 8193 list_del_rcu(&tg->siblings);
8ed36996 8194 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8195
9b5b7751 8196 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8197 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8198}
8199
9b5b7751 8200/* change task's runqueue when it moves between groups.
3a252015
IM
8201 * The caller of this function should have put the task in its new group
8202 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8203 * reflect its new group.
9b5b7751
SV
8204 */
8205void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8206{
8207 int on_rq, running;
8208 unsigned long flags;
8209 struct rq *rq;
8210
8211 rq = task_rq_lock(tsk, &flags);
8212
29f59db3
SV
8213 update_rq_clock(rq);
8214
051a1d1a 8215 running = task_current(rq, tsk);
29f59db3
SV
8216 on_rq = tsk->se.on_rq;
8217
0e1f3483 8218 if (on_rq)
29f59db3 8219 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8220 if (unlikely(running))
8221 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8222
6f505b16 8223 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8224
810b3817
PZ
8225#ifdef CONFIG_FAIR_GROUP_SCHED
8226 if (tsk->sched_class->moved_group)
88ec22d3 8227 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8228#endif
8229
0e1f3483
HS
8230 if (unlikely(running))
8231 tsk->sched_class->set_curr_task(rq);
8232 if (on_rq)
ea87bb78 8233 enqueue_task(rq, tsk, 0, false);
29f59db3 8234
29f59db3
SV
8235 task_rq_unlock(rq, &flags);
8236}
7c941438 8237#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8238
052f1dc7 8239#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8240static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8241{
8242 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8243 int on_rq;
8244
29f59db3 8245 on_rq = se->on_rq;
62fb1851 8246 if (on_rq)
29f59db3
SV
8247 dequeue_entity(cfs_rq, se, 0);
8248
8249 se->load.weight = shares;
e05510d0 8250 se->load.inv_weight = 0;
29f59db3 8251
62fb1851 8252 if (on_rq)
29f59db3 8253 enqueue_entity(cfs_rq, se, 0);
c09595f6 8254}
62fb1851 8255
c09595f6
PZ
8256static void set_se_shares(struct sched_entity *se, unsigned long shares)
8257{
8258 struct cfs_rq *cfs_rq = se->cfs_rq;
8259 struct rq *rq = cfs_rq->rq;
8260 unsigned long flags;
8261
05fa785c 8262 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8263 __set_se_shares(se, shares);
05fa785c 8264 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8265}
8266
8ed36996
PZ
8267static DEFINE_MUTEX(shares_mutex);
8268
4cf86d77 8269int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8270{
8271 int i;
8ed36996 8272 unsigned long flags;
c61935fd 8273
ec7dc8ac
DG
8274 /*
8275 * We can't change the weight of the root cgroup.
8276 */
8277 if (!tg->se[0])
8278 return -EINVAL;
8279
18d95a28
PZ
8280 if (shares < MIN_SHARES)
8281 shares = MIN_SHARES;
cb4ad1ff
MX
8282 else if (shares > MAX_SHARES)
8283 shares = MAX_SHARES;
62fb1851 8284
8ed36996 8285 mutex_lock(&shares_mutex);
9b5b7751 8286 if (tg->shares == shares)
5cb350ba 8287 goto done;
29f59db3 8288
8ed36996 8289 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8290 for_each_possible_cpu(i)
8291 unregister_fair_sched_group(tg, i);
f473aa5e 8292 list_del_rcu(&tg->siblings);
8ed36996 8293 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8294
8295 /* wait for any ongoing reference to this group to finish */
8296 synchronize_sched();
8297
8298 /*
8299 * Now we are free to modify the group's share on each cpu
8300 * w/o tripping rebalance_share or load_balance_fair.
8301 */
9b5b7751 8302 tg->shares = shares;
c09595f6
PZ
8303 for_each_possible_cpu(i) {
8304 /*
8305 * force a rebalance
8306 */
8307 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8308 set_se_shares(tg->se[i], shares);
c09595f6 8309 }
29f59db3 8310
6b2d7700
SV
8311 /*
8312 * Enable load balance activity on this group, by inserting it back on
8313 * each cpu's rq->leaf_cfs_rq_list.
