perf_counter: Fix frequency adjustment for < HZ
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
5517d86b 67#include <linux/reciprocal_div.h>
dff06c15 68#include <linux/unistd.h>
f5ff8422 69#include <linux/pagemap.h>
8f4d37ec 70#include <linux/hrtimer.h>
30914a58 71#include <linux/tick.h>
434d53b0 72#include <linux/bootmem.h>
f00b45c1
PZ
73#include <linux/debugfs.h>
74#include <linux/ctype.h>
6cd8a4bb 75#include <linux/ftrace.h>
0a16b607 76#include <trace/sched.h>
1da177e4 77
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
1da177e4 80
6e0534f2
GH
81#include "sched_cpupri.h"
82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
7e066fb8
MD
122DEFINE_TRACE(sched_wait_task);
123DEFINE_TRACE(sched_wakeup);
124DEFINE_TRACE(sched_wakeup_new);
125DEFINE_TRACE(sched_switch);
126DEFINE_TRACE(sched_migrate_task);
127
5517d86b 128#ifdef CONFIG_SMP
fd2ab30b
SN
129
130static void double_rq_lock(struct rq *rq1, struct rq *rq2);
131
5517d86b
ED
132/*
133 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
134 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 */
136static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
137{
138 return reciprocal_divide(load, sg->reciprocal_cpu_power);
139}
140
141/*
142 * Each time a sched group cpu_power is changed,
143 * we must compute its reciprocal value
144 */
145static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
146{
147 sg->__cpu_power += val;
148 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
149}
150#endif
151
e05606d3
IM
152static inline int rt_policy(int policy)
153{
3f33a7ce 154 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
155 return 1;
156 return 0;
157}
158
159static inline int task_has_rt_policy(struct task_struct *p)
160{
161 return rt_policy(p->policy);
162}
163
1da177e4 164/*
6aa645ea 165 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 166 */
6aa645ea
IM
167struct rt_prio_array {
168 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
169 struct list_head queue[MAX_RT_PRIO];
170};
171
d0b27fa7 172struct rt_bandwidth {
ea736ed5
IM
173 /* nests inside the rq lock: */
174 spinlock_t rt_runtime_lock;
175 ktime_t rt_period;
176 u64 rt_runtime;
177 struct hrtimer rt_period_timer;
d0b27fa7
PZ
178};
179
180static struct rt_bandwidth def_rt_bandwidth;
181
182static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
183
184static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
185{
186 struct rt_bandwidth *rt_b =
187 container_of(timer, struct rt_bandwidth, rt_period_timer);
188 ktime_t now;
189 int overrun;
190 int idle = 0;
191
192 for (;;) {
193 now = hrtimer_cb_get_time(timer);
194 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
195
196 if (!overrun)
197 break;
198
199 idle = do_sched_rt_period_timer(rt_b, overrun);
200 }
201
202 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
203}
204
205static
206void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
207{
208 rt_b->rt_period = ns_to_ktime(period);
209 rt_b->rt_runtime = runtime;
210
ac086bc2
PZ
211 spin_lock_init(&rt_b->rt_runtime_lock);
212
d0b27fa7
PZ
213 hrtimer_init(&rt_b->rt_period_timer,
214 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
215 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
216}
217
c8bfff6d
KH
218static inline int rt_bandwidth_enabled(void)
219{
220 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
221}
222
223static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
224{
225 ktime_t now;
226
cac64d00 227 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
228 return;
229
230 if (hrtimer_active(&rt_b->rt_period_timer))
231 return;
232
233 spin_lock(&rt_b->rt_runtime_lock);
234 for (;;) {
7f1e2ca9
PZ
235 unsigned long delta;
236 ktime_t soft, hard;
237
d0b27fa7
PZ
238 if (hrtimer_active(&rt_b->rt_period_timer))
239 break;
240
241 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
242 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
243
244 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
245 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
246 delta = ktime_to_ns(ktime_sub(hard, soft));
247 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
248 HRTIMER_MODE_ABS, 0);
d0b27fa7
PZ
249 }
250 spin_unlock(&rt_b->rt_runtime_lock);
251}
252
253#ifdef CONFIG_RT_GROUP_SCHED
254static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
255{
256 hrtimer_cancel(&rt_b->rt_period_timer);
257}
258#endif
259
712555ee
HC
260/*
261 * sched_domains_mutex serializes calls to arch_init_sched_domains,
262 * detach_destroy_domains and partition_sched_domains.
263 */
264static DEFINE_MUTEX(sched_domains_mutex);
265
052f1dc7 266#ifdef CONFIG_GROUP_SCHED
29f59db3 267
68318b8e
SV
268#include <linux/cgroup.h>
269
29f59db3
SV
270struct cfs_rq;
271
6f505b16
PZ
272static LIST_HEAD(task_groups);
273
29f59db3 274/* task group related information */
4cf86d77 275struct task_group {
052f1dc7 276#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
277 struct cgroup_subsys_state css;
278#endif
052f1dc7 279
6c415b92
AB
280#ifdef CONFIG_USER_SCHED
281 uid_t uid;
282#endif
283
052f1dc7 284#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
285 /* schedulable entities of this group on each cpu */
286 struct sched_entity **se;
287 /* runqueue "owned" by this group on each cpu */
288 struct cfs_rq **cfs_rq;
289 unsigned long shares;
052f1dc7
PZ
290#endif
291
292#ifdef CONFIG_RT_GROUP_SCHED
293 struct sched_rt_entity **rt_se;
294 struct rt_rq **rt_rq;
295
d0b27fa7 296 struct rt_bandwidth rt_bandwidth;
052f1dc7 297#endif
6b2d7700 298
ae8393e5 299 struct rcu_head rcu;
6f505b16 300 struct list_head list;
f473aa5e
PZ
301
302 struct task_group *parent;
303 struct list_head siblings;
304 struct list_head children;
29f59db3
SV
305};
306
354d60c2 307#ifdef CONFIG_USER_SCHED
eff766a6 308
6c415b92
AB
309/* Helper function to pass uid information to create_sched_user() */
310void set_tg_uid(struct user_struct *user)
311{
312 user->tg->uid = user->uid;
313}
314
eff766a6
PZ
315/*
316 * Root task group.
317 * Every UID task group (including init_task_group aka UID-0) will
318 * be a child to this group.
319 */
320struct task_group root_task_group;
321
052f1dc7 322#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
323/* Default task group's sched entity on each cpu */
324static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
325/* Default task group's cfs_rq on each cpu */
326static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 327#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
328
329#ifdef CONFIG_RT_GROUP_SCHED
330static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
331static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 332#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 333#else /* !CONFIG_USER_SCHED */
eff766a6 334#define root_task_group init_task_group
9a7e0b18 335#endif /* CONFIG_USER_SCHED */
6f505b16 336
8ed36996 337/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
338 * a task group's cpu shares.
339 */
8ed36996 340static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 341
57310a98
PZ
342#ifdef CONFIG_SMP
343static int root_task_group_empty(void)
344{
345 return list_empty(&root_task_group.children);
346}
347#endif
348
052f1dc7 349#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
350#ifdef CONFIG_USER_SCHED
351# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 352#else /* !CONFIG_USER_SCHED */
052f1dc7 353# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 354#endif /* CONFIG_USER_SCHED */
052f1dc7 355
cb4ad1ff 356/*
2e084786
LJ
357 * A weight of 0 or 1 can cause arithmetics problems.
358 * A weight of a cfs_rq is the sum of weights of which entities
359 * are queued on this cfs_rq, so a weight of a entity should not be
360 * too large, so as the shares value of a task group.
cb4ad1ff
MX
361 * (The default weight is 1024 - so there's no practical
362 * limitation from this.)
363 */
18d95a28 364#define MIN_SHARES 2
2e084786 365#define MAX_SHARES (1UL << 18)
18d95a28 366
052f1dc7
PZ
367static int init_task_group_load = INIT_TASK_GROUP_LOAD;
368#endif
369
29f59db3 370/* Default task group.
3a252015 371 * Every task in system belong to this group at bootup.
29f59db3 372 */
434d53b0 373struct task_group init_task_group;
29f59db3
SV
374
375/* return group to which a task belongs */
4cf86d77 376static inline struct task_group *task_group(struct task_struct *p)
29f59db3 377{
4cf86d77 378 struct task_group *tg;
9b5b7751 379
052f1dc7 380#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
381 rcu_read_lock();
382 tg = __task_cred(p)->user->tg;
383 rcu_read_unlock();
052f1dc7 384#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
385 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
386 struct task_group, css);
24e377a8 387#else
41a2d6cf 388 tg = &init_task_group;
24e377a8 389#endif
9b5b7751 390 return tg;
29f59db3
SV
391}
392
393/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 394static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 395{
052f1dc7 396#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
397 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
398 p->se.parent = task_group(p)->se[cpu];
052f1dc7 399#endif
6f505b16 400
052f1dc7 401#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
402 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
403 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 404#endif
29f59db3
SV
405}
406
407#else
408
57310a98
PZ
409#ifdef CONFIG_SMP
410static int root_task_group_empty(void)
411{
412 return 1;
413}
414#endif
415
6f505b16 416static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
417static inline struct task_group *task_group(struct task_struct *p)
418{
419 return NULL;
420}
29f59db3 421
052f1dc7 422#endif /* CONFIG_GROUP_SCHED */
29f59db3 423
6aa645ea
IM
424/* CFS-related fields in a runqueue */
425struct cfs_rq {
426 struct load_weight load;
427 unsigned long nr_running;
428
6aa645ea 429 u64 exec_clock;
e9acbff6 430 u64 min_vruntime;
6aa645ea
IM
431
432 struct rb_root tasks_timeline;
433 struct rb_node *rb_leftmost;
4a55bd5e
PZ
434
435 struct list_head tasks;
436 struct list_head *balance_iterator;
437
438 /*
439 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
440 * It is set to NULL otherwise (i.e when none are currently running).
441 */
4793241b 442 struct sched_entity *curr, *next, *last;
ddc97297 443
5ac5c4d6 444 unsigned int nr_spread_over;
ddc97297 445
62160e3f 446#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
447 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
448
41a2d6cf
IM
449 /*
450 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
451 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
452 * (like users, containers etc.)
453 *
454 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
455 * list is used during load balance.
456 */
41a2d6cf
IM
457 struct list_head leaf_cfs_rq_list;
458 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
459
460#ifdef CONFIG_SMP
c09595f6 461 /*
c8cba857 462 * the part of load.weight contributed by tasks
c09595f6 463 */
c8cba857 464 unsigned long task_weight;
c09595f6 465
c8cba857
PZ
466 /*
467 * h_load = weight * f(tg)
468 *
469 * Where f(tg) is the recursive weight fraction assigned to
470 * this group.
471 */
472 unsigned long h_load;
c09595f6 473
c8cba857
PZ
474 /*
475 * this cpu's part of tg->shares
476 */
477 unsigned long shares;
f1d239f7
PZ
478
479 /*
480 * load.weight at the time we set shares
481 */
482 unsigned long rq_weight;
c09595f6 483#endif
6aa645ea
IM
484#endif
485};
1da177e4 486
6aa645ea
IM
487/* Real-Time classes' related field in a runqueue: */
488struct rt_rq {
489 struct rt_prio_array active;
63489e45 490 unsigned long rt_nr_running;
052f1dc7 491#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
492 struct {
493 int curr; /* highest queued rt task prio */
398a153b 494#ifdef CONFIG_SMP
e864c499 495 int next; /* next highest */
398a153b 496#endif
e864c499 497 } highest_prio;
6f505b16 498#endif
fa85ae24 499#ifdef CONFIG_SMP
73fe6aae 500 unsigned long rt_nr_migratory;
a22d7fc1 501 int overloaded;
917b627d 502 struct plist_head pushable_tasks;
fa85ae24 503#endif
6f505b16 504 int rt_throttled;
fa85ae24 505 u64 rt_time;
ac086bc2 506 u64 rt_runtime;
ea736ed5 507 /* Nests inside the rq lock: */
ac086bc2 508 spinlock_t rt_runtime_lock;
6f505b16 509
052f1dc7 510#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
511 unsigned long rt_nr_boosted;
512
6f505b16
PZ
513 struct rq *rq;
514 struct list_head leaf_rt_rq_list;
515 struct task_group *tg;
516 struct sched_rt_entity *rt_se;
517#endif
6aa645ea
IM
518};
519
57d885fe
GH
520#ifdef CONFIG_SMP
521
522/*
523 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
524 * variables. Each exclusive cpuset essentially defines an island domain by
525 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
526 * exclusive cpuset is created, we also create and attach a new root-domain
527 * object.
528 *
57d885fe
GH
529 */
530struct root_domain {
531 atomic_t refcount;
c6c4927b
RR
532 cpumask_var_t span;
533 cpumask_var_t online;
637f5085 534
0eab9146 535 /*
637f5085
GH
536 * The "RT overload" flag: it gets set if a CPU has more than
537 * one runnable RT task.
538 */
c6c4927b 539 cpumask_var_t rto_mask;
0eab9146 540 atomic_t rto_count;
6e0534f2
GH
541#ifdef CONFIG_SMP
542 struct cpupri cpupri;
543#endif
7a09b1a2
VS
544#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
545 /*
546 * Preferred wake up cpu nominated by sched_mc balance that will be
547 * used when most cpus are idle in the system indicating overall very
548 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
549 */
550 unsigned int sched_mc_preferred_wakeup_cpu;
551#endif
57d885fe
GH
552};
553
dc938520
GH
554/*
555 * By default the system creates a single root-domain with all cpus as
556 * members (mimicking the global state we have today).
557 */
57d885fe
GH
558static struct root_domain def_root_domain;
559
560#endif
561
1da177e4
LT
562/*
563 * This is the main, per-CPU runqueue data structure.
564 *
565 * Locking rule: those places that want to lock multiple runqueues
566 * (such as the load balancing or the thread migration code), lock
567 * acquire operations must be ordered by ascending &runqueue.
568 */
70b97a7f 569struct rq {
d8016491
IM
570 /* runqueue lock: */
571 spinlock_t lock;
1da177e4
LT
572
573 /*
574 * nr_running and cpu_load should be in the same cacheline because
575 * remote CPUs use both these fields when doing load calculation.
576 */
577 unsigned long nr_running;
6aa645ea
IM
578 #define CPU_LOAD_IDX_MAX 5
579 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 580#ifdef CONFIG_NO_HZ
15934a37 581 unsigned long last_tick_seen;
46cb4b7c
SS
582 unsigned char in_nohz_recently;
583#endif
d8016491
IM
584 /* capture load from *all* tasks on this cpu: */
585 struct load_weight load;
6aa645ea
IM
586 unsigned long nr_load_updates;
587 u64 nr_switches;
23a185ca 588 u64 nr_migrations_in;
6aa645ea
IM
589
590 struct cfs_rq cfs;
6f505b16 591 struct rt_rq rt;
6f505b16 592
6aa645ea 593#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
594 /* list of leaf cfs_rq on this cpu: */
595 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
596#endif
597#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 598 struct list_head leaf_rt_rq_list;
1da177e4 599#endif
1da177e4
LT
600
601 /*
602 * This is part of a global counter where only the total sum
603 * over all CPUs matters. A task can increase this counter on
604 * one CPU and if it got migrated afterwards it may decrease
605 * it on another CPU. Always updated under the runqueue lock:
606 */
607 unsigned long nr_uninterruptible;
608
36c8b586 609 struct task_struct *curr, *idle;
c9819f45 610 unsigned long next_balance;
1da177e4 611 struct mm_struct *prev_mm;
6aa645ea 612
3e51f33f 613 u64 clock;
6aa645ea 614
1da177e4
LT
615 atomic_t nr_iowait;
616
617#ifdef CONFIG_SMP
0eab9146 618 struct root_domain *rd;
1da177e4
LT
619 struct sched_domain *sd;
620
a0a522ce 621 unsigned char idle_at_tick;
1da177e4
LT
622 /* For active balancing */
623 int active_balance;
624 int push_cpu;
d8016491
IM
625 /* cpu of this runqueue: */
626 int cpu;
1f11eb6a 627 int online;
1da177e4 628
a8a51d5e 629 unsigned long avg_load_per_task;
1da177e4 630
36c8b586 631 struct task_struct *migration_thread;
1da177e4
LT
632 struct list_head migration_queue;
633#endif
634
8f4d37ec 635#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
636#ifdef CONFIG_SMP
637 int hrtick_csd_pending;
638 struct call_single_data hrtick_csd;
639#endif
8f4d37ec
PZ
640 struct hrtimer hrtick_timer;
641#endif
642
1da177e4
LT
643#ifdef CONFIG_SCHEDSTATS
644 /* latency stats */
645 struct sched_info rq_sched_info;
9c2c4802
KC
646 unsigned long long rq_cpu_time;
647 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
648
649 /* sys_sched_yield() stats */
480b9434 650 unsigned int yld_count;
1da177e4
LT
651
652 /* schedule() stats */
480b9434
KC
653 unsigned int sched_switch;
654 unsigned int sched_count;
655 unsigned int sched_goidle;
1da177e4
LT
656
657 /* try_to_wake_up() stats */
480b9434
KC
658 unsigned int ttwu_count;
659 unsigned int ttwu_local;
b8efb561
IM
660
661 /* BKL stats */
480b9434 662 unsigned int bkl_count;
1da177e4
LT
663#endif
664};
665
f34e3b61 666static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 667
15afe09b 668static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 669{
15afe09b 670 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
671}
672
0a2966b4
CL
673static inline int cpu_of(struct rq *rq)
674{
675#ifdef CONFIG_SMP
676 return rq->cpu;
677#else
678 return 0;
679#endif
680}
681
674311d5
NP
682/*
683 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 684 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
685 *
686 * The domain tree of any CPU may only be accessed from within
687 * preempt-disabled sections.
688 */
48f24c4d
IM
689#define for_each_domain(cpu, __sd) \
690 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
691
692#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
693#define this_rq() (&__get_cpu_var(runqueues))
694#define task_rq(p) cpu_rq(task_cpu(p))
695#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
696
aa9c4c0f 697inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
698{
699 rq->clock = sched_clock_cpu(cpu_of(rq));
700}
701
bf5c91ba
IM
702/*
703 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
704 */
705#ifdef CONFIG_SCHED_DEBUG
706# define const_debug __read_mostly
707#else
708# define const_debug static const
709#endif
710
017730c1
IM
711/**
712 * runqueue_is_locked
713 *
714 * Returns true if the current cpu runqueue is locked.
715 * This interface allows printk to be called with the runqueue lock
716 * held and know whether or not it is OK to wake up the klogd.
717 */
718int runqueue_is_locked(void)
719{
720 int cpu = get_cpu();
721 struct rq *rq = cpu_rq(cpu);
722 int ret;
723
724 ret = spin_is_locked(&rq->lock);
725 put_cpu();
726 return ret;
727}
728
bf5c91ba
IM
729/*
730 * Debugging: various feature bits
731 */
f00b45c1
PZ
732
733#define SCHED_FEAT(name, enabled) \
734 __SCHED_FEAT_##name ,
735
bf5c91ba 736enum {
f00b45c1 737#include "sched_features.h"
bf5c91ba
IM
738};
739
f00b45c1
PZ
740#undef SCHED_FEAT
741
742#define SCHED_FEAT(name, enabled) \
743 (1UL << __SCHED_FEAT_##name) * enabled |
744
bf5c91ba 745const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
746#include "sched_features.h"
747 0;
748
749#undef SCHED_FEAT
750
751#ifdef CONFIG_SCHED_DEBUG
752#define SCHED_FEAT(name, enabled) \
753 #name ,
754
983ed7a6 755static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
756#include "sched_features.h"
757 NULL
758};
759
760#undef SCHED_FEAT
761
34f3a814 762static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 763{
f00b45c1
PZ
764 int i;
765
766 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
767 if (!(sysctl_sched_features & (1UL << i)))
768 seq_puts(m, "NO_");
769 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 770 }
34f3a814 771 seq_puts(m, "\n");
f00b45c1 772
34f3a814 773 return 0;
f00b45c1
PZ
774}
775
776static ssize_t
777sched_feat_write(struct file *filp, const char __user *ubuf,
778 size_t cnt, loff_t *ppos)
779{
780 char buf[64];
781 char *cmp = buf;
782 int neg = 0;
783 int i;
784
785 if (cnt > 63)
786 cnt = 63;
787
788 if (copy_from_user(&buf, ubuf, cnt))
789 return -EFAULT;
790
791 buf[cnt] = 0;
792
c24b7c52 793 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
794 neg = 1;
795 cmp += 3;
796 }
797
798 for (i = 0; sched_feat_names[i]; i++) {
799 int len = strlen(sched_feat_names[i]);
800
801 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
802 if (neg)
803 sysctl_sched_features &= ~(1UL << i);
804 else
805 sysctl_sched_features |= (1UL << i);
806 break;
807 }
808 }
809
810 if (!sched_feat_names[i])
811 return -EINVAL;
812
813 filp->f_pos += cnt;
814
815 return cnt;
816}
817
34f3a814
LZ
818static int sched_feat_open(struct inode *inode, struct file *filp)
819{
820 return single_open(filp, sched_feat_show, NULL);
821}
822
f00b45c1 823static struct file_operations sched_feat_fops = {
34f3a814
LZ
824 .open = sched_feat_open,
825 .write = sched_feat_write,
826 .read = seq_read,
827 .llseek = seq_lseek,
828 .release = single_release,
f00b45c1
PZ
829};
830
831static __init int sched_init_debug(void)
832{
f00b45c1
PZ
833 debugfs_create_file("sched_features", 0644, NULL, NULL,
834 &sched_feat_fops);
835
836 return 0;
837}
838late_initcall(sched_init_debug);
839
840#endif
841
842#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 843
b82d9fdd
PZ
844/*
845 * Number of tasks to iterate in a single balance run.
846 * Limited because this is done with IRQs disabled.
847 */
848const_debug unsigned int sysctl_sched_nr_migrate = 32;
849
2398f2c6
PZ
850/*
851 * ratelimit for updating the group shares.
55cd5340 852 * default: 0.25ms
2398f2c6 853 */
55cd5340 854unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 855
ffda12a1
PZ
856/*
857 * Inject some fuzzyness into changing the per-cpu group shares
858 * this avoids remote rq-locks at the expense of fairness.
859 * default: 4
860 */
861unsigned int sysctl_sched_shares_thresh = 4;
862
fa85ae24 863/*
9f0c1e56 864 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
865 * default: 1s
866 */
9f0c1e56 867unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 868
6892b75e
IM
869static __read_mostly int scheduler_running;
870
9f0c1e56
PZ
871/*
872 * part of the period that we allow rt tasks to run in us.
873 * default: 0.95s
874 */
875int sysctl_sched_rt_runtime = 950000;
fa85ae24 876
d0b27fa7
PZ
877static inline u64 global_rt_period(void)
878{
879 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
880}
881
882static inline u64 global_rt_runtime(void)
883{
e26873bb 884 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
885 return RUNTIME_INF;
886
887 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
888}
fa85ae24 889
1da177e4 890#ifndef prepare_arch_switch
4866cde0
NP
891# define prepare_arch_switch(next) do { } while (0)
892#endif
893#ifndef finish_arch_switch
894# define finish_arch_switch(prev) do { } while (0)
895#endif
896
051a1d1a
DA
897static inline int task_current(struct rq *rq, struct task_struct *p)
898{
899 return rq->curr == p;
900}
901
4866cde0 902#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 903static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 904{
051a1d1a 905 return task_current(rq, p);
4866cde0
NP
906}
907
70b97a7f 908static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
909{
910}
911
70b97a7f 912static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 913{
da04c035
IM
914#ifdef CONFIG_DEBUG_SPINLOCK
915 /* this is a valid case when another task releases the spinlock */
916 rq->lock.owner = current;
917#endif
8a25d5de
IM
918 /*
919 * If we are tracking spinlock dependencies then we have to
920 * fix up the runqueue lock - which gets 'carried over' from
921 * prev into current:
922 */
923 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
924
4866cde0
NP
925 spin_unlock_irq(&rq->lock);
926}
927
928#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 929static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
930{
931#ifdef CONFIG_SMP
932 return p->oncpu;
933#else
051a1d1a 934 return task_current(rq, p);
4866cde0
NP
935#endif
936}
937
70b97a7f 938static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
939{
940#ifdef CONFIG_SMP
941 /*
942 * We can optimise this out completely for !SMP, because the
943 * SMP rebalancing from interrupt is the only thing that cares
944 * here.
945 */
946 next->oncpu = 1;
947#endif
948#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
949 spin_unlock_irq(&rq->lock);
950#else
951 spin_unlock(&rq->lock);
952#endif
953}
954
70b97a7f 955static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
956{
957#ifdef CONFIG_SMP
958 /*
959 * After ->oncpu is cleared, the task can be moved to a different CPU.
960 * We must ensure this doesn't happen until the switch is completely
961 * finished.
962 */
963 smp_wmb();
964 prev->oncpu = 0;
965#endif
966#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
967 local_irq_enable();
1da177e4 968#endif
4866cde0
NP
969}
970#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 971
b29739f9
IM
972/*
973 * __task_rq_lock - lock the runqueue a given task resides on.
974 * Must be called interrupts disabled.
975 */
70b97a7f 976static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
977 __acquires(rq->lock)
978{
3a5c359a
AK
979 for (;;) {
980 struct rq *rq = task_rq(p);
981 spin_lock(&rq->lock);
982 if (likely(rq == task_rq(p)))
983 return rq;
b29739f9 984 spin_unlock(&rq->lock);
b29739f9 985 }
b29739f9
IM
986}
987
1da177e4
LT
988/*
989 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 990 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
991 * explicitly disabling preemption.
992 */
70b97a7f 993static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
994 __acquires(rq->lock)
995{
70b97a7f 996 struct rq *rq;
1da177e4 997
3a5c359a
AK
998 for (;;) {
999 local_irq_save(*flags);
1000 rq = task_rq(p);
1001 spin_lock(&rq->lock);
1002 if (likely(rq == task_rq(p)))
1003 return rq;
1da177e4 1004 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1005 }
1da177e4
LT
1006}
1007
ad474cac
ON
1008void task_rq_unlock_wait(struct task_struct *p)
1009{
1010 struct rq *rq = task_rq(p);
1011
1012 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1013 spin_unlock_wait(&rq->lock);
1014}
1015
a9957449 1016static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1017 __releases(rq->lock)
1018{
1019 spin_unlock(&rq->lock);
1020}
1021
70b97a7f 1022static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1023 __releases(rq->lock)
1024{
1025 spin_unlock_irqrestore(&rq->lock, *flags);
1026}
1027
1da177e4 1028/*
cc2a73b5 1029 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1030 */
a9957449 1031static struct rq *this_rq_lock(void)
1da177e4
LT
1032 __acquires(rq->lock)
1033{
70b97a7f 1034 struct rq *rq;
1da177e4
LT
1035
1036 local_irq_disable();
1037 rq = this_rq();
1038 spin_lock(&rq->lock);
1039
1040 return rq;
1041}
1042
8f4d37ec
PZ
1043#ifdef CONFIG_SCHED_HRTICK
1044/*
1045 * Use HR-timers to deliver accurate preemption points.
1046 *
1047 * Its all a bit involved since we cannot program an hrt while holding the
1048 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1049 * reschedule event.
1050 *
1051 * When we get rescheduled we reprogram the hrtick_timer outside of the
1052 * rq->lock.
1053 */
8f4d37ec
PZ
1054
1055/*
1056 * Use hrtick when:
1057 * - enabled by features
1058 * - hrtimer is actually high res
1059 */
1060static inline int hrtick_enabled(struct rq *rq)
1061{
1062 if (!sched_feat(HRTICK))
1063 return 0;
ba42059f 1064 if (!cpu_active(cpu_of(rq)))
b328ca18 1065 return 0;
8f4d37ec
PZ
1066 return hrtimer_is_hres_active(&rq->hrtick_timer);
1067}
1068
8f4d37ec
PZ
1069static void hrtick_clear(struct rq *rq)
1070{
1071 if (hrtimer_active(&rq->hrtick_timer))
1072 hrtimer_cancel(&rq->hrtick_timer);
1073}
1074
8f4d37ec
PZ
1075/*
1076 * High-resolution timer tick.
1077 * Runs from hardirq context with interrupts disabled.
1078 */
1079static enum hrtimer_restart hrtick(struct hrtimer *timer)
1080{
1081 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1082
1083 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1084
1085 spin_lock(&rq->lock);
3e51f33f 1086 update_rq_clock(rq);
8f4d37ec
PZ
1087 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1088 spin_unlock(&rq->lock);
1089
1090 return HRTIMER_NORESTART;
1091}
1092
95e904c7 1093#ifdef CONFIG_SMP
31656519
PZ
1094/*
1095 * called from hardirq (IPI) context
1096 */
1097static void __hrtick_start(void *arg)
b328ca18 1098{
31656519 1099 struct rq *rq = arg;
b328ca18 1100
31656519
PZ
1101 spin_lock(&rq->lock);
1102 hrtimer_restart(&rq->hrtick_timer);
1103 rq->hrtick_csd_pending = 0;
1104 spin_unlock(&rq->lock);
b328ca18
PZ
1105}
1106
31656519
PZ
1107/*
1108 * Called to set the hrtick timer state.
1109 *
1110 * called with rq->lock held and irqs disabled
1111 */
1112static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1113{
31656519
PZ
1114 struct hrtimer *timer = &rq->hrtick_timer;
1115 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1116
cc584b21 1117 hrtimer_set_expires(timer, time);
31656519
PZ
1118
1119 if (rq == this_rq()) {
1120 hrtimer_restart(timer);
1121 } else if (!rq->hrtick_csd_pending) {
6e275637 1122 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1123 rq->hrtick_csd_pending = 1;
1124 }
b328ca18
PZ
1125}
1126
1127static int
1128hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1129{
1130 int cpu = (int)(long)hcpu;
1131
1132 switch (action) {
1133 case CPU_UP_CANCELED:
1134 case CPU_UP_CANCELED_FROZEN:
1135 case CPU_DOWN_PREPARE:
1136 case CPU_DOWN_PREPARE_FROZEN:
1137 case CPU_DEAD:
1138 case CPU_DEAD_FROZEN:
31656519 1139 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1140 return NOTIFY_OK;
1141 }
1142
1143 return NOTIFY_DONE;
1144}
1145
fa748203 1146static __init void init_hrtick(void)
b328ca18
PZ
1147{
1148 hotcpu_notifier(hotplug_hrtick, 0);
1149}
31656519
PZ
1150#else
1151/*
1152 * Called to set the hrtick timer state.
1153 *
1154 * called with rq->lock held and irqs disabled
1155 */
1156static void hrtick_start(struct rq *rq, u64 delay)
1157{
7f1e2ca9
PZ
1158 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1159 HRTIMER_MODE_REL, 0);
31656519 1160}
b328ca18 1161
006c75f1 1162static inline void init_hrtick(void)
8f4d37ec 1163{
8f4d37ec 1164}
31656519 1165#endif /* CONFIG_SMP */
8f4d37ec 1166
31656519 1167static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1168{
31656519
PZ
1169#ifdef CONFIG_SMP
1170 rq->hrtick_csd_pending = 0;
8f4d37ec 1171
31656519
PZ
1172 rq->hrtick_csd.flags = 0;
1173 rq->hrtick_csd.func = __hrtick_start;
1174 rq->hrtick_csd.info = rq;
1175#endif
8f4d37ec 1176
31656519
PZ
1177 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1178 rq->hrtick_timer.function = hrtick;
8f4d37ec 1179}
006c75f1 1180#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1181static inline void hrtick_clear(struct rq *rq)
1182{
1183}
1184
8f4d37ec
PZ
1185static inline void init_rq_hrtick(struct rq *rq)
1186{
1187}
1188
b328ca18
PZ
1189static inline void init_hrtick(void)
1190{
1191}
006c75f1 1192#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1193
c24d20db
IM
1194/*
1195 * resched_task - mark a task 'to be rescheduled now'.
1196 *
1197 * On UP this means the setting of the need_resched flag, on SMP it
1198 * might also involve a cross-CPU call to trigger the scheduler on
1199 * the target CPU.
1200 */
1201#ifdef CONFIG_SMP
1202
1203#ifndef tsk_is_polling
1204#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1205#endif
1206
31656519 1207static void resched_task(struct task_struct *p)
c24d20db
IM
1208{
1209 int cpu;
1210
1211 assert_spin_locked(&task_rq(p)->lock);
1212
5ed0cec0 1213 if (test_tsk_need_resched(p))
c24d20db
IM
1214 return;
1215
5ed0cec0 1216 set_tsk_need_resched(p);
c24d20db
IM
1217
1218 cpu = task_cpu(p);
1219 if (cpu == smp_processor_id())
1220 return;
1221
1222 /* NEED_RESCHED must be visible before we test polling */
1223 smp_mb();
1224 if (!tsk_is_polling(p))
1225 smp_send_reschedule(cpu);
1226}
1227
1228static void resched_cpu(int cpu)
1229{
1230 struct rq *rq = cpu_rq(cpu);
1231 unsigned long flags;
1232
1233 if (!spin_trylock_irqsave(&rq->lock, flags))
1234 return;
1235 resched_task(cpu_curr(cpu));
1236 spin_unlock_irqrestore(&rq->lock, flags);
1237}
06d8308c
TG
1238
1239#ifdef CONFIG_NO_HZ
1240/*
1241 * When add_timer_on() enqueues a timer into the timer wheel of an
1242 * idle CPU then this timer might expire before the next timer event
1243 * which is scheduled to wake up that CPU. In case of a completely
1244 * idle system the next event might even be infinite time into the
1245 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1246 * leaves the inner idle loop so the newly added timer is taken into
1247 * account when the CPU goes back to idle and evaluates the timer
1248 * wheel for the next timer event.
1249 */
1250void wake_up_idle_cpu(int cpu)
1251{
1252 struct rq *rq = cpu_rq(cpu);
1253
1254 if (cpu == smp_processor_id())
1255 return;
1256
1257 /*
1258 * This is safe, as this function is called with the timer
1259 * wheel base lock of (cpu) held. When the CPU is on the way
1260 * to idle and has not yet set rq->curr to idle then it will
1261 * be serialized on the timer wheel base lock and take the new
1262 * timer into account automatically.
1263 */
1264 if (rq->curr != rq->idle)
1265 return;
1266
1267 /*
1268 * We can set TIF_RESCHED on the idle task of the other CPU
1269 * lockless. The worst case is that the other CPU runs the
1270 * idle task through an additional NOOP schedule()
1271 */
5ed0cec0 1272 set_tsk_need_resched(rq->idle);
06d8308c
TG
1273
1274 /* NEED_RESCHED must be visible before we test polling */
1275 smp_mb();
1276 if (!tsk_is_polling(rq->idle))
1277 smp_send_reschedule(cpu);
1278}
6d6bc0ad 1279#endif /* CONFIG_NO_HZ */
06d8308c 1280
6d6bc0ad 1281#else /* !CONFIG_SMP */
31656519 1282static void resched_task(struct task_struct *p)
c24d20db
IM
1283{
1284 assert_spin_locked(&task_rq(p)->lock);
31656519 1285 set_tsk_need_resched(p);
c24d20db 1286}
6d6bc0ad 1287#endif /* CONFIG_SMP */
c24d20db 1288
45bf76df
IM
1289#if BITS_PER_LONG == 32
1290# define WMULT_CONST (~0UL)
1291#else
1292# define WMULT_CONST (1UL << 32)
1293#endif
1294
1295#define WMULT_SHIFT 32
1296
194081eb
IM
1297/*
1298 * Shift right and round:
1299 */
cf2ab469 1300#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1301
a7be37ac
PZ
1302/*
1303 * delta *= weight / lw
1304 */
cb1c4fc9 1305static unsigned long
45bf76df
IM
1306calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1307 struct load_weight *lw)
1308{
1309 u64 tmp;
1310
7a232e03
LJ
1311 if (!lw->inv_weight) {
1312 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1313 lw->inv_weight = 1;
1314 else
1315 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1316 / (lw->weight+1);
1317 }
45bf76df
IM
1318
1319 tmp = (u64)delta_exec * weight;
1320 /*
1321 * Check whether we'd overflow the 64-bit multiplication:
1322 */
194081eb 1323 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1324 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1325 WMULT_SHIFT/2);
1326 else
cf2ab469 1327 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1328
ecf691da 1329 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1330}
1331
1091985b 1332static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1333{
1334 lw->weight += inc;
e89996ae 1335 lw->inv_weight = 0;
45bf76df
IM
1336}
1337
1091985b 1338static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1339{
1340 lw->weight -= dec;
e89996ae 1341 lw->inv_weight = 0;
45bf76df
IM
1342}
1343
2dd73a4f
PW
1344/*
1345 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1346 * of tasks with abnormal "nice" values across CPUs the contribution that
1347 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1348 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1349 * scaled version of the new time slice allocation that they receive on time
1350 * slice expiry etc.
1351 */
1352
cce7ade8
PZ
1353#define WEIGHT_IDLEPRIO 3
1354#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1355
1356/*
1357 * Nice levels are multiplicative, with a gentle 10% change for every
1358 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1359 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1360 * that remained on nice 0.
1361 *
1362 * The "10% effect" is relative and cumulative: from _any_ nice level,
1363 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1364 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1365 * If a task goes up by ~10% and another task goes down by ~10% then
1366 * the relative distance between them is ~25%.)
dd41f596
IM
1367 */
1368static const int prio_to_weight[40] = {
254753dc
IM
1369 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1370 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1371 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1372 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1373 /* 0 */ 1024, 820, 655, 526, 423,
1374 /* 5 */ 335, 272, 215, 172, 137,
1375 /* 10 */ 110, 87, 70, 56, 45,
1376 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1377};
1378
5714d2de
IM
1379/*
1380 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1381 *
1382 * In cases where the weight does not change often, we can use the
1383 * precalculated inverse to speed up arithmetics by turning divisions
1384 * into multiplications:
1385 */
dd41f596 1386static const u32 prio_to_wmult[40] = {
254753dc
IM
1387 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1388 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1389 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1390 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1391 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1392 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1393 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1394 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1395};
2dd73a4f 1396
dd41f596
IM
1397static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1398
1399/*
1400 * runqueue iterator, to support SMP load-balancing between different
1401 * scheduling classes, without having to expose their internal data
1402 * structures to the load-balancing proper:
1403 */
1404struct rq_iterator {
1405 void *arg;
1406 struct task_struct *(*start)(void *);
1407 struct task_struct *(*next)(void *);
1408};
1409
e1d1484f
PW
1410#ifdef CONFIG_SMP
1411static unsigned long
1412balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1413 unsigned long max_load_move, struct sched_domain *sd,
1414 enum cpu_idle_type idle, int *all_pinned,
1415 int *this_best_prio, struct rq_iterator *iterator);
1416
1417static int
1418iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1419 struct sched_domain *sd, enum cpu_idle_type idle,
1420 struct rq_iterator *iterator);
e1d1484f 1421#endif
dd41f596 1422
ef12fefa
BR
1423/* Time spent by the tasks of the cpu accounting group executing in ... */
1424enum cpuacct_stat_index {
1425 CPUACCT_STAT_USER, /* ... user mode */
1426 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1427
1428 CPUACCT_STAT_NSTATS,
1429};
1430
d842de87
SV
1431#ifdef CONFIG_CGROUP_CPUACCT
1432static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1433static void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1435#else
1436static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1437static inline void cpuacct_update_stats(struct task_struct *tsk,
1438 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1439#endif
1440
18d95a28
PZ
1441static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1442{
1443 update_load_add(&rq->load, load);
1444}
1445
1446static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1447{
1448 update_load_sub(&rq->load, load);
1449}
1450
7940ca36 1451#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1452typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1453
1454/*
1455 * Iterate the full tree, calling @down when first entering a node and @up when
1456 * leaving it for the final time.
