Merge branch 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
e05606d3
IM
123static inline int rt_policy(int policy)
124{
3f33a7ce 125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
126 return 1;
127 return 0;
128}
129
130static inline int task_has_rt_policy(struct task_struct *p)
131{
132 return rt_policy(p->policy);
133}
134
1da177e4 135/*
6aa645ea 136 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 137 */
6aa645ea
IM
138struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
141};
142
d0b27fa7 143struct rt_bandwidth {
ea736ed5 144 /* nests inside the rq lock: */
0986b11b 145 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
d0b27fa7
PZ
149};
150
151static struct rt_bandwidth def_rt_bandwidth;
152
153static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154
155static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156{
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
162
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166
167 if (!overrun)
168 break;
169
170 idle = do_sched_rt_period_timer(rt_b, overrun);
171 }
172
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
174}
175
176static
177void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178{
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
181
0986b11b 182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 183
d0b27fa7
PZ
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
187}
188
c8bfff6d
KH
189static inline int rt_bandwidth_enabled(void)
190{
191 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
192}
193
194static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195{
196 ktime_t now;
197
cac64d00 198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
199 return;
200
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
203
0986b11b 204 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 205 for (;;) {
7f1e2ca9
PZ
206 unsigned long delta;
207 ktime_t soft, hard;
208
d0b27fa7
PZ
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
211
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
214
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 219 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 220 }
0986b11b 221 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
222}
223
224#ifdef CONFIG_RT_GROUP_SCHED
225static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226{
227 hrtimer_cancel(&rt_b->rt_period_timer);
228}
229#endif
230
712555ee
HC
231/*
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
234 */
235static DEFINE_MUTEX(sched_domains_mutex);
236
7c941438 237#ifdef CONFIG_CGROUP_SCHED
29f59db3 238
68318b8e
SV
239#include <linux/cgroup.h>
240
29f59db3
SV
241struct cfs_rq;
242
6f505b16
PZ
243static LIST_HEAD(task_groups);
244
29f59db3 245/* task group related information */
4cf86d77 246struct task_group {
68318b8e 247 struct cgroup_subsys_state css;
6c415b92 248
052f1dc7 249#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
052f1dc7
PZ
255#endif
256
257#ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
260
d0b27fa7 261 struct rt_bandwidth rt_bandwidth;
052f1dc7 262#endif
6b2d7700 263
ae8393e5 264 struct rcu_head rcu;
6f505b16 265 struct list_head list;
f473aa5e
PZ
266
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
29f59db3
SV
270};
271
eff766a6 272#define root_task_group init_task_group
6f505b16 273
8ed36996 274/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
275 * a task group's cpu shares.
276 */
8ed36996 277static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 278
e9036b36
CG
279#ifdef CONFIG_FAIR_GROUP_SCHED
280
57310a98
PZ
281#ifdef CONFIG_SMP
282static int root_task_group_empty(void)
283{
284 return list_empty(&root_task_group.children);
285}
286#endif
287
052f1dc7 288# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 289
cb4ad1ff 290/*
2e084786
LJ
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
cb4ad1ff
MX
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
18d95a28 298#define MIN_SHARES 2
2e084786 299#define MAX_SHARES (1UL << 18)
18d95a28 300
052f1dc7
PZ
301static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302#endif
303
29f59db3 304/* Default task