8314 */
8ed36996 8315 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8316 for_each_possible_cpu(i)
8317 register_fair_sched_group(tg, i);
f473aa5e 8318 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8319 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8320done:
8ed36996 8321 mutex_unlock(&shares_mutex);
9b5b7751 8322 return 0;
29f59db3
SV
8323}
8324
5cb350ba
DG
8325unsigned long sched_group_shares(struct task_group *tg)
8326{
8327 return tg->shares;
8328}
052f1dc7 8329#endif
5cb350ba 8330
052f1dc7 8331#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8332/*
9f0c1e56 8333 * Ensure that the real time constraints are schedulable.
6f505b16 8334 */
9f0c1e56
PZ
8335static DEFINE_MUTEX(rt_constraints_mutex);
8336
8337static unsigned long to_ratio(u64 period, u64 runtime)
8338{
8339 if (runtime == RUNTIME_INF)
9a7e0b18 8340 return 1ULL << 20;
9f0c1e56 8341
9a7e0b18 8342 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8343}
8344
9a7e0b18
PZ
8345/* Must be called with tasklist_lock held */
8346static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8347{
9a7e0b18 8348 struct task_struct *g, *p;
b40b2e8e 8349
9a7e0b18
PZ
8350 do_each_thread(g, p) {
8351 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8352 return 1;
8353 } while_each_thread(g, p);
b40b2e8e 8354
9a7e0b18
PZ
8355 return 0;
8356}
b40b2e8e 8357
9a7e0b18
PZ
8358struct rt_schedulable_data {
8359 struct task_group *tg;
8360 u64 rt_period;
8361 u64 rt_runtime;
8362};
b40b2e8e 8363
9a7e0b18
PZ
8364static int tg_schedulable(struct task_group *tg, void *data)
8365{
8366 struct rt_schedulable_data *d = data;
8367 struct task_group *child;
8368 unsigned long total, sum = 0;
8369 u64 period, runtime;
b40b2e8e 8370
9a7e0b18
PZ
8371 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8372 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8373
9a7e0b18
PZ
8374 if (tg == d->tg) {
8375 period = d->rt_period;
8376 runtime = d->rt_runtime;
b40b2e8e 8377 }
b40b2e8e 8378
4653f803
PZ
8379 /*
8380 * Cannot have more runtime than the period.
8381 */
8382 if (runtime > period && runtime != RUNTIME_INF)
8383 return -EINVAL;
6f505b16 8384
4653f803
PZ
8385 /*
8386 * Ensure we don't starve existing RT tasks.
8387 */
9a7e0b18
PZ
8388 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8389 return -EBUSY;
6f505b16 8390
9a7e0b18 8391 total = to_ratio(period, runtime);
6f505b16 8392
4653f803
PZ
8393 /*
8394 * Nobody can have more than the global setting allows.
8395 */
8396 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8397 return -EINVAL;
6f505b16 8398
4653f803
PZ
8399 /*
8400 * The sum of our children's runtime should not exceed our own.