1457 */
eb755805 1458static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1459{
1460 struct task_group *parent, *child;
eb755805 1461 int ret;
c09595f6
PZ
1462
1463 rcu_read_lock();
1464 parent = &root_task_group;
1465down:
eb755805
PZ
1466 ret = (*down)(parent, data);
1467 if (ret)
1468 goto out_unlock;
c09595f6
PZ
1469 list_for_each_entry_rcu(child, &parent->children, siblings) {
1470 parent = child;
1471 goto down;
1472
1473up:
1474 continue;
1475 }
eb755805
PZ
1476 ret = (*up)(parent, data);
1477 if (ret)
1478 goto out_unlock;
c09595f6
PZ
1479
1480 child = parent;
1481 parent = parent->parent;
1482 if (parent)
1483 goto up;
eb755805 1484out_unlock:
c09595f6 1485 rcu_read_unlock();
eb755805
PZ
1486
1487 return ret;
c09595f6
PZ
1488}
1489
eb755805
PZ
1490static int tg_nop(struct task_group *tg, void *data)
1491{
1492 return 0;
c09595f6 1493}
eb755805
PZ
1494#endif
1495
1496#ifdef CONFIG_SMP
1497static unsigned long source_load(int cpu, int type);
1498static unsigned long target_load(int cpu, int type);
1499static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1500
1501static unsigned long cpu_avg_load_per_task(int cpu)
1502{
1503 struct rq *rq = cpu_rq(cpu);
af6d596f 1504 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1505
4cd42620
SR
1506 if (nr_running)
1507 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1508 else
1509 rq->avg_load_per_task = 0;
eb755805
PZ
1510
1511 return rq->avg_load_per_task;
1512}
1513
1514#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1515
c09595f6
PZ
1516static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1517
1518/*
1519 * Calculate and set the cpu's group shares.
1520 */
1521static void
ffda12a1
PZ
1522update_group_shares_cpu(struct task_group *tg, int cpu,
1523 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1524{
c09595f6
PZ
1525 unsigned long shares;
1526 unsigned long rq_weight;
1527
c8cba857 1528 if (!tg->se[cpu])
c09595f6
PZ
1529 return;
1530
ec4e0e2f 1531 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1532
c09595f6
PZ
1533 /*
1534 * \Sum shares * rq_weight
1535 * shares = -----------------------
1536 * \Sum rq_weight
1537 *
1538 */
ec4e0e2f 1539 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1540 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1541
ffda12a1
PZ
1542 if (abs(shares - tg->se[cpu]->load.weight) >
1543 sysctl_sched_shares_thresh) {
1544 struct rq *rq = cpu_rq(cpu);
1545 unsigned long flags;
c09595f6 1546
ffda12a1 1547 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1548 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1549
ffda12a1
PZ
1550 __set_se_shares(tg->se[cpu], shares);
1551 spin_unlock_irqrestore(&rq->lock, flags);
1552 }
18d95a28 1553}
c09595f6
PZ
1554
1555/*
c8cba857
PZ
1556 * Re-compute the task group their per cpu shares over the given domain.
1557 * This needs to be done in a bottom-up fashion because the rq weight of a
1558 * parent group depends on the shares of its child groups.
c09595f6 1559 */
eb755805 1560static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1561{
ec4e0e2f 1562 unsigned long weight, rq_weight = 0;
c8cba857 1563 unsigned long shares = 0;
eb755805 1564 struct sched_domain *sd = data;
c8cba857 1565 int i;
c09595f6 1566
758b2cdc 1567 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1568 /*
1569 * If there are currently no tasks on the cpu pretend there
1570 * is one of average load so that when a new task gets to
1571 * run here it will not get delayed by group starvation.
1572 */
1573 weight = tg->cfs_rq[i]->load.weight;
1574 if (!weight)
1575 weight = NICE_0_LOAD;
1576
1577 tg->cfs_rq[i]->rq_weight = weight;
1578 rq_weight += weight;
c8cba857 1579 shares += tg->cfs_rq[i]->shares;
c09595f6 1580 }
c09595f6 1581
c8cba857
PZ
1582 if ((!shares && rq_weight) || shares > tg->shares)
1583 shares = tg->shares;
1584
1585 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1586 shares = tg->shares;
c09595f6 1587
758b2cdc 1588 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1589 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1590
1591 return 0;
c09595f6
PZ
1592}
1593
1594/*
c8cba857
PZ
1595 * Compute the cpu's hierarchical load factor for each task group.
1596 * This needs to be done in a top-down fashion because the load of a child
1597 * group is a fraction of its parents load.
c09595f6 1598 */
eb755805 1599static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1600{
c8cba857 1601 unsigned long load;
eb755805 1602 long cpu = (long)data;
c09595f6 1603
c8cba857
PZ
1604 if (!tg->parent) {
1605 load = cpu_rq(cpu)->load.weight;
1606 } else {
1607 load = tg->parent->cfs_rq[cpu]->h_load;
1608 load *= tg->cfs_rq[cpu]->shares;
1609 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1610 }
c09595f6 1611
c8cba857 1612 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1613
eb755805 1614 return 0;
c09595f6
PZ
1615}
1616
c8cba857 1617static void update_shares(struct sched_domain *sd)
4d8d595d 1618{
2398f2c6
PZ
1619 u64 now = cpu_clock(raw_smp_processor_id());
1620 s64 elapsed = now - sd->last_update;
1621
1622 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1623 sd->last_update = now;
eb755805 1624 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1625 }
4d8d595d
PZ
1626}
1627
3e5459b4
PZ
1628static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1629{
1630 spin_unlock(&rq->lock);
1631 update_shares(sd);
1632 spin_lock(&rq->lock);
1633}
1634
eb755805 1635static void update_h_load(long cpu)
c09595f6 1636{
eb755805 1637 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1638}
1639
c09595f6
PZ
1640#else
1641
c8cba857 1642static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1643{
1644}
1645
3e5459b4
PZ
1646static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1647{
1648}
1649
18d95a28
PZ
1650#endif
1651
8f45e2b5
GH
1652#ifdef CONFIG_PREEMPT
1653
70574a99 1654/*
8f45e2b5
GH
1655 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1656 * way at the expense of forcing extra atomic operations in all
1657 * invocations. This assures that the double_lock is acquired using the
1658 * same underlying policy as the spinlock_t on this architecture, which
1659 * reduces latency compared to the unfair variant below. However, it
1660 * also adds more overhead and therefore may reduce throughput.
70574a99 1661 */
8f45e2b5
GH
1662static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1663 __releases(this_rq->lock)
1664 __acquires(busiest->lock)
1665 __acquires(this_rq->lock)
1666{
1667 spin_unlock(&this_rq->lock);
1668 double_rq_lock(this_rq, busiest);
1669
1670 return 1;
1671}
1672
1673#else
1674/*
1675 * Unfair double_lock_balance: Optimizes throughput at the expense of
1676 * latency by eliminating extra atomic operations when the locks are
1677 * already in proper order on entry. This favors lower cpu-ids and will
1678 * grant the double lock to lower cpus over higher ids under contention,
1679 * regardless of entry order into the function.
1680 */
1681static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1682 __releases(this_rq->lock)
1683 __acquires(busiest->lock)
1684 __acquires(this_rq->lock)
1685{
1686 int ret = 0;
1687
70574a99
AD
1688 if (unlikely(!spin_trylock(&busiest->lock))) {
1689 if (busiest < this_rq) {
1690 spin_unlock(&this_rq->lock);
1691 spin_lock(&busiest->lock);
1692 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1693 ret = 1;
1694 } else
1695 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1696 }
1697 return ret;
1698}
1699
8f45e2b5
GH
1700#endif /* CONFIG_PREEMPT */
1701
1702/*
1703 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1704 */
1705static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1706{
1707 if (unlikely(!irqs_disabled())) {
1708 /* printk() doesn't work good under rq->lock */
1709 spin_unlock(&this_rq->lock);
1710 BUG_ON(1);
1711 }
1712
1713 return _double_lock_balance(this_rq, busiest);
1714}
1715
70574a99
AD
1716static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1717 __releases(busiest->lock)
1718{
1719 spin_unlock(&busiest->lock);
1720 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1721}
18d95a28
PZ
1722#endif
1723
30432094 1724#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1725static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1726{
30432094 1727#ifdef CONFIG_SMP
34e83e85
IM
1728 cfs_rq->shares = shares;
1729#endif
1730}
30432094 1731#endif
e7693a36 1732
dd41f596 1733#include "sched_stats.h"
dd41f596 1734#include "sched_idletask.c"
5522d5d5
IM
1735#include "sched_fair.c"
1736#include "sched_rt.c"
dd41f596
IM
1737#ifdef CONFIG_SCHED_DEBUG
1738# include "sched_debug.c"
1739#endif
1740
1741#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1742#define for_each_class(class) \
1743 for (class = sched_class_highest; class; class = class->next)
dd41f596 1744
c09595f6 1745static void inc_nr_running(struct rq *rq)
9c217245
IM
1746{
1747 rq->nr_running++;
9c217245
IM
1748}
1749
c09595f6 1750static void dec_nr_running(struct rq *rq)
9c217245
IM
1751{
1752 rq->nr_running--;
9c217245
IM
1753}
1754
45bf76df
IM
1755static void set_load_weight(struct task_struct *p)
1756{
1757 if (task_has_rt_policy(p)) {
dd41f596
IM
1758 p->se.load.weight = prio_to_weight[0] * 2;
1759 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1760 return;
1761 }
45bf76df 1762
dd41f596
IM
1763 /*
1764 * SCHED_IDLE tasks get minimal weight:
1765 */
1766 if (p->policy == SCHED_IDLE) {
1767 p->se.load.weight = WEIGHT_IDLEPRIO;
1768 p->se.load.inv_weight = WMULT_IDLEPRIO;
1769 return;
1770 }
71f8bd46 1771
dd41f596
IM
1772 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1773 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1774}
1775
2087a1ad
GH
1776static void update_avg(u64 *avg, u64 sample)
1777{
1778 s64 diff = sample - *avg;
1779 *avg += diff >> 3;
1780}
1781
8159f87e 1782static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1783{
831451ac
PZ
1784 if (wakeup)
1785 p->se.start_runtime = p->se.sum_exec_runtime;
1786
dd41f596 1787 sched_info_queued(p);
fd390f6a 1788 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1789 p->se.on_rq = 1;
71f8bd46
IM
1790}
1791
69be72c1 1792static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1793{
831451ac
PZ
1794 if (sleep) {
1795 if (p->se.last_wakeup) {
1796 update_avg(&p->se.avg_overlap,
1797 p->se.sum_exec_runtime - p->se.last_wakeup);
1798 p->se.last_wakeup = 0;
1799 } else {
1800 update_avg(&p->se.avg_wakeup,
1801 sysctl_sched_wakeup_granularity);
1802 }
2087a1ad
GH
1803 }
1804
46ac22ba 1805 sched_info_dequeued(p);
f02231e5 1806 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1807 p->se.on_rq = 0;
71f8bd46
IM
1808}
1809
14531189 1810/*
dd41f596 1811 * __normal_prio - return the priority that is based on the static prio
14531189 1812 */
14531189
IM
1813static inline int __normal_prio(struct task_struct *p)
1814{
dd41f596 1815 return p->static_prio;
14531189
IM
1816}
1817
b29739f9
IM
1818/*
1819 * Calculate the expected normal priority: i.e. priority
1820 * without taking RT-inheritance into account. Might be
1821 * boosted by interactivity modifiers. Changes upon fork,
1822 * setprio syscalls, and whenever the interactivity
1823 * estimator recalculates.
1824 */
36c8b586 1825static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1826{
1827 int prio;
1828
e05606d3 1829 if (task_has_rt_policy(p))
b29739f9
IM
1830 prio = MAX_RT_PRIO-1 - p->rt_priority;
1831 else
1832 prio = __normal_prio(p);
1833 return prio;
1834}
1835
1836/*
1837 * Calculate the current priority, i.e. the priority
1838 * taken into account by the scheduler. This value might
1839 * be boosted by RT tasks, or might be boosted by
1840 * interactivity modifiers. Will be RT if the task got
1841 * RT-boosted. If not then it returns p->normal_prio.
1842 */
36c8b586 1843static int effective_prio(struct task_struct *p)
b29739f9
IM
1844{
1845 p->normal_prio = normal_prio(p);
1846 /*
1847 * If we are RT tasks or we were boosted to RT priority,
1848 * keep the priority unchanged. Otherwise, update priority
1849 * to the normal priority:
1850 */
1851 if (!rt_prio(p->prio))
1852 return p->normal_prio;
1853 return p->prio;
1854}
1855
1da177e4 1856/*
dd41f596 1857 * activate_task - move a task to the runqueue.
1da177e4 1858 */
dd41f596 1859static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1860{
d9514f6c 1861 if (task_contributes_to_load(p))
dd41f596 1862 rq->nr_uninterruptible--;
1da177e4 1863
8159f87e 1864 enqueue_task(rq, p, wakeup);
c09595f6 1865 inc_nr_running(rq);
1da177e4
LT
1866}
1867
1da177e4
LT
1868/*
1869 * deactivate_task - remove a task from the runqueue.
1870 */
2e1cb74a 1871static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1872{
d9514f6c 1873 if (task_contributes_to_load(p))
dd41f596
IM
1874 rq->nr_uninterruptible++;
1875
69be72c1 1876 dequeue_task(rq, p, sleep);
c09595f6 1877 dec_nr_running(rq);
1da177e4
LT
1878}
1879
1da177e4
LT
1880/**
1881 * task_curr - is this task currently executing on a CPU?
1882 * @p: the task in question.
1883 */
36c8b586 1884inline int task_curr(const struct task_struct *p)
1da177e4
LT
1885{
1886 return cpu_curr(task_cpu(p)) == p;
1887}
1888
dd41f596
IM
1889static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1890{
6f505b16 1891 set_task_rq(p, cpu);
dd41f596 1892#ifdef CONFIG_SMP
ce96b5ac
DA
1893 /*
1894 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1895 * successfuly executed on another CPU. We must ensure that updates of
1896 * per-task data have been completed by this moment.
1897 */
1898 smp_wmb();
dd41f596 1899 task_thread_info(p)->cpu = cpu;
dd41f596 1900#endif
2dd73a4f
PW
1901}
1902
cb469845
SR
1903static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1904 const struct sched_class *prev_class,
1905 int oldprio, int running)
1906{
1907 if (prev_class != p->sched_class) {
1908 if (prev_class->switched_from)
1909 prev_class->switched_from(rq, p, running);
1910 p->sched_class->switched_to(rq, p, running);
1911 } else
1912 p->sched_class->prio_changed(rq, p, oldprio, running);
1913}
1914
1da177e4 1915#ifdef CONFIG_SMP
c65cc870 1916
e958b360
TG
1917/* Used instead of source_load when we know the type == 0 */
1918static unsigned long weighted_cpuload(const int cpu)
1919{
1920 return cpu_rq(cpu)->load.weight;
1921}
1922
cc367732
IM
1923/*
1924 * Is this task likely cache-hot:
1925 */
e7693a36 1926static int
cc367732
IM
1927task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1928{
1929 s64 delta;
1930
f540a608
IM
1931 /*
1932 * Buddy candidates are cache hot:
1933 */
4793241b
PZ
1934 if (sched_feat(CACHE_HOT_BUDDY) &&
1935 (&p->se == cfs_rq_of(&p->se)->next ||
1936 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1937 return 1;
1938
cc367732
IM
1939 if (p->sched_class != &fair_sched_class)
1940 return 0;
1941
6bc1665b
IM
1942 if (sysctl_sched_migration_cost == -1)
1943 return 1;
1944 if (sysctl_sched_migration_cost == 0)
1945 return 0;
1946
cc367732
IM
1947 delta = now - p->se.exec_start;
1948
1949 return delta < (s64)sysctl_sched_migration_cost;
1950}
1951
1952
dd41f596 1953void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1954{
dd41f596
IM
1955 int old_cpu = task_cpu(p);
1956 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1957 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1958 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1959 u64 clock_offset;
dd41f596
IM
1960
1961 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1962
cbc34ed1
PZ
1963 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1964
6cfb0d5d
IM
1965#ifdef CONFIG_SCHEDSTATS
1966 if (p->se.wait_start)
1967 p->se.wait_start -= clock_offset;
dd41f596
IM
1968 if (p->se.sleep_start)
1969 p->se.sleep_start -= clock_offset;
1970 if (p->se.block_start)
1971 p->se.block_start -= clock_offset;
6c594c21 1972#endif
cc367732 1973 if (old_cpu != new_cpu) {
6c594c21 1974 p->se.nr_migrations++;
23a185ca 1975 new_rq->nr_migrations_in++;
6c594c21 1976#ifdef CONFIG_SCHEDSTATS
cc367732
IM
1977 if (task_hot(p, old_rq->clock, NULL))
1978 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 1979#endif
3f731ca6 1980 perf_counter_task_migration(p, new_cpu);
6c594c21 1981 }
2830cf8c
SV
1982 p->se.vruntime -= old_cfsrq->min_vruntime -
1983 new_cfsrq->min_vruntime;
dd41f596
IM
1984
1985 __set_task_cpu(p, new_cpu);
c65cc870
IM
1986}
1987
70b97a7f 1988struct migration_req {
1da177e4 1989 struct list_head list;
1da177e4 1990
36c8b586 1991 struct task_struct *task;
1da177e4
LT
1992 int dest_cpu;
1993
1da177e4 1994 struct completion done;
70b97a7f 1995};
1da177e4
LT
1996
1997/*
1998 * The task's runqueue lock must be held.
1999 * Returns true if you have to wait for migration thread.
2000 */
36c8b586 2001static int
70b97a7f 2002migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2003{
70b97a7f 2004 struct rq *rq = task_rq(p);
1da177e4
LT
2005
2006 /*
2007 * If the task is not on a runqueue (and not running), then
2008 * it is sufficient to simply update the task's cpu field.
2009 */
dd41f596 2010 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2011 set_task_cpu(p, dest_cpu);
2012 return 0;
2013 }
2014
2015 init_completion(&req->done);
1da177e4
LT
2016 req->task = p;
2017 req->dest_cpu = dest_cpu;
2018 list_add(&req->list, &rq->migration_queue);
48f24c4d 2019
1da177e4
LT
2020 return 1;
2021}
2022
2023/*
2024 * wait_task_inactive - wait for a thread to unschedule.
2025 *
85ba2d86
RM
2026 * If @match_state is nonzero, it's the @p->state value just checked and
2027 * not expected to change. If it changes, i.e. @p might have woken up,
2028 * then return zero. When we succeed in waiting for @p to be off its CPU,
2029 * we return a positive number (its total switch count). If a second call
2030 * a short while later returns the same number, the caller can be sure that
2031 * @p has remained unscheduled the whole time.
2032 *
1da177e4
LT
2033 * The caller must ensure that the task *will* unschedule sometime soon,
2034 * else this function might spin for a *long* time. This function can't
2035 * be called with interrupts off, or it may introduce deadlock with
2036 * smp_call_function() if an IPI is sent by the same process we are
2037 * waiting to become inactive.
2038 */
85ba2d86 2039unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2040{
2041 unsigned long flags;
dd41f596 2042 int running, on_rq;
85ba2d86 2043 unsigned long ncsw;
70b97a7f 2044 struct rq *rq;
1da177e4 2045
3a5c359a
AK
2046 for (;;) {
2047 /*
2048 * We do the initial early heuristics without holding
2049 * any task-queue locks at all. We'll only try to get
2050 * the runqueue lock when things look like they will
2051 * work out!
2052 */
2053 rq = task_rq(p);
fa490cfd 2054
3a5c359a
AK
2055 /*
2056 * If the task is actively running on another CPU
2057 * still, just relax and busy-wait without holding
2058 * any locks.
2059 *
2060 * NOTE! Since we don't hold any locks, it's not
2061 * even sure that "rq" stays as the right runqueue!
2062 * But we don't care, since "task_running()" will
2063 * return false if the runqueue has changed and p
2064 * is actually now running somewhere else!
2065 */
85ba2d86
RM
2066 while (task_running(rq, p)) {
2067 if (match_state && unlikely(p->state != match_state))
2068 return 0;
3a5c359a 2069 cpu_relax();
85ba2d86 2070 }
fa490cfd 2071
3a5c359a
AK
2072 /*
2073 * Ok, time to look more closely! We need the rq
2074 * lock now, to be *sure*. If we're wrong, we'll
2075 * just go back and repeat.
2076 */
2077 rq = task_rq_lock(p, &flags);
0a16b607 2078 trace_sched_wait_task(rq, p);
3a5c359a
AK
2079 running = task_running(rq, p);
2080 on_rq = p->se.on_rq;
85ba2d86 2081 ncsw = 0;
f31e11d8 2082 if (!match_state || p->state == match_state)
93dcf55f 2083 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2084 task_rq_unlock(rq, &flags);
fa490cfd 2085
85ba2d86
RM
2086 /*
2087 * If it changed from the expected state, bail out now.
2088 */
2089 if (unlikely(!ncsw))
2090 break;
2091
3a5c359a
AK
2092 /*
2093 * Was it really running after all now that we
2094 * checked with the proper locks actually held?
2095 *
2096 * Oops. Go back and try again..
2097 */
2098 if (unlikely(running)) {
2099 cpu_relax();
2100 continue;
2101 }
fa490cfd 2102
3a5c359a
AK
2103 /*
2104 * It's not enough that it's not actively running,
2105 * it must be off the runqueue _entirely_, and not
2106 * preempted!
2107 *
80dd99b3 2108 * So if it was still runnable (but just not actively
3a5c359a
AK
2109 * running right now), it's preempted, and we should
2110 * yield - it could be a while.
2111 */
2112 if (unlikely(on_rq)) {
2113 schedule_timeout_uninterruptible(1);
2114 continue;
2115 }
fa490cfd 2116
3a5c359a
AK
2117 /*
2118 * Ahh, all good. It wasn't running, and it wasn't
2119 * runnable, which means that it will never become
2120 * running in the future either. We're all done!
2121 */
2122 break;
2123 }
85ba2d86
RM
2124
2125 return ncsw;
1da177e4
LT
2126}
2127
2128/***
2129 * kick_process - kick a running thread to enter/exit the kernel
2130 * @p: the to-be-kicked thread
2131 *
2132 * Cause a process which is running on another CPU to enter
2133 * kernel-mode, without any delay. (to get signals handled.)
2134 *
2135 * NOTE: this function doesnt have to take the runqueue lock,
2136 * because all it wants to ensure is that the remote task enters
2137 * the kernel. If the IPI races and the task has been migrated
2138 * to another CPU then no harm is done and the purpose has been
2139 * achieved as well.
2140 */
36c8b586 2141void kick_process(struct task_struct *p)
1da177e4
LT
2142{
2143 int cpu;
2144
2145 preempt_disable();
2146 cpu = task_cpu(p);
2147 if ((cpu != smp_processor_id()) && task_curr(p))
2148 smp_send_reschedule(cpu);
2149 preempt_enable();
2150}
2151
2152/*
2dd73a4f
PW
2153 * Return a low guess at the load of a migration-source cpu weighted
2154 * according to the scheduling class and "nice" value.
1da177e4
LT
2155 *
2156 * We want to under-estimate the load of migration sources, to
2157 * balance conservatively.
2158 */
a9957449 2159static unsigned long source_load(int cpu, int type)
1da177e4 2160{
70b97a7f 2161 struct rq *rq = cpu_rq(cpu);
dd41f596 2162 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2163
93b75217 2164 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2165 return total;
b910472d 2166
dd41f596 2167 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2168}
2169
2170/*
2dd73a4f
PW
2171 * Return a high guess at the load of a migration-target cpu weighted
2172 * according to the scheduling class and "nice" value.
1da177e4 2173 */
a9957449 2174static unsigned long target_load(int cpu, int type)
1da177e4 2175{
70b97a7f 2176 struct rq *rq = cpu_rq(cpu);
dd41f596 2177 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2178
93b75217 2179 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2180 return total;
3b0bd9bc 2181
dd41f596 2182 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2183}
2184
147cbb4b
NP
2185/*
2186 * find_idlest_group finds and returns the least busy CPU group within the
2187 * domain.
2188 */
2189static struct sched_group *
2190find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2191{
2192 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2193 unsigned long min_load = ULONG_MAX, this_load = 0;
2194 int load_idx = sd->forkexec_idx;
2195 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2196
2197 do {
2198 unsigned long load, avg_load;
2199 int local_group;
2200 int i;
2201
da5a5522 2202 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2203 if (!cpumask_intersects(sched_group_cpus(group),
2204 &p->cpus_allowed))
3a5c359a 2205 continue;
da5a5522 2206
758b2cdc
RR
2207 local_group = cpumask_test_cpu(this_cpu,
2208 sched_group_cpus(group));
147cbb4b
NP
2209
2210 /* Tally up the load of all CPUs in the group */
2211 avg_load = 0;
2212
758b2cdc 2213 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2214 /* Bias balancing toward cpus of our domain */
2215 if (local_group)
2216 load = source_load(i, load_idx);
2217 else
2218 load = target_load(i, load_idx);
2219
2220 avg_load += load;
2221 }
2222
2223 /* Adjust by relative CPU power of the group */
5517d86b
ED
2224 avg_load = sg_div_cpu_power(group,
2225 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2226
2227 if (local_group) {
2228 this_load = avg_load;
2229 this = group;
2230 } else if (avg_load < min_load) {
2231 min_load = avg_load;
2232 idlest = group;
2233 }
3a5c359a 2234 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2235
2236 if (!idlest || 100*this_load < imbalance*min_load)
2237 return NULL;
2238 return idlest;
2239}
2240
2241/*
0feaece9 2242 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2243 */
95cdf3b7 2244static int
758b2cdc 2245find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2246{
2247 unsigned long load, min_load = ULONG_MAX;
2248 int idlest = -1;
2249 int i;
2250
da5a5522 2251 /* Traverse only the allowed CPUs */
758b2cdc 2252 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2253 load = weighted_cpuload(i);
147cbb4b
NP
2254
2255 if (load < min_load || (load == min_load && i == this_cpu)) {
2256 min_load = load;
2257 idlest = i;
2258 }
2259 }
2260
2261 return idlest;
2262}
2263
476d139c
NP
2264/*
2265 * sched_balance_self: balance the current task (running on cpu) in domains
2266 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2267 * SD_BALANCE_EXEC.
2268 *
2269 * Balance, ie. select the least loaded group.
2270 *
2271 * Returns the target CPU number, or the same CPU if no balancing is needed.
2272 *
2273 * preempt must be disabled.
2274 */
2275static int sched_balance_self(int cpu, int flag)
2276{
2277 struct task_struct *t = current;
2278 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2279
c96d145e 2280 for_each_domain(cpu, tmp) {
9761eea8
IM
2281 /*
2282 * If power savings logic is enabled for a domain, stop there.
2283 */
5c45bf27
SS
2284 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2285 break;
476d139c
NP
2286 if (tmp->flags & flag)
2287 sd = tmp;
c96d145e 2288 }
476d139c 2289
039a1c41
PZ
2290 if (sd)
2291 update_shares(sd);
2292
476d139c 2293 while (sd) {
476d139c 2294 struct sched_group *group;
1a848870
SS
2295 int new_cpu, weight;
2296
2297 if (!(sd->flags & flag)) {
2298 sd = sd->child;
2299 continue;
2300 }
476d139c 2301
476d139c 2302 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2303 if (!group) {
2304 sd = sd->child;
2305 continue;
2306 }
476d139c 2307
758b2cdc 2308 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2309 if (new_cpu == -1 || new_cpu == cpu) {
2310 /* Now try balancing at a lower domain level of cpu */
2311 sd = sd->child;
2312 continue;
2313 }
476d139c 2314
1a848870 2315 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2316 cpu = new_cpu;
758b2cdc 2317 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2318 sd = NULL;
476d139c 2319 for_each_domain(cpu, tmp) {
758b2cdc 2320 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2321 break;
2322 if (tmp->flags & flag)
2323 sd = tmp;
2324 }
2325 /* while loop will break here if sd == NULL */
2326 }
2327
2328 return cpu;
2329}
2330
2331#endif /* CONFIG_SMP */
1da177e4 2332
0793a61d
TG
2333/**
2334 * task_oncpu_function_call - call a function on the cpu on which a task runs
2335 * @p: the task to evaluate
2336 * @func: the function to be called
2337 * @info: the function call argument
2338 *
2339 * Calls the function @func when the task is currently running. This might
2340 * be on the current CPU, which just calls the function directly
2341 */
2342void task_oncpu_function_call(struct task_struct *p,
2343 void (*func) (void *info), void *info)
2344{
2345 int cpu;
2346
2347 preempt_disable();
2348 cpu = task_cpu(p);
2349 if (task_curr(p))
2350 smp_call_function_single(cpu, func, info, 1);
2351 preempt_enable();
2352}
2353
1da177e4
LT
2354/***
2355 * try_to_wake_up - wake up a thread
2356 * @p: the to-be-woken-up thread
2357 * @state: the mask of task states that can be woken
2358 * @sync: do a synchronous wakeup?
2359 *
2360 * Put it on the run-queue if it's not already there. The "current"
2361 * thread is always on the run-queue (except when the actual
2362 * re-schedule is in progress), and as such you're allowed to do
2363 * the simpler "current->state = TASK_RUNNING" to mark yourself
2364 * runnable without the overhead of this.
2365 *
2366 * returns failure only if the task is already active.
2367 */
36c8b586 2368static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2369{
cc367732 2370 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2371 unsigned long flags;
2372 long old_state;
70b97a7f 2373 struct rq *rq;
1da177e4 2374
b85d0667
IM
2375 if (!sched_feat(SYNC_WAKEUPS))
2376 sync = 0;
2377
2398f2c6 2378#ifdef CONFIG_SMP
57310a98 2379 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2380 struct sched_domain *sd;
2381
2382 this_cpu = raw_smp_processor_id();
2383 cpu = task_cpu(p);
2384
2385 for_each_domain(this_cpu, sd) {
758b2cdc 2386 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2387 update_shares(sd);
2388 break;
2389 }
2390 }
2391 }
2392#endif
2393
04e2f174 2394 smp_wmb();
1da177e4 2395 rq = task_rq_lock(p, &flags);
03e89e45 2396 update_rq_clock(rq);
1da177e4
LT
2397 old_state = p->state;
2398 if (!(old_state & state))
2399 goto out;
2400
dd41f596 2401 if (p->se.on_rq)
1da177e4
LT
2402 goto out_running;
2403
2404 cpu = task_cpu(p);
cc367732 2405 orig_cpu = cpu;
1da177e4
LT
2406 this_cpu = smp_processor_id();
2407
2408#ifdef CONFIG_SMP
2409 if (unlikely(task_running(rq, p)))
2410 goto out_activate;
2411
5d2f5a61
DA
2412 cpu = p->sched_class->select_task_rq(p, sync);
2413 if (cpu != orig_cpu) {
2414 set_task_cpu(p, cpu);
1da177e4
LT
2415 task_rq_unlock(rq, &flags);
2416 /* might preempt at this point */
2417 rq = task_rq_lock(p, &flags);
2418 old_state = p->state;
2419 if (!(old_state & state))
2420 goto out;
dd41f596 2421 if (p->se.on_rq)
1da177e4
LT
2422 goto out_running;
2423
2424 this_cpu = smp_processor_id();
2425 cpu = task_cpu(p);
2426 }
2427
e7693a36
GH
2428#ifdef CONFIG_SCHEDSTATS
2429 schedstat_inc(rq, ttwu_count);
2430 if (cpu == this_cpu)
2431 schedstat_inc(rq, ttwu_local);
2432 else {
2433 struct sched_domain *sd;
2434 for_each_domain(this_cpu, sd) {
758b2cdc 2435 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2436 schedstat_inc(sd, ttwu_wake_remote);
2437 break;
2438 }
2439 }
2440 }
6d6bc0ad 2441#endif /* CONFIG_SCHEDSTATS */
e7693a36 2442
1da177e4
LT
2443out_activate:
2444#endif /* CONFIG_SMP */
cc367732
IM
2445 schedstat_inc(p, se.nr_wakeups);
2446 if (sync)
2447 schedstat_inc(p, se.nr_wakeups_sync);
2448 if (orig_cpu != cpu)
2449 schedstat_inc(p, se.nr_wakeups_migrate);
2450 if (cpu == this_cpu)
2451 schedstat_inc(p, se.nr_wakeups_local);
2452 else
2453 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2454 activate_task(rq, p, 1);
1da177e4
LT
2455 success = 1;
2456
831451ac
PZ
2457 /*
2458 * Only attribute actual wakeups done by this task.
2459 */
2460 if (!in_interrupt()) {
2461 struct sched_entity *se = &current->se;
2462 u64 sample = se->sum_exec_runtime;
2463
2464 if (se->last_wakeup)
2465 sample -= se->last_wakeup;
2466 else
2467 sample -= se->start_runtime;
2468 update_avg(&se->avg_wakeup, sample);
2469
2470 se->last_wakeup = se->sum_exec_runtime;
2471 }
2472
1da177e4 2473out_running:
468a15bb 2474 trace_sched_wakeup(rq, p, success);
15afe09b 2475 check_preempt_curr(rq, p, sync);
4ae7d5ce 2476
1da177e4 2477 p->state = TASK_RUNNING;
9a897c5a
SR
2478#ifdef CONFIG_SMP
2479 if (p->sched_class->task_wake_up)
2480 p->sched_class->task_wake_up(rq, p);
2481#endif
1da177e4
LT
2482out:
2483 task_rq_unlock(rq, &flags);
2484
2485 return success;
2486}
2487
7ad5b3a5 2488int wake_up_process(struct task_struct *p)
1da177e4 2489{
d9514f6c 2490 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2491}
1da177e4
LT
2492EXPORT_SYMBOL(wake_up_process);
2493
7ad5b3a5 2494int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2495{
2496 return try_to_wake_up(p, state, 0);
2497}
2498
1da177e4
LT
2499/*
2500 * Perform scheduler related setup for a newly forked process p.
2501 * p is forked by current.
dd41f596
IM
2502 *
2503 * __sched_fork() is basic setup used by init_idle() too:
2504 */
2505static void __sched_fork(struct task_struct *p)
2506{
dd41f596
IM
2507 p->se.exec_start = 0;
2508 p->se.sum_exec_runtime = 0;
f6cf891c 2509 p->se.prev_sum_exec_runtime = 0;
6c594c21 2510 p->se.nr_migrations = 0;
4ae7d5ce
IM
2511 p->se.last_wakeup = 0;
2512 p->se.avg_overlap = 0;
831451ac
PZ
2513 p->se.start_runtime = 0;
2514 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2515
2516#ifdef CONFIG_SCHEDSTATS
2517 p->se.wait_start = 0;
dd41f596
IM
2518 p->se.sum_sleep_runtime = 0;
2519 p->se.sleep_start = 0;
dd41f596
IM
2520 p->se.block_start = 0;
2521 p->se.sleep_max = 0;
2522 p->se.block_max = 0;
2523 p->se.exec_max = 0;
eba1ed4b 2524 p->se.slice_max = 0;
dd41f596 2525 p->se.wait_max = 0;
6cfb0d5d 2526#endif
476d139c 2527
fa717060 2528 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2529 p->se.on_rq = 0;
4a55bd5e 2530 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2531
e107be36
AK
2532#ifdef CONFIG_PREEMPT_NOTIFIERS
2533 INIT_HLIST_HEAD(&p->preempt_notifiers);
2534#endif
2535
1da177e4
LT
2536 /*
2537 * We mark the process as running here, but have not actually
2538 * inserted it onto the runqueue yet. This guarantees that
2539 * nobody will actually run it, and a signal or other external
2540 * event cannot wake it up and insert it on the runqueue either.
2541 */
2542 p->state = TASK_RUNNING;
dd41f596
IM
2543}
2544
2545/*
2546 * fork()/clone()-time setup:
2547 */
2548void sched_fork(struct task_struct *p, int clone_flags)
2549{
2550 int cpu = get_cpu();
2551
2552 __sched_fork(p);
2553
2554#ifdef CONFIG_SMP
2555 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2556#endif
02e4bac2 2557 set_task_cpu(p, cpu);
b29739f9
IM
2558
2559 /*
2560 * Make sure we do not leak PI boosting priority to the child:
2561 */
2562 p->prio = current->normal_prio;
2ddbf952
HS
2563 if (!rt_prio(p->prio))
2564 p->sched_class = &fair_sched_class;
b29739f9 2565
52f17b6c 2566#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2567 if (likely(sched_info_on()))
52f17b6c 2568 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2569#endif
d6077cb8 2570#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2571 p->oncpu = 0;
2572#endif
1da177e4 2573#ifdef CONFIG_PREEMPT
4866cde0 2574 /* Want to start with kernel preemption disabled. */
a1261f54 2575 task_thread_info(p)->preempt_count = 1;
1da177e4 2576#endif
917b627d
GH
2577 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2578
476d139c 2579 put_cpu();
1da177e4
LT
2580}
2581
2582/*
2583 * wake_up_new_task - wake up a newly created task for the first time.
2584 *
2585 * This function will do some initial scheduler statistics housekeeping
2586 * that must be done for every newly created context, then puts the task
2587 * on the runqueue and wakes it.
2588 */
7ad5b3a5 2589void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2590{
2591 unsigned long flags;
dd41f596 2592 struct rq *rq;
1da177e4
LT
2593
2594 rq = task_rq_lock(p, &flags);
147cbb4b 2595 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2596 update_rq_clock(rq);
1da177e4
LT
2597
2598 p->prio = effective_prio(p);
2599
b9dca1e0 2600 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2601 activate_task(rq, p, 0);
1da177e4 2602 } else {
1da177e4 2603 /*
dd41f596
IM
2604 * Let the scheduling class do new task startup
2605 * management (if any):
1da177e4 2606 */
ee0827d8 2607 p->sched_class->task_new(rq, p);
c09595f6 2608 inc_nr_running(rq);
1da177e4 2609 }
c71dd42d 2610 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2611 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2612#ifdef CONFIG_SMP
2613 if (p->sched_class->task_wake_up)
2614 p->sched_class->task_wake_up(rq, p);
2615#endif
dd41f596 2616 task_rq_unlock(rq, &flags);
1da177e4
LT
2617}
2618
e107be36
AK
2619#ifdef CONFIG_PREEMPT_NOTIFIERS
2620
2621/**
80dd99b3 2622 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2623 * @notifier: notifier struct to register
e107be36
AK
2624 */
2625void preempt_notifier_register(struct preempt_notifier *notifier)
2626{
2627 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2628}
2629EXPORT_SYMBOL_GPL(preempt_notifier_register);
2630
2631/**
2632 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2633 * @notifier: notifier struct to unregister
e107be36
AK
2634 *
2635 * This is safe to call from within a preemption notifier.
2636 */
2637void preempt_notifier_unregister(struct preempt_notifier *notifier)
2638{
2639 hlist_del(&notifier->link);
2640}
2641EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2642
2643static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2644{
2645 struct preempt_notifier *notifier;
2646 struct hlist_node *node;
2647
2648 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2649 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2650}
2651
2652static void
2653fire_sched_out_preempt_notifiers(struct task_struct *curr,
2654 struct task_struct *next)
2655{
2656 struct preempt_notifier *notifier;
2657 struct hlist_node *node;
2658
2659 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2660 notifier->ops->sched_out(notifier, next);
2661}
2662
6d6bc0ad 2663#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2664
2665static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2666{
2667}
2668
2669static void
2670fire_sched_out_preempt_notifiers(struct task_struct *curr,
2671 struct task_struct *next)
2672{
2673}
2674
6d6bc0ad 2675#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2676
4866cde0
NP
2677/**
2678 * prepare_task_switch - prepare to switch tasks
2679 * @rq: the runqueue preparing to switch
421cee29 2680 * @prev: the current task that is being switched out
4866cde0
NP
2681 * @next: the task we are going to switch to.
2682 *
2683 * This is called with the rq lock held and interrupts off. It must
2684 * be paired with a subsequent finish_task_switch after the context
2685 * switch.
2686 *
2687 * prepare_task_switch sets up locking and calls architecture specific
2688 * hooks.
