Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
6e0534f2 81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
7c941438 238#ifdef CONFIG_CGROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
68318b8e 248 struct cgroup_subsys_state css;
6c415b92 249
052f1dc7 250#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
052f1dc7
PZ
256#endif
257
258#ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
d0b27fa7 262 struct rt_bandwidth rt_bandwidth;
052f1dc7 263#endif
6b2d7700 264
ae8393e5 265 struct rcu_head rcu;
6f505b16 266 struct list_head list;
f473aa5e
PZ
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
29f59db3
SV
271};
272
eff766a6 273#define root_task_group init_task_group
6f505b16 274
8ed36996 275/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
276 * a task group's cpu shares.
277 */
8ed36996 278static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 279
e9036b36
CG
280#ifdef CONFIG_FAIR_GROUP_SCHED
281
57310a98
PZ
282#ifdef CONFIG_SMP
283static int root_task_group_empty(void)
284{
285 return list_empty(&root_task_group.children);
286}
287#endif
288
052f1dc7 289# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 290
cb4ad1ff 291/*
2e084786
LJ
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
cb4ad1ff
MX
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
18d95a28 299#define MIN_SHARES 2
2e084786 300#define MAX_SHARES (1UL << 18)
18d95a28 301
052f1dc7
PZ
302static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303#endif
304
29f59db3 305/* Default task group.
3a252015 306 * Every task in system belong to this group at bootup.
29f59db3 307 */
434d53b0 308struct task_group init_task_group;
29f59db3 309
7c941438 310#endif /* CONFIG_CGROUP_SCHED */
29f59db3 311
6aa645ea
IM
312/* CFS-related fields in a runqueue */
313struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
6aa645ea 317 u64 exec_clock;
e9acbff6 318 u64 min_vruntime;
6aa645ea
IM
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
4a55bd5e
PZ
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
4793241b 330 struct sched_entity *curr, *next, *last;
ddc97297 331
5ac5c4d6 332 unsigned int nr_spread_over;
ddc97297 333
62160e3f 334#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
41a2d6cf
IM
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857
PZ
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
f1d239f7
PZ
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
c6c4927b
RR
420 cpumask_var_t span;
421 cpumask_var_t online;
637f5085 422
0eab9146 423 /*
637f5085
GH
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
c6c4927b 427 cpumask_var_t rto_mask;
0eab9146 428 atomic_t rto_count;
6e0534f2 429 struct cpupri cpupri;
57d885fe
GH
430};
431
dc938520
GH
432/*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
57d885fe
GH
436static struct root_domain def_root_domain;
437
ed2d372c 438#endif /* CONFIG_SMP */
57d885fe 439
1da177e4
LT
440/*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
70b97a7f 447struct rq {
d8016491 448 /* runqueue lock: */
05fa785c 449 raw_spinlock_t lock;
1da177e4
LT
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
6aa645ea
IM
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 458 unsigned long last_load_update_tick;
46cb4b7c 459#ifdef CONFIG_NO_HZ
39c0cbe2 460 u64 nohz_stamp;
83cd4fe2 461 unsigned char nohz_balance_kick;
46cb4b7c 462#endif
a64692a3
MG
463 unsigned int skip_clock_update;
464
d8016491
IM
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
6aa645ea
IM
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
6f505b16 471 struct rt_rq rt;
6f505b16 472
6aa645ea 473#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
476#endif
477#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 478 struct list_head leaf_rt_rq_list;
1da177e4 479#endif
1da177e4
LT
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
34f971f6 489 struct task_struct *curr, *idle, *stop;
c9819f45 490 unsigned long next_balance;
1da177e4 491 struct mm_struct *prev_mm;
6aa645ea 492
3e51f33f 493 u64 clock;
305e6835 494 u64 clock_task;
6aa645ea 495
1da177e4
LT
496 atomic_t nr_iowait;
497
498#ifdef CONFIG_SMP
0eab9146 499 struct root_domain *rd;
1da177e4
LT
500 struct sched_domain *sd;
501
e51fd5e2
PZ
502 unsigned long cpu_power;
503
a0a522ce 504 unsigned char idle_at_tick;
1da177e4 505 /* For active balancing */
3f029d3c 506 int post_schedule;
1da177e4
LT
507 int active_balance;
508 int push_cpu;
969c7921 509 struct cpu_stop_work active_balance_work;
d8016491
IM
510 /* cpu of this runqueue: */
511 int cpu;
1f11eb6a 512 int online;
1da177e4 513
a8a51d5e 514 unsigned long avg_load_per_task;
1da177e4 515
e9e9250b
PZ
516 u64 rt_avg;
517 u64 age_stamp;
1b9508f6
MG
518 u64 idle_stamp;
519 u64 avg_idle;
1da177e4
LT
520#endif
521
aa483808
VP
522#ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 u64 prev_irq_time;
524#endif
525
dce48a84
TG
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
529
8f4d37ec 530#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
531#ifdef CONFIG_SMP
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
534#endif
8f4d37ec
PZ
535 struct hrtimer hrtick_timer;
536#endif
537
1da177e4
LT
538#ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
9c2c4802
KC
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
543
544 /* sys_sched_yield() stats */
480b9434 545 unsigned int yld_count;
1da177e4
LT
546
547 /* schedule() stats */
480b9434
KC
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
1da177e4
LT
551
552 /* try_to_wake_up() stats */
480b9434
KC
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
b8efb561
IM
555
556 /* BKL stats */
480b9434 557 unsigned int bkl_count;
1da177e4
LT
558#endif
559};
560
f34e3b61 561static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 562
a64692a3 563
1e5a7405 564static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 565
0a2966b4
CL
566static inline int cpu_of(struct rq *rq)
567{
568#ifdef CONFIG_SMP
569 return rq->cpu;
570#else
571 return 0;
572#endif
573}
574
497f0ab3 575#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
576 rcu_dereference_check((p), \
577 rcu_read_lock_sched_held() || \
578 lockdep_is_held(&sched_domains_mutex))
579
674311d5
NP
580/*
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 582 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
583 *
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
586 */
48f24c4d 587#define for_each_domain(cpu, __sd) \
497f0ab3 588 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
589
590#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591#define this_rq() (&__get_cpu_var(runqueues))
592#define task_rq(p) cpu_rq(task_cpu(p))
593#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 594#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 595
dc61b1d6
PZ
596#ifdef CONFIG_CGROUP_SCHED
597
598/*
599 * Return the group to which this tasks belongs.
600 *
601 * We use task_subsys_state_check() and extend the RCU verification
602 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
603 * holds that lock for each task it moves into the cgroup. Therefore
604 * by holding that lock, we pin the task to the current cgroup.
605 */
606static inline struct task_group *task_group(struct task_struct *p)
607{
608 struct cgroup_subsys_state *css;
609
610 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
611 lockdep_is_held(&task_rq(p)->lock));
612 return container_of(css, struct task_group, css);
613}
614
615/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
617{
618#ifdef CONFIG_FAIR_GROUP_SCHED
619 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
620 p->se.parent = task_group(p)->se[cpu];
621#endif
622
623#ifdef CONFIG_RT_GROUP_SCHED
624 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
625 p->rt.parent = task_group(p)->rt_se[cpu];
626#endif
627}
628
629#else /* CONFIG_CGROUP_SCHED */
630
631static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
632static inline struct task_group *task_group(struct task_struct *p)
633{
634 return NULL;
635}
636
637#endif /* CONFIG_CGROUP_SCHED */
638
fe44d621 639static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 640
fe44d621 641static void update_rq_clock(struct rq *rq)
3e51f33f 642{
fe44d621 643 s64 delta;
305e6835 644
f26f9aff
MG
645 if (rq->skip_clock_update)
646 return;
aa483808 647
fe44d621
PZ
648 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
649 rq->clock += delta;
650 update_rq_clock_task(rq, delta);
3e51f33f
PZ
651}
652
bf5c91ba
IM
653/*
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
655 */
656#ifdef CONFIG_SCHED_DEBUG
657# define const_debug __read_mostly
658#else
659# define const_debug static const
660#endif
661
017730c1
IM
662/**
663 * runqueue_is_locked
e17b38bf 664 * @cpu: the processor in question.
017730c1
IM
665 *
666 * Returns true if the current cpu runqueue is locked.
667 * This interface allows printk to be called with the runqueue lock
668 * held and know whether or not it is OK to wake up the klogd.
669 */
89f19f04 670int runqueue_is_locked(int cpu)
017730c1 671{
05fa785c 672 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
673}
674
bf5c91ba
IM
675/*
676 * Debugging: various feature bits
677 */
f00b45c1
PZ
678
679#define SCHED_FEAT(name, enabled) \
680 __SCHED_FEAT_##name ,
681
bf5c91ba 682enum {
f00b45c1 683#include "sched_features.h"
bf5c91ba
IM
684};
685
f00b45c1
PZ
686#undef SCHED_FEAT
687
688#define SCHED_FEAT(name, enabled) \
689 (1UL << __SCHED_FEAT_##name) * enabled |
690
bf5c91ba 691const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
692#include "sched_features.h"
693 0;
694
695#undef SCHED_FEAT
696
697#ifdef CONFIG_SCHED_DEBUG
698#define SCHED_FEAT(name, enabled) \
699 #name ,
700
983ed7a6 701static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
702#include "sched_features.h"
703 NULL
704};
705
706#undef SCHED_FEAT
707
34f3a814 708static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 709{
f00b45c1
PZ
710 int i;
711
712 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
713 if (!(sysctl_sched_features & (1UL << i)))
714 seq_puts(m, "NO_");
715 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 716 }
34f3a814 717 seq_puts(m, "\n");
f00b45c1 718
34f3a814 719 return 0;
f00b45c1
PZ
720}
721
722static ssize_t
723sched_feat_write(struct file *filp, const char __user *ubuf,
724 size_t cnt, loff_t *ppos)
725{
726 char buf[64];
7740191c 727 char *cmp;
f00b45c1
PZ
728 int neg = 0;
729 int i;
730
731 if (cnt > 63)
732 cnt = 63;
733
734 if (copy_from_user(&buf, ubuf, cnt))
735 return -EFAULT;
736
737 buf[cnt] = 0;
7740191c 738 cmp = strstrip(buf);
f00b45c1 739
c24b7c52 740 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
741 neg = 1;
742 cmp += 3;
743 }
744
745 for (i = 0; sched_feat_names[i]; i++) {
7740191c 746 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
747 if (neg)
748 sysctl_sched_features &= ~(1UL << i);
749 else
750 sysctl_sched_features |= (1UL << i);
751 break;
752 }
753 }
754
755 if (!sched_feat_names[i])
756 return -EINVAL;
757
42994724 758 *ppos += cnt;
f00b45c1
PZ
759
760 return cnt;
761}
762
34f3a814
LZ
763static int sched_feat_open(struct inode *inode, struct file *filp)
764{
765 return single_open(filp, sched_feat_show, NULL);
766}
767
828c0950 768static const struct file_operations sched_feat_fops = {
34f3a814
LZ
769 .open = sched_feat_open,
770 .write = sched_feat_write,
771 .read = seq_read,
772 .llseek = seq_lseek,
773 .release = single_release,
f00b45c1
PZ
774};
775
776static __init int sched_init_debug(void)
777{
f00b45c1
PZ
778 debugfs_create_file("sched_features", 0644, NULL, NULL,
779 &sched_feat_fops);
780
781 return 0;
782}
783late_initcall(sched_init_debug);
784
785#endif
786
787#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 788
b82d9fdd
PZ
789/*
790 * Number of tasks to iterate in a single balance run.
791 * Limited because this is done with IRQs disabled.
792 */
793const_debug unsigned int sysctl_sched_nr_migrate = 32;
794
2398f2c6
PZ
795/*
796 * ratelimit for updating the group shares.
55cd5340 797 * default: 0.25ms
2398f2c6 798 */
55cd5340 799unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 800unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 801
ffda12a1
PZ
802/*
803 * Inject some fuzzyness into changing the per-cpu group shares
804 * this avoids remote rq-locks at the expense of fairness.
805 * default: 4
806 */
807unsigned int sysctl_sched_shares_thresh = 4;
808
e9e9250b
PZ
809/*
810 * period over which we average the RT time consumption, measured
811 * in ms.
812 *
813 * default: 1s
814 */
815const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
816
fa85ae24 817/*
9f0c1e56 818 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
819 * default: 1s
820 */
9f0c1e56 821unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 822
6892b75e
IM
823static __read_mostly int scheduler_running;
824
9f0c1e56
PZ
825/*
826 * part of the period that we allow rt tasks to run in us.
827 * default: 0.95s
828 */
829int sysctl_sched_rt_runtime = 950000;
fa85ae24 830
d0b27fa7
PZ
831static inline u64 global_rt_period(void)
832{
833 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
834}
835
836static inline u64 global_rt_runtime(void)
837{
e26873bb 838 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
839 return RUNTIME_INF;
840
841 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
842}
fa85ae24 843
1da177e4 844#ifndef prepare_arch_switch
4866cde0
NP
845# define prepare_arch_switch(next) do { } while (0)
846#endif
847#ifndef finish_arch_switch
848# define finish_arch_switch(prev) do { } while (0)
849#endif
850
051a1d1a
DA
851static inline int task_current(struct rq *rq, struct task_struct *p)
852{
853 return rq->curr == p;
854}
855
4866cde0 856#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 857static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 858{
051a1d1a 859 return task_current(rq, p);
4866cde0
NP
860}
861
70b97a7f 862static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
863{
864}
865
70b97a7f 866static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 867{
da04c035
IM
868#ifdef CONFIG_DEBUG_SPINLOCK
869 /* this is a valid case when another task releases the spinlock */
870 rq->lock.owner = current;
871#endif
8a25d5de
IM
872 /*
873 * If we are tracking spinlock dependencies then we have to
874 * fix up the runqueue lock - which gets 'carried over' from
875 * prev into current:
876 */
877 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
878
05fa785c 879 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
880}
881
882#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 883static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
884{
885#ifdef CONFIG_SMP
886 return p->oncpu;
887#else
051a1d1a 888 return task_current(rq, p);
4866cde0
NP
889#endif
890}
891
70b97a7f 892static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
893{
894#ifdef CONFIG_SMP
895 /*
896 * We can optimise this out completely for !SMP, because the
897 * SMP rebalancing from interrupt is the only thing that cares
898 * here.
899 */
900 next->oncpu = 1;
901#endif
902#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 903 raw_spin_unlock_irq(&rq->lock);
4866cde0 904#else
05fa785c 905 raw_spin_unlock(&rq->lock);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
913 * After ->oncpu is cleared, the task can be moved to a different CPU.
914 * We must ensure this doesn't happen until the switch is completely
915 * finished.
916 */
917 smp_wmb();
918 prev->oncpu = 0;
919#endif
920#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
921 local_irq_enable();
1da177e4 922#endif
4866cde0
NP
923}
924#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 925
0970d299 926/*
65cc8e48
PZ
927 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
928 * against ttwu().
0970d299
PZ
929 */
930static inline int task_is_waking(struct task_struct *p)
931{
0017d735 932 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
933}
934
b29739f9
IM
935/*
936 * __task_rq_lock - lock the runqueue a given task resides on.
937 * Must be called interrupts disabled.
938 */
70b97a7f 939static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
940 __acquires(rq->lock)
941{
0970d299
PZ
942 struct rq *rq;
943
3a5c359a 944 for (;;) {
0970d299 945 rq = task_rq(p);
05fa785c 946 raw_spin_lock(&rq->lock);
65cc8e48 947 if (likely(rq == task_rq(p)))
3a5c359a 948 return rq;
05fa785c 949 raw_spin_unlock(&rq->lock);
b29739f9 950 }
b29739f9
IM
951}
952
1da177e4
LT
953/*
954 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 955 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
956 * explicitly disabling preemption.
957 */
70b97a7f 958static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
959 __acquires(rq->lock)
960{
70b97a7f 961 struct rq *rq;
1da177e4 962
3a5c359a
AK
963 for (;;) {
964 local_irq_save(*flags);
965 rq = task_rq(p);
05fa785c 966 raw_spin_lock(&rq->lock);
65cc8e48 967 if (likely(rq == task_rq(p)))
3a5c359a 968 return rq;
05fa785c 969 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 970 }
1da177e4
LT
971}
972
a9957449 973static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
974 __releases(rq->lock)
975{
05fa785c 976 raw_spin_unlock(&rq->lock);
b29739f9
IM
977}
978
70b97a7f 979static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
980 __releases(rq->lock)
981{
05fa785c 982 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
983}
984
1da177e4 985/*
cc2a73b5 986 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 987 */
a9957449 988static struct rq *this_rq_lock(void)
1da177e4
LT
989 __acquires(rq->lock)
990{
70b97a7f 991 struct rq *rq;
1da177e4
LT
992
993 local_irq_disable();
994 rq = this_rq();
05fa785c 995 raw_spin_lock(&rq->lock);
1da177e4
LT
996
997 return rq;
998}
999
8f4d37ec
PZ
1000#ifdef CONFIG_SCHED_HRTICK
1001/*
1002 * Use HR-timers to deliver accurate preemption points.
1003 *
1004 * Its all a bit involved since we cannot program an hrt while holding the
1005 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1006 * reschedule event.
1007 *
1008 * When we get rescheduled we reprogram the hrtick_timer outside of the
1009 * rq->lock.
1010 */
8f4d37ec
PZ
1011
1012/*
1013 * Use hrtick when:
1014 * - enabled by features
1015 * - hrtimer is actually high res
1016 */
1017static inline int hrtick_enabled(struct rq *rq)
1018{
1019 if (!sched_feat(HRTICK))
1020 return 0;
ba42059f 1021 if (!cpu_active(cpu_of(rq)))
b328ca18 1022 return 0;
8f4d37ec
PZ
1023 return hrtimer_is_hres_active(&rq->hrtick_timer);
1024}
1025
8f4d37ec
PZ
1026static void hrtick_clear(struct rq *rq)
1027{
1028 if (hrtimer_active(&rq->hrtick_timer))
1029 hrtimer_cancel(&rq->hrtick_timer);
1030}
1031
8f4d37ec
PZ
1032/*
1033 * High-resolution timer tick.
1034 * Runs from hardirq context with interrupts disabled.
1035 */
1036static enum hrtimer_restart hrtick(struct hrtimer *timer)
1037{
1038 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1039
1040 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1041
05fa785c 1042 raw_spin_lock(&rq->lock);
3e51f33f 1043 update_rq_clock(rq);
8f4d37ec 1044 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1045 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1046
1047 return HRTIMER_NORESTART;
1048}
1049
95e904c7 1050#ifdef CONFIG_SMP
31656519
PZ
1051/*
1052 * called from hardirq (IPI) context
1053 */
1054static void __hrtick_start(void *arg)
b328ca18 1055{
31656519 1056 struct rq *rq = arg;
b328ca18 1057
05fa785c 1058 raw_spin_lock(&rq->lock);
31656519
PZ
1059 hrtimer_restart(&rq->hrtick_timer);
1060 rq->hrtick_csd_pending = 0;
05fa785c 1061 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1062}
1063
31656519
PZ
1064/*
1065 * Called to set the hrtick timer state.
1066 *
1067 * called with rq->lock held and irqs disabled
1068 */
1069static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1070{
31656519
PZ
1071 struct hrtimer *timer = &rq->hrtick_timer;
1072 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1073
cc584b21 1074 hrtimer_set_expires(timer, time);
31656519
PZ
1075
1076 if (rq == this_rq()) {
1077 hrtimer_restart(timer);
1078 } else if (!rq->hrtick_csd_pending) {
6e275637 1079 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1080 rq->hrtick_csd_pending = 1;
1081 }
b328ca18
PZ
1082}
1083
1084static int
1085hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1086{
1087 int cpu = (int)(long)hcpu;
1088
1089 switch (action) {
1090 case CPU_UP_CANCELED:
1091 case CPU_UP_CANCELED_FROZEN:
1092 case CPU_DOWN_PREPARE:
1093 case CPU_DOWN_PREPARE_FROZEN:
1094 case CPU_DEAD:
1095 case CPU_DEAD_FROZEN:
31656519 1096 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1097 return NOTIFY_OK;
1098 }
1099
1100 return NOTIFY_DONE;
1101}
1102
fa748203 1103static __init void init_hrtick(void)
b328ca18
PZ
1104{
1105 hotcpu_notifier(hotplug_hrtick, 0);
1106}
31656519
PZ
1107#else
1108/*
1109 * Called to set the hrtick timer state.
1110 *
1111 * called with rq->lock held and irqs disabled
1112 */
1113static void hrtick_start(struct rq *rq, u64 delay)
1114{
7f1e2ca9 1115 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1116 HRTIMER_MODE_REL_PINNED, 0);
31656519 1117}
b328ca18 1118
006c75f1 1119static inline void init_hrtick(void)
8f4d37ec 1120{
8f4d37ec 1121}
31656519 1122#endif /* CONFIG_SMP */
8f4d37ec 1123
31656519 1124static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1125{
31656519
PZ
1126#ifdef CONFIG_SMP
1127 rq->hrtick_csd_pending = 0;
8f4d37ec 1128
31656519
PZ
1129 rq->hrtick_csd.flags = 0;
1130 rq->hrtick_csd.func = __hrtick_start;
1131 rq->hrtick_csd.info = rq;
1132#endif
8f4d37ec 1133
31656519
PZ
1134 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1135 rq->hrtick_timer.function = hrtick;
8f4d37ec 1136}
006c75f1 1137#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1138static inline void hrtick_clear(struct rq *rq)
1139{
1140}
1141
8f4d37ec
PZ
1142static inline void init_rq_hrtick(struct rq *rq)
1143{
1144}
1145
b328ca18
PZ
1146static inline void init_hrtick(void)
1147{
1148}
006c75f1 1149#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1150
c24d20db
IM
1151/*
1152 * resched_task - mark a task 'to be rescheduled now'.
1153 *
1154 * On UP this means the setting of the need_resched flag, on SMP it
1155 * might also involve a cross-CPU call to trigger the scheduler on
1156 * the target CPU.
1157 */
1158#ifdef CONFIG_SMP
1159
1160#ifndef tsk_is_polling
1161#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1162#endif
1163
31656519 1164static void resched_task(struct task_struct *p)
c24d20db
IM
1165{
1166 int cpu;
1167
05fa785c 1168 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1169
5ed0cec0 1170 if (test_tsk_need_resched(p))
c24d20db
IM
1171 return;
1172
5ed0cec0 1173 set_tsk_need_resched(p);
c24d20db
IM
1174
1175 cpu = task_cpu(p);
1176 if (cpu == smp_processor_id())
1177 return;
1178
1179 /* NEED_RESCHED must be visible before we test polling */
1180 smp_mb();
1181 if (!tsk_is_polling(p))
1182 smp_send_reschedule(cpu);
1183}
1184
1185static void resched_cpu(int cpu)
1186{
1187 struct rq *rq = cpu_rq(cpu);
1188 unsigned long flags;
1189
05fa785c 1190 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1191 return;
1192 resched_task(cpu_curr(cpu));
05fa785c 1193 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1194}
06d8308c
TG
1195
1196#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1197/*
1198 * In the semi idle case, use the nearest busy cpu for migrating timers
1199 * from an idle cpu. This is good for power-savings.
1200 *
1201 * We don't do similar optimization for completely idle system, as
1202 * selecting an idle cpu will add more delays to the timers than intended
1203 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1204 */
1205int get_nohz_timer_target(void)
1206{
1207 int cpu = smp_processor_id();
1208 int i;
1209 struct sched_domain *sd;
1210
1211 for_each_domain(cpu, sd) {
1212 for_each_cpu(i, sched_domain_span(sd))
1213 if (!idle_cpu(i))
1214 return i;
1215 }
1216 return cpu;
1217}
06d8308c
TG
1218/*
1219 * When add_timer_on() enqueues a timer into the timer wheel of an
1220 * idle CPU then this timer might expire before the next timer event
1221 * which is scheduled to wake up that CPU. In case of a completely
1222 * idle system the next event might even be infinite time into the
1223 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1224 * leaves the inner idle loop so the newly added timer is taken into
1225 * account when the CPU goes back to idle and evaluates the timer
1226 * wheel for the next timer event.
1227 */
1228void wake_up_idle_cpu(int cpu)
1229{
1230 struct rq *rq = cpu_rq(cpu);
1231
1232 if (cpu == smp_processor_id())
1233 return;
1234
1235 /*
1236 * This is safe, as this function is called with the timer
1237 * wheel base lock of (cpu) held. When the CPU is on the way
1238 * to idle and has not yet set rq->curr to idle then it will
1239 * be serialized on the timer wheel base lock and take the new
1240 * timer into account automatically.
1241 */
1242 if (rq->curr != rq->idle)
1243 return;
1244
1245 /*
1246 * We can set TIF_RESCHED on the idle task of the other CPU
1247 * lockless. The worst case is that the other CPU runs the
1248 * idle task through an additional NOOP schedule()
1249 */
5ed0cec0 1250 set_tsk_need_resched(rq->idle);
06d8308c
TG
1251
1252 /* NEED_RESCHED must be visible before we test polling */
1253 smp_mb();
1254 if (!tsk_is_polling(rq->idle))
1255 smp_send_reschedule(cpu);
1256}
39c0cbe2 1257
6d6bc0ad 1258#endif /* CONFIG_NO_HZ */
06d8308c 1259
e9e9250b
PZ
1260static u64 sched_avg_period(void)
1261{
1262 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1263}
1264
1265static void sched_avg_update(struct rq *rq)
1266{
1267 s64 period = sched_avg_period();
1268
1269 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1270 /*
1271 * Inline assembly required to prevent the compiler
1272 * optimising this loop into a divmod call.
1273 * See __iter_div_u64_rem() for another example of this.
1274 */
1275 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1276 rq->age_stamp += period;
1277 rq->rt_avg /= 2;
1278 }
1279}
1280
1281static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1282{
1283 rq->rt_avg += rt_delta;
1284 sched_avg_update(rq);
1285}
1286
6d6bc0ad 1287#else /* !CONFIG_SMP */
31656519 1288static void resched_task(struct task_struct *p)
c24d20db 1289{
05fa785c 1290 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1291 set_tsk_need_resched(p);
c24d20db 1292}
e9e9250b
PZ
1293
1294static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1295{
1296}
da2b71ed
SS
1297
1298static void sched_avg_update(struct rq *rq)
1299{
1300}
6d6bc0ad 1301#endif /* CONFIG_SMP */
c24d20db 1302
45bf76df
IM
1303#if BITS_PER_LONG == 32
1304# define WMULT_CONST (~0UL)
1305#else
1306# define WMULT_CONST (1UL << 32)
1307#endif
1308
1309#define WMULT_SHIFT 32
1310
194081eb
IM
1311/*
1312 * Shift right and round:
1313 */
cf2ab469 1314#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1315
a7be37ac
PZ
1316/*
1317 * delta *= weight / lw
1318 */
cb1c4fc9 1319static unsigned long
45bf76df
IM
1320calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1321 struct load_weight *lw)
1322{
1323 u64 tmp;
1324
7a232e03
LJ
1325 if (!lw->inv_weight) {
1326 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1327 lw->inv_weight = 1;
1328 else
1329 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1330 / (lw->weight+1);
1331 }
45bf76df
IM
1332
1333 tmp = (u64)delta_exec * weight;
1334 /*
1335 * Check whether we'd overflow the 64-bit multiplication:
1336 */
194081eb 1337 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1338 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1339 WMULT_SHIFT/2);
1340 else
cf2ab469 1341 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1342
ecf691da 1343 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1344}
1345
1091985b 1346static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1347{
1348 lw->weight += inc;
e89996ae 1349 lw->inv_weight = 0;
45bf76df
IM
1350}
1351
1091985b 1352static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1353{
1354 lw->weight -= dec;
e89996ae 1355 lw->inv_weight = 0;
45bf76df
IM
1356}
1357
2dd73a4f
PW
1358/*
1359 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1360 * of tasks with abnormal "nice" values across CPUs the contribution that
1361 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1362 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1363 * scaled version of the new time slice allocation that they receive on time
1364 * slice expiry etc.
1365 */
1366
cce7ade8
PZ
1367#define WEIGHT_IDLEPRIO 3
1368#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1369
1370/*
1371 * Nice levels are multiplicative, with a gentle 10% change for every
1372 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1373 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1374 * that remained on nice 0.
1375 *
1376 * The "10% effect" is relative and cumulative: from _any_ nice level,
1377 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1378 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1379 * If a task goes up by ~10% and another task goes down by ~10% then
1380 * the relative distance between them is ~25%.)
dd41f596
IM
1381 */
1382static const int prio_to_weight[40] = {
254753dc
IM
1383 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1384 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1385 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1386 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1387 /* 0 */ 1024, 820, 655, 526, 423,
1388 /* 5 */ 335, 272, 215, 172, 137,
1389 /* 10 */ 110, 87, 70, 56, 45,
1390 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1391};
1392
5714d2de
IM
1393/*
1394 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1395 *
1396 * In cases where the weight does not change often, we can use the
1397 * precalculated inverse to speed up arithmetics by turning divisions
1398 * into multiplications:
1399 */
dd41f596 1400static const u32 prio_to_wmult[40] = {
254753dc
IM
1401 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1402 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1403 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1404 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1405 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1406 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1407 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1408 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1409};
2dd73a4f 1410
ef12fefa
BR
1411/* Time spent by the tasks of the cpu accounting group executing in ... */
1412enum cpuacct_stat_index {
1413 CPUACCT_STAT_USER, /* ... user mode */
1414 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1415
1416 CPUACCT_STAT_NSTATS,
1417};
1418
d842de87
SV
1419#ifdef CONFIG_CGROUP_CPUACCT
1420static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1421static void cpuacct_update_stats(struct task_struct *tsk,
1422 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1423#else
1424static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1425static inline void cpuacct_update_stats(struct task_struct *tsk,
1426 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1427#endif
1428
18d95a28
PZ
1429static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1430{
1431 update_load_add(&rq->load, load);
1432}
1433
1434static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1435{
1436 update_load_sub(&rq->load, load);
1437}
1438
7940ca36 1439#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1440typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1441
1442/*
1443 * Iterate the full tree, calling @down when first entering a node and @up when
1444 * leaving it for the final time.
1445 */
eb755805 1446static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1447{
1448 struct task_group *parent, *child;
eb755805 1449 int ret;
c09595f6
PZ
1450
1451 rcu_read_lock();
1452 parent = &root_task_group;
1453down:
eb755805
PZ
1454 ret = (*down)(parent, data);
1455 if (ret)
1456 goto out_unlock;
c09595f6
PZ
1457 list_for_each_entry_rcu(child, &parent->children, siblings) {
1458 parent = child;
1459 goto down;
1460
1461up:
1462 continue;
1463 }
eb755805
PZ
1464 ret = (*up)(parent, data);
1465 if (ret)
1466 goto out_unlock;
c09595f6
PZ
1467
1468 child = parent;
1469 parent = parent->parent;
1470 if (parent)
1471 goto up;
eb755805 1472out_unlock:
c09595f6 1473 rcu_read_unlock();
eb755805
PZ
1474
1475 return ret;
c09595f6
PZ
1476}
1477
eb755805
PZ
1478static int tg_nop(struct task_group *tg, void *data)
1479{
1480 return 0;
c09595f6 1481}
eb755805
PZ
1482#endif
1483
1484#ifdef CONFIG_SMP
f5f08f39
PZ
1485/* Used instead of source_load when we know the type == 0 */
1486static unsigned long weighted_cpuload(const int cpu)
1487{
1488 return cpu_rq(cpu)->load.weight;
1489}
1490
1491/*
1492 * Return a low guess at the load of a migration-source cpu weighted
1493 * according to the scheduling class and "nice" value.
1494 *
1495 * We want to under-estimate the load of migration sources, to
1496 * balance conservatively.
1497 */
1498static unsigned long source_load(int cpu, int type)
1499{
1500 struct rq *rq = cpu_rq(cpu);
1501 unsigned long total = weighted_cpuload(cpu);
1502
1503 if (type == 0 || !sched_feat(LB_BIAS))
1504 return total;
1505
1506 return min(rq->cpu_load[type-1], total);
1507}
1508
1509/*
1510 * Return a high guess at the load of a migration-target cpu weighted
1511 * according to the scheduling class and "nice" value.
1512 */
1513static unsigned long target_load(int cpu, int type)
1514{
1515 struct rq *rq = cpu_rq(cpu);
1516 unsigned long total = weighted_cpuload(cpu);
1517
1518 if (type == 0 || !sched_feat(LB_BIAS))
1519 return total;
1520
1521 return max(rq->cpu_load[type-1], total);
1522}
1523
ae154be1
PZ
1524static unsigned long power_of(int cpu)
1525{
e51fd5e2 1526 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1527}
1528
eb755805
PZ
1529static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1530
1531static unsigned long cpu_avg_load_per_task(int cpu)
1532{
1533 struct rq *rq = cpu_rq(cpu);
af6d596f 1534 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1535
4cd42620
SR
1536 if (nr_running)
1537 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1538 else
1539 rq->avg_load_per_task = 0;
eb755805
PZ
1540
1541 return rq->avg_load_per_task;
1542}
1543
1544#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1545
43cf38eb 1546static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1547
c09595f6
PZ
1548static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1549
1550/*
1551 * Calculate and set the cpu's group shares.
1552 */
34d76c41
PZ
1553static void update_group_shares_cpu(struct task_group *tg, int cpu,
1554 unsigned long sd_shares,
1555 unsigned long sd_rq_weight,
4a6cc4bd 1556 unsigned long *usd_rq_weight)
18d95a28 1557{
34d76c41 1558 unsigned long shares, rq_weight;
a5004278 1559 int boost = 0;
c09595f6 1560
4a6cc4bd 1561 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1562 if (!rq_weight) {
1563 boost = 1;
1564 rq_weight = NICE_0_LOAD;
1565 }
c8cba857 1566
c09595f6 1567 /*
a8af7246
PZ
1568 * \Sum_j shares_j * rq_weight_i
1569 * shares_i = -----------------------------
1570 * \Sum_j rq_weight_j
c09595f6 1571 */
ec4e0e2f 1572 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1573 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1574
ffda12a1
PZ
1575 if (abs(shares - tg->se[cpu]->load.weight) >
1576 sysctl_sched_shares_thresh) {
1577 struct rq *rq = cpu_rq(cpu);
1578 unsigned long flags;
c09595f6 1579
05fa785c 1580 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1581 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1582 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1583 __set_se_shares(tg->se[cpu], shares);
05fa785c 1584 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1585 }
18d95a28 1586}
c09595f6
PZ
1587
1588/*
c8cba857
PZ
1589 * Re-compute the task group their per cpu shares over the given domain.
1590 * This needs to be done in a bottom-up fashion because the rq weight of a
1591 * parent group depends on the shares of its child groups.
c09595f6 1592 */
eb755805 1593static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1594{
cd8ad40d 1595 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1596 unsigned long *usd_rq_weight;
eb755805 1597 struct sched_domain *sd = data;
34d76c41 1598 unsigned long flags;
c8cba857 1599 int i;
c09595f6 1600
34d76c41
PZ
1601 if (!tg->se[0])
1602 return 0;
1603
1604 local_irq_save(flags);
4a6cc4bd 1605 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1606
758b2cdc 1607 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1608 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1609 usd_rq_weight[i] = weight;
34d76c41 1610
cd8ad40d 1611 rq_weight += weight;
ec4e0e2f
KC
1612 /*
1613 * If there are currently no tasks on the cpu pretend there
1614 * is one of average load so that when a new task gets to
1615 * run here it will not get delayed by group starvation.