8401 */
9a7e0b18
PZ
8402 list_for_each_entry_rcu(child, &tg->children, siblings) {
8403 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8404 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8405
9a7e0b18
PZ
8406 if (child == d->tg) {
8407 period = d->rt_period;
8408 runtime = d->rt_runtime;
8409 }
6f505b16 8410
9a7e0b18 8411 sum += to_ratio(period, runtime);
9f0c1e56 8412 }
6f505b16 8413
9a7e0b18
PZ
8414 if (sum > total)
8415 return -EINVAL;
8416
8417 return 0;
6f505b16
PZ
8418}
8419
9a7e0b18 8420static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8421{
9a7e0b18
PZ
8422 struct rt_schedulable_data data = {
8423 .tg = tg,
8424 .rt_period = period,
8425 .rt_runtime = runtime,
8426 };
8427
8428 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8429}
8430
d0b27fa7
PZ
8431static int tg_set_bandwidth(struct task_group *tg,
8432 u64 rt_period, u64 rt_runtime)
6f505b16 8433{
ac086bc2 8434 int i, err = 0;
9f0c1e56 8435
9f0c1e56 8436 mutex_lock(&rt_constraints_mutex);
521f1a24 8437 read_lock(&tasklist_lock);
9a7e0b18
PZ
8438 err = __rt_schedulable(tg, rt_period, rt_runtime);
8439 if (err)
9f0c1e56 8440 goto unlock;
ac086bc2 8441
0986b11b 8442 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8443 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8444 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8445
8446 for_each_possible_cpu(i) {
8447 struct rt_rq *rt_rq = tg->rt_rq[i];
8448
0986b11b 8449 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8450 rt_rq->rt_runtime = rt_runtime;
0986b11b 8451 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8452 }
0986b11b 8453 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8454 unlock:
521f1a24 8455 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8456 mutex_unlock(&rt_constraints_mutex);
8457
8458 return err;
6f505b16
PZ
8459}
8460
d0b27fa7
PZ
8461int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8462{
8463 u64 rt_runtime, rt_period;
8464
8465 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8466 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8467 if (rt_runtime_us < 0)
8468 rt_runtime = RUNTIME_INF;
8469
8470 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8471}
8472
9f0c1e56
PZ
8473long sched_group_rt_runtime(struct task_group *tg)
8474{
8475 u64 rt_runtime_us;
8476
d0b27fa7 8477 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8478 return -1;
8479
d0b27fa7 8480 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8481 do_div(rt_runtime_us, NSEC_PER_USEC);
8482 return rt_runtime_us;
8483}
d0b27fa7
PZ
8484
8485int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8486{
8487 u64 rt_runtime, rt_period;
8488
8489 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8490 rt_runtime = tg->rt_bandwidth.rt_runtime;
8491
619b0488
R
8492 if (rt_period == 0)
8493 return -EINVAL;
8494
d0b27fa7
PZ
8495 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8496}
8497
8498long sched_group_rt_period(struct task_group *tg)
8499{
8500 u64 rt_period_us;
8501
8502 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8503 do_div(rt_period_us, NSEC_PER_USEC);
8504 return rt_period_us;
8505}
8506
8507static int sched_rt_global_constraints(void)
8508{
4653f803 8509 u64 runtime, period;
d0b27fa7
PZ
8510 int ret = 0;
8511
ec5d4989
HS
8512 if (sysctl_sched_rt_period <= 0)
8513 return -EINVAL;
8514
4653f803
PZ
8515 runtime = global_rt_runtime();
8516 period = global_rt_period();
8517
8518 /*
8519 * Sanity check on the sysctl variables.
8520 */
8521 if (runtime > period && runtime != RUNTIME_INF)
8522 return -EINVAL;
10b612f4 8523
d0b27fa7 8524 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8525 read_lock(&tasklist_lock);
4653f803 8526 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8527 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8528 mutex_unlock(&rt_constraints_mutex);
8529
8530 return ret;
8531}
54e99124
DG
8532
8533int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8534{
8535 /* Don't accept realtime tasks when there is no way for them to run */
8536 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8537 return 0;
8538
8539 return 1;
8540}
8541
6d6bc0ad 8542#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8543static int sched_rt_global_constraints(void)
8544{
ac086bc2
PZ
8545 unsigned long flags;
8546 int i;
8547
ec5d4989
HS
8548 if (sysctl_sched_rt_period <= 0)
8549 return -EINVAL;
8550
60aa605d
PZ
8551 /*
8552 * There's always some RT tasks in the root group
8553 * -- migration, kstopmachine etc..