2689 */
e107be36
AK
2690static inline void
2691prepare_task_switch(struct rq *rq, struct task_struct *prev,
2692 struct task_struct *next)
4866cde0 2693{
e107be36 2694 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2695 prepare_lock_switch(rq, next);
2696 prepare_arch_switch(next);
2697}
2698
1da177e4
LT
2699/**
2700 * finish_task_switch - clean up after a task-switch
344babaa 2701 * @rq: runqueue associated with task-switch
1da177e4
LT
2702 * @prev: the thread we just switched away from.
2703 *
4866cde0
NP
2704 * finish_task_switch must be called after the context switch, paired
2705 * with a prepare_task_switch call before the context switch.
2706 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2707 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2708 *
2709 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2710 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2711 * with the lock held can cause deadlocks; see schedule() for
2712 * details.)
2713 */
a9957449 2714static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2715 __releases(rq->lock)
2716{
1da177e4 2717 struct mm_struct *mm = rq->prev_mm;
55a101f8 2718 long prev_state;
967fc046
GH
2719#ifdef CONFIG_SMP
2720 int post_schedule = 0;
2721
2722 if (current->sched_class->needs_post_schedule)
2723 post_schedule = current->sched_class->needs_post_schedule(rq);
2724#endif
1da177e4
LT
2725
2726 rq->prev_mm = NULL;
2727
2728 /*
2729 * A task struct has one reference for the use as "current".
c394cc9f 2730 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2731 * schedule one last time. The schedule call will never return, and
2732 * the scheduled task must drop that reference.
c394cc9f 2733 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2734 * still held, otherwise prev could be scheduled on another cpu, die
2735 * there before we look at prev->state, and then the reference would
2736 * be dropped twice.
2737 * Manfred Spraul <manfred@colorfullife.com>
2738 */
55a101f8 2739 prev_state = prev->state;
4866cde0 2740 finish_arch_switch(prev);
0793a61d 2741 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2742 finish_lock_switch(rq, prev);
9a897c5a 2743#ifdef CONFIG_SMP
967fc046 2744 if (post_schedule)
9a897c5a
SR
2745 current->sched_class->post_schedule(rq);
2746#endif
e8fa1362 2747
e107be36 2748 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2749 if (mm)
2750 mmdrop(mm);
c394cc9f 2751 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2752 /*
2753 * Remove function-return probe instances associated with this
2754 * task and put them back on the free list.
9761eea8 2755 */
c6fd91f0 2756 kprobe_flush_task(prev);
1da177e4 2757 put_task_struct(prev);
c6fd91f0 2758 }
1da177e4
LT
2759}
2760
2761/**
2762 * schedule_tail - first thing a freshly forked thread must call.
2763 * @prev: the thread we just switched away from.
2764 */
36c8b586 2765asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2766 __releases(rq->lock)
2767{
70b97a7f
IM
2768 struct rq *rq = this_rq();
2769
4866cde0
NP
2770 finish_task_switch(rq, prev);
2771#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2772 /* In this case, finish_task_switch does not reenable preemption */
2773 preempt_enable();
2774#endif
1da177e4 2775 if (current->set_child_tid)
b488893a 2776 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2777}
2778
2779/*
2780 * context_switch - switch to the new MM and the new
2781 * thread's register state.
2782 */
dd41f596 2783static inline void
70b97a7f 2784context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2785 struct task_struct *next)
1da177e4 2786{
dd41f596 2787 struct mm_struct *mm, *oldmm;
1da177e4 2788
e107be36 2789 prepare_task_switch(rq, prev, next);
0a16b607 2790 trace_sched_switch(rq, prev, next);
dd41f596
IM
2791 mm = next->mm;
2792 oldmm = prev->active_mm;
9226d125
ZA
2793 /*
2794 * For paravirt, this is coupled with an exit in switch_to to
2795 * combine the page table reload and the switch backend into
2796 * one hypercall.
2797 */
2798 arch_enter_lazy_cpu_mode();
2799
dd41f596 2800 if (unlikely(!mm)) {
1da177e4
LT
2801 next->active_mm = oldmm;
2802 atomic_inc(&oldmm->mm_count);
2803 enter_lazy_tlb(oldmm, next);
2804 } else
2805 switch_mm(oldmm, mm, next);
2806
dd41f596 2807 if (unlikely(!prev->mm)) {
1da177e4 2808 prev->active_mm = NULL;
1da177e4
LT
2809 rq->prev_mm = oldmm;
2810 }
3a5f5e48
IM
2811 /*
2812 * Since the runqueue lock will be released by the next
2813 * task (which is an invalid locking op but in the case
2814 * of the scheduler it's an obvious special-case), so we
2815 * do an early lockdep release here:
2816 */
2817#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2818 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2819#endif
1da177e4
LT
2820
2821 /* Here we just switch the register state and the stack. */
2822 switch_to(prev, next, prev);
2823
dd41f596
IM
2824 barrier();
2825 /*
2826 * this_rq must be evaluated again because prev may have moved
2827 * CPUs since it called schedule(), thus the 'rq' on its stack
2828 * frame will be invalid.
2829 */
2830 finish_task_switch(this_rq(), prev);
1da177e4
LT
2831}
2832
2833/*
2834 * nr_running, nr_uninterruptible and nr_context_switches:
2835 *
2836 * externally visible scheduler statistics: current number of runnable
2837 * threads, current number of uninterruptible-sleeping threads, total
2838 * number of context switches performed since bootup.
2839 */
2840unsigned long nr_running(void)
2841{
2842 unsigned long i, sum = 0;
2843
2844 for_each_online_cpu(i)
2845 sum += cpu_rq(i)->nr_running;
2846
2847 return sum;
2848}
2849
2850unsigned long nr_uninterruptible(void)
2851{
2852 unsigned long i, sum = 0;
2853
0a945022 2854 for_each_possible_cpu(i)
1da177e4
LT
2855 sum += cpu_rq(i)->nr_uninterruptible;
2856
2857 /*
2858 * Since we read the counters lockless, it might be slightly
2859 * inaccurate. Do not allow it to go below zero though:
2860 */
2861 if (unlikely((long)sum < 0))
2862 sum = 0;
2863
2864 return sum;
2865}
2866
2867unsigned long long nr_context_switches(void)
2868{
cc94abfc
SR
2869 int i;
2870 unsigned long long sum = 0;
1da177e4 2871
0a945022 2872 for_each_possible_cpu(i)
1da177e4
LT
2873 sum += cpu_rq(i)->nr_switches;
2874
2875 return sum;
2876}
2877
2878unsigned long nr_iowait(void)
2879{
2880 unsigned long i, sum = 0;
2881
0a945022 2882 for_each_possible_cpu(i)
1da177e4
LT
2883 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2884
2885 return sum;
2886}
2887
db1b1fef
JS
2888unsigned long nr_active(void)
2889{
2890 unsigned long i, running = 0, uninterruptible = 0;
2891
2892 for_each_online_cpu(i) {
2893 running += cpu_rq(i)->nr_running;
2894 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2895 }
2896
2897 if (unlikely((long)uninterruptible < 0))
2898 uninterruptible = 0;
2899
2900 return running + uninterruptible;
2901}
2902
23a185ca
PM
2903/*
2904 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
2905 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2906 */
23a185ca
PM
2907u64 cpu_nr_migrations(int cpu)
2908{
2909 return cpu_rq(cpu)->nr_migrations_in;
2910}
2911
48f24c4d 2912/*
dd41f596
IM
2913 * Update rq->cpu_load[] statistics. This function is usually called every
2914 * scheduler tick (TICK_NSEC).
48f24c4d 2915 */
dd41f596 2916static void update_cpu_load(struct rq *this_rq)
48f24c4d 2917{
495eca49 2918 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2919 int i, scale;
2920
2921 this_rq->nr_load_updates++;
dd41f596
IM
2922
2923 /* Update our load: */
2924 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2925 unsigned long old_load, new_load;
2926
2927 /* scale is effectively 1 << i now, and >> i divides by scale */
2928
2929 old_load = this_rq->cpu_load[i];
2930 new_load = this_load;
a25707f3
IM
2931 /*
2932 * Round up the averaging division if load is increasing. This
2933 * prevents us from getting stuck on 9 if the load is 10, for
2934 * example.
2935 */
2936 if (new_load > old_load)
2937 new_load += scale-1;
dd41f596
IM
2938 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2939 }
48f24c4d
IM
2940}
2941
dd41f596
IM
2942#ifdef CONFIG_SMP
2943
1da177e4
LT
2944/*
2945 * double_rq_lock - safely lock two runqueues
2946 *
2947 * Note this does not disable interrupts like task_rq_lock,
2948 * you need to do so manually before calling.
2949 */
70b97a7f 2950static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2951 __acquires(rq1->lock)
2952 __acquires(rq2->lock)
2953{
054b9108 2954 BUG_ON(!irqs_disabled());
1da177e4
LT
2955 if (rq1 == rq2) {
2956 spin_lock(&rq1->lock);
2957 __acquire(rq2->lock); /* Fake it out ;) */
2958 } else {
c96d145e 2959 if (rq1 < rq2) {
1da177e4 2960 spin_lock(&rq1->lock);
5e710e37 2961 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2962 } else {
2963 spin_lock(&rq2->lock);
5e710e37 2964 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2965 }
2966 }
6e82a3be
IM
2967 update_rq_clock(rq1);
2968 update_rq_clock(rq2);
1da177e4
LT
2969}
2970
2971/*
2972 * double_rq_unlock - safely unlock two runqueues
2973 *
2974 * Note this does not restore interrupts like task_rq_unlock,
2975 * you need to do so manually after calling.
2976 */
70b97a7f 2977static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2978 __releases(rq1->lock)
2979 __releases(rq2->lock)
2980{
2981 spin_unlock(&rq1->lock);
2982 if (rq1 != rq2)
2983 spin_unlock(&rq2->lock);
2984 else
2985 __release(rq2->lock);
2986}
2987
1da177e4
LT
2988/*
2989 * If dest_cpu is allowed for this process, migrate the task to it.
2990 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2991 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2992 * the cpu_allowed mask is restored.
2993 */
36c8b586 2994static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2995{
70b97a7f 2996 struct migration_req req;
1da177e4 2997 unsigned long flags;
70b97a7f 2998 struct rq *rq;
1da177e4
LT
2999
3000 rq = task_rq_lock(p, &flags);
96f874e2 3001 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3002 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3003 goto out;
3004
3005 /* force the process onto the specified CPU */
3006 if (migrate_task(p, dest_cpu, &req)) {
3007 /* Need to wait for migration thread (might exit: take ref). */
3008 struct task_struct *mt = rq->migration_thread;
36c8b586 3009
1da177e4
LT
3010 get_task_struct(mt);
3011 task_rq_unlock(rq, &flags);
3012 wake_up_process(mt);
3013 put_task_struct(mt);
3014 wait_for_completion(&req.done);
36c8b586 3015
1da177e4
LT
3016 return;
3017 }
3018out:
3019 task_rq_unlock(rq, &flags);
3020}
3021
3022/*
476d139c
NP
3023 * sched_exec - execve() is a valuable balancing opportunity, because at
3024 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3025 */
3026void sched_exec(void)
3027{
1da177e4 3028 int new_cpu, this_cpu = get_cpu();
476d139c 3029 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3030 put_cpu();
476d139c
NP
3031 if (new_cpu != this_cpu)
3032 sched_migrate_task(current, new_cpu);
1da177e4
LT
3033}
3034
3035/*
3036 * pull_task - move a task from a remote runqueue to the local runqueue.
3037 * Both runqueues must be locked.
3038 */
dd41f596
IM
3039static void pull_task(struct rq *src_rq, struct task_struct *p,
3040 struct rq *this_rq, int this_cpu)
1da177e4 3041{
2e1cb74a 3042 deactivate_task(src_rq, p, 0);
1da177e4 3043 set_task_cpu(p, this_cpu);
dd41f596 3044 activate_task(this_rq, p, 0);
1da177e4
LT
3045 /*
3046 * Note that idle threads have a prio of MAX_PRIO, for this test
3047 * to be always true for them.
3048 */
15afe09b 3049 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3050}
3051
3052/*
3053 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3054 */
858119e1 3055static
70b97a7f 3056int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3057 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3058 int *all_pinned)
1da177e4 3059{
708dc512 3060 int tsk_cache_hot = 0;
1da177e4
LT
3061 /*
3062 * We do not migrate tasks that are:
3063 * 1) running (obviously), or
3064 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3065 * 3) are cache-hot on their current CPU.
3066 */
96f874e2 3067 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3068 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3069 return 0;
cc367732 3070 }
81026794
NP
3071 *all_pinned = 0;
3072
cc367732
IM
3073 if (task_running(rq, p)) {
3074 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3075 return 0;
cc367732 3076 }
1da177e4 3077
da84d961
IM
3078 /*
3079 * Aggressive migration if:
3080 * 1) task is cache cold, or
3081 * 2) too many balance attempts have failed.
3082 */
3083
708dc512
LH
3084 tsk_cache_hot = task_hot(p, rq->clock, sd);
3085 if (!tsk_cache_hot ||
3086 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3087#ifdef CONFIG_SCHEDSTATS
708dc512 3088 if (tsk_cache_hot) {
da84d961 3089 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3090 schedstat_inc(p, se.nr_forced_migrations);
3091 }
da84d961
IM
3092#endif
3093 return 1;
3094 }
3095
708dc512 3096 if (tsk_cache_hot) {
cc367732 3097 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3098 return 0;
cc367732 3099 }
1da177e4
LT
3100 return 1;
3101}
3102
e1d1484f
PW
3103static unsigned long
3104balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3105 unsigned long max_load_move, struct sched_domain *sd,
3106 enum cpu_idle_type idle, int *all_pinned,
3107 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3108{
051c6764 3109 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3110 struct task_struct *p;
3111 long rem_load_move = max_load_move;
1da177e4 3112
e1d1484f 3113 if (max_load_move == 0)
1da177e4
LT
3114 goto out;
3115
81026794
NP
3116 pinned = 1;
3117
1da177e4 3118 /*
dd41f596 3119 * Start the load-balancing iterator:
1da177e4 3120 */
dd41f596
IM
3121 p = iterator->start(iterator->arg);
3122next:
b82d9fdd 3123 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3124 goto out;
051c6764
PZ
3125
3126 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3127 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3128 p = iterator->next(iterator->arg);
3129 goto next;
1da177e4
LT
3130 }
3131
dd41f596 3132 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3133 pulled++;
dd41f596 3134 rem_load_move -= p->se.load.weight;
1da177e4 3135
7e96fa58
GH
3136#ifdef CONFIG_PREEMPT
3137 /*
3138 * NEWIDLE balancing is a source of latency, so preemptible kernels
3139 * will stop after the first task is pulled to minimize the critical
3140 * section.
3141 */
3142 if (idle == CPU_NEWLY_IDLE)
3143 goto out;
3144#endif
3145
2dd73a4f 3146 /*
b82d9fdd 3147 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3148 */
e1d1484f 3149 if (rem_load_move > 0) {
a4ac01c3
PW
3150 if (p->prio < *this_best_prio)
3151 *this_best_prio = p->prio;
dd41f596
IM
3152 p = iterator->next(iterator->arg);
3153 goto next;
1da177e4
LT
3154 }
3155out:
3156 /*
e1d1484f 3157 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3158 * so we can safely collect pull_task() stats here rather than
3159 * inside pull_task().
3160 */
3161 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3162
3163 if (all_pinned)
3164 *all_pinned = pinned;
e1d1484f
PW
3165
3166 return max_load_move - rem_load_move;
1da177e4
LT
3167}
3168
dd41f596 3169/*
43010659
PW
3170 * move_tasks tries to move up to max_load_move weighted load from busiest to
3171 * this_rq, as part of a balancing operation within domain "sd".
3172 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3173 *
3174 * Called with both runqueues locked.
3175 */
3176static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3177 unsigned long max_load_move,
dd41f596
IM
3178 struct sched_domain *sd, enum cpu_idle_type idle,
3179 int *all_pinned)
3180{
5522d5d5 3181 const struct sched_class *class = sched_class_highest;
43010659 3182 unsigned long total_load_moved = 0;
a4ac01c3 3183 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3184
3185 do {
43010659
PW
3186 total_load_moved +=
3187 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3188 max_load_move - total_load_moved,
a4ac01c3 3189 sd, idle, all_pinned, &this_best_prio);
dd41f596 3190 class = class->next;
c4acb2c0 3191
7e96fa58
GH
3192#ifdef CONFIG_PREEMPT
3193 /*
3194 * NEWIDLE balancing is a source of latency, so preemptible
3195 * kernels will stop after the first task is pulled to minimize
3196 * the critical section.
3197 */
c4acb2c0
GH
3198 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3199 break;
7e96fa58 3200#endif
43010659 3201 } while (class && max_load_move > total_load_moved);
dd41f596 3202
43010659
PW
3203 return total_load_moved > 0;
3204}
3205
e1d1484f
PW
3206static int
3207iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3208 struct sched_domain *sd, enum cpu_idle_type idle,
3209 struct rq_iterator *iterator)
3210{
3211 struct task_struct *p = iterator->start(iterator->arg);
3212 int pinned = 0;
3213
3214 while (p) {
3215 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3216 pull_task(busiest, p, this_rq, this_cpu);
3217 /*
3218 * Right now, this is only the second place pull_task()
3219 * is called, so we can safely collect pull_task()
3220 * stats here rather than inside pull_task().
3221 */
3222 schedstat_inc(sd, lb_gained[idle]);
3223
3224 return 1;
3225 }
3226 p = iterator->next(iterator->arg);
3227 }
3228
3229 return 0;
3230}
3231
43010659
PW
3232/*
3233 * move_one_task tries to move exactly one task from busiest to this_rq, as
3234 * part of active balancing operations within "domain".
3235 * Returns 1 if successful and 0 otherwise.
3236 *
3237 * Called with both runqueues locked.
3238 */
3239static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3240 struct sched_domain *sd, enum cpu_idle_type idle)
3241{
5522d5d5 3242 const struct sched_class *class;
43010659
PW
3243
3244 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3245 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3246 return 1;
3247
3248 return 0;
dd41f596 3249}
67bb6c03 3250/********** Helpers for find_busiest_group ************************/
1da177e4 3251/*
222d656d
GS
3252 * sd_lb_stats - Structure to store the statistics of a sched_domain
3253 * during load balancing.
1da177e4 3254 */
222d656d
GS
3255struct sd_lb_stats {
3256 struct sched_group *busiest; /* Busiest group in this sd */
3257 struct sched_group *this; /* Local group in this sd */
3258 unsigned long total_load; /* Total load of all groups in sd */
3259 unsigned long total_pwr; /* Total power of all groups in sd */
3260 unsigned long avg_load; /* Average load across all groups in sd */
3261
3262 /** Statistics of this group */
3263 unsigned long this_load;
3264 unsigned long this_load_per_task;
3265 unsigned long this_nr_running;
3266
3267 /* Statistics of the busiest group */
3268 unsigned long max_load;
3269 unsigned long busiest_load_per_task;
3270 unsigned long busiest_nr_running;
3271
3272 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3273#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3274 int power_savings_balance; /* Is powersave balance needed for this sd */
3275 struct sched_group *group_min; /* Least loaded group in sd */
3276 struct sched_group *group_leader; /* Group which relieves group_min */
3277 unsigned long min_load_per_task; /* load_per_task in group_min */
3278 unsigned long leader_nr_running; /* Nr running of group_leader */
3279 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3280#endif
222d656d 3281};
1da177e4 3282
d5ac537e 3283/*
381be78f
GS
3284 * sg_lb_stats - stats of a sched_group required for load_balancing
3285 */
3286struct sg_lb_stats {
3287 unsigned long avg_load; /*Avg load across the CPUs of the group */
3288 unsigned long group_load; /* Total load over the CPUs of the group */
3289 unsigned long sum_nr_running; /* Nr tasks running in the group */
3290 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3291 unsigned long group_capacity;
3292 int group_imb; /* Is there an imbalance in the group ? */
3293};
3294
67bb6c03
GS
3295/**
3296 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3297 * @group: The group whose first cpu is to be returned.
3298 */
3299static inline unsigned int group_first_cpu(struct sched_group *group)
3300{
3301 return cpumask_first(sched_group_cpus(group));
3302}
3303
3304/**
3305 * get_sd_load_idx - Obtain the load index for a given sched domain.
3306 * @sd: The sched_domain whose load_idx is to be obtained.
3307 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3308 */
3309static inline int get_sd_load_idx(struct sched_domain *sd,
3310 enum cpu_idle_type idle)
3311{
3312 int load_idx;
408ed066 3313
67bb6c03
GS
3314 switch (idle) {
3315 case CPU_NOT_IDLE:
7897986b 3316 load_idx = sd->busy_idx;
67bb6c03
GS
3317 break;
3318
3319 case CPU_NEWLY_IDLE:
7897986b 3320 load_idx = sd->newidle_idx;
67bb6c03
GS
3321 break;
3322 default:
7897986b 3323 load_idx = sd->idle_idx;
67bb6c03
GS
3324 break;
3325 }
1da177e4 3326
67bb6c03
GS
3327 return load_idx;
3328}
1da177e4 3329
1da177e4 3330
c071df18
GS
3331#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3332/**
3333 * init_sd_power_savings_stats - Initialize power savings statistics for
3334 * the given sched_domain, during load balancing.
3335 *
3336 * @sd: Sched domain whose power-savings statistics are to be initialized.
3337 * @sds: Variable containing the statistics for sd.
3338 * @idle: Idle status of the CPU at which we're performing load-balancing.
3339 */
3340static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3341 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3342{
3343 /*
3344 * Busy processors will not participate in power savings
3345 * balance.
3346 */
3347 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3348 sds->power_savings_balance = 0;
3349 else {
3350 sds->power_savings_balance = 1;
3351 sds->min_nr_running = ULONG_MAX;
3352 sds->leader_nr_running = 0;
3353 }
3354}
783609c6 3355
c071df18
GS
3356/**
3357 * update_sd_power_savings_stats - Update the power saving stats for a
3358 * sched_domain while performing load balancing.
3359 *
3360 * @group: sched_group belonging to the sched_domain under consideration.
3361 * @sds: Variable containing the statistics of the sched_domain
3362 * @local_group: Does group contain the CPU for which we're performing
3363 * load balancing ?
3364 * @sgs: Variable containing the statistics of the group.
3365 */
3366static inline void update_sd_power_savings_stats(struct sched_group *group,
3367 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3368{
408ed066 3369
c071df18
GS
3370 if (!sds->power_savings_balance)
3371 return;
1da177e4 3372
c071df18
GS
3373 /*
3374 * If the local group is idle or completely loaded
3375 * no need to do power savings balance at this domain
3376 */
3377 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3378 !sds->this_nr_running))
3379 sds->power_savings_balance = 0;
2dd73a4f 3380
c071df18
GS
3381 /*
3382 * If a group is already running at full capacity or idle,
3383 * don't include that group in power savings calculations
3384 */
3385 if (!sds->power_savings_balance ||
3386 sgs->sum_nr_running >= sgs->group_capacity ||
3387 !sgs->sum_nr_running)
3388 return;
5969fe06 3389
c071df18
GS
3390 /*
3391 * Calculate the group which has the least non-idle load.
3392 * This is the group from where we need to pick up the load
3393 * for saving power
3394 */
3395 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3396 (sgs->sum_nr_running == sds->min_nr_running &&
3397 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3398 sds->group_min = group;
3399 sds->min_nr_running = sgs->sum_nr_running;
3400 sds->min_load_per_task = sgs->sum_weighted_load /
3401 sgs->sum_nr_running;
3402 }
783609c6 3403
c071df18
GS
3404 /*
3405 * Calculate the group which is almost near its
3406 * capacity but still has some space to pick up some load
3407 * from other group and save more power
3408 */
3409 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3410 return;
1da177e4 3411
c071df18
GS
3412 if (sgs->sum_nr_running > sds->leader_nr_running ||
3413 (sgs->sum_nr_running == sds->leader_nr_running &&
3414 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3415 sds->group_leader = group;
3416 sds->leader_nr_running = sgs->sum_nr_running;
3417 }
3418}
408ed066 3419
c071df18 3420/**
d5ac537e 3421 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3422 * @sds: Variable containing the statistics of the sched_domain
3423 * under consideration.
3424 * @this_cpu: Cpu at which we're currently performing load-balancing.
3425 * @imbalance: Variable to store the imbalance.
3426 *
d5ac537e
RD
3427 * Description:
3428 * Check if we have potential to perform some power-savings balance.
3429 * If yes, set the busiest group to be the least loaded group in the
3430 * sched_domain, so that it's CPUs can be put to idle.
3431 *
c071df18
GS
3432 * Returns 1 if there is potential to perform power-savings balance.
3433 * Else returns 0.
3434 */
3435static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3436 int this_cpu, unsigned long *imbalance)
3437{
3438 if (!sds->power_savings_balance)
3439 return 0;
1da177e4 3440
c071df18
GS
3441 if (sds->this != sds->group_leader ||
3442 sds->group_leader == sds->group_min)
3443 return 0;
783609c6 3444
c071df18
GS
3445 *imbalance = sds->min_load_per_task;
3446 sds->busiest = sds->group_min;
1da177e4 3447
c071df18
GS
3448 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3449 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3450 group_first_cpu(sds->group_leader);
3451 }
1da177e4 3452
c071df18 3453 return 1;
408ed066 3454
c071df18
GS
3455}
3456#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3457static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3458 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3459{
3460 return;
3461}
3462
3463static inline void update_sd_power_savings_stats(struct sched_group *group,
3464 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3465{
3466 return;
3467}
3468
3469static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3470 int this_cpu, unsigned long *imbalance)
3471{
3472 return 0;
3473}
3474#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3475
3476
1f8c553d
GS
3477/**
3478 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3479 * @group: sched_group whose statistics are to be updated.
3480 * @this_cpu: Cpu for which load balance is currently performed.
3481 * @idle: Idle status of this_cpu
3482 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3483 * @sd_idle: Idle status of the sched_domain containing group.
3484 * @local_group: Does group contain this_cpu.
3485 * @cpus: Set of cpus considered for load balancing.
3486 * @balance: Should we balance.
3487 * @sgs: variable to hold the statistics for this group.
3488 */
3489static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3490 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3491 int local_group, const struct cpumask *cpus,
3492 int *balance, struct sg_lb_stats *sgs)
3493{
3494 unsigned long load, max_cpu_load, min_cpu_load;
3495 int i;
3496 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3497 unsigned long sum_avg_load_per_task;
3498 unsigned long avg_load_per_task;
3499
3500 if (local_group)
3501 balance_cpu = group_first_cpu(group);
408ed066 3502
1f8c553d
GS
3503 /* Tally up the load of all CPUs in the group */
3504 sum_avg_load_per_task = avg_load_per_task = 0;
3505 max_cpu_load = 0;
3506 min_cpu_load = ~0UL;
908a7c1b 3507
1f8c553d
GS
3508 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3509 struct rq *rq = cpu_rq(i);
5c45bf27 3510
1f8c553d
GS
3511 if (*sd_idle && rq->nr_running)
3512 *sd_idle = 0;
3513
3514 /* Bias balancing toward cpus of our domain */
1da177e4 3515 if (local_group) {
1f8c553d
GS
3516 if (idle_cpu(i) && !first_idle_cpu) {
3517 first_idle_cpu = 1;
3518 balance_cpu = i;
3519 }
3520
3521 load = target_load(i, load_idx);
3522 } else {
3523 load = source_load(i, load_idx);
3524 if (load > max_cpu_load)
3525 max_cpu_load = load;
3526 if (min_cpu_load > load)
3527 min_cpu_load = load;
1da177e4 3528 }
5c45bf27 3529
1f8c553d
GS
3530 sgs->group_load += load;
3531 sgs->sum_nr_running += rq->nr_running;
3532 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3533
1f8c553d
GS
3534 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3535 }
5c45bf27 3536
1f8c553d
GS
3537 /*
3538 * First idle cpu or the first cpu(busiest) in this sched group
3539 * is eligible for doing load balancing at this and above
3540 * domains. In the newly idle case, we will allow all the cpu's
3541 * to do the newly idle load balance.
3542 */
3543 if (idle != CPU_NEWLY_IDLE && local_group &&
3544 balance_cpu != this_cpu && balance) {
3545 *balance = 0;
3546 return;
3547 }
5c45bf27 3548
1f8c553d
GS
3549 /* Adjust by relative CPU power of the group */
3550 sgs->avg_load = sg_div_cpu_power(group,
3551 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3552
1f8c553d
GS
3553
3554 /*
3555 * Consider the group unbalanced when the imbalance is larger
3556 * than the average weight of two tasks.
3557 *
3558 * APZ: with cgroup the avg task weight can vary wildly and
3559 * might not be a suitable number - should we keep a
3560 * normalized nr_running number somewhere that negates
3561 * the hierarchy?
3562 */
3563 avg_load_per_task = sg_div_cpu_power(group,
3564 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3565
3566 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3567 sgs->group_imb = 1;
3568
3569 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3570
3571}
dd41f596 3572
37abe198
GS
3573/**
3574 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3575 * @sd: sched_domain whose statistics are to be updated.
3576 * @this_cpu: Cpu for which load balance is currently performed.
3577 * @idle: Idle status of this_cpu
3578 * @sd_idle: Idle status of the sched_domain containing group.
3579 * @cpus: Set of cpus considered for load balancing.
3580 * @balance: Should we balance.
3581 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3582 */
37abe198
GS
3583static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3584 enum cpu_idle_type idle, int *sd_idle,
3585 const struct cpumask *cpus, int *balance,
3586 struct sd_lb_stats *sds)
1da177e4 3587{
222d656d 3588 struct sched_group *group = sd->groups;
37abe198 3589 struct sg_lb_stats sgs;
222d656d
GS
3590 int load_idx;
3591
c071df18 3592 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3593 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3594
3595 do {
1da177e4 3596 int local_group;
1da177e4 3597
758b2cdc
RR
3598 local_group = cpumask_test_cpu(this_cpu,
3599 sched_group_cpus(group));
381be78f 3600 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3601 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3602 local_group, cpus, balance, &sgs);
1da177e4 3603
37abe198
GS
3604 if (local_group && balance && !(*balance))
3605 return;
783609c6 3606
37abe198
GS
3607 sds->total_load += sgs.group_load;
3608 sds->total_pwr += group->__cpu_power;
1da177e4 3609
1da177e4 3610 if (local_group) {
37abe198
GS
3611 sds->this_load = sgs.avg_load;
3612 sds->this = group;
3613 sds->this_nr_running = sgs.sum_nr_running;
3614 sds->this_load_per_task = sgs.sum_weighted_load;
3615 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3616 (sgs.sum_nr_running > sgs.group_capacity ||
3617 sgs.group_imb)) {
37abe198
GS
3618 sds->max_load = sgs.avg_load;
3619 sds->busiest = group;
3620 sds->busiest_nr_running = sgs.sum_nr_running;
3621 sds->busiest_load_per_task = sgs.sum_weighted_load;
3622 sds->group_imb = sgs.group_imb;
48f24c4d 3623 }
5c45bf27 3624
c071df18 3625 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3626 group = group->next;
3627 } while (group != sd->groups);
3628
37abe198 3629}
1da177e4 3630
2e6f44ae
GS
3631/**
3632 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3633 * amongst the groups of a sched_domain, during
3634 * load balancing.
2e6f44ae
GS
3635 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3636 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3637 * @imbalance: Variable to store the imbalance.
3638 */
3639static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3640 int this_cpu, unsigned long *imbalance)
3641{
3642 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3643 unsigned int imbn = 2;
3644
3645 if (sds->this_nr_running) {
3646 sds->this_load_per_task /= sds->this_nr_running;
3647 if (sds->busiest_load_per_task >
3648 sds->this_load_per_task)
3649 imbn = 1;
3650 } else
3651 sds->this_load_per_task =
3652 cpu_avg_load_per_task(this_cpu);
1da177e4 3653
2e6f44ae
GS
3654 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3655 sds->busiest_load_per_task * imbn) {
3656 *imbalance = sds->busiest_load_per_task;
3657 return;
3658 }
908a7c1b 3659
1da177e4 3660 /*
2e6f44ae
GS
3661 * OK, we don't have enough imbalance to justify moving tasks,
3662 * however we may be able to increase total CPU power used by
3663 * moving them.
1da177e4 3664 */
2dd73a4f 3665
2e6f44ae
GS
3666 pwr_now += sds->busiest->__cpu_power *
3667 min(sds->busiest_load_per_task, sds->max_load);
3668 pwr_now += sds->this->__cpu_power *
3669 min(sds->this_load_per_task, sds->this_load);
3670 pwr_now /= SCHED_LOAD_SCALE;
3671
3672 /* Amount of load we'd subtract */
3673 tmp = sg_div_cpu_power(sds->busiest,
3674 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3675 if (sds->max_load > tmp)
3676 pwr_move += sds->busiest->__cpu_power *
3677 min(sds->busiest_load_per_task, sds->max_load - tmp);
3678
3679 /* Amount of load we'd add */
3680 if (sds->max_load * sds->busiest->__cpu_power <
3681 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3682 tmp = sg_div_cpu_power(sds->this,
3683 sds->max_load * sds->busiest->__cpu_power);
3684 else
3685 tmp = sg_div_cpu_power(sds->this,
3686 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3687 pwr_move += sds->this->__cpu_power *
3688 min(sds->this_load_per_task, sds->this_load + tmp);
3689 pwr_move /= SCHED_LOAD_SCALE;
3690
3691 /* Move if we gain throughput */
3692 if (pwr_move > pwr_now)
3693 *imbalance = sds->busiest_load_per_task;
3694}
dbc523a3
GS
3695
3696/**
3697 * calculate_imbalance - Calculate the amount of imbalance present within the
3698 * groups of a given sched_domain during load balance.
3699 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3700 * @this_cpu: Cpu for which currently load balance is being performed.
3701 * @imbalance: The variable to store the imbalance.
3702 */
3703static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3704 unsigned long *imbalance)
3705{
3706 unsigned long max_pull;
2dd73a4f
PW
3707 /*
3708 * In the presence of smp nice balancing, certain scenarios can have
3709 * max load less than avg load(as we skip the groups at or below
3710 * its cpu_power, while calculating max_load..)
3711 */
dbc523a3 3712 if (sds->max_load < sds->avg_load) {
2dd73a4f 3713 *imbalance = 0;
dbc523a3 3714 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3715 }
0c117f1b
SS
3716
3717 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3718 max_pull = min(sds->max_load - sds->avg_load,
3719 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3720
1da177e4 3721 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3722 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3723 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3724 / SCHED_LOAD_SCALE;
3725
2dd73a4f
PW
3726 /*
3727 * if *imbalance is less than the average load per runnable task
3728 * there is no gaurantee that any tasks will be moved so we'll have
3729 * a think about bumping its value to force at least one task to be
3730 * moved
3731 */
dbc523a3
GS
3732 if (*imbalance < sds->busiest_load_per_task)
3733 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3734
dbc523a3 3735}
37abe198 3736/******* find_busiest_group() helpers end here *********************/
1da177e4 3737
b7bb4c9b
GS
3738/**
3739 * find_busiest_group - Returns the busiest group within the sched_domain
3740 * if there is an imbalance. If there isn't an imbalance, and
3741 * the user has opted for power-savings, it returns a group whose
3742 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3743 * such a group exists.
3744 *
3745 * Also calculates the amount of weighted load which should be moved
3746 * to restore balance.
3747 *
3748 * @sd: The sched_domain whose busiest group is to be returned.
3749 * @this_cpu: The cpu for which load balancing is currently being performed.
3750 * @imbalance: Variable which stores amount of weighted load which should
3751 * be moved to restore balance/put a group to idle.
3752 * @idle: The idle status of this_cpu.
3753 * @sd_idle: The idleness of sd
3754 * @cpus: The set of CPUs under consideration for load-balancing.
3755 * @balance: Pointer to a variable indicating if this_cpu
3756 * is the appropriate cpu to perform load balancing at this_level.
3757 *
3758 * Returns: - the busiest group if imbalance exists.
3759 * - If no imbalance and user has opted for power-savings balance,
3760 * return the least loaded group whose CPUs can be
3761 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3762 */
3763static struct sched_group *
3764find_busiest_group(struct sched_domain *sd, int this_cpu,
3765 unsigned long *imbalance, enum cpu_idle_type idle,
3766 int *sd_idle, const struct cpumask *cpus, int *balance)
3767{
3768 struct sd_lb_stats sds;
1da177e4 3769
37abe198 3770 memset(&sds, 0, sizeof(sds));
1da177e4 3771
37abe198
GS
3772 /*
3773 * Compute the various statistics relavent for load balancing at
3774 * this level.
3775 */
3776 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3777 balance, &sds);
3778
b7bb4c9b
GS
3779 /* Cases where imbalance does not exist from POV of this_cpu */
3780 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3781 * at this level.
3782 * 2) There is no busy sibling group to pull from.
3783 * 3) This group is the busiest group.
3784 * 4) This group is more busy than the avg busieness at this
3785 * sched_domain.
3786 * 5) The imbalance is within the specified limit.
3787 * 6) Any rebalance would lead to ping-pong
3788 */
37abe198
GS
3789 if (balance && !(*balance))
3790 goto ret;
1da177e4 3791
b7bb4c9b
GS
3792 if (!sds.busiest || sds.busiest_nr_running == 0)
3793 goto out_balanced;
1da177e4 3794
b7bb4c9b 3795 if (sds.this_load >= sds.max_load)
1da177e4 3796 goto out_balanced;
1da177e4 3797
222d656d 3798 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3799
b7bb4c9b
GS
3800 if (sds.this_load >= sds.avg_load)
3801 goto out_balanced;
3802
3803 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3804 goto out_balanced;
3805
222d656d
GS
3806 sds.busiest_load_per_task /= sds.busiest_nr_running;
3807 if (sds.group_imb)
3808 sds.busiest_load_per_task =
3809 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3810
1da177e4
LT
3811 /*
3812 * We're trying to get all the cpus to the average_load, so we don't
3813 * want to push ourselves above the average load, nor do we wish to
3814 * reduce the max loaded cpu below the average load, as either of these
3815 * actions would just result in more rebalancing later, and ping-pong
3816 * tasks around. Thus we look for the minimum possible imbalance.
3817 * Negative imbalances (*we* are more loaded than anyone else) will
3818 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3819 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3820 * appear as very large values with unsigned longs.
3821 */
222d656d 3822 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
3823 goto out_balanced;
3824
dbc523a3
GS
3825 /* Looks like there is an imbalance. Compute it */
3826 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 3827 return sds.busiest;
1da177e4
LT
3828
3829out_balanced:
c071df18
GS
3830 /*
3831 * There is no obvious imbalance. But check if we can do some balancing
3832 * to save power.
3833 */
3834 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3835 return sds.busiest;
783609c6 3836ret:
1da177e4
LT
3837 *imbalance = 0;
3838 return NULL;
3839}
3840
3841/*
3842 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3843 */
70b97a7f 3844static struct rq *
d15bcfdb 3845find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3846 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3847{
70b97a7f 3848 struct rq *busiest = NULL, *rq;
2dd73a4f 3849 unsigned long max_load = 0;
1da177e4
LT
3850 int i;
3851
758b2cdc 3852 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3853 unsigned long wl;
0a2966b4 3854
96f874e2 3855 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3856 continue;
3857
48f24c4d 3858 rq = cpu_rq(i);
dd41f596 3859 wl = weighted_cpuload(i);
2dd73a4f 3860
dd41f596 3861 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3862 continue;
1da177e4 3863
dd41f596
IM
3864 if (wl > max_load) {
3865 max_load = wl;
48f24c4d 3866 busiest = rq;
1da177e4
LT
3867 }
3868 }
3869
3870 return busiest;
3871}
3872
77391d71
NP
3873/*
3874 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3875 * so long as it is large enough.