1616 */
ec4e0e2f
KC
1617 if (!weight)
1618 weight = NICE_0_LOAD;
1619
cd8ad40d 1620 sum_weight += weight;
c8cba857 1621 shares += tg->cfs_rq[i]->shares;
c09595f6 1622 }
c09595f6 1623
cd8ad40d
PZ
1624 if (!rq_weight)
1625 rq_weight = sum_weight;
1626
c8cba857
PZ
1627 if ((!shares && rq_weight) || shares > tg->shares)
1628 shares = tg->shares;
1629
1630 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1631 shares = tg->shares;
c09595f6 1632
758b2cdc 1633 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1634 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1635
1636 local_irq_restore(flags);
eb755805
PZ
1637
1638 return 0;
c09595f6
PZ
1639}
1640
1641/*
c8cba857
PZ
1642 * Compute the cpu's hierarchical load factor for each task group.
1643 * This needs to be done in a top-down fashion because the load of a child
1644 * group is a fraction of its parents load.
c09595f6 1645 */
eb755805 1646static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1647{
c8cba857 1648 unsigned long load;
eb755805 1649 long cpu = (long)data;
c09595f6 1650
c8cba857
PZ
1651 if (!tg->parent) {
1652 load = cpu_rq(cpu)->load.weight;
1653 } else {
1654 load = tg->parent->cfs_rq[cpu]->h_load;
1655 load *= tg->cfs_rq[cpu]->shares;
1656 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1657 }
c09595f6 1658
c8cba857 1659 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1660
eb755805 1661 return 0;
c09595f6
PZ
1662}
1663
c8cba857 1664static void update_shares(struct sched_domain *sd)
4d8d595d 1665{
e7097159
PZ
1666 s64 elapsed;
1667 u64 now;
1668
1669 if (root_task_group_empty())
1670 return;
1671
c676329a 1672 now = local_clock();
e7097159 1673 elapsed = now - sd->last_update;
2398f2c6
PZ
1674
1675 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1676 sd->last_update = now;
eb755805 1677 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1678 }
4d8d595d
PZ
1679}
1680
eb755805 1681static void update_h_load(long cpu)
c09595f6 1682{
eb755805 1683 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1684}
1685
c09595f6
PZ
1686#else
1687
c8cba857 1688static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1689{
1690}
1691
18d95a28
PZ
1692#endif
1693
8f45e2b5
GH
1694#ifdef CONFIG_PREEMPT
1695
b78bb868
PZ
1696static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1697
70574a99 1698/*
8f45e2b5
GH
1699 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1700 * way at the expense of forcing extra atomic operations in all
1701 * invocations. This assures that the double_lock is acquired using the
1702 * same underlying policy as the spinlock_t on this architecture, which
1703 * reduces latency compared to the unfair variant below. However, it
1704 * also adds more overhead and therefore may reduce throughput.
70574a99 1705 */
8f45e2b5
GH
1706static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1707 __releases(this_rq->lock)
1708 __acquires(busiest->lock)
1709 __acquires(this_rq->lock)
1710{
05fa785c 1711 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1712 double_rq_lock(this_rq, busiest);
1713
1714 return 1;
1715}
1716
1717#else
1718/*
1719 * Unfair double_lock_balance: Optimizes throughput at the expense of
1720 * latency by eliminating extra atomic operations when the locks are
1721 * already in proper order on entry. This favors lower cpu-ids and will
1722 * grant the double lock to lower cpus over higher ids under contention,
1723 * regardless of entry order into the function.
1724 */
1725static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1726 __releases(this_rq->lock)
1727 __acquires(busiest->lock)
1728 __acquires(this_rq->lock)
1729{
1730 int ret = 0;
1731
05fa785c 1732 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1733 if (busiest < this_rq) {
05fa785c
TG
1734 raw_spin_unlock(&this_rq->lock);
1735 raw_spin_lock(&busiest->lock);
1736 raw_spin_lock_nested(&this_rq->lock,
1737 SINGLE_DEPTH_NESTING);
70574a99
AD
1738 ret = 1;
1739 } else
05fa785c
TG
1740 raw_spin_lock_nested(&busiest->lock,
1741 SINGLE_DEPTH_NESTING);
70574a99
AD
1742 }
1743 return ret;
1744}
1745
8f45e2b5
GH
1746#endif /* CONFIG_PREEMPT */
1747
1748/*
1749 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1750 */
1751static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1752{
1753 if (unlikely(!irqs_disabled())) {
1754 /* printk() doesn't work good under rq->lock */
05fa785c 1755 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1756 BUG_ON(1);
1757 }
1758
1759 return _double_lock_balance(this_rq, busiest);
1760}
1761
70574a99
AD
1762static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1763 __releases(busiest->lock)
1764{
05fa785c 1765 raw_spin_unlock(&busiest->lock);
70574a99
AD
1766 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1767}
1e3c88bd
PZ
1768
1769/*
1770 * double_rq_lock - safely lock two runqueues
1771 *
1772 * Note this does not disable interrupts like task_rq_lock,
1773 * you need to do so manually before calling.
1774 */
1775static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1776 __acquires(rq1->lock)
1777 __acquires(rq2->lock)
1778{
1779 BUG_ON(!irqs_disabled());
1780 if (rq1 == rq2) {
1781 raw_spin_lock(&rq1->lock);
1782 __acquire(rq2->lock); /* Fake it out ;) */
1783 } else {
1784 if (rq1 < rq2) {
1785 raw_spin_lock(&rq1->lock);
1786 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1787 } else {
1788 raw_spin_lock(&rq2->lock);
1789 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1790 }
1791 }
1e3c88bd
PZ
1792}
1793
1794/*
1795 * double_rq_unlock - safely unlock two runqueues
1796 *
1797 * Note this does not restore interrupts like task_rq_unlock,
1798 * you need to do so manually after calling.
1799 */
1800static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1801 __releases(rq1->lock)
1802 __releases(rq2->lock)
1803{
1804 raw_spin_unlock(&rq1->lock);
1805 if (rq1 != rq2)
1806 raw_spin_unlock(&rq2->lock);
1807 else
1808 __release(rq2->lock);
1809}
1810
18d95a28
PZ
1811#endif
1812
30432094 1813#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1814static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1815{
30432094 1816#ifdef CONFIG_SMP
34e83e85
IM
1817 cfs_rq->shares = shares;
1818#endif
1819}
30432094 1820#endif
e7693a36 1821
74f5187a 1822static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1823static void update_sysctl(void);
acb4a848 1824static int get_update_sysctl_factor(void);
fdf3e95d 1825static void update_cpu_load(struct rq *this_rq);
dce48a84 1826
cd29fe6f
PZ
1827static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1828{
1829 set_task_rq(p, cpu);
1830#ifdef CONFIG_SMP
1831 /*
1832 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1833 * successfuly executed on another CPU. We must ensure that updates of
1834 * per-task data have been completed by this moment.
1835 */
1836 smp_wmb();
1837 task_thread_info(p)->cpu = cpu;
1838#endif
1839}
dce48a84 1840
1e3c88bd 1841static const struct sched_class rt_sched_class;
dd41f596 1842
34f971f6 1843#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1844#define for_each_class(class) \
1845 for (class = sched_class_highest; class; class = class->next)
dd41f596 1846
1e3c88bd
PZ
1847#include "sched_stats.h"
1848
c09595f6 1849static void inc_nr_running(struct rq *rq)
9c217245
IM
1850{
1851 rq->nr_running++;
9c217245
IM
1852}
1853
c09595f6 1854static void dec_nr_running(struct rq *rq)
9c217245
IM
1855{
1856 rq->nr_running--;
9c217245
IM
1857}
1858
45bf76df
IM
1859static void set_load_weight(struct task_struct *p)
1860{
dd41f596
IM
1861 /*
1862 * SCHED_IDLE tasks get minimal weight:
1863 */
1864 if (p->policy == SCHED_IDLE) {
1865 p->se.load.weight = WEIGHT_IDLEPRIO;
1866 p->se.load.inv_weight = WMULT_IDLEPRIO;
1867 return;
1868 }
71f8bd46 1869
dd41f596
IM
1870 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1871 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1872}
1873
371fd7e7 1874static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1875{
a64692a3 1876 update_rq_clock(rq);
dd41f596 1877 sched_info_queued(p);
371fd7e7 1878 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1879 p->se.on_rq = 1;
71f8bd46
IM
1880}
1881
371fd7e7 1882static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1883{
a64692a3 1884 update_rq_clock(rq);
46ac22ba 1885 sched_info_dequeued(p);
371fd7e7 1886 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1887 p->se.on_rq = 0;
71f8bd46
IM
1888}
1889
1e3c88bd
PZ
1890/*
1891 * activate_task - move a task to the runqueue.
1892 */
371fd7e7 1893static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1894{
1895 if (task_contributes_to_load(p))
1896 rq->nr_uninterruptible--;
1897
371fd7e7 1898 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1899 inc_nr_running(rq);
1900}
1901
1902/*
1903 * deactivate_task - remove a task from the runqueue.
1904 */
371fd7e7 1905static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1906{
1907 if (task_contributes_to_load(p))
1908 rq->nr_uninterruptible++;
1909
371fd7e7 1910 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1911 dec_nr_running(rq);
1912}
1913
b52bfee4
VP
1914#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1915
305e6835
VP
1916/*
1917 * There are no locks covering percpu hardirq/softirq time.
1918 * They are only modified in account_system_vtime, on corresponding CPU
1919 * with interrupts disabled. So, writes are safe.
1920 * They are read and saved off onto struct rq in update_rq_clock().
1921 * This may result in other CPU reading this CPU's irq time and can
1922 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1923 * or new value with a side effect of accounting a slice of irq time to wrong
1924 * task when irq is in progress while we read rq->clock. That is a worthy
1925 * compromise in place of having locks on each irq in account_system_time.
305e6835 1926 */
b52bfee4
VP
1927static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1928static DEFINE_PER_CPU(u64, cpu_softirq_time);
1929
1930static DEFINE_PER_CPU(u64, irq_start_time);
1931static int sched_clock_irqtime;
1932
1933void enable_sched_clock_irqtime(void)
1934{
1935 sched_clock_irqtime = 1;
1936}
1937
1938void disable_sched_clock_irqtime(void)
1939{
1940 sched_clock_irqtime = 0;
1941}
1942
8e92c201
PZ
1943#ifndef CONFIG_64BIT
1944static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1945
1946static inline void irq_time_write_begin(void)
1947{
1948 __this_cpu_inc(irq_time_seq.sequence);
1949 smp_wmb();
1950}
1951
1952static inline void irq_time_write_end(void)
1953{
1954 smp_wmb();
1955 __this_cpu_inc(irq_time_seq.sequence);
1956}
1957
1958static inline u64 irq_time_read(int cpu)
1959{
1960 u64 irq_time;
1961 unsigned seq;
1962
1963 do {
1964 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1965 irq_time = per_cpu(cpu_softirq_time, cpu) +
1966 per_cpu(cpu_hardirq_time, cpu);
1967 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1968
1969 return irq_time;
1970}
1971#else /* CONFIG_64BIT */
1972static inline void irq_time_write_begin(void)
1973{
1974}
1975
1976static inline void irq_time_write_end(void)
1977{
1978}
1979
1980static inline u64 irq_time_read(int cpu)
305e6835 1981{
305e6835
VP
1982 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1983}
8e92c201 1984#endif /* CONFIG_64BIT */
305e6835 1985
fe44d621
PZ
1986/*
1987 * Called before incrementing preempt_count on {soft,}irq_enter
1988 * and before decrementing preempt_count on {soft,}irq_exit.
1989 */
b52bfee4
VP
1990void account_system_vtime(struct task_struct *curr)
1991{
1992 unsigned long flags;
fe44d621 1993 s64 delta;
b52bfee4 1994 int cpu;
b52bfee4
VP
1995
1996 if (!sched_clock_irqtime)
1997 return;
1998
1999 local_irq_save(flags);
2000
b52bfee4 2001 cpu = smp_processor_id();
fe44d621
PZ
2002 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2003 __this_cpu_add(irq_start_time, delta);
2004
8e92c201 2005 irq_time_write_begin();
b52bfee4
VP
2006 /*
2007 * We do not account for softirq time from ksoftirqd here.
2008 * We want to continue accounting softirq time to ksoftirqd thread
2009 * in that case, so as not to confuse scheduler with a special task
2010 * that do not consume any time, but still wants to run.
2011 */
2012 if (hardirq_count())
fe44d621 2013 __this_cpu_add(cpu_hardirq_time, delta);
b52bfee4 2014 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
fe44d621 2015 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 2016
8e92c201 2017 irq_time_write_end();
b52bfee4
VP
2018 local_irq_restore(flags);
2019}
b7dadc38 2020EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 2021
fe44d621 2022static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 2023{
fe44d621
PZ
2024 s64 irq_delta;
2025
8e92c201 2026 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
2027
2028 /*
2029 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2030 * this case when a previous update_rq_clock() happened inside a
2031 * {soft,}irq region.
2032 *
2033 * When this happens, we stop ->clock_task and only update the
2034 * prev_irq_time stamp to account for the part that fit, so that a next
2035 * update will consume the rest. This ensures ->clock_task is
2036 * monotonic.
2037 *
2038 * It does however cause some slight miss-attribution of {soft,}irq
2039 * time, a more accurate solution would be to update the irq_time using
2040 * the current rq->clock timestamp, except that would require using
2041 * atomic ops.
2042 */
2043 if (irq_delta > delta)
2044 irq_delta = delta;
2045
2046 rq->prev_irq_time += irq_delta;
2047 delta -= irq_delta;
2048 rq->clock_task += delta;
2049
2050 if (irq_delta && sched_feat(NONIRQ_POWER))
2051 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
2052}
2053
fe44d621 2054#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 2055
fe44d621 2056static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 2057{
fe44d621 2058 rq->clock_task += delta;
305e6835
VP
2059}
2060
fe44d621 2061#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 2062
1e3c88bd
PZ
2063#include "sched_idletask.c"
2064#include "sched_fair.c"
2065#include "sched_rt.c"
34f971f6 2066#include "sched_stoptask.c"
1e3c88bd
PZ
2067#ifdef CONFIG_SCHED_DEBUG
2068# include "sched_debug.c"
2069#endif
2070
34f971f6
PZ
2071void sched_set_stop_task(int cpu, struct task_struct *stop)
2072{
2073 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2074 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2075
2076 if (stop) {
2077 /*
2078 * Make it appear like a SCHED_FIFO task, its something
2079 * userspace knows about and won't get confused about.
2080 *
2081 * Also, it will make PI more or less work without too
2082 * much confusion -- but then, stop work should not
2083 * rely on PI working anyway.
2084 */
2085 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2086
2087 stop->sched_class = &stop_sched_class;
2088 }
2089
2090 cpu_rq(cpu)->stop = stop;
2091
2092 if (old_stop) {
2093 /*
2094 * Reset it back to a normal scheduling class so that
2095 * it can die in pieces.
2096 */
2097 old_stop->sched_class = &rt_sched_class;
2098 }
2099}
2100
14531189 2101/*
dd41f596 2102 * __normal_prio - return the priority that is based on the static prio
14531189 2103 */
14531189
IM
2104static inline int __normal_prio(struct task_struct *p)
2105{
dd41f596 2106 return p->static_prio;
14531189
IM
2107}
2108
b29739f9
IM
2109/*
2110 * Calculate the expected normal priority: i.e. priority
2111 * without taking RT-inheritance into account. Might be
2112 * boosted by interactivity modifiers. Changes upon fork,
2113 * setprio syscalls, and whenever the interactivity
2114 * estimator recalculates.
2115 */
36c8b586 2116static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2117{
2118 int prio;
2119
e05606d3 2120 if (task_has_rt_policy(p))
b29739f9
IM
2121 prio = MAX_RT_PRIO-1 - p->rt_priority;
2122 else
2123 prio = __normal_prio(p);
2124 return prio;
2125}
2126
2127/*
2128 * Calculate the current priority, i.e. the priority
2129 * taken into account by the scheduler. This value might
2130 * be boosted by RT tasks, or might be boosted by
2131 * interactivity modifiers. Will be RT if the task got
2132 * RT-boosted. If not then it returns p->normal_prio.
2133 */
36c8b586 2134static int effective_prio(struct task_struct *p)
b29739f9
IM
2135{
2136 p->normal_prio = normal_prio(p);
2137 /*
2138 * If we are RT tasks or we were boosted to RT priority,
2139 * keep the priority unchanged. Otherwise, update priority
2140 * to the normal priority:
2141 */
2142 if (!rt_prio(p->prio))
2143 return p->normal_prio;
2144 return p->prio;
2145}
2146
1da177e4
LT
2147/**
2148 * task_curr - is this task currently executing on a CPU?
2149 * @p: the task in question.
2150 */
36c8b586 2151inline int task_curr(const struct task_struct *p)
1da177e4
LT
2152{
2153 return cpu_curr(task_cpu(p)) == p;
2154}
2155
cb469845
SR
2156static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2157 const struct sched_class *prev_class,
2158 int oldprio, int running)
2159{
2160 if (prev_class != p->sched_class) {
2161 if (prev_class->switched_from)
2162 prev_class->switched_from(rq, p, running);
2163 p->sched_class->switched_to(rq, p, running);
2164 } else
2165 p->sched_class->prio_changed(rq, p, oldprio, running);
2166}
2167
1e5a7405
PZ
2168static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2169{
2170 const struct sched_class *class;
2171
2172 if (p->sched_class == rq->curr->sched_class) {
2173 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2174 } else {
2175 for_each_class(class) {
2176 if (class == rq->curr->sched_class)
2177 break;
2178 if (class == p->sched_class) {
2179 resched_task(rq->curr);
2180 break;
2181 }
2182 }
2183 }
2184
2185 /*
2186 * A queue event has occurred, and we're going to schedule. In
2187 * this case, we can save a useless back to back clock update.
2188 */
f26f9aff 2189 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2190 rq->skip_clock_update = 1;
2191}
2192
1da177e4 2193#ifdef CONFIG_SMP
cc367732
IM
2194/*
2195 * Is this task likely cache-hot:
2196 */
e7693a36 2197static int
cc367732
IM
2198task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2199{
2200 s64 delta;
2201
e6c8fba7
PZ
2202 if (p->sched_class != &fair_sched_class)
2203 return 0;
2204
ef8002f6
NR
2205 if (unlikely(p->policy == SCHED_IDLE))
2206 return 0;
2207
f540a608
IM
2208 /*
2209 * Buddy candidates are cache hot:
2210 */
f685ceac 2211 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2212 (&p->se == cfs_rq_of(&p->se)->next ||
2213 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2214 return 1;
2215
6bc1665b
IM
2216 if (sysctl_sched_migration_cost == -1)
2217 return 1;
2218 if (sysctl_sched_migration_cost == 0)
2219 return 0;
2220
cc367732
IM
2221 delta = now - p->se.exec_start;
2222
2223 return delta < (s64)sysctl_sched_migration_cost;
2224}
2225
dd41f596 2226void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2227{
e2912009
PZ
2228#ifdef CONFIG_SCHED_DEBUG
2229 /*
2230 * We should never call set_task_cpu() on a blocked task,
2231 * ttwu() will sort out the placement.
2232 */
077614ee
PZ
2233 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2234 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2235#endif
2236
de1d7286 2237 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2238
0c69774e
PZ
2239 if (task_cpu(p) != new_cpu) {
2240 p->se.nr_migrations++;
2241 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2242 }
dd41f596
IM
2243
2244 __set_task_cpu(p, new_cpu);
c65cc870
IM
2245}
2246
969c7921 2247struct migration_arg {
36c8b586 2248 struct task_struct *task;
1da177e4 2249 int dest_cpu;
70b97a7f 2250};
1da177e4 2251
969c7921
TH
2252static int migration_cpu_stop(void *data);
2253
1da177e4
LT
2254/*
2255 * The task's runqueue lock must be held.
2256 * Returns true if you have to wait for migration thread.
2257 */
969c7921 2258static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2259{
70b97a7f 2260 struct rq *rq = task_rq(p);
1da177e4
LT
2261
2262 /*
2263 * If the task is not on a runqueue (and not running), then
e2912009 2264 * the next wake-up will properly place the task.
1da177e4 2265 */
969c7921 2266 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2267}
2268
2269/*
2270 * wait_task_inactive - wait for a thread to unschedule.
2271 *
85ba2d86
RM
2272 * If @match_state is nonzero, it's the @p->state value just checked and
2273 * not expected to change. If it changes, i.e. @p might have woken up,
2274 * then return zero. When we succeed in waiting for @p to be off its CPU,
2275 * we return a positive number (its total switch count). If a second call
2276 * a short while later returns the same number, the caller can be sure that
2277 * @p has remained unscheduled the whole time.
2278 *
1da177e4
LT
2279 * The caller must ensure that the task *will* unschedule sometime soon,
2280 * else this function might spin for a *long* time. This function can't
2281 * be called with interrupts off, or it may introduce deadlock with
2282 * smp_call_function() if an IPI is sent by the same process we are
2283 * waiting to become inactive.
2284 */
85ba2d86 2285unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2286{
2287 unsigned long flags;
dd41f596 2288 int running, on_rq;
85ba2d86 2289 unsigned long ncsw;
70b97a7f 2290 struct rq *rq;
1da177e4 2291
3a5c359a
AK
2292 for (;;) {
2293 /*
2294 * We do the initial early heuristics without holding
2295 * any task-queue locks at all. We'll only try to get
2296 * the runqueue lock when things look like they will
2297 * work out!
2298 */
2299 rq = task_rq(p);
fa490cfd 2300
3a5c359a
AK
2301 /*
2302 * If the task is actively running on another CPU
2303 * still, just relax and busy-wait without holding
2304 * any locks.
2305 *
2306 * NOTE! Since we don't hold any locks, it's not
2307 * even sure that "rq" stays as the right runqueue!
2308 * But we don't care, since "task_running()" will
2309 * return false if the runqueue has changed and p
2310 * is actually now running somewhere else!
2311 */
85ba2d86
RM
2312 while (task_running(rq, p)) {
2313 if (match_state && unlikely(p->state != match_state))
2314 return 0;
3a5c359a 2315 cpu_relax();
85ba2d86 2316 }
fa490cfd 2317
3a5c359a
AK
2318 /*
2319 * Ok, time to look more closely! We need the rq
2320 * lock now, to be *sure*. If we're wrong, we'll
2321 * just go back and repeat.
2322 */
2323 rq = task_rq_lock(p, &flags);
27a9da65 2324 trace_sched_wait_task(p);
3a5c359a
AK
2325 running = task_running(rq, p);
2326 on_rq = p->se.on_rq;
85ba2d86 2327 ncsw = 0;
f31e11d8 2328 if (!match_state || p->state == match_state)
93dcf55f 2329 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2330 task_rq_unlock(rq, &flags);
fa490cfd 2331
85ba2d86
RM
2332 /*
2333 * If it changed from the expected state, bail out now.
2334 */
2335 if (unlikely(!ncsw))
2336 break;
2337
3a5c359a
AK
2338 /*
2339 * Was it really running after all now that we
2340 * checked with the proper locks actually held?
2341 *
2342 * Oops. Go back and try again..
2343 */
2344 if (unlikely(running)) {
2345 cpu_relax();
2346 continue;
2347 }
fa490cfd 2348
3a5c359a
AK
2349 /*
2350 * It's not enough that it's not actively running,
2351 * it must be off the runqueue _entirely_, and not
2352 * preempted!
2353 *
80dd99b3 2354 * So if it was still runnable (but just not actively
3a5c359a
AK
2355 * running right now), it's preempted, and we should
2356 * yield - it could be a while.
2357 */
2358 if (unlikely(on_rq)) {
2359 schedule_timeout_uninterruptible(1);
2360 continue;
2361 }
fa490cfd 2362
3a5c359a
AK
2363 /*
2364 * Ahh, all good. It wasn't running, and it wasn't
2365 * runnable, which means that it will never become
2366 * running in the future either. We're all done!
2367 */
2368 break;
2369 }
85ba2d86
RM
2370
2371 return ncsw;
1da177e4
LT
2372}
2373
2374/***
2375 * kick_process - kick a running thread to enter/exit the kernel
2376 * @p: the to-be-kicked thread
2377 *
2378 * Cause a process which is running on another CPU to enter
2379 * kernel-mode, without any delay. (to get signals handled.)
2380 *
2381 * NOTE: this function doesnt have to take the runqueue lock,
2382 * because all it wants to ensure is that the remote task enters
2383 * the kernel. If the IPI races and the task has been migrated
2384 * to another CPU then no harm is done and the purpose has been
2385 * achieved as well.
2386 */
36c8b586 2387void kick_process(struct task_struct *p)
1da177e4
LT
2388{
2389 int cpu;
2390
2391 preempt_disable();
2392 cpu = task_cpu(p);
2393 if ((cpu != smp_processor_id()) && task_curr(p))
2394 smp_send_reschedule(cpu);
2395 preempt_enable();
2396}
b43e3521 2397EXPORT_SYMBOL_GPL(kick_process);
476d139c 2398#endif /* CONFIG_SMP */
1da177e4 2399
0793a61d
TG
2400/**
2401 * task_oncpu_function_call - call a function on the cpu on which a task runs
2402 * @p: the task to evaluate
2403 * @func: the function to be called
2404 * @info: the function call argument
2405 *
2406 * Calls the function @func when the task is currently running. This might
2407 * be on the current CPU, which just calls the function directly
2408 */
2409void task_oncpu_function_call(struct task_struct *p,
2410 void (*func) (void *info), void *info)
2411{
2412 int cpu;
2413
2414 preempt_disable();
2415 cpu = task_cpu(p);
2416 if (task_curr(p))
2417 smp_call_function_single(cpu, func, info, 1);
2418 preempt_enable();
2419}
2420
970b13ba 2421#ifdef CONFIG_SMP
30da688e
ON
2422/*
2423 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2424 */
5da9a0fb
PZ
2425static int select_fallback_rq(int cpu, struct task_struct *p)
2426{
2427 int dest_cpu;
2428 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2429
2430 /* Look for allowed, online CPU in same node. */
2431 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2432 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2433 return dest_cpu;
2434
2435 /* Any allowed, online CPU? */
2436 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2437 if (dest_cpu < nr_cpu_ids)
2438 return dest_cpu;
2439
2440 /* No more Mr. Nice Guy. */
897f0b3c 2441 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2442 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2443 /*
2444 * Don't tell them about moving exiting tasks or
2445 * kernel threads (both mm NULL), since they never
2446 * leave kernel.
2447 */
2448 if (p->mm && printk_ratelimit()) {
2449 printk(KERN_INFO "process %d (%s) no "
2450 "longer affine to cpu%d\n",
2451 task_pid_nr(p), p->comm, cpu);
2452 }
2453 }
2454
2455 return dest_cpu;
2456}
2457
e2912009 2458/*
30da688e 2459 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2460 */
970b13ba 2461static inline
0017d735 2462int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2463{
0017d735 2464 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2465
2466 /*
2467 * In order not to call set_task_cpu() on a blocking task we need
2468 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2469 * cpu.
2470 *
2471 * Since this is common to all placement strategies, this lives here.
2472 *
2473 * [ this allows ->select_task() to simply return task_cpu(p) and
2474 * not worry about this generic constraint ]
2475 */
2476 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2477 !cpu_online(cpu)))
5da9a0fb 2478 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2479
2480 return cpu;
970b13ba 2481}
09a40af5
MG
2482
2483static void update_avg(u64 *avg, u64 sample)
2484{
2485 s64 diff = sample - *avg;
2486 *avg += diff >> 3;
2487}
970b13ba
PZ
2488#endif
2489
9ed3811a
TH
2490static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2491 bool is_sync, bool is_migrate, bool is_local,
2492 unsigned long en_flags)
2493{
2494 schedstat_inc(p, se.statistics.nr_wakeups);
2495 if (is_sync)
2496 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2497 if (is_migrate)
2498 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2499 if (is_local)
2500 schedstat_inc(p, se.statistics.nr_wakeups_local);
2501 else
2502 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2503
2504 activate_task(rq, p, en_flags);
2505}
2506
2507static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2508 int wake_flags, bool success)
2509{
2510 trace_sched_wakeup(p, success);
2511 check_preempt_curr(rq, p, wake_flags);
2512
2513 p->state = TASK_RUNNING;
2514#ifdef CONFIG_SMP
2515 if (p->sched_class->task_woken)
2516 p->sched_class->task_woken(rq, p);
2517
2518 if (unlikely(rq->idle_stamp)) {
2519 u64 delta = rq->clock - rq->idle_stamp;
2520 u64 max = 2*sysctl_sched_migration_cost;
2521
2522 if (delta > max)
2523 rq->avg_idle = max;
2524 else
2525 update_avg(&rq->avg_idle, delta);
2526 rq->idle_stamp = 0;
2527 }
2528#endif
21aa9af0
TH
2529 /* if a worker is waking up, notify workqueue */
2530 if ((p->flags & PF_WQ_WORKER) && success)
2531 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2532}
2533
2534/**
1da177e4 2535 * try_to_wake_up - wake up a thread
9ed3811a 2536 * @p: the thread to be awakened
1da177e4 2537 * @state: the mask of task states that can be woken
9ed3811a 2538 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2539 *
2540 * Put it on the run-queue if it's not already there. The "current"
2541 * thread is always on the run-queue (except when the actual
2542 * re-schedule is in progress), and as such you're allowed to do
2543 * the simpler "current->state = TASK_RUNNING" to mark yourself
2544 * runnable without the overhead of this.
2545 *
9ed3811a
TH
2546 * Returns %true if @p was woken up, %false if it was already running
2547 * or @state didn't match @p's state.
1da177e4 2548 */
7d478721
PZ
2549static int try_to_wake_up(struct task_struct *p, unsigned int state,
2550 int wake_flags)
1da177e4 2551{
cc367732 2552 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2553 unsigned long flags;
371fd7e7 2554 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2555 struct rq *rq;
1da177e4 2556
e9c84311 2557 this_cpu = get_cpu();
2398f2c6 2558
04e2f174 2559 smp_wmb();
ab3b3aa5 2560 rq = task_rq_lock(p, &flags);
e9c84311 2561 if (!(p->state & state))
1da177e4
LT
2562 goto out;
2563
dd41f596 2564 if (p->se.on_rq)
1da177e4
LT
2565 goto out_running;
2566
2567 cpu = task_cpu(p);
cc367732 2568 orig_cpu = cpu;
1da177e4
LT
2569
2570#ifdef CONFIG_SMP
2571 if (unlikely(task_running(rq, p)))
2572 goto out_activate;
2573
e9c84311
PZ
2574 /*
2575 * In order to handle concurrent wakeups and release the rq->lock
2576 * we put the task in TASK_WAKING state.
eb24073b
IM
2577 *
2578 * First fix up the nr_uninterruptible count:
e9c84311 2579 */
cc87f76a
PZ
2580 if (task_contributes_to_load(p)) {
2581 if (likely(cpu_online(orig_cpu)))
2582 rq->nr_uninterruptible--;
2583 else
2584 this_rq()->nr_uninterruptible--;
2585 }
e9c84311 2586 p->state = TASK_WAKING;
efbbd05a 2587
371fd7e7 2588 if (p->sched_class->task_waking) {
efbbd05a 2589 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2590 en_flags |= ENQUEUE_WAKING;
2591 }
efbbd05a 2592
0017d735
PZ
2593 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2594 if (cpu != orig_cpu)
5d2f5a61 2595 set_task_cpu(p, cpu);
0017d735 2596 __task_rq_unlock(rq);
ab19cb23 2597
0970d299
PZ
2598 rq = cpu_rq(cpu);
2599 raw_spin_lock(&rq->lock);
f5dc3753 2600
0970d299
PZ
2601 /*
2602 * We migrated the task without holding either rq->lock, however
2603 * since the task is not on the task list itself, nobody else
2604 * will try and migrate the task, hence the rq should match the
2605 * cpu we just moved it to.
2606 */
2607 WARN_ON(task_cpu(p) != cpu);
e9c84311 2608 WARN_ON(p->state != TASK_WAKING);
1da177e4 2609
e7693a36
GH
2610#ifdef CONFIG_SCHEDSTATS
2611 schedstat_inc(rq, ttwu_count);
2612 if (cpu == this_cpu)
2613 schedstat_inc(rq, ttwu_local);
2614 else {
2615 struct sched_domain *sd;
2616 for_each_domain(this_cpu, sd) {
758b2cdc 2617 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2618 schedstat_inc(sd, ttwu_wake_remote);
2619 break;
2620 }
2621 }
2622 }
6d6bc0ad 2623#endif /* CONFIG_SCHEDSTATS */
e7693a36 2624
1da177e4
LT
2625out_activate:
2626#endif /* CONFIG_SMP */
9ed3811a
TH
2627 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2628 cpu == this_cpu, en_flags);
1da177e4 2629 success = 1;
1da177e4 2630out_running:
9ed3811a 2631 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2632out:
2633 task_rq_unlock(rq, &flags);
e9c84311 2634 put_cpu();
1da177e4
LT
2635
2636 return success;
2637}
2638
21aa9af0
TH
2639/**
2640 * try_to_wake_up_local - try to wake up a local task with rq lock held
2641 * @p: the thread to be awakened
2642 *
2643 * Put @p on the run-queue if it's not alredy there. The caller must
2644 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2645 * the current task. this_rq() stays locked over invocation.
2646 */
2647static void try_to_wake_up_local(struct task_struct *p)
2648{
2649 struct rq *rq = task_rq(p);
2650 bool success = false;
2651
2652 BUG_ON(rq != this_rq());
2653 BUG_ON(p == current);
2654 lockdep_assert_held(&rq->lock);
2655
2656 if (!(p->state & TASK_NORMAL))
2657 return;
2658
2659 if (!p->se.on_rq) {
2660 if (likely(!task_running(rq, p))) {
2661 schedstat_inc(rq, ttwu_count);
2662 schedstat_inc(rq, ttwu_local);
2663 }
2664 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2665 success = true;
2666 }
2667 ttwu_post_activation(p, rq, 0, success);
2668}
2669
50fa610a
DH
2670/**
2671 * wake_up_process - Wake up a specific process
2672 * @p: The process to be woken up.
2673 *
2674 * Attempt to wake up the nominated process and move it to the set of runnable
2675 * processes. Returns 1 if the process was woken up, 0 if it was already
2676 * running.
2677 *
2678 * It may be assumed that this function implies a write memory barrier before
2679 * changing the task state if and only if any tasks are woken up.
2680 */
7ad5b3a5 2681int wake_up_process(struct task_struct *p)
1da177e4 2682{
d9514f6c 2683 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2684}
1da177e4
LT
2685EXPORT_SYMBOL(wake_up_process);
2686
7ad5b3a5 2687int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2688{
2689 return try_to_wake_up(p, state, 0);
2690}
2691
1da177e4
LT
2692/*
2693 * Perform scheduler related setup for a newly forked process p.
2694 * p is forked by current.
dd41f596
IM
2695 *
2696 * __sched_fork() is basic setup used by init_idle() too:
2697 */
2698static void __sched_fork(struct task_struct *p)
2699{
dd41f596
IM
2700 p->se.exec_start = 0;
2701 p->se.sum_exec_runtime = 0;
f6cf891c 2702 p->se.prev_sum_exec_runtime = 0;
6c594c21 2703 p->se.nr_migrations = 0;
6cfb0d5d
IM
2704
2705#ifdef CONFIG_SCHEDSTATS
41acab88 2706 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2707#endif
476d139c 2708
fa717060 2709 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2710 p->se.on_rq = 0;
4a55bd5e 2711 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2712
e107be36
AK
2713#ifdef CONFIG_PREEMPT_NOTIFIERS
2714 INIT_HLIST_HEAD(&p->preempt_notifiers);
2715#endif
dd41f596
IM
2716}
2717
2718/*
2719 * fork()/clone()-time setup:
2720 */
2721void sched_fork(struct task_struct *p, int clone_flags)
2722{
2723 int cpu = get_cpu();
2724
2725 __sched_fork(p);
06b83b5f 2726 /*
0017d735 2727 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2728 * nobody will actually run it, and a signal or other external
2729 * event cannot wake it up and insert it on the runqueue either.