8554 */
8555 if (sysctl_sched_rt_runtime == 0)
8556 return -EBUSY;
8557
0986b11b 8558 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8559 for_each_possible_cpu(i) {
8560 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8561
0986b11b 8562 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8563 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8564 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8565 }
0986b11b 8566 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8567
d0b27fa7
PZ
8568 return 0;
8569}
6d6bc0ad 8570#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8571
8572int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8573 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8574 loff_t *ppos)
8575{
8576 int ret;
8577 int old_period, old_runtime;
8578 static DEFINE_MUTEX(mutex);
8579
8580 mutex_lock(&mutex);
8581 old_period = sysctl_sched_rt_period;
8582 old_runtime = sysctl_sched_rt_runtime;
8583
8d65af78 8584 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8585
8586 if (!ret && write) {
8587 ret = sched_rt_global_constraints();
8588 if (ret) {
8589 sysctl_sched_rt_period = old_period;
8590 sysctl_sched_rt_runtime = old_runtime;
8591 } else {
8592 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8593 def_rt_bandwidth.rt_period =
8594 ns_to_ktime(global_rt_period());
8595 }
8596 }
8597 mutex_unlock(&mutex);
8598
8599 return ret;
8600}
68318b8e 8601
052f1dc7 8602#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8603
8604/* return corresponding task_group object of a cgroup */
2b01dfe3 8605static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8606{
2b01dfe3
PM
8607 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8608 struct task_group, css);
68318b8e
SV
8609}
8610
8611static struct cgroup_subsys_state *
2b01dfe3 8612cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8613{
ec7dc8ac 8614 struct task_group *tg, *parent;
68318b8e 8615
2b01dfe3 8616 if (!cgrp->parent) {
68318b8e 8617 /* This is early initialization for the top cgroup */
68318b8e
SV
8618 return &init_task_group.css;
8619 }
8620
ec7dc8ac
DG
8621 parent = cgroup_tg(cgrp->parent);
8622 tg = sched_create_group(parent);
68318b8e
SV
8623 if (IS_ERR(tg))
8624 return ERR_PTR(-ENOMEM);
8625
68318b8e
SV
8626 return &tg->css;
8627}
8628
41a2d6cf
IM
8629static void
8630cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8631{
2b01dfe3 8632 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8633
8634 sched_destroy_group(tg);
8635}
8636
41a2d6cf 8637static int
be367d09 8638cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8639{
b68aa230 8640#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8641 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8642 return -EINVAL;
8643#else
68318b8e
SV
8644 /* We don't support RT-tasks being in separate groups */
8645 if (tsk->sched_class != &fair_sched_class)
8646 return -EINVAL;
b68aa230 8647#endif
be367d09
BB
8648 return 0;
8649}
68318b8e 8650
be367d09
BB
8651static int
8652cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8653 struct task_struct *tsk, bool threadgroup)
8654{
8655 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8656 if (retval)
8657 return retval;
8658 if (threadgroup) {
8659 struct task_struct *c;
8660 rcu_read_lock();
8661 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8662 retval = cpu_cgroup_can_attach_task(cgrp, c);
8663 if (retval) {
8664 rcu_read_unlock();
8665 return retval;
8666 }
8667 }
8668 rcu_read_unlock();
8669 }
68318b8e
SV
8670 return 0;
8671}
8672
8673static void
2b01dfe3 8674cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8675 struct cgroup *old_cont, struct task_struct *tsk,
8676 bool threadgroup)
68318b8e
SV
8677{
8678 sched_move_task(tsk);
be367d09
BB
8679 if (threadgroup) {
8680 struct task_struct *c;
8681 rcu_read_lock();
8682 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8683 sched_move_task(c);
8684 }
8685 rcu_read_unlock();
8686 }
68318b8e
SV
8687}
8688
052f1dc7 8689#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8690static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8691 u64 shareval)
68318b8e 8692{
2b01dfe3 8693 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8694}
8695
f4c753b7 8696static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8697{
2b01dfe3 8698 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8699
8700 return (u64) tg->shares;
8701}
6d6bc0ad 8702#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8703