3876 */
3877#define MAX_PINNED_INTERVAL 512
3878
df7c8e84
RR
3879/* Working cpumask for load_balance and load_balance_newidle. */
3880static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3881
1da177e4
LT
3882/*
3883 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3884 * tasks if there is an imbalance.
1da177e4 3885 */
70b97a7f 3886static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3887 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 3888 int *balance)
1da177e4 3889{
43010659 3890 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3891 struct sched_group *group;
1da177e4 3892 unsigned long imbalance;
70b97a7f 3893 struct rq *busiest;
fe2eea3f 3894 unsigned long flags;
df7c8e84 3895 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 3896
96f874e2 3897 cpumask_setall(cpus);
7c16ec58 3898
89c4710e
SS
3899 /*
3900 * When power savings policy is enabled for the parent domain, idle
3901 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3902 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3903 * portraying it as CPU_NOT_IDLE.
89c4710e 3904 */
d15bcfdb 3905 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3906 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3907 sd_idle = 1;
1da177e4 3908
2d72376b 3909 schedstat_inc(sd, lb_count[idle]);
1da177e4 3910
0a2966b4 3911redo:
c8cba857 3912 update_shares(sd);
0a2966b4 3913 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3914 cpus, balance);
783609c6 3915
06066714 3916 if (*balance == 0)
783609c6 3917 goto out_balanced;
783609c6 3918
1da177e4
LT
3919 if (!group) {
3920 schedstat_inc(sd, lb_nobusyg[idle]);
3921 goto out_balanced;
3922 }
3923
7c16ec58 3924 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3925 if (!busiest) {
3926 schedstat_inc(sd, lb_nobusyq[idle]);
3927 goto out_balanced;
3928 }
3929
db935dbd 3930 BUG_ON(busiest == this_rq);
1da177e4
LT
3931
3932 schedstat_add(sd, lb_imbalance[idle], imbalance);
3933
43010659 3934 ld_moved = 0;
1da177e4
LT
3935 if (busiest->nr_running > 1) {
3936 /*
3937 * Attempt to move tasks. If find_busiest_group has found
3938 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3939 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3940 * correctly treated as an imbalance.
3941 */
fe2eea3f 3942 local_irq_save(flags);
e17224bf 3943 double_rq_lock(this_rq, busiest);
43010659 3944 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3945 imbalance, sd, idle, &all_pinned);
e17224bf 3946 double_rq_unlock(this_rq, busiest);
fe2eea3f 3947 local_irq_restore(flags);
81026794 3948
46cb4b7c
SS
3949 /*
3950 * some other cpu did the load balance for us.
3951 */
43010659 3952 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3953 resched_cpu(this_cpu);
3954
81026794 3955 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3956 if (unlikely(all_pinned)) {
96f874e2
RR
3957 cpumask_clear_cpu(cpu_of(busiest), cpus);
3958 if (!cpumask_empty(cpus))
0a2966b4 3959 goto redo;
81026794 3960 goto out_balanced;
0a2966b4 3961 }
1da177e4 3962 }
81026794 3963
43010659 3964 if (!ld_moved) {
1da177e4
LT
3965 schedstat_inc(sd, lb_failed[idle]);
3966 sd->nr_balance_failed++;
3967
3968 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3969
fe2eea3f 3970 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3971
3972 /* don't kick the migration_thread, if the curr
3973 * task on busiest cpu can't be moved to this_cpu
3974 */
96f874e2
RR
3975 if (!cpumask_test_cpu(this_cpu,
3976 &busiest->curr->cpus_allowed)) {
fe2eea3f 3977 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3978 all_pinned = 1;
3979 goto out_one_pinned;
3980 }
3981
1da177e4
LT
3982 if (!busiest->active_balance) {
3983 busiest->active_balance = 1;
3984 busiest->push_cpu = this_cpu;
81026794 3985 active_balance = 1;
1da177e4 3986 }
fe2eea3f 3987 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3988 if (active_balance)
1da177e4
LT
3989 wake_up_process(busiest->migration_thread);
3990
3991 /*
3992 * We've kicked active balancing, reset the failure
3993 * counter.
3994 */
39507451 3995 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3996 }
81026794 3997 } else
1da177e4
LT
3998 sd->nr_balance_failed = 0;
3999
81026794 4000 if (likely(!active_balance)) {
1da177e4
LT
4001 /* We were unbalanced, so reset the balancing interval */
4002 sd->balance_interval = sd->min_interval;
81026794
NP
4003 } else {
4004 /*
4005 * If we've begun active balancing, start to back off. This
4006 * case may not be covered by the all_pinned logic if there
4007 * is only 1 task on the busy runqueue (because we don't call
4008 * move_tasks).
4009 */
4010 if (sd->balance_interval < sd->max_interval)
4011 sd->balance_interval *= 2;
1da177e4
LT
4012 }
4013
43010659 4014 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4015 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4016 ld_moved = -1;
4017
4018 goto out;
1da177e4
LT
4019
4020out_balanced:
1da177e4
LT
4021 schedstat_inc(sd, lb_balanced[idle]);
4022
16cfb1c0 4023 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4024
4025out_one_pinned:
1da177e4 4026 /* tune up the balancing interval */
77391d71
NP
4027 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4028 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4029 sd->balance_interval *= 2;
4030
48f24c4d 4031 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4032 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4033 ld_moved = -1;
4034 else
4035 ld_moved = 0;
4036out:
c8cba857
PZ
4037 if (ld_moved)
4038 update_shares(sd);
c09595f6 4039 return ld_moved;
1da177e4
LT
4040}
4041
4042/*
4043 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4044 * tasks if there is an imbalance.
4045 *
d15bcfdb 4046 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4047 * this_rq is locked.
4048 */
48f24c4d 4049static int
df7c8e84 4050load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4051{
4052 struct sched_group *group;
70b97a7f 4053 struct rq *busiest = NULL;
1da177e4 4054 unsigned long imbalance;
43010659 4055 int ld_moved = 0;
5969fe06 4056 int sd_idle = 0;
969bb4e4 4057 int all_pinned = 0;
df7c8e84 4058 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4059
96f874e2 4060 cpumask_setall(cpus);
5969fe06 4061
89c4710e
SS
4062 /*
4063 * When power savings policy is enabled for the parent domain, idle
4064 * sibling can pick up load irrespective of busy siblings. In this case,
4065 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4066 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4067 */
4068 if (sd->flags & SD_SHARE_CPUPOWER &&
4069 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4070 sd_idle = 1;
1da177e4 4071
2d72376b 4072 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4073redo:
3e5459b4 4074 update_shares_locked(this_rq, sd);
d15bcfdb 4075 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4076 &sd_idle, cpus, NULL);
1da177e4 4077 if (!group) {
d15bcfdb 4078 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4079 goto out_balanced;
1da177e4
LT
4080 }
4081
7c16ec58 4082 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4083 if (!busiest) {
d15bcfdb 4084 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4085 goto out_balanced;
1da177e4
LT
4086 }
4087
db935dbd
NP
4088 BUG_ON(busiest == this_rq);
4089
d15bcfdb 4090 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4091
43010659 4092 ld_moved = 0;
d6d5cfaf
NP
4093 if (busiest->nr_running > 1) {
4094 /* Attempt to move tasks */
4095 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4096 /* this_rq->clock is already updated */
4097 update_rq_clock(busiest);
43010659 4098 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4099 imbalance, sd, CPU_NEWLY_IDLE,
4100 &all_pinned);
1b12bbc7 4101 double_unlock_balance(this_rq, busiest);
0a2966b4 4102
969bb4e4 4103 if (unlikely(all_pinned)) {
96f874e2
RR
4104 cpumask_clear_cpu(cpu_of(busiest), cpus);
4105 if (!cpumask_empty(cpus))
0a2966b4
CL
4106 goto redo;
4107 }
d6d5cfaf
NP
4108 }
4109
43010659 4110 if (!ld_moved) {
36dffab6 4111 int active_balance = 0;
ad273b32 4112
d15bcfdb 4113 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4114 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4115 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4116 return -1;
ad273b32
VS
4117
4118 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4119 return -1;
4120
4121 if (sd->nr_balance_failed++ < 2)
4122 return -1;
4123
4124 /*
4125 * The only task running in a non-idle cpu can be moved to this
4126 * cpu in an attempt to completely freeup the other CPU
4127 * package. The same method used to move task in load_balance()
4128 * have been extended for load_balance_newidle() to speedup
4129 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4130 *
4131 * The package power saving logic comes from
4132 * find_busiest_group(). If there are no imbalance, then
4133 * f_b_g() will return NULL. However when sched_mc={1,2} then
4134 * f_b_g() will select a group from which a running task may be
4135 * pulled to this cpu in order to make the other package idle.
4136 * If there is no opportunity to make a package idle and if
4137 * there are no imbalance, then f_b_g() will return NULL and no
4138 * action will be taken in load_balance_newidle().
4139 *
4140 * Under normal task pull operation due to imbalance, there
4141 * will be more than one task in the source run queue and
4142 * move_tasks() will succeed. ld_moved will be true and this
4143 * active balance code will not be triggered.
4144 */
4145
4146 /* Lock busiest in correct order while this_rq is held */
4147 double_lock_balance(this_rq, busiest);
4148
4149 /*
4150 * don't kick the migration_thread, if the curr
4151 * task on busiest cpu can't be moved to this_cpu
4152 */
6ca09dfc 4153 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4154 double_unlock_balance(this_rq, busiest);
4155 all_pinned = 1;
4156 return ld_moved;
4157 }
4158
4159 if (!busiest->active_balance) {
4160 busiest->active_balance = 1;
4161 busiest->push_cpu = this_cpu;
4162 active_balance = 1;
4163 }
4164
4165 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4166 /*
4167 * Should not call ttwu while holding a rq->lock
4168 */
4169 spin_unlock(&this_rq->lock);
ad273b32
VS
4170 if (active_balance)
4171 wake_up_process(busiest->migration_thread);
da8d5089 4172 spin_lock(&this_rq->lock);
ad273b32 4173
5969fe06 4174 } else
16cfb1c0 4175 sd->nr_balance_failed = 0;
1da177e4 4176
3e5459b4 4177 update_shares_locked(this_rq, sd);
43010659 4178 return ld_moved;
16cfb1c0
NP
4179
4180out_balanced:
d15bcfdb 4181 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4182 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4183 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4184 return -1;
16cfb1c0 4185 sd->nr_balance_failed = 0;
48f24c4d 4186
16cfb1c0 4187 return 0;
1da177e4
LT
4188}
4189
4190/*
4191 * idle_balance is called by schedule() if this_cpu is about to become
4192 * idle. Attempts to pull tasks from other CPUs.
4193 */
70b97a7f 4194static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4195{
4196 struct sched_domain *sd;
efbe027e 4197 int pulled_task = 0;
dd41f596 4198 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4199
4200 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4201 unsigned long interval;
4202
4203 if (!(sd->flags & SD_LOAD_BALANCE))
4204 continue;
4205
4206 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4207 /* If we've pulled tasks over stop searching: */
7c16ec58 4208 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4209 sd);
92c4ca5c
CL
4210
4211 interval = msecs_to_jiffies(sd->balance_interval);
4212 if (time_after(next_balance, sd->last_balance + interval))
4213 next_balance = sd->last_balance + interval;
4214 if (pulled_task)
4215 break;
1da177e4 4216 }
dd41f596 4217 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4218 /*
4219 * We are going idle. next_balance may be set based on
4220 * a busy processor. So reset next_balance.
4221 */
4222 this_rq->next_balance = next_balance;
dd41f596 4223 }
1da177e4
LT
4224}
4225
4226/*
4227 * active_load_balance is run by migration threads. It pushes running tasks
4228 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4229 * running on each physical CPU where possible, and avoids physical /
4230 * logical imbalances.
4231 *
4232 * Called with busiest_rq locked.
4233 */
70b97a7f 4234static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4235{
39507451 4236 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4237 struct sched_domain *sd;
4238 struct rq *target_rq;
39507451 4239
48f24c4d 4240 /* Is there any task to move? */
39507451 4241 if (busiest_rq->nr_running <= 1)
39507451
NP
4242 return;
4243
4244 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4245
4246 /*
39507451 4247 * This condition is "impossible", if it occurs
41a2d6cf 4248 * we need to fix it. Originally reported by
39507451 4249 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4250 */
39507451 4251 BUG_ON(busiest_rq == target_rq);
1da177e4 4252
39507451
NP
4253 /* move a task from busiest_rq to target_rq */
4254 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4255 update_rq_clock(busiest_rq);
4256 update_rq_clock(target_rq);
39507451
NP
4257
4258 /* Search for an sd spanning us and the target CPU. */
c96d145e 4259 for_each_domain(target_cpu, sd) {
39507451 4260 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4261 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4262 break;
c96d145e 4263 }
39507451 4264
48f24c4d 4265 if (likely(sd)) {
2d72376b 4266 schedstat_inc(sd, alb_count);
39507451 4267
43010659
PW
4268 if (move_one_task(target_rq, target_cpu, busiest_rq,
4269 sd, CPU_IDLE))
48f24c4d
IM
4270 schedstat_inc(sd, alb_pushed);
4271 else
4272 schedstat_inc(sd, alb_failed);
4273 }
1b12bbc7 4274 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4275}
4276
46cb4b7c
SS
4277#ifdef CONFIG_NO_HZ
4278static struct {
4279 atomic_t load_balancer;
7d1e6a9b 4280 cpumask_var_t cpu_mask;
46cb4b7c
SS
4281} nohz ____cacheline_aligned = {
4282 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4283};
4284
7835b98b 4285/*
46cb4b7c
SS
4286 * This routine will try to nominate the ilb (idle load balancing)
4287 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4288 * load balancing on behalf of all those cpus. If all the cpus in the system
4289 * go into this tickless mode, then there will be no ilb owner (as there is
4290 * no need for one) and all the cpus will sleep till the next wakeup event
4291 * arrives...
4292 *
4293 * For the ilb owner, tick is not stopped. And this tick will be used
4294 * for idle load balancing. ilb owner will still be part of
4295 * nohz.cpu_mask..
7835b98b 4296 *
46cb4b7c
SS
4297 * While stopping the tick, this cpu will become the ilb owner if there
4298 * is no other owner. And will be the owner till that cpu becomes busy
4299 * or if all cpus in the system stop their ticks at which point
4300 * there is no need for ilb owner.
4301 *
4302 * When the ilb owner becomes busy, it nominates another owner, during the
4303 * next busy scheduler_tick()
4304 */
4305int select_nohz_load_balancer(int stop_tick)
4306{
4307 int cpu = smp_processor_id();
4308
4309 if (stop_tick) {
46cb4b7c
SS
4310 cpu_rq(cpu)->in_nohz_recently = 1;
4311
483b4ee6
SS
4312 if (!cpu_active(cpu)) {
4313 if (atomic_read(&nohz.load_balancer) != cpu)
4314 return 0;
4315
4316 /*
4317 * If we are going offline and still the leader,
4318 * give up!
4319 */
46cb4b7c
SS
4320 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4321 BUG();
483b4ee6 4322
46cb4b7c
SS
4323 return 0;
4324 }
4325
483b4ee6
SS
4326 cpumask_set_cpu(cpu, nohz.cpu_mask);
4327
46cb4b7c 4328 /* time for ilb owner also to sleep */
7d1e6a9b 4329 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4330 if (atomic_read(&nohz.load_balancer) == cpu)
4331 atomic_set(&nohz.load_balancer, -1);
4332 return 0;
4333 }
4334
4335 if (atomic_read(&nohz.load_balancer) == -1) {
4336 /* make me the ilb owner */
4337 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4338 return 1;
4339 } else if (atomic_read(&nohz.load_balancer) == cpu)
4340 return 1;
4341 } else {
7d1e6a9b 4342 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4343 return 0;
4344
7d1e6a9b 4345 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4346
4347 if (atomic_read(&nohz.load_balancer) == cpu)
4348 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4349 BUG();
4350 }
4351 return 0;
4352}
4353#endif
4354
4355static DEFINE_SPINLOCK(balancing);
4356
4357/*
7835b98b
CL
4358 * It checks each scheduling domain to see if it is due to be balanced,
4359 * and initiates a balancing operation if so.
4360 *
4361 * Balancing parameters are set up in arch_init_sched_domains.
4362 */
a9957449 4363static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4364{
46cb4b7c
SS
4365 int balance = 1;
4366 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4367 unsigned long interval;
4368 struct sched_domain *sd;
46cb4b7c 4369 /* Earliest time when we have to do rebalance again */
c9819f45 4370 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4371 int update_next_balance = 0;
d07355f5 4372 int need_serialize;
1da177e4 4373
46cb4b7c 4374 for_each_domain(cpu, sd) {
1da177e4
LT
4375 if (!(sd->flags & SD_LOAD_BALANCE))
4376 continue;
4377
4378 interval = sd->balance_interval;
d15bcfdb 4379 if (idle != CPU_IDLE)
1da177e4
LT
4380 interval *= sd->busy_factor;
4381
4382 /* scale ms to jiffies */
4383 interval = msecs_to_jiffies(interval);
4384 if (unlikely(!interval))
4385 interval = 1;
dd41f596
IM
4386 if (interval > HZ*NR_CPUS/10)
4387 interval = HZ*NR_CPUS/10;
4388
d07355f5 4389 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4390
d07355f5 4391 if (need_serialize) {
08c183f3
CL
4392 if (!spin_trylock(&balancing))
4393 goto out;
4394 }
4395
c9819f45 4396 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4397 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4398 /*
4399 * We've pulled tasks over so either we're no
5969fe06
NP
4400 * longer idle, or one of our SMT siblings is
4401 * not idle.
4402 */
d15bcfdb 4403 idle = CPU_NOT_IDLE;
1da177e4 4404 }
1bd77f2d 4405 sd->last_balance = jiffies;
1da177e4 4406 }
d07355f5 4407 if (need_serialize)
08c183f3
CL
4408 spin_unlock(&balancing);
4409out:
f549da84 4410 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4411 next_balance = sd->last_balance + interval;
f549da84
SS
4412 update_next_balance = 1;
4413 }
783609c6
SS
4414
4415 /*
4416 * Stop the load balance at this level. There is another
4417 * CPU in our sched group which is doing load balancing more
4418 * actively.
4419 */
4420 if (!balance)
4421 break;
1da177e4 4422 }
f549da84
SS
4423
4424 /*
4425 * next_balance will be updated only when there is a need.
4426 * When the cpu is attached to null domain for ex, it will not be
4427 * updated.
4428 */
4429 if (likely(update_next_balance))
4430 rq->next_balance = next_balance;
46cb4b7c
SS
4431}
4432
4433/*
4434 * run_rebalance_domains is triggered when needed from the scheduler tick.
4435 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4436 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4437 */
4438static void run_rebalance_domains(struct softirq_action *h)
4439{
dd41f596
IM
4440 int this_cpu = smp_processor_id();
4441 struct rq *this_rq = cpu_rq(this_cpu);
4442 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4443 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4444
dd41f596 4445 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4446
4447#ifdef CONFIG_NO_HZ
4448 /*
4449 * If this cpu is the owner for idle load balancing, then do the
4450 * balancing on behalf of the other idle cpus whose ticks are
4451 * stopped.
4452 */
dd41f596
IM
4453 if (this_rq->idle_at_tick &&
4454 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4455 struct rq *rq;
4456 int balance_cpu;
4457
7d1e6a9b
RR
4458 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4459 if (balance_cpu == this_cpu)
4460 continue;
4461
46cb4b7c
SS
4462 /*
4463 * If this cpu gets work to do, stop the load balancing
4464 * work being done for other cpus. Next load
4465 * balancing owner will pick it up.
4466 */
4467 if (need_resched())
4468 break;
4469
de0cf899 4470 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4471
4472 rq = cpu_rq(balance_cpu);
dd41f596
IM
4473 if (time_after(this_rq->next_balance, rq->next_balance))
4474 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4475 }
4476 }
4477#endif
4478}
4479
8a0be9ef
FW
4480static inline int on_null_domain(int cpu)
4481{
4482 return !rcu_dereference(cpu_rq(cpu)->sd);
4483}
4484
46cb4b7c
SS
4485/*
4486 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4487 *
4488 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4489 * idle load balancing owner or decide to stop the periodic load balancing,
4490 * if the whole system is idle.
4491 */
dd41f596 4492static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4493{
46cb4b7c
SS
4494#ifdef CONFIG_NO_HZ
4495 /*
4496 * If we were in the nohz mode recently and busy at the current
4497 * scheduler tick, then check if we need to nominate new idle
4498 * load balancer.
4499 */
4500 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4501 rq->in_nohz_recently = 0;
4502
4503 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4504 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4505 atomic_set(&nohz.load_balancer, -1);
4506 }
4507
4508 if (atomic_read(&nohz.load_balancer) == -1) {
4509 /*
4510 * simple selection for now: Nominate the
4511 * first cpu in the nohz list to be the next
4512 * ilb owner.
4513 *
4514 * TBD: Traverse the sched domains and nominate
4515 * the nearest cpu in the nohz.cpu_mask.
4516 */
7d1e6a9b 4517 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4518
434d53b0 4519 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4520 resched_cpu(ilb);
4521 }
4522 }
4523
4524 /*
4525 * If this cpu is idle and doing idle load balancing for all the
4526 * cpus with ticks stopped, is it time for that to stop?
4527 */
4528 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4529 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4530 resched_cpu(cpu);
4531 return;
4532 }
4533
4534 /*
4535 * If this cpu is idle and the idle load balancing is done by
4536 * someone else, then no need raise the SCHED_SOFTIRQ
4537 */
4538 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4539 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4540 return;
4541#endif
8a0be9ef
FW
4542 /* Don't need to rebalance while attached to NULL domain */
4543 if (time_after_eq(jiffies, rq->next_balance) &&
4544 likely(!on_null_domain(cpu)))
46cb4b7c 4545 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4546}
dd41f596
IM
4547
4548#else /* CONFIG_SMP */
4549
1da177e4
LT
4550/*
4551 * on UP we do not need to balance between CPUs:
4552 */
70b97a7f 4553static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4554{
4555}
dd41f596 4556
1da177e4
LT
4557#endif
4558
1da177e4
LT
4559DEFINE_PER_CPU(struct kernel_stat, kstat);
4560
4561EXPORT_PER_CPU_SYMBOL(kstat);
4562
4563/*
c5f8d995 4564 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4565 * @p in case that task is currently running.
c5f8d995
HS
4566 *
4567 * Called with task_rq_lock() held on @rq.
1da177e4 4568 */
c5f8d995
HS
4569static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4570{
4571 u64 ns = 0;
4572
4573 if (task_current(rq, p)) {
4574 update_rq_clock(rq);
4575 ns = rq->clock - p->se.exec_start;
4576 if ((s64)ns < 0)
4577 ns = 0;
4578 }
4579
4580 return ns;
4581}
4582
bb34d92f 4583unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4584{
1da177e4 4585 unsigned long flags;
41b86e9c 4586 struct rq *rq;
bb34d92f 4587 u64 ns = 0;
48f24c4d 4588
41b86e9c 4589 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4590 ns = do_task_delta_exec(p, rq);
4591 task_rq_unlock(rq, &flags);
1508487e 4592
c5f8d995
HS
4593 return ns;
4594}
f06febc9 4595
c5f8d995
HS
4596/*
4597 * Return accounted runtime for the task.
4598 * In case the task is currently running, return the runtime plus current's
4599 * pending runtime that have not been accounted yet.
4600 */
4601unsigned long long task_sched_runtime(struct task_struct *p)
4602{
4603 unsigned long flags;
4604 struct rq *rq;
4605 u64 ns = 0;
4606
4607 rq = task_rq_lock(p, &flags);
4608 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4609 task_rq_unlock(rq, &flags);
4610
4611 return ns;
4612}
48f24c4d 4613
c5f8d995
HS
4614/*
4615 * Return sum_exec_runtime for the thread group.
4616 * In case the task is currently running, return the sum plus current's
4617 * pending runtime that have not been accounted yet.
4618 *
4619 * Note that the thread group might have other running tasks as well,
4620 * so the return value not includes other pending runtime that other
4621 * running tasks might have.
4622 */
4623unsigned long long thread_group_sched_runtime(struct task_struct *p)
4624{
4625 struct task_cputime totals;
4626 unsigned long flags;
4627 struct rq *rq;
4628 u64 ns;
48f24c4d 4629
c5f8d995
HS
4630 rq = task_rq_lock(p, &flags);
4631 thread_group_cputime(p, &totals);
4632 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4633 task_rq_unlock(rq, &flags);
48f24c4d 4634
1da177e4
LT
4635 return ns;
4636}
4637
1da177e4
LT
4638/*
4639 * Account user cpu time to a process.
4640 * @p: the process that the cpu time gets accounted to
1da177e4 4641 * @cputime: the cpu time spent in user space since the last update
457533a7 4642 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4643 */
457533a7
MS
4644void account_user_time(struct task_struct *p, cputime_t cputime,
4645 cputime_t cputime_scaled)
1da177e4
LT
4646{
4647 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4648 cputime64_t tmp;
4649
457533a7 4650 /* Add user time to process. */
1da177e4 4651 p->utime = cputime_add(p->utime, cputime);
457533a7 4652 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4653 account_group_user_time(p, cputime);
1da177e4
LT
4654
4655 /* Add user time to cpustat. */
4656 tmp = cputime_to_cputime64(cputime);
4657 if (TASK_NICE(p) > 0)
4658 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4659 else
4660 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4661
4662 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4663 /* Account for user time used */
4664 acct_update_integrals(p);
1da177e4
LT
4665}
4666
94886b84
LV
4667/*
4668 * Account guest cpu time to a process.
4669 * @p: the process that the cpu time gets accounted to
4670 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4671 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4672 */
457533a7
MS
4673static void account_guest_time(struct task_struct *p, cputime_t cputime,
4674 cputime_t cputime_scaled)
94886b84
LV
4675{
4676 cputime64_t tmp;
4677 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4678
4679 tmp = cputime_to_cputime64(cputime);
4680
457533a7 4681 /* Add guest time to process. */
94886b84 4682 p->utime = cputime_add(p->utime, cputime);
457533a7 4683 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4684 account_group_user_time(p, cputime);
94886b84
LV
4685 p->gtime = cputime_add(p->gtime, cputime);
4686
457533a7 4687 /* Add guest time to cpustat. */
94886b84
LV
4688 cpustat->user = cputime64_add(cpustat->user, tmp);
4689 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4690}
4691
1da177e4
LT
4692/*
4693 * Account system cpu time to a process.
4694 * @p: the process that the cpu time gets accounted to
4695 * @hardirq_offset: the offset to subtract from hardirq_count()
4696 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4697 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4698 */
4699void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4700 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4701{
4702 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4703 cputime64_t tmp;
4704
983ed7a6 4705 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4706 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4707 return;
4708 }
94886b84 4709
457533a7 4710 /* Add system time to process. */
1da177e4 4711 p->stime = cputime_add(p->stime, cputime);
457533a7 4712 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4713 account_group_system_time(p, cputime);
1da177e4
LT
4714
4715 /* Add system time to cpustat. */
4716 tmp = cputime_to_cputime64(cputime);
4717 if (hardirq_count() - hardirq_offset)
4718 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4719 else if (softirq_count())
4720 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4721 else
79741dd3
MS
4722 cpustat->system = cputime64_add(cpustat->system, tmp);
4723
ef12fefa
BR
4724 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4725
1da177e4
LT
4726 /* Account for system time used */
4727 acct_update_integrals(p);
1da177e4
LT
4728}
4729
c66f08be 4730/*
1da177e4 4731 * Account for involuntary wait time.
1da177e4 4732 * @steal: the cpu time spent in involuntary wait
c66f08be 4733 */
79741dd3 4734void account_steal_time(cputime_t cputime)
c66f08be 4735{
79741dd3
MS
4736 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4737 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4738
4739 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4740}
4741
1da177e4 4742/*
79741dd3
MS
4743 * Account for idle time.
4744 * @cputime: the cpu time spent in idle wait
1da177e4 4745 */
79741dd3 4746void account_idle_time(cputime_t cputime)
1da177e4
LT
4747{
4748 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4749 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4750 struct rq *rq = this_rq();
1da177e4 4751
79741dd3
MS
4752 if (atomic_read(&rq->nr_iowait) > 0)
4753 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4754 else
4755 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4756}
4757
79741dd3
MS
4758#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4759
4760/*
4761 * Account a single tick of cpu time.
4762 * @p: the process that the cpu time gets accounted to
4763 * @user_tick: indicates if the tick is a user or a system tick
4764 */
4765void account_process_tick(struct task_struct *p, int user_tick)
4766{
4767 cputime_t one_jiffy = jiffies_to_cputime(1);
4768 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4769 struct rq *rq = this_rq();
4770
4771 if (user_tick)
4772 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 4773 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
4774 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4775 one_jiffy_scaled);
4776 else
4777 account_idle_time(one_jiffy);
4778}
4779
4780/*
4781 * Account multiple ticks of steal time.
4782 * @p: the process from which the cpu time has been stolen
4783 * @ticks: number of stolen ticks
4784 */
4785void account_steal_ticks(unsigned long ticks)
4786{
4787 account_steal_time(jiffies_to_cputime(ticks));
4788}
4789
4790/*
4791 * Account multiple ticks of idle time.
4792 * @ticks: number of stolen ticks
4793 */
4794void account_idle_ticks(unsigned long ticks)
4795{
4796 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4797}
4798
79741dd3
MS
4799#endif
4800
49048622
BS
4801/*
4802 * Use precise platform statistics if available:
4803 */
4804#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4805cputime_t task_utime(struct task_struct *p)
4806{
4807 return p->utime;
4808}
4809
4810cputime_t task_stime(struct task_struct *p)
4811{
4812 return p->stime;
4813}
4814#else
4815cputime_t task_utime(struct task_struct *p)
4816{
4817 clock_t utime = cputime_to_clock_t(p->utime),
4818 total = utime + cputime_to_clock_t(p->stime);
4819 u64 temp;
4820
4821 /*
4822 * Use CFS's precise accounting:
4823 */
4824 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4825
4826 if (total) {
4827 temp *= utime;
4828 do_div(temp, total);
4829 }
4830 utime = (clock_t)temp;
4831
4832 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4833 return p->prev_utime;
4834}
4835
4836cputime_t task_stime(struct task_struct *p)
4837{
4838 clock_t stime;
4839
4840 /*
4841 * Use CFS's precise accounting. (we subtract utime from
4842 * the total, to make sure the total observed by userspace
4843 * grows monotonically - apps rely on that):
4844 */
4845 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4846 cputime_to_clock_t(task_utime(p));
4847
4848 if (stime >= 0)
4849 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4850
4851 return p->prev_stime;
4852}
4853#endif
4854
4855inline cputime_t task_gtime(struct task_struct *p)
4856{
4857 return p->gtime;
4858}
4859
7835b98b
CL
4860/*
4861 * This function gets called by the timer code, with HZ frequency.
4862 * We call it with interrupts disabled.
4863 *
4864 * It also gets called by the fork code, when changing the parent's
4865 * timeslices.
4866 */
4867void scheduler_tick(void)
4868{
7835b98b
CL
4869 int cpu = smp_processor_id();
4870 struct rq *rq = cpu_rq(cpu);
dd41f596 4871 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4872
4873 sched_clock_tick();
dd41f596
IM
4874
4875 spin_lock(&rq->lock);
3e51f33f 4876 update_rq_clock(rq);
f1a438d8 4877 update_cpu_load(rq);
fa85ae24 4878 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4879 spin_unlock(&rq->lock);
7835b98b 4880
e220d2dc
PZ
4881 perf_counter_task_tick(curr, cpu);
4882
e418e1c2 4883#ifdef CONFIG_SMP
dd41f596
IM
4884 rq->idle_at_tick = idle_cpu(cpu);
4885 trigger_load_balance(rq, cpu);
e418e1c2 4886#endif
1da177e4
LT
4887}
4888
132380a0 4889notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4890{
4891 if (in_lock_functions(addr)) {
4892 addr = CALLER_ADDR2;
4893 if (in_lock_functions(addr))
4894 addr = CALLER_ADDR3;
4895 }
4896 return addr;
4897}
1da177e4 4898
7e49fcce
SR
4899#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4900 defined(CONFIG_PREEMPT_TRACER))
4901
43627582 4902void __kprobes add_preempt_count(int val)
1da177e4 4903{
6cd8a4bb 4904#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4905 /*
4906 * Underflow?
4907 */
9a11b49a
IM
4908 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4909 return;
6cd8a4bb 4910#endif
1da177e4 4911 preempt_count() += val;
6cd8a4bb 4912#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4913 /*
4914 * Spinlock count overflowing soon?
4915 */
33859f7f
MOS
4916 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4917 PREEMPT_MASK - 10);
6cd8a4bb
SR
4918#endif
4919 if (preempt_count() == val)
4920 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4921}
4922EXPORT_SYMBOL(add_preempt_count);
4923
43627582 4924void __kprobes sub_preempt_count(int val)
1da177e4 4925{
6cd8a4bb 4926#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4927 /*
4928 * Underflow?
4929 */
01e3eb82 4930 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4931 return;
1da177e4
LT
4932 /*
4933 * Is the spinlock portion underflowing?
4934 */
9a11b49a
IM
4935 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4936 !(preempt_count() & PREEMPT_MASK)))
4937 return;
6cd8a4bb 4938#endif
9a11b49a 4939
6cd8a4bb
SR
4940 if (preempt_count() == val)
4941 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4942 preempt_count() -= val;
4943}
4944EXPORT_SYMBOL(sub_preempt_count);
4945
4946#endif
4947
4948/*
dd41f596 4949 * Print scheduling while atomic bug:
1da177e4 4950 */
dd41f596 4951static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4952{
838225b4
SS
4953 struct pt_regs *regs = get_irq_regs();
4954
4955 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4956 prev->comm, prev->pid, preempt_count());
4957
dd41f596 4958 debug_show_held_locks(prev);
e21f5b15 4959 print_modules();
dd41f596
IM
4960 if (irqs_disabled())
4961 print_irqtrace_events(prev);
838225b4
SS
4962
4963 if (regs)
4964 show_regs(regs);
4965 else
4966 dump_stack();
dd41f596 4967}
1da177e4 4968
dd41f596
IM
4969/*
4970 * Various schedule()-time debugging checks and statistics:
4971 */
4972static inline void schedule_debug(struct task_struct *prev)
4973{
1da177e4 4974 /*
41a2d6cf 4975 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4976 * schedule() atomically, we ignore that path for now.
4977 * Otherwise, whine if we are scheduling when we should not be.
4978 */
3f33a7ce 4979 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4980 __schedule_bug(prev);
4981
1da177e4
LT
4982 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4983
2d72376b 4984 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4985#ifdef CONFIG_SCHEDSTATS
4986 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4987 schedstat_inc(this_rq(), bkl_count);
4988 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4989 }
4990#endif
dd41f596
IM
4991}
4992
df1c99d4
MG
4993static void put_prev_task(struct rq *rq, struct task_struct *prev)
4994{
4995 if (prev->state == TASK_RUNNING) {
4996 u64 runtime = prev->se.sum_exec_runtime;
4997
4998 runtime -= prev->se.prev_sum_exec_runtime;
4999 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5000
5001 /*
5002 * In order to avoid avg_overlap growing stale when we are
5003 * indeed overlapping and hence not getting put to sleep, grow
5004 * the avg_overlap on preemption.
5005 *
5006 * We use the average preemption runtime because that
5007 * correlates to the amount of cache footprint a task can
5008 * build up.
5009 */
5010 update_avg(&prev->se.avg_overlap, runtime);
5011 }
5012 prev->sched_class->put_prev_task(rq, prev);
5013}
5014
dd41f596
IM
5015/*
5016 * Pick up the highest-prio task:
5017 */
5018static inline struct task_struct *
b67802ea 5019pick_next_task(struct rq *rq)
dd41f596 5020{
5522d5d5 5021 const struct sched_class *class;
dd41f596 5022 struct task_struct *p;
1da177e4
LT
5023
5024 /*
dd41f596
IM
5025 * Optimization: we know that if all tasks are in
5026 * the fair class we can call that function directly:
1da177e4 5027 */
dd41f596 5028 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5029 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5030 if (likely(p))
5031 return p;
1da177e4
LT
5032 }
5033
dd41f596
IM
5034 class = sched_class_highest;
5035 for ( ; ; ) {
fb8d4724 5036 p = class->pick_next_task(rq);
dd41f596
IM
5037 if (p)
5038 return p;
5039 /*
5040 * Will never be NULL as the idle class always
5041 * returns a non-NULL p:
5042 */
5043 class = class->next;
5044 }
5045}
1da177e4 5046
dd41f596
IM
5047/*
5048 * schedule() is the main scheduler function.
5049 */
41719b03 5050asmlinkage void __sched __schedule(void)
dd41f596
IM
5051{
5052 struct task_struct *prev, *next;
67ca7bde 5053 unsigned long *switch_count;
dd41f596 5054 struct rq *rq;
31656519 5055 int cpu;
dd41f596 5056
dd41f596
IM
5057 cpu = smp_processor_id();
5058 rq = cpu_rq(cpu);
5059 rcu_qsctr_inc(cpu);
5060 prev = rq->curr;
5061 switch_count = &prev->nivcsw;
5062
5063 release_kernel_lock(prev);
5064need_resched_nonpreemptible:
5065
5066 schedule_debug(prev);
1da177e4 5067
31656519 5068 if (sched_feat(HRTICK))
f333fdc9 5069 hrtick_clear(rq);
8f4d37ec 5070
8cd162ce 5071 spin_lock_irq(&rq->lock);
3e51f33f 5072 update_rq_clock(rq);
1e819950 5073 clear_tsk_need_resched(prev);
1da177e4 5074
1da177e4 5075 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5076 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5077 prev->state = TASK_RUNNING;
16882c1e 5078 else
2e1cb74a 5079 deactivate_task(rq, prev, 1);
dd41f596 5080 switch_count = &prev->nvcsw;
1da177e4
LT
5081 }
5082
9a897c5a
SR
5083#ifdef CONFIG_SMP
5084 if (prev->sched_class->pre_schedule)
5085 prev->sched_class->pre_schedule(rq, prev);
5086#endif
f65eda4f 5087
dd41f596 5088 if (unlikely(!rq->nr_running))
1da177e4 5089 idle_balance(cpu, rq);
1da177e4 5090
df1c99d4 5091 put_prev_task(rq, prev);
b67802ea 5092 next = pick_next_task(rq);
1da177e4 5093
1da177e4 5094 if (likely(prev != next)) {
673a90a1 5095 sched_info_switch(prev, next);
564c2b21 5096 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5097
1da177e4
LT
5098 rq->nr_switches++;
5099 rq->curr = next;
5100 ++*switch_count;
5101
dd41f596 5102 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5103 /*
5104 * the context switch might have flipped the stack from under
5105 * us, hence refresh the local variables.
5106 */
5107 cpu = smp_processor_id();
5108 rq = cpu_rq(cpu);
1da177e4
LT
5109 } else
5110 spin_unlock_irq(&rq->lock);
5111
8f4d37ec 5112 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5113 goto need_resched_nonpreemptible;
41719b03 5114}
8f4d37ec 5115
41719b03
PZ
5116asmlinkage void __sched schedule(void)
5117{
5118need_resched:
5119 preempt_disable();
5120 __schedule();
1da177e4
LT
5121 preempt_enable_no_resched();
5122 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
5123 goto need_resched;
5124}
1da177e4
LT
5125EXPORT_SYMBOL(schedule);
5126
0d66bf6d
PZ
5127#ifdef CONFIG_SMP
5128/*
5129 * Look out! "owner" is an entirely speculative pointer
5130 * access and not reliable.
5131 */
5132int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5133{
5134 unsigned int cpu;
5135 struct rq *rq;
5136
5137 if (!sched_feat(OWNER_SPIN))
5138 return 0;
5139
5140#ifdef CONFIG_DEBUG_PAGEALLOC
5141 /*
5142 * Need to access the cpu field knowing that
5143 * DEBUG_PAGEALLOC could have unmapped it if
5144 * the mutex owner just released it and exited.