2730 */
0017d735 2731 p->state = TASK_RUNNING;
dd41f596 2732
b9dc29e7
MG
2733 /*
2734 * Revert to default priority/policy on fork if requested.
2735 */
2736 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2737 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2738 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2739 p->normal_prio = p->static_prio;
2740 }
b9dc29e7 2741
6c697bdf
MG
2742 if (PRIO_TO_NICE(p->static_prio) < 0) {
2743 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2744 p->normal_prio = p->static_prio;
6c697bdf
MG
2745 set_load_weight(p);
2746 }
2747
b9dc29e7
MG
2748 /*
2749 * We don't need the reset flag anymore after the fork. It has
2750 * fulfilled its duty:
2751 */
2752 p->sched_reset_on_fork = 0;
2753 }
ca94c442 2754
f83f9ac2
PW
2755 /*
2756 * Make sure we do not leak PI boosting priority to the child.
2757 */
2758 p->prio = current->normal_prio;
2759
2ddbf952
HS
2760 if (!rt_prio(p->prio))
2761 p->sched_class = &fair_sched_class;
b29739f9 2762
cd29fe6f
PZ
2763 if (p->sched_class->task_fork)
2764 p->sched_class->task_fork(p);
2765
86951599
PZ
2766 /*
2767 * The child is not yet in the pid-hash so no cgroup attach races,
2768 * and the cgroup is pinned to this child due to cgroup_fork()
2769 * is ran before sched_fork().
2770 *
2771 * Silence PROVE_RCU.
2772 */
2773 rcu_read_lock();
5f3edc1b 2774 set_task_cpu(p, cpu);
86951599 2775 rcu_read_unlock();
5f3edc1b 2776
52f17b6c 2777#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2778 if (likely(sched_info_on()))
52f17b6c 2779 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2780#endif
d6077cb8 2781#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2782 p->oncpu = 0;
2783#endif
1da177e4 2784#ifdef CONFIG_PREEMPT
4866cde0 2785 /* Want to start with kernel preemption disabled. */
a1261f54 2786 task_thread_info(p)->preempt_count = 1;
1da177e4 2787#endif
917b627d
GH
2788 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2789
476d139c 2790 put_cpu();
1da177e4
LT
2791}
2792
2793/*
2794 * wake_up_new_task - wake up a newly created task for the first time.
2795 *
2796 * This function will do some initial scheduler statistics housekeeping
2797 * that must be done for every newly created context, then puts the task
2798 * on the runqueue and wakes it.
2799 */
7ad5b3a5 2800void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2801{
2802 unsigned long flags;
dd41f596 2803 struct rq *rq;
c890692b 2804 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2805
2806#ifdef CONFIG_SMP
0017d735
PZ
2807 rq = task_rq_lock(p, &flags);
2808 p->state = TASK_WAKING;
2809
fabf318e
PZ
2810 /*
2811 * Fork balancing, do it here and not earlier because:
2812 * - cpus_allowed can change in the fork path
2813 * - any previously selected cpu might disappear through hotplug
2814 *
0017d735
PZ
2815 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2816 * without people poking at ->cpus_allowed.
fabf318e 2817 */
0017d735 2818 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2819 set_task_cpu(p, cpu);
1da177e4 2820
06b83b5f 2821 p->state = TASK_RUNNING;
0017d735
PZ
2822 task_rq_unlock(rq, &flags);
2823#endif
2824
2825 rq = task_rq_lock(p, &flags);
cd29fe6f 2826 activate_task(rq, p, 0);
27a9da65 2827 trace_sched_wakeup_new(p, 1);
a7558e01 2828 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2829#ifdef CONFIG_SMP
efbbd05a
PZ
2830 if (p->sched_class->task_woken)
2831 p->sched_class->task_woken(rq, p);
9a897c5a 2832#endif
dd41f596 2833 task_rq_unlock(rq, &flags);
fabf318e 2834 put_cpu();
1da177e4
LT
2835}
2836
e107be36
AK
2837#ifdef CONFIG_PREEMPT_NOTIFIERS
2838
2839/**
80dd99b3 2840 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2841 * @notifier: notifier struct to register
e107be36
AK
2842 */
2843void preempt_notifier_register(struct preempt_notifier *notifier)
2844{
2845 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2846}
2847EXPORT_SYMBOL_GPL(preempt_notifier_register);
2848
2849/**
2850 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2851 * @notifier: notifier struct to unregister
e107be36
AK
2852 *
2853 * This is safe to call from within a preemption notifier.
2854 */
2855void preempt_notifier_unregister(struct preempt_notifier *notifier)
2856{
2857 hlist_del(&notifier->link);
2858}
2859EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2860
2861static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2862{
2863 struct preempt_notifier *notifier;
2864 struct hlist_node *node;
2865
2866 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2867 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2868}
2869
2870static void
2871fire_sched_out_preempt_notifiers(struct task_struct *curr,
2872 struct task_struct *next)
2873{
2874 struct preempt_notifier *notifier;
2875 struct hlist_node *node;
2876
2877 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2878 notifier->ops->sched_out(notifier, next);
2879}
2880
6d6bc0ad 2881#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2882
2883static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2884{
2885}
2886
2887static void
2888fire_sched_out_preempt_notifiers(struct task_struct *curr,
2889 struct task_struct *next)
2890{
2891}
2892
6d6bc0ad 2893#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2894
4866cde0
NP
2895/**
2896 * prepare_task_switch - prepare to switch tasks
2897 * @rq: the runqueue preparing to switch
421cee29 2898 * @prev: the current task that is being switched out
4866cde0
NP
2899 * @next: the task we are going to switch to.
2900 *
2901 * This is called with the rq lock held and interrupts off. It must
2902 * be paired with a subsequent finish_task_switch after the context
2903 * switch.
2904 *
2905 * prepare_task_switch sets up locking and calls architecture specific
2906 * hooks.
2907 */
e107be36
AK
2908static inline void
2909prepare_task_switch(struct rq *rq, struct task_struct *prev,
2910 struct task_struct *next)
4866cde0 2911{
e107be36 2912 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2913 prepare_lock_switch(rq, next);
2914 prepare_arch_switch(next);
2915}
2916
1da177e4
LT
2917/**
2918 * finish_task_switch - clean up after a task-switch
344babaa 2919 * @rq: runqueue associated with task-switch
1da177e4
LT
2920 * @prev: the thread we just switched away from.
2921 *
4866cde0
NP
2922 * finish_task_switch must be called after the context switch, paired
2923 * with a prepare_task_switch call before the context switch.
2924 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2925 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2926 *
2927 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2928 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2929 * with the lock held can cause deadlocks; see schedule() for
2930 * details.)
2931 */
a9957449 2932static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2933 __releases(rq->lock)
2934{
1da177e4 2935 struct mm_struct *mm = rq->prev_mm;
55a101f8 2936 long prev_state;
1da177e4
LT
2937
2938 rq->prev_mm = NULL;
2939
2940 /*
2941 * A task struct has one reference for the use as "current".
c394cc9f 2942 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2943 * schedule one last time. The schedule call will never return, and
2944 * the scheduled task must drop that reference.
c394cc9f 2945 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2946 * still held, otherwise prev could be scheduled on another cpu, die
2947 * there before we look at prev->state, and then the reference would
2948 * be dropped twice.
2949 * Manfred Spraul <manfred@colorfullife.com>
2950 */
55a101f8 2951 prev_state = prev->state;
4866cde0 2952 finish_arch_switch(prev);
8381f65d
JI
2953#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2954 local_irq_disable();
2955#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2956 perf_event_task_sched_in(current);
8381f65d
JI
2957#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2958 local_irq_enable();
2959#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2960 finish_lock_switch(rq, prev);
e8fa1362 2961
e107be36 2962 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2963 if (mm)
2964 mmdrop(mm);
c394cc9f 2965 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2966 /*
2967 * Remove function-return probe instances associated with this
2968 * task and put them back on the free list.
9761eea8 2969 */
c6fd91f0 2970 kprobe_flush_task(prev);
1da177e4 2971 put_task_struct(prev);
c6fd91f0 2972 }
1da177e4
LT
2973}
2974
3f029d3c
GH
2975#ifdef CONFIG_SMP
2976
2977/* assumes rq->lock is held */
2978static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2979{
2980 if (prev->sched_class->pre_schedule)
2981 prev->sched_class->pre_schedule(rq, prev);
2982}
2983
2984/* rq->lock is NOT held, but preemption is disabled */
2985static inline void post_schedule(struct rq *rq)
2986{
2987 if (rq->post_schedule) {
2988 unsigned long flags;
2989
05fa785c 2990 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2991 if (rq->curr->sched_class->post_schedule)
2992 rq->curr->sched_class->post_schedule(rq);
05fa785c 2993 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2994
2995 rq->post_schedule = 0;
2996 }
2997}
2998
2999#else
da19ab51 3000
3f029d3c
GH
3001static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3002{
3003}
3004
3005static inline void post_schedule(struct rq *rq)
3006{
1da177e4
LT
3007}
3008
3f029d3c
GH
3009#endif
3010
1da177e4
LT
3011/**
3012 * schedule_tail - first thing a freshly forked thread must call.
3013 * @prev: the thread we just switched away from.
3014 */
36c8b586 3015asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3016 __releases(rq->lock)
3017{
70b97a7f
IM
3018 struct rq *rq = this_rq();
3019
4866cde0 3020 finish_task_switch(rq, prev);
da19ab51 3021
3f029d3c
GH
3022 /*
3023 * FIXME: do we need to worry about rq being invalidated by the
3024 * task_switch?
3025 */
3026 post_schedule(rq);
70b97a7f 3027
4866cde0
NP
3028#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3029 /* In this case, finish_task_switch does not reenable preemption */
3030 preempt_enable();
3031#endif
1da177e4 3032 if (current->set_child_tid)
b488893a 3033 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3034}
3035
3036/*
3037 * context_switch - switch to the new MM and the new
3038 * thread's register state.
3039 */
dd41f596 3040static inline void
70b97a7f 3041context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3042 struct task_struct *next)
1da177e4 3043{
dd41f596 3044 struct mm_struct *mm, *oldmm;
1da177e4 3045
e107be36 3046 prepare_task_switch(rq, prev, next);
27a9da65 3047 trace_sched_switch(prev, next);
dd41f596
IM
3048 mm = next->mm;
3049 oldmm = prev->active_mm;
9226d125
ZA
3050 /*
3051 * For paravirt, this is coupled with an exit in switch_to to
3052 * combine the page table reload and the switch backend into
3053 * one hypercall.
3054 */
224101ed 3055 arch_start_context_switch(prev);
9226d125 3056
31915ab4 3057 if (!mm) {
1da177e4
LT
3058 next->active_mm = oldmm;
3059 atomic_inc(&oldmm->mm_count);
3060 enter_lazy_tlb(oldmm, next);
3061 } else
3062 switch_mm(oldmm, mm, next);
3063
31915ab4 3064 if (!prev->mm) {
1da177e4 3065 prev->active_mm = NULL;
1da177e4
LT
3066 rq->prev_mm = oldmm;
3067 }
3a5f5e48
IM
3068 /*
3069 * Since the runqueue lock will be released by the next
3070 * task (which is an invalid locking op but in the case
3071 * of the scheduler it's an obvious special-case), so we
3072 * do an early lockdep release here:
3073 */
3074#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3075 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3076#endif
1da177e4
LT
3077
3078 /* Here we just switch the register state and the stack. */
3079 switch_to(prev, next, prev);
3080
dd41f596
IM
3081 barrier();
3082 /*
3083 * this_rq must be evaluated again because prev may have moved
3084 * CPUs since it called schedule(), thus the 'rq' on its stack
3085 * frame will be invalid.
3086 */
3087 finish_task_switch(this_rq(), prev);
1da177e4
LT
3088}
3089
3090/*
3091 * nr_running, nr_uninterruptible and nr_context_switches:
3092 *
3093 * externally visible scheduler statistics: current number of runnable
3094 * threads, current number of uninterruptible-sleeping threads, total
3095 * number of context switches performed since bootup.
3096 */
3097unsigned long nr_running(void)
3098{
3099 unsigned long i, sum = 0;
3100
3101 for_each_online_cpu(i)
3102 sum += cpu_rq(i)->nr_running;
3103
3104 return sum;
f711f609 3105}
1da177e4
LT
3106
3107unsigned long nr_uninterruptible(void)
f711f609 3108{
1da177e4 3109 unsigned long i, sum = 0;
f711f609 3110
0a945022 3111 for_each_possible_cpu(i)
1da177e4 3112 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3113
3114 /*
1da177e4
LT
3115 * Since we read the counters lockless, it might be slightly
3116 * inaccurate. Do not allow it to go below zero though:
f711f609 3117 */
1da177e4
LT
3118 if (unlikely((long)sum < 0))
3119 sum = 0;
f711f609 3120
1da177e4 3121 return sum;
f711f609 3122}
f711f609 3123
1da177e4 3124unsigned long long nr_context_switches(void)
46cb4b7c 3125{
cc94abfc
SR
3126 int i;
3127 unsigned long long sum = 0;
46cb4b7c 3128
0a945022 3129 for_each_possible_cpu(i)
1da177e4 3130 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3131
1da177e4
LT
3132 return sum;
3133}
483b4ee6 3134
1da177e4
LT
3135unsigned long nr_iowait(void)
3136{
3137 unsigned long i, sum = 0;
483b4ee6 3138
0a945022 3139 for_each_possible_cpu(i)
1da177e4 3140 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3141
1da177e4
LT
3142 return sum;
3143}
483b4ee6 3144
8c215bd3 3145unsigned long nr_iowait_cpu(int cpu)
69d25870 3146{
8c215bd3 3147 struct rq *this = cpu_rq(cpu);
69d25870
AV
3148 return atomic_read(&this->nr_iowait);
3149}
46cb4b7c 3150
69d25870
AV
3151unsigned long this_cpu_load(void)
3152{
3153 struct rq *this = this_rq();
3154 return this->cpu_load[0];
3155}
e790fb0b 3156
46cb4b7c 3157
dce48a84
TG
3158/* Variables and functions for calc_load */
3159static atomic_long_t calc_load_tasks;
3160static unsigned long calc_load_update;
3161unsigned long avenrun[3];
3162EXPORT_SYMBOL(avenrun);
46cb4b7c 3163
74f5187a
PZ
3164static long calc_load_fold_active(struct rq *this_rq)
3165{
3166 long nr_active, delta = 0;
3167
3168 nr_active = this_rq->nr_running;
3169 nr_active += (long) this_rq->nr_uninterruptible;
3170
3171 if (nr_active != this_rq->calc_load_active) {
3172 delta = nr_active - this_rq->calc_load_active;
3173 this_rq->calc_load_active = nr_active;
3174 }
3175
3176 return delta;
3177}
3178
0f004f5a
PZ
3179static unsigned long
3180calc_load(unsigned long load, unsigned long exp, unsigned long active)
3181{
3182 load *= exp;
3183 load += active * (FIXED_1 - exp);
3184 load += 1UL << (FSHIFT - 1);
3185 return load >> FSHIFT;
3186}
3187
74f5187a
PZ
3188#ifdef CONFIG_NO_HZ
3189/*
3190 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3191 *
3192 * When making the ILB scale, we should try to pull this in as well.
3193 */
3194static atomic_long_t calc_load_tasks_idle;
3195
3196static void calc_load_account_idle(struct rq *this_rq)
3197{
3198 long delta;
3199
3200 delta = calc_load_fold_active(this_rq);
3201 if (delta)
3202 atomic_long_add(delta, &calc_load_tasks_idle);
3203}
3204
3205static long calc_load_fold_idle(void)
3206{
3207 long delta = 0;
3208
3209 /*
3210 * Its got a race, we don't care...
3211 */
3212 if (atomic_long_read(&calc_load_tasks_idle))
3213 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3214
3215 return delta;
3216}
0f004f5a
PZ
3217
3218/**
3219 * fixed_power_int - compute: x^n, in O(log n) time
3220 *
3221 * @x: base of the power
3222 * @frac_bits: fractional bits of @x
3223 * @n: power to raise @x to.
3224 *
3225 * By exploiting the relation between the definition of the natural power
3226 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3227 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3228 * (where: n_i \elem {0, 1}, the binary vector representing n),
3229 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3230 * of course trivially computable in O(log_2 n), the length of our binary
3231 * vector.
3232 */
3233static unsigned long
3234fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3235{
3236 unsigned long result = 1UL << frac_bits;
3237
3238 if (n) for (;;) {
3239 if (n & 1) {
3240 result *= x;
3241 result += 1UL << (frac_bits - 1);
3242 result >>= frac_bits;
3243 }
3244 n >>= 1;
3245 if (!n)
3246 break;
3247 x *= x;
3248 x += 1UL << (frac_bits - 1);
3249 x >>= frac_bits;
3250 }
3251
3252 return result;
3253}
3254
3255/*
3256 * a1 = a0 * e + a * (1 - e)
3257 *
3258 * a2 = a1 * e + a * (1 - e)
3259 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3260 * = a0 * e^2 + a * (1 - e) * (1 + e)
3261 *
3262 * a3 = a2 * e + a * (1 - e)
3263 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3264 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3265 *
3266 * ...
3267 *
3268 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3269 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3270 * = a0 * e^n + a * (1 - e^n)
3271 *
3272 * [1] application of the geometric series:
3273 *
3274 * n 1 - x^(n+1)
3275 * S_n := \Sum x^i = -------------
3276 * i=0 1 - x
3277 */
3278static unsigned long
3279calc_load_n(unsigned long load, unsigned long exp,
3280 unsigned long active, unsigned int n)
3281{
3282
3283 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3284}
3285
3286/*
3287 * NO_HZ can leave us missing all per-cpu ticks calling
3288 * calc_load_account_active(), but since an idle CPU folds its delta into
3289 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3290 * in the pending idle delta if our idle period crossed a load cycle boundary.
3291 *
3292 * Once we've updated the global active value, we need to apply the exponential
3293 * weights adjusted to the number of cycles missed.
3294 */
3295static void calc_global_nohz(unsigned long ticks)
3296{
3297 long delta, active, n;
3298
3299 if (time_before(jiffies, calc_load_update))
3300 return;
3301
3302 /*
3303 * If we crossed a calc_load_update boundary, make sure to fold
3304 * any pending idle changes, the respective CPUs might have
3305 * missed the tick driven calc_load_account_active() update
3306 * due to NO_HZ.
3307 */
3308 delta = calc_load_fold_idle();
3309 if (delta)
3310 atomic_long_add(delta, &calc_load_tasks);
3311
3312 /*
3313 * If we were idle for multiple load cycles, apply them.
3314 */
3315 if (ticks >= LOAD_FREQ) {
3316 n = ticks / LOAD_FREQ;
3317
3318 active = atomic_long_read(&calc_load_tasks);
3319 active = active > 0 ? active * FIXED_1 : 0;
3320
3321 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3322 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3323 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3324
3325 calc_load_update += n * LOAD_FREQ;
3326 }
3327
3328 /*
3329 * Its possible the remainder of the above division also crosses
3330 * a LOAD_FREQ period, the regular check in calc_global_load()
3331 * which comes after this will take care of that.
3332 *
3333 * Consider us being 11 ticks before a cycle completion, and us
3334 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3335 * age us 4 cycles, and the test in calc_global_load() will
3336 * pick up the final one.
3337 */
3338}
74f5187a
PZ
3339#else
3340static void calc_load_account_idle(struct rq *this_rq)
3341{
3342}
3343
3344static inline long calc_load_fold_idle(void)
3345{
3346 return 0;
3347}
0f004f5a
PZ
3348
3349static void calc_global_nohz(unsigned long ticks)
3350{
3351}
74f5187a
PZ
3352#endif
3353
2d02494f
TG
3354/**
3355 * get_avenrun - get the load average array
3356 * @loads: pointer to dest load array
3357 * @offset: offset to add
3358 * @shift: shift count to shift the result left
3359 *
3360 * These values are estimates at best, so no need for locking.
3361 */
3362void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3363{
3364 loads[0] = (avenrun[0] + offset) << shift;
3365 loads[1] = (avenrun[1] + offset) << shift;
3366 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3367}
46cb4b7c 3368
46cb4b7c 3369/*
dce48a84
TG
3370 * calc_load - update the avenrun load estimates 10 ticks after the
3371 * CPUs have updated calc_load_tasks.
7835b98b 3372 */
0f004f5a 3373void calc_global_load(unsigned long ticks)
7835b98b 3374{
dce48a84 3375 long active;
1da177e4 3376
0f004f5a
PZ
3377 calc_global_nohz(ticks);
3378
3379 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3380 return;
1da177e4 3381
dce48a84
TG
3382 active = atomic_long_read(&calc_load_tasks);
3383 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3384
dce48a84
TG
3385 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3386 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3387 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3388
dce48a84
TG
3389 calc_load_update += LOAD_FREQ;
3390}
1da177e4 3391
dce48a84 3392/*
74f5187a
PZ
3393 * Called from update_cpu_load() to periodically update this CPU's
3394 * active count.
dce48a84
TG
3395 */
3396static void calc_load_account_active(struct rq *this_rq)
3397{
74f5187a 3398 long delta;
08c183f3 3399
74f5187a
PZ
3400 if (time_before(jiffies, this_rq->calc_load_update))
3401 return;
783609c6 3402
74f5187a
PZ
3403 delta = calc_load_fold_active(this_rq);
3404 delta += calc_load_fold_idle();
3405 if (delta)
dce48a84 3406 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3407
3408 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3409}
3410
fdf3e95d
VP
3411/*
3412 * The exact cpuload at various idx values, calculated at every tick would be
3413 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3414 *
3415 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3416 * on nth tick when cpu may be busy, then we have:
3417 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3418 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3419 *
3420 * decay_load_missed() below does efficient calculation of
3421 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3422 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3423 *
3424 * The calculation is approximated on a 128 point scale.
3425 * degrade_zero_ticks is the number of ticks after which load at any
3426 * particular idx is approximated to be zero.
3427 * degrade_factor is a precomputed table, a row for each load idx.
3428 * Each column corresponds to degradation factor for a power of two ticks,
3429 * based on 128 point scale.
3430 * Example:
3431 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3432 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3433 *
3434 * With this power of 2 load factors, we can degrade the load n times
3435 * by looking at 1 bits in n and doing as many mult/shift instead of
3436 * n mult/shifts needed by the exact degradation.
3437 */
3438#define DEGRADE_SHIFT 7
3439static const unsigned char
3440 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3441static const unsigned char
3442 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3443 {0, 0, 0, 0, 0, 0, 0, 0},
3444 {64, 32, 8, 0, 0, 0, 0, 0},
3445 {96, 72, 40, 12, 1, 0, 0},
3446 {112, 98, 75, 43, 15, 1, 0},
3447 {120, 112, 98, 76, 45, 16, 2} };
3448
3449/*
3450 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3451 * would be when CPU is idle and so we just decay the old load without
3452 * adding any new load.
3453 */
3454static unsigned long
3455decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3456{
3457 int j = 0;
3458
3459 if (!missed_updates)
3460 return load;
3461
3462 if (missed_updates >= degrade_zero_ticks[idx])
3463 return 0;
3464
3465 if (idx == 1)
3466 return load >> missed_updates;
3467
3468 while (missed_updates) {
3469 if (missed_updates % 2)
3470 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3471
3472 missed_updates >>= 1;
3473 j++;
3474 }
3475 return load;
3476}
3477
46cb4b7c 3478/*
dd41f596 3479 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3480 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3481 * every tick. We fix it up based on jiffies.
46cb4b7c 3482 */
dd41f596 3483static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3484{
495eca49 3485 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3486 unsigned long curr_jiffies = jiffies;
3487 unsigned long pending_updates;
dd41f596 3488 int i, scale;
46cb4b7c 3489
dd41f596 3490 this_rq->nr_load_updates++;
46cb4b7c 3491
fdf3e95d
VP
3492 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3493 if (curr_jiffies == this_rq->last_load_update_tick)
3494 return;
3495
3496 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3497 this_rq->last_load_update_tick = curr_jiffies;
3498
dd41f596 3499 /* Update our load: */
fdf3e95d
VP
3500 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3501 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3502 unsigned long old_load, new_load;
7d1e6a9b 3503
dd41f596 3504 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3505
dd41f596 3506 old_load = this_rq->cpu_load[i];
fdf3e95d 3507 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3508 new_load = this_load;
a25707f3
IM
3509 /*
3510 * Round up the averaging division if load is increasing. This
3511 * prevents us from getting stuck on 9 if the load is 10, for
3512 * example.
3513 */
3514 if (new_load > old_load)
fdf3e95d
VP
3515 new_load += scale - 1;
3516
3517 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3518 }
da2b71ed
SS
3519
3520 sched_avg_update(this_rq);
fdf3e95d
VP
3521}
3522
3523static void update_cpu_load_active(struct rq *this_rq)
3524{
3525 update_cpu_load(this_rq);
46cb4b7c 3526
74f5187a 3527 calc_load_account_active(this_rq);
46cb4b7c
SS
3528}
3529
dd41f596 3530#ifdef CONFIG_SMP
8a0be9ef 3531
46cb4b7c 3532/*
38022906
PZ
3533 * sched_exec - execve() is a valuable balancing opportunity, because at
3534 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3535 */
38022906 3536void sched_exec(void)
46cb4b7c 3537{
38022906 3538 struct task_struct *p = current;
1da177e4 3539 unsigned long flags;
70b97a7f 3540 struct rq *rq;
0017d735 3541 int dest_cpu;
46cb4b7c 3542
1da177e4 3543 rq = task_rq_lock(p, &flags);
0017d735
PZ
3544 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3545 if (dest_cpu == smp_processor_id())
3546 goto unlock;
38022906 3547
46cb4b7c 3548 /*
38022906 3549 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3550 */
30da688e 3551 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3552 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3553 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3554
1da177e4 3555 task_rq_unlock(rq, &flags);
969c7921 3556 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3557 return;
3558 }
0017d735 3559unlock:
1da177e4 3560 task_rq_unlock(rq, &flags);
1da177e4 3561}
dd41f596 3562
1da177e4
LT
3563#endif
3564
1da177e4
LT
3565DEFINE_PER_CPU(struct kernel_stat, kstat);
3566
3567EXPORT_PER_CPU_SYMBOL(kstat);
3568
3569/*
c5f8d995 3570 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3571 * @p in case that task is currently running.
c5f8d995
HS
3572 *
3573 * Called with task_rq_lock() held on @rq.
1da177e4 3574 */
c5f8d995
HS
3575static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3576{
3577 u64 ns = 0;
3578
3579 if (task_current(rq, p)) {
3580 update_rq_clock(rq);
305e6835 3581 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3582 if ((s64)ns < 0)
3583 ns = 0;
3584 }
3585
3586 return ns;
3587}
3588
bb34d92f 3589unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3590{
1da177e4 3591 unsigned long flags;
41b86e9c 3592 struct rq *rq;
bb34d92f 3593 u64 ns = 0;
48f24c4d 3594
41b86e9c 3595 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3596 ns = do_task_delta_exec(p, rq);
3597 task_rq_unlock(rq, &flags);
1508487e 3598
c5f8d995
HS
3599 return ns;
3600}
f06febc9 3601
c5f8d995
HS
3602/*
3603 * Return accounted runtime for the task.
3604 * In case the task is currently running, return the runtime plus current's
3605 * pending runtime that have not been accounted yet.
3606 */
3607unsigned long long task_sched_runtime(struct task_struct *p)
3608{
3609 unsigned long flags;
3610 struct rq *rq;
3611 u64 ns = 0;
3612
3613 rq = task_rq_lock(p, &flags);
3614 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3615 task_rq_unlock(rq, &flags);
3616
3617 return ns;
3618}
48f24c4d 3619
c5f8d995
HS
3620/*
3621 * Return sum_exec_runtime for the thread group.
3622 * In case the task is currently running, return the sum plus current's
3623 * pending runtime that have not been accounted yet.
3624 *
3625 * Note that the thread group might have other running tasks as well,
3626 * so the return value not includes other pending runtime that other
3627 * running tasks might have.
3628 */
3629unsigned long long thread_group_sched_runtime(struct task_struct *p)
3630{
3631 struct task_cputime totals;
3632 unsigned long flags;
3633 struct rq *rq;
3634 u64 ns;
3635
3636 rq = task_rq_lock(p, &flags);
3637 thread_group_cputime(p, &totals);
3638 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3639 task_rq_unlock(rq, &flags);
48f24c4d 3640
1da177e4
LT
3641 return ns;
3642}
3643
1da177e4
LT
3644/*
3645 * Account user cpu time to a process.
3646 * @p: the process that the cpu time gets accounted to
1da177e4 3647 * @cputime: the cpu time spent in user space since the last update
457533a7 3648 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3649 */
457533a7
MS
3650void account_user_time(struct task_struct *p, cputime_t cputime,
3651 cputime_t cputime_scaled)
1da177e4
LT
3652{
3653 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3654 cputime64_t tmp;
3655
457533a7 3656 /* Add user time to process. */
1da177e4 3657 p->utime = cputime_add(p->utime, cputime);
457533a7 3658 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3659 account_group_user_time(p, cputime);
1da177e4
LT
3660
3661 /* Add user time to cpustat. */
3662 tmp = cputime_to_cputime64(cputime);
3663 if (TASK_NICE(p) > 0)
3664 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3665 else
3666 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3667
3668 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3669 /* Account for user time used */
3670 acct_update_integrals(p);
1da177e4
LT
3671}
3672
94886b84
LV
3673/*
3674 * Account guest cpu time to a process.
3675 * @p: the process that the cpu time gets accounted to
3676 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3677 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3678 */
457533a7
MS
3679static void account_guest_time(struct task_struct *p, cputime_t cputime,
3680 cputime_t cputime_scaled)
94886b84
LV
3681{
3682 cputime64_t tmp;
3683 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3684
3685 tmp = cputime_to_cputime64(cputime);
3686
457533a7 3687 /* Add guest time to process. */
94886b84 3688 p->utime = cputime_add(p->utime, cputime);
457533a7 3689 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3690 account_group_user_time(p, cputime);
94886b84
LV
3691 p->gtime = cputime_add(p->gtime, cputime);
3692
457533a7 3693 /* Add guest time to cpustat. */
ce0e7b28
RO
3694 if (TASK_NICE(p) > 0) {
3695 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3696 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3697 } else {
3698 cpustat->user = cputime64_add(cpustat->user, tmp);
3699 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3700 }
94886b84
LV
3701}
3702
1da177e4
LT
3703/*
3704 * Account system cpu time to a process.
3705 * @p: the process that the cpu time gets accounted to
3706 * @hardirq_offset: the offset to subtract from hardirq_count()
3707 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3708 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3709 */
3710void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3711 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3712{
3713 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3714 cputime64_t tmp;
3715
983ed7a6 3716 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3717 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3718 return;
3719 }
94886b84 3720
457533a7 3721 /* Add system time to process. */
1da177e4 3722 p->stime = cputime_add(p->stime, cputime);
457533a7 3723 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3724 account_group_system_time(p, cputime);
1da177e4
LT
3725
3726 /* Add system time to cpustat. */
3727 tmp = cputime_to_cputime64(cputime);
3728 if (hardirq_count() - hardirq_offset)
3729 cpustat->irq = cputime64_add(cpustat->irq, tmp);
75e1056f 3730 else if (in_serving_softirq())
1da177e4 3731 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3732 else
79741dd3
MS
3733 cpustat->system = cputime64_add(cpustat->system, tmp);
3734
ef12fefa
BR
3735 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3736
1da177e4
LT
3737 /* Account for system time used */
3738 acct_update_integrals(p);
1da177e4
LT
3739}
3740
c66f08be 3741/*
1da177e4 3742 * Account for involuntary wait time.
1da177e4 3743 * @steal: the cpu time spent in involuntary wait
c66f08be 3744 */
79741dd3 3745void account_steal_time(cputime_t cputime)
c66f08be 3746{
79741dd3
MS
3747 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3748 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3749
3750 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3751}
3752
1da177e4 3753/*
79741dd3
MS
3754 * Account for idle time.
3755 * @cputime: the cpu time spent in idle wait
1da177e4 3756 */
79741dd3 3757void account_idle_time(cputime_t cputime)
1da177e4
LT
3758{
3759 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3760 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3761 struct rq *rq = this_rq();
1da177e4 3762
79741dd3
MS
3763 if (atomic_read(&rq->nr_iowait) > 0)
3764 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3765 else
3766 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3767}
3768
79741dd3
MS
3769#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3770
3771/*
3772 * Account a single tick of cpu time.
3773 * @p: the process that the cpu time gets accounted to
3774 * @user_tick: indicates if the tick is a user or a system tick
3775 */
3776void account_process_tick(struct task_struct *p, int user_tick)
3777{
a42548a1 3778 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3779 struct rq *rq = this_rq();
3780
3781 if (user_tick)
a42548a1 3782 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3783 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3784 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3785 one_jiffy_scaled);
3786 else
a42548a1 3787 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3788}
3789
3790/*
3791 * Account multiple ticks of steal time.
3792 * @p: the process from which the cpu time has been stolen
3793 * @ticks: number of stolen ticks
3794 */
3795void account_steal_ticks(unsigned long ticks)
3796{
3797 account_steal_time(jiffies_to_cputime(ticks));
3798}
3799
3800/*
3801 * Account multiple ticks of idle time.
3802 * @ticks: number of stolen ticks
3803 */
3804void account_idle_ticks(unsigned long ticks)
3805{
3806 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3807}
3808
79741dd3
MS
3809#endif
3810
49048622
BS
3811/*
3812 * Use precise platform statistics if available:
3813 */
3814#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3815void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3816{
d99ca3b9
HS
3817 *ut = p->utime;
3818 *st = p->stime;
49048622
BS
3819}
3820
0cf55e1e 3821void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3822{
0cf55e1e
HS
3823 struct task_cputime cputime;
3824
3825 thread_group_cputime(p, &cputime);
3826
3827 *ut = cputime.utime;
3828 *st = cputime.stime;
49048622
BS
3829}
3830#else
761b1d26
HS
3831
3832#ifndef nsecs_to_cputime
b7b20df9 3833# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3834#endif
3835
d180c5bc 3836void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3837{
d99ca3b9 3838 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3839
3840 /*
3841 * Use CFS's precise accounting:
3842 */
d180c5bc 3843 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3844
3845 if (total) {
e75e863d 3846 u64 temp = rtime;
d180c5bc 3847
e75e863d 3848 temp *= utime;
49048622 3849 do_div(temp, total);
d180c5bc
HS
3850 utime = (cputime_t)temp;
3851 } else
3852 utime = rtime;
49048622 3853
d180c5bc
HS
3854 /*
3855 * Compare with previous values, to keep monotonicity:
3856 */
761b1d26 3857 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3858 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3859
d99ca3b9
HS
3860 *ut = p->prev_utime;
3861 *st = p->prev_stime;
49048622
BS
3862}
3863
0cf55e1e
HS
3864/*
3865 * Must be called with siglock held.