052f1dc7 8704#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8705static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8706 s64 val)
6f505b16 8707{
06ecb27c 8708 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8709}
8710
06ecb27c 8711static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8712{
06ecb27c 8713 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8714}
d0b27fa7
PZ
8715
8716static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8717 u64 rt_period_us)
8718{
8719 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8720}
8721
8722static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8723{
8724 return sched_group_rt_period(cgroup_tg(cgrp));
8725}
6d6bc0ad 8726#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8727
fe5c7cc2 8728static struct cftype cpu_files[] = {
052f1dc7 8729#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8730 {
8731 .name = "shares",
f4c753b7
PM
8732 .read_u64 = cpu_shares_read_u64,
8733 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8734 },
052f1dc7
PZ
8735#endif
8736#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8737 {
9f0c1e56 8738 .name = "rt_runtime_us",
06ecb27c
PM
8739 .read_s64 = cpu_rt_runtime_read,
8740 .write_s64 = cpu_rt_runtime_write,
6f505b16 8741 },
d0b27fa7
PZ
8742 {
8743 .name = "rt_period_us",
f4c753b7
PM
8744 .read_u64 = cpu_rt_period_read_uint,
8745 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8746 },
052f1dc7 8747#endif
68318b8e
SV
8748};
8749
8750static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8751{
fe5c7cc2 8752 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8753}
8754
8755struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8756 .name = "cpu",
8757 .create = cpu_cgroup_create,
8758 .destroy = cpu_cgroup_destroy,
8759 .can_attach = cpu_cgroup_can_attach,
8760 .attach = cpu_cgroup_attach,
8761 .populate = cpu_cgroup_populate,
8762 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8763 .early_init = 1,
8764};
8765
052f1dc7 8766#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8767
8768#ifdef CONFIG_CGROUP_CPUACCT
8769
8770/*
8771 * CPU accounting code for task groups.
8772 *
8773 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8774 * (balbir@in.ibm.com).
8775 */
8776
934352f2 8777/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8778struct cpuacct {
8779 struct cgroup_subsys_state css;
8780 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8781 u64 __percpu *cpuusage;
ef12fefa 8782 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8783 struct cpuacct *parent;
d842de87
SV
8784};
8785
8786struct cgroup_subsys cpuacct_subsys;
8787
8788/* return cpu accounting group corresponding to this container */
32cd756a 8789static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8790{
32cd756a 8791 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8792 struct cpuacct, css);
8793}
8794
8795/* return cpu accounting group to which this task belongs */
8796static inline struct cpuacct *task_ca(struct task_struct *tsk)
8797{
8798 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8799 struct cpuacct, css);
8800}
8801
8802/* create a new cpu accounting group */
8803static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8804 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8805{
8806 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8807 int i;
d842de87
SV
8808
8809 if (!ca)
ef12fefa 8810 goto out;
d842de87
SV
8811
8812 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8813 if (!ca->cpuusage)
8814 goto out_free_ca;
8815
8816 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8817 if (percpu_counter_init(&ca->cpustat[i], 0))
8818 goto out_free_counters;
d842de87 8819
934352f2
BR
8820 if (cgrp->parent)
8821 ca->parent = cgroup_ca(cgrp->parent);
8822
d842de87 8823 return &ca->css;
ef12fefa
BR
8824
8825out_free_counters:
8826 while (--i >= 0)
8827 percpu_counter_destroy(&ca->cpustat[i]);
8828 free_percpu(ca->cpuusage);
8829out_free_ca:
8830 kfree(ca);
8831out:
8832 return ERR_PTR(-ENOMEM);
d842de87
SV
8833}
8834
8835/* destroy an existing cpu accounting group */
41a2d6cf 8836static void
32cd756a 8837cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8838{
32cd756a 8839 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8840 int i;
d842de87 8841
ef12fefa
BR
8842 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8843 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8844 free_percpu(ca->cpuusage);
8845 kfree(ca);
8846}
8847
720f5498
KC
8848static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8849{