5145 */
5146 if (probe_kernel_address(&owner->cpu, cpu))
5147 goto out;
5148#else
5149 cpu = owner->cpu;
5150#endif
5151
5152 /*
5153 * Even if the access succeeded (likely case),
5154 * the cpu field may no longer be valid.
5155 */
5156 if (cpu >= nr_cpumask_bits)
5157 goto out;
5158
5159 /*
5160 * We need to validate that we can do a
5161 * get_cpu() and that we have the percpu area.
5162 */
5163 if (!cpu_online(cpu))
5164 goto out;
5165
5166 rq = cpu_rq(cpu);
5167
5168 for (;;) {
5169 /*
5170 * Owner changed, break to re-assess state.
5171 */
5172 if (lock->owner != owner)
5173 break;
5174
5175 /*
5176 * Is that owner really running on that cpu?
5177 */
5178 if (task_thread_info(rq->curr) != owner || need_resched())
5179 return 0;
5180
5181 cpu_relax();
5182 }
5183out:
5184 return 1;
5185}
5186#endif
5187
1da177e4
LT
5188#ifdef CONFIG_PREEMPT
5189/*
2ed6e34f 5190 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5191 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5192 * occur there and call schedule directly.
5193 */
5194asmlinkage void __sched preempt_schedule(void)
5195{
5196 struct thread_info *ti = current_thread_info();
6478d880 5197
1da177e4
LT
5198 /*
5199 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5200 * we do not want to preempt the current task. Just return..
1da177e4 5201 */
beed33a8 5202 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5203 return;
5204
3a5c359a
AK
5205 do {
5206 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5207 schedule();
3a5c359a 5208 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5209
3a5c359a
AK
5210 /*
5211 * Check again in case we missed a preemption opportunity
5212 * between schedule and now.
5213 */
5214 barrier();
5ed0cec0 5215 } while (need_resched());
1da177e4 5216}
1da177e4
LT
5217EXPORT_SYMBOL(preempt_schedule);
5218
5219/*
2ed6e34f 5220 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5221 * off of irq context.
5222 * Note, that this is called and return with irqs disabled. This will
5223 * protect us against recursive calling from irq.
5224 */
5225asmlinkage void __sched preempt_schedule_irq(void)
5226{
5227 struct thread_info *ti = current_thread_info();
6478d880 5228
2ed6e34f 5229 /* Catch callers which need to be fixed */
1da177e4
LT
5230 BUG_ON(ti->preempt_count || !irqs_disabled());
5231
3a5c359a
AK
5232 do {
5233 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5234 local_irq_enable();
5235 schedule();
5236 local_irq_disable();
3a5c359a 5237 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5238
3a5c359a
AK
5239 /*
5240 * Check again in case we missed a preemption opportunity
5241 * between schedule and now.
5242 */
5243 barrier();
5ed0cec0 5244 } while (need_resched());
1da177e4
LT
5245}
5246
5247#endif /* CONFIG_PREEMPT */
5248
95cdf3b7
IM
5249int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5250 void *key)
1da177e4 5251{
48f24c4d 5252 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5253}
1da177e4
LT
5254EXPORT_SYMBOL(default_wake_function);
5255
5256/*
41a2d6cf
IM
5257 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5258 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5259 * number) then we wake all the non-exclusive tasks and one exclusive task.
5260 *
5261 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5262 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5263 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5264 */
777c6c5f
JW
5265void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5266 int nr_exclusive, int sync, void *key)
1da177e4 5267{
2e45874c 5268 wait_queue_t *curr, *next;
1da177e4 5269
2e45874c 5270 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5271 unsigned flags = curr->flags;
5272
1da177e4 5273 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5274 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5275 break;
5276 }
5277}
5278
5279/**
5280 * __wake_up - wake up threads blocked on a waitqueue.
5281 * @q: the waitqueue
5282 * @mode: which threads
5283 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5284 * @key: is directly passed to the wakeup function
1da177e4 5285 */
7ad5b3a5 5286void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5287 int nr_exclusive, void *key)
1da177e4
LT
5288{
5289 unsigned long flags;
5290
5291 spin_lock_irqsave(&q->lock, flags);
5292 __wake_up_common(q, mode, nr_exclusive, 0, key);
5293 spin_unlock_irqrestore(&q->lock, flags);
5294}
1da177e4
LT
5295EXPORT_SYMBOL(__wake_up);
5296
5297/*
5298 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5299 */
7ad5b3a5 5300void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5301{
5302 __wake_up_common(q, mode, 1, 0, NULL);
5303}
5304
4ede816a
DL
5305void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5306{
5307 __wake_up_common(q, mode, 1, 0, key);
5308}
5309
1da177e4 5310/**
4ede816a 5311 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5312 * @q: the waitqueue
5313 * @mode: which threads
5314 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5315 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5316 *
5317 * The sync wakeup differs that the waker knows that it will schedule
5318 * away soon, so while the target thread will be woken up, it will not
5319 * be migrated to another CPU - ie. the two threads are 'synchronized'
5320 * with each other. This can prevent needless bouncing between CPUs.
5321 *
5322 * On UP it can prevent extra preemption.
5323 */
4ede816a
DL
5324void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5325 int nr_exclusive, void *key)
1da177e4
LT
5326{
5327 unsigned long flags;
5328 int sync = 1;
5329
5330 if (unlikely(!q))
5331 return;
5332
5333 if (unlikely(!nr_exclusive))
5334 sync = 0;
5335
5336 spin_lock_irqsave(&q->lock, flags);
4ede816a 5337 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5338 spin_unlock_irqrestore(&q->lock, flags);
5339}
4ede816a
DL
5340EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5341
5342/*
5343 * __wake_up_sync - see __wake_up_sync_key()
5344 */
5345void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5346{
5347 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5348}
1da177e4
LT
5349EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5350
65eb3dc6
KD
5351/**
5352 * complete: - signals a single thread waiting on this completion
5353 * @x: holds the state of this particular completion
5354 *
5355 * This will wake up a single thread waiting on this completion. Threads will be
5356 * awakened in the same order in which they were queued.
5357 *
5358 * See also complete_all(), wait_for_completion() and related routines.
5359 */
b15136e9 5360void complete(struct completion *x)
1da177e4
LT
5361{
5362 unsigned long flags;
5363
5364 spin_lock_irqsave(&x->wait.lock, flags);
5365 x->done++;
d9514f6c 5366 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5367 spin_unlock_irqrestore(&x->wait.lock, flags);
5368}
5369EXPORT_SYMBOL(complete);
5370
65eb3dc6
KD
5371/**
5372 * complete_all: - signals all threads waiting on this completion
5373 * @x: holds the state of this particular completion
5374 *
5375 * This will wake up all threads waiting on this particular completion event.
5376 */
b15136e9 5377void complete_all(struct completion *x)
1da177e4
LT
5378{
5379 unsigned long flags;
5380
5381 spin_lock_irqsave(&x->wait.lock, flags);
5382 x->done += UINT_MAX/2;
d9514f6c 5383 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5384 spin_unlock_irqrestore(&x->wait.lock, flags);
5385}
5386EXPORT_SYMBOL(complete_all);
5387
8cbbe86d
AK
5388static inline long __sched
5389do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5390{
1da177e4
LT
5391 if (!x->done) {
5392 DECLARE_WAITQUEUE(wait, current);
5393
5394 wait.flags |= WQ_FLAG_EXCLUSIVE;
5395 __add_wait_queue_tail(&x->wait, &wait);
5396 do {
94d3d824 5397 if (signal_pending_state(state, current)) {
ea71a546
ON
5398 timeout = -ERESTARTSYS;
5399 break;
8cbbe86d
AK
5400 }
5401 __set_current_state(state);
1da177e4
LT
5402 spin_unlock_irq(&x->wait.lock);
5403 timeout = schedule_timeout(timeout);
5404 spin_lock_irq(&x->wait.lock);
ea71a546 5405 } while (!x->done && timeout);
1da177e4 5406 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5407 if (!x->done)
5408 return timeout;
1da177e4
LT
5409 }
5410 x->done--;
ea71a546 5411 return timeout ?: 1;
1da177e4 5412}
1da177e4 5413
8cbbe86d
AK
5414static long __sched
5415wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5416{
1da177e4
LT
5417 might_sleep();
5418
5419 spin_lock_irq(&x->wait.lock);
8cbbe86d 5420 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5421 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5422 return timeout;
5423}
1da177e4 5424
65eb3dc6
KD
5425/**
5426 * wait_for_completion: - waits for completion of a task
5427 * @x: holds the state of this particular completion
5428 *
5429 * This waits to be signaled for completion of a specific task. It is NOT
5430 * interruptible and there is no timeout.
5431 *
5432 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5433 * and interrupt capability. Also see complete().
5434 */
b15136e9 5435void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5436{
5437 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5438}
8cbbe86d 5439EXPORT_SYMBOL(wait_for_completion);
1da177e4 5440
65eb3dc6
KD
5441/**
5442 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5443 * @x: holds the state of this particular completion
5444 * @timeout: timeout value in jiffies
5445 *
5446 * This waits for either a completion of a specific task to be signaled or for a
5447 * specified timeout to expire. The timeout is in jiffies. It is not
5448 * interruptible.
5449 */
b15136e9 5450unsigned long __sched
8cbbe86d 5451wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5452{
8cbbe86d 5453 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5454}
8cbbe86d 5455EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5456
65eb3dc6
KD
5457/**
5458 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5459 * @x: holds the state of this particular completion
5460 *
5461 * This waits for completion of a specific task to be signaled. It is
5462 * interruptible.
5463 */
8cbbe86d 5464int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5465{
51e97990
AK
5466 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5467 if (t == -ERESTARTSYS)
5468 return t;
5469 return 0;
0fec171c 5470}
8cbbe86d 5471EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5472
65eb3dc6
KD
5473/**
5474 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5475 * @x: holds the state of this particular completion
5476 * @timeout: timeout value in jiffies
5477 *
5478 * This waits for either a completion of a specific task to be signaled or for a
5479 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5480 */
b15136e9 5481unsigned long __sched
8cbbe86d
AK
5482wait_for_completion_interruptible_timeout(struct completion *x,
5483 unsigned long timeout)
0fec171c 5484{
8cbbe86d 5485 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5486}
8cbbe86d 5487EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5488
65eb3dc6
KD
5489/**
5490 * wait_for_completion_killable: - waits for completion of a task (killable)
5491 * @x: holds the state of this particular completion
5492 *
5493 * This waits to be signaled for completion of a specific task. It can be
5494 * interrupted by a kill signal.
5495 */
009e577e
MW
5496int __sched wait_for_completion_killable(struct completion *x)
5497{
5498 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5499 if (t == -ERESTARTSYS)
5500 return t;
5501 return 0;
5502}
5503EXPORT_SYMBOL(wait_for_completion_killable);
5504
be4de352
DC
5505/**
5506 * try_wait_for_completion - try to decrement a completion without blocking
5507 * @x: completion structure
5508 *
5509 * Returns: 0 if a decrement cannot be done without blocking
5510 * 1 if a decrement succeeded.
5511 *
5512 * If a completion is being used as a counting completion,
5513 * attempt to decrement the counter without blocking. This
5514 * enables us to avoid waiting if the resource the completion
5515 * is protecting is not available.
5516 */
5517bool try_wait_for_completion(struct completion *x)
5518{
5519 int ret = 1;
5520
5521 spin_lock_irq(&x->wait.lock);
5522 if (!x->done)
5523 ret = 0;
5524 else
5525 x->done--;
5526 spin_unlock_irq(&x->wait.lock);
5527 return ret;
5528}
5529EXPORT_SYMBOL(try_wait_for_completion);
5530
5531/**
5532 * completion_done - Test to see if a completion has any waiters
5533 * @x: completion structure
5534 *
5535 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5536 * 1 if there are no waiters.
5537 *
5538 */
5539bool completion_done(struct completion *x)
5540{
5541 int ret = 1;
5542
5543 spin_lock_irq(&x->wait.lock);
5544 if (!x->done)
5545 ret = 0;
5546 spin_unlock_irq(&x->wait.lock);
5547 return ret;
5548}
5549EXPORT_SYMBOL(completion_done);
5550
8cbbe86d
AK
5551static long __sched
5552sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5553{
0fec171c
IM
5554 unsigned long flags;
5555 wait_queue_t wait;
5556
5557 init_waitqueue_entry(&wait, current);
1da177e4 5558
8cbbe86d 5559 __set_current_state(state);
1da177e4 5560
8cbbe86d
AK
5561 spin_lock_irqsave(&q->lock, flags);
5562 __add_wait_queue(q, &wait);
5563 spin_unlock(&q->lock);
5564 timeout = schedule_timeout(timeout);
5565 spin_lock_irq(&q->lock);
5566 __remove_wait_queue(q, &wait);
5567 spin_unlock_irqrestore(&q->lock, flags);
5568
5569 return timeout;
5570}
5571
5572void __sched interruptible_sleep_on(wait_queue_head_t *q)
5573{
5574 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5575}
1da177e4
LT
5576EXPORT_SYMBOL(interruptible_sleep_on);
5577
0fec171c 5578long __sched
95cdf3b7 5579interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5580{
8cbbe86d 5581 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5582}
1da177e4
LT
5583EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5584
0fec171c 5585void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5586{
8cbbe86d 5587 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5588}
1da177e4
LT
5589EXPORT_SYMBOL(sleep_on);
5590
0fec171c 5591long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5592{
8cbbe86d 5593 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5594}
1da177e4
LT
5595EXPORT_SYMBOL(sleep_on_timeout);
5596
b29739f9
IM
5597#ifdef CONFIG_RT_MUTEXES
5598
5599/*
5600 * rt_mutex_setprio - set the current priority of a task
5601 * @p: task
5602 * @prio: prio value (kernel-internal form)
5603 *
5604 * This function changes the 'effective' priority of a task. It does
5605 * not touch ->normal_prio like __setscheduler().
5606 *
5607 * Used by the rt_mutex code to implement priority inheritance logic.
5608 */
36c8b586 5609void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5610{
5611 unsigned long flags;
83b699ed 5612 int oldprio, on_rq, running;
70b97a7f 5613 struct rq *rq;
cb469845 5614 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5615
5616 BUG_ON(prio < 0 || prio > MAX_PRIO);
5617
5618 rq = task_rq_lock(p, &flags);
a8e504d2 5619 update_rq_clock(rq);
b29739f9 5620
d5f9f942 5621 oldprio = p->prio;
dd41f596 5622 on_rq = p->se.on_rq;
051a1d1a 5623 running = task_current(rq, p);
0e1f3483 5624 if (on_rq)
69be72c1 5625 dequeue_task(rq, p, 0);
0e1f3483
HS
5626 if (running)
5627 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5628
5629 if (rt_prio(prio))
5630 p->sched_class = &rt_sched_class;
5631 else
5632 p->sched_class = &fair_sched_class;
5633
b29739f9
IM
5634 p->prio = prio;
5635
0e1f3483
HS
5636 if (running)
5637 p->sched_class->set_curr_task(rq);
dd41f596 5638 if (on_rq) {
8159f87e 5639 enqueue_task(rq, p, 0);
cb469845
SR
5640
5641 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5642 }
5643 task_rq_unlock(rq, &flags);
5644}
5645
5646#endif
5647
36c8b586 5648void set_user_nice(struct task_struct *p, long nice)
1da177e4 5649{
dd41f596 5650 int old_prio, delta, on_rq;
1da177e4 5651 unsigned long flags;
70b97a7f 5652 struct rq *rq;
1da177e4
LT
5653
5654 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5655 return;
5656 /*
5657 * We have to be careful, if called from sys_setpriority(),
5658 * the task might be in the middle of scheduling on another CPU.
5659 */
5660 rq = task_rq_lock(p, &flags);
a8e504d2 5661 update_rq_clock(rq);
1da177e4
LT
5662 /*
5663 * The RT priorities are set via sched_setscheduler(), but we still
5664 * allow the 'normal' nice value to be set - but as expected
5665 * it wont have any effect on scheduling until the task is
dd41f596 5666 * SCHED_FIFO/SCHED_RR:
1da177e4 5667 */
e05606d3 5668 if (task_has_rt_policy(p)) {
1da177e4
LT
5669 p->static_prio = NICE_TO_PRIO(nice);
5670 goto out_unlock;
5671 }
dd41f596 5672 on_rq = p->se.on_rq;
c09595f6 5673 if (on_rq)
69be72c1 5674 dequeue_task(rq, p, 0);
1da177e4 5675
1da177e4 5676 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5677 set_load_weight(p);
b29739f9
IM
5678 old_prio = p->prio;
5679 p->prio = effective_prio(p);
5680 delta = p->prio - old_prio;
1da177e4 5681
dd41f596 5682 if (on_rq) {
8159f87e 5683 enqueue_task(rq, p, 0);
1da177e4 5684 /*
d5f9f942
AM
5685 * If the task increased its priority or is running and
5686 * lowered its priority, then reschedule its CPU:
1da177e4 5687 */
d5f9f942 5688 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5689 resched_task(rq->curr);
5690 }
5691out_unlock:
5692 task_rq_unlock(rq, &flags);
5693}
1da177e4
LT
5694EXPORT_SYMBOL(set_user_nice);
5695
e43379f1
MM
5696/*
5697 * can_nice - check if a task can reduce its nice value
5698 * @p: task
5699 * @nice: nice value
5700 */
36c8b586 5701int can_nice(const struct task_struct *p, const int nice)
e43379f1 5702{
024f4747
MM
5703 /* convert nice value [19,-20] to rlimit style value [1,40] */
5704 int nice_rlim = 20 - nice;
48f24c4d 5705
e43379f1
MM
5706 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5707 capable(CAP_SYS_NICE));
5708}
5709
1da177e4
LT
5710#ifdef __ARCH_WANT_SYS_NICE
5711
5712/*
5713 * sys_nice - change the priority of the current process.
5714 * @increment: priority increment
5715 *
5716 * sys_setpriority is a more generic, but much slower function that
5717 * does similar things.
5718 */
5add95d4 5719SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5720{
48f24c4d 5721 long nice, retval;
1da177e4
LT
5722
5723 /*
5724 * Setpriority might change our priority at the same moment.
5725 * We don't have to worry. Conceptually one call occurs first
5726 * and we have a single winner.
5727 */
e43379f1
MM
5728 if (increment < -40)
5729 increment = -40;
1da177e4
LT
5730 if (increment > 40)
5731 increment = 40;
5732
2b8f836f 5733 nice = TASK_NICE(current) + increment;
1da177e4
LT
5734 if (nice < -20)
5735 nice = -20;
5736 if (nice > 19)
5737 nice = 19;
5738
e43379f1
MM
5739 if (increment < 0 && !can_nice(current, nice))
5740 return -EPERM;
5741
1da177e4
LT
5742 retval = security_task_setnice(current, nice);
5743 if (retval)
5744 return retval;
5745
5746 set_user_nice(current, nice);
5747 return 0;
5748}
5749
5750#endif
5751
5752/**
5753 * task_prio - return the priority value of a given task.
5754 * @p: the task in question.
5755 *
5756 * This is the priority value as seen by users in /proc.
5757 * RT tasks are offset by -200. Normal tasks are centered
5758 * around 0, value goes from -16 to +15.
5759 */
36c8b586 5760int task_prio(const struct task_struct *p)
1da177e4
LT
5761{
5762 return p->prio - MAX_RT_PRIO;
5763}
5764
5765/**
5766 * task_nice - return the nice value of a given task.
5767 * @p: the task in question.
5768 */
36c8b586 5769int task_nice(const struct task_struct *p)
1da177e4
LT
5770{
5771 return TASK_NICE(p);
5772}
150d8bed 5773EXPORT_SYMBOL(task_nice);
1da177e4
LT
5774
5775/**
5776 * idle_cpu - is a given cpu idle currently?
5777 * @cpu: the processor in question.
5778 */
5779int idle_cpu(int cpu)
5780{
5781 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5782}
5783
1da177e4
LT
5784/**
5785 * idle_task - return the idle task for a given cpu.
5786 * @cpu: the processor in question.
5787 */
36c8b586 5788struct task_struct *idle_task(int cpu)
1da177e4
LT
5789{
5790 return cpu_rq(cpu)->idle;
5791}
5792
5793/**
5794 * find_process_by_pid - find a process with a matching PID value.
5795 * @pid: the pid in question.
5796 */
a9957449 5797static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5798{
228ebcbe 5799 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5800}
5801
5802/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5803static void
5804__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5805{
dd41f596 5806 BUG_ON(p->se.on_rq);
48f24c4d 5807
1da177e4 5808 p->policy = policy;
dd41f596
IM
5809 switch (p->policy) {
5810 case SCHED_NORMAL:
5811 case SCHED_BATCH:
5812 case SCHED_IDLE:
5813 p->sched_class = &fair_sched_class;
5814 break;
5815 case SCHED_FIFO:
5816 case SCHED_RR:
5817 p->sched_class = &rt_sched_class;
5818 break;
5819 }
5820
1da177e4 5821 p->rt_priority = prio;
b29739f9
IM
5822 p->normal_prio = normal_prio(p);
5823 /* we are holding p->pi_lock already */
5824 p->prio = rt_mutex_getprio(p);
2dd73a4f 5825 set_load_weight(p);
1da177e4
LT
5826}
5827
c69e8d9c
DH
5828/*
5829 * check the target process has a UID that matches the current process's
5830 */
5831static bool check_same_owner(struct task_struct *p)
5832{
5833 const struct cred *cred = current_cred(), *pcred;
5834 bool match;
5835
5836 rcu_read_lock();
5837 pcred = __task_cred(p);
5838 match = (cred->euid == pcred->euid ||
5839 cred->euid == pcred->uid);
5840 rcu_read_unlock();
5841 return match;
5842}
5843
961ccddd
RR
5844static int __sched_setscheduler(struct task_struct *p, int policy,
5845 struct sched_param *param, bool user)
1da177e4 5846{
83b699ed 5847 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5848 unsigned long flags;
cb469845 5849 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5850 struct rq *rq;
1da177e4 5851
66e5393a
SR
5852 /* may grab non-irq protected spin_locks */
5853 BUG_ON(in_interrupt());
1da177e4
LT
5854recheck:
5855 /* double check policy once rq lock held */
5856 if (policy < 0)
5857 policy = oldpolicy = p->policy;
5858 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5859 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5860 policy != SCHED_IDLE)
b0a9499c 5861 return -EINVAL;
1da177e4
LT
5862 /*
5863 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5864 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5865 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5866 */
5867 if (param->sched_priority < 0 ||
95cdf3b7 5868 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5869 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5870 return -EINVAL;
e05606d3 5871 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5872 return -EINVAL;
5873
37e4ab3f
OC
5874 /*
5875 * Allow unprivileged RT tasks to decrease priority:
5876 */
961ccddd 5877 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5878 if (rt_policy(policy)) {
8dc3e909 5879 unsigned long rlim_rtprio;
8dc3e909
ON
5880
5881 if (!lock_task_sighand(p, &flags))
5882 return -ESRCH;
5883 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5884 unlock_task_sighand(p, &flags);
5885
5886 /* can't set/change the rt policy */
5887 if (policy != p->policy && !rlim_rtprio)
5888 return -EPERM;
5889
5890 /* can't increase priority */
5891 if (param->sched_priority > p->rt_priority &&
5892 param->sched_priority > rlim_rtprio)
5893 return -EPERM;
5894 }
dd41f596
IM
5895 /*
5896 * Like positive nice levels, dont allow tasks to
5897 * move out of SCHED_IDLE either:
5898 */
5899 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5900 return -EPERM;
5fe1d75f 5901
37e4ab3f 5902 /* can't change other user's priorities */
c69e8d9c 5903 if (!check_same_owner(p))
37e4ab3f
OC
5904 return -EPERM;
5905 }
1da177e4 5906
725aad24 5907 if (user) {
b68aa230 5908#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5909 /*
5910 * Do not allow realtime tasks into groups that have no runtime
5911 * assigned.
5912 */
9a7e0b18
PZ
5913 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5914 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5915 return -EPERM;
b68aa230
PZ
5916#endif
5917
725aad24
JF
5918 retval = security_task_setscheduler(p, policy, param);
5919 if (retval)
5920 return retval;
5921 }
5922
b29739f9
IM
5923 /*
5924 * make sure no PI-waiters arrive (or leave) while we are
5925 * changing the priority of the task:
5926 */
5927 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5928 /*
5929 * To be able to change p->policy safely, the apropriate
5930 * runqueue lock must be held.
5931 */
b29739f9 5932 rq = __task_rq_lock(p);
1da177e4
LT
5933 /* recheck policy now with rq lock held */
5934 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5935 policy = oldpolicy = -1;
b29739f9
IM
5936 __task_rq_unlock(rq);
5937 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5938 goto recheck;
5939 }
2daa3577 5940 update_rq_clock(rq);
dd41f596 5941 on_rq = p->se.on_rq;
051a1d1a 5942 running = task_current(rq, p);
0e1f3483 5943 if (on_rq)
2e1cb74a 5944 deactivate_task(rq, p, 0);
0e1f3483
HS
5945 if (running)
5946 p->sched_class->put_prev_task(rq, p);
f6b53205 5947
1da177e4 5948 oldprio = p->prio;
dd41f596 5949 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5950
0e1f3483
HS
5951 if (running)
5952 p->sched_class->set_curr_task(rq);
dd41f596
IM
5953 if (on_rq) {
5954 activate_task(rq, p, 0);
cb469845
SR
5955
5956 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5957 }
b29739f9
IM
5958 __task_rq_unlock(rq);
5959 spin_unlock_irqrestore(&p->pi_lock, flags);
5960
95e02ca9
TG
5961 rt_mutex_adjust_pi(p);
5962
1da177e4
LT
5963 return 0;
5964}
961ccddd
RR
5965
5966/**
5967 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5968 * @p: the task in question.
5969 * @policy: new policy.
5970 * @param: structure containing the new RT priority.
5971 *
5972 * NOTE that the task may be already dead.
5973 */
5974int sched_setscheduler(struct task_struct *p, int policy,
5975 struct sched_param *param)
5976{
5977 return __sched_setscheduler(p, policy, param, true);
5978}
1da177e4
LT
5979EXPORT_SYMBOL_GPL(sched_setscheduler);
5980
961ccddd
RR
5981/**
5982 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5983 * @p: the task in question.
5984 * @policy: new policy.
5985 * @param: structure containing the new RT priority.
5986 *
5987 * Just like sched_setscheduler, only don't bother checking if the
5988 * current context has permission. For example, this is needed in
5989 * stop_machine(): we create temporary high priority worker threads,
5990 * but our caller might not have that capability.
5991 */
5992int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5993 struct sched_param *param)
5994{
5995 return __sched_setscheduler(p, policy, param, false);
5996}
5997
95cdf3b7
IM
5998static int
5999do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6000{
1da177e4
LT
6001 struct sched_param lparam;
6002 struct task_struct *p;
36c8b586 6003 int retval;
1da177e4
LT
6004
6005 if (!param || pid < 0)
6006 return -EINVAL;
6007 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6008 return -EFAULT;
5fe1d75f
ON
6009
6010 rcu_read_lock();
6011 retval = -ESRCH;
1da177e4 6012 p = find_process_by_pid(pid);
5fe1d75f
ON
6013 if (p != NULL)
6014 retval = sched_setscheduler(p, policy, &lparam);
6015 rcu_read_unlock();
36c8b586 6016
1da177e4
LT
6017 return retval;
6018}
6019
6020/**
6021 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6022 * @pid: the pid in question.
6023 * @policy: new policy.
6024 * @param: structure containing the new RT priority.
6025 */
5add95d4
HC
6026SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6027 struct sched_param __user *, param)
1da177e4 6028{
c21761f1
JB
6029 /* negative values for policy are not valid */
6030 if (policy < 0)
6031 return -EINVAL;
6032
1da177e4
LT
6033 return do_sched_setscheduler(pid, policy, param);
6034}
6035
6036/**
6037 * sys_sched_setparam - set/change the RT priority of a thread
6038 * @pid: the pid in question.
6039 * @param: structure containing the new RT priority.
6040 */
5add95d4 6041SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6042{
6043 return do_sched_setscheduler(pid, -1, param);
6044}
6045
6046/**
6047 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6048 * @pid: the pid in question.
6049 */
5add95d4 6050SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6051{
36c8b586 6052 struct task_struct *p;
3a5c359a 6053 int retval;
1da177e4
LT
6054
6055 if (pid < 0)
3a5c359a 6056 return -EINVAL;
1da177e4
LT
6057
6058 retval = -ESRCH;
6059 read_lock(&tasklist_lock);
6060 p = find_process_by_pid(pid);
6061 if (p) {
6062 retval = security_task_getscheduler(p);
6063 if (!retval)
6064 retval = p->policy;
6065 }
6066 read_unlock(&tasklist_lock);
1da177e4
LT
6067 return retval;
6068}
6069
6070/**
6071 * sys_sched_getscheduler - get the RT priority of a thread
6072 * @pid: the pid in question.
6073 * @param: structure containing the RT priority.
6074 */
5add95d4 6075SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6076{
6077 struct sched_param lp;
36c8b586 6078 struct task_struct *p;
3a5c359a 6079 int retval;
1da177e4
LT
6080
6081 if (!param || pid < 0)
3a5c359a 6082 return -EINVAL;
1da177e4
LT
6083
6084 read_lock(&tasklist_lock);
6085 p = find_process_by_pid(pid);
6086 retval = -ESRCH;
6087 if (!p)
6088 goto out_unlock;
6089
6090 retval = security_task_getscheduler(p);
6091 if (retval)
6092 goto out_unlock;
6093
6094 lp.sched_priority = p->rt_priority;
6095 read_unlock(&tasklist_lock);
6096
6097 /*
6098 * This one might sleep, we cannot do it with a spinlock held ...
6099 */
6100 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6101
1da177e4
LT
6102 return retval;
6103
6104out_unlock:
6105 read_unlock(&tasklist_lock);
6106 return retval;
6107}
6108
96f874e2 6109long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6110{
5a16f3d3 6111 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6112 struct task_struct *p;
6113 int retval;
1da177e4 6114
95402b38 6115 get_online_cpus();
1da177e4
LT
6116 read_lock(&tasklist_lock);
6117
6118 p = find_process_by_pid(pid);
6119 if (!p) {
6120 read_unlock(&tasklist_lock);
95402b38 6121 put_online_cpus();
1da177e4
LT
6122 return -ESRCH;
6123 }
6124
6125 /*
6126 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6127 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6128 * usage count and then drop tasklist_lock.
6129 */
6130 get_task_struct(p);
6131 read_unlock(&tasklist_lock);
6132
5a16f3d3
RR
6133 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6134 retval = -ENOMEM;
6135 goto out_put_task;
6136 }
6137 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6138 retval = -ENOMEM;
6139 goto out_free_cpus_allowed;
6140 }
1da177e4 6141 retval = -EPERM;
c69e8d9c 6142 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6143 goto out_unlock;
6144
e7834f8f
DQ
6145 retval = security_task_setscheduler(p, 0, NULL);
6146 if (retval)
6147 goto out_unlock;
6148
5a16f3d3
RR
6149 cpuset_cpus_allowed(p, cpus_allowed);
6150 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6151 again:
5a16f3d3 6152 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6153
8707d8b8 6154 if (!retval) {
5a16f3d3
RR
6155 cpuset_cpus_allowed(p, cpus_allowed);
6156 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6157 /*
6158 * We must have raced with a concurrent cpuset
6159 * update. Just reset the cpus_allowed to the
6160 * cpuset's cpus_allowed
6161 */
5a16f3d3 6162 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6163 goto again;
6164 }
6165 }
1da177e4 6166out_unlock:
5a16f3d3
RR
6167 free_cpumask_var(new_mask);
6168out_free_cpus_allowed:
6169 free_cpumask_var(cpus_allowed);
6170out_put_task:
1da177e4 6171 put_task_struct(p);
95402b38 6172 put_online_cpus();
1da177e4
LT
6173 return retval;
6174}
6175
6176static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6177 struct cpumask *new_mask)
1da177e4 6178{
96f874e2
RR
6179 if (len < cpumask_size())
6180 cpumask_clear(new_mask);
6181 else if (len > cpumask_size())
6182 len = cpumask_size();
6183
1da177e4
LT
6184 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6185}
6186
6187/**
6188 * sys_sched_setaffinity - set the cpu affinity of a process
6189 * @pid: pid of the process
6190 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6191 * @user_mask_ptr: user-space pointer to the new cpu mask
6192 */
5add95d4
HC
6193SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6194 unsigned long __user *, user_mask_ptr)
1da177e4 6195{
5a16f3d3 6196 cpumask_var_t new_mask;
1da177e4
LT
6197 int retval;
6198
5a16f3d3
RR
6199 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6200 return -ENOMEM;
1da177e4 6201
5a16f3d3
RR
6202 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6203 if (retval == 0)
6204 retval = sched_setaffinity(pid, new_mask);
6205 free_cpumask_var(new_mask);
6206 return retval;
1da177e4
LT
6207}
6208
96f874e2 6209long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6210{
36c8b586 6211 struct task_struct *p;
1da177e4 6212 int retval;
1da177e4 6213
95402b38 6214 get_online_cpus();
1da177e4
LT
6215 read_lock(&tasklist_lock);
6216
6217 retval = -ESRCH;
6218 p = find_process_by_pid(pid);
6219 if (!p)
6220 goto out_unlock;
6221
e7834f8f
DQ
6222 retval = security_task_getscheduler(p);
6223 if (retval)
6224 goto out_unlock;
6225
96f874e2 6226 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6227
6228out_unlock:
6229 read_unlock(&tasklist_lock);
95402b38 6230 put_online_cpus();
1da177e4 6231
9531b62f 6232 return retval;
1da177e4
LT
6233}
6234
6235/**
6236 * sys_sched_getaffinity - get the cpu affinity of a process
6237 * @pid: pid of the process
6238 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6239 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6240 */
5add95d4
HC
6241SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6242 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6243{
6244 int ret;
f17c8607 6245 cpumask_var_t mask;
1da177e4 6246
f17c8607 6247 if (len < cpumask_size())
1da177e4
LT
6248 return -EINVAL;
6249
f17c8607
RR
6250 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6251 return -ENOMEM;
1da177e4 6252
f17c8607
RR
6253 ret = sched_getaffinity(pid, mask);
6254 if (ret == 0) {
6255 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6256 ret = -EFAULT;
6257 else
6258 ret = cpumask_size();
6259 }
6260 free_cpumask_var(mask);
1da177e4 6261
f17c8607 6262 return ret;
1da177e4
LT
6263}
6264
6265/**
6266 * sys_sched_yield - yield the current processor to other threads.
6267 *
dd41f596
IM
6268 * This function yields the current CPU to other tasks. If there are no
6269 * other threads running on this CPU then this function will return.
1da177e4 6270 */
5add95d4 6271SYSCALL_DEFINE0(sched_yield)
1da177e4 6272{
70b97a7f 6273 struct rq *rq = this_rq_lock();
1da177e4 6274
2d72376b 6275 schedstat_inc(rq, yld_count);
4530d7ab 6276 current->sched_class->yield_task(rq);
1da177e4
LT
6277
6278 /*
6279 * Since we are going to call schedule() anyway, there's
6280 * no need to preempt or enable interrupts:
6281 */
6282 __release(rq->lock);
8a25d5de 6283 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6284 _raw_spin_unlock(&rq->lock);
6285 preempt_enable_no_resched();
6286
6287 schedule();
6288
6289 return 0;
6290}
6291
e7b38404 6292static void __cond_resched(void)
1da177e4 6293{
8e0a43d8
IM
6294#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6295 __might_sleep(__FILE__, __LINE__);
6296#endif
5bbcfd90
IM
6297 /*
6298 * The BKS might be reacquired before we have dropped
6299 * PREEMPT_ACTIVE, which could trigger a second
6300 * cond_resched() call.
6301 */
1da177e4
LT
6302 do {
6303 add_preempt_count(PREEMPT_ACTIVE);
6304 schedule();
6305 sub_preempt_count(PREEMPT_ACTIVE);
6306 } while (need_resched());
6307}
6308
02b67cc3 6309int __sched _cond_resched(void)
1da177e4 6310{
9414232f
IM
6311 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6312 system_state == SYSTEM_RUNNING) {
1da177e4
LT
6313 __cond_resched();
6314 return 1;
6315 }
6316 return 0;
6317}
02b67cc3 6318EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6319
6320/*
6321 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6322 * call schedule, and on return reacquire the lock.
6323 *
41a2d6cf 6324 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6325 * operations here to prevent schedule() from being called twice (once via
6326 * spin_unlock(), once by hand).
6327 */
95cdf3b7 6328int cond_resched_lock(spinlock_t *lock)
1da177e4 6329{
95c354fe 6330 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
6331 int ret = 0;
6332
95c354fe 6333 if (spin_needbreak(lock) || resched) {
1da177e4 6334 spin_unlock(lock);
95c354fe
NP
6335 if (resched && need_resched())
6336 __cond_resched();
6337 else
6338 cpu_relax();
6df3cecb 6339 ret = 1;
1da177e4 6340 spin_lock(lock);
1da177e4 6341 }
6df3cecb 6342 return ret;
1da177e4 6343}
1da177e4
LT
6344EXPORT_SYMBOL(cond_resched_lock);
6345
6346int __sched cond_resched_softirq(void)
6347{
6348 BUG_ON(!in_softirq());
6349
9414232f 6350 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 6351 local_bh_enable();
1da177e4
LT
6352 __cond_resched();
6353 local_bh_disable();
6354 return 1;
6355 }
6356 return 0;
6357}
1da177e4
LT
6358EXPORT_SYMBOL(cond_resched_softirq);
6359
1da177e4
LT
6360/**
6361 * yield - yield the current processor to other threads.
6362 *
72fd4a35 6363 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6364 * thread runnable and calls sys_sched_yield().
6365 */
6366void __sched yield(void)
6367{
6368 set_current_state(TASK_RUNNING);
6369 sys_sched_yield();
6370}
1da177e4
LT
6371EXPORT_SYMBOL(yield);
6372
6373/*
41a2d6cf 6374 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6375 * that process accounting knows that this is a task in IO wait state.
6376 *
6377 * But don't do that if it is a deliberate, throttling IO wait (this task
6378 * has set its backing_dev_info: the queue against which it should throttle)
6379 */
6380void __sched io_schedule(void)
6381{
70b97a7f 6382 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 6383
0ff92245 6384 delayacct_blkio_start();
1da177e4
LT
6385 atomic_inc(&rq->nr_iowait);
6386 schedule();
6387 atomic_dec(&rq->nr_iowait);
0ff92245 6388 delayacct_blkio_end();
1da177e4 6389}
1da177e4
LT
6390EXPORT_SYMBOL(io_schedule);
6391
6392long __sched io_schedule_timeout(long timeout)
6393{
70b97a7f 6394 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
6395 long ret;
6396
0ff92245 6397 delayacct_blkio_start();
1da177e4
LT
6398 atomic_inc(&rq->nr_iowait);
6399 ret = schedule_timeout(timeout);
6400 atomic_dec(&rq->nr_iowait);
0ff92245 6401 delayacct_blkio_end();
1da177e4
LT
6402 return ret;
6403}
6404
6405/**
6406 * sys_sched_get_priority_max - return maximum RT priority.
6407 * @policy: scheduling class.
6408 *
6409 * this syscall returns the maximum rt_priority that can be used
6410 * by a given scheduling class.
6411 */
5add95d4 6412SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6413{
6414 int ret = -EINVAL;
6415
6416 switch (policy) {
6417 case SCHED_FIFO:
6418 case SCHED_RR:
6419 ret = MAX_USER_RT_PRIO-1;
6420 break;
6421 case SCHED_NORMAL:
b0a9499c 6422 case SCHED_BATCH:
dd41f596 6423 case SCHED_IDLE:
1da177e4
LT
6424 ret = 0;
6425 break;
6426 }
6427 return ret;
6428}
6429
6430/**
6431 * sys_sched_get_priority_min - return minimum RT priority.