3866 */
3867void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3868{
0cf55e1e
HS
3869 struct signal_struct *sig = p->signal;
3870 struct task_cputime cputime;
3871 cputime_t rtime, utime, total;
49048622 3872
0cf55e1e 3873 thread_group_cputime(p, &cputime);
49048622 3874
0cf55e1e
HS
3875 total = cputime_add(cputime.utime, cputime.stime);
3876 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3877
0cf55e1e 3878 if (total) {
e75e863d 3879 u64 temp = rtime;
49048622 3880
e75e863d 3881 temp *= cputime.utime;
0cf55e1e
HS
3882 do_div(temp, total);
3883 utime = (cputime_t)temp;
3884 } else
3885 utime = rtime;
3886
3887 sig->prev_utime = max(sig->prev_utime, utime);
3888 sig->prev_stime = max(sig->prev_stime,
3889 cputime_sub(rtime, sig->prev_utime));
3890
3891 *ut = sig->prev_utime;
3892 *st = sig->prev_stime;
49048622 3893}
49048622 3894#endif
49048622 3895
7835b98b
CL
3896/*
3897 * This function gets called by the timer code, with HZ frequency.
3898 * We call it with interrupts disabled.
3899 *
3900 * It also gets called by the fork code, when changing the parent's
3901 * timeslices.
3902 */
3903void scheduler_tick(void)
3904{
7835b98b
CL
3905 int cpu = smp_processor_id();
3906 struct rq *rq = cpu_rq(cpu);
dd41f596 3907 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3908
3909 sched_clock_tick();
dd41f596 3910
05fa785c 3911 raw_spin_lock(&rq->lock);
3e51f33f 3912 update_rq_clock(rq);
fdf3e95d 3913 update_cpu_load_active(rq);
fa85ae24 3914 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3915 raw_spin_unlock(&rq->lock);
7835b98b 3916
e9d2b064 3917 perf_event_task_tick();
e220d2dc 3918
e418e1c2 3919#ifdef CONFIG_SMP
dd41f596
IM
3920 rq->idle_at_tick = idle_cpu(cpu);
3921 trigger_load_balance(rq, cpu);
e418e1c2 3922#endif
1da177e4
LT
3923}
3924
132380a0 3925notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3926{
3927 if (in_lock_functions(addr)) {
3928 addr = CALLER_ADDR2;
3929 if (in_lock_functions(addr))
3930 addr = CALLER_ADDR3;
3931 }
3932 return addr;
3933}
1da177e4 3934
7e49fcce
SR
3935#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3936 defined(CONFIG_PREEMPT_TRACER))
3937
43627582 3938void __kprobes add_preempt_count(int val)
1da177e4 3939{
6cd8a4bb 3940#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3941 /*
3942 * Underflow?
3943 */
9a11b49a
IM
3944 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3945 return;
6cd8a4bb 3946#endif
1da177e4 3947 preempt_count() += val;
6cd8a4bb 3948#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3949 /*
3950 * Spinlock count overflowing soon?
3951 */
33859f7f
MOS
3952 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3953 PREEMPT_MASK - 10);
6cd8a4bb
SR
3954#endif
3955 if (preempt_count() == val)
3956 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3957}
3958EXPORT_SYMBOL(add_preempt_count);
3959
43627582 3960void __kprobes sub_preempt_count(int val)
1da177e4 3961{
6cd8a4bb 3962#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3963 /*
3964 * Underflow?
3965 */
01e3eb82 3966 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3967 return;
1da177e4
LT
3968 /*
3969 * Is the spinlock portion underflowing?
3970 */
9a11b49a
IM
3971 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3972 !(preempt_count() & PREEMPT_MASK)))
3973 return;
6cd8a4bb 3974#endif
9a11b49a 3975
6cd8a4bb
SR
3976 if (preempt_count() == val)
3977 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3978 preempt_count() -= val;
3979}
3980EXPORT_SYMBOL(sub_preempt_count);
3981
3982#endif
3983
3984/*
dd41f596 3985 * Print scheduling while atomic bug:
1da177e4 3986 */
dd41f596 3987static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3988{
838225b4
SS
3989 struct pt_regs *regs = get_irq_regs();
3990
3df0fc5b
PZ
3991 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3992 prev->comm, prev->pid, preempt_count());
838225b4 3993
dd41f596 3994 debug_show_held_locks(prev);
e21f5b15 3995 print_modules();
dd41f596
IM
3996 if (irqs_disabled())
3997 print_irqtrace_events(prev);
838225b4
SS
3998
3999 if (regs)
4000 show_regs(regs);
4001 else
4002 dump_stack();
dd41f596 4003}
1da177e4 4004
dd41f596
IM
4005/*
4006 * Various schedule()-time debugging checks and statistics:
4007 */
4008static inline void schedule_debug(struct task_struct *prev)
4009{
1da177e4 4010 /*
41a2d6cf 4011 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4012 * schedule() atomically, we ignore that path for now.
4013 * Otherwise, whine if we are scheduling when we should not be.
4014 */
3f33a7ce 4015 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4016 __schedule_bug(prev);
4017
1da177e4
LT
4018 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4019
2d72376b 4020 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4021#ifdef CONFIG_SCHEDSTATS
4022 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4023 schedstat_inc(this_rq(), bkl_count);
4024 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4025 }
4026#endif
dd41f596
IM
4027}
4028
6cecd084 4029static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4030{
a64692a3
MG
4031 if (prev->se.on_rq)
4032 update_rq_clock(rq);
6cecd084 4033 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4034}
4035
dd41f596
IM
4036/*
4037 * Pick up the highest-prio task:
4038 */
4039static inline struct task_struct *
b67802ea 4040pick_next_task(struct rq *rq)
dd41f596 4041{
5522d5d5 4042 const struct sched_class *class;
dd41f596 4043 struct task_struct *p;
1da177e4
LT
4044
4045 /*
dd41f596
IM
4046 * Optimization: we know that if all tasks are in
4047 * the fair class we can call that function directly:
1da177e4 4048 */
dd41f596 4049 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4050 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4051 if (likely(p))
4052 return p;
1da177e4
LT
4053 }
4054
34f971f6 4055 for_each_class(class) {
fb8d4724 4056 p = class->pick_next_task(rq);
dd41f596
IM
4057 if (p)
4058 return p;
dd41f596 4059 }
34f971f6
PZ
4060
4061 BUG(); /* the idle class will always have a runnable task */
dd41f596 4062}
1da177e4 4063
dd41f596
IM
4064/*
4065 * schedule() is the main scheduler function.
4066 */
ff743345 4067asmlinkage void __sched schedule(void)
dd41f596
IM
4068{
4069 struct task_struct *prev, *next;
67ca7bde 4070 unsigned long *switch_count;
dd41f596 4071 struct rq *rq;
31656519 4072 int cpu;
dd41f596 4073
ff743345
PZ
4074need_resched:
4075 preempt_disable();
dd41f596
IM
4076 cpu = smp_processor_id();
4077 rq = cpu_rq(cpu);
25502a6c 4078 rcu_note_context_switch(cpu);
dd41f596 4079 prev = rq->curr;
dd41f596
IM
4080
4081 release_kernel_lock(prev);
4082need_resched_nonpreemptible:
4083
4084 schedule_debug(prev);
1da177e4 4085
31656519 4086 if (sched_feat(HRTICK))
f333fdc9 4087 hrtick_clear(rq);
8f4d37ec 4088
05fa785c 4089 raw_spin_lock_irq(&rq->lock);
1da177e4 4090
246d86b5 4091 switch_count = &prev->nivcsw;
1da177e4 4092 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4093 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4094 prev->state = TASK_RUNNING;
21aa9af0
TH
4095 } else {
4096 /*
4097 * If a worker is going to sleep, notify and
4098 * ask workqueue whether it wants to wake up a
4099 * task to maintain concurrency. If so, wake
4100 * up the task.
4101 */
4102 if (prev->flags & PF_WQ_WORKER) {
4103 struct task_struct *to_wakeup;
4104
4105 to_wakeup = wq_worker_sleeping(prev, cpu);
4106 if (to_wakeup)
4107 try_to_wake_up_local(to_wakeup);
4108 }
371fd7e7 4109 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 4110 }
dd41f596 4111 switch_count = &prev->nvcsw;
1da177e4
LT
4112 }
4113
3f029d3c 4114 pre_schedule(rq, prev);
f65eda4f 4115
dd41f596 4116 if (unlikely(!rq->nr_running))
1da177e4 4117 idle_balance(cpu, rq);
1da177e4 4118
df1c99d4 4119 put_prev_task(rq, prev);
b67802ea 4120 next = pick_next_task(rq);
f26f9aff
MG
4121 clear_tsk_need_resched(prev);
4122 rq->skip_clock_update = 0;
1da177e4 4123
1da177e4 4124 if (likely(prev != next)) {
673a90a1 4125 sched_info_switch(prev, next);
49f47433 4126 perf_event_task_sched_out(prev, next);
673a90a1 4127
1da177e4
LT
4128 rq->nr_switches++;
4129 rq->curr = next;
4130 ++*switch_count;
4131
dd41f596 4132 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4133 /*
246d86b5
ON
4134 * The context switch have flipped the stack from under us
4135 * and restored the local variables which were saved when
4136 * this task called schedule() in the past. prev == current
4137 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4138 */
4139 cpu = smp_processor_id();
4140 rq = cpu_rq(cpu);
1da177e4 4141 } else
05fa785c 4142 raw_spin_unlock_irq(&rq->lock);
1da177e4 4143
3f029d3c 4144 post_schedule(rq);
1da177e4 4145
246d86b5 4146 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 4147 goto need_resched_nonpreemptible;
8f4d37ec 4148
1da177e4 4149 preempt_enable_no_resched();
ff743345 4150 if (need_resched())
1da177e4
LT
4151 goto need_resched;
4152}
1da177e4
LT
4153EXPORT_SYMBOL(schedule);
4154
c08f7829 4155#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
4156/*
4157 * Look out! "owner" is an entirely speculative pointer
4158 * access and not reliable.
4159 */
4160int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4161{
4162 unsigned int cpu;
4163 struct rq *rq;
4164
4165 if (!sched_feat(OWNER_SPIN))
4166 return 0;
4167
4168#ifdef CONFIG_DEBUG_PAGEALLOC
4169 /*
4170 * Need to access the cpu field knowing that
4171 * DEBUG_PAGEALLOC could have unmapped it if
4172 * the mutex owner just released it and exited.
4173 */
4174 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 4175 return 0;
0d66bf6d
PZ
4176#else
4177 cpu = owner->cpu;
4178#endif
4179
4180 /*
4181 * Even if the access succeeded (likely case),
4182 * the cpu field may no longer be valid.
4183 */
4184 if (cpu >= nr_cpumask_bits)
4b402210 4185 return 0;
0d66bf6d
PZ
4186
4187 /*
4188 * We need to validate that we can do a
4189 * get_cpu() and that we have the percpu area.
4190 */
4191 if (!cpu_online(cpu))
4b402210 4192 return 0;
0d66bf6d
PZ
4193
4194 rq = cpu_rq(cpu);
4195
4196 for (;;) {
4197 /*
4198 * Owner changed, break to re-assess state.
4199 */
9d0f4dcc
TC
4200 if (lock->owner != owner) {
4201 /*
4202 * If the lock has switched to a different owner,
4203 * we likely have heavy contention. Return 0 to quit
4204 * optimistic spinning and not contend further:
4205 */
4206 if (lock->owner)
4207 return 0;
0d66bf6d 4208 break;
9d0f4dcc 4209 }
0d66bf6d
PZ
4210
4211 /*
4212 * Is that owner really running on that cpu?
4213 */
4214 if (task_thread_info(rq->curr) != owner || need_resched())
4215 return 0;
4216
4217 cpu_relax();
4218 }
4b402210 4219
0d66bf6d
PZ
4220 return 1;
4221}
4222#endif
4223
1da177e4
LT
4224#ifdef CONFIG_PREEMPT
4225/*
2ed6e34f 4226 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4227 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4228 * occur there and call schedule directly.
4229 */
d1f74e20 4230asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4231{
4232 struct thread_info *ti = current_thread_info();
6478d880 4233
1da177e4
LT
4234 /*
4235 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4236 * we do not want to preempt the current task. Just return..
1da177e4 4237 */
beed33a8 4238 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4239 return;
4240
3a5c359a 4241 do {
d1f74e20 4242 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4243 schedule();
d1f74e20 4244 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4245
3a5c359a
AK
4246 /*
4247 * Check again in case we missed a preemption opportunity
4248 * between schedule and now.
4249 */
4250 barrier();
5ed0cec0 4251 } while (need_resched());
1da177e4 4252}
1da177e4
LT
4253EXPORT_SYMBOL(preempt_schedule);
4254
4255/*
2ed6e34f 4256 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4257 * off of irq context.
4258 * Note, that this is called and return with irqs disabled. This will
4259 * protect us against recursive calling from irq.
4260 */
4261asmlinkage void __sched preempt_schedule_irq(void)
4262{
4263 struct thread_info *ti = current_thread_info();
6478d880 4264
2ed6e34f 4265 /* Catch callers which need to be fixed */
1da177e4
LT
4266 BUG_ON(ti->preempt_count || !irqs_disabled());
4267
3a5c359a
AK
4268 do {
4269 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4270 local_irq_enable();
4271 schedule();
4272 local_irq_disable();
3a5c359a 4273 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4274
3a5c359a
AK
4275 /*
4276 * Check again in case we missed a preemption opportunity
4277 * between schedule and now.
4278 */
4279 barrier();
5ed0cec0 4280 } while (need_resched());
1da177e4
LT
4281}
4282
4283#endif /* CONFIG_PREEMPT */
4284
63859d4f 4285int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4286 void *key)
1da177e4 4287{
63859d4f 4288 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4289}
1da177e4
LT
4290EXPORT_SYMBOL(default_wake_function);
4291
4292/*
41a2d6cf
IM
4293 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4294 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4295 * number) then we wake all the non-exclusive tasks and one exclusive task.
4296 *
4297 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4298 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4299 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4300 */
78ddb08f 4301static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4302 int nr_exclusive, int wake_flags, void *key)
1da177e4 4303{
2e45874c 4304 wait_queue_t *curr, *next;
1da177e4 4305
2e45874c 4306 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4307 unsigned flags = curr->flags;
4308
63859d4f 4309 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4310 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4311 break;
4312 }
4313}
4314
4315/**
4316 * __wake_up - wake up threads blocked on a waitqueue.
4317 * @q: the waitqueue
4318 * @mode: which threads
4319 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4320 * @key: is directly passed to the wakeup function
50fa610a
DH
4321 *
4322 * It may be assumed that this function implies a write memory barrier before
4323 * changing the task state if and only if any tasks are woken up.
1da177e4 4324 */
7ad5b3a5 4325void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4326 int nr_exclusive, void *key)
1da177e4
LT
4327{
4328 unsigned long flags;
4329
4330 spin_lock_irqsave(&q->lock, flags);
4331 __wake_up_common(q, mode, nr_exclusive, 0, key);
4332 spin_unlock_irqrestore(&q->lock, flags);
4333}
1da177e4
LT
4334EXPORT_SYMBOL(__wake_up);
4335
4336/*
4337 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4338 */
7ad5b3a5 4339void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4340{
4341 __wake_up_common(q, mode, 1, 0, NULL);
4342}
22c43c81 4343EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4344
4ede816a
DL
4345void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4346{
4347 __wake_up_common(q, mode, 1, 0, key);
4348}
4349
1da177e4 4350/**
4ede816a 4351 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4352 * @q: the waitqueue
4353 * @mode: which threads
4354 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4355 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4356 *
4357 * The sync wakeup differs that the waker knows that it will schedule
4358 * away soon, so while the target thread will be woken up, it will not
4359 * be migrated to another CPU - ie. the two threads are 'synchronized'
4360 * with each other. This can prevent needless bouncing between CPUs.
4361 *
4362 * On UP it can prevent extra preemption.
50fa610a
DH
4363 *
4364 * It may be assumed that this function implies a write memory barrier before
4365 * changing the task state if and only if any tasks are woken up.
1da177e4 4366 */
4ede816a
DL
4367void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4368 int nr_exclusive, void *key)
1da177e4
LT
4369{
4370 unsigned long flags;
7d478721 4371 int wake_flags = WF_SYNC;
1da177e4
LT
4372
4373 if (unlikely(!q))
4374 return;
4375
4376 if (unlikely(!nr_exclusive))
7d478721 4377 wake_flags = 0;
1da177e4
LT
4378
4379 spin_lock_irqsave(&q->lock, flags);
7d478721 4380 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4381 spin_unlock_irqrestore(&q->lock, flags);
4382}
4ede816a
DL
4383EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4384
4385/*
4386 * __wake_up_sync - see __wake_up_sync_key()
4387 */
4388void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4389{
4390 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4391}
1da177e4
LT
4392EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4393
65eb3dc6
KD
4394/**
4395 * complete: - signals a single thread waiting on this completion
4396 * @x: holds the state of this particular completion
4397 *
4398 * This will wake up a single thread waiting on this completion. Threads will be
4399 * awakened in the same order in which they were queued.
4400 *
4401 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4402 *
4403 * It may be assumed that this function implies a write memory barrier before
4404 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4405 */
b15136e9 4406void complete(struct completion *x)
1da177e4
LT
4407{
4408 unsigned long flags;
4409
4410 spin_lock_irqsave(&x->wait.lock, flags);
4411 x->done++;
d9514f6c 4412 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4413 spin_unlock_irqrestore(&x->wait.lock, flags);
4414}
4415EXPORT_SYMBOL(complete);
4416
65eb3dc6
KD
4417/**
4418 * complete_all: - signals all threads waiting on this completion
4419 * @x: holds the state of this particular completion
4420 *
4421 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4422 *
4423 * It may be assumed that this function implies a write memory barrier before
4424 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4425 */
b15136e9 4426void complete_all(struct completion *x)
1da177e4
LT
4427{
4428 unsigned long flags;
4429
4430 spin_lock_irqsave(&x->wait.lock, flags);
4431 x->done += UINT_MAX/2;
d9514f6c 4432 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4433 spin_unlock_irqrestore(&x->wait.lock, flags);
4434}
4435EXPORT_SYMBOL(complete_all);
4436
8cbbe86d
AK
4437static inline long __sched
4438do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4439{
1da177e4
LT
4440 if (!x->done) {
4441 DECLARE_WAITQUEUE(wait, current);
4442
a93d2f17 4443 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4444 do {
94d3d824 4445 if (signal_pending_state(state, current)) {
ea71a546
ON
4446 timeout = -ERESTARTSYS;
4447 break;
8cbbe86d
AK
4448 }
4449 __set_current_state(state);
1da177e4
LT
4450 spin_unlock_irq(&x->wait.lock);
4451 timeout = schedule_timeout(timeout);
4452 spin_lock_irq(&x->wait.lock);
ea71a546 4453 } while (!x->done && timeout);
1da177e4 4454 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4455 if (!x->done)
4456 return timeout;
1da177e4
LT
4457 }
4458 x->done--;
ea71a546 4459 return timeout ?: 1;
1da177e4 4460}
1da177e4 4461
8cbbe86d
AK
4462static long __sched
4463wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4464{
1da177e4
LT
4465 might_sleep();
4466
4467 spin_lock_irq(&x->wait.lock);
8cbbe86d 4468 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4469 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4470 return timeout;
4471}
1da177e4 4472
65eb3dc6
KD
4473/**
4474 * wait_for_completion: - waits for completion of a task
4475 * @x: holds the state of this particular completion
4476 *
4477 * This waits to be signaled for completion of a specific task. It is NOT
4478 * interruptible and there is no timeout.
4479 *
4480 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4481 * and interrupt capability. Also see complete().
4482 */
b15136e9 4483void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4484{
4485 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4486}
8cbbe86d 4487EXPORT_SYMBOL(wait_for_completion);
1da177e4 4488
65eb3dc6
KD
4489/**
4490 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4491 * @x: holds the state of this particular completion
4492 * @timeout: timeout value in jiffies
4493 *
4494 * This waits for either a completion of a specific task to be signaled or for a
4495 * specified timeout to expire. The timeout is in jiffies. It is not
4496 * interruptible.
4497 */
b15136e9 4498unsigned long __sched
8cbbe86d 4499wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4500{
8cbbe86d 4501 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4502}
8cbbe86d 4503EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4504
65eb3dc6
KD
4505/**
4506 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4507 * @x: holds the state of this particular completion
4508 *
4509 * This waits for completion of a specific task to be signaled. It is
4510 * interruptible.
4511 */
8cbbe86d 4512int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4513{
51e97990
AK
4514 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4515 if (t == -ERESTARTSYS)
4516 return t;
4517 return 0;
0fec171c 4518}
8cbbe86d 4519EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4520
65eb3dc6
KD
4521/**
4522 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4523 * @x: holds the state of this particular completion
4524 * @timeout: timeout value in jiffies
4525 *
4526 * This waits for either a completion of a specific task to be signaled or for a
4527 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4528 */
b15136e9 4529unsigned long __sched
8cbbe86d
AK
4530wait_for_completion_interruptible_timeout(struct completion *x,
4531 unsigned long timeout)
0fec171c 4532{
8cbbe86d 4533 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4534}
8cbbe86d 4535EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4536
65eb3dc6
KD
4537/**
4538 * wait_for_completion_killable: - waits for completion of a task (killable)
4539 * @x: holds the state of this particular completion
4540 *
4541 * This waits to be signaled for completion of a specific task. It can be
4542 * interrupted by a kill signal.
4543 */
009e577e
MW
4544int __sched wait_for_completion_killable(struct completion *x)
4545{
4546 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4547 if (t == -ERESTARTSYS)
4548 return t;
4549 return 0;
4550}
4551EXPORT_SYMBOL(wait_for_completion_killable);
4552
0aa12fb4
SW
4553/**
4554 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4555 * @x: holds the state of this particular completion
4556 * @timeout: timeout value in jiffies
4557 *
4558 * This waits for either a completion of a specific task to be
4559 * signaled or for a specified timeout to expire. It can be
4560 * interrupted by a kill signal. The timeout is in jiffies.
4561 */
4562unsigned long __sched
4563wait_for_completion_killable_timeout(struct completion *x,
4564 unsigned long timeout)
4565{
4566 return wait_for_common(x, timeout, TASK_KILLABLE);
4567}
4568EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4569
be4de352
DC
4570/**
4571 * try_wait_for_completion - try to decrement a completion without blocking
4572 * @x: completion structure
4573 *
4574 * Returns: 0 if a decrement cannot be done without blocking
4575 * 1 if a decrement succeeded.
4576 *
4577 * If a completion is being used as a counting completion,
4578 * attempt to decrement the counter without blocking. This
4579 * enables us to avoid waiting if the resource the completion
4580 * is protecting is not available.
4581 */
4582bool try_wait_for_completion(struct completion *x)
4583{
7539a3b3 4584 unsigned long flags;
be4de352
DC
4585 int ret = 1;
4586
7539a3b3 4587 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4588 if (!x->done)
4589 ret = 0;
4590 else
4591 x->done--;
7539a3b3 4592 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4593 return ret;
4594}
4595EXPORT_SYMBOL(try_wait_for_completion);
4596
4597/**
4598 * completion_done - Test to see if a completion has any waiters
4599 * @x: completion structure
4600 *
4601 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4602 * 1 if there are no waiters.
4603 *
4604 */
4605bool completion_done(struct completion *x)
4606{
7539a3b3 4607 unsigned long flags;
be4de352
DC
4608 int ret = 1;
4609
7539a3b3 4610 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4611 if (!x->done)
4612 ret = 0;
7539a3b3 4613 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4614 return ret;
4615}
4616EXPORT_SYMBOL(completion_done);
4617
8cbbe86d
AK
4618static long __sched
4619sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4620{
0fec171c
IM
4621 unsigned long flags;
4622 wait_queue_t wait;
4623
4624 init_waitqueue_entry(&wait, current);
1da177e4 4625
8cbbe86d 4626 __set_current_state(state);
1da177e4 4627
8cbbe86d
AK
4628 spin_lock_irqsave(&q->lock, flags);
4629 __add_wait_queue(q, &wait);
4630 spin_unlock(&q->lock);
4631 timeout = schedule_timeout(timeout);
4632 spin_lock_irq(&q->lock);
4633 __remove_wait_queue(q, &wait);
4634 spin_unlock_irqrestore(&q->lock, flags);
4635
4636 return timeout;
4637}
4638
4639void __sched interruptible_sleep_on(wait_queue_head_t *q)
4640{
4641 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4642}
1da177e4
LT
4643EXPORT_SYMBOL(interruptible_sleep_on);
4644
0fec171c 4645long __sched
95cdf3b7 4646interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4647{
8cbbe86d 4648 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4649}
1da177e4
LT
4650EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4651
0fec171c 4652void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4653{
8cbbe86d 4654 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4655}
1da177e4
LT
4656EXPORT_SYMBOL(sleep_on);
4657
0fec171c 4658long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4659{
8cbbe86d 4660 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4661}
1da177e4
LT
4662EXPORT_SYMBOL(sleep_on_timeout);
4663
b29739f9
IM
4664#ifdef CONFIG_RT_MUTEXES
4665
4666/*
4667 * rt_mutex_setprio - set the current priority of a task
4668 * @p: task
4669 * @prio: prio value (kernel-internal form)
4670 *
4671 * This function changes the 'effective' priority of a task. It does
4672 * not touch ->normal_prio like __setscheduler().
4673 *
4674 * Used by the rt_mutex code to implement priority inheritance logic.
4675 */
36c8b586 4676void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4677{
4678 unsigned long flags;
83b699ed 4679 int oldprio, on_rq, running;
70b97a7f 4680 struct rq *rq;
83ab0aa0 4681 const struct sched_class *prev_class;
b29739f9
IM
4682
4683 BUG_ON(prio < 0 || prio > MAX_PRIO);
4684
4685 rq = task_rq_lock(p, &flags);
4686
a8027073 4687 trace_sched_pi_setprio(p, prio);
d5f9f942 4688 oldprio = p->prio;
83ab0aa0 4689 prev_class = p->sched_class;
dd41f596 4690 on_rq = p->se.on_rq;
051a1d1a 4691 running = task_current(rq, p);
0e1f3483 4692 if (on_rq)
69be72c1 4693 dequeue_task(rq, p, 0);
0e1f3483
HS
4694 if (running)
4695 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4696
4697 if (rt_prio(prio))
4698 p->sched_class = &rt_sched_class;
4699 else
4700 p->sched_class = &fair_sched_class;
4701
b29739f9
IM
4702 p->prio = prio;
4703
0e1f3483
HS
4704 if (running)
4705 p->sched_class->set_curr_task(rq);
dd41f596 4706 if (on_rq) {
371fd7e7 4707 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4708
4709 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4710 }
4711 task_rq_unlock(rq, &flags);
4712}
4713
4714#endif
4715
36c8b586 4716void set_user_nice(struct task_struct *p, long nice)
1da177e4 4717{
dd41f596 4718 int old_prio, delta, on_rq;
1da177e4 4719 unsigned long flags;
70b97a7f 4720 struct rq *rq;
1da177e4
LT
4721
4722 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4723 return;
4724 /*
4725 * We have to be careful, if called from sys_setpriority(),
4726 * the task might be in the middle of scheduling on another CPU.
4727 */
4728 rq = task_rq_lock(p, &flags);
4729 /*
4730 * The RT priorities are set via sched_setscheduler(), but we still
4731 * allow the 'normal' nice value to be set - but as expected
4732 * it wont have any effect on scheduling until the task is
dd41f596 4733 * SCHED_FIFO/SCHED_RR:
1da177e4 4734 */
e05606d3 4735 if (task_has_rt_policy(p)) {
1da177e4
LT
4736 p->static_prio = NICE_TO_PRIO(nice);
4737 goto out_unlock;
4738 }
dd41f596 4739 on_rq = p->se.on_rq;
c09595f6 4740 if (on_rq)
69be72c1 4741 dequeue_task(rq, p, 0);
1da177e4 4742
1da177e4 4743 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4744 set_load_weight(p);
b29739f9
IM
4745 old_prio = p->prio;
4746 p->prio = effective_prio(p);
4747 delta = p->prio - old_prio;
1da177e4 4748
dd41f596 4749 if (on_rq) {
371fd7e7 4750 enqueue_task(rq, p, 0);
1da177e4 4751 /*
d5f9f942
AM
4752 * If the task increased its priority or is running and
4753 * lowered its priority, then reschedule its CPU:
1da177e4 4754 */
d5f9f942 4755 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4756 resched_task(rq->curr);
4757 }
4758out_unlock:
4759 task_rq_unlock(rq, &flags);
4760}
1da177e4
LT
4761EXPORT_SYMBOL(set_user_nice);
4762
e43379f1
MM
4763/*
4764 * can_nice - check if a task can reduce its nice value
4765 * @p: task
4766 * @nice: nice value
4767 */
36c8b586 4768int can_nice(const struct task_struct *p, const int nice)
e43379f1 4769{
024f4747
MM
4770 /* convert nice value [19,-20] to rlimit style value [1,40] */
4771 int nice_rlim = 20 - nice;
48f24c4d 4772
78d7d407 4773 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4774 capable(CAP_SYS_NICE));
4775}
4776
1da177e4
LT
4777#ifdef __ARCH_WANT_SYS_NICE
4778
4779/*
4780 * sys_nice - change the priority of the current process.
4781 * @increment: priority increment
4782 *
4783 * sys_setpriority is a more generic, but much slower function that
4784 * does similar things.
4785 */
5add95d4 4786SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4787{
48f24c4d 4788 long nice, retval;
1da177e4
LT
4789
4790 /*
4791 * Setpriority might change our priority at the same moment.
4792 * We don't have to worry. Conceptually one call occurs first
4793 * and we have a single winner.
4794 */
e43379f1
MM
4795 if (increment < -40)
4796 increment = -40;
1da177e4
LT
4797 if (increment > 40)
4798 increment = 40;
4799
2b8f836f 4800 nice = TASK_NICE(current) + increment;
1da177e4
LT
4801 if (nice < -20)
4802 nice = -20;
4803 if (nice > 19)
4804 nice = 19;
4805
e43379f1
MM
4806 if (increment < 0 && !can_nice(current, nice))
4807 return -EPERM;
4808
1da177e4
LT
4809 retval = security_task_setnice(current, nice);
4810 if (retval)
4811 return retval;
4812
4813 set_user_nice(current, nice);
4814 return 0;
4815}
4816
4817#endif
4818
4819/**
4820 * task_prio - return the priority value of a given task.
4821 * @p: the task in question.
4822 *
4823 * This is the priority value as seen by users in /proc.
4824 * RT tasks are offset by -200. Normal tasks are centered
4825 * around 0, value goes from -16 to +15.
4826 */
36c8b586 4827int task_prio(const struct task_struct *p)
1da177e4
LT
4828{
4829 return p->prio - MAX_RT_PRIO;
4830}
4831
4832/**
4833 * task_nice - return the nice value of a given task.
4834 * @p: the task in question.
4835 */
36c8b586 4836int task_nice(const struct task_struct *p)
1da177e4
LT
4837{
4838 return TASK_NICE(p);
4839}
150d8bed 4840EXPORT_SYMBOL(task_nice);
1da177e4
LT
4841
4842/**
4843 * idle_cpu - is a given cpu idle currently?
4844 * @cpu: the processor in question.
4845 */
4846int idle_cpu(int cpu)
4847{
4848 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4849}
4850
1da177e4
LT
4851/**
4852 * idle_task - return the idle task for a given cpu.
4853 * @cpu: the processor in question.
4854 */
36c8b586 4855struct task_struct *idle_task(int cpu)
1da177e4
LT
4856{
4857 return cpu_rq(cpu)->idle;
4858}
4859
4860/**
4861 * find_process_by_pid - find a process with a matching PID value.
4862 * @pid: the pid in question.
4863 */
a9957449 4864static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4865{
228ebcbe 4866 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4867}
4868
4869/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4870static void
4871__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4872{
dd41f596 4873 BUG_ON(p->se.on_rq);
48f24c4d 4874
1da177e4
LT
4875 p->policy = policy;
4876 p->rt_priority = prio;
b29739f9
IM
4877 p->normal_prio = normal_prio(p);
4878 /* we are holding p->pi_lock already */
4879 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4880 if (rt_prio(p->prio))
4881 p->sched_class = &rt_sched_class;
4882 else
4883 p->sched_class = &fair_sched_class;
2dd73a4f 4884 set_load_weight(p);
1da177e4
LT
4885}
4886
c69e8d9c
DH
4887/*
4888 * check the target process has a UID that matches the current process's
4889 */
4890static bool check_same_owner(struct task_struct *p)
4891{
4892 const struct cred *cred = current_cred(), *pcred;
4893 bool match;
4894
4895 rcu_read_lock();
4896 pcred = __task_cred(p);
4897 match = (cred->euid == pcred->euid ||
4898 cred->euid == pcred->uid);
4899 rcu_read_unlock();
4900 return match;
4901}
4902
961ccddd
RR
4903static int __sched_setscheduler(struct task_struct *p, int policy,
4904 struct sched_param *param, bool user)
1da177e4 4905{
83b699ed 4906 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4907 unsigned long flags;
83ab0aa0 4908 const struct sched_class *prev_class;
70b97a7f 4909 struct rq *rq;
ca94c442 4910 int reset_on_fork;
1da177e4 4911
66e5393a
SR
4912 /* may grab non-irq protected spin_locks */
4913 BUG_ON(in_interrupt());
1da177e4
LT
4914recheck:
4915 /* double check policy once rq lock held */
ca94c442
LP
4916 if (policy < 0) {
4917 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4918 policy = oldpolicy = p->policy;
ca94c442
LP
4919 } else {
4920 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4921 policy &= ~SCHED_RESET_ON_FORK;
4922
4923 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4924 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4925 policy != SCHED_IDLE)
4926 return -EINVAL;
4927 }
4928
1da177e4
LT
4929 /*
4930 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4931 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4932 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4933 */
4934 if (param->sched_priority < 0 ||
95cdf3b7 4935 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4936 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4937 return -EINVAL;
e05606d3 4938 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4939 return -EINVAL;
4940
37e4ab3f
OC
4941 /*
4942 * Allow unprivileged RT tasks to decrease priority:
4943 */
961ccddd 4944 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4945 if (rt_policy(policy)) {
a44702e8
ON
4946 unsigned long rlim_rtprio =
4947 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4948
4949 /* can't set/change the rt policy */
4950 if (policy != p->policy && !rlim_rtprio)
4951 return -EPERM;
4952
4953 /* can't increase priority */
4954 if (param->sched_priority > p->rt_priority &&
4955 param->sched_priority > rlim_rtprio)
4956 return -EPERM;
4957 }
dd41f596
IM
4958 /*
4959 * Like positive nice levels, dont allow tasks to
4960 * move out of SCHED_IDLE either:
4961 */
4962 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4963 return -EPERM;
5fe1d75f 4964
37e4ab3f 4965 /* can't change other user's priorities */
c69e8d9c 4966 if (!check_same_owner(p))
37e4ab3f 4967 return -EPERM;
ca94c442
LP
4968
4969 /* Normal users shall not reset the sched_reset_on_fork flag */
4970 if (p->sched_reset_on_fork && !reset_on_fork)
4971 return -EPERM;
37e4ab3f 4972 }
1da177e4 4973
725aad24 4974 if (user) {
b0ae1981 4975 retval = security_task_setscheduler(p);
725aad24
JF
4976 if (retval)
4977 return retval;
4978 }
4979
b29739f9
IM
4980 /*
4981 * make sure no PI-waiters arrive (or leave) while we are
4982 * changing the priority of the task:
4983 */
1d615482 4984 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4985 /*
4986 * To be able to change p->policy safely, the apropriate
4987 * runqueue lock must be held.