b36128c8 8850 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8851 u64 data;
8852
8853#ifndef CONFIG_64BIT
8854 /*
8855 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8856 */
05fa785c 8857 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8858 data = *cpuusage;
05fa785c 8859 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8860#else
8861 data = *cpuusage;
8862#endif
8863
8864 return data;
8865}
8866
8867static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8868{
b36128c8 8869 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8870
8871#ifndef CONFIG_64BIT
8872 /*
8873 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8874 */
05fa785c 8875 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8876 *cpuusage = val;
05fa785c 8877 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8878#else
8879 *cpuusage = val;
8880#endif
8881}
8882
d842de87 8883/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8884static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8885{
32cd756a 8886 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8887 u64 totalcpuusage = 0;
8888 int i;
8889
720f5498
KC
8890 for_each_present_cpu(i)
8891 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8892
8893 return totalcpuusage;
8894}
8895
0297b803
DG
8896static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8897 u64 reset)
8898{
8899 struct cpuacct *ca = cgroup_ca(cgrp);
8900 int err = 0;
8901 int i;
8902
8903 if (reset) {
8904 err = -EINVAL;
8905 goto out;
8906 }
8907
720f5498
KC
8908 for_each_present_cpu(i)
8909 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8910
0297b803
DG
8911out:
8912 return err;
8913}
8914
e9515c3c
KC
8915static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8916 struct seq_file *m)
8917{
8918 struct cpuacct *ca = cgroup_ca(cgroup);
8919 u64 percpu;
8920 int i;
8921
8922 for_each_present_cpu(i) {
8923 percpu = cpuacct_cpuusage_read(ca, i);
8924 seq_printf(m, "%llu ", (unsigned long long) percpu);
8925 }
8926 seq_printf(m, "\n");
8927 return 0;
8928}
8929
ef12fefa
BR
8930static const char *cpuacct_stat_desc[] = {
8931 [CPUACCT_STAT_USER] = "user",
8932 [CPUACCT_STAT_SYSTEM] = "system",
8933};
8934
8935static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8936 struct cgroup_map_cb *cb)
8937{
8938 struct cpuacct *ca = cgroup_ca(cgrp);
8939 int i;
8940
8941 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8942 s64 val = percpu_counter_read(&ca->cpustat[i]);
8943 val = cputime64_to_clock_t(val);
8944 cb->fill(cb, cpuacct_stat_desc[i], val);
8945 }
8946 return 0;
8947}
8948
d842de87
SV
8949static struct cftype files[] = {
8950 {
8951 .name = "usage",
f4c753b7
PM
8952 .read_u64 = cpuusage_read,
8953 .write_u64 = cpuusage_write,
d842de87 8954 },
e9515c3c
KC
8955 {
8956 .name = "usage_percpu",
8957 .read_seq_string = cpuacct_percpu_seq_read,
8958 },
ef12fefa
BR
8959 {
8960 .name = "stat",
8961 .read_map = cpuacct_stats_show,
8962 },
d842de87
SV
8963};
8964
32cd756a 8965static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8966{
32cd756a 8967 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8968}
8969
8970/*
8971 * charge this task's execution time to its accounting group.
8972 *
8973 * called with rq->lock held.
8974 */
8975static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8976{
8977 struct cpuacct *ca;
934352f2 8978 int cpu;
d842de87 8979
c40c6f85 8980 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8981 return;
8982
934352f2 8983 cpu = task_cpu(tsk);
a18b83b7
BR
8984
8985 rcu_read_lock();
8986
d842de87 8987 ca = task_ca(tsk);
d842de87 8988
934352f2 8989 for (; ca; ca = ca->parent) {
b36128c8 8990 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8991 *cpuusage += cputime;
8992 }
a18b83b7
BR
8993
8994 rcu_read_unlock();
d842de87
SV
8995}
8996
fa535a77
AB
8997/*
8998 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8999 * in cputime_t units. As a result, cpuacct_update_stats calls
9000 * percpu_counter_add with values large enough to always overflow the
9001 * per cpu batch limit causing bad SMP scalability.
9002 *
9003 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9004 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9005 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9006 */
9007#ifdef CONFIG_SMP
9008#define CPUACCT_BATCH \
9009 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9010#else
9011#define CPUACCT_BATCH 0
9012#endif
9013
ef12fefa
BR
9014/*
9015 * Charge the system/user time to the task's accounting group.