6432 * @policy: scheduling class.
6433 *
6434 * this syscall returns the minimum rt_priority that can be used
6435 * by a given scheduling class.
6436 */
5add95d4 6437SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6438{
6439 int ret = -EINVAL;
6440
6441 switch (policy) {
6442 case SCHED_FIFO:
6443 case SCHED_RR:
6444 ret = 1;
6445 break;
6446 case SCHED_NORMAL:
b0a9499c 6447 case SCHED_BATCH:
dd41f596 6448 case SCHED_IDLE:
1da177e4
LT
6449 ret = 0;
6450 }
6451 return ret;
6452}
6453
6454/**
6455 * sys_sched_rr_get_interval - return the default timeslice of a process.
6456 * @pid: pid of the process.
6457 * @interval: userspace pointer to the timeslice value.
6458 *
6459 * this syscall writes the default timeslice value of a given process
6460 * into the user-space timespec buffer. A value of '0' means infinity.
6461 */
17da2bd9 6462SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6463 struct timespec __user *, interval)
1da177e4 6464{
36c8b586 6465 struct task_struct *p;
a4ec24b4 6466 unsigned int time_slice;
3a5c359a 6467 int retval;
1da177e4 6468 struct timespec t;
1da177e4
LT
6469
6470 if (pid < 0)
3a5c359a 6471 return -EINVAL;
1da177e4
LT
6472
6473 retval = -ESRCH;
6474 read_lock(&tasklist_lock);
6475 p = find_process_by_pid(pid);
6476 if (!p)
6477 goto out_unlock;
6478
6479 retval = security_task_getscheduler(p);
6480 if (retval)
6481 goto out_unlock;
6482
77034937
IM
6483 /*
6484 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6485 * tasks that are on an otherwise idle runqueue:
6486 */
6487 time_slice = 0;
6488 if (p->policy == SCHED_RR) {
a4ec24b4 6489 time_slice = DEF_TIMESLICE;
1868f958 6490 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6491 struct sched_entity *se = &p->se;
6492 unsigned long flags;
6493 struct rq *rq;
6494
6495 rq = task_rq_lock(p, &flags);
77034937
IM
6496 if (rq->cfs.load.weight)
6497 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6498 task_rq_unlock(rq, &flags);
6499 }
1da177e4 6500 read_unlock(&tasklist_lock);
a4ec24b4 6501 jiffies_to_timespec(time_slice, &t);
1da177e4 6502 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6503 return retval;
3a5c359a 6504
1da177e4
LT
6505out_unlock:
6506 read_unlock(&tasklist_lock);
6507 return retval;
6508}
6509
7c731e0a 6510static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6511
82a1fcb9 6512void sched_show_task(struct task_struct *p)
1da177e4 6513{
1da177e4 6514 unsigned long free = 0;
36c8b586 6515 unsigned state;
1da177e4 6516
1da177e4 6517 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6518 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6519 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6520#if BITS_PER_LONG == 32
1da177e4 6521 if (state == TASK_RUNNING)
cc4ea795 6522 printk(KERN_CONT " running ");
1da177e4 6523 else
cc4ea795 6524 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6525#else
6526 if (state == TASK_RUNNING)
cc4ea795 6527 printk(KERN_CONT " running task ");
1da177e4 6528 else
cc4ea795 6529 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6530#endif
6531#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6532 free = stack_not_used(p);
1da177e4 6533#endif
ba25f9dc 6534 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 6535 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 6536
5fb5e6de 6537 show_stack(p, NULL);
1da177e4
LT
6538}
6539
e59e2ae2 6540void show_state_filter(unsigned long state_filter)
1da177e4 6541{
36c8b586 6542 struct task_struct *g, *p;
1da177e4 6543
4bd77321
IM
6544#if BITS_PER_LONG == 32
6545 printk(KERN_INFO
6546 " task PC stack pid father\n");
1da177e4 6547#else
4bd77321
IM
6548 printk(KERN_INFO
6549 " task PC stack pid father\n");
1da177e4
LT
6550#endif
6551 read_lock(&tasklist_lock);
6552 do_each_thread(g, p) {
6553 /*
6554 * reset the NMI-timeout, listing all files on a slow
6555 * console might take alot of time:
6556 */
6557 touch_nmi_watchdog();
39bc89fd 6558 if (!state_filter || (p->state & state_filter))
82a1fcb9 6559 sched_show_task(p);
1da177e4
LT
6560 } while_each_thread(g, p);
6561
04c9167f
JF
6562 touch_all_softlockup_watchdogs();
6563
dd41f596
IM
6564#ifdef CONFIG_SCHED_DEBUG
6565 sysrq_sched_debug_show();
6566#endif
1da177e4 6567 read_unlock(&tasklist_lock);
e59e2ae2
IM
6568 /*
6569 * Only show locks if all tasks are dumped:
6570 */
6571 if (state_filter == -1)
6572 debug_show_all_locks();
1da177e4
LT
6573}
6574
1df21055
IM
6575void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6576{
dd41f596 6577 idle->sched_class = &idle_sched_class;
1df21055
IM
6578}
6579
f340c0d1
IM
6580/**
6581 * init_idle - set up an idle thread for a given CPU
6582 * @idle: task in question
6583 * @cpu: cpu the idle task belongs to
6584 *
6585 * NOTE: this function does not set the idle thread's NEED_RESCHED
6586 * flag, to make booting more robust.
6587 */
5c1e1767 6588void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6589{
70b97a7f 6590 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6591 unsigned long flags;
6592
5cbd54ef
IM
6593 spin_lock_irqsave(&rq->lock, flags);
6594
dd41f596
IM
6595 __sched_fork(idle);
6596 idle->se.exec_start = sched_clock();
6597
b29739f9 6598 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6599 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6600 __set_task_cpu(idle, cpu);
1da177e4 6601
1da177e4 6602 rq->curr = rq->idle = idle;
4866cde0
NP
6603#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6604 idle->oncpu = 1;
6605#endif
1da177e4
LT
6606 spin_unlock_irqrestore(&rq->lock, flags);
6607
6608 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6609#if defined(CONFIG_PREEMPT)
6610 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6611#else
a1261f54 6612 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6613#endif
dd41f596
IM
6614 /*
6615 * The idle tasks have their own, simple scheduling class:
6616 */
6617 idle->sched_class = &idle_sched_class;
fb52607a 6618 ftrace_graph_init_task(idle);
1da177e4
LT
6619}
6620
6621/*
6622 * In a system that switches off the HZ timer nohz_cpu_mask
6623 * indicates which cpus entered this state. This is used
6624 * in the rcu update to wait only for active cpus. For system
6625 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6626 * always be CPU_BITS_NONE.
1da177e4 6627 */
6a7b3dc3 6628cpumask_var_t nohz_cpu_mask;
1da177e4 6629
19978ca6
IM
6630/*
6631 * Increase the granularity value when there are more CPUs,
6632 * because with more CPUs the 'effective latency' as visible
6633 * to users decreases. But the relationship is not linear,
6634 * so pick a second-best guess by going with the log2 of the
6635 * number of CPUs.
6636 *
6637 * This idea comes from the SD scheduler of Con Kolivas:
6638 */
6639static inline void sched_init_granularity(void)
6640{
6641 unsigned int factor = 1 + ilog2(num_online_cpus());
6642 const unsigned long limit = 200000000;
6643
6644 sysctl_sched_min_granularity *= factor;
6645 if (sysctl_sched_min_granularity > limit)
6646 sysctl_sched_min_granularity = limit;
6647
6648 sysctl_sched_latency *= factor;
6649 if (sysctl_sched_latency > limit)
6650 sysctl_sched_latency = limit;
6651
6652 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6653
6654 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6655}
6656
1da177e4
LT
6657#ifdef CONFIG_SMP
6658/*
6659 * This is how migration works:
6660 *
70b97a7f 6661 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6662 * runqueue and wake up that CPU's migration thread.
6663 * 2) we down() the locked semaphore => thread blocks.
6664 * 3) migration thread wakes up (implicitly it forces the migrated
6665 * thread off the CPU)
6666 * 4) it gets the migration request and checks whether the migrated
6667 * task is still in the wrong runqueue.
6668 * 5) if it's in the wrong runqueue then the migration thread removes
6669 * it and puts it into the right queue.
6670 * 6) migration thread up()s the semaphore.
6671 * 7) we wake up and the migration is done.
6672 */
6673
6674/*
6675 * Change a given task's CPU affinity. Migrate the thread to a
6676 * proper CPU and schedule it away if the CPU it's executing on
6677 * is removed from the allowed bitmask.
6678 *
6679 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6680 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6681 * call is not atomic; no spinlocks may be held.
6682 */
96f874e2 6683int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6684{
70b97a7f 6685 struct migration_req req;
1da177e4 6686 unsigned long flags;
70b97a7f 6687 struct rq *rq;
48f24c4d 6688 int ret = 0;
1da177e4
LT
6689
6690 rq = task_rq_lock(p, &flags);
96f874e2 6691 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6692 ret = -EINVAL;
6693 goto out;
6694 }
6695
9985b0ba 6696 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6697 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6698 ret = -EINVAL;
6699 goto out;
6700 }
6701
73fe6aae 6702 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6703 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6704 else {
96f874e2
RR
6705 cpumask_copy(&p->cpus_allowed, new_mask);
6706 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6707 }
6708
1da177e4 6709 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6710 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6711 goto out;
6712
1e5ce4f4 6713 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6714 /* Need help from migration thread: drop lock and wait. */
6715 task_rq_unlock(rq, &flags);
6716 wake_up_process(rq->migration_thread);
6717 wait_for_completion(&req.done);
6718 tlb_migrate_finish(p->mm);
6719 return 0;
6720 }
6721out:
6722 task_rq_unlock(rq, &flags);
48f24c4d 6723
1da177e4
LT
6724 return ret;
6725}
cd8ba7cd 6726EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6727
6728/*
41a2d6cf 6729 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6730 * this because either it can't run here any more (set_cpus_allowed()
6731 * away from this CPU, or CPU going down), or because we're
6732 * attempting to rebalance this task on exec (sched_exec).
6733 *
6734 * So we race with normal scheduler movements, but that's OK, as long
6735 * as the task is no longer on this CPU.
efc30814
KK
6736 *
6737 * Returns non-zero if task was successfully migrated.
1da177e4 6738 */
efc30814 6739static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6740{
70b97a7f 6741 struct rq *rq_dest, *rq_src;
dd41f596 6742 int ret = 0, on_rq;
1da177e4 6743
e761b772 6744 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6745 return ret;
1da177e4
LT
6746
6747 rq_src = cpu_rq(src_cpu);
6748 rq_dest = cpu_rq(dest_cpu);
6749
6750 double_rq_lock(rq_src, rq_dest);
6751 /* Already moved. */
6752 if (task_cpu(p) != src_cpu)
b1e38734 6753 goto done;
1da177e4 6754 /* Affinity changed (again). */
96f874e2 6755 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6756 goto fail;
1da177e4 6757
dd41f596 6758 on_rq = p->se.on_rq;
6e82a3be 6759 if (on_rq)
2e1cb74a 6760 deactivate_task(rq_src, p, 0);
6e82a3be 6761
1da177e4 6762 set_task_cpu(p, dest_cpu);
dd41f596
IM
6763 if (on_rq) {
6764 activate_task(rq_dest, p, 0);
15afe09b 6765 check_preempt_curr(rq_dest, p, 0);
1da177e4 6766 }
b1e38734 6767done:
efc30814 6768 ret = 1;
b1e38734 6769fail:
1da177e4 6770 double_rq_unlock(rq_src, rq_dest);
efc30814 6771 return ret;
1da177e4
LT
6772}
6773
6774/*
6775 * migration_thread - this is a highprio system thread that performs
6776 * thread migration by bumping thread off CPU then 'pushing' onto
6777 * another runqueue.
6778 */
95cdf3b7 6779static int migration_thread(void *data)
1da177e4 6780{
1da177e4 6781 int cpu = (long)data;
70b97a7f 6782 struct rq *rq;
1da177e4
LT
6783
6784 rq = cpu_rq(cpu);
6785 BUG_ON(rq->migration_thread != current);
6786
6787 set_current_state(TASK_INTERRUPTIBLE);
6788 while (!kthread_should_stop()) {
70b97a7f 6789 struct migration_req *req;
1da177e4 6790 struct list_head *head;
1da177e4 6791
1da177e4
LT
6792 spin_lock_irq(&rq->lock);
6793
6794 if (cpu_is_offline(cpu)) {
6795 spin_unlock_irq(&rq->lock);
6796 goto wait_to_die;
6797 }
6798
6799 if (rq->active_balance) {
6800 active_load_balance(rq, cpu);
6801 rq->active_balance = 0;
6802 }
6803
6804 head = &rq->migration_queue;
6805
6806 if (list_empty(head)) {
6807 spin_unlock_irq(&rq->lock);
6808 schedule();
6809 set_current_state(TASK_INTERRUPTIBLE);
6810 continue;
6811 }
70b97a7f 6812 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6813 list_del_init(head->next);
6814
674311d5
NP
6815 spin_unlock(&rq->lock);
6816 __migrate_task(req->task, cpu, req->dest_cpu);
6817 local_irq_enable();
1da177e4
LT
6818
6819 complete(&req->done);
6820 }
6821 __set_current_state(TASK_RUNNING);
6822 return 0;
6823
6824wait_to_die:
6825 /* Wait for kthread_stop */
6826 set_current_state(TASK_INTERRUPTIBLE);
6827 while (!kthread_should_stop()) {
6828 schedule();
6829 set_current_state(TASK_INTERRUPTIBLE);
6830 }
6831 __set_current_state(TASK_RUNNING);
6832 return 0;
6833}
6834
6835#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6836
6837static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6838{
6839 int ret;
6840
6841 local_irq_disable();
6842 ret = __migrate_task(p, src_cpu, dest_cpu);
6843 local_irq_enable();
6844 return ret;
6845}
6846
054b9108 6847/*
3a4fa0a2 6848 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6849 */
48f24c4d 6850static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6851{
70b97a7f 6852 int dest_cpu;
6ca09dfc 6853 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
1da177e4 6854
e76bd8d9
RR
6855again:
6856 /* Look for allowed, online CPU in same node. */
6857 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6858 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6859 goto move;
3a5c359a 6860
e76bd8d9
RR
6861 /* Any allowed, online CPU? */
6862 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6863 if (dest_cpu < nr_cpu_ids)
6864 goto move;
3a5c359a 6865
e76bd8d9
RR
6866 /* No more Mr. Nice Guy. */
6867 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6868 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6869 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6870
e76bd8d9
RR
6871 /*
6872 * Don't tell them about moving exiting tasks or
6873 * kernel threads (both mm NULL), since they never
6874 * leave kernel.
6875 */
6876 if (p->mm && printk_ratelimit()) {
6877 printk(KERN_INFO "process %d (%s) no "
6878 "longer affine to cpu%d\n",
6879 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6880 }
e76bd8d9
RR
6881 }
6882
6883move:
6884 /* It can have affinity changed while we were choosing. */
6885 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6886 goto again;
1da177e4
LT
6887}
6888
6889/*
6890 * While a dead CPU has no uninterruptible tasks queued at this point,
6891 * it might still have a nonzero ->nr_uninterruptible counter, because
6892 * for performance reasons the counter is not stricly tracking tasks to
6893 * their home CPUs. So we just add the counter to another CPU's counter,
6894 * to keep the global sum constant after CPU-down:
6895 */
70b97a7f 6896static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6897{
1e5ce4f4 6898 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6899 unsigned long flags;
6900
6901 local_irq_save(flags);
6902 double_rq_lock(rq_src, rq_dest);
6903 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6904 rq_src->nr_uninterruptible = 0;
6905 double_rq_unlock(rq_src, rq_dest);
6906 local_irq_restore(flags);
6907}
6908
6909/* Run through task list and migrate tasks from the dead cpu. */
6910static void migrate_live_tasks(int src_cpu)
6911{
48f24c4d 6912 struct task_struct *p, *t;
1da177e4 6913
f7b4cddc 6914 read_lock(&tasklist_lock);
1da177e4 6915
48f24c4d
IM
6916 do_each_thread(t, p) {
6917 if (p == current)
1da177e4
LT
6918 continue;
6919
48f24c4d
IM
6920 if (task_cpu(p) == src_cpu)
6921 move_task_off_dead_cpu(src_cpu, p);
6922 } while_each_thread(t, p);
1da177e4 6923
f7b4cddc 6924 read_unlock(&tasklist_lock);
1da177e4
LT
6925}
6926
dd41f596
IM
6927/*
6928 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6929 * It does so by boosting its priority to highest possible.
6930 * Used by CPU offline code.
1da177e4
LT
6931 */
6932void sched_idle_next(void)
6933{
48f24c4d 6934 int this_cpu = smp_processor_id();
70b97a7f 6935 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6936 struct task_struct *p = rq->idle;
6937 unsigned long flags;
6938
6939 /* cpu has to be offline */
48f24c4d 6940 BUG_ON(cpu_online(this_cpu));
1da177e4 6941
48f24c4d
IM
6942 /*
6943 * Strictly not necessary since rest of the CPUs are stopped by now
6944 * and interrupts disabled on the current cpu.
1da177e4
LT
6945 */
6946 spin_lock_irqsave(&rq->lock, flags);
6947
dd41f596 6948 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6949
94bc9a7b
DA
6950 update_rq_clock(rq);
6951 activate_task(rq, p, 0);
1da177e4
LT
6952
6953 spin_unlock_irqrestore(&rq->lock, flags);
6954}
6955
48f24c4d
IM
6956/*
6957 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6958 * offline.
6959 */
6960void idle_task_exit(void)
6961{
6962 struct mm_struct *mm = current->active_mm;
6963
6964 BUG_ON(cpu_online(smp_processor_id()));
6965
6966 if (mm != &init_mm)
6967 switch_mm(mm, &init_mm, current);
6968 mmdrop(mm);
6969}
6970
054b9108 6971/* called under rq->lock with disabled interrupts */
36c8b586 6972static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6973{
70b97a7f 6974 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6975
6976 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6977 BUG_ON(!p->exit_state);
1da177e4
LT
6978
6979 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6980 BUG_ON(p->state == TASK_DEAD);
1da177e4 6981
48f24c4d 6982 get_task_struct(p);
1da177e4
LT
6983
6984 /*
6985 * Drop lock around migration; if someone else moves it,
41a2d6cf 6986 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6987 * fine.
6988 */
f7b4cddc 6989 spin_unlock_irq(&rq->lock);
48f24c4d 6990 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6991 spin_lock_irq(&rq->lock);
1da177e4 6992
48f24c4d 6993 put_task_struct(p);
1da177e4
LT
6994}
6995
6996/* release_task() removes task from tasklist, so we won't find dead tasks. */
6997static void migrate_dead_tasks(unsigned int dead_cpu)
6998{
70b97a7f 6999 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7000 struct task_struct *next;
48f24c4d 7001
dd41f596
IM
7002 for ( ; ; ) {
7003 if (!rq->nr_running)
7004 break;
a8e504d2 7005 update_rq_clock(rq);
b67802ea 7006 next = pick_next_task(rq);
dd41f596
IM
7007 if (!next)
7008 break;
79c53799 7009 next->sched_class->put_prev_task(rq, next);
dd41f596 7010 migrate_dead(dead_cpu, next);
e692ab53 7011
1da177e4
LT
7012 }
7013}
7014#endif /* CONFIG_HOTPLUG_CPU */
7015
e692ab53
NP
7016#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7017
7018static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7019 {
7020 .procname = "sched_domain",
c57baf1e 7021 .mode = 0555,
e0361851 7022 },
38605cae 7023 {0, },
e692ab53
NP
7024};
7025
7026static struct ctl_table sd_ctl_root[] = {
e0361851 7027 {
c57baf1e 7028 .ctl_name = CTL_KERN,
e0361851 7029 .procname = "kernel",
c57baf1e 7030 .mode = 0555,
e0361851
AD
7031 .child = sd_ctl_dir,
7032 },
38605cae 7033 {0, },
e692ab53
NP
7034};
7035
7036static struct ctl_table *sd_alloc_ctl_entry(int n)
7037{
7038 struct ctl_table *entry =
5cf9f062 7039 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7040
e692ab53
NP
7041 return entry;
7042}
7043
6382bc90
MM
7044static void sd_free_ctl_entry(struct ctl_table **tablep)
7045{
cd790076 7046 struct ctl_table *entry;
6382bc90 7047
cd790076
MM
7048 /*
7049 * In the intermediate directories, both the child directory and
7050 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7051 * will always be set. In the lowest directory the names are
cd790076
MM
7052 * static strings and all have proc handlers.
7053 */
7054 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7055 if (entry->child)
7056 sd_free_ctl_entry(&entry->child);
cd790076
MM
7057 if (entry->proc_handler == NULL)
7058 kfree(entry->procname);
7059 }
6382bc90
MM
7060
7061 kfree(*tablep);
7062 *tablep = NULL;
7063}
7064
e692ab53 7065static void
e0361851 7066set_table_entry(struct ctl_table *entry,
e692ab53
NP
7067 const char *procname, void *data, int maxlen,
7068 mode_t mode, proc_handler *proc_handler)
7069{
e692ab53
NP
7070 entry->procname = procname;
7071 entry->data = data;
7072 entry->maxlen = maxlen;
7073 entry->mode = mode;
7074 entry->proc_handler = proc_handler;
7075}
7076
7077static struct ctl_table *
7078sd_alloc_ctl_domain_table(struct sched_domain *sd)
7079{
a5d8c348 7080 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7081
ad1cdc1d
MM
7082 if (table == NULL)
7083 return NULL;
7084
e0361851 7085 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7086 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7087 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7088 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7089 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7090 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7091 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7092 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7093 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7094 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7095 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7096 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7097 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7098 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7099 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7100 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7101 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7102 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7103 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7104 &sd->cache_nice_tries,
7105 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7106 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7107 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7108 set_table_entry(&table[11], "name", sd->name,
7109 CORENAME_MAX_SIZE, 0444, proc_dostring);
7110 /* &table[12] is terminator */
e692ab53
NP
7111
7112 return table;
7113}
7114
9a4e7159 7115static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7116{
7117 struct ctl_table *entry, *table;
7118 struct sched_domain *sd;
7119 int domain_num = 0, i;
7120 char buf[32];
7121
7122 for_each_domain(cpu, sd)
7123 domain_num++;
7124 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7125 if (table == NULL)
7126 return NULL;
e692ab53
NP
7127
7128 i = 0;
7129 for_each_domain(cpu, sd) {
7130 snprintf(buf, 32, "domain%d", i);
e692ab53 7131 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7132 entry->mode = 0555;
e692ab53
NP
7133 entry->child = sd_alloc_ctl_domain_table(sd);
7134 entry++;
7135 i++;
7136 }
7137 return table;
7138}
7139
7140static struct ctl_table_header *sd_sysctl_header;
6382bc90 7141static void register_sched_domain_sysctl(void)
e692ab53
NP
7142{
7143 int i, cpu_num = num_online_cpus();
7144 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7145 char buf[32];
7146
7378547f
MM
7147 WARN_ON(sd_ctl_dir[0].child);
7148 sd_ctl_dir[0].child = entry;
7149
ad1cdc1d
MM
7150 if (entry == NULL)
7151 return;
7152
97b6ea7b 7153 for_each_online_cpu(i) {
e692ab53 7154 snprintf(buf, 32, "cpu%d", i);
e692ab53 7155 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7156 entry->mode = 0555;
e692ab53 7157 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7158 entry++;
e692ab53 7159 }
7378547f
MM
7160
7161 WARN_ON(sd_sysctl_header);
e692ab53
NP
7162 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7163}
6382bc90 7164
7378547f 7165/* may be called multiple times per register */
6382bc90
MM
7166static void unregister_sched_domain_sysctl(void)
7167{
7378547f
MM
7168 if (sd_sysctl_header)
7169 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7170 sd_sysctl_header = NULL;
7378547f
MM
7171 if (sd_ctl_dir[0].child)
7172 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7173}
e692ab53 7174#else
6382bc90
MM
7175static void register_sched_domain_sysctl(void)
7176{
7177}
7178static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7179{
7180}
7181#endif
7182
1f11eb6a
GH
7183static void set_rq_online(struct rq *rq)
7184{
7185 if (!rq->online) {
7186 const struct sched_class *class;
7187
c6c4927b 7188 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7189 rq->online = 1;
7190
7191 for_each_class(class) {
7192 if (class->rq_online)
7193 class->rq_online(rq);
7194 }
7195 }
7196}
7197
7198static void set_rq_offline(struct rq *rq)
7199{
7200 if (rq->online) {
7201 const struct sched_class *class;
7202
7203 for_each_class(class) {
7204 if (class->rq_offline)
7205 class->rq_offline(rq);
7206 }
7207
c6c4927b 7208 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7209 rq->online = 0;
7210 }
7211}
7212
1da177e4
LT
7213/*
7214 * migration_call - callback that gets triggered when a CPU is added.
7215 * Here we can start up the necessary migration thread for the new CPU.
7216 */
48f24c4d
IM
7217static int __cpuinit
7218migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7219{
1da177e4 7220 struct task_struct *p;
48f24c4d 7221 int cpu = (long)hcpu;
1da177e4 7222 unsigned long flags;
70b97a7f 7223 struct rq *rq;
1da177e4
LT
7224
7225 switch (action) {
5be9361c 7226
1da177e4 7227 case CPU_UP_PREPARE:
8bb78442 7228 case CPU_UP_PREPARE_FROZEN:
dd41f596 7229 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7230 if (IS_ERR(p))
7231 return NOTIFY_BAD;
1da177e4
LT
7232 kthread_bind(p, cpu);
7233 /* Must be high prio: stop_machine expects to yield to it. */
7234 rq = task_rq_lock(p, &flags);
dd41f596 7235 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
7236 task_rq_unlock(rq, &flags);
7237 cpu_rq(cpu)->migration_thread = p;
7238 break;
48f24c4d 7239
1da177e4 7240 case CPU_ONLINE:
8bb78442 7241 case CPU_ONLINE_FROZEN:
3a4fa0a2 7242 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7243 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7244
7245 /* Update our root-domain */
7246 rq = cpu_rq(cpu);
7247 spin_lock_irqsave(&rq->lock, flags);
7248 if (rq->rd) {
c6c4927b 7249 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7250
7251 set_rq_online(rq);
1f94ef59
GH
7252 }
7253 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7254 break;
48f24c4d 7255
1da177e4
LT
7256#ifdef CONFIG_HOTPLUG_CPU
7257 case CPU_UP_CANCELED:
8bb78442 7258 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7259 if (!cpu_rq(cpu)->migration_thread)
7260 break;
41a2d6cf 7261 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7262 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7263 cpumask_any(cpu_online_mask));
1da177e4
LT
7264 kthread_stop(cpu_rq(cpu)->migration_thread);
7265 cpu_rq(cpu)->migration_thread = NULL;
7266 break;
48f24c4d 7267
1da177e4 7268 case CPU_DEAD:
8bb78442 7269 case CPU_DEAD_FROZEN:
470fd646 7270 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7271 migrate_live_tasks(cpu);
7272 rq = cpu_rq(cpu);
7273 kthread_stop(rq->migration_thread);
7274 rq->migration_thread = NULL;
7275 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7276 spin_lock_irq(&rq->lock);
a8e504d2 7277 update_rq_clock(rq);
2e1cb74a 7278 deactivate_task(rq, rq->idle, 0);
1da177e4 7279 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7280 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7281 rq->idle->sched_class = &idle_sched_class;
1da177e4 7282 migrate_dead_tasks(cpu);
d2da272a 7283 spin_unlock_irq(&rq->lock);
470fd646 7284 cpuset_unlock();
1da177e4
LT
7285 migrate_nr_uninterruptible(rq);
7286 BUG_ON(rq->nr_running != 0);
7287
41a2d6cf
IM
7288 /*
7289 * No need to migrate the tasks: it was best-effort if
7290 * they didn't take sched_hotcpu_mutex. Just wake up
7291 * the requestors.
7292 */
1da177e4
LT
7293 spin_lock_irq(&rq->lock);
7294 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7295 struct migration_req *req;
7296
1da177e4 7297 req = list_entry(rq->migration_queue.next,
70b97a7f 7298 struct migration_req, list);
1da177e4 7299 list_del_init(&req->list);
9a2bd244 7300 spin_unlock_irq(&rq->lock);
1da177e4 7301 complete(&req->done);
9a2bd244 7302 spin_lock_irq(&rq->lock);
1da177e4
LT
7303 }
7304 spin_unlock_irq(&rq->lock);
7305 break;
57d885fe 7306
08f503b0
GH
7307 case CPU_DYING:
7308 case CPU_DYING_FROZEN:
57d885fe
GH
7309 /* Update our root-domain */
7310 rq = cpu_rq(cpu);
7311 spin_lock_irqsave(&rq->lock, flags);
7312 if (rq->rd) {
c6c4927b 7313 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7314 set_rq_offline(rq);
57d885fe
GH
7315 }
7316 spin_unlock_irqrestore(&rq->lock, flags);
7317 break;
1da177e4
LT
7318#endif
7319 }
7320 return NOTIFY_OK;
7321}
7322
f38b0820
PM
7323/*
7324 * Register at high priority so that task migration (migrate_all_tasks)
7325 * happens before everything else. This has to be lower priority than
7326 * the notifier in the perf_counter subsystem, though.
1da177e4 7327 */
26c2143b 7328static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7329 .notifier_call = migration_call,
7330 .priority = 10
7331};
7332
7babe8db 7333static int __init migration_init(void)
1da177e4
LT
7334{
7335 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7336 int err;
48f24c4d
IM
7337
7338 /* Start one for the boot CPU: */
07dccf33
AM
7339 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7340 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7341 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7342 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
7343
7344 return err;
1da177e4 7345}
7babe8db 7346early_initcall(migration_init);
1da177e4
LT
7347#endif
7348
7349#ifdef CONFIG_SMP
476f3534 7350
3e9830dc 7351#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7352
7c16ec58 7353static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7354 struct cpumask *groupmask)
1da177e4 7355{
4dcf6aff 7356 struct sched_group *group = sd->groups;
434d53b0 7357 char str[256];
1da177e4 7358
968ea6d8 7359 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7360 cpumask_clear(groupmask);
4dcf6aff
IM
7361
7362 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7363
7364 if (!(sd->flags & SD_LOAD_BALANCE)) {
7365 printk("does not load-balance\n");
7366 if (sd->parent)
7367 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7368 " has parent");
7369 return -1;
41c7ce9a
NP
7370 }
7371
eefd796a 7372 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7373
758b2cdc 7374 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7375 printk(KERN_ERR "ERROR: domain->span does not contain "
7376 "CPU%d\n", cpu);
7377 }
758b2cdc 7378 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7379 printk(KERN_ERR "ERROR: domain->groups does not contain"
7380 " CPU%d\n", cpu);
7381 }
1da177e4 7382
4dcf6aff 7383 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7384 do {
4dcf6aff
IM
7385 if (!group) {
7386 printk("\n");
7387 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7388 break;
7389 }
7390
4dcf6aff
IM
7391 if (!group->__cpu_power) {
7392 printk(KERN_CONT "\n");
7393 printk(KERN_ERR "ERROR: domain->cpu_power not "
7394 "set\n");
7395 break;
7396 }
1da177e4 7397
758b2cdc 7398 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7399 printk(KERN_CONT "\n");
7400 printk(KERN_ERR "ERROR: empty group\n");
7401 break;
7402 }
1da177e4 7403
758b2cdc 7404 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7405 printk(KERN_CONT "\n");
7406 printk(KERN_ERR "ERROR: repeated CPUs\n");
7407 break;
7408 }
1da177e4 7409
758b2cdc 7410 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7411
968ea6d8 7412 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 7413
4dcf6aff 7414 printk(KERN_CONT " %s", str);
381512cf
GS
7415 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7416 printk(KERN_CONT " (__cpu_power = %d)",
7417 group->__cpu_power);
7418 }
1da177e4 7419
4dcf6aff
IM
7420 group = group->next;
7421 } while (group != sd->groups);
7422 printk(KERN_CONT "\n");
1da177e4 7423
758b2cdc 7424 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7425 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7426
758b2cdc
RR
7427 if (sd->parent &&
7428 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7429 printk(KERN_ERR "ERROR: parent span is not a superset "
7430 "of domain->span\n");
7431 return 0;
7432}
1da177e4 7433
4dcf6aff
IM
7434static void sched_domain_debug(struct sched_domain *sd, int cpu)
7435{
d5dd3db1 7436 cpumask_var_t groupmask;
4dcf6aff 7437 int level = 0;
1da177e4 7438
4dcf6aff
IM
7439 if (!sd) {
7440 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7441 return;
7442 }
1da177e4 7443
4dcf6aff
IM
7444 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7445
d5dd3db1 7446 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7447 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7448 return;
7449 }
7450
4dcf6aff 7451 for (;;) {
7c16ec58 7452 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7453 break;
1da177e4
LT
7454 level++;
7455 sd = sd->parent;
33859f7f 7456 if (!sd)
4dcf6aff
IM
7457 break;
7458 }
d5dd3db1 7459 free_cpumask_var(groupmask);
1da177e4 7460}
6d6bc0ad 7461#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7462# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7463#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7464
1a20ff27 7465static int sd_degenerate(struct sched_domain *sd)
245af2c7 7466{
758b2cdc 7467 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7468 return 1;
7469
7470 /* Following flags need at least 2 groups */
7471 if (sd->flags & (SD_LOAD_BALANCE |
7472 SD_BALANCE_NEWIDLE |
7473 SD_BALANCE_FORK |
89c4710e
SS
7474 SD_BALANCE_EXEC |
7475 SD_SHARE_CPUPOWER |
7476 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7477 if (sd->groups != sd->groups->next)
7478 return 0;
7479 }
7480
7481 /* Following flags don't use groups */
7482 if (sd->flags & (SD_WAKE_IDLE |
7483 SD_WAKE_AFFINE |
7484 SD_WAKE_BALANCE))
7485 return 0;
7486
7487 return 1;
7488}
7489
48f24c4d
IM
7490static int
7491sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7492{
7493 unsigned long cflags = sd->flags, pflags = parent->flags;
7494
7495 if (sd_degenerate(parent))
7496 return 1;
7497
758b2cdc 7498 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7499 return 0;
7500
7501 /* Does parent contain flags not in child? */
7502 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7503 if (cflags & SD_WAKE_AFFINE)
7504 pflags &= ~SD_WAKE_BALANCE;
7505 /* Flags needing groups don't count if only 1 group in parent */
7506 if (parent->groups == parent->groups->next) {
7507 pflags &= ~(SD_LOAD_BALANCE |
7508 SD_BALANCE_NEWIDLE |
7509 SD_BALANCE_FORK |
89c4710e
SS
7510 SD_BALANCE_EXEC |
7511 SD_SHARE_CPUPOWER |
7512 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7513 if (nr_node_ids == 1)
7514 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7515 }
7516 if (~cflags & pflags)
7517 return 0;
7518
7519 return 1;
7520}
7521
c6c4927b
RR
7522static void free_rootdomain(struct root_domain *rd)
7523{
68e74568
RR
7524 cpupri_cleanup(&rd->cpupri);
7525
c6c4927b
RR
7526 free_cpumask_var(rd->rto_mask);
7527 free_cpumask_var(rd->online);
7528 free_cpumask_var(rd->span);
7529 kfree(rd);
7530}
7531
57d885fe
GH
7532static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7533{
a0490fa3 7534 struct root_domain *old_rd = NULL;
57d885fe 7535 unsigned long flags;
57d885fe
GH
7536
7537 spin_lock_irqsave(&rq->lock, flags);
7538
7539 if (rq->rd) {
a0490fa3 7540 old_rd = rq->rd;
57d885fe 7541
c6c4927b 7542 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7543 set_rq_offline(rq);
57d885fe 7544
c6c4927b 7545 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7546
a0490fa3
IM
7547 /*
7548 * If we dont want to free the old_rt yet then
7549 * set old_rd to NULL to skip the freeing later
7550 * in this function:
7551 */
7552 if (!atomic_dec_and_test(&old_rd->refcount))
7553 old_rd = NULL;
57d885fe
GH
7554 }
7555
7556 atomic_inc(&rd->refcount);
7557 rq->rd = rd;
7558
c6c4927b
RR
7559 cpumask_set_cpu(rq->cpu, rd->span);
7560 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7561 set_rq_online(rq);
57d885fe
GH
7562
7563 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7564
7565 if (old_rd)
7566 free_rootdomain(old_rd);
57d885fe
GH
7567}
7568
db2f59c8 7569static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7570{
7571 memset(rd, 0, sizeof(*rd));
7572
c6c4927b
RR
7573 if (bootmem) {
7574 alloc_bootmem_cpumask_var(&def_root_domain.span);
7575 alloc_bootmem_cpumask_var(&def_root_domain.online);
7576 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7577 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7578 return 0;
7579 }
7580
7581 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7582 goto out;
c6c4927b
RR
7583 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7584 goto free_span;
7585 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7586 goto free_online;
6e0534f2 7587
68e74568
RR
7588 if (cpupri_init(&rd->cpupri, false) != 0)
7589 goto free_rto_mask;
c6c4927b 7590 return 0;
6e0534f2 7591
68e74568
RR
7592free_rto_mask:
7593 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7594free_online:
7595 free_cpumask_var(rd->online);
7596free_span:
7597 free_cpumask_var(rd->span);
0c910d28 7598out:
c6c4927b 7599 return -ENOMEM;
57d885fe
GH
7600}
7601
7602static void init_defrootdomain(void)
7603{
c6c4927b
RR
7604 init_rootdomain(&def_root_domain, true);
7605
57d885fe
GH
7606 atomic_set(&def_root_domain.refcount, 1);
7607}
7608
dc938520 7609static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7610{
7611 struct root_domain *rd;
7612
7613 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7614 if (!rd)
7615 return NULL;
7616
c6c4927b
RR
7617 if (init_rootdomain(rd, false) != 0) {
7618 kfree(rd);
7619 return NULL;
7620 }
57d885fe
GH
7621
7622 return rd;
7623}
7624
1da177e4 7625/*
0eab9146 7626 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7627 * hold the hotplug lock.
7628 */
0eab9146
IM
7629static void
7630cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7631{
70b97a7f 7632 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7633 struct sched_domain *tmp;
7634
7635 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7636 for (tmp = sd; tmp; ) {
245af2c7
SS
7637 struct sched_domain *parent = tmp->parent;
7638 if (!parent)
7639 break;
f29c9b1c 7640
1a848870 7641 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7642 tmp->parent = parent->parent;
1a848870
SS
7643 if (parent->parent)
7644 parent->parent->child = tmp;
f29c9b1c
LZ
7645 } else
7646 tmp = tmp->parent;
245af2c7
SS
7647 }
7648
1a848870 7649 if (sd && sd_degenerate(sd)) {
245af2c7 7650 sd = sd->parent;
1a848870
SS
7651 if (sd)
7652 sd->child = NULL;
7653 }
1da177e4
LT
7654
7655 sched_domain_debug(sd, cpu);
7656
57d885fe 7657 rq_attach_root(rq, rd);
674311d5 7658 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7659}
7660
7661/* cpus with isolated domains */
dcc30a35 7662static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7663
7664/* Setup the mask of cpus configured for isolated domains */
7665static int __init isolated_cpu_setup(char *str)
7666{
968ea6d8 7667 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7668 return 1;
7669}
7670
8927f494 7671__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7672
7673/*
6711cab4
SS
7674 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7675 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7676 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7677 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7678 *
7679 * init_sched_build_groups will build a circular linked list of the groups
7680 * covered by the given span, and will set each group's ->cpumask correctly,
7681 * and ->cpu_power to 0.