4988 */
b29739f9 4989 rq = __task_rq_lock(p);
dc61b1d6 4990
34f971f6
PZ
4991 /*
4992 * Changing the policy of the stop threads its a very bad idea
4993 */
4994 if (p == rq->stop) {
4995 __task_rq_unlock(rq);
4996 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4997 return -EINVAL;
4998 }
4999
dc61b1d6
PZ
5000#ifdef CONFIG_RT_GROUP_SCHED
5001 if (user) {
5002 /*
5003 * Do not allow realtime tasks into groups that have no runtime
5004 * assigned.
5005 */
5006 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5007 task_group(p)->rt_bandwidth.rt_runtime == 0) {
5008 __task_rq_unlock(rq);
5009 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5010 return -EPERM;
5011 }
5012 }
5013#endif
5014
1da177e4
LT
5015 /* recheck policy now with rq lock held */
5016 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5017 policy = oldpolicy = -1;
b29739f9 5018 __task_rq_unlock(rq);
1d615482 5019 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5020 goto recheck;
5021 }
dd41f596 5022 on_rq = p->se.on_rq;
051a1d1a 5023 running = task_current(rq, p);
0e1f3483 5024 if (on_rq)
2e1cb74a 5025 deactivate_task(rq, p, 0);
0e1f3483
HS
5026 if (running)
5027 p->sched_class->put_prev_task(rq, p);
f6b53205 5028
ca94c442
LP
5029 p->sched_reset_on_fork = reset_on_fork;
5030
1da177e4 5031 oldprio = p->prio;
83ab0aa0 5032 prev_class = p->sched_class;
dd41f596 5033 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5034
0e1f3483
HS
5035 if (running)
5036 p->sched_class->set_curr_task(rq);
dd41f596
IM
5037 if (on_rq) {
5038 activate_task(rq, p, 0);
cb469845
SR
5039
5040 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5041 }
b29739f9 5042 __task_rq_unlock(rq);
1d615482 5043 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 5044
95e02ca9
TG
5045 rt_mutex_adjust_pi(p);
5046
1da177e4
LT
5047 return 0;
5048}
961ccddd
RR
5049
5050/**
5051 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5052 * @p: the task in question.
5053 * @policy: new policy.
5054 * @param: structure containing the new RT priority.
5055 *
5056 * NOTE that the task may be already dead.
5057 */
5058int sched_setscheduler(struct task_struct *p, int policy,
5059 struct sched_param *param)
5060{
5061 return __sched_setscheduler(p, policy, param, true);
5062}
1da177e4
LT
5063EXPORT_SYMBOL_GPL(sched_setscheduler);
5064
961ccddd
RR
5065/**
5066 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5067 * @p: the task in question.
5068 * @policy: new policy.
5069 * @param: structure containing the new RT priority.
5070 *
5071 * Just like sched_setscheduler, only don't bother checking if the
5072 * current context has permission. For example, this is needed in
5073 * stop_machine(): we create temporary high priority worker threads,
5074 * but our caller might not have that capability.
5075 */
5076int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5077 struct sched_param *param)
5078{
5079 return __sched_setscheduler(p, policy, param, false);
5080}
5081
95cdf3b7
IM
5082static int
5083do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5084{
1da177e4
LT
5085 struct sched_param lparam;
5086 struct task_struct *p;
36c8b586 5087 int retval;
1da177e4
LT
5088
5089 if (!param || pid < 0)
5090 return -EINVAL;
5091 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5092 return -EFAULT;
5fe1d75f
ON
5093
5094 rcu_read_lock();
5095 retval = -ESRCH;
1da177e4 5096 p = find_process_by_pid(pid);
5fe1d75f
ON
5097 if (p != NULL)
5098 retval = sched_setscheduler(p, policy, &lparam);
5099 rcu_read_unlock();
36c8b586 5100
1da177e4
LT
5101 return retval;
5102}
5103
5104/**
5105 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5106 * @pid: the pid in question.
5107 * @policy: new policy.
5108 * @param: structure containing the new RT priority.
5109 */
5add95d4
HC
5110SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5111 struct sched_param __user *, param)
1da177e4 5112{
c21761f1
JB
5113 /* negative values for policy are not valid */
5114 if (policy < 0)
5115 return -EINVAL;
5116
1da177e4
LT
5117 return do_sched_setscheduler(pid, policy, param);
5118}
5119
5120/**
5121 * sys_sched_setparam - set/change the RT priority of a thread
5122 * @pid: the pid in question.
5123 * @param: structure containing the new RT priority.
5124 */
5add95d4 5125SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5126{
5127 return do_sched_setscheduler(pid, -1, param);
5128}
5129
5130/**
5131 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5132 * @pid: the pid in question.
5133 */
5add95d4 5134SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5135{
36c8b586 5136 struct task_struct *p;
3a5c359a 5137 int retval;
1da177e4
LT
5138
5139 if (pid < 0)
3a5c359a 5140 return -EINVAL;
1da177e4
LT
5141
5142 retval = -ESRCH;
5fe85be0 5143 rcu_read_lock();
1da177e4
LT
5144 p = find_process_by_pid(pid);
5145 if (p) {
5146 retval = security_task_getscheduler(p);
5147 if (!retval)
ca94c442
LP
5148 retval = p->policy
5149 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5150 }
5fe85be0 5151 rcu_read_unlock();
1da177e4
LT
5152 return retval;
5153}
5154
5155/**
ca94c442 5156 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5157 * @pid: the pid in question.
5158 * @param: structure containing the RT priority.
5159 */
5add95d4 5160SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5161{
5162 struct sched_param lp;
36c8b586 5163 struct task_struct *p;
3a5c359a 5164 int retval;
1da177e4
LT
5165
5166 if (!param || pid < 0)
3a5c359a 5167 return -EINVAL;
1da177e4 5168
5fe85be0 5169 rcu_read_lock();
1da177e4
LT
5170 p = find_process_by_pid(pid);
5171 retval = -ESRCH;
5172 if (!p)
5173 goto out_unlock;
5174
5175 retval = security_task_getscheduler(p);
5176 if (retval)
5177 goto out_unlock;
5178
5179 lp.sched_priority = p->rt_priority;
5fe85be0 5180 rcu_read_unlock();
1da177e4
LT
5181
5182 /*
5183 * This one might sleep, we cannot do it with a spinlock held ...
5184 */
5185 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5186
1da177e4
LT
5187 return retval;
5188
5189out_unlock:
5fe85be0 5190 rcu_read_unlock();
1da177e4
LT
5191 return retval;
5192}
5193
96f874e2 5194long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5195{
5a16f3d3 5196 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5197 struct task_struct *p;
5198 int retval;
1da177e4 5199
95402b38 5200 get_online_cpus();
23f5d142 5201 rcu_read_lock();
1da177e4
LT
5202
5203 p = find_process_by_pid(pid);
5204 if (!p) {
23f5d142 5205 rcu_read_unlock();
95402b38 5206 put_online_cpus();
1da177e4
LT
5207 return -ESRCH;
5208 }
5209
23f5d142 5210 /* Prevent p going away */
1da177e4 5211 get_task_struct(p);
23f5d142 5212 rcu_read_unlock();
1da177e4 5213
5a16f3d3
RR
5214 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5215 retval = -ENOMEM;
5216 goto out_put_task;
5217 }
5218 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5219 retval = -ENOMEM;
5220 goto out_free_cpus_allowed;
5221 }
1da177e4 5222 retval = -EPERM;
c69e8d9c 5223 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5224 goto out_unlock;
5225
b0ae1981 5226 retval = security_task_setscheduler(p);
e7834f8f
DQ
5227 if (retval)
5228 goto out_unlock;
5229
5a16f3d3
RR
5230 cpuset_cpus_allowed(p, cpus_allowed);
5231 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5232again:
5a16f3d3 5233 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5234
8707d8b8 5235 if (!retval) {
5a16f3d3
RR
5236 cpuset_cpus_allowed(p, cpus_allowed);
5237 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5238 /*
5239 * We must have raced with a concurrent cpuset
5240 * update. Just reset the cpus_allowed to the
5241 * cpuset's cpus_allowed
5242 */
5a16f3d3 5243 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5244 goto again;
5245 }
5246 }
1da177e4 5247out_unlock:
5a16f3d3
RR
5248 free_cpumask_var(new_mask);
5249out_free_cpus_allowed:
5250 free_cpumask_var(cpus_allowed);
5251out_put_task:
1da177e4 5252 put_task_struct(p);
95402b38 5253 put_online_cpus();
1da177e4
LT
5254 return retval;
5255}
5256
5257static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5258 struct cpumask *new_mask)
1da177e4 5259{
96f874e2
RR
5260 if (len < cpumask_size())
5261 cpumask_clear(new_mask);
5262 else if (len > cpumask_size())
5263 len = cpumask_size();
5264
1da177e4
LT
5265 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5266}
5267
5268/**
5269 * sys_sched_setaffinity - set the cpu affinity of a process
5270 * @pid: pid of the process
5271 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5272 * @user_mask_ptr: user-space pointer to the new cpu mask
5273 */
5add95d4
HC
5274SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5275 unsigned long __user *, user_mask_ptr)
1da177e4 5276{
5a16f3d3 5277 cpumask_var_t new_mask;
1da177e4
LT
5278 int retval;
5279
5a16f3d3
RR
5280 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5281 return -ENOMEM;
1da177e4 5282
5a16f3d3
RR
5283 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5284 if (retval == 0)
5285 retval = sched_setaffinity(pid, new_mask);
5286 free_cpumask_var(new_mask);
5287 return retval;
1da177e4
LT
5288}
5289
96f874e2 5290long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5291{
36c8b586 5292 struct task_struct *p;
31605683
TG
5293 unsigned long flags;
5294 struct rq *rq;
1da177e4 5295 int retval;
1da177e4 5296
95402b38 5297 get_online_cpus();
23f5d142 5298 rcu_read_lock();
1da177e4
LT
5299
5300 retval = -ESRCH;
5301 p = find_process_by_pid(pid);
5302 if (!p)
5303 goto out_unlock;
5304
e7834f8f
DQ
5305 retval = security_task_getscheduler(p);
5306 if (retval)
5307 goto out_unlock;
5308
31605683 5309 rq = task_rq_lock(p, &flags);
96f874e2 5310 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5311 task_rq_unlock(rq, &flags);
1da177e4
LT
5312
5313out_unlock:
23f5d142 5314 rcu_read_unlock();
95402b38 5315 put_online_cpus();
1da177e4 5316
9531b62f 5317 return retval;
1da177e4
LT
5318}
5319
5320/**
5321 * sys_sched_getaffinity - get the cpu affinity of a process
5322 * @pid: pid of the process
5323 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5324 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5325 */
5add95d4
HC
5326SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5327 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5328{
5329 int ret;
f17c8607 5330 cpumask_var_t mask;
1da177e4 5331
84fba5ec 5332 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5333 return -EINVAL;
5334 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5335 return -EINVAL;
5336
f17c8607
RR
5337 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5338 return -ENOMEM;
1da177e4 5339
f17c8607
RR
5340 ret = sched_getaffinity(pid, mask);
5341 if (ret == 0) {
8bc037fb 5342 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5343
5344 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5345 ret = -EFAULT;
5346 else
cd3d8031 5347 ret = retlen;
f17c8607
RR
5348 }
5349 free_cpumask_var(mask);
1da177e4 5350
f17c8607 5351 return ret;
1da177e4
LT
5352}
5353
5354/**
5355 * sys_sched_yield - yield the current processor to other threads.
5356 *
dd41f596
IM
5357 * This function yields the current CPU to other tasks. If there are no
5358 * other threads running on this CPU then this function will return.
1da177e4 5359 */
5add95d4 5360SYSCALL_DEFINE0(sched_yield)
1da177e4 5361{
70b97a7f 5362 struct rq *rq = this_rq_lock();
1da177e4 5363
2d72376b 5364 schedstat_inc(rq, yld_count);
4530d7ab 5365 current->sched_class->yield_task(rq);
1da177e4
LT
5366
5367 /*
5368 * Since we are going to call schedule() anyway, there's
5369 * no need to preempt or enable interrupts:
5370 */
5371 __release(rq->lock);
8a25d5de 5372 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5373 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5374 preempt_enable_no_resched();
5375
5376 schedule();
5377
5378 return 0;
5379}
5380
d86ee480
PZ
5381static inline int should_resched(void)
5382{
5383 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5384}
5385
e7b38404 5386static void __cond_resched(void)
1da177e4 5387{
e7aaaa69
FW
5388 add_preempt_count(PREEMPT_ACTIVE);
5389 schedule();
5390 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5391}
5392
02b67cc3 5393int __sched _cond_resched(void)
1da177e4 5394{
d86ee480 5395 if (should_resched()) {
1da177e4
LT
5396 __cond_resched();
5397 return 1;
5398 }
5399 return 0;
5400}
02b67cc3 5401EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5402
5403/*
613afbf8 5404 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5405 * call schedule, and on return reacquire the lock.
5406 *
41a2d6cf 5407 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5408 * operations here to prevent schedule() from being called twice (once via
5409 * spin_unlock(), once by hand).
5410 */
613afbf8 5411int __cond_resched_lock(spinlock_t *lock)
1da177e4 5412{
d86ee480 5413 int resched = should_resched();
6df3cecb
JK
5414 int ret = 0;
5415
f607c668
PZ
5416 lockdep_assert_held(lock);
5417
95c354fe 5418 if (spin_needbreak(lock) || resched) {
1da177e4 5419 spin_unlock(lock);
d86ee480 5420 if (resched)
95c354fe
NP
5421 __cond_resched();
5422 else
5423 cpu_relax();
6df3cecb 5424 ret = 1;
1da177e4 5425 spin_lock(lock);
1da177e4 5426 }
6df3cecb 5427 return ret;
1da177e4 5428}
613afbf8 5429EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5430
613afbf8 5431int __sched __cond_resched_softirq(void)
1da177e4
LT
5432{
5433 BUG_ON(!in_softirq());
5434
d86ee480 5435 if (should_resched()) {
98d82567 5436 local_bh_enable();
1da177e4
LT
5437 __cond_resched();
5438 local_bh_disable();
5439 return 1;
5440 }
5441 return 0;
5442}
613afbf8 5443EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5444
1da177e4
LT
5445/**
5446 * yield - yield the current processor to other threads.
5447 *
72fd4a35 5448 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5449 * thread runnable and calls sys_sched_yield().
5450 */
5451void __sched yield(void)
5452{
5453 set_current_state(TASK_RUNNING);
5454 sys_sched_yield();
5455}
1da177e4
LT
5456EXPORT_SYMBOL(yield);
5457
5458/*
41a2d6cf 5459 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5460 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5461 */
5462void __sched io_schedule(void)
5463{
54d35f29 5464 struct rq *rq = raw_rq();
1da177e4 5465
0ff92245 5466 delayacct_blkio_start();
1da177e4 5467 atomic_inc(&rq->nr_iowait);
8f0dfc34 5468 current->in_iowait = 1;
1da177e4 5469 schedule();
8f0dfc34 5470 current->in_iowait = 0;
1da177e4 5471 atomic_dec(&rq->nr_iowait);
0ff92245 5472 delayacct_blkio_end();
1da177e4 5473}
1da177e4
LT
5474EXPORT_SYMBOL(io_schedule);
5475
5476long __sched io_schedule_timeout(long timeout)
5477{
54d35f29 5478 struct rq *rq = raw_rq();
1da177e4
LT
5479 long ret;
5480
0ff92245 5481 delayacct_blkio_start();
1da177e4 5482 atomic_inc(&rq->nr_iowait);
8f0dfc34 5483 current->in_iowait = 1;
1da177e4 5484 ret = schedule_timeout(timeout);
8f0dfc34 5485 current->in_iowait = 0;
1da177e4 5486 atomic_dec(&rq->nr_iowait);
0ff92245 5487 delayacct_blkio_end();
1da177e4
LT
5488 return ret;
5489}
5490
5491/**
5492 * sys_sched_get_priority_max - return maximum RT priority.
5493 * @policy: scheduling class.
5494 *
5495 * this syscall returns the maximum rt_priority that can be used
5496 * by a given scheduling class.
5497 */
5add95d4 5498SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5499{
5500 int ret = -EINVAL;
5501
5502 switch (policy) {
5503 case SCHED_FIFO:
5504 case SCHED_RR:
5505 ret = MAX_USER_RT_PRIO-1;
5506 break;
5507 case SCHED_NORMAL:
b0a9499c 5508 case SCHED_BATCH:
dd41f596 5509 case SCHED_IDLE:
1da177e4
LT
5510 ret = 0;
5511 break;
5512 }
5513 return ret;
5514}
5515
5516/**
5517 * sys_sched_get_priority_min - return minimum RT priority.
5518 * @policy: scheduling class.
5519 *
5520 * this syscall returns the minimum rt_priority that can be used
5521 * by a given scheduling class.
5522 */
5add95d4 5523SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5524{
5525 int ret = -EINVAL;
5526
5527 switch (policy) {
5528 case SCHED_FIFO:
5529 case SCHED_RR:
5530 ret = 1;
5531 break;
5532 case SCHED_NORMAL:
b0a9499c 5533 case SCHED_BATCH:
dd41f596 5534 case SCHED_IDLE:
1da177e4
LT
5535 ret = 0;
5536 }
5537 return ret;
5538}
5539
5540/**
5541 * sys_sched_rr_get_interval - return the default timeslice of a process.
5542 * @pid: pid of the process.
5543 * @interval: userspace pointer to the timeslice value.
5544 *
5545 * this syscall writes the default timeslice value of a given process
5546 * into the user-space timespec buffer. A value of '0' means infinity.
5547 */
17da2bd9 5548SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5549 struct timespec __user *, interval)
1da177e4 5550{
36c8b586 5551 struct task_struct *p;
a4ec24b4 5552 unsigned int time_slice;
dba091b9
TG
5553 unsigned long flags;
5554 struct rq *rq;
3a5c359a 5555 int retval;
1da177e4 5556 struct timespec t;
1da177e4
LT
5557
5558 if (pid < 0)
3a5c359a 5559 return -EINVAL;
1da177e4
LT
5560
5561 retval = -ESRCH;
1a551ae7 5562 rcu_read_lock();
1da177e4
LT
5563 p = find_process_by_pid(pid);
5564 if (!p)
5565 goto out_unlock;
5566
5567 retval = security_task_getscheduler(p);
5568 if (retval)
5569 goto out_unlock;
5570
dba091b9
TG
5571 rq = task_rq_lock(p, &flags);
5572 time_slice = p->sched_class->get_rr_interval(rq, p);
5573 task_rq_unlock(rq, &flags);
a4ec24b4 5574
1a551ae7 5575 rcu_read_unlock();
a4ec24b4 5576 jiffies_to_timespec(time_slice, &t);
1da177e4 5577 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5578 return retval;
3a5c359a 5579
1da177e4 5580out_unlock:
1a551ae7 5581 rcu_read_unlock();
1da177e4
LT
5582 return retval;
5583}
5584
7c731e0a 5585static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5586
82a1fcb9 5587void sched_show_task(struct task_struct *p)
1da177e4 5588{
1da177e4 5589 unsigned long free = 0;
36c8b586 5590 unsigned state;
1da177e4 5591
1da177e4 5592 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5593 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5594 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5595#if BITS_PER_LONG == 32
1da177e4 5596 if (state == TASK_RUNNING)
3df0fc5b 5597 printk(KERN_CONT " running ");
1da177e4 5598 else
3df0fc5b 5599 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5600#else
5601 if (state == TASK_RUNNING)
3df0fc5b 5602 printk(KERN_CONT " running task ");
1da177e4 5603 else
3df0fc5b 5604 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5605#endif
5606#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5607 free = stack_not_used(p);
1da177e4 5608#endif
3df0fc5b 5609 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5610 task_pid_nr(p), task_pid_nr(p->real_parent),
5611 (unsigned long)task_thread_info(p)->flags);
1da177e4 5612
5fb5e6de 5613 show_stack(p, NULL);
1da177e4
LT
5614}
5615
e59e2ae2 5616void show_state_filter(unsigned long state_filter)
1da177e4 5617{
36c8b586 5618 struct task_struct *g, *p;
1da177e4 5619
4bd77321 5620#if BITS_PER_LONG == 32
3df0fc5b
PZ
5621 printk(KERN_INFO
5622 " task PC stack pid father\n");
1da177e4 5623#else
3df0fc5b
PZ
5624 printk(KERN_INFO
5625 " task PC stack pid father\n");
1da177e4
LT
5626#endif
5627 read_lock(&tasklist_lock);
5628 do_each_thread(g, p) {
5629 /*
5630 * reset the NMI-timeout, listing all files on a slow
5631 * console might take alot of time:
5632 */
5633 touch_nmi_watchdog();
39bc89fd 5634 if (!state_filter || (p->state & state_filter))
82a1fcb9 5635 sched_show_task(p);
1da177e4
LT
5636 } while_each_thread(g, p);
5637
04c9167f
JF
5638 touch_all_softlockup_watchdogs();
5639
dd41f596
IM
5640#ifdef CONFIG_SCHED_DEBUG
5641 sysrq_sched_debug_show();
5642#endif
1da177e4 5643 read_unlock(&tasklist_lock);
e59e2ae2
IM
5644 /*
5645 * Only show locks if all tasks are dumped:
5646 */
93335a21 5647 if (!state_filter)
e59e2ae2 5648 debug_show_all_locks();
1da177e4
LT
5649}
5650
1df21055
IM
5651void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5652{
dd41f596 5653 idle->sched_class = &idle_sched_class;
1df21055
IM
5654}
5655
f340c0d1
IM
5656/**
5657 * init_idle - set up an idle thread for a given CPU
5658 * @idle: task in question
5659 * @cpu: cpu the idle task belongs to
5660 *
5661 * NOTE: this function does not set the idle thread's NEED_RESCHED
5662 * flag, to make booting more robust.
5663 */
5c1e1767 5664void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5665{
70b97a7f 5666 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5667 unsigned long flags;
5668
05fa785c 5669 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5670
dd41f596 5671 __sched_fork(idle);
06b83b5f 5672 idle->state = TASK_RUNNING;
dd41f596
IM
5673 idle->se.exec_start = sched_clock();
5674
96f874e2 5675 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5676 /*
5677 * We're having a chicken and egg problem, even though we are
5678 * holding rq->lock, the cpu isn't yet set to this cpu so the
5679 * lockdep check in task_group() will fail.
5680 *
5681 * Similar case to sched_fork(). / Alternatively we could
5682 * use task_rq_lock() here and obtain the other rq->lock.
5683 *
5684 * Silence PROVE_RCU
5685 */
5686 rcu_read_lock();
dd41f596 5687 __set_task_cpu(idle, cpu);
6506cf6c 5688 rcu_read_unlock();
1da177e4 5689
1da177e4 5690 rq->curr = rq->idle = idle;
4866cde0
NP
5691#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5692 idle->oncpu = 1;
5693#endif
05fa785c 5694 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5695
5696 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5697#if defined(CONFIG_PREEMPT)
5698 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5699#else
a1261f54 5700 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5701#endif
dd41f596
IM
5702 /*
5703 * The idle tasks have their own, simple scheduling class:
5704 */
5705 idle->sched_class = &idle_sched_class;
fb52607a 5706 ftrace_graph_init_task(idle);
1da177e4
LT
5707}
5708
5709/*
5710 * In a system that switches off the HZ timer nohz_cpu_mask
5711 * indicates which cpus entered this state. This is used
5712 * in the rcu update to wait only for active cpus. For system
5713 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5714 * always be CPU_BITS_NONE.
1da177e4 5715 */
6a7b3dc3 5716cpumask_var_t nohz_cpu_mask;
1da177e4 5717
19978ca6
IM
5718/*
5719 * Increase the granularity value when there are more CPUs,
5720 * because with more CPUs the 'effective latency' as visible
5721 * to users decreases. But the relationship is not linear,
5722 * so pick a second-best guess by going with the log2 of the
5723 * number of CPUs.
5724 *
5725 * This idea comes from the SD scheduler of Con Kolivas:
5726 */
acb4a848 5727static int get_update_sysctl_factor(void)
19978ca6 5728{
4ca3ef71 5729 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5730 unsigned int factor;
5731
5732 switch (sysctl_sched_tunable_scaling) {
5733 case SCHED_TUNABLESCALING_NONE:
5734 factor = 1;
5735 break;
5736 case SCHED_TUNABLESCALING_LINEAR:
5737 factor = cpus;
5738 break;
5739 case SCHED_TUNABLESCALING_LOG:
5740 default:
5741 factor = 1 + ilog2(cpus);
5742 break;
5743 }
19978ca6 5744
acb4a848
CE
5745 return factor;
5746}
19978ca6 5747
acb4a848
CE
5748static void update_sysctl(void)
5749{
5750 unsigned int factor = get_update_sysctl_factor();
19978ca6 5751
0bcdcf28
CE
5752#define SET_SYSCTL(name) \
5753 (sysctl_##name = (factor) * normalized_sysctl_##name)
5754 SET_SYSCTL(sched_min_granularity);
5755 SET_SYSCTL(sched_latency);
5756 SET_SYSCTL(sched_wakeup_granularity);
5757 SET_SYSCTL(sched_shares_ratelimit);
5758#undef SET_SYSCTL
5759}
55cd5340 5760
0bcdcf28
CE
5761static inline void sched_init_granularity(void)
5762{
5763 update_sysctl();
19978ca6
IM
5764}
5765
1da177e4
LT
5766#ifdef CONFIG_SMP
5767/*
5768 * This is how migration works:
5769 *
969c7921
TH
5770 * 1) we invoke migration_cpu_stop() on the target CPU using
5771 * stop_one_cpu().
5772 * 2) stopper starts to run (implicitly forcing the migrated thread
5773 * off the CPU)
5774 * 3) it checks whether the migrated task is still in the wrong runqueue.
5775 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5776 * it and puts it into the right queue.
969c7921
TH
5777 * 5) stopper completes and stop_one_cpu() returns and the migration
5778 * is done.
1da177e4
LT
5779 */
5780
5781/*
5782 * Change a given task's CPU affinity. Migrate the thread to a
5783 * proper CPU and schedule it away if the CPU it's executing on
5784 * is removed from the allowed bitmask.
5785 *
5786 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5787 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5788 * call is not atomic; no spinlocks may be held.
5789 */
96f874e2 5790int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5791{
5792 unsigned long flags;
70b97a7f 5793 struct rq *rq;
969c7921 5794 unsigned int dest_cpu;
48f24c4d 5795 int ret = 0;
1da177e4 5796
65cc8e48
PZ
5797 /*
5798 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5799 * drop the rq->lock and still rely on ->cpus_allowed.
5800 */
5801again:
5802 while (task_is_waking(p))
5803 cpu_relax();
1da177e4 5804 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5805 if (task_is_waking(p)) {
5806 task_rq_unlock(rq, &flags);
5807 goto again;
5808 }
e2912009 5809
6ad4c188 5810 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5811 ret = -EINVAL;
5812 goto out;
5813 }
5814
9985b0ba 5815 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5816 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5817 ret = -EINVAL;
5818 goto out;
5819 }
5820
73fe6aae 5821 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5822 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5823 else {
96f874e2
RR
5824 cpumask_copy(&p->cpus_allowed, new_mask);
5825 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5826 }
5827
1da177e4 5828 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5829 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5830 goto out;
5831
969c7921
TH
5832 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5833 if (migrate_task(p, dest_cpu)) {
5834 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5835 /* Need help from migration thread: drop lock and wait. */
5836 task_rq_unlock(rq, &flags);
969c7921 5837 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5838 tlb_migrate_finish(p->mm);
5839 return 0;
5840 }
5841out:
5842 task_rq_unlock(rq, &flags);
48f24c4d 5843
1da177e4
LT
5844 return ret;
5845}
cd8ba7cd 5846EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5847
5848/*
41a2d6cf 5849 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5850 * this because either it can't run here any more (set_cpus_allowed()
5851 * away from this CPU, or CPU going down), or because we're
5852 * attempting to rebalance this task on exec (sched_exec).
5853 *
5854 * So we race with normal scheduler movements, but that's OK, as long
5855 * as the task is no longer on this CPU.
efc30814
KK
5856 *
5857 * Returns non-zero if task was successfully migrated.
1da177e4 5858 */
efc30814 5859static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5860{
70b97a7f 5861 struct rq *rq_dest, *rq_src;
e2912009 5862 int ret = 0;
1da177e4 5863
e761b772 5864 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5865 return ret;
1da177e4
LT
5866
5867 rq_src = cpu_rq(src_cpu);
5868 rq_dest = cpu_rq(dest_cpu);
5869
5870 double_rq_lock(rq_src, rq_dest);
5871 /* Already moved. */
5872 if (task_cpu(p) != src_cpu)
b1e38734 5873 goto done;
1da177e4 5874 /* Affinity changed (again). */
96f874e2 5875 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5876 goto fail;
1da177e4 5877
e2912009
PZ
5878 /*
5879 * If we're not on a rq, the next wake-up will ensure we're
5880 * placed properly.
5881 */
5882 if (p->se.on_rq) {
2e1cb74a 5883 deactivate_task(rq_src, p, 0);
e2912009 5884 set_task_cpu(p, dest_cpu);
dd41f596 5885 activate_task(rq_dest, p, 0);
15afe09b 5886 check_preempt_curr(rq_dest, p, 0);
1da177e4 5887 }
b1e38734 5888done:
efc30814 5889 ret = 1;
b1e38734 5890fail:
1da177e4 5891 double_rq_unlock(rq_src, rq_dest);
efc30814 5892 return ret;
1da177e4
LT
5893}
5894
5895/*
969c7921
TH
5896 * migration_cpu_stop - this will be executed by a highprio stopper thread
5897 * and performs thread migration by bumping thread off CPU then
5898 * 'pushing' onto another runqueue.
1da177e4 5899 */
969c7921 5900static int migration_cpu_stop(void *data)
1da177e4 5901{
969c7921 5902 struct migration_arg *arg = data;
f7b4cddc 5903
969c7921
TH
5904 /*
5905 * The original target cpu might have gone down and we might
5906 * be on another cpu but it doesn't matter.
5907 */
f7b4cddc 5908 local_irq_disable();
969c7921 5909 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5910 local_irq_enable();
1da177e4 5911 return 0;
f7b4cddc
ON
5912}
5913
1da177e4 5914#ifdef CONFIG_HOTPLUG_CPU
054b9108 5915/*
3a4fa0a2 5916 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5917 */
6a1bdc1b 5918void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5919{
1445c08d
ON
5920 struct rq *rq = cpu_rq(dead_cpu);
5921 int needs_cpu, uninitialized_var(dest_cpu);
5922 unsigned long flags;
e76bd8d9 5923
1445c08d 5924 local_irq_save(flags);
e76bd8d9 5925
1445c08d
ON
5926 raw_spin_lock(&rq->lock);
5927 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5928 if (needs_cpu)
5929 dest_cpu = select_fallback_rq(dead_cpu, p);
5930 raw_spin_unlock(&rq->lock);
c1804d54
ON
5931 /*
5932 * It can only fail if we race with set_cpus_allowed(),
5933 * in the racer should migrate the task anyway.
5934 */
1445c08d 5935 if (needs_cpu)
c1804d54 5936 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5937 local_irq_restore(flags);
1da177e4
LT
5938}
5939
5940/*
5941 * While a dead CPU has no uninterruptible tasks queued at this point,
5942 * it might still have a nonzero ->nr_uninterruptible counter, because
5943 * for performance reasons the counter is not stricly tracking tasks to
5944 * their home CPUs. So we just add the counter to another CPU's counter,
5945 * to keep the global sum constant after CPU-down:
5946 */
70b97a7f 5947static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5948{
6ad4c188 5949 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5950 unsigned long flags;
5951
5952 local_irq_save(flags);
5953 double_rq_lock(rq_src, rq_dest);
5954 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5955 rq_src->nr_uninterruptible = 0;
5956 double_rq_unlock(rq_src, rq_dest);
5957 local_irq_restore(flags);
5958}
5959
5960/* Run through task list and migrate tasks from the dead cpu. */
5961static void migrate_live_tasks(int src_cpu)
5962{
48f24c4d 5963 struct task_struct *p, *t;
1da177e4 5964
f7b4cddc 5965 read_lock(&tasklist_lock);
1da177e4 5966
48f24c4d
IM
5967 do_each_thread(t, p) {
5968 if (p == current)
1da177e4
LT
5969 continue;
5970
48f24c4d
IM
5971 if (task_cpu(p) == src_cpu)
5972 move_task_off_dead_cpu(src_cpu, p);
5973 } while_each_thread(t, p);
1da177e4 5974
f7b4cddc 5975 read_unlock(&tasklist_lock);
1da177e4
LT
5976}
5977
dd41f596
IM
5978/*
5979 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5980 * It does so by boosting its priority to highest possible.
5981 * Used by CPU offline code.
1da177e4
LT
5982 */
5983void sched_idle_next(void)
5984{
48f24c4d 5985 int this_cpu = smp_processor_id();
70b97a7f 5986 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5987 struct task_struct *p = rq->idle;
5988 unsigned long flags;
5989
5990 /* cpu has to be offline */
48f24c4d 5991 BUG_ON(cpu_online(this_cpu));
1da177e4 5992
48f24c4d
IM
5993 /*
5994 * Strictly not necessary since rest of the CPUs are stopped by now
5995 * and interrupts disabled on the current cpu.
1da177e4 5996 */
05fa785c 5997 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5998
dd41f596 5999 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6000
94bc9a7b 6001 activate_task(rq, p, 0);
1da177e4 6002
05fa785c 6003 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
6004}
6005
48f24c4d
IM
6006/*
6007 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6008 * offline.
6009 */
6010void idle_task_exit(void)
6011{
6012 struct mm_struct *mm = current->active_mm;
6013
6014 BUG_ON(cpu_online(smp_processor_id()));
6015
6016 if (mm != &init_mm)
6017 switch_mm(mm, &init_mm, current);
6018 mmdrop(mm);
6019}
6020
054b9108 6021/* called under rq->lock with disabled interrupts */
36c8b586 6022static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6023{
70b97a7f 6024 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6025
6026 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6027 BUG_ON(!p->exit_state);
1da177e4
LT
6028
6029 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6030 BUG_ON(p->state == TASK_DEAD);
1da177e4 6031
48f24c4d 6032 get_task_struct(p);
1da177e4
LT
6033
6034 /*
6035 * Drop lock around migration; if someone else moves it,
41a2d6cf 6036 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6037 * fine.
6038 */
05fa785c 6039 raw_spin_unlock_irq(&rq->lock);
48f24c4d 6040 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 6041 raw_spin_lock_irq(&rq->lock);
1da177e4 6042
48f24c4d 6043 put_task_struct(p);
1da177e4
LT
6044}
6045
6046/* release_task() removes task from tasklist, so we won't find dead tasks. */
6047static void migrate_dead_tasks(unsigned int dead_cpu)
6048{
70b97a7f 6049 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6050 struct task_struct *next;
48f24c4d 6051
dd41f596
IM
6052 for ( ; ; ) {
6053 if (!rq->nr_running)
6054 break;
b67802ea 6055 next = pick_next_task(rq);
dd41f596
IM
6056 if (!next)
6057 break;
79c53799 6058 next->sched_class->put_prev_task(rq, next);
dd41f596 6059 migrate_dead(dead_cpu, next);
e692ab53 6060
1da177e4
LT
6061 }
6062}
dce48a84
TG
6063
6064/*
6065 * remove the tasks which were accounted by rq from calc_load_tasks.