9016 */
9017static void cpuacct_update_stats(struct task_struct *tsk,
9018 enum cpuacct_stat_index idx, cputime_t val)
9019{
9020 struct cpuacct *ca;
fa535a77 9021 int batch = CPUACCT_BATCH;
ef12fefa
BR
9022
9023 if (unlikely(!cpuacct_subsys.active))
9024 return;
9025
9026 rcu_read_lock();
9027 ca = task_ca(tsk);
9028
9029 do {
fa535a77 9030 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9031 ca = ca->parent;
9032 } while (ca);
9033 rcu_read_unlock();
9034}
9035
d842de87
SV
9036struct cgroup_subsys cpuacct_subsys = {
9037 .name = "cpuacct",
9038 .create = cpuacct_create,
9039 .destroy = cpuacct_destroy,
9040 .populate = cpuacct_populate,
9041 .subsys_id = cpuacct_subsys_id,
9042};
9043#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9044
9045#ifndef CONFIG_SMP
9046
9047int rcu_expedited_torture_stats(char *page)
9048{
9049 return 0;
9050}
9051EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9052
9053void synchronize_sched_expedited(void)
9054{
9055}
9056EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9057
9058#else /* #ifndef CONFIG_SMP */
9059
9060static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9061static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9062
9063#define RCU_EXPEDITED_STATE_POST -2
9064#define RCU_EXPEDITED_STATE_IDLE -1
9065
9066static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9067
9068int rcu_expedited_torture_stats(char *page)
9069{
9070 int cnt = 0;
9071 int cpu;
9072
9073 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9074 for_each_online_cpu(cpu) {
9075 cnt += sprintf(&page[cnt], " %d:%d",
9076 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9077 }
9078 cnt += sprintf(&page[cnt], "\n");
9079 return cnt;
9080}
9081EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9082
9083static long synchronize_sched_expedited_count;
9084
9085/*
9086 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9087 * approach to force grace period to end quickly. This consumes
9088 * significant time on all CPUs, and is thus not recommended for
9089 * any sort of common-case code.
9090 *
9091 * Note that it is illegal to call this function while holding any
9092 * lock that is acquired by a CPU-hotplug notifier. Failing to
9093 * observe this restriction will result in deadlock.
9094 */
9095void synchronize_sched_expedited(void)
9096{
9097 int cpu;
9098 unsigned long flags;
9099 bool need_full_sync = 0;
9100 struct rq *rq;
9101 struct migration_req *req;
9102 long snap;
9103 int trycount = 0;
9104
9105 smp_mb(); /* ensure prior mod happens before capturing snap. */
9106 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9107 get_online_cpus();
9108 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9109 put_online_cpus();
9110 if (trycount++ < 10)
9111 udelay(trycount * num_online_cpus());
9112 else {
9113 synchronize_sched();
9114 return;
9115 }
9116 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9117 smp_mb(); /* ensure test happens before caller kfree */
9118 return;
9119 }
9120 get_online_cpus();
9121 }
9122 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9123 for_each_online_cpu(cpu) {
9124 rq = cpu_rq(cpu);
9125 req = &per_cpu(rcu_migration_req, cpu);
9126 init_completion(&req->done);
9127 req->task = NULL;
9128 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 9129 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 9130 list_add(&req->list, &rq->migration_queue);
05fa785c 9131 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9132 wake_up_process(rq->migration_thread);
9133 }
9134 for_each_online_cpu(cpu) {
9135 rcu_expedited_state = cpu;
9136 req = &per_cpu(rcu_migration_req, cpu);
9137 rq = cpu_rq(cpu);
9138 wait_for_completion(&req->done);
05fa785c 9139 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
9140 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9141 need_full_sync = 1;
9142 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 9143 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9144 }
9145 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 9146 synchronize_sched_expedited_count++;
03b042bf
PM
9147 mutex_unlock(&rcu_sched_expedited_mutex);
9148 put_online_cpus();
9149 if (need_full_sync)
9150 synchronize_sched();
9151}
9152EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9153
9154#endif /* #else #ifndef CONFIG_SMP */
This page took 2.419341 seconds and 5 git commands to generate.