7682 */
a616058b 7683static void
96f874e2
RR
7684init_sched_build_groups(const struct cpumask *span,
7685 const struct cpumask *cpu_map,
7686 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7687 struct sched_group **sg,
96f874e2
RR
7688 struct cpumask *tmpmask),
7689 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7690{
7691 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7692 int i;
7693
96f874e2 7694 cpumask_clear(covered);
7c16ec58 7695
abcd083a 7696 for_each_cpu(i, span) {
6711cab4 7697 struct sched_group *sg;
7c16ec58 7698 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7699 int j;
7700
758b2cdc 7701 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7702 continue;
7703
758b2cdc 7704 cpumask_clear(sched_group_cpus(sg));
5517d86b 7705 sg->__cpu_power = 0;
1da177e4 7706
abcd083a 7707 for_each_cpu(j, span) {
7c16ec58 7708 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7709 continue;
7710
96f874e2 7711 cpumask_set_cpu(j, covered);
758b2cdc 7712 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7713 }
7714 if (!first)
7715 first = sg;
7716 if (last)
7717 last->next = sg;
7718 last = sg;
7719 }
7720 last->next = first;
7721}
7722
9c1cfda2 7723#define SD_NODES_PER_DOMAIN 16
1da177e4 7724
9c1cfda2 7725#ifdef CONFIG_NUMA
198e2f18 7726
9c1cfda2
JH
7727/**
7728 * find_next_best_node - find the next node to include in a sched_domain
7729 * @node: node whose sched_domain we're building
7730 * @used_nodes: nodes already in the sched_domain
7731 *
41a2d6cf 7732 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7733 * finds the closest node not already in the @used_nodes map.
7734 *
7735 * Should use nodemask_t.
7736 */
c5f59f08 7737static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7738{
7739 int i, n, val, min_val, best_node = 0;
7740
7741 min_val = INT_MAX;
7742
076ac2af 7743 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7744 /* Start at @node */
076ac2af 7745 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7746
7747 if (!nr_cpus_node(n))
7748 continue;
7749
7750 /* Skip already used nodes */
c5f59f08 7751 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7752 continue;
7753
7754 /* Simple min distance search */
7755 val = node_distance(node, n);
7756
7757 if (val < min_val) {
7758 min_val = val;
7759 best_node = n;
7760 }
7761 }
7762
c5f59f08 7763 node_set(best_node, *used_nodes);
9c1cfda2
JH
7764 return best_node;
7765}
7766
7767/**
7768 * sched_domain_node_span - get a cpumask for a node's sched_domain
7769 * @node: node whose cpumask we're constructing
73486722 7770 * @span: resulting cpumask
9c1cfda2 7771 *
41a2d6cf 7772 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7773 * should be one that prevents unnecessary balancing, but also spreads tasks
7774 * out optimally.
7775 */
96f874e2 7776static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7777{
c5f59f08 7778 nodemask_t used_nodes;
48f24c4d 7779 int i;
9c1cfda2 7780
6ca09dfc 7781 cpumask_clear(span);
c5f59f08 7782 nodes_clear(used_nodes);
9c1cfda2 7783
6ca09dfc 7784 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7785 node_set(node, used_nodes);
9c1cfda2
JH
7786
7787 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7788 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7789
6ca09dfc 7790 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7791 }
9c1cfda2 7792}
6d6bc0ad 7793#endif /* CONFIG_NUMA */
9c1cfda2 7794
5c45bf27 7795int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7796
6c99e9ad
RR
7797/*
7798 * The cpus mask in sched_group and sched_domain hangs off the end.
7799 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7800 * for nr_cpu_ids < CONFIG_NR_CPUS.
7801 */
7802struct static_sched_group {
7803 struct sched_group sg;
7804 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7805};
7806
7807struct static_sched_domain {
7808 struct sched_domain sd;
7809 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7810};
7811
9c1cfda2 7812/*
48f24c4d 7813 * SMT sched-domains:
9c1cfda2 7814 */
1da177e4 7815#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7816static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7817static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7818
41a2d6cf 7819static int
96f874e2
RR
7820cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7821 struct sched_group **sg, struct cpumask *unused)
1da177e4 7822{
6711cab4 7823 if (sg)
6c99e9ad 7824 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7825 return cpu;
7826}
6d6bc0ad 7827#endif /* CONFIG_SCHED_SMT */
1da177e4 7828
48f24c4d
IM
7829/*
7830 * multi-core sched-domains:
7831 */
1e9f28fa 7832#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7833static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7834static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7835#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7836
7837#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7838static int
96f874e2
RR
7839cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7840 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7841{
6711cab4 7842 int group;
7c16ec58 7843
c69fc56d 7844 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 7845 group = cpumask_first(mask);
6711cab4 7846 if (sg)
6c99e9ad 7847 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7848 return group;
1e9f28fa
SS
7849}
7850#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7851static int
96f874e2
RR
7852cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7853 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7854{
6711cab4 7855 if (sg)
6c99e9ad 7856 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7857 return cpu;
7858}
7859#endif
7860
6c99e9ad
RR
7861static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7862static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7863
41a2d6cf 7864static int
96f874e2
RR
7865cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7866 struct sched_group **sg, struct cpumask *mask)
1da177e4 7867{
6711cab4 7868 int group;
48f24c4d 7869#ifdef CONFIG_SCHED_MC
6ca09dfc 7870 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7871 group = cpumask_first(mask);
1e9f28fa 7872#elif defined(CONFIG_SCHED_SMT)
c69fc56d 7873 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 7874 group = cpumask_first(mask);
1da177e4 7875#else
6711cab4 7876 group = cpu;
1da177e4 7877#endif
6711cab4 7878 if (sg)
6c99e9ad 7879 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7880 return group;
1da177e4
LT
7881}
7882
7883#ifdef CONFIG_NUMA
1da177e4 7884/*
9c1cfda2
JH
7885 * The init_sched_build_groups can't handle what we want to do with node
7886 * groups, so roll our own. Now each node has its own list of groups which
7887 * gets dynamically allocated.
1da177e4 7888 */
62ea9ceb 7889static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7890static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7891
62ea9ceb 7892static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7893static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7894
96f874e2
RR
7895static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7896 struct sched_group **sg,
7897 struct cpumask *nodemask)
9c1cfda2 7898{
6711cab4
SS
7899 int group;
7900
6ca09dfc 7901 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7902 group = cpumask_first(nodemask);
6711cab4
SS
7903
7904 if (sg)
6c99e9ad 7905 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7906 return group;
1da177e4 7907}
6711cab4 7908
08069033
SS
7909static void init_numa_sched_groups_power(struct sched_group *group_head)
7910{
7911 struct sched_group *sg = group_head;
7912 int j;
7913
7914 if (!sg)
7915 return;
3a5c359a 7916 do {
758b2cdc 7917 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7918 struct sched_domain *sd;
08069033 7919
6c99e9ad 7920 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7921 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7922 /*
7923 * Only add "power" once for each
7924 * physical package.
7925 */
7926 continue;
7927 }
08069033 7928
3a5c359a
AK
7929 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7930 }
7931 sg = sg->next;
7932 } while (sg != group_head);
08069033 7933}
6d6bc0ad 7934#endif /* CONFIG_NUMA */
1da177e4 7935
a616058b 7936#ifdef CONFIG_NUMA
51888ca2 7937/* Free memory allocated for various sched_group structures */
96f874e2
RR
7938static void free_sched_groups(const struct cpumask *cpu_map,
7939 struct cpumask *nodemask)
51888ca2 7940{
a616058b 7941 int cpu, i;
51888ca2 7942
abcd083a 7943 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7944 struct sched_group **sched_group_nodes
7945 = sched_group_nodes_bycpu[cpu];
7946
51888ca2
SV
7947 if (!sched_group_nodes)
7948 continue;
7949
076ac2af 7950 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7951 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7952
6ca09dfc 7953 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7954 if (cpumask_empty(nodemask))
51888ca2
SV
7955 continue;
7956
7957 if (sg == NULL)
7958 continue;
7959 sg = sg->next;
7960next_sg:
7961 oldsg = sg;
7962 sg = sg->next;
7963 kfree(oldsg);
7964 if (oldsg != sched_group_nodes[i])
7965 goto next_sg;
7966 }
7967 kfree(sched_group_nodes);
7968 sched_group_nodes_bycpu[cpu] = NULL;
7969 }
51888ca2 7970}
6d6bc0ad 7971#else /* !CONFIG_NUMA */
96f874e2
RR
7972static void free_sched_groups(const struct cpumask *cpu_map,
7973 struct cpumask *nodemask)
a616058b
SS
7974{
7975}
6d6bc0ad 7976#endif /* CONFIG_NUMA */
51888ca2 7977
89c4710e
SS
7978/*
7979 * Initialize sched groups cpu_power.
7980 *
7981 * cpu_power indicates the capacity of sched group, which is used while
7982 * distributing the load between different sched groups in a sched domain.
7983 * Typically cpu_power for all the groups in a sched domain will be same unless
7984 * there are asymmetries in the topology. If there are asymmetries, group
7985 * having more cpu_power will pickup more load compared to the group having
7986 * less cpu_power.
7987 *
7988 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7989 * the maximum number of tasks a group can handle in the presence of other idle
7990 * or lightly loaded groups in the same sched domain.
7991 */
7992static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7993{
7994 struct sched_domain *child;
7995 struct sched_group *group;
7996
7997 WARN_ON(!sd || !sd->groups);
7998
758b2cdc 7999 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
8000 return;
8001
8002 child = sd->child;
8003
5517d86b
ED
8004 sd->groups->__cpu_power = 0;
8005
89c4710e
SS
8006 /*
8007 * For perf policy, if the groups in child domain share resources
8008 * (for example cores sharing some portions of the cache hierarchy
8009 * or SMT), then set this domain groups cpu_power such that each group
8010 * can handle only one task, when there are other idle groups in the
8011 * same sched domain.
8012 */
8013 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8014 (child->flags &
8015 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 8016 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
8017 return;
8018 }
8019
89c4710e
SS
8020 /*
8021 * add cpu_power of each child group to this groups cpu_power
8022 */
8023 group = child->groups;
8024 do {
5517d86b 8025 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
8026 group = group->next;
8027 } while (group != child->groups);
8028}
8029
7c16ec58
MT
8030/*
8031 * Initializers for schedule domains
8032 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8033 */
8034
a5d8c348
IM
8035#ifdef CONFIG_SCHED_DEBUG
8036# define SD_INIT_NAME(sd, type) sd->name = #type
8037#else
8038# define SD_INIT_NAME(sd, type) do { } while (0)
8039#endif
8040
7c16ec58 8041#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8042
7c16ec58
MT
8043#define SD_INIT_FUNC(type) \
8044static noinline void sd_init_##type(struct sched_domain *sd) \
8045{ \
8046 memset(sd, 0, sizeof(*sd)); \
8047 *sd = SD_##type##_INIT; \
1d3504fc 8048 sd->level = SD_LV_##type; \
a5d8c348 8049 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8050}
8051
8052SD_INIT_FUNC(CPU)
8053#ifdef CONFIG_NUMA
8054 SD_INIT_FUNC(ALLNODES)
8055 SD_INIT_FUNC(NODE)
8056#endif
8057#ifdef CONFIG_SCHED_SMT
8058 SD_INIT_FUNC(SIBLING)
8059#endif
8060#ifdef CONFIG_SCHED_MC
8061 SD_INIT_FUNC(MC)
8062#endif
8063
1d3504fc
HS
8064static int default_relax_domain_level = -1;
8065
8066static int __init setup_relax_domain_level(char *str)
8067{
30e0e178
LZ
8068 unsigned long val;
8069
8070 val = simple_strtoul(str, NULL, 0);
8071 if (val < SD_LV_MAX)
8072 default_relax_domain_level = val;
8073
1d3504fc
HS
8074 return 1;
8075}
8076__setup("relax_domain_level=", setup_relax_domain_level);
8077
8078static void set_domain_attribute(struct sched_domain *sd,
8079 struct sched_domain_attr *attr)
8080{
8081 int request;
8082
8083 if (!attr || attr->relax_domain_level < 0) {
8084 if (default_relax_domain_level < 0)
8085 return;
8086 else
8087 request = default_relax_domain_level;
8088 } else
8089 request = attr->relax_domain_level;
8090 if (request < sd->level) {
8091 /* turn off idle balance on this domain */
8092 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8093 } else {
8094 /* turn on idle balance on this domain */
8095 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8096 }
8097}
8098
1da177e4 8099/*
1a20ff27
DG
8100 * Build sched domains for a given set of cpus and attach the sched domains
8101 * to the individual cpus
1da177e4 8102 */
96f874e2 8103static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 8104 struct sched_domain_attr *attr)
1da177e4 8105{
3404c8d9 8106 int i, err = -ENOMEM;
57d885fe 8107 struct root_domain *rd;
3404c8d9
RR
8108 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8109 tmpmask;
d1b55138 8110#ifdef CONFIG_NUMA
3404c8d9 8111 cpumask_var_t domainspan, covered, notcovered;
d1b55138 8112 struct sched_group **sched_group_nodes = NULL;
6711cab4 8113 int sd_allnodes = 0;
d1b55138 8114
3404c8d9
RR
8115 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8116 goto out;
8117 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8118 goto free_domainspan;
8119 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8120 goto free_covered;
8121#endif
8122
8123 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8124 goto free_notcovered;
8125 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8126 goto free_nodemask;
8127 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8128 goto free_this_sibling_map;
8129 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8130 goto free_this_core_map;
8131 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8132 goto free_send_covered;
8133
8134#ifdef CONFIG_NUMA
d1b55138
JH
8135 /*
8136 * Allocate the per-node list of sched groups
8137 */
076ac2af 8138 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 8139 GFP_KERNEL);
d1b55138
JH
8140 if (!sched_group_nodes) {
8141 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 8142 goto free_tmpmask;
d1b55138 8143 }
d1b55138 8144#endif
1da177e4 8145
dc938520 8146 rd = alloc_rootdomain();
57d885fe
GH
8147 if (!rd) {
8148 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 8149 goto free_sched_groups;
7c16ec58 8150 }
6d21cd62 8151
7c16ec58 8152#ifdef CONFIG_NUMA
96f874e2 8153 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
8154#endif
8155
1da177e4 8156 /*
1a20ff27 8157 * Set up domains for cpus specified by the cpu_map.
1da177e4 8158 */
abcd083a 8159 for_each_cpu(i, cpu_map) {
1da177e4 8160 struct sched_domain *sd = NULL, *p;
1da177e4 8161
6ca09dfc 8162 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
8163
8164#ifdef CONFIG_NUMA
96f874e2
RR
8165 if (cpumask_weight(cpu_map) >
8166 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 8167 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 8168 SD_INIT(sd, ALLNODES);
1d3504fc 8169 set_domain_attribute(sd, attr);
758b2cdc 8170 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 8171 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 8172 p = sd;
6711cab4 8173 sd_allnodes = 1;
9c1cfda2
JH
8174 } else
8175 p = NULL;
8176
62ea9ceb 8177 sd = &per_cpu(node_domains, i).sd;
7c16ec58 8178 SD_INIT(sd, NODE);
1d3504fc 8179 set_domain_attribute(sd, attr);
758b2cdc 8180 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 8181 sd->parent = p;
1a848870
SS
8182 if (p)
8183 p->child = sd;
758b2cdc
RR
8184 cpumask_and(sched_domain_span(sd),
8185 sched_domain_span(sd), cpu_map);
1da177e4
LT
8186#endif
8187
8188 p = sd;
6c99e9ad 8189 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 8190 SD_INIT(sd, CPU);
1d3504fc 8191 set_domain_attribute(sd, attr);
758b2cdc 8192 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 8193 sd->parent = p;
1a848870
SS
8194 if (p)
8195 p->child = sd;
7c16ec58 8196 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8197
1e9f28fa
SS
8198#ifdef CONFIG_SCHED_MC
8199 p = sd;
6c99e9ad 8200 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8201 SD_INIT(sd, MC);
1d3504fc 8202 set_domain_attribute(sd, attr);
6ca09dfc
MT
8203 cpumask_and(sched_domain_span(sd), cpu_map,
8204 cpu_coregroup_mask(i));
1e9f28fa 8205 sd->parent = p;
1a848870 8206 p->child = sd;
7c16ec58 8207 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8208#endif
8209
1da177e4
LT
8210#ifdef CONFIG_SCHED_SMT
8211 p = sd;
6c99e9ad 8212 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8213 SD_INIT(sd, SIBLING);
1d3504fc 8214 set_domain_attribute(sd, attr);
758b2cdc 8215 cpumask_and(sched_domain_span(sd),
c69fc56d 8216 topology_thread_cpumask(i), cpu_map);
1da177e4 8217 sd->parent = p;
1a848870 8218 p->child = sd;
7c16ec58 8219 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8220#endif
8221 }
8222
8223#ifdef CONFIG_SCHED_SMT
8224 /* Set up CPU (sibling) groups */
abcd083a 8225 for_each_cpu(i, cpu_map) {
96f874e2 8226 cpumask_and(this_sibling_map,
c69fc56d 8227 topology_thread_cpumask(i), cpu_map);
96f874e2 8228 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8229 continue;
8230
dd41f596 8231 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8232 &cpu_to_cpu_group,
8233 send_covered, tmpmask);
1da177e4
LT
8234 }
8235#endif
8236
1e9f28fa
SS
8237#ifdef CONFIG_SCHED_MC
8238 /* Set up multi-core groups */
abcd083a 8239 for_each_cpu(i, cpu_map) {
6ca09dfc 8240 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8241 if (i != cpumask_first(this_core_map))
1e9f28fa 8242 continue;
7c16ec58 8243
dd41f596 8244 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8245 &cpu_to_core_group,
8246 send_covered, tmpmask);
1e9f28fa
SS
8247 }
8248#endif
8249
1da177e4 8250 /* Set up physical groups */
076ac2af 8251 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8252 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8253 if (cpumask_empty(nodemask))
1da177e4
LT
8254 continue;
8255
7c16ec58
MT
8256 init_sched_build_groups(nodemask, cpu_map,
8257 &cpu_to_phys_group,
8258 send_covered, tmpmask);
1da177e4
LT
8259 }
8260
8261#ifdef CONFIG_NUMA
8262 /* Set up node groups */
7c16ec58 8263 if (sd_allnodes) {
7c16ec58
MT
8264 init_sched_build_groups(cpu_map, cpu_map,
8265 &cpu_to_allnodes_group,
8266 send_covered, tmpmask);
8267 }
9c1cfda2 8268
076ac2af 8269 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8270 /* Set up node groups */
8271 struct sched_group *sg, *prev;
9c1cfda2
JH
8272 int j;
8273
96f874e2 8274 cpumask_clear(covered);
6ca09dfc 8275 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8276 if (cpumask_empty(nodemask)) {
d1b55138 8277 sched_group_nodes[i] = NULL;
9c1cfda2 8278 continue;
d1b55138 8279 }
9c1cfda2 8280
4bdbaad3 8281 sched_domain_node_span(i, domainspan);
96f874e2 8282 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8283
6c99e9ad
RR
8284 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8285 GFP_KERNEL, i);
51888ca2
SV
8286 if (!sg) {
8287 printk(KERN_WARNING "Can not alloc domain group for "
8288 "node %d\n", i);
8289 goto error;
8290 }
9c1cfda2 8291 sched_group_nodes[i] = sg;
abcd083a 8292 for_each_cpu(j, nodemask) {
9c1cfda2 8293 struct sched_domain *sd;
9761eea8 8294
62ea9ceb 8295 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8296 sd->groups = sg;
9c1cfda2 8297 }
5517d86b 8298 sg->__cpu_power = 0;
758b2cdc 8299 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8300 sg->next = sg;
96f874e2 8301 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8302 prev = sg;
8303
076ac2af 8304 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8305 int n = (i + j) % nr_node_ids;
9c1cfda2 8306
96f874e2
RR
8307 cpumask_complement(notcovered, covered);
8308 cpumask_and(tmpmask, notcovered, cpu_map);
8309 cpumask_and(tmpmask, tmpmask, domainspan);
8310 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8311 break;
8312
6ca09dfc 8313 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8314 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8315 continue;
8316
6c99e9ad
RR
8317 sg = kmalloc_node(sizeof(struct sched_group) +
8318 cpumask_size(),
15f0b676 8319 GFP_KERNEL, i);
9c1cfda2
JH
8320 if (!sg) {
8321 printk(KERN_WARNING
8322 "Can not alloc domain group for node %d\n", j);
51888ca2 8323 goto error;
9c1cfda2 8324 }
5517d86b 8325 sg->__cpu_power = 0;
758b2cdc 8326 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8327 sg->next = prev->next;
96f874e2 8328 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8329 prev->next = sg;
8330 prev = sg;
8331 }
9c1cfda2 8332 }
1da177e4
LT
8333#endif
8334
8335 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8336#ifdef CONFIG_SCHED_SMT
abcd083a 8337 for_each_cpu(i, cpu_map) {
6c99e9ad 8338 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8339
89c4710e 8340 init_sched_groups_power(i, sd);
5c45bf27 8341 }
1da177e4 8342#endif
1e9f28fa 8343#ifdef CONFIG_SCHED_MC
abcd083a 8344 for_each_cpu(i, cpu_map) {
6c99e9ad 8345 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8346
89c4710e 8347 init_sched_groups_power(i, sd);
5c45bf27
SS
8348 }
8349#endif
1e9f28fa 8350
abcd083a 8351 for_each_cpu(i, cpu_map) {
6c99e9ad 8352 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8353
89c4710e 8354 init_sched_groups_power(i, sd);
1da177e4
LT
8355 }
8356
9c1cfda2 8357#ifdef CONFIG_NUMA
076ac2af 8358 for (i = 0; i < nr_node_ids; i++)
08069033 8359 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8360
6711cab4
SS
8361 if (sd_allnodes) {
8362 struct sched_group *sg;
f712c0c7 8363
96f874e2 8364 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8365 tmpmask);
f712c0c7
SS
8366 init_numa_sched_groups_power(sg);
8367 }
9c1cfda2
JH
8368#endif
8369
1da177e4 8370 /* Attach the domains */
abcd083a 8371 for_each_cpu(i, cpu_map) {
1da177e4
LT
8372 struct sched_domain *sd;
8373#ifdef CONFIG_SCHED_SMT
6c99e9ad 8374 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8375#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8376 sd = &per_cpu(core_domains, i).sd;
1da177e4 8377#else
6c99e9ad 8378 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8379#endif
57d885fe 8380 cpu_attach_domain(sd, rd, i);
1da177e4 8381 }
51888ca2 8382
3404c8d9
RR
8383 err = 0;
8384
8385free_tmpmask:
8386 free_cpumask_var(tmpmask);
8387free_send_covered:
8388 free_cpumask_var(send_covered);
8389free_this_core_map:
8390 free_cpumask_var(this_core_map);
8391free_this_sibling_map:
8392 free_cpumask_var(this_sibling_map);
8393free_nodemask:
8394 free_cpumask_var(nodemask);
8395free_notcovered:
8396#ifdef CONFIG_NUMA
8397 free_cpumask_var(notcovered);
8398free_covered:
8399 free_cpumask_var(covered);
8400free_domainspan:
8401 free_cpumask_var(domainspan);
8402out:
8403#endif
8404 return err;
8405
8406free_sched_groups:
8407#ifdef CONFIG_NUMA
8408 kfree(sched_group_nodes);
8409#endif
8410 goto free_tmpmask;
51888ca2 8411
a616058b 8412#ifdef CONFIG_NUMA
51888ca2 8413error:
7c16ec58 8414 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8415 free_rootdomain(rd);
3404c8d9 8416 goto free_tmpmask;
a616058b 8417#endif
1da177e4 8418}
029190c5 8419
96f874e2 8420static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8421{
8422 return __build_sched_domains(cpu_map, NULL);
8423}
8424
96f874e2 8425static struct cpumask *doms_cur; /* current sched domains */
029190c5 8426static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8427static struct sched_domain_attr *dattr_cur;
8428 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8429
8430/*
8431 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8432 * cpumask) fails, then fallback to a single sched domain,
8433 * as determined by the single cpumask fallback_doms.
029190c5 8434 */
4212823f 8435static cpumask_var_t fallback_doms;
029190c5 8436
ee79d1bd
HC
8437/*
8438 * arch_update_cpu_topology lets virtualized architectures update the
8439 * cpu core maps. It is supposed to return 1 if the topology changed
8440 * or 0 if it stayed the same.
8441 */
8442int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8443{
ee79d1bd 8444 return 0;
22e52b07
HC
8445}
8446
1a20ff27 8447/*
41a2d6cf 8448 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8449 * For now this just excludes isolated cpus, but could be used to
8450 * exclude other special cases in the future.
1a20ff27 8451 */
96f874e2 8452static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8453{
7378547f
MM
8454 int err;
8455
22e52b07 8456 arch_update_cpu_topology();
029190c5 8457 ndoms_cur = 1;
96f874e2 8458 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8459 if (!doms_cur)
4212823f 8460 doms_cur = fallback_doms;
dcc30a35 8461 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8462 dattr_cur = NULL;
7378547f 8463 err = build_sched_domains(doms_cur);
6382bc90 8464 register_sched_domain_sysctl();
7378547f
MM
8465
8466 return err;
1a20ff27
DG
8467}
8468
96f874e2
RR
8469static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8470 struct cpumask *tmpmask)
1da177e4 8471{
7c16ec58 8472 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8473}
1da177e4 8474
1a20ff27
DG
8475/*
8476 * Detach sched domains from a group of cpus specified in cpu_map
8477 * These cpus will now be attached to the NULL domain
8478 */
96f874e2 8479static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8480{
96f874e2
RR
8481 /* Save because hotplug lock held. */
8482 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8483 int i;
8484
abcd083a 8485 for_each_cpu(i, cpu_map)
57d885fe 8486 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8487 synchronize_sched();
96f874e2 8488 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8489}
8490
1d3504fc
HS
8491/* handle null as "default" */
8492static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8493 struct sched_domain_attr *new, int idx_new)
8494{
8495 struct sched_domain_attr tmp;
8496
8497 /* fast path */
8498 if (!new && !cur)
8499 return 1;
8500
8501 tmp = SD_ATTR_INIT;
8502 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8503 new ? (new + idx_new) : &tmp,
8504 sizeof(struct sched_domain_attr));
8505}
8506
029190c5
PJ
8507/*
8508 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8509 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8510 * doms_new[] to the current sched domain partitioning, doms_cur[].
8511 * It destroys each deleted domain and builds each new domain.
8512 *
96f874e2 8513 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8514 * The masks don't intersect (don't overlap.) We should setup one
8515 * sched domain for each mask. CPUs not in any of the cpumasks will
8516 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8517 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8518 * it as it is.
8519 *
41a2d6cf
IM
8520 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8521 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8522 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8523 * ndoms_new == 1, and partition_sched_domains() will fallback to
8524 * the single partition 'fallback_doms', it also forces the domains
8525 * to be rebuilt.
029190c5 8526 *
96f874e2 8527 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8528 * ndoms_new == 0 is a special case for destroying existing domains,
8529 * and it will not create the default domain.
dfb512ec 8530 *
029190c5
PJ
8531 * Call with hotplug lock held
8532 */
96f874e2
RR
8533/* FIXME: Change to struct cpumask *doms_new[] */
8534void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8535 struct sched_domain_attr *dattr_new)
029190c5 8536{
dfb512ec 8537 int i, j, n;
d65bd5ec 8538 int new_topology;
029190c5 8539
712555ee 8540 mutex_lock(&sched_domains_mutex);
a1835615 8541
7378547f
MM
8542 /* always unregister in case we don't destroy any domains */
8543 unregister_sched_domain_sysctl();
8544
d65bd5ec
HC
8545 /* Let architecture update cpu core mappings. */
8546 new_topology = arch_update_cpu_topology();
8547
dfb512ec 8548 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8549
8550 /* Destroy deleted domains */
8551 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8552 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8553 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8554 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8555 goto match1;
8556 }
8557 /* no match - a current sched domain not in new doms_new[] */
8558 detach_destroy_domains(doms_cur + i);
8559match1:
8560 ;
8561 }
8562
e761b772
MK
8563 if (doms_new == NULL) {
8564 ndoms_cur = 0;
4212823f 8565 doms_new = fallback_doms;
dcc30a35 8566 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8567 WARN_ON_ONCE(dattr_new);
e761b772
MK
8568 }
8569
029190c5
PJ
8570 /* Build new domains */
8571 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8572 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8573 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8574 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8575 goto match2;
8576 }
8577 /* no match - add a new doms_new */
1d3504fc
HS
8578 __build_sched_domains(doms_new + i,
8579 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8580match2:
8581 ;
8582 }
8583
8584 /* Remember the new sched domains */
4212823f 8585 if (doms_cur != fallback_doms)
029190c5 8586 kfree(doms_cur);
1d3504fc 8587 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8588 doms_cur = doms_new;
1d3504fc 8589 dattr_cur = dattr_new;
029190c5 8590 ndoms_cur = ndoms_new;
7378547f
MM
8591
8592 register_sched_domain_sysctl();
a1835615 8593
712555ee 8594 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8595}
8596
5c45bf27 8597#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8598static void arch_reinit_sched_domains(void)
5c45bf27 8599{
95402b38 8600 get_online_cpus();
dfb512ec
MK
8601
8602 /* Destroy domains first to force the rebuild */
8603 partition_sched_domains(0, NULL, NULL);
8604
e761b772 8605 rebuild_sched_domains();
95402b38 8606 put_online_cpus();
5c45bf27
SS
8607}
8608
8609static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8610{
afb8a9b7 8611 unsigned int level = 0;
5c45bf27 8612
afb8a9b7
GS
8613 if (sscanf(buf, "%u", &level) != 1)
8614 return -EINVAL;
8615
8616 /*
8617 * level is always be positive so don't check for
8618 * level < POWERSAVINGS_BALANCE_NONE which is 0
8619 * What happens on 0 or 1 byte write,
8620 * need to check for count as well?
8621 */
5c45bf27 8622
afb8a9b7 8623 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8624 return -EINVAL;
8625
8626 if (smt)
afb8a9b7 8627 sched_smt_power_savings = level;
5c45bf27 8628 else
afb8a9b7 8629 sched_mc_power_savings = level;
5c45bf27 8630
c70f22d2 8631 arch_reinit_sched_domains();
5c45bf27 8632
c70f22d2 8633 return count;
5c45bf27
SS
8634}
8635
5c45bf27 8636#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8637static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8638 char *page)
5c45bf27
SS
8639{
8640 return sprintf(page, "%u\n", sched_mc_power_savings);
8641}
f718cd4a 8642static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8643 const char *buf, size_t count)
5c45bf27
SS
8644{
8645 return sched_power_savings_store(buf, count, 0);
8646}
f718cd4a
AK
8647static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8648 sched_mc_power_savings_show,
8649 sched_mc_power_savings_store);
5c45bf27
SS
8650#endif
8651
8652#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8653static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8654 char *page)
5c45bf27
SS
8655{
8656 return sprintf(page, "%u\n", sched_smt_power_savings);
8657}
f718cd4a 8658static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8659 const char *buf, size_t count)
5c45bf27
SS
8660{
8661 return sched_power_savings_store(buf, count, 1);
8662}
f718cd4a
AK
8663static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8664 sched_smt_power_savings_show,
6707de00
AB
8665 sched_smt_power_savings_store);
8666#endif
8667
39aac648 8668int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8669{
8670 int err = 0;
8671
8672#ifdef CONFIG_SCHED_SMT
8673 if (smt_capable())
8674 err = sysfs_create_file(&cls->kset.kobj,
8675 &attr_sched_smt_power_savings.attr);
8676#endif
8677#ifdef CONFIG_SCHED_MC
8678 if (!err && mc_capable())
8679 err = sysfs_create_file(&cls->kset.kobj,
8680 &attr_sched_mc_power_savings.attr);
8681#endif
8682 return err;
8683}
6d6bc0ad 8684#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8685
e761b772 8686#ifndef CONFIG_CPUSETS
1da177e4 8687/*
e761b772
MK
8688 * Add online and remove offline CPUs from the scheduler domains.
8689 * When cpusets are enabled they take over this function.
1da177e4
LT
8690 */
8691static int update_sched_domains(struct notifier_block *nfb,
8692 unsigned long action, void *hcpu)
e761b772
MK
8693{
8694 switch (action) {
8695 case CPU_ONLINE:
8696 case CPU_ONLINE_FROZEN:
8697 case CPU_DEAD:
8698 case CPU_DEAD_FROZEN:
dfb512ec 8699 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8700 return NOTIFY_OK;
8701
8702 default:
8703 return NOTIFY_DONE;
8704 }
8705}
8706#endif
8707
8708static int update_runtime(struct notifier_block *nfb,
8709 unsigned long action, void *hcpu)
1da177e4 8710{
7def2be1
PZ
8711 int cpu = (int)(long)hcpu;
8712
1da177e4 8713 switch (action) {
1da177e4 8714 case CPU_DOWN_PREPARE:
8bb78442 8715 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8716 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8717 return NOTIFY_OK;
8718
1da177e4 8719 case CPU_DOWN_FAILED:
8bb78442 8720 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8721 case CPU_ONLINE:
8bb78442 8722 case CPU_ONLINE_FROZEN:
7def2be1 8723 enable_runtime(cpu_rq(cpu));
e761b772
MK
8724 return NOTIFY_OK;
8725
1da177e4
LT
8726 default:
8727 return NOTIFY_DONE;
8728 }
1da177e4 8729}
1da177e4
LT
8730
8731void __init sched_init_smp(void)
8732{
dcc30a35
RR
8733 cpumask_var_t non_isolated_cpus;
8734
8735 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8736
434d53b0
MT
8737#if defined(CONFIG_NUMA)
8738 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8739 GFP_KERNEL);
8740 BUG_ON(sched_group_nodes_bycpu == NULL);
8741#endif
95402b38 8742 get_online_cpus();
712555ee 8743 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8744 arch_init_sched_domains(cpu_online_mask);
8745 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8746 if (cpumask_empty(non_isolated_cpus))
8747 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8748 mutex_unlock(&sched_domains_mutex);
95402b38 8749 put_online_cpus();
e761b772
MK
8750
8751#ifndef CONFIG_CPUSETS
1da177e4
LT
8752 /* XXX: Theoretical race here - CPU may be hotplugged now */
8753 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8754#endif
8755
8756 /* RT runtime code needs to handle some hotplug events */
8757 hotcpu_notifier(update_runtime, 0);
8758
b328ca18 8759 init_hrtick();
5c1e1767
NP
8760
8761 /* Move init over to a non-isolated CPU */
dcc30a35 8762 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8763 BUG();
19978ca6 8764 sched_init_granularity();
dcc30a35 8765 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8766
8767 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8768 init_sched_rt_class();
1da177e4
LT
8769}
8770#else
8771void __init sched_init_smp(void)
8772{
19978ca6 8773 sched_init_granularity();
1da177e4
LT
8774}
8775#endif /* CONFIG_SMP */
8776
8777int in_sched_functions(unsigned long addr)
8778{
1da177e4
LT
8779 return in_lock_functions(addr) ||
8780 (addr >= (unsigned long)__sched_text_start
8781 && addr < (unsigned long)__sched_text_end);
8782}
8783
a9957449 8784static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8785{
8786 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8787 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8788#ifdef CONFIG_FAIR_GROUP_SCHED
8789 cfs_rq->rq = rq;
8790#endif
67e9fb2a 8791 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8792}
8793
fa85ae24
PZ
8794static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8795{
8796 struct rt_prio_array *array;
8797 int i;
8798
8799 array = &rt_rq->active;
8800 for (i = 0; i < MAX_RT_PRIO; i++) {
8801 INIT_LIST_HEAD(array->queue + i);
8802 __clear_bit(i, array->bitmap);
8803 }
8804 /* delimiter for bitsearch: */
8805 __set_bit(MAX_RT_PRIO, array->bitmap);
8806
052f1dc7 8807#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8808 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8809#ifdef CONFIG_SMP
e864c499 8810 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8811#endif
48d5e258 8812#endif
fa85ae24
PZ
8813#ifdef CONFIG_SMP
8814 rt_rq->rt_nr_migratory = 0;
fa85ae24 8815 rt_rq->overloaded = 0;
917b627d 8816 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
8817#endif
8818
8819 rt_rq->rt_time = 0;
8820 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8821 rt_rq->rt_runtime = 0;
8822 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8823
052f1dc7 8824#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8825 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8826 rt_rq->rq = rq;
8827#endif
fa85ae24
PZ
8828}
8829
6f505b16 8830#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8831static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8832 struct sched_entity *se, int cpu, int add,
8833 struct sched_entity *parent)
6f505b16 8834{
ec7dc8ac 8835 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8836 tg->cfs_rq[cpu] = cfs_rq;
8837 init_cfs_rq(cfs_rq, rq);
8838 cfs_rq->tg = tg;
8839 if (add)
8840 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8841
8842 tg->se[cpu] = se;
354d60c2
DG
8843 /* se could be NULL for init_task_group */
8844 if (!se)
8845 return;
8846
ec7dc8ac
DG
8847 if (!parent)
8848 se->cfs_rq = &rq->cfs;
8849 else
8850 se->cfs_rq = parent->my_q;
8851
6f505b16
PZ
8852 se->my_q = cfs_rq;
8853 se->load.weight = tg->shares;
e05510d0 8854 se->load.inv_weight = 0;
ec7dc8ac 8855 se->parent = parent;
6f505b16 8856}
052f1dc7 8857#endif
6f505b16 8858
052f1dc7 8859#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8860static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8861 struct sched_rt_entity *rt_se, int cpu, int add,
8862 struct sched_rt_entity *parent)
6f505b16 8863{
ec7dc8ac
DG
8864 struct rq *rq = cpu_rq(cpu);
8865
6f505b16
PZ
8866 tg->rt_rq[cpu] = rt_rq;
8867 init_rt_rq(rt_rq, rq);
8868 rt_rq->tg = tg;
8869 rt_rq->rt_se = rt_se;
ac086bc2 8870 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8871 if (add)
8872 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8873
8874 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8875 if (!rt_se)
8876 return;
8877
ec7dc8ac
DG
8878 if (!parent)
8879 rt_se->rt_rq = &rq->rt;
8880 else
8881 rt_se->rt_rq = parent->my_q;
8882
6f505b16 8883 rt_se->my_q = rt_rq;
ec7dc8ac 8884 rt_se->parent = parent;
6f505b16
PZ
8885 INIT_LIST_HEAD(&rt_se->run_list);
8886}
8887#endif
8888
1da177e4
LT
8889void __init sched_init(void)
8890{
dd41f596 8891 int i, j;
434d53b0
MT
8892 unsigned long alloc_size = 0, ptr;
8893
8894#ifdef CONFIG_FAIR_GROUP_SCHED
8895 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8896#endif
8897#ifdef CONFIG_RT_GROUP_SCHED
8898 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8899#endif
8900#ifdef CONFIG_USER_SCHED
8901 alloc_size *= 2;
df7c8e84
RR
8902#endif
8903#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8904 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
8905#endif
8906 /*
8907 * As sched_init() is called before page_alloc is setup,
8908 * we use alloc_bootmem().