6066 */
6067static void calc_global_load_remove(struct rq *rq)
6068{
6069 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 6070 rq->calc_load_active = 0;
dce48a84 6071}
1da177e4
LT
6072#endif /* CONFIG_HOTPLUG_CPU */
6073
e692ab53
NP
6074#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6075
6076static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6077 {
6078 .procname = "sched_domain",
c57baf1e 6079 .mode = 0555,
e0361851 6080 },
56992309 6081 {}
e692ab53
NP
6082};
6083
6084static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6085 {
6086 .procname = "kernel",
c57baf1e 6087 .mode = 0555,
e0361851
AD
6088 .child = sd_ctl_dir,
6089 },
56992309 6090 {}
e692ab53
NP
6091};
6092
6093static struct ctl_table *sd_alloc_ctl_entry(int n)
6094{
6095 struct ctl_table *entry =
5cf9f062 6096 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6097
e692ab53
NP
6098 return entry;
6099}
6100
6382bc90
MM
6101static void sd_free_ctl_entry(struct ctl_table **tablep)
6102{
cd790076 6103 struct ctl_table *entry;
6382bc90 6104
cd790076
MM
6105 /*
6106 * In the intermediate directories, both the child directory and
6107 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6108 * will always be set. In the lowest directory the names are
cd790076
MM
6109 * static strings and all have proc handlers.
6110 */
6111 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6112 if (entry->child)
6113 sd_free_ctl_entry(&entry->child);
cd790076
MM
6114 if (entry->proc_handler == NULL)
6115 kfree(entry->procname);
6116 }
6382bc90
MM
6117
6118 kfree(*tablep);
6119 *tablep = NULL;
6120}
6121
e692ab53 6122static void
e0361851 6123set_table_entry(struct ctl_table *entry,
e692ab53
NP
6124 const char *procname, void *data, int maxlen,
6125 mode_t mode, proc_handler *proc_handler)
6126{
e692ab53
NP
6127 entry->procname = procname;
6128 entry->data = data;
6129 entry->maxlen = maxlen;
6130 entry->mode = mode;
6131 entry->proc_handler = proc_handler;
6132}
6133
6134static struct ctl_table *
6135sd_alloc_ctl_domain_table(struct sched_domain *sd)
6136{
a5d8c348 6137 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6138
ad1cdc1d
MM
6139 if (table == NULL)
6140 return NULL;
6141
e0361851 6142 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6143 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6144 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6145 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6146 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6147 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6148 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6149 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6150 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6151 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6152 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6153 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6154 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6155 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6156 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6157 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6158 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6159 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6160 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6161 &sd->cache_nice_tries,
6162 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6163 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6164 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6165 set_table_entry(&table[11], "name", sd->name,
6166 CORENAME_MAX_SIZE, 0444, proc_dostring);
6167 /* &table[12] is terminator */
e692ab53
NP
6168
6169 return table;
6170}
6171
9a4e7159 6172static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6173{
6174 struct ctl_table *entry, *table;
6175 struct sched_domain *sd;
6176 int domain_num = 0, i;
6177 char buf[32];
6178
6179 for_each_domain(cpu, sd)
6180 domain_num++;
6181 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6182 if (table == NULL)
6183 return NULL;
e692ab53
NP
6184
6185 i = 0;
6186 for_each_domain(cpu, sd) {
6187 snprintf(buf, 32, "domain%d", i);
e692ab53 6188 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6189 entry->mode = 0555;
e692ab53
NP
6190 entry->child = sd_alloc_ctl_domain_table(sd);
6191 entry++;
6192 i++;
6193 }
6194 return table;
6195}
6196
6197static struct ctl_table_header *sd_sysctl_header;
6382bc90 6198static void register_sched_domain_sysctl(void)
e692ab53 6199{
6ad4c188 6200 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6201 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6202 char buf[32];
6203
7378547f
MM
6204 WARN_ON(sd_ctl_dir[0].child);
6205 sd_ctl_dir[0].child = entry;
6206
ad1cdc1d
MM
6207 if (entry == NULL)
6208 return;
6209
6ad4c188 6210 for_each_possible_cpu(i) {
e692ab53 6211 snprintf(buf, 32, "cpu%d", i);
e692ab53 6212 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6213 entry->mode = 0555;
e692ab53 6214 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6215 entry++;
e692ab53 6216 }
7378547f
MM
6217
6218 WARN_ON(sd_sysctl_header);
e692ab53
NP
6219 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6220}
6382bc90 6221
7378547f 6222/* may be called multiple times per register */
6382bc90
MM
6223static void unregister_sched_domain_sysctl(void)
6224{
7378547f
MM
6225 if (sd_sysctl_header)
6226 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6227 sd_sysctl_header = NULL;
7378547f
MM
6228 if (sd_ctl_dir[0].child)
6229 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6230}
e692ab53 6231#else
6382bc90
MM
6232static void register_sched_domain_sysctl(void)
6233{
6234}
6235static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6236{
6237}
6238#endif
6239
1f11eb6a
GH
6240static void set_rq_online(struct rq *rq)
6241{
6242 if (!rq->online) {
6243 const struct sched_class *class;
6244
c6c4927b 6245 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6246 rq->online = 1;
6247
6248 for_each_class(class) {
6249 if (class->rq_online)
6250 class->rq_online(rq);
6251 }
6252 }
6253}
6254
6255static void set_rq_offline(struct rq *rq)
6256{
6257 if (rq->online) {
6258 const struct sched_class *class;
6259
6260 for_each_class(class) {
6261 if (class->rq_offline)
6262 class->rq_offline(rq);
6263 }
6264
c6c4927b 6265 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6266 rq->online = 0;
6267 }
6268}
6269
1da177e4
LT
6270/*
6271 * migration_call - callback that gets triggered when a CPU is added.
6272 * Here we can start up the necessary migration thread for the new CPU.
6273 */
48f24c4d
IM
6274static int __cpuinit
6275migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6276{
48f24c4d 6277 int cpu = (long)hcpu;
1da177e4 6278 unsigned long flags;
969c7921 6279 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6280
6281 switch (action) {
5be9361c 6282
1da177e4 6283 case CPU_UP_PREPARE:
8bb78442 6284 case CPU_UP_PREPARE_FROZEN:
a468d389 6285 rq->calc_load_update = calc_load_update;
1da177e4 6286 break;
48f24c4d 6287
1da177e4 6288 case CPU_ONLINE:
8bb78442 6289 case CPU_ONLINE_FROZEN:
1f94ef59 6290 /* Update our root-domain */
05fa785c 6291 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6292 if (rq->rd) {
c6c4927b 6293 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6294
6295 set_rq_online(rq);
1f94ef59 6296 }
05fa785c 6297 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6298 break;
48f24c4d 6299
1da177e4 6300#ifdef CONFIG_HOTPLUG_CPU
1da177e4 6301 case CPU_DEAD:
8bb78442 6302 case CPU_DEAD_FROZEN:
1da177e4 6303 migrate_live_tasks(cpu);
1da177e4 6304 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 6305 raw_spin_lock_irq(&rq->lock);
2e1cb74a 6306 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
6307 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6308 rq->idle->sched_class = &idle_sched_class;
1da177e4 6309 migrate_dead_tasks(cpu);
05fa785c 6310 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
6311 migrate_nr_uninterruptible(rq);
6312 BUG_ON(rq->nr_running != 0);
dce48a84 6313 calc_global_load_remove(rq);
1da177e4 6314 break;
57d885fe 6315
08f503b0
GH
6316 case CPU_DYING:
6317 case CPU_DYING_FROZEN:
57d885fe 6318 /* Update our root-domain */
05fa785c 6319 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6320 if (rq->rd) {
c6c4927b 6321 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6322 set_rq_offline(rq);
57d885fe 6323 }
05fa785c 6324 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 6325 break;
1da177e4
LT
6326#endif
6327 }
6328 return NOTIFY_OK;
6329}
6330
f38b0820
PM
6331/*
6332 * Register at high priority so that task migration (migrate_all_tasks)
6333 * happens before everything else. This has to be lower priority than
cdd6c482 6334 * the notifier in the perf_event subsystem, though.
1da177e4 6335 */
26c2143b 6336static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6337 .notifier_call = migration_call,
50a323b7 6338 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6339};
6340
3a101d05
TH
6341static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6342 unsigned long action, void *hcpu)
6343{
6344 switch (action & ~CPU_TASKS_FROZEN) {
6345 case CPU_ONLINE:
6346 case CPU_DOWN_FAILED:
6347 set_cpu_active((long)hcpu, true);
6348 return NOTIFY_OK;
6349 default:
6350 return NOTIFY_DONE;
6351 }
6352}
6353
6354static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6355 unsigned long action, void *hcpu)
6356{
6357 switch (action & ~CPU_TASKS_FROZEN) {
6358 case CPU_DOWN_PREPARE:
6359 set_cpu_active((long)hcpu, false);
6360 return NOTIFY_OK;
6361 default:
6362 return NOTIFY_DONE;
6363 }
6364}
6365
7babe8db 6366static int __init migration_init(void)
1da177e4
LT
6367{
6368 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6369 int err;
48f24c4d 6370
3a101d05 6371 /* Initialize migration for the boot CPU */
07dccf33
AM
6372 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6373 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6374 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6375 register_cpu_notifier(&migration_notifier);
7babe8db 6376
3a101d05
TH
6377 /* Register cpu active notifiers */
6378 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6379 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6380
a004cd42 6381 return 0;
1da177e4 6382}
7babe8db 6383early_initcall(migration_init);
1da177e4
LT
6384#endif
6385
6386#ifdef CONFIG_SMP
476f3534 6387
3e9830dc 6388#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6389
f6630114
MT
6390static __read_mostly int sched_domain_debug_enabled;
6391
6392static int __init sched_domain_debug_setup(char *str)
6393{
6394 sched_domain_debug_enabled = 1;
6395
6396 return 0;
6397}
6398early_param("sched_debug", sched_domain_debug_setup);
6399
7c16ec58 6400static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6401 struct cpumask *groupmask)
1da177e4 6402{
4dcf6aff 6403 struct sched_group *group = sd->groups;
434d53b0 6404 char str[256];
1da177e4 6405
968ea6d8 6406 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6407 cpumask_clear(groupmask);
4dcf6aff
IM
6408
6409 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6410
6411 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6412 printk("does not load-balance\n");
4dcf6aff 6413 if (sd->parent)
3df0fc5b
PZ
6414 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6415 " has parent");
4dcf6aff 6416 return -1;
41c7ce9a
NP
6417 }
6418
3df0fc5b 6419 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6420
758b2cdc 6421 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6422 printk(KERN_ERR "ERROR: domain->span does not contain "
6423 "CPU%d\n", cpu);
4dcf6aff 6424 }
758b2cdc 6425 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6426 printk(KERN_ERR "ERROR: domain->groups does not contain"
6427 " CPU%d\n", cpu);
4dcf6aff 6428 }
1da177e4 6429
4dcf6aff 6430 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6431 do {
4dcf6aff 6432 if (!group) {
3df0fc5b
PZ
6433 printk("\n");
6434 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6435 break;
6436 }
6437
18a3885f 6438 if (!group->cpu_power) {
3df0fc5b
PZ
6439 printk(KERN_CONT "\n");
6440 printk(KERN_ERR "ERROR: domain->cpu_power not "
6441 "set\n");
4dcf6aff
IM
6442 break;
6443 }
1da177e4 6444
758b2cdc 6445 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6446 printk(KERN_CONT "\n");
6447 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6448 break;
6449 }
1da177e4 6450
758b2cdc 6451 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6452 printk(KERN_CONT "\n");
6453 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6454 break;
6455 }
1da177e4 6456
758b2cdc 6457 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6458
968ea6d8 6459 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6460
3df0fc5b 6461 printk(KERN_CONT " %s", str);
18a3885f 6462 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6463 printk(KERN_CONT " (cpu_power = %d)",
6464 group->cpu_power);
381512cf 6465 }
1da177e4 6466
4dcf6aff
IM
6467 group = group->next;
6468 } while (group != sd->groups);
3df0fc5b 6469 printk(KERN_CONT "\n");
1da177e4 6470
758b2cdc 6471 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6472 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6473
758b2cdc
RR
6474 if (sd->parent &&
6475 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6476 printk(KERN_ERR "ERROR: parent span is not a superset "
6477 "of domain->span\n");
4dcf6aff
IM
6478 return 0;
6479}
1da177e4 6480
4dcf6aff
IM
6481static void sched_domain_debug(struct sched_domain *sd, int cpu)
6482{
d5dd3db1 6483 cpumask_var_t groupmask;
4dcf6aff 6484 int level = 0;
1da177e4 6485
f6630114
MT
6486 if (!sched_domain_debug_enabled)
6487 return;
6488
4dcf6aff
IM
6489 if (!sd) {
6490 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6491 return;
6492 }
1da177e4 6493
4dcf6aff
IM
6494 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6495
d5dd3db1 6496 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6497 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6498 return;
6499 }
6500
4dcf6aff 6501 for (;;) {
7c16ec58 6502 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6503 break;
1da177e4
LT
6504 level++;
6505 sd = sd->parent;
33859f7f 6506 if (!sd)
4dcf6aff
IM
6507 break;
6508 }
d5dd3db1 6509 free_cpumask_var(groupmask);
1da177e4 6510}
6d6bc0ad 6511#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6512# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6513#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6514
1a20ff27 6515static int sd_degenerate(struct sched_domain *sd)
245af2c7 6516{
758b2cdc 6517 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6518 return 1;
6519
6520 /* Following flags need at least 2 groups */
6521 if (sd->flags & (SD_LOAD_BALANCE |
6522 SD_BALANCE_NEWIDLE |
6523 SD_BALANCE_FORK |
89c4710e
SS
6524 SD_BALANCE_EXEC |
6525 SD_SHARE_CPUPOWER |
6526 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6527 if (sd->groups != sd->groups->next)
6528 return 0;
6529 }
6530
6531 /* Following flags don't use groups */
c88d5910 6532 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6533 return 0;
6534
6535 return 1;
6536}
6537
48f24c4d
IM
6538static int
6539sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6540{
6541 unsigned long cflags = sd->flags, pflags = parent->flags;
6542
6543 if (sd_degenerate(parent))
6544 return 1;
6545
758b2cdc 6546 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6547 return 0;
6548
245af2c7
SS
6549 /* Flags needing groups don't count if only 1 group in parent */
6550 if (parent->groups == parent->groups->next) {
6551 pflags &= ~(SD_LOAD_BALANCE |
6552 SD_BALANCE_NEWIDLE |
6553 SD_BALANCE_FORK |
89c4710e
SS
6554 SD_BALANCE_EXEC |
6555 SD_SHARE_CPUPOWER |
6556 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6557 if (nr_node_ids == 1)
6558 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6559 }
6560 if (~cflags & pflags)
6561 return 0;
6562
6563 return 1;
6564}
6565
c6c4927b
RR
6566static void free_rootdomain(struct root_domain *rd)
6567{
047106ad
PZ
6568 synchronize_sched();
6569
68e74568
RR
6570 cpupri_cleanup(&rd->cpupri);
6571
c6c4927b
RR
6572 free_cpumask_var(rd->rto_mask);
6573 free_cpumask_var(rd->online);
6574 free_cpumask_var(rd->span);
6575 kfree(rd);
6576}
6577
57d885fe
GH
6578static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6579{
a0490fa3 6580 struct root_domain *old_rd = NULL;
57d885fe 6581 unsigned long flags;
57d885fe 6582
05fa785c 6583 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6584
6585 if (rq->rd) {
a0490fa3 6586 old_rd = rq->rd;
57d885fe 6587
c6c4927b 6588 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6589 set_rq_offline(rq);
57d885fe 6590
c6c4927b 6591 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6592
a0490fa3
IM
6593 /*
6594 * If we dont want to free the old_rt yet then
6595 * set old_rd to NULL to skip the freeing later
6596 * in this function:
6597 */
6598 if (!atomic_dec_and_test(&old_rd->refcount))
6599 old_rd = NULL;
57d885fe
GH
6600 }
6601
6602 atomic_inc(&rd->refcount);
6603 rq->rd = rd;
6604
c6c4927b 6605 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6606 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6607 set_rq_online(rq);
57d885fe 6608
05fa785c 6609 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6610
6611 if (old_rd)
6612 free_rootdomain(old_rd);
57d885fe
GH
6613}
6614
68c38fc3 6615static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6616{
6617 memset(rd, 0, sizeof(*rd));
6618
68c38fc3 6619 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6620 goto out;
68c38fc3 6621 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6622 goto free_span;
68c38fc3 6623 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6624 goto free_online;
6e0534f2 6625
68c38fc3 6626 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6627 goto free_rto_mask;
c6c4927b 6628 return 0;
6e0534f2 6629
68e74568
RR
6630free_rto_mask:
6631 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6632free_online:
6633 free_cpumask_var(rd->online);
6634free_span:
6635 free_cpumask_var(rd->span);
0c910d28 6636out:
c6c4927b 6637 return -ENOMEM;
57d885fe
GH
6638}
6639
6640static void init_defrootdomain(void)
6641{
68c38fc3 6642 init_rootdomain(&def_root_domain);
c6c4927b 6643
57d885fe
GH
6644 atomic_set(&def_root_domain.refcount, 1);
6645}
6646
dc938520 6647static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6648{
6649 struct root_domain *rd;
6650
6651 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6652 if (!rd)
6653 return NULL;
6654
68c38fc3 6655 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6656 kfree(rd);
6657 return NULL;
6658 }
57d885fe
GH
6659
6660 return rd;
6661}
6662
1da177e4 6663/*
0eab9146 6664 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6665 * hold the hotplug lock.
6666 */
0eab9146
IM
6667static void
6668cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6669{
70b97a7f 6670 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6671 struct sched_domain *tmp;
6672
669c55e9
PZ
6673 for (tmp = sd; tmp; tmp = tmp->parent)
6674 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6675
245af2c7 6676 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6677 for (tmp = sd; tmp; ) {
245af2c7
SS
6678 struct sched_domain *parent = tmp->parent;
6679 if (!parent)
6680 break;
f29c9b1c 6681
1a848870 6682 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6683 tmp->parent = parent->parent;
1a848870
SS
6684 if (parent->parent)
6685 parent->parent->child = tmp;
f29c9b1c
LZ
6686 } else
6687 tmp = tmp->parent;
245af2c7
SS
6688 }
6689
1a848870 6690 if (sd && sd_degenerate(sd)) {
245af2c7 6691 sd = sd->parent;
1a848870
SS
6692 if (sd)
6693 sd->child = NULL;
6694 }
1da177e4
LT
6695
6696 sched_domain_debug(sd, cpu);
6697
57d885fe 6698 rq_attach_root(rq, rd);
674311d5 6699 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6700}
6701
6702/* cpus with isolated domains */
dcc30a35 6703static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6704
6705/* Setup the mask of cpus configured for isolated domains */
6706static int __init isolated_cpu_setup(char *str)
6707{
bdddd296 6708 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6709 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6710 return 1;
6711}
6712
8927f494 6713__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6714
6715/*
6711cab4
SS
6716 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6717 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6718 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6719 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6720 *
6721 * init_sched_build_groups will build a circular linked list of the groups
6722 * covered by the given span, and will set each group's ->cpumask correctly,
6723 * and ->cpu_power to 0.
6724 */
a616058b 6725static void
96f874e2
RR
6726init_sched_build_groups(const struct cpumask *span,
6727 const struct cpumask *cpu_map,
6728 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6729 struct sched_group **sg,
96f874e2
RR
6730 struct cpumask *tmpmask),
6731 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6732{
6733 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6734 int i;
6735
96f874e2 6736 cpumask_clear(covered);
7c16ec58 6737
abcd083a 6738 for_each_cpu(i, span) {
6711cab4 6739 struct sched_group *sg;
7c16ec58 6740 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6741 int j;
6742
758b2cdc 6743 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6744 continue;
6745
758b2cdc 6746 cpumask_clear(sched_group_cpus(sg));
18a3885f 6747 sg->cpu_power = 0;
1da177e4 6748
abcd083a 6749 for_each_cpu(j, span) {
7c16ec58 6750 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6751 continue;
6752
96f874e2 6753 cpumask_set_cpu(j, covered);
758b2cdc 6754 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6755 }
6756 if (!first)
6757 first = sg;
6758 if (last)
6759 last->next = sg;
6760 last = sg;
6761 }
6762 last->next = first;
6763}
6764
9c1cfda2 6765#define SD_NODES_PER_DOMAIN 16
1da177e4 6766
9c1cfda2 6767#ifdef CONFIG_NUMA
198e2f18 6768
9c1cfda2
JH
6769/**
6770 * find_next_best_node - find the next node to include in a sched_domain
6771 * @node: node whose sched_domain we're building
6772 * @used_nodes: nodes already in the sched_domain
6773 *
41a2d6cf 6774 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6775 * finds the closest node not already in the @used_nodes map.
6776 *
6777 * Should use nodemask_t.
6778 */
c5f59f08 6779static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6780{
6781 int i, n, val, min_val, best_node = 0;
6782
6783 min_val = INT_MAX;
6784
076ac2af 6785 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6786 /* Start at @node */
076ac2af 6787 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6788
6789 if (!nr_cpus_node(n))
6790 continue;
6791
6792 /* Skip already used nodes */
c5f59f08 6793 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6794 continue;
6795
6796 /* Simple min distance search */
6797 val = node_distance(node, n);
6798
6799 if (val < min_val) {
6800 min_val = val;
6801 best_node = n;
6802 }
6803 }
6804
c5f59f08 6805 node_set(best_node, *used_nodes);
9c1cfda2
JH
6806 return best_node;
6807}
6808
6809/**
6810 * sched_domain_node_span - get a cpumask for a node's sched_domain
6811 * @node: node whose cpumask we're constructing
73486722 6812 * @span: resulting cpumask
9c1cfda2 6813 *
41a2d6cf 6814 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6815 * should be one that prevents unnecessary balancing, but also spreads tasks
6816 * out optimally.
6817 */
96f874e2 6818static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6819{
c5f59f08 6820 nodemask_t used_nodes;
48f24c4d 6821 int i;
9c1cfda2 6822
6ca09dfc 6823 cpumask_clear(span);
c5f59f08 6824 nodes_clear(used_nodes);
9c1cfda2 6825
6ca09dfc 6826 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6827 node_set(node, used_nodes);
9c1cfda2
JH
6828
6829 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6830 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6831
6ca09dfc 6832 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6833 }
9c1cfda2 6834}
6d6bc0ad 6835#endif /* CONFIG_NUMA */
9c1cfda2 6836
5c45bf27 6837int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6838
6c99e9ad
RR
6839/*
6840 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6841 *
6842 * ( See the the comments in include/linux/sched.h:struct sched_group
6843 * and struct sched_domain. )
6c99e9ad
RR
6844 */
6845struct static_sched_group {
6846 struct sched_group sg;
6847 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6848};
6849
6850struct static_sched_domain {
6851 struct sched_domain sd;
6852 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6853};
6854
49a02c51
AH
6855struct s_data {
6856#ifdef CONFIG_NUMA
6857 int sd_allnodes;
6858 cpumask_var_t domainspan;
6859 cpumask_var_t covered;
6860 cpumask_var_t notcovered;
6861#endif
6862 cpumask_var_t nodemask;
6863 cpumask_var_t this_sibling_map;
6864 cpumask_var_t this_core_map;
01a08546 6865 cpumask_var_t this_book_map;
49a02c51
AH
6866 cpumask_var_t send_covered;
6867 cpumask_var_t tmpmask;
6868 struct sched_group **sched_group_nodes;
6869 struct root_domain *rd;
6870};
6871
2109b99e
AH
6872enum s_alloc {
6873 sa_sched_groups = 0,
6874 sa_rootdomain,
6875 sa_tmpmask,
6876 sa_send_covered,
01a08546 6877 sa_this_book_map,
2109b99e
AH
6878 sa_this_core_map,
6879 sa_this_sibling_map,
6880 sa_nodemask,
6881 sa_sched_group_nodes,
6882#ifdef CONFIG_NUMA
6883 sa_notcovered,
6884 sa_covered,
6885 sa_domainspan,
6886#endif
6887 sa_none,
6888};
6889
9c1cfda2 6890/*
48f24c4d 6891 * SMT sched-domains:
9c1cfda2 6892 */
1da177e4 6893#ifdef CONFIG_SCHED_SMT
6c99e9ad 6894static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6895static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6896
41a2d6cf 6897static int
96f874e2
RR
6898cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6899 struct sched_group **sg, struct cpumask *unused)
1da177e4 6900{
6711cab4 6901 if (sg)
1871e52c 6902 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6903 return cpu;
6904}
6d6bc0ad 6905#endif /* CONFIG_SCHED_SMT */
1da177e4 6906
48f24c4d
IM
6907/*
6908 * multi-core sched-domains:
6909 */
1e9f28fa 6910#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6911static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6912static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6913
41a2d6cf 6914static int
96f874e2
RR
6915cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6916 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6917{
6711cab4 6918 int group;
f269893c 6919#ifdef CONFIG_SCHED_SMT
c69fc56d 6920 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6921 group = cpumask_first(mask);
f269893c
HC
6922#else
6923 group = cpu;
6924#endif
6711cab4 6925 if (sg)
6c99e9ad 6926 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6927 return group;
1e9f28fa 6928}
f269893c 6929#endif /* CONFIG_SCHED_MC */
1e9f28fa 6930
01a08546
HC
6931/*
6932 * book sched-domains:
6933 */
6934#ifdef CONFIG_SCHED_BOOK
6935static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6936static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6937
41a2d6cf 6938static int
01a08546
HC
6939cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6940 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6941{
01a08546
HC
6942 int group = cpu;
6943#ifdef CONFIG_SCHED_MC
6944 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6945 group = cpumask_first(mask);
6946#elif defined(CONFIG_SCHED_SMT)
6947 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6948 group = cpumask_first(mask);
6949#endif
6711cab4 6950 if (sg)
01a08546
HC
6951 *sg = &per_cpu(sched_group_book, group).sg;
6952 return group;
1e9f28fa 6953}
01a08546 6954#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6955
6c99e9ad
RR
6956static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6957static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6958
41a2d6cf 6959static int
96f874e2
RR
6960cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6961 struct sched_group **sg, struct cpumask *mask)
1da177e4 6962{
6711cab4 6963 int group;
01a08546
HC
6964#ifdef CONFIG_SCHED_BOOK
6965 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6966 group = cpumask_first(mask);
6967#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6968 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6969 group = cpumask_first(mask);
1e9f28fa 6970#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6971 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6972 group = cpumask_first(mask);
1da177e4 6973#else
6711cab4 6974 group = cpu;
1da177e4 6975#endif
6711cab4 6976 if (sg)
6c99e9ad 6977 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6978 return group;
1da177e4
LT
6979}
6980
6981#ifdef CONFIG_NUMA
1da177e4 6982/*
9c1cfda2
JH
6983 * The init_sched_build_groups can't handle what we want to do with node
6984 * groups, so roll our own. Now each node has its own list of groups which
6985 * gets dynamically allocated.
1da177e4 6986 */
62ea9ceb 6987static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6988static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6989
62ea9ceb 6990static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6991static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6992
96f874e2
RR
6993static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6994 struct sched_group **sg,
6995 struct cpumask *nodemask)
9c1cfda2 6996{
6711cab4
SS
6997 int group;
6998
6ca09dfc 6999 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7000 group = cpumask_first(nodemask);
6711cab4
SS
7001
7002 if (sg)
6c99e9ad 7003 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7004 return group;
1da177e4 7005}
6711cab4 7006
08069033
SS
7007static void init_numa_sched_groups_power(struct sched_group *group_head)
7008{
7009 struct sched_group *sg = group_head;
7010 int j;
7011
7012 if (!sg)
7013 return;
3a5c359a 7014 do {
758b2cdc 7015 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7016 struct sched_domain *sd;
08069033 7017
6c99e9ad 7018 sd = &per_cpu(phys_domains, j).sd;
13318a71 7019 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
7020 /*
7021 * Only add "power" once for each
7022 * physical package.
7023 */
7024 continue;
7025 }
08069033 7026
18a3885f 7027 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
7028 }
7029 sg = sg->next;
7030 } while (sg != group_head);
08069033 7031}
0601a88d
AH
7032
7033static int build_numa_sched_groups(struct s_data *d,
7034 const struct cpumask *cpu_map, int num)
7035{
7036 struct sched_domain *sd;
7037 struct sched_group *sg, *prev;
7038 int n, j;
7039
7040 cpumask_clear(d->covered);
7041 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7042 if (cpumask_empty(d->nodemask)) {
7043 d->sched_group_nodes[num] = NULL;
7044 goto out;
7045 }
7046
7047 sched_domain_node_span(num, d->domainspan);
7048 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7049
7050 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7051 GFP_KERNEL, num);
7052 if (!sg) {
3df0fc5b
PZ
7053 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7054 num);
0601a88d
AH
7055 return -ENOMEM;
7056 }
7057 d->sched_group_nodes[num] = sg;
7058
7059 for_each_cpu(j, d->nodemask) {
7060 sd = &per_cpu(node_domains, j).sd;
7061 sd->groups = sg;
7062 }
7063
18a3885f 7064 sg->cpu_power = 0;
0601a88d
AH
7065 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7066 sg->next = sg;
7067 cpumask_or(d->covered, d->covered, d->nodemask);
7068
7069 prev = sg;
7070 for (j = 0; j < nr_node_ids; j++) {
7071 n = (num + j) % nr_node_ids;
7072 cpumask_complement(d->notcovered, d->covered);
7073 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7074 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7075 if (cpumask_empty(d->tmpmask))
7076 break;
7077 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7078 if (cpumask_empty(d->tmpmask))
7079 continue;
7080 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7081 GFP_KERNEL, num);
7082 if (!sg) {
3df0fc5b
PZ
7083 printk(KERN_WARNING
7084 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
7085 return -ENOMEM;
7086 }
18a3885f 7087 sg->cpu_power = 0;
0601a88d
AH
7088 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7089 sg->next = prev->next;
7090 cpumask_or(d->covered, d->covered, d->tmpmask);
7091 prev->next = sg;
7092 prev = sg;
7093 }
7094out:
7095 return 0;
7096}
6d6bc0ad 7097#endif /* CONFIG_NUMA */
1da177e4 7098
a616058b 7099#ifdef CONFIG_NUMA
51888ca2 7100/* Free memory allocated for various sched_group structures */
96f874e2
RR
7101static void free_sched_groups(const struct cpumask *cpu_map,
7102 struct cpumask *nodemask)
51888ca2 7103{
a616058b 7104 int cpu, i;
51888ca2 7105
abcd083a 7106 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7107 struct sched_group **sched_group_nodes
7108 = sched_group_nodes_bycpu[cpu];
7109
51888ca2
SV
7110 if (!sched_group_nodes)
7111 continue;
7112
076ac2af 7113 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7114 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7115
6ca09dfc 7116 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7117 if (cpumask_empty(nodemask))
51888ca2
SV
7118 continue;
7119
7120 if (sg == NULL)
7121 continue;
7122 sg = sg->next;
7123next_sg:
7124 oldsg = sg;
7125 sg = sg->next;
7126 kfree(oldsg);
7127 if (oldsg != sched_group_nodes[i])
7128 goto next_sg;
7129 }
7130 kfree(sched_group_nodes);
7131 sched_group_nodes_bycpu[cpu] = NULL;
7132 }
51888ca2 7133}
6d6bc0ad 7134#else /* !CONFIG_NUMA */
96f874e2
RR
7135static void free_sched_groups(const struct cpumask *cpu_map,
7136 struct cpumask *nodemask)
a616058b
SS
7137{
7138}
6d6bc0ad 7139#endif /* CONFIG_NUMA */
51888ca2 7140
89c4710e
SS
7141/*
7142 * Initialize sched groups cpu_power.
7143 *
7144 * cpu_power indicates the capacity of sched group, which is used while
7145 * distributing the load between different sched groups in a sched domain.
7146 * Typically cpu_power for all the groups in a sched domain will be same unless
7147 * there are asymmetries in the topology. If there are asymmetries, group
7148 * having more cpu_power will pickup more load compared to the group having
7149 * less cpu_power.