8909 */
8910 if (alloc_size) {
5a9d3225 8911 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8912
8913#ifdef CONFIG_FAIR_GROUP_SCHED
8914 init_task_group.se = (struct sched_entity **)ptr;
8915 ptr += nr_cpu_ids * sizeof(void **);
8916
8917 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8918 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8919
8920#ifdef CONFIG_USER_SCHED
8921 root_task_group.se = (struct sched_entity **)ptr;
8922 ptr += nr_cpu_ids * sizeof(void **);
8923
8924 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8925 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8926#endif /* CONFIG_USER_SCHED */
8927#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8928#ifdef CONFIG_RT_GROUP_SCHED
8929 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8930 ptr += nr_cpu_ids * sizeof(void **);
8931
8932 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8933 ptr += nr_cpu_ids * sizeof(void **);
8934
8935#ifdef CONFIG_USER_SCHED
8936 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8937 ptr += nr_cpu_ids * sizeof(void **);
8938
8939 root_task_group.rt_rq = (struct rt_rq **)ptr;
8940 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8941#endif /* CONFIG_USER_SCHED */
8942#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8943#ifdef CONFIG_CPUMASK_OFFSTACK
8944 for_each_possible_cpu(i) {
8945 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8946 ptr += cpumask_size();
8947 }
8948#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8949 }
dd41f596 8950
57d885fe
GH
8951#ifdef CONFIG_SMP
8952 init_defrootdomain();
8953#endif
8954
d0b27fa7
PZ
8955 init_rt_bandwidth(&def_rt_bandwidth,
8956 global_rt_period(), global_rt_runtime());
8957
8958#ifdef CONFIG_RT_GROUP_SCHED
8959 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8960 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8961#ifdef CONFIG_USER_SCHED
8962 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8963 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8964#endif /* CONFIG_USER_SCHED */
8965#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8966
052f1dc7 8967#ifdef CONFIG_GROUP_SCHED
6f505b16 8968 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8969 INIT_LIST_HEAD(&init_task_group.children);
8970
8971#ifdef CONFIG_USER_SCHED
8972 INIT_LIST_HEAD(&root_task_group.children);
8973 init_task_group.parent = &root_task_group;
8974 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8975#endif /* CONFIG_USER_SCHED */
8976#endif /* CONFIG_GROUP_SCHED */
6f505b16 8977
0a945022 8978 for_each_possible_cpu(i) {
70b97a7f 8979 struct rq *rq;
1da177e4
LT
8980
8981 rq = cpu_rq(i);
8982 spin_lock_init(&rq->lock);
7897986b 8983 rq->nr_running = 0;
dd41f596 8984 init_cfs_rq(&rq->cfs, rq);
6f505b16 8985 init_rt_rq(&rq->rt, rq);
dd41f596 8986#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8987 init_task_group.shares = init_task_group_load;
6f505b16 8988 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8989#ifdef CONFIG_CGROUP_SCHED
8990 /*
8991 * How much cpu bandwidth does init_task_group get?
8992 *
8993 * In case of task-groups formed thr' the cgroup filesystem, it
8994 * gets 100% of the cpu resources in the system. This overall
8995 * system cpu resource is divided among the tasks of
8996 * init_task_group and its child task-groups in a fair manner,
8997 * based on each entity's (task or task-group's) weight
8998 * (se->load.weight).
8999 *
9000 * In other words, if init_task_group has 10 tasks of weight
9001 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9002 * then A0's share of the cpu resource is:
9003 *
0d905bca 9004 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9005 *
9006 * We achieve this by letting init_task_group's tasks sit
9007 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9008 */
ec7dc8ac 9009 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9010#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9011 root_task_group.shares = NICE_0_LOAD;
9012 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9013 /*
9014 * In case of task-groups formed thr' the user id of tasks,
9015 * init_task_group represents tasks belonging to root user.
9016 * Hence it forms a sibling of all subsequent groups formed.
9017 * In this case, init_task_group gets only a fraction of overall
9018 * system cpu resource, based on the weight assigned to root
9019 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9020 * by letting tasks of init_task_group sit in a separate cfs_rq
9021 * (init_cfs_rq) and having one entity represent this group of
9022 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9023 */
ec7dc8ac 9024 init_tg_cfs_entry(&init_task_group,
6f505b16 9025 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
9026 &per_cpu(init_sched_entity, i), i, 1,
9027 root_task_group.se[i]);
6f505b16 9028
052f1dc7 9029#endif
354d60c2
DG
9030#endif /* CONFIG_FAIR_GROUP_SCHED */
9031
9032 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9033#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9034 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9035#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9036 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9037#elif defined CONFIG_USER_SCHED
eff766a6 9038 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9039 init_tg_rt_entry(&init_task_group,
6f505b16 9040 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9041 &per_cpu(init_sched_rt_entity, i), i, 1,
9042 root_task_group.rt_se[i]);
354d60c2 9043#endif
dd41f596 9044#endif
1da177e4 9045
dd41f596
IM
9046 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9047 rq->cpu_load[j] = 0;
1da177e4 9048#ifdef CONFIG_SMP
41c7ce9a 9049 rq->sd = NULL;
57d885fe 9050 rq->rd = NULL;
1da177e4 9051 rq->active_balance = 0;
dd41f596 9052 rq->next_balance = jiffies;
1da177e4 9053 rq->push_cpu = 0;
0a2966b4 9054 rq->cpu = i;
1f11eb6a 9055 rq->online = 0;
1da177e4
LT
9056 rq->migration_thread = NULL;
9057 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9058 rq_attach_root(rq, &def_root_domain);
1da177e4 9059#endif
8f4d37ec 9060 init_rq_hrtick(rq);
1da177e4 9061 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9062 }
9063
2dd73a4f 9064 set_load_weight(&init_task);
b50f60ce 9065
e107be36
AK
9066#ifdef CONFIG_PREEMPT_NOTIFIERS
9067 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9068#endif
9069
c9819f45 9070#ifdef CONFIG_SMP
962cf36c 9071 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9072#endif
9073
b50f60ce
HC
9074#ifdef CONFIG_RT_MUTEXES
9075 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9076#endif
9077
1da177e4
LT
9078 /*
9079 * The boot idle thread does lazy MMU switching as well:
9080 */
9081 atomic_inc(&init_mm.mm_count);
9082 enter_lazy_tlb(&init_mm, current);
9083
9084 /*
9085 * Make us the idle thread. Technically, schedule() should not be
9086 * called from this thread, however somewhere below it might be,
9087 * but because we are the idle thread, we just pick up running again
9088 * when this runqueue becomes "idle".
9089 */
9090 init_idle(current, smp_processor_id());
dd41f596
IM
9091 /*
9092 * During early bootup we pretend to be a normal task:
9093 */
9094 current->sched_class = &fair_sched_class;
6892b75e 9095
6a7b3dc3
RR
9096 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9097 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 9098#ifdef CONFIG_SMP
7d1e6a9b
RR
9099#ifdef CONFIG_NO_HZ
9100 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
9101#endif
dcc30a35 9102 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 9103#endif /* SMP */
6a7b3dc3 9104
0d905bca
IM
9105 perf_counter_init();
9106
6892b75e 9107 scheduler_running = 1;
1da177e4
LT
9108}
9109
9110#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9111void __might_sleep(char *file, int line)
9112{
48f24c4d 9113#ifdef in_atomic
1da177e4
LT
9114 static unsigned long prev_jiffy; /* ratelimiting */
9115
aef745fc
IM
9116 if ((!in_atomic() && !irqs_disabled()) ||
9117 system_state != SYSTEM_RUNNING || oops_in_progress)
9118 return;
9119 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9120 return;
9121 prev_jiffy = jiffies;
9122
9123 printk(KERN_ERR
9124 "BUG: sleeping function called from invalid context at %s:%d\n",
9125 file, line);
9126 printk(KERN_ERR
9127 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9128 in_atomic(), irqs_disabled(),
9129 current->pid, current->comm);
9130
9131 debug_show_held_locks(current);
9132 if (irqs_disabled())
9133 print_irqtrace_events(current);
9134 dump_stack();
1da177e4
LT
9135#endif
9136}
9137EXPORT_SYMBOL(__might_sleep);
9138#endif
9139
9140#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9141static void normalize_task(struct rq *rq, struct task_struct *p)
9142{
9143 int on_rq;
3e51f33f 9144
3a5e4dc1
AK
9145 update_rq_clock(rq);
9146 on_rq = p->se.on_rq;
9147 if (on_rq)
9148 deactivate_task(rq, p, 0);
9149 __setscheduler(rq, p, SCHED_NORMAL, 0);
9150 if (on_rq) {
9151 activate_task(rq, p, 0);
9152 resched_task(rq->curr);
9153 }
9154}
9155
1da177e4
LT
9156void normalize_rt_tasks(void)
9157{
a0f98a1c 9158 struct task_struct *g, *p;
1da177e4 9159 unsigned long flags;
70b97a7f 9160 struct rq *rq;
1da177e4 9161
4cf5d77a 9162 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9163 do_each_thread(g, p) {
178be793
IM
9164 /*
9165 * Only normalize user tasks:
9166 */
9167 if (!p->mm)
9168 continue;
9169
6cfb0d5d 9170 p->se.exec_start = 0;
6cfb0d5d 9171#ifdef CONFIG_SCHEDSTATS
dd41f596 9172 p->se.wait_start = 0;
dd41f596 9173 p->se.sleep_start = 0;
dd41f596 9174 p->se.block_start = 0;
6cfb0d5d 9175#endif
dd41f596
IM
9176
9177 if (!rt_task(p)) {
9178 /*
9179 * Renice negative nice level userspace
9180 * tasks back to 0:
9181 */
9182 if (TASK_NICE(p) < 0 && p->mm)
9183 set_user_nice(p, 0);
1da177e4 9184 continue;
dd41f596 9185 }
1da177e4 9186
4cf5d77a 9187 spin_lock(&p->pi_lock);
b29739f9 9188 rq = __task_rq_lock(p);
1da177e4 9189
178be793 9190 normalize_task(rq, p);
3a5e4dc1 9191
b29739f9 9192 __task_rq_unlock(rq);
4cf5d77a 9193 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9194 } while_each_thread(g, p);
9195
4cf5d77a 9196 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9197}
9198
9199#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9200
9201#ifdef CONFIG_IA64
9202/*
9203 * These functions are only useful for the IA64 MCA handling.
9204 *
9205 * They can only be called when the whole system has been
9206 * stopped - every CPU needs to be quiescent, and no scheduling
9207 * activity can take place. Using them for anything else would
9208 * be a serious bug, and as a result, they aren't even visible
9209 * under any other configuration.
9210 */
9211
9212/**
9213 * curr_task - return the current task for a given cpu.
9214 * @cpu: the processor in question.
9215 *
9216 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9217 */
36c8b586 9218struct task_struct *curr_task(int cpu)
1df5c10a
LT
9219{
9220 return cpu_curr(cpu);
9221}
9222
9223/**
9224 * set_curr_task - set the current task for a given cpu.
9225 * @cpu: the processor in question.
9226 * @p: the task pointer to set.
9227 *
9228 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9229 * are serviced on a separate stack. It allows the architecture to switch the
9230 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9231 * must be called with all CPU's synchronized, and interrupts disabled, the
9232 * and caller must save the original value of the current task (see
9233 * curr_task() above) and restore that value before reenabling interrupts and
9234 * re-starting the system.
9235 *
9236 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9237 */
36c8b586 9238void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9239{
9240 cpu_curr(cpu) = p;
9241}
9242
9243#endif
29f59db3 9244
bccbe08a
PZ
9245#ifdef CONFIG_FAIR_GROUP_SCHED
9246static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9247{
9248 int i;
9249
9250 for_each_possible_cpu(i) {
9251 if (tg->cfs_rq)
9252 kfree(tg->cfs_rq[i]);
9253 if (tg->se)
9254 kfree(tg->se[i]);
6f505b16
PZ
9255 }
9256
9257 kfree(tg->cfs_rq);
9258 kfree(tg->se);
6f505b16
PZ
9259}
9260
ec7dc8ac
DG
9261static
9262int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9263{
29f59db3 9264 struct cfs_rq *cfs_rq;
eab17229 9265 struct sched_entity *se;
9b5b7751 9266 struct rq *rq;
29f59db3
SV
9267 int i;
9268
434d53b0 9269 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9270 if (!tg->cfs_rq)
9271 goto err;
434d53b0 9272 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9273 if (!tg->se)
9274 goto err;
052f1dc7
PZ
9275
9276 tg->shares = NICE_0_LOAD;
29f59db3
SV
9277
9278 for_each_possible_cpu(i) {
9b5b7751 9279 rq = cpu_rq(i);
29f59db3 9280
eab17229
LZ
9281 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9282 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9283 if (!cfs_rq)
9284 goto err;
9285
eab17229
LZ
9286 se = kzalloc_node(sizeof(struct sched_entity),
9287 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9288 if (!se)
9289 goto err;
9290
eab17229 9291 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9292 }
9293
9294 return 1;
9295
9296 err:
9297 return 0;
9298}
9299
9300static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9301{
9302 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9303 &cpu_rq(cpu)->leaf_cfs_rq_list);
9304}
9305
9306static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9307{
9308 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9309}
6d6bc0ad 9310#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9311static inline void free_fair_sched_group(struct task_group *tg)
9312{
9313}
9314
ec7dc8ac
DG
9315static inline
9316int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9317{
9318 return 1;
9319}
9320
9321static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9322{
9323}
9324
9325static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9326{
9327}
6d6bc0ad 9328#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9329
9330#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9331static void free_rt_sched_group(struct task_group *tg)
9332{
9333 int i;
9334
d0b27fa7
PZ
9335 destroy_rt_bandwidth(&tg->rt_bandwidth);
9336
bccbe08a
PZ
9337 for_each_possible_cpu(i) {
9338 if (tg->rt_rq)
9339 kfree(tg->rt_rq[i]);
9340 if (tg->rt_se)
9341 kfree(tg->rt_se[i]);
9342 }
9343
9344 kfree(tg->rt_rq);
9345 kfree(tg->rt_se);
9346}
9347
ec7dc8ac
DG
9348static
9349int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9350{
9351 struct rt_rq *rt_rq;
eab17229 9352 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9353 struct rq *rq;
9354 int i;
9355
434d53b0 9356 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9357 if (!tg->rt_rq)
9358 goto err;
434d53b0 9359 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9360 if (!tg->rt_se)
9361 goto err;
9362
d0b27fa7
PZ
9363 init_rt_bandwidth(&tg->rt_bandwidth,
9364 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9365
9366 for_each_possible_cpu(i) {
9367 rq = cpu_rq(i);
9368
eab17229
LZ
9369 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9370 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9371 if (!rt_rq)
9372 goto err;
29f59db3 9373
eab17229
LZ
9374 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9375 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9376 if (!rt_se)
9377 goto err;
29f59db3 9378
eab17229 9379 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9380 }
9381
bccbe08a
PZ
9382 return 1;
9383
9384 err:
9385 return 0;
9386}
9387
9388static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9389{
9390 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9391 &cpu_rq(cpu)->leaf_rt_rq_list);
9392}
9393
9394static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9395{
9396 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9397}
6d6bc0ad 9398#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9399static inline void free_rt_sched_group(struct task_group *tg)
9400{
9401}
9402
ec7dc8ac
DG
9403static inline
9404int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9405{
9406 return 1;
9407}
9408
9409static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9410{
9411}
9412
9413static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9414{
9415}
6d6bc0ad 9416#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9417
d0b27fa7 9418#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9419static void free_sched_group(struct task_group *tg)
9420{
9421 free_fair_sched_group(tg);
9422 free_rt_sched_group(tg);
9423 kfree(tg);
9424}
9425
9426/* allocate runqueue etc for a new task group */
ec7dc8ac 9427struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9428{
9429 struct task_group *tg;
9430 unsigned long flags;
9431 int i;
9432
9433 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9434 if (!tg)
9435 return ERR_PTR(-ENOMEM);
9436
ec7dc8ac 9437 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9438 goto err;
9439
ec7dc8ac 9440 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9441 goto err;
9442
8ed36996 9443 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9444 for_each_possible_cpu(i) {
bccbe08a
PZ
9445 register_fair_sched_group(tg, i);
9446 register_rt_sched_group(tg, i);
9b5b7751 9447 }
6f505b16 9448 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9449
9450 WARN_ON(!parent); /* root should already exist */
9451
9452 tg->parent = parent;
f473aa5e 9453 INIT_LIST_HEAD(&tg->children);
09f2724a 9454 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9455 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9456
9b5b7751 9457 return tg;
29f59db3
SV
9458
9459err:
6f505b16 9460 free_sched_group(tg);
29f59db3
SV
9461 return ERR_PTR(-ENOMEM);
9462}
9463
9b5b7751 9464/* rcu callback to free various structures associated with a task group */
6f505b16 9465static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9466{
29f59db3 9467 /* now it should be safe to free those cfs_rqs */
6f505b16 9468 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9469}
9470
9b5b7751 9471/* Destroy runqueue etc associated with a task group */
4cf86d77 9472void sched_destroy_group(struct task_group *tg)
29f59db3 9473{
8ed36996 9474 unsigned long flags;
9b5b7751 9475 int i;
29f59db3 9476
8ed36996 9477 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9478 for_each_possible_cpu(i) {
bccbe08a
PZ
9479 unregister_fair_sched_group(tg, i);
9480 unregister_rt_sched_group(tg, i);
9b5b7751 9481 }
6f505b16 9482 list_del_rcu(&tg->list);
f473aa5e 9483 list_del_rcu(&tg->siblings);
8ed36996 9484 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9485
9b5b7751 9486 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9487 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9488}
9489
9b5b7751 9490/* change task's runqueue when it moves between groups.
3a252015
IM
9491 * The caller of this function should have put the task in its new group
9492 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9493 * reflect its new group.
9b5b7751
SV
9494 */
9495void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9496{
9497 int on_rq, running;
9498 unsigned long flags;
9499 struct rq *rq;
9500
9501 rq = task_rq_lock(tsk, &flags);
9502
29f59db3
SV
9503 update_rq_clock(rq);
9504
051a1d1a 9505 running = task_current(rq, tsk);
29f59db3
SV
9506 on_rq = tsk->se.on_rq;
9507
0e1f3483 9508 if (on_rq)
29f59db3 9509 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9510 if (unlikely(running))
9511 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9512
6f505b16 9513 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9514
810b3817
PZ
9515#ifdef CONFIG_FAIR_GROUP_SCHED
9516 if (tsk->sched_class->moved_group)
9517 tsk->sched_class->moved_group(tsk);
9518#endif
9519
0e1f3483
HS
9520 if (unlikely(running))
9521 tsk->sched_class->set_curr_task(rq);
9522 if (on_rq)
7074badb 9523 enqueue_task(rq, tsk, 0);
29f59db3 9524
29f59db3
SV
9525 task_rq_unlock(rq, &flags);
9526}
6d6bc0ad 9527#endif /* CONFIG_GROUP_SCHED */
29f59db3 9528
052f1dc7 9529#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9530static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9531{
9532 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9533 int on_rq;
9534
29f59db3 9535 on_rq = se->on_rq;
62fb1851 9536 if (on_rq)
29f59db3
SV
9537 dequeue_entity(cfs_rq, se, 0);
9538
9539 se->load.weight = shares;
e05510d0 9540 se->load.inv_weight = 0;
29f59db3 9541
62fb1851 9542 if (on_rq)
29f59db3 9543 enqueue_entity(cfs_rq, se, 0);
c09595f6 9544}
62fb1851 9545
c09595f6
PZ
9546static void set_se_shares(struct sched_entity *se, unsigned long shares)
9547{
9548 struct cfs_rq *cfs_rq = se->cfs_rq;
9549 struct rq *rq = cfs_rq->rq;
9550 unsigned long flags;
9551
9552 spin_lock_irqsave(&rq->lock, flags);
9553 __set_se_shares(se, shares);
9554 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9555}
9556
8ed36996
PZ
9557static DEFINE_MUTEX(shares_mutex);
9558
4cf86d77 9559int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9560{
9561 int i;
8ed36996 9562 unsigned long flags;
c61935fd 9563
ec7dc8ac
DG
9564 /*
9565 * We can't change the weight of the root cgroup.
9566 */
9567 if (!tg->se[0])
9568 return -EINVAL;
9569
18d95a28
PZ
9570 if (shares < MIN_SHARES)
9571 shares = MIN_SHARES;
cb4ad1ff
MX
9572 else if (shares > MAX_SHARES)
9573 shares = MAX_SHARES;
62fb1851 9574
8ed36996 9575 mutex_lock(&shares_mutex);
9b5b7751 9576 if (tg->shares == shares)
5cb350ba 9577 goto done;
29f59db3 9578
8ed36996 9579 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9580 for_each_possible_cpu(i)
9581 unregister_fair_sched_group(tg, i);
f473aa5e 9582 list_del_rcu(&tg->siblings);
8ed36996 9583 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9584
9585 /* wait for any ongoing reference to this group to finish */
9586 synchronize_sched();
9587
9588 /*
9589 * Now we are free to modify the group's share on each cpu
9590 * w/o tripping rebalance_share or load_balance_fair.
9591 */
9b5b7751 9592 tg->shares = shares;
c09595f6
PZ
9593 for_each_possible_cpu(i) {
9594 /*
9595 * force a rebalance
9596 */
9597 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9598 set_se_shares(tg->se[i], shares);
c09595f6 9599 }
29f59db3 9600
6b2d7700
SV
9601 /*
9602 * Enable load balance activity on this group, by inserting it back on
9603 * each cpu's rq->leaf_cfs_rq_list.
9604 */
8ed36996 9605 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9606 for_each_possible_cpu(i)
9607 register_fair_sched_group(tg, i);
f473aa5e 9608 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9609 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9610done:
8ed36996 9611 mutex_unlock(&shares_mutex);
9b5b7751 9612 return 0;
29f59db3
SV
9613}
9614
5cb350ba
DG
9615unsigned long sched_group_shares(struct task_group *tg)
9616{
9617 return tg->shares;
9618}
052f1dc7 9619#endif
5cb350ba 9620
052f1dc7 9621#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9622/*
9f0c1e56 9623 * Ensure that the real time constraints are schedulable.
6f505b16 9624 */
9f0c1e56
PZ
9625static DEFINE_MUTEX(rt_constraints_mutex);
9626
9627static unsigned long to_ratio(u64 period, u64 runtime)
9628{
9629 if (runtime == RUNTIME_INF)
9a7e0b18 9630 return 1ULL << 20;
9f0c1e56 9631
9a7e0b18 9632 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9633}
9634
9a7e0b18
PZ
9635/* Must be called with tasklist_lock held */
9636static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9637{
9a7e0b18 9638 struct task_struct *g, *p;
b40b2e8e 9639
9a7e0b18
PZ
9640 do_each_thread(g, p) {
9641 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9642 return 1;
9643 } while_each_thread(g, p);
b40b2e8e 9644
9a7e0b18
PZ
9645 return 0;
9646}
b40b2e8e 9647
9a7e0b18
PZ
9648struct rt_schedulable_data {
9649 struct task_group *tg;
9650 u64 rt_period;
9651 u64 rt_runtime;
9652};
b40b2e8e 9653
9a7e0b18
PZ
9654static int tg_schedulable(struct task_group *tg, void *data)
9655{
9656 struct rt_schedulable_data *d = data;
9657 struct task_group *child;
9658 unsigned long total, sum = 0;
9659 u64 period, runtime;
b40b2e8e 9660
9a7e0b18
PZ
9661 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9662 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9663
9a7e0b18
PZ
9664 if (tg == d->tg) {
9665 period = d->rt_period;
9666 runtime = d->rt_runtime;
b40b2e8e 9667 }
b40b2e8e 9668
98a4826b
PZ
9669#ifdef CONFIG_USER_SCHED
9670 if (tg == &root_task_group) {
9671 period = global_rt_period();
9672 runtime = global_rt_runtime();
9673 }
9674#endif
9675
4653f803
PZ
9676 /*
9677 * Cannot have more runtime than the period.
9678 */
9679 if (runtime > period && runtime != RUNTIME_INF)
9680 return -EINVAL;
6f505b16 9681
4653f803
PZ
9682 /*
9683 * Ensure we don't starve existing RT tasks.
9684 */
9a7e0b18
PZ
9685 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9686 return -EBUSY;
6f505b16 9687
9a7e0b18 9688 total = to_ratio(period, runtime);
6f505b16 9689
4653f803
PZ
9690 /*
9691 * Nobody can have more than the global setting allows.
9692 */
9693 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9694 return -EINVAL;
6f505b16 9695
4653f803
PZ
9696 /*
9697 * The sum of our children's runtime should not exceed our own.
9698 */
9a7e0b18
PZ
9699 list_for_each_entry_rcu(child, &tg->children, siblings) {
9700 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9701 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9702
9a7e0b18
PZ
9703 if (child == d->tg) {
9704 period = d->rt_period;
9705 runtime = d->rt_runtime;
9706 }
6f505b16 9707
9a7e0b18 9708 sum += to_ratio(period, runtime);
9f0c1e56 9709 }
6f505b16 9710
9a7e0b18
PZ
9711 if (sum > total)
9712 return -EINVAL;
9713
9714 return 0;
6f505b16
PZ
9715}
9716
9a7e0b18 9717static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9718{
9a7e0b18
PZ
9719 struct rt_schedulable_data data = {
9720 .tg = tg,
9721 .rt_period = period,
9722 .rt_runtime = runtime,
9723 };
9724
9725 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9726}
9727
d0b27fa7
PZ
9728static int tg_set_bandwidth(struct task_group *tg,
9729 u64 rt_period, u64 rt_runtime)
6f505b16 9730{
ac086bc2 9731 int i, err = 0;
9f0c1e56 9732
9f0c1e56 9733 mutex_lock(&rt_constraints_mutex);
521f1a24 9734 read_lock(&tasklist_lock);
9a7e0b18
PZ
9735 err = __rt_schedulable(tg, rt_period, rt_runtime);
9736 if (err)
9f0c1e56 9737 goto unlock;
ac086bc2
PZ
9738
9739 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9740 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9741 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9742
9743 for_each_possible_cpu(i) {
9744 struct rt_rq *rt_rq = tg->rt_rq[i];
9745
9746 spin_lock(&rt_rq->rt_runtime_lock);
9747 rt_rq->rt_runtime = rt_runtime;
9748 spin_unlock(&rt_rq->rt_runtime_lock);
9749 }
9750 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9751 unlock:
521f1a24 9752 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9753 mutex_unlock(&rt_constraints_mutex);
9754
9755 return err;
6f505b16
PZ
9756}
9757
d0b27fa7
PZ
9758int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9759{
9760 u64 rt_runtime, rt_period;
9761
9762 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9763 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9764 if (rt_runtime_us < 0)
9765 rt_runtime = RUNTIME_INF;
9766
9767 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9768}
9769
9f0c1e56
PZ
9770long sched_group_rt_runtime(struct task_group *tg)
9771{
9772 u64 rt_runtime_us;
9773
d0b27fa7 9774 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9775 return -1;
9776
d0b27fa7 9777 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9778 do_div(rt_runtime_us, NSEC_PER_USEC);
9779 return rt_runtime_us;
9780}
d0b27fa7
PZ
9781
9782int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9783{
9784 u64 rt_runtime, rt_period;
9785
9786 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9787 rt_runtime = tg->rt_bandwidth.rt_runtime;
9788
619b0488
R
9789 if (rt_period == 0)
9790 return -EINVAL;
9791
d0b27fa7
PZ
9792 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9793}
9794
9795long sched_group_rt_period(struct task_group *tg)
9796{
9797 u64 rt_period_us;
9798
9799 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9800 do_div(rt_period_us, NSEC_PER_USEC);
9801 return rt_period_us;
9802}
9803
9804static int sched_rt_global_constraints(void)
9805{
4653f803 9806 u64 runtime, period;
d0b27fa7
PZ
9807 int ret = 0;
9808
ec5d4989
HS
9809 if (sysctl_sched_rt_period <= 0)
9810 return -EINVAL;
9811
4653f803
PZ
9812 runtime = global_rt_runtime();
9813 period = global_rt_period();
9814
9815 /*
9816 * Sanity check on the sysctl variables.
9817 */
9818 if (runtime > period && runtime != RUNTIME_INF)
9819 return -EINVAL;
10b612f4 9820
d0b27fa7 9821 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9822 read_lock(&tasklist_lock);
4653f803 9823 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9824 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9825 mutex_unlock(&rt_constraints_mutex);
9826
9827 return ret;
9828}
54e99124
DG
9829
9830int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9831{
9832 /* Don't accept realtime tasks when there is no way for them to run */
9833 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9834 return 0;
9835
9836 return 1;
9837}
9838
6d6bc0ad 9839#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9840static int sched_rt_global_constraints(void)
9841{
ac086bc2
PZ
9842 unsigned long flags;
9843 int i;
9844
ec5d4989
HS
9845 if (sysctl_sched_rt_period <= 0)
9846 return -EINVAL;
9847
ac086bc2
PZ
9848 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9849 for_each_possible_cpu(i) {
9850 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9851
9852 spin_lock(&rt_rq->rt_runtime_lock);
9853 rt_rq->rt_runtime = global_rt_runtime();
9854 spin_unlock(&rt_rq->rt_runtime_lock);
9855 }
9856 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9857
d0b27fa7
PZ
9858 return 0;
9859}
6d6bc0ad 9860#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9861
9862int sched_rt_handler(struct ctl_table *table, int write,
9863 struct file *filp, void __user *buffer, size_t *lenp,
9864 loff_t *ppos)
9865{
9866 int ret;
9867 int old_period, old_runtime;
9868 static DEFINE_MUTEX(mutex);
9869
9870 mutex_lock(&mutex);
9871 old_period = sysctl_sched_rt_period;
9872 old_runtime = sysctl_sched_rt_runtime;
9873
9874 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9875
9876 if (!ret && write) {
9877 ret = sched_rt_global_constraints();
9878 if (ret) {
9879 sysctl_sched_rt_period = old_period;
9880 sysctl_sched_rt_runtime = old_runtime;
9881 } else {
9882 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9883 def_rt_bandwidth.rt_period =
9884 ns_to_ktime(global_rt_period());
9885 }
9886 }
9887 mutex_unlock(&mutex);
9888
9889 return ret;
9890}
68318b8e 9891
052f1dc7 9892#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9893
9894/* return corresponding task_group object of a cgroup */
2b01dfe3 9895static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9896{
2b01dfe3
PM
9897 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9898 struct task_group, css);
68318b8e
SV
9899}
9900
9901static struct cgroup_subsys_state *
2b01dfe3 9902cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9903{
ec7dc8ac 9904 struct task_group *tg, *parent;
68318b8e 9905
2b01dfe3 9906 if (!cgrp->parent) {
68318b8e 9907 /* This is early initialization for the top cgroup */
68318b8e
SV
9908 return &init_task_group.css;
9909 }
9910
ec7dc8ac
DG
9911 parent = cgroup_tg(cgrp->parent);
9912 tg = sched_create_group(parent);
68318b8e
SV
9913 if (IS_ERR(tg))
9914 return ERR_PTR(-ENOMEM);
9915
68318b8e
SV
9916 return &tg->css;
9917}
9918
41a2d6cf
IM
9919static void
9920cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9921{
2b01dfe3 9922 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9923
9924 sched_destroy_group(tg);
9925}
9926
41a2d6cf
IM
9927static int
9928cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9929 struct task_struct *tsk)
68318b8e 9930{
b68aa230 9931#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9932 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9933 return -EINVAL;
9934#else
68318b8e
SV
9935 /* We don't support RT-tasks being in separate groups */
9936 if (tsk->sched_class != &fair_sched_class)
9937 return -EINVAL;
b68aa230 9938#endif
68318b8e
SV
9939
9940 return 0;
9941}
9942
9943static void
2b01dfe3 9944cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9945 struct cgroup *old_cont, struct task_struct *tsk)
9946{
9947 sched_move_task(tsk);
9948}
9949
052f1dc7 9950#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9951static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9952 u64 shareval)
68318b8e 9953{
2b01dfe3 9954 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9955}
9956
f4c753b7 9957static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9958{
2b01dfe3 9959 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9960
9961 return (u64) tg->shares;
9962}
6d6bc0ad 9963#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9964
052f1dc7 9965#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9966static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9967 s64 val)
6f505b16 9968{
06ecb27c 9969 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9970}
9971
06ecb27c 9972static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9973{
06ecb27c 9974 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9975}
d0b27fa7
PZ
9976
9977static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9978 u64 rt_period_us)
9979{
9980 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9981}
9982
9983static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9984{
9985 return sched_group_rt_period(cgroup_tg(cgrp));
9986}
6d6bc0ad 9987#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9988
fe5c7cc2 9989static struct cftype cpu_files[] = {
052f1dc7 9990#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9991 {
9992 .name = "shares",
f4c753b7
PM
9993 .read_u64 = cpu_shares_read_u64,
9994 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9995 },
052f1dc7
PZ
9996#endif
9997#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9998 {
9f0c1e56 9999 .name = "rt_runtime_us",
06ecb27c
PM
10000 .read_s64 = cpu_rt_runtime_read,
10001 .write_s64 = cpu_rt_runtime_write,
6f505b16 10002 },
d0b27fa7
PZ
10003 {
10004 .name = "rt_period_us",
f4c753b7
PM
10005 .read_u64 = cpu_rt_period_read_uint,
10006 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10007 },
052f1dc7 10008#endif
68318b8e
SV
10009};
10010
10011static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10012{
fe5c7cc2 10013 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10014}
10015
10016struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10017 .name = "cpu",
10018 .create = cpu_cgroup_create,
10019 .destroy = cpu_cgroup_destroy,
10020 .can_attach = cpu_cgroup_can_attach,
10021 .attach = cpu_cgroup_attach,
10022 .populate = cpu_cgroup_populate,
10023 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10024 .early_init = 1,
10025};
10026
052f1dc7 10027#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10028
10029#ifdef CONFIG_CGROUP_CPUACCT
10030
10031/*
10032 * CPU accounting code for task groups.
10033 *
10034 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10035 * (balbir@in.ibm.com).
10036 */
10037
934352f2 10038/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10039struct cpuacct {
10040 struct cgroup_subsys_state css;
10041 /* cpuusage holds pointer to a u64-type object on every cpu */
10042 u64 *cpuusage;
ef12fefa 10043 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10044 struct cpuacct *parent;
d842de87
SV
10045};
10046
10047struct cgroup_subsys cpuacct_subsys;
10048
10049/* return cpu accounting group corresponding to this container */
32cd756a 10050static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10051{
32cd756a 10052 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10053 struct cpuacct, css);
10054}
10055
10056/* return cpu accounting group to which this task belongs */
10057static inline struct cpuacct *task_ca(struct task_struct *tsk)
10058{
10059 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10060 struct cpuacct, css);
10061}
10062
10063/* create a new cpu accounting group */
10064static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10065 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10066{
10067 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10068 int i;
d842de87
SV
10069
10070 if (!ca)
ef12fefa 10071 goto out;
d842de87
SV
10072
10073 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10074 if (!ca->cpuusage)
10075 goto out_free_ca;
10076
10077 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10078 if (percpu_counter_init(&ca->cpustat[i], 0))
10079 goto out_free_counters;
d842de87 10080
934352f2
BR
10081 if (cgrp->parent)
10082 ca->parent = cgroup_ca(cgrp->parent);
10083
d842de87 10084 return &ca->css;
ef12fefa
BR
10085
10086out_free_counters:
10087 while (--i >= 0)
10088 percpu_counter_destroy(&ca->cpustat[i]);
10089 free_percpu(ca->cpuusage);
10090out_free_ca:
10091 kfree(ca);
10092out:
10093 return ERR_PTR(-ENOMEM);
d842de87
SV
10094}
10095
10096/* destroy an existing cpu accounting group */
41a2d6cf 10097static void
32cd756a 10098cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10099{
32cd756a 10100 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10101 int i;
d842de87 10102
ef12fefa
BR
10103 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10104 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10105 free_percpu(ca->cpuusage);
10106 kfree(ca);
10107}
10108
720f5498
KC
10109static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10110{
b36128c8 10111 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10112 u64 data;
10113
10114#ifndef CONFIG_64BIT
10115 /*
10116 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10117 */
10118 spin_lock_irq(&cpu_rq(cpu)->lock);
10119 data = *cpuusage;
10120 spin_unlock_irq(&cpu_rq(cpu)->lock);
10121#else
10122 data = *cpuusage;
10123#endif
10124
10125 return data;
10126}
10127
10128static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10129{
b36128c8 10130 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10131
10132#ifndef CONFIG_64BIT
10133 /*
10134 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10135 */
10136 spin_lock_irq(&cpu_rq(cpu)->lock);
10137 *cpuusage = val;
10138 spin_unlock_irq(&cpu_rq(cpu)->lock);
10139#else
10140 *cpuusage = val;
10141#endif
10142}
10143
d842de87 10144/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10145static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10146{
32cd756a 10147 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10148 u64 totalcpuusage = 0;
10149 int i;
10150
720f5498
KC
10151 for_each_present_cpu(i)
10152 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10153
10154 return totalcpuusage;
10155}
10156
0297b803
DG
10157static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10158 u64 reset)
10159{
10160 struct cpuacct *ca = cgroup_ca(cgrp);
10161 int err = 0;
10162 int i;
10163
10164 if (reset) {
10165 err = -EINVAL;
10166 goto out;
10167 }
10168
720f5498
KC
10169 for_each_present_cpu(i)
10170 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10171
0297b803
DG
10172out:
10173 return err;
10174}
10175
e9515c3c
KC
10176static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10177 struct seq_file *m)
10178{
10179 struct cpuacct *ca = cgroup_ca(cgroup);
10180 u64 percpu;
10181 int i;
10182
10183 for_each_present_cpu(i) {
10184 percpu = cpuacct_cpuusage_read(ca, i);
10185 seq_printf(m, "%llu ", (unsigned long long) percpu);
10186 }
10187 seq_printf(m, "\n");
10188 return 0;
10189}
10190
ef12fefa
BR
10191static const char *cpuacct_stat_desc[] = {
10192 [CPUACCT_STAT_USER] = "user",
10193 [CPUACCT_STAT_SYSTEM] = "system",
10194};
10195
10196static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10197 struct cgroup_map_cb *cb)
10198{
10199 struct cpuacct *ca = cgroup_ca(cgrp);
10200 int i;
10201
10202 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10203 s64 val = percpu_counter_read(&ca->cpustat[i]);
10204 val = cputime64_to_clock_t(val);
10205 cb->fill(cb, cpuacct_stat_desc[i], val);
10206 }
10207 return 0;
10208}
10209
d842de87
SV
10210static struct cftype files[] = {
10211 {
10212 .name = "usage",
f4c753b7
PM
10213 .read_u64 = cpuusage_read,
10214 .write_u64 = cpuusage_write,
d842de87 10215 },
e9515c3c
KC
10216 {
10217 .name = "usage_percpu",
10218 .read_seq_string = cpuacct_percpu_seq_read,
10219 },
ef12fefa
BR
10220 {
10221 .name = "stat",
10222 .read_map = cpuacct_stats_show,
10223 },
d842de87
SV
10224};
10225
32cd756a 10226static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10227{
32cd756a 10228 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10229}
10230
10231/*
10232 * charge this task's execution time to its accounting group.
10233 *
10234 * called with rq->lock held.
10235 */
10236static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10237{
10238 struct cpuacct *ca;
934352f2 10239 int cpu;
d842de87 10240
c40c6f85 10241 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10242 return;
10243
934352f2 10244 cpu = task_cpu(tsk);
a18b83b7
BR
10245
10246 rcu_read_lock();
10247
d842de87 10248 ca = task_ca(tsk);
d842de87 10249
934352f2 10250 for (; ca; ca = ca->parent) {
b36128c8 10251 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10252 *cpuusage += cputime;
10253 }
a18b83b7
BR
10254
10255 rcu_read_unlock();
d842de87
SV
10256}
10257
ef12fefa
BR
10258/*
10259 * Charge the system/user time to the task's accounting group.
10260 */
10261static void cpuacct_update_stats(struct task_struct *tsk,
10262 enum cpuacct_stat_index idx, cputime_t val)
10263{
10264 struct cpuacct *ca;
10265
10266 if (unlikely(!cpuacct_subsys.active))
10267 return;
10268
10269 rcu_read_lock();
10270 ca = task_ca(tsk);
10271
10272 do {
10273 percpu_counter_add(&ca->cpustat[idx], val);
10274 ca = ca->parent;
10275 } while (ca);
10276 rcu_read_unlock();
d842de87
SV
10277}
10278
10279struct cgroup_subsys cpuacct_subsys = {
10280 .name = "cpuacct",
10281 .create = cpuacct_create,
10282 .destroy = cpuacct_destroy,
10283 .populate = cpuacct_populate,
10284 .subsys_id = cpuacct_subsys_id,
10285};
10286#endif /* CONFIG_CGROUP_CPUACCT */
This page took 1.803247 seconds and 5 git commands to generate.