89c4710e
SS
7150 */
7151static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7152{
7153 struct sched_domain *child;
7154 struct sched_group *group;
f93e65c1
PZ
7155 long power;
7156 int weight;
89c4710e
SS
7157
7158 WARN_ON(!sd || !sd->groups);
7159
13318a71 7160 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7161 return;
7162
aae6d3dd
SS
7163 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7164
89c4710e
SS
7165 child = sd->child;
7166
18a3885f 7167 sd->groups->cpu_power = 0;
5517d86b 7168
f93e65c1
PZ
7169 if (!child) {
7170 power = SCHED_LOAD_SCALE;
7171 weight = cpumask_weight(sched_domain_span(sd));
7172 /*
7173 * SMT siblings share the power of a single core.
a52bfd73
PZ
7174 * Usually multiple threads get a better yield out of
7175 * that one core than a single thread would have,
7176 * reflect that in sd->smt_gain.
f93e65c1 7177 */
a52bfd73
PZ
7178 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7179 power *= sd->smt_gain;
f93e65c1 7180 power /= weight;
a52bfd73
PZ
7181 power >>= SCHED_LOAD_SHIFT;
7182 }
18a3885f 7183 sd->groups->cpu_power += power;
89c4710e
SS
7184 return;
7185 }
7186
89c4710e 7187 /*
f93e65c1 7188 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7189 */
7190 group = child->groups;
7191 do {
18a3885f 7192 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7193 group = group->next;
7194 } while (group != child->groups);
7195}
7196
7c16ec58
MT
7197/*
7198 * Initializers for schedule domains
7199 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7200 */
7201
a5d8c348
IM
7202#ifdef CONFIG_SCHED_DEBUG
7203# define SD_INIT_NAME(sd, type) sd->name = #type
7204#else
7205# define SD_INIT_NAME(sd, type) do { } while (0)
7206#endif
7207
7c16ec58 7208#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7209
7c16ec58
MT
7210#define SD_INIT_FUNC(type) \
7211static noinline void sd_init_##type(struct sched_domain *sd) \
7212{ \
7213 memset(sd, 0, sizeof(*sd)); \
7214 *sd = SD_##type##_INIT; \
1d3504fc 7215 sd->level = SD_LV_##type; \
a5d8c348 7216 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7217}
7218
7219SD_INIT_FUNC(CPU)
7220#ifdef CONFIG_NUMA
7221 SD_INIT_FUNC(ALLNODES)
7222 SD_INIT_FUNC(NODE)
7223#endif
7224#ifdef CONFIG_SCHED_SMT
7225 SD_INIT_FUNC(SIBLING)
7226#endif
7227#ifdef CONFIG_SCHED_MC
7228 SD_INIT_FUNC(MC)
7229#endif
01a08546
HC
7230#ifdef CONFIG_SCHED_BOOK
7231 SD_INIT_FUNC(BOOK)
7232#endif
7c16ec58 7233
1d3504fc
HS
7234static int default_relax_domain_level = -1;
7235
7236static int __init setup_relax_domain_level(char *str)
7237{
30e0e178
LZ
7238 unsigned long val;
7239
7240 val = simple_strtoul(str, NULL, 0);
7241 if (val < SD_LV_MAX)
7242 default_relax_domain_level = val;
7243
1d3504fc
HS
7244 return 1;
7245}
7246__setup("relax_domain_level=", setup_relax_domain_level);
7247
7248static void set_domain_attribute(struct sched_domain *sd,
7249 struct sched_domain_attr *attr)
7250{
7251 int request;
7252
7253 if (!attr || attr->relax_domain_level < 0) {
7254 if (default_relax_domain_level < 0)
7255 return;
7256 else
7257 request = default_relax_domain_level;
7258 } else
7259 request = attr->relax_domain_level;
7260 if (request < sd->level) {
7261 /* turn off idle balance on this domain */
c88d5910 7262 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7263 } else {
7264 /* turn on idle balance on this domain */
c88d5910 7265 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7266 }
7267}
7268
2109b99e
AH
7269static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7270 const struct cpumask *cpu_map)
7271{
7272 switch (what) {
7273 case sa_sched_groups:
7274 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7275 d->sched_group_nodes = NULL;
7276 case sa_rootdomain:
7277 free_rootdomain(d->rd); /* fall through */
7278 case sa_tmpmask:
7279 free_cpumask_var(d->tmpmask); /* fall through */
7280 case sa_send_covered:
7281 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7282 case sa_this_book_map:
7283 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7284 case sa_this_core_map:
7285 free_cpumask_var(d->this_core_map); /* fall through */
7286 case sa_this_sibling_map:
7287 free_cpumask_var(d->this_sibling_map); /* fall through */
7288 case sa_nodemask:
7289 free_cpumask_var(d->nodemask); /* fall through */
7290 case sa_sched_group_nodes:
d1b55138 7291#ifdef CONFIG_NUMA
2109b99e
AH
7292 kfree(d->sched_group_nodes); /* fall through */
7293 case sa_notcovered:
7294 free_cpumask_var(d->notcovered); /* fall through */
7295 case sa_covered:
7296 free_cpumask_var(d->covered); /* fall through */
7297 case sa_domainspan:
7298 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7299#endif
2109b99e
AH
7300 case sa_none:
7301 break;
7302 }
7303}
3404c8d9 7304
2109b99e
AH
7305static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7306 const struct cpumask *cpu_map)
7307{
3404c8d9 7308#ifdef CONFIG_NUMA
2109b99e
AH
7309 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7310 return sa_none;
7311 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7312 return sa_domainspan;
7313 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7314 return sa_covered;
7315 /* Allocate the per-node list of sched groups */
7316 d->sched_group_nodes = kcalloc(nr_node_ids,
7317 sizeof(struct sched_group *), GFP_KERNEL);
7318 if (!d->sched_group_nodes) {
3df0fc5b 7319 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7320 return sa_notcovered;
d1b55138 7321 }
2109b99e 7322 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7323#endif
2109b99e
AH
7324 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7325 return sa_sched_group_nodes;
7326 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7327 return sa_nodemask;
7328 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7329 return sa_this_sibling_map;
01a08546 7330 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7331 return sa_this_core_map;
01a08546
HC
7332 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7333 return sa_this_book_map;
2109b99e
AH
7334 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7335 return sa_send_covered;
7336 d->rd = alloc_rootdomain();
7337 if (!d->rd) {
3df0fc5b 7338 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7339 return sa_tmpmask;
57d885fe 7340 }
2109b99e
AH
7341 return sa_rootdomain;
7342}
57d885fe 7343
7f4588f3
AH
7344static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7345 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7346{
7347 struct sched_domain *sd = NULL;
7c16ec58 7348#ifdef CONFIG_NUMA
7f4588f3 7349 struct sched_domain *parent;
1da177e4 7350
7f4588f3
AH
7351 d->sd_allnodes = 0;
7352 if (cpumask_weight(cpu_map) >
7353 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7354 sd = &per_cpu(allnodes_domains, i).sd;
7355 SD_INIT(sd, ALLNODES);
1d3504fc 7356 set_domain_attribute(sd, attr);
7f4588f3
AH
7357 cpumask_copy(sched_domain_span(sd), cpu_map);
7358 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7359 d->sd_allnodes = 1;
7360 }
7361 parent = sd;
7362
7363 sd = &per_cpu(node_domains, i).sd;
7364 SD_INIT(sd, NODE);
7365 set_domain_attribute(sd, attr);
7366 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7367 sd->parent = parent;
7368 if (parent)
7369 parent->child = sd;
7370 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7371#endif
7f4588f3
AH
7372 return sd;
7373}
1da177e4 7374
87cce662
AH
7375static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7376 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7377 struct sched_domain *parent, int i)
7378{
7379 struct sched_domain *sd;
7380 sd = &per_cpu(phys_domains, i).sd;
7381 SD_INIT(sd, CPU);
7382 set_domain_attribute(sd, attr);
7383 cpumask_copy(sched_domain_span(sd), d->nodemask);
7384 sd->parent = parent;
7385 if (parent)
7386 parent->child = sd;
7387 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7388 return sd;
7389}
1da177e4 7390
01a08546
HC
7391static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7392 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7393 struct sched_domain *parent, int i)
7394{
7395 struct sched_domain *sd = parent;
7396#ifdef CONFIG_SCHED_BOOK
7397 sd = &per_cpu(book_domains, i).sd;
7398 SD_INIT(sd, BOOK);
7399 set_domain_attribute(sd, attr);
7400 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7401 sd->parent = parent;
7402 parent->child = sd;
7403 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7404#endif
7405 return sd;
7406}
7407
410c4081
AH
7408static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7409 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7410 struct sched_domain *parent, int i)
7411{
7412 struct sched_domain *sd = parent;
1e9f28fa 7413#ifdef CONFIG_SCHED_MC
410c4081
AH
7414 sd = &per_cpu(core_domains, i).sd;
7415 SD_INIT(sd, MC);
7416 set_domain_attribute(sd, attr);
7417 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7418 sd->parent = parent;
7419 parent->child = sd;
7420 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7421#endif
410c4081
AH
7422 return sd;
7423}
1e9f28fa 7424
d8173535
AH
7425static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7426 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7427 struct sched_domain *parent, int i)
7428{
7429 struct sched_domain *sd = parent;
1da177e4 7430#ifdef CONFIG_SCHED_SMT
d8173535
AH
7431 sd = &per_cpu(cpu_domains, i).sd;
7432 SD_INIT(sd, SIBLING);
7433 set_domain_attribute(sd, attr);
7434 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7435 sd->parent = parent;
7436 parent->child = sd;
7437 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7438#endif
d8173535
AH
7439 return sd;
7440}
1da177e4 7441
0e8e85c9
AH
7442static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7443 const struct cpumask *cpu_map, int cpu)
7444{
7445 switch (l) {
1da177e4 7446#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7447 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7448 cpumask_and(d->this_sibling_map, cpu_map,
7449 topology_thread_cpumask(cpu));
7450 if (cpu == cpumask_first(d->this_sibling_map))
7451 init_sched_build_groups(d->this_sibling_map, cpu_map,
7452 &cpu_to_cpu_group,
7453 d->send_covered, d->tmpmask);
7454 break;
1da177e4 7455#endif
1e9f28fa 7456#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7457 case SD_LV_MC: /* set up multi-core groups */
7458 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7459 if (cpu == cpumask_first(d->this_core_map))
7460 init_sched_build_groups(d->this_core_map, cpu_map,
7461 &cpu_to_core_group,
7462 d->send_covered, d->tmpmask);
7463 break;
01a08546
HC
7464#endif
7465#ifdef CONFIG_SCHED_BOOK
7466 case SD_LV_BOOK: /* set up book groups */
7467 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7468 if (cpu == cpumask_first(d->this_book_map))
7469 init_sched_build_groups(d->this_book_map, cpu_map,
7470 &cpu_to_book_group,
7471 d->send_covered, d->tmpmask);
7472 break;
1e9f28fa 7473#endif
86548096
AH
7474 case SD_LV_CPU: /* set up physical groups */
7475 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7476 if (!cpumask_empty(d->nodemask))
7477 init_sched_build_groups(d->nodemask, cpu_map,
7478 &cpu_to_phys_group,
7479 d->send_covered, d->tmpmask);
7480 break;
1da177e4 7481#ifdef CONFIG_NUMA
de616e36
AH
7482 case SD_LV_ALLNODES:
7483 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7484 d->send_covered, d->tmpmask);
7485 break;
7486#endif
0e8e85c9
AH
7487 default:
7488 break;
7c16ec58 7489 }
0e8e85c9 7490}
9c1cfda2 7491
2109b99e
AH
7492/*
7493 * Build sched domains for a given set of cpus and attach the sched domains
7494 * to the individual cpus
7495 */
7496static int __build_sched_domains(const struct cpumask *cpu_map,
7497 struct sched_domain_attr *attr)
7498{
7499 enum s_alloc alloc_state = sa_none;
7500 struct s_data d;
294b0c96 7501 struct sched_domain *sd;
2109b99e 7502 int i;
7c16ec58 7503#ifdef CONFIG_NUMA
2109b99e 7504 d.sd_allnodes = 0;
7c16ec58 7505#endif
9c1cfda2 7506
2109b99e
AH
7507 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7508 if (alloc_state != sa_rootdomain)
7509 goto error;
7510 alloc_state = sa_sched_groups;
9c1cfda2 7511
1da177e4 7512 /*
1a20ff27 7513 * Set up domains for cpus specified by the cpu_map.
1da177e4 7514 */
abcd083a 7515 for_each_cpu(i, cpu_map) {
49a02c51
AH
7516 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7517 cpu_map);
9761eea8 7518
7f4588f3 7519 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7520 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7521 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7522 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7523 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7524 }
9c1cfda2 7525
abcd083a 7526 for_each_cpu(i, cpu_map) {
0e8e85c9 7527 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7528 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7529 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7530 }
9c1cfda2 7531
1da177e4 7532 /* Set up physical groups */
86548096
AH
7533 for (i = 0; i < nr_node_ids; i++)
7534 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7535
1da177e4
LT
7536#ifdef CONFIG_NUMA
7537 /* Set up node groups */
de616e36
AH
7538 if (d.sd_allnodes)
7539 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7540
0601a88d
AH
7541 for (i = 0; i < nr_node_ids; i++)
7542 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7543 goto error;
1da177e4
LT
7544#endif
7545
7546 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7547#ifdef CONFIG_SCHED_SMT
abcd083a 7548 for_each_cpu(i, cpu_map) {
294b0c96 7549 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7550 init_sched_groups_power(i, sd);
5c45bf27 7551 }
1da177e4 7552#endif
1e9f28fa 7553#ifdef CONFIG_SCHED_MC
abcd083a 7554 for_each_cpu(i, cpu_map) {
294b0c96 7555 sd = &per_cpu(core_domains, i).sd;
89c4710e 7556 init_sched_groups_power(i, sd);
5c45bf27
SS
7557 }
7558#endif
01a08546
HC
7559#ifdef CONFIG_SCHED_BOOK
7560 for_each_cpu(i, cpu_map) {
7561 sd = &per_cpu(book_domains, i).sd;
7562 init_sched_groups_power(i, sd);
7563 }
7564#endif
1e9f28fa 7565
abcd083a 7566 for_each_cpu(i, cpu_map) {
294b0c96 7567 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7568 init_sched_groups_power(i, sd);
1da177e4
LT
7569 }
7570
9c1cfda2 7571#ifdef CONFIG_NUMA
076ac2af 7572 for (i = 0; i < nr_node_ids; i++)
49a02c51 7573 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7574
49a02c51 7575 if (d.sd_allnodes) {
6711cab4 7576 struct sched_group *sg;
f712c0c7 7577
96f874e2 7578 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7579 d.tmpmask);
f712c0c7
SS
7580 init_numa_sched_groups_power(sg);
7581 }
9c1cfda2
JH
7582#endif
7583
1da177e4 7584 /* Attach the domains */
abcd083a 7585 for_each_cpu(i, cpu_map) {
1da177e4 7586#ifdef CONFIG_SCHED_SMT
6c99e9ad 7587 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7588#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7589 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7590#elif defined(CONFIG_SCHED_BOOK)
7591 sd = &per_cpu(book_domains, i).sd;
1da177e4 7592#else
6c99e9ad 7593 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7594#endif
49a02c51 7595 cpu_attach_domain(sd, d.rd, i);
1da177e4 7596 }
51888ca2 7597
2109b99e
AH
7598 d.sched_group_nodes = NULL; /* don't free this we still need it */
7599 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7600 return 0;
51888ca2 7601
51888ca2 7602error:
2109b99e
AH
7603 __free_domain_allocs(&d, alloc_state, cpu_map);
7604 return -ENOMEM;
1da177e4 7605}
029190c5 7606
96f874e2 7607static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7608{
7609 return __build_sched_domains(cpu_map, NULL);
7610}
7611
acc3f5d7 7612static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7613static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7614static struct sched_domain_attr *dattr_cur;
7615 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7616
7617/*
7618 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7619 * cpumask) fails, then fallback to a single sched domain,
7620 * as determined by the single cpumask fallback_doms.
029190c5 7621 */
4212823f 7622static cpumask_var_t fallback_doms;
029190c5 7623
ee79d1bd
HC
7624/*
7625 * arch_update_cpu_topology lets virtualized architectures update the
7626 * cpu core maps. It is supposed to return 1 if the topology changed
7627 * or 0 if it stayed the same.
7628 */
7629int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7630{
ee79d1bd 7631 return 0;
22e52b07
HC
7632}
7633
acc3f5d7
RR
7634cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7635{
7636 int i;
7637 cpumask_var_t *doms;
7638
7639 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7640 if (!doms)
7641 return NULL;
7642 for (i = 0; i < ndoms; i++) {
7643 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7644 free_sched_domains(doms, i);
7645 return NULL;
7646 }
7647 }
7648 return doms;
7649}
7650
7651void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7652{
7653 unsigned int i;
7654 for (i = 0; i < ndoms; i++)
7655 free_cpumask_var(doms[i]);
7656 kfree(doms);
7657}
7658
1a20ff27 7659/*
41a2d6cf 7660 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7661 * For now this just excludes isolated cpus, but could be used to
7662 * exclude other special cases in the future.
1a20ff27 7663 */
96f874e2 7664static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7665{
7378547f
MM
7666 int err;
7667
22e52b07 7668 arch_update_cpu_topology();
029190c5 7669 ndoms_cur = 1;
acc3f5d7 7670 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7671 if (!doms_cur)
acc3f5d7
RR
7672 doms_cur = &fallback_doms;
7673 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7674 dattr_cur = NULL;
acc3f5d7 7675 err = build_sched_domains(doms_cur[0]);
6382bc90 7676 register_sched_domain_sysctl();
7378547f
MM
7677
7678 return err;
1a20ff27
DG
7679}
7680
96f874e2
RR
7681static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7682 struct cpumask *tmpmask)
1da177e4 7683{
7c16ec58 7684 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7685}
1da177e4 7686
1a20ff27
DG
7687/*
7688 * Detach sched domains from a group of cpus specified in cpu_map
7689 * These cpus will now be attached to the NULL domain
7690 */
96f874e2 7691static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7692{
96f874e2
RR
7693 /* Save because hotplug lock held. */
7694 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7695 int i;
7696
abcd083a 7697 for_each_cpu(i, cpu_map)
57d885fe 7698 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7699 synchronize_sched();
96f874e2 7700 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7701}
7702
1d3504fc
HS
7703/* handle null as "default" */
7704static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7705 struct sched_domain_attr *new, int idx_new)
7706{
7707 struct sched_domain_attr tmp;
7708
7709 /* fast path */
7710 if (!new && !cur)
7711 return 1;
7712
7713 tmp = SD_ATTR_INIT;
7714 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7715 new ? (new + idx_new) : &tmp,
7716 sizeof(struct sched_domain_attr));
7717}
7718
029190c5
PJ
7719/*
7720 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7721 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7722 * doms_new[] to the current sched domain partitioning, doms_cur[].
7723 * It destroys each deleted domain and builds each new domain.
7724 *
acc3f5d7 7725 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7726 * The masks don't intersect (don't overlap.) We should setup one
7727 * sched domain for each mask. CPUs not in any of the cpumasks will
7728 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7729 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7730 * it as it is.
7731 *
acc3f5d7
RR
7732 * The passed in 'doms_new' should be allocated using
7733 * alloc_sched_domains. This routine takes ownership of it and will
7734 * free_sched_domains it when done with it. If the caller failed the
7735 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7736 * and partition_sched_domains() will fallback to the single partition
7737 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7738 *
96f874e2 7739 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7740 * ndoms_new == 0 is a special case for destroying existing domains,
7741 * and it will not create the default domain.
dfb512ec 7742 *
029190c5
PJ
7743 * Call with hotplug lock held
7744 */
acc3f5d7 7745void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7746 struct sched_domain_attr *dattr_new)
029190c5 7747{
dfb512ec 7748 int i, j, n;
d65bd5ec 7749 int new_topology;
029190c5 7750
712555ee 7751 mutex_lock(&sched_domains_mutex);
a1835615 7752
7378547f
MM
7753 /* always unregister in case we don't destroy any domains */
7754 unregister_sched_domain_sysctl();
7755
d65bd5ec
HC
7756 /* Let architecture update cpu core mappings. */
7757 new_topology = arch_update_cpu_topology();
7758
dfb512ec 7759 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7760
7761 /* Destroy deleted domains */
7762 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7763 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7764 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7765 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7766 goto match1;
7767 }
7768 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7769 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7770match1:
7771 ;
7772 }
7773
e761b772
MK
7774 if (doms_new == NULL) {
7775 ndoms_cur = 0;
acc3f5d7 7776 doms_new = &fallback_doms;
6ad4c188 7777 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7778 WARN_ON_ONCE(dattr_new);
e761b772
MK
7779 }
7780
029190c5
PJ
7781 /* Build new domains */
7782 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7783 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7784 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7785 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7786 goto match2;
7787 }
7788 /* no match - add a new doms_new */
acc3f5d7 7789 __build_sched_domains(doms_new[i],
1d3504fc 7790 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7791match2:
7792 ;
7793 }
7794
7795 /* Remember the new sched domains */
acc3f5d7
RR
7796 if (doms_cur != &fallback_doms)
7797 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7798 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7799 doms_cur = doms_new;
1d3504fc 7800 dattr_cur = dattr_new;
029190c5 7801 ndoms_cur = ndoms_new;
7378547f
MM
7802
7803 register_sched_domain_sysctl();
a1835615 7804
712555ee 7805 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7806}
7807
5c45bf27 7808#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7809static void arch_reinit_sched_domains(void)
5c45bf27 7810{
95402b38 7811 get_online_cpus();
dfb512ec
MK
7812
7813 /* Destroy domains first to force the rebuild */
7814 partition_sched_domains(0, NULL, NULL);
7815
e761b772 7816 rebuild_sched_domains();
95402b38 7817 put_online_cpus();
5c45bf27
SS
7818}
7819
7820static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7821{
afb8a9b7 7822 unsigned int level = 0;
5c45bf27 7823
afb8a9b7
GS
7824 if (sscanf(buf, "%u", &level) != 1)
7825 return -EINVAL;
7826
7827 /*
7828 * level is always be positive so don't check for
7829 * level < POWERSAVINGS_BALANCE_NONE which is 0
7830 * What happens on 0 or 1 byte write,
7831 * need to check for count as well?
7832 */
7833
7834 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7835 return -EINVAL;
7836
7837 if (smt)
afb8a9b7 7838 sched_smt_power_savings = level;
5c45bf27 7839 else
afb8a9b7 7840 sched_mc_power_savings = level;
5c45bf27 7841
c70f22d2 7842 arch_reinit_sched_domains();
5c45bf27 7843
c70f22d2 7844 return count;
5c45bf27
SS
7845}
7846
5c45bf27 7847#ifdef CONFIG_SCHED_MC
f718cd4a 7848static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7849 struct sysdev_class_attribute *attr,
f718cd4a 7850 char *page)
5c45bf27
SS
7851{
7852 return sprintf(page, "%u\n", sched_mc_power_savings);
7853}
f718cd4a 7854static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7855 struct sysdev_class_attribute *attr,
48f24c4d 7856 const char *buf, size_t count)
5c45bf27
SS
7857{
7858 return sched_power_savings_store(buf, count, 0);
7859}
f718cd4a
AK
7860static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7861 sched_mc_power_savings_show,
7862 sched_mc_power_savings_store);
5c45bf27
SS
7863#endif
7864
7865#ifdef CONFIG_SCHED_SMT
f718cd4a 7866static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7867 struct sysdev_class_attribute *attr,
f718cd4a 7868 char *page)
5c45bf27
SS
7869{
7870 return sprintf(page, "%u\n", sched_smt_power_savings);
7871}
f718cd4a 7872static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7873 struct sysdev_class_attribute *attr,
48f24c4d 7874 const char *buf, size_t count)
5c45bf27
SS
7875{
7876 return sched_power_savings_store(buf, count, 1);
7877}
f718cd4a
AK
7878static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7879 sched_smt_power_savings_show,
6707de00
AB
7880 sched_smt_power_savings_store);
7881#endif
7882
39aac648 7883int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7884{
7885 int err = 0;
7886
7887#ifdef CONFIG_SCHED_SMT
7888 if (smt_capable())
7889 err = sysfs_create_file(&cls->kset.kobj,
7890 &attr_sched_smt_power_savings.attr);
7891#endif
7892#ifdef CONFIG_SCHED_MC
7893 if (!err && mc_capable())
7894 err = sysfs_create_file(&cls->kset.kobj,
7895 &attr_sched_mc_power_savings.attr);
7896#endif
7897 return err;
7898}
6d6bc0ad 7899#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7900
1da177e4 7901/*
3a101d05
TH
7902 * Update cpusets according to cpu_active mask. If cpusets are
7903 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7904 * around partition_sched_domains().
1da177e4 7905 */
0b2e918a
TH
7906static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7907 void *hcpu)
e761b772 7908{
3a101d05 7909 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7910 case CPU_ONLINE:
6ad4c188 7911 case CPU_DOWN_FAILED:
3a101d05 7912 cpuset_update_active_cpus();
e761b772 7913 return NOTIFY_OK;
3a101d05
TH
7914 default:
7915 return NOTIFY_DONE;
7916 }
7917}
e761b772 7918
0b2e918a
TH
7919static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7920 void *hcpu)
3a101d05
TH
7921{
7922 switch (action & ~CPU_TASKS_FROZEN) {
7923 case CPU_DOWN_PREPARE:
7924 cpuset_update_active_cpus();
7925 return NOTIFY_OK;
e761b772
MK
7926 default:
7927 return NOTIFY_DONE;
7928 }
7929}
e761b772
MK
7930
7931static int update_runtime(struct notifier_block *nfb,
7932 unsigned long action, void *hcpu)
1da177e4 7933{
7def2be1
PZ
7934 int cpu = (int)(long)hcpu;
7935
1da177e4 7936 switch (action) {
1da177e4 7937 case CPU_DOWN_PREPARE:
8bb78442 7938 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7939 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7940 return NOTIFY_OK;
7941
1da177e4 7942 case CPU_DOWN_FAILED:
8bb78442 7943 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7944 case CPU_ONLINE:
8bb78442 7945 case CPU_ONLINE_FROZEN:
7def2be1 7946 enable_runtime(cpu_rq(cpu));
e761b772
MK
7947 return NOTIFY_OK;
7948
1da177e4
LT
7949 default:
7950 return NOTIFY_DONE;
7951 }
1da177e4 7952}
1da177e4
LT
7953
7954void __init sched_init_smp(void)
7955{
dcc30a35
RR
7956 cpumask_var_t non_isolated_cpus;
7957
7958 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7959 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7960
434d53b0
MT
7961#if defined(CONFIG_NUMA)
7962 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7963 GFP_KERNEL);
7964 BUG_ON(sched_group_nodes_bycpu == NULL);
7965#endif
95402b38 7966 get_online_cpus();
712555ee 7967 mutex_lock(&sched_domains_mutex);
6ad4c188 7968 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7969 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7970 if (cpumask_empty(non_isolated_cpus))
7971 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7972 mutex_unlock(&sched_domains_mutex);
95402b38 7973 put_online_cpus();
e761b772 7974
3a101d05
TH
7975 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7976 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7977
7978 /* RT runtime code needs to handle some hotplug events */
7979 hotcpu_notifier(update_runtime, 0);
7980
b328ca18 7981 init_hrtick();
5c1e1767
NP
7982
7983 /* Move init over to a non-isolated CPU */
dcc30a35 7984 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7985 BUG();
19978ca6 7986 sched_init_granularity();
dcc30a35 7987 free_cpumask_var(non_isolated_cpus);
4212823f 7988
0e3900e6 7989 init_sched_rt_class();
1da177e4
LT
7990}
7991#else
7992void __init sched_init_smp(void)
7993{
19978ca6 7994 sched_init_granularity();
1da177e4
LT
7995}
7996#endif /* CONFIG_SMP */
7997
cd1bb94b
AB
7998const_debug unsigned int sysctl_timer_migration = 1;
7999
1da177e4
LT
8000int in_sched_functions(unsigned long addr)
8001{
1da177e4
LT
8002 return in_lock_functions(addr) ||
8003 (addr >= (unsigned long)__sched_text_start
8004 && addr < (unsigned long)__sched_text_end);
8005}
8006
a9957449 8007static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8008{
8009 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8010 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8011#ifdef CONFIG_FAIR_GROUP_SCHED
8012 cfs_rq->rq = rq;
8013#endif
67e9fb2a 8014 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8015}
8016
fa85ae24
PZ
8017static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8018{
8019 struct rt_prio_array *array;
8020 int i;
8021
8022 array = &rt_rq->active;
8023 for (i = 0; i < MAX_RT_PRIO; i++) {
8024 INIT_LIST_HEAD(array->queue + i);
8025 __clear_bit(i, array->bitmap);
8026 }
8027 /* delimiter for bitsearch: */
8028 __set_bit(MAX_RT_PRIO, array->bitmap);
8029
052f1dc7 8030#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8031 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8032#ifdef CONFIG_SMP
e864c499 8033 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8034#endif
48d5e258 8035#endif
fa85ae24
PZ
8036#ifdef CONFIG_SMP
8037 rt_rq->rt_nr_migratory = 0;
fa85ae24 8038 rt_rq->overloaded = 0;
05fa785c 8039 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
8040#endif
8041
8042 rt_rq->rt_time = 0;
8043 rt_rq->rt_throttled = 0;
ac086bc2 8044 rt_rq->rt_runtime = 0;
0986b11b 8045 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8046
052f1dc7 8047#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8048 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8049 rt_rq->rq = rq;
8050#endif
fa85ae24
PZ
8051}
8052
6f505b16 8053#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8054static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8055 struct sched_entity *se, int cpu, int add,
8056 struct sched_entity *parent)
6f505b16 8057{
ec7dc8ac 8058 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8059 tg->cfs_rq[cpu] = cfs_rq;
8060 init_cfs_rq(cfs_rq, rq);
8061 cfs_rq->tg = tg;
8062 if (add)
8063 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8064
8065 tg->se[cpu] = se;
354d60c2
DG
8066 /* se could be NULL for init_task_group */
8067 if (!se)
8068 return;
8069
ec7dc8ac
DG
8070 if (!parent)
8071 se->cfs_rq = &rq->cfs;
8072 else
8073 se->cfs_rq = parent->my_q;
8074
6f505b16
PZ
8075 se->my_q = cfs_rq;
8076 se->load.weight = tg->shares;
e05510d0 8077 se->load.inv_weight = 0;
ec7dc8ac 8078 se->parent = parent;
6f505b16 8079}
052f1dc7 8080#endif
6f505b16 8081
052f1dc7 8082#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8083static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8084 struct sched_rt_entity *rt_se, int cpu, int add,
8085 struct sched_rt_entity *parent)
6f505b16 8086{
ec7dc8ac
DG
8087 struct rq *rq = cpu_rq(cpu);
8088
6f505b16
PZ
8089 tg->rt_rq[cpu] = rt_rq;
8090 init_rt_rq(rt_rq, rq);
8091 rt_rq->tg = tg;
ac086bc2 8092 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8093 if (add)
8094 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8095
8096 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8097 if (!rt_se)
8098 return;
8099
ec7dc8ac
DG
8100 if (!parent)
8101 rt_se->rt_rq = &rq->rt;
8102 else
8103 rt_se->rt_rq = parent->my_q;
8104
6f505b16 8105 rt_se->my_q = rt_rq;
ec7dc8ac 8106 rt_se->parent = parent;
6f505b16
PZ
8107 INIT_LIST_HEAD(&rt_se->run_list);
8108}
8109#endif
8110
1da177e4
LT
8111void __init sched_init(void)
8112{
dd41f596 8113 int i, j;
434d53b0
MT
8114 unsigned long alloc_size = 0, ptr;
8115
8116#ifdef CONFIG_FAIR_GROUP_SCHED
8117 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8118#endif
8119#ifdef CONFIG_RT_GROUP_SCHED
8120 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8121#endif
df7c8e84 8122#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8123 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8124#endif
434d53b0 8125 if (alloc_size) {
36b7b6d4 8126 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8127
8128#ifdef CONFIG_FAIR_GROUP_SCHED
8129 init_task_group.se = (struct sched_entity **)ptr;
8130 ptr += nr_cpu_ids * sizeof(void **);
8131
8132 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8133 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8134
6d6bc0ad 8135#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8136#ifdef CONFIG_RT_GROUP_SCHED
8137 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8138 ptr += nr_cpu_ids * sizeof(void **);
8139
8140 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8141 ptr += nr_cpu_ids * sizeof(void **);
8142
6d6bc0ad 8143#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8144#ifdef CONFIG_CPUMASK_OFFSTACK
8145 for_each_possible_cpu(i) {
8146 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8147 ptr += cpumask_size();
8148 }
8149#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8150 }
dd41f596 8151
57d885fe
GH
8152#ifdef CONFIG_SMP
8153 init_defrootdomain();
8154#endif
8155
d0b27fa7
PZ
8156 init_rt_bandwidth(&def_rt_bandwidth,
8157 global_rt_period(), global_rt_runtime());
8158
8159#ifdef CONFIG_RT_GROUP_SCHED
8160 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8161 global_rt_period(), global_rt_runtime());
6d6bc0ad 8162#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8163
7c941438 8164#ifdef CONFIG_CGROUP_SCHED
6f505b16 8165 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8166 INIT_LIST_HEAD(&init_task_group.children);
8167
7c941438 8168#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8169
4a6cc4bd
JK
8170#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
8171 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
8172 __alignof__(unsigned long));
8173#endif
0a945022 8174 for_each_possible_cpu(i) {
70b97a7f 8175 struct rq *rq;
1da177e4
LT
8176
8177 rq = cpu_rq(i);
05fa785c 8178 raw_spin_lock_init(&rq->lock);
7897986b 8179 rq->nr_running = 0;
dce48a84
TG
8180 rq->calc_load_active = 0;
8181 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8182 init_cfs_rq(&rq->cfs, rq);
6f505b16 8183 init_rt_rq(&rq->rt, rq);
dd41f596 8184#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8185 init_task_group.shares = init_task_group_load;
6f505b16 8186 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8187#ifdef CONFIG_CGROUP_SCHED
8188 /*
8189 * How much cpu bandwidth does init_task_group get?
8190 *
8191 * In case of task-groups formed thr' the cgroup filesystem, it
8192 * gets 100% of the cpu resources in the system. This overall
8193 * system cpu resource is divided among the tasks of
8194 * init_task_group and its child task-groups in a fair manner,
8195 * based on each entity's (task or task-group's) weight
8196 * (se->load.weight).
8197 *
8198 * In other words, if init_task_group has 10 tasks of weight
8199 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8200 * then A0's share of the cpu resource is:
8201 *
0d905bca 8202 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
8203 *
8204 * We achieve this by letting init_task_group's tasks sit
8205 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8206 */
ec7dc8ac 8207 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 8208#endif
354d60c2
DG
8209#endif /* CONFIG_FAIR_GROUP_SCHED */
8210
8211 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8212#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8213 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8214#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8215 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8216#endif
dd41f596 8217#endif
1da177e4 8218
dd41f596
IM
8219 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8220 rq->cpu_load[j] = 0;
fdf3e95d
VP
8221
8222 rq->last_load_update_tick = jiffies;
8223
1da177e4 8224#ifdef CONFIG_SMP
41c7ce9a 8225 rq->sd = NULL;
57d885fe 8226 rq->rd = NULL;
e51fd5e2 8227 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8228 rq->post_schedule = 0;
1da177e4 8229 rq->active_balance = 0;
dd41f596 8230 rq->next_balance = jiffies;
1da177e4 8231 rq->push_cpu = 0;
0a2966b4 8232 rq->cpu = i;
1f11eb6a 8233 rq->online = 0;
eae0c9df
MG
8234 rq->idle_stamp = 0;
8235 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8236 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8237#ifdef CONFIG_NO_HZ
8238 rq->nohz_balance_kick = 0;
8239 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8240#endif
1da177e4 8241#endif
8f4d37ec 8242 init_rq_hrtick(rq);
1da177e4 8243 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8244 }
8245
2dd73a4f 8246 set_load_weight(&init_task);
b50f60ce 8247
e107be36
AK
8248#ifdef CONFIG_PREEMPT_NOTIFIERS
8249 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8250#endif
8251
c9819f45 8252#ifdef CONFIG_SMP
962cf36c 8253 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8254#endif
8255
b50f60ce 8256#ifdef CONFIG_RT_MUTEXES
1d615482 8257 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8258#endif
8259
1da177e4
LT
8260 /*
8261 * The boot idle thread does lazy MMU switching as well:
8262 */
8263 atomic_inc(&init_mm.mm_count);
8264 enter_lazy_tlb(&init_mm, current);
8265
8266 /*
8267 * Make us the idle thread. Technically, schedule() should not be
8268 * called from this thread, however somewhere below it might be,
8269 * but because we are the idle thread, we just pick up running again
8270 * when this runqueue becomes "idle".
8271 */
8272 init_idle(current, smp_processor_id());
dce48a84
TG
8273
8274 calc_load_update = jiffies + LOAD_FREQ;
8275
dd41f596
IM
8276 /*
8277 * During early bootup we pretend to be a normal task:
8278 */
8279 current->sched_class = &fair_sched_class;
6892b75e 8280
6a7b3dc3 8281 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8282 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8283#ifdef CONFIG_SMP
7d1e6a9b 8284#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8285 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8286 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8287 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8288 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8289 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8290#endif
bdddd296
RR
8291 /* May be allocated at isolcpus cmdline parse time */
8292 if (cpu_isolated_map == NULL)
8293 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8294#endif /* SMP */
6a7b3dc3 8295
cdd6c482 8296 perf_event_init();
0d905bca 8297
6892b75e 8298 scheduler_running = 1;
1da177e4
LT
8299}
8300
8301#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8302static inline int preempt_count_equals(int preempt_offset)
8303{
234da7bc 8304 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
8305
8306 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8307}
8308
d894837f 8309void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8310{
48f24c4d 8311#ifdef in_atomic
1da177e4
LT
8312 static unsigned long prev_jiffy; /* ratelimiting */
8313
e4aafea2
FW
8314 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8315 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8316 return;
8317 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8318 return;
8319 prev_jiffy = jiffies;
8320
3df0fc5b
PZ
8321 printk(KERN_ERR
8322 "BUG: sleeping function called from invalid context at %s:%d\n",
8323 file, line);
8324 printk(KERN_ERR
8325 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8326 in_atomic(), irqs_disabled(),
8327 current->pid, current->comm);
aef745fc
IM
8328
8329 debug_show_held_locks(current);
8330 if (irqs_disabled())
8331 print_irqtrace_events(current);
8332 dump_stack();
1da177e4
LT
8333#endif
8334}
8335EXPORT_SYMBOL(__might_sleep);
8336#endif
8337
8338#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8339static void normalize_task(struct rq *rq, struct task_struct *p)
8340{
8341 int on_rq;
3e51f33f 8342
3a5e4dc1
AK
8343 on_rq = p->se.on_rq;
8344 if (on_rq)
8345 deactivate_task(rq, p, 0);
8346 __setscheduler(rq, p, SCHED_NORMAL, 0);
8347 if (on_rq) {
8348 activate_task(rq, p, 0);
8349 resched_task(rq->curr);
8350 }
8351}
8352
1da177e4
LT
8353void normalize_rt_tasks(void)
8354{
a0f98a1c 8355 struct task_struct *g, *p;
1da177e4 8356 unsigned long flags;
70b97a7f 8357 struct rq *rq;
1da177e4 8358
4cf5d77a 8359 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8360 do_each_thread(g, p) {
178be793
IM
8361 /*
8362 * Only normalize user tasks:
8363 */
8364 if (!p->mm)
8365 continue;
8366
6cfb0d5d 8367 p->se.exec_start = 0;
6cfb0d5d 8368#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8369 p->se.statistics.wait_start = 0;
8370 p->se.statistics.sleep_start = 0;
8371 p->se.statistics.block_start = 0;
6cfb0d5d 8372#endif
dd41f596
IM
8373
8374 if (!rt_task(p)) {
8375 /*
8376 * Renice negative nice level userspace
8377 * tasks back to 0:
8378 */
8379 if (TASK_NICE(p) < 0 && p->mm)
8380 set_user_nice(p, 0);
1da177e4 8381 continue;
dd41f596 8382 }
1da177e4 8383
1d615482 8384 raw_spin_lock(&p->pi_lock);
b29739f9 8385 rq = __task_rq_lock(p);
1da177e4 8386
178be793 8387 normalize_task(rq, p);
3a5e4dc1 8388
b29739f9 8389 __task_rq_unlock(rq);
1d615482 8390 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8391 } while_each_thread(g, p);
8392
4cf5d77a 8393 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8394}
8395
8396#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8397
67fc4e0c 8398#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8399/*
67fc4e0c 8400 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8401 *
8402 * They can only be called when the whole system has been
8403 * stopped - every CPU needs to be quiescent, and no scheduling
8404 * activity can take place. Using them for anything else would
8405 * be a serious bug, and as a result, they aren't even visible
8406 * under any other configuration.
8407 */
8408
8409/**
8410 * curr_task - return the current task for a given cpu.
8411 * @cpu: the processor in question.
8412 *
8413 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8414 */
36c8b586 8415struct task_struct *curr_task(int cpu)
1df5c10a
LT
8416{
8417 return cpu_curr(cpu);
8418}
8419
67fc4e0c
JW
8420#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8421
8422#ifdef CONFIG_IA64
1df5c10a
LT
8423/**
8424 * set_curr_task - set the current task for a given cpu.
8425 * @cpu: the processor in question.
8426 * @p: the task pointer to set.
8427 *
8428 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8429 * are serviced on a separate stack. It allows the architecture to switch the
8430 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8431 * must be called with all CPU's synchronized, and interrupts disabled, the
8432 * and caller must save the original value of the current task (see
8433 * curr_task() above) and restore that value before reenabling interrupts and
8434 * re-starting the system.
8435 *
8436 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8437 */
36c8b586 8438void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8439{
8440 cpu_curr(cpu) = p;
8441}
8442
8443#endif
29f59db3 8444
bccbe08a
PZ
8445#ifdef CONFIG_FAIR_GROUP_SCHED
8446static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8447{
8448 int i;
8449
8450 for_each_possible_cpu(i) {
8451 if (tg->cfs_rq)
8452 kfree(tg->cfs_rq[i]);
8453 if (tg->se)
8454 kfree(tg->se[i]);
6f505b16
PZ
8455 }
8456
8457 kfree(tg->cfs_rq);
8458 kfree(tg->se);
6f505b16
PZ
8459}
8460
ec7dc8ac
DG
8461static
8462int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8463{
29f59db3 8464 struct cfs_rq *cfs_rq;
eab17229 8465 struct sched_entity *se;
9b5b7751 8466 struct rq *rq;
29f59db3
SV
8467 int i;
8468
434d53b0 8469 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8470 if (!tg->cfs_rq)
8471 goto err;
434d53b0 8472 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8473 if (!tg->se)
8474 goto err;
052f1dc7
PZ
8475
8476 tg->shares = NICE_0_LOAD;
29f59db3
SV
8477
8478 for_each_possible_cpu(i) {
9b5b7751 8479 rq = cpu_rq(i);
29f59db3 8480
eab17229
LZ
8481 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8482 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8483 if (!cfs_rq)
8484 goto err;
8485
eab17229
LZ
8486 se = kzalloc_node(sizeof(struct sched_entity),
8487 GFP_KERNEL, cpu_to_node(i));
29f59db3 8488 if (!se)
dfc12eb2 8489 goto err_free_rq;
29f59db3 8490
eab17229 8491 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8492 }
8493
8494 return 1;
8495
49246274 8496err_free_rq:
dfc12eb2 8497 kfree(cfs_rq);
49246274 8498err:
bccbe08a
PZ
8499 return 0;
8500}
8501
8502static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8503{
8504 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8505 &cpu_rq(cpu)->leaf_cfs_rq_list);
8506}
8507
8508static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8509{
8510 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8511}
6d6bc0ad 8512#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8513static inline void free_fair_sched_group(struct task_group *tg)
8514{
8515}
8516
ec7dc8ac
DG
8517static inline
8518int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8519{
8520 return 1;
8521}
8522
8523static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8524{
8525}
8526
8527static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8528{
8529}
6d6bc0ad 8530#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8531
8532#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8533static void free_rt_sched_group(struct task_group *tg)
8534{
8535 int i;
8536
d0b27fa7
PZ
8537 destroy_rt_bandwidth(&tg->rt_bandwidth);
8538
bccbe08a
PZ
8539 for_each_possible_cpu(i) {
8540 if (tg->rt_rq)
8541 kfree(tg->rt_rq[i]);
8542 if (tg->rt_se)
8543 kfree(tg->rt_se[i]);
8544 }
8545
8546 kfree(tg->rt_rq);
8547 kfree(tg->rt_se);
8548}
8549
ec7dc8ac
DG
8550static
8551int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8552{
8553 struct rt_rq *rt_rq;
eab17229 8554 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8555 struct rq *rq;
8556 int i;
8557
434d53b0 8558 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8559 if (!tg->rt_rq)
8560 goto err;
434d53b0 8561 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8562 if (!tg->rt_se)
8563 goto err;
8564
d0b27fa7
PZ
8565 init_rt_bandwidth(&tg->rt_bandwidth,
8566 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8567
8568 for_each_possible_cpu(i) {
8569 rq = cpu_rq(i);
8570
eab17229
LZ
8571 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8572 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8573 if (!rt_rq)
8574 goto err;
29f59db3 8575
eab17229
LZ
8576 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8577 GFP_KERNEL, cpu_to_node(i));
6f505b16 8578 if (!rt_se)
dfc12eb2 8579 goto err_free_rq;
29f59db3 8580
eab17229 8581 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8582 }
8583
bccbe08a
PZ
8584 return 1;
8585
49246274 8586err_free_rq:
dfc12eb2 8587 kfree(rt_rq);
49246274 8588err:
bccbe08a
PZ
8589 return 0;
8590}
8591
8592static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8593{
8594 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8595 &cpu_rq(cpu)->leaf_rt_rq_list);
8596}
8597
8598static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8599{
8600 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8601}
6d6bc0ad 8602#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8603static inline void free_rt_sched_group(struct task_group *tg)
8604{
8605}
8606
ec7dc8ac
DG
8607static inline
8608int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8609{
8610 return 1;
8611}
8612
8613static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8614{
8615}
8616
8617static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8618{
8619}
6d6bc0ad 8620#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8621
7c941438 8622#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8623static void free_sched_group(struct task_group *tg)
8624{
8625 free_fair_sched_group(tg);
8626 free_rt_sched_group(tg);
8627 kfree(tg);
8628}
8629
8630/* allocate runqueue etc for a new task group */
ec7dc8ac 8631struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8632{
8633 struct task_group *tg;
8634 unsigned long flags;
8635 int i;
8636
8637 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8638 if (!tg)
8639 return ERR_PTR(-ENOMEM);
8640
ec7dc8ac 8641 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8642 goto err;
8643
ec7dc8ac 8644 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8645 goto err;
8646
8ed36996 8647 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8648 for_each_possible_cpu(i) {
bccbe08a
PZ
8649 register_fair_sched_group(tg, i);
8650 register_rt_sched_group(tg, i);
9b5b7751 8651 }
6f505b16 8652 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8653
8654 WARN_ON(!parent); /* root should already exist */
8655
8656 tg->parent = parent;
f473aa5e 8657 INIT_LIST_HEAD(&tg->children);
09f2724a 8658 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8659 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8660
9b5b7751 8661 return tg;
29f59db3
SV
8662
8663err:
6f505b16 8664 free_sched_group(tg);
29f59db3
SV
8665 return ERR_PTR(-ENOMEM);
8666}
8667
9b5b7751 8668/* rcu callback to free various structures associated with a task group */
6f505b16 8669static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8670{
29f59db3 8671 /* now it should be safe to free those cfs_rqs */
6f505b16 8672 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8673}
8674
9b5b7751 8675/* Destroy runqueue etc associated with a task group */
4cf86d77 8676void sched_destroy_group(struct task_group *tg)
29f59db3 8677{
8ed36996 8678 unsigned long flags;
9b5b7751 8679 int i;
29f59db3 8680
8ed36996 8681 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8682 for_each_possible_cpu(i) {
bccbe08a
PZ
8683 unregister_fair_sched_group(tg, i);
8684 unregister_rt_sched_group(tg, i);
9b5b7751 8685 }
6f505b16 8686 list_del_rcu(&tg->list);
f473aa5e 8687 list_del_rcu(&tg->siblings);
8ed36996 8688 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8689
9b5b7751 8690 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8691 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8692}
8693
9b5b7751 8694/* change task's runqueue when it moves between groups.
3a252015
IM
8695 * The caller of this function should have put the task in its new group
8696 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8697 * reflect its new group.
9b5b7751
SV
8698 */
8699void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8700{
8701 int on_rq, running;
8702 unsigned long flags;
8703 struct rq *rq;
8704
8705 rq = task_rq_lock(tsk, &flags);
8706
051a1d1a 8707 running = task_current(rq, tsk);
29f59db3
SV
8708 on_rq = tsk->se.on_rq;
8709
0e1f3483 8710 if (on_rq)
29f59db3 8711 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8712 if (unlikely(running))
8713 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8714
810b3817 8715#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8716 if (tsk->sched_class->task_move_group)
8717 tsk->sched_class->task_move_group(tsk, on_rq);
8718 else
810b3817 8719#endif
b2b5ce02 8720 set_task_rq(tsk, task_cpu(tsk));
810b3817 8721
0e1f3483
HS
8722 if (unlikely(running))
8723 tsk->sched_class->set_curr_task(rq);
8724 if (on_rq)
371fd7e7 8725 enqueue_task(rq, tsk, 0);
29f59db3 8726
29f59db3
SV
8727 task_rq_unlock(rq, &flags);
8728}
7c941438 8729#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8730
052f1dc7 8731#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8732static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8733{
8734 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8735 int on_rq;
8736
29f59db3 8737 on_rq = se->on_rq;
62fb1851 8738 if (on_rq)
29f59db3
SV
8739 dequeue_entity(cfs_rq, se, 0);
8740
8741 se->load.weight = shares;
e05510d0 8742 se->load.inv_weight = 0;
29f59db3 8743
62fb1851 8744 if (on_rq)
29f59db3 8745 enqueue_entity(cfs_rq, se, 0);
c09595f6 8746}
62fb1851 8747
c09595f6
PZ
8748static void set_se_shares(struct sched_entity *se, unsigned long shares)
8749{
8750 struct cfs_rq *cfs_rq = se->cfs_rq;
8751 struct rq *rq = cfs_rq->rq;
8752 unsigned long flags;
8753
05fa785c 8754 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8755 __set_se_shares(se, shares);
05fa785c 8756 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8757}
8758
8ed36996
PZ
8759static DEFINE_MUTEX(shares_mutex);
8760
4cf86d77 8761int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8762{
8763 int i;
8ed36996 8764 unsigned long flags;
c61935fd 8765
ec7dc8ac
DG
8766 /*
8767 * We can't change the weight of the root cgroup.
8768 */
8769 if (!tg->se[0])
8770 return -EINVAL;
8771
18d95a28
PZ
8772 if (shares < MIN_SHARES)
8773 shares = MIN_SHARES;
cb4ad1ff
MX
8774 else if (shares > MAX_SHARES)
8775 shares = MAX_SHARES;
62fb1851 8776
8ed36996 8777 mutex_lock(&shares_mutex);
9b5b7751 8778 if (tg->shares == shares)
5cb350ba 8779 goto done;
29f59db3 8780
8ed36996 8781 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8782 for_each_possible_cpu(i)
8783 unregister_fair_sched_group(tg, i);
f473aa5e 8784 list_del_rcu(&tg->siblings);
8ed36996 8785 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8786
8787 /* wait for any ongoing reference to this group to finish */
8788 synchronize_sched();
8789
8790 /*
8791 * Now we are free to modify the group's share on each cpu
8792 * w/o tripping rebalance_share or load_balance_fair.
8793 */
9b5b7751 8794 tg->shares = shares;
c09595f6
PZ
8795 for_each_possible_cpu(i) {
8796 /*
8797 * force a rebalance
8798 */
8799 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8800 set_se_shares(tg->se[i], shares);
c09595f6 8801 }
29f59db3 8802
6b2d7700
SV
8803 /*
8804 * Enable load balance activity on this group, by inserting it back on
8805 * each cpu's rq->leaf_cfs_rq_list.
8806 */
8ed36996 8807 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8808 for_each_possible_cpu(i)
8809 register_fair_sched_group(tg, i);
f473aa5e 8810 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8811 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8812done:
8ed36996 8813 mutex_unlock(&shares_mutex);
9b5b7751 8814 return 0;
29f59db3
SV
8815}
8816
5cb350ba
DG
8817unsigned long sched_group_shares(struct task_group *tg)
8818{
8819 return tg->shares;
8820}
052f1dc7 8821#endif
5cb350ba 8822
052f1dc7 8823#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8824/*
9f0c1e56 8825 * Ensure that the real time constraints are schedulable.
6f505b16 8826 */
9f0c1e56
PZ
8827static DEFINE_MUTEX(rt_constraints_mutex);
8828
8829static unsigned long to_ratio(u64 period, u64 runtime)
8830{
8831 if (runtime == RUNTIME_INF)
9a7e0b18 8832 return 1ULL << 20;
9f0c1e56 8833
9a7e0b18 8834 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8835}
8836
9a7e0b18
PZ
8837/* Must be called with tasklist_lock held */
8838static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8839{
9a7e0b18 8840 struct task_struct *g, *p;
b40b2e8e 8841
9a7e0b18
PZ
8842 do_each_thread(g, p) {
8843 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8844 return 1;
8845 } while_each_thread(g, p);
b40b2e8e 8846
9a7e0b18
PZ
8847 return 0;
8848}
b40b2e8e 8849
9a7e0b18
PZ
8850struct rt_schedulable_data {
8851 struct task_group *tg;
8852 u64 rt_period;
8853 u64 rt_runtime;
8854};
b40b2e8e 8855
9a7e0b18
PZ
8856static int tg_schedulable(struct task_group *tg, void *data)
8857{
8858 struct rt_schedulable_data *d = data;
8859 struct task_group *child;
8860 unsigned long total, sum = 0;
8861 u64 period, runtime;
b40b2e8e 8862
9a7e0b18
PZ
8863 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8864 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8865
9a7e0b18
PZ
8866 if (tg == d->tg) {
8867 period = d->rt_period;
8868 runtime = d->rt_runtime;
b40b2e8e 8869 }
b40b2e8e 8870
4653f803
PZ
8871 /*
8872 * Cannot have more runtime than the period.
8873 */
8874 if (runtime > period && runtime != RUNTIME_INF)
8875 return -EINVAL;
6f505b16 8876
4653f803
PZ
8877 /*
8878 * Ensure we don't starve existing RT tasks.
8879 */
9a7e0b18
PZ
8880 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8881 return -EBUSY;
6f505b16 8882
9a7e0b18 8883 total = to_ratio(period, runtime);
6f505b16 8884
4653f803
PZ
8885 /*
8886 * Nobody can have more than the global setting allows.
8887 */
8888 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8889 return -EINVAL;
6f505b16 8890
4653f803
PZ
8891 /*
8892 * The sum of our children's runtime should not exceed our own.
8893 */
9a7e0b18
PZ
8894 list_for_each_entry_rcu(child, &tg->children, siblings) {
8895 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8896 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8897
9a7e0b18
PZ
8898 if (child == d->tg) {
8899 period = d->rt_period;
8900 runtime = d->rt_runtime;
8901 }
6f505b16 8902
9a7e0b18 8903 sum += to_ratio(period, runtime);
9f0c1e56 8904 }
6f505b16 8905
9a7e0b18
PZ
8906 if (sum > total)
8907 return -EINVAL;
8908
8909 return 0;
6f505b16
PZ
8910}
8911
9a7e0b18 8912static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8913{
9a7e0b18
PZ
8914 struct rt_schedulable_data data = {
8915 .tg = tg,
8916 .rt_period = period,
8917 .rt_runtime = runtime,
8918 };
8919
8920 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8921}
8922
d0b27fa7
PZ
8923static int tg_set_bandwidth(struct task_group *tg,
8924 u64 rt_period, u64 rt_runtime)
6f505b16 8925{
ac086bc2 8926 int i, err = 0;
9f0c1e56 8927
9f0c1e56 8928 mutex_lock(&rt_constraints_mutex);
521f1a24 8929 read_lock(&tasklist_lock);
9a7e0b18
PZ
8930 err = __rt_schedulable(tg, rt_period, rt_runtime);
8931 if (err)
9f0c1e56 8932 goto unlock;
ac086bc2 8933
0986b11b 8934 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8935 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8936 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8937
8938 for_each_possible_cpu(i) {
8939 struct rt_rq *rt_rq = tg->rt_rq[i];
8940
0986b11b 8941 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8942 rt_rq->rt_runtime = rt_runtime;
0986b11b 8943 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8944 }
0986b11b 8945 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8946unlock:
521f1a24 8947 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8948 mutex_unlock(&rt_constraints_mutex);
8949
8950 return err;
6f505b16
PZ
8951}
8952
d0b27fa7
PZ
8953int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8954{
8955 u64 rt_runtime, rt_period;
8956
8957 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8958 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8959 if (rt_runtime_us < 0)
8960 rt_runtime = RUNTIME_INF;
8961
8962 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8963}
8964
9f0c1e56
PZ
8965long sched_group_rt_runtime(struct task_group *tg)
8966{
8967 u64 rt_runtime_us;
8968
d0b27fa7 8969 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8970 return -1;
8971
d0b27fa7 8972 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8973 do_div(rt_runtime_us, NSEC_PER_USEC);
8974 return rt_runtime_us;
8975}
d0b27fa7
PZ
8976
8977int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8978{
8979 u64 rt_runtime, rt_period;
8980
8981 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8982 rt_runtime = tg->rt_bandwidth.rt_runtime;
8983
619b0488
R
8984 if (rt_period == 0)
8985 return -EINVAL;
8986
d0b27fa7
PZ
8987 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8988}
8989
8990long sched_group_rt_period(struct task_group *tg)
8991{
8992 u64 rt_period_us;
8993
8994 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8995 do_div(rt_period_us, NSEC_PER_USEC);
8996 return rt_period_us;
8997}
8998
8999static int sched_rt_global_constraints(void)
9000{
4653f803 9001 u64 runtime, period;
d0b27fa7
PZ
9002 int ret = 0;
9003
ec5d4989
HS
9004 if (sysctl_sched_rt_period <= 0)
9005 return -EINVAL;
9006
4653f803
PZ
9007 runtime = global_rt_runtime();
9008 period = global_rt_period();
9009
9010 /*
9011 * Sanity check on the sysctl variables.
9012 */
9013 if (runtime > period && runtime != RUNTIME_INF)
9014 return -EINVAL;
10b612f4 9015
d0b27fa7 9016 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9017 read_lock(&tasklist_lock);
4653f803 9018 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9019 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9020 mutex_unlock(&rt_constraints_mutex);
9021
9022 return ret;
9023}
54e99124
DG
9024
9025int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9026{
9027 /* Don't accept realtime tasks when there is no way for them to run */
9028 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9029 return 0;
9030
9031 return 1;
9032}
9033
6d6bc0ad 9034#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9035static int sched_rt_global_constraints(void)
9036{
ac086bc2
PZ
9037 unsigned long flags;
9038 int i;
9039
ec5d4989
HS
9040 if (sysctl_sched_rt_period <= 0)
9041 return -EINVAL;
9042
60aa605d
PZ
9043 /*
9044 * There's always some RT tasks in the root group
9045 * -- migration, kstopmachine etc..
9046 */
9047 if (sysctl_sched_rt_runtime == 0)
9048 return -EBUSY;
9049
0986b11b 9050 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
9051 for_each_possible_cpu(i) {
9052 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9053
0986b11b 9054 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 9055 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 9056 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 9057 }
0986b11b 9058 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 9059
d0b27fa7
PZ
9060 return 0;
9061}
6d6bc0ad 9062#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9063
9064int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 9065 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
9066 loff_t *ppos)
9067{
9068 int ret;
9069 int old_period, old_runtime;
9070 static DEFINE_MUTEX(mutex);
9071
9072 mutex_lock(&mutex);
9073 old_period = sysctl_sched_rt_period;
9074 old_runtime = sysctl_sched_rt_runtime;
9075
8d65af78 9076 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9077
9078 if (!ret && write) {
9079 ret = sched_rt_global_constraints();
9080 if (ret) {
9081 sysctl_sched_rt_period = old_period;
9082 sysctl_sched_rt_runtime = old_runtime;
9083 } else {
9084 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9085 def_rt_bandwidth.rt_period =
9086 ns_to_ktime(global_rt_period());
9087 }
9088 }
9089 mutex_unlock(&mutex);
9090
9091 return ret;
9092}
68318b8e 9093
052f1dc7 9094#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9095
9096/* return corresponding task_group object of a cgroup */
2b01dfe3 9097static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9098{
2b01dfe3
PM
9099 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9100 struct task_group, css);
68318b8e
SV
9101}
9102
9103static struct cgroup_subsys_state *
2b01dfe3 9104cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9105{
ec7dc8ac 9106 struct task_group *tg, *parent;
68318b8e 9107
2b01dfe3 9108 if (!cgrp->parent) {
68318b8e 9109 /* This is early initialization for the top cgroup */
68318b8e
SV
9110 return &init_task_group.css;
9111 }
9112
ec7dc8ac
DG
9113 parent = cgroup_tg(cgrp->parent);
9114 tg = sched_create_group(parent);
68318b8e
SV
9115 if (IS_ERR(tg))
9116 return ERR_PTR(-ENOMEM);
9117
68318b8e
SV
9118 return &tg->css;
9119}
9120
41a2d6cf
IM
9121static void
9122cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9123{
2b01dfe3 9124 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9125
9126 sched_destroy_group(tg);
9127}
9128
41a2d6cf 9129static int
be367d09 9130cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9131{
b68aa230 9132#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9133 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9134 return -EINVAL;
9135#else
68318b8e
SV
9136 /* We don't support RT-tasks being in separate groups */
9137 if (tsk->sched_class != &fair_sched_class)
9138 return -EINVAL;
b68aa230 9139#endif
be367d09
BB
9140 return 0;
9141}
68318b8e 9142
be367d09
BB
9143static int
9144cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9145 struct task_struct *tsk, bool threadgroup)
9146{
9147 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9148 if (retval)
9149 return retval;
9150 if (threadgroup) {
9151 struct task_struct *c;
9152 rcu_read_lock();
9153 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9154 retval = cpu_cgroup_can_attach_task(cgrp, c);
9155 if (retval) {
9156 rcu_read_unlock();
9157 return retval;
9158 }
9159 }
9160 rcu_read_unlock();
9161 }
68318b8e
SV
9162 return 0;
9163}
9164
9165static void
2b01dfe3 9166cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
9167 struct cgroup *old_cont, struct task_struct *tsk,
9168 bool threadgroup)
68318b8e
SV
9169{
9170 sched_move_task(tsk);
be367d09
BB
9171 if (threadgroup) {
9172 struct task_struct *c;
9173 rcu_read_lock();
9174 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9175 sched_move_task(c);
9176 }
9177 rcu_read_unlock();
9178 }
68318b8e
SV
9179}
9180
052f1dc7 9181#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9182static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9183 u64 shareval)
68318b8e 9184{
2b01dfe3 9185 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9186}
9187
f4c753b7 9188static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9189{
2b01dfe3 9190 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9191
9192 return (u64) tg->shares;
9193}
6d6bc0ad 9194#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9195
052f1dc7 9196#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9197static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9198 s64 val)
6f505b16 9199{
06ecb27c 9200 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9201}
9202
06ecb27c 9203static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9204{
06ecb27c 9205 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9206}
d0b27fa7
PZ
9207
9208static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9209 u64 rt_period_us)
9210{
9211 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9212}
9213
9214static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9215{
9216 return sched_group_rt_period(cgroup_tg(cgrp));
9217}
6d6bc0ad 9218#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9219
fe5c7cc2 9220static struct cftype cpu_files[] = {
052f1dc7 9221#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9222 {
9223 .name = "shares",
f4c753b7
PM
9224 .read_u64 = cpu_shares_read_u64,
9225 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9226 },
052f1dc7
PZ
9227#endif
9228#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9229 {
9f0c1e56 9230 .name = "rt_runtime_us",
06ecb27c
PM
9231 .read_s64 = cpu_rt_runtime_read,
9232 .write_s64 = cpu_rt_runtime_write,
6f505b16 9233 },
d0b27fa7
PZ
9234 {
9235 .name = "rt_period_us",
f4c753b7
PM
9236 .read_u64 = cpu_rt_period_read_uint,
9237 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9238 },
052f1dc7 9239#endif
68318b8e
SV
9240};
9241
9242static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9243{
fe5c7cc2 9244 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9245}
9246
9247struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9248 .name = "cpu",
9249 .create = cpu_cgroup_create,
9250 .destroy = cpu_cgroup_destroy,
9251 .can_attach = cpu_cgroup_can_attach,
9252 .attach = cpu_cgroup_attach,
9253 .populate = cpu_cgroup_populate,
9254 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9255 .early_init = 1,
9256};
9257
052f1dc7 9258#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9259
9260#ifdef CONFIG_CGROUP_CPUACCT
9261
9262/*
9263 * CPU accounting code for task groups.
9264 *
9265 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9266 * (balbir@in.ibm.com).
9267 */
9268
934352f2 9269/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9270struct cpuacct {
9271 struct cgroup_subsys_state css;
9272 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9273 u64 __percpu *cpuusage;
ef12fefa 9274 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9275 struct cpuacct *parent;
d842de87
SV
9276};
9277
9278struct cgroup_subsys cpuacct_subsys;
9279
9280/* return cpu accounting group corresponding to this container */
32cd756a 9281static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9282{
32cd756a 9283 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9284 struct cpuacct, css);
9285}
9286
9287/* return cpu accounting group to which this task belongs */
9288static inline struct cpuacct *task_ca(struct task_struct *tsk)
9289{
9290 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9291 struct cpuacct, css);
9292}
9293
9294/* create a new cpu accounting group */
9295static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9296 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9297{
9298 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9299 int i;
d842de87
SV
9300
9301 if (!ca)
ef12fefa 9302 goto out;
d842de87
SV
9303
9304 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9305 if (!ca->cpuusage)
9306 goto out_free_ca;
9307
9308 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9309 if (percpu_counter_init(&ca->cpustat[i], 0))
9310 goto out_free_counters;
d842de87 9311
934352f2
BR
9312 if (cgrp->parent)
9313 ca->parent = cgroup_ca(cgrp->parent);
9314
d842de87 9315 return &ca->css;
ef12fefa
BR
9316
9317out_free_counters:
9318 while (--i >= 0)
9319 percpu_counter_destroy(&ca->cpustat[i]);
9320 free_percpu(ca->cpuusage);
9321out_free_ca:
9322 kfree(ca);
9323out:
9324 return ERR_PTR(-ENOMEM);
d842de87
SV
9325}
9326
9327/* destroy an existing cpu accounting group */
41a2d6cf 9328static void
32cd756a 9329cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9330{
32cd756a 9331 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9332 int i;
d842de87 9333
ef12fefa
BR
9334 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9335 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9336 free_percpu(ca->cpuusage);
9337 kfree(ca);
9338}
9339
720f5498
KC
9340static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9341{
b36128c8 9342 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9343 u64 data;
9344
9345#ifndef CONFIG_64BIT
9346 /*
9347 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9348 */
05fa785c 9349 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9350 data = *cpuusage;
05fa785c 9351 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9352#else
9353 data = *cpuusage;
9354#endif
9355
9356 return data;
9357}
9358
9359static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9360{
b36128c8 9361 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9362
9363#ifndef CONFIG_64BIT
9364 /*
9365 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9366 */
05fa785c 9367 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9368 *cpuusage = val;
05fa785c 9369 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9370#else
9371 *cpuusage = val;
9372#endif
9373}
9374
d842de87 9375/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9376static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9377{
32cd756a 9378 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9379 u64 totalcpuusage = 0;
9380 int i;
9381
720f5498
KC
9382 for_each_present_cpu(i)
9383 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9384
9385 return totalcpuusage;
9386}
9387
0297b803
DG
9388static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9389 u64 reset)
9390{
9391 struct cpuacct *ca = cgroup_ca(cgrp);
9392 int err = 0;
9393 int i;
9394
9395 if (reset) {
9396 err = -EINVAL;
9397 goto out;
9398 }
9399
720f5498
KC
9400 for_each_present_cpu(i)
9401 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9402
0297b803
DG
9403out:
9404 return err;
9405}
9406
e9515c3c
KC
9407static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9408 struct seq_file *m)
9409{
9410 struct cpuacct *ca = cgroup_ca(cgroup);
9411 u64 percpu;
9412 int i;
9413
9414 for_each_present_cpu(i) {
9415 percpu = cpuacct_cpuusage_read(ca, i);
9416 seq_printf(m, "%llu ", (unsigned long long) percpu);
9417 }
9418 seq_printf(m, "\n");
9419 return 0;
9420}
9421
ef12fefa
BR
9422static const char *cpuacct_stat_desc[] = {
9423 [CPUACCT_STAT_USER] = "user",
9424 [CPUACCT_STAT_SYSTEM] = "system",
9425};
9426
9427static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9428 struct cgroup_map_cb *cb)
9429{
9430 struct cpuacct *ca = cgroup_ca(cgrp);
9431 int i;
9432
9433 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9434 s64 val = percpu_counter_read(&ca->cpustat[i]);
9435 val = cputime64_to_clock_t(val);
9436 cb->fill(cb, cpuacct_stat_desc[i], val);
9437 }
9438 return 0;
9439}
9440
d842de87
SV
9441static struct cftype files[] = {
9442 {
9443 .name = "usage",
f4c753b7
PM
9444 .read_u64 = cpuusage_read,
9445 .write_u64 = cpuusage_write,
d842de87 9446 },
e9515c3c
KC
9447 {
9448 .name = "usage_percpu",
9449 .read_seq_string = cpuacct_percpu_seq_read,
9450 },
ef12fefa
BR
9451 {
9452 .name = "stat",
9453 .read_map = cpuacct_stats_show,
9454 },
d842de87
SV
9455};
9456
32cd756a 9457static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9458{
32cd756a 9459 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9460}
9461
9462/*
9463 * charge this task's execution time to its accounting group.
9464 *
9465 * called with rq->lock held.
9466 */
9467static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9468{
9469 struct cpuacct *ca;
934352f2 9470 int cpu;
d842de87 9471
c40c6f85 9472 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9473 return;
9474
934352f2 9475 cpu = task_cpu(tsk);
a18b83b7
BR
9476
9477 rcu_read_lock();
9478
d842de87 9479 ca = task_ca(tsk);
d842de87 9480
934352f2 9481 for (; ca; ca = ca->parent) {
b36128c8 9482 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9483 *cpuusage += cputime;
9484 }
a18b83b7
BR
9485
9486 rcu_read_unlock();
d842de87
SV
9487}
9488
fa535a77
AB
9489/*
9490 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9491 * in cputime_t units. As a result, cpuacct_update_stats calls
9492 * percpu_counter_add with values large enough to always overflow the
9493 * per cpu batch limit causing bad SMP scalability.
9494 *
9495 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9496 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9497 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9498 */
9499#ifdef CONFIG_SMP
9500#define CPUACCT_BATCH \
9501 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9502#else
9503#define CPUACCT_BATCH 0
9504#endif
9505
ef12fefa
BR
9506/*
9507 * Charge the system/user time to the task's accounting group.
9508 */
9509static void cpuacct_update_stats(struct task_struct *tsk,
9510 enum cpuacct_stat_index idx, cputime_t val)
9511{
9512 struct cpuacct *ca;
fa535a77 9513 int batch = CPUACCT_BATCH;
ef12fefa
BR
9514
9515 if (unlikely(!cpuacct_subsys.active))
9516 return;
9517
9518 rcu_read_lock();
9519 ca = task_ca(tsk);
9520
9521 do {
fa535a77 9522 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9523 ca = ca->parent;
9524 } while (ca);
9525 rcu_read_unlock();
9526}
9527
d842de87
SV
9528struct cgroup_subsys cpuacct_subsys = {
9529 .name = "cpuacct",
9530 .create = cpuacct_create,
9531 .destroy = cpuacct_destroy,
9532 .populate = cpuacct_populate,
9533 .subsys_id = cpuacct_subsys_id,
9534};
9535#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9536
9537#ifndef CONFIG_SMP
9538
03b042bf
PM
9539void synchronize_sched_expedited(void)
9540{
fc390cde 9541 barrier();
03b042bf
PM
9542}
9543EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9544
9545#else /* #ifndef CONFIG_SMP */
9546
cc631fb7 9547static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 9548
cc631fb7 9549static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 9550{
969c7921
TH
9551 /*
9552 * There must be a full memory barrier on each affected CPU
9553 * between the time that try_stop_cpus() is called and the
9554 * time that it returns.
9555 *
9556 * In the current initial implementation of cpu_stop, the
9557 * above condition is already met when the control reaches
9558 * this point and the following smp_mb() is not strictly
9559 * necessary. Do smp_mb() anyway for documentation and
9560 * robustness against future implementation changes.
9561 */
cc631fb7 9562 smp_mb(); /* See above comment block. */
969c7921 9563 return 0;
03b042bf 9564}
03b042bf
PM
9565
9566/*
9567 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9568 * approach to force grace period to end quickly. This consumes
9569 * significant time on all CPUs, and is thus not recommended for
9570 * any sort of common-case code.
9571 *
9572 * Note that it is illegal to call this function while holding any
9573 * lock that is acquired by a CPU-hotplug notifier. Failing to
9574 * observe this restriction will result in deadlock.
9575 */
9576void synchronize_sched_expedited(void)
9577{
969c7921 9578 int snap, trycount = 0;
03b042bf
PM
9579
9580 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 9581 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 9582 get_online_cpus();
969c7921
TH
9583 while (try_stop_cpus(cpu_online_mask,
9584 synchronize_sched_expedited_cpu_stop,
94458d5e 9585 NULL) == -EAGAIN) {
03b042bf
PM
9586 put_online_cpus();
9587 if (trycount++ < 10)
9588 udelay(trycount * num_online_cpus());
9589 else {
9590 synchronize_sched();
9591 return;
9592 }
969c7921 9593 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
9594 smp_mb(); /* ensure test happens before caller kfree */
9595 return;
9596 }
9597 get_online_cpus();
9598 }
969c7921 9599 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 9600 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 9601 put_online_cpus();
03b042bf
PM
9602}
9603EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9604
9605#endif /* #else #ifndef CONFIG_SMP */
This page took 2.649471 seconds and 5 git commands to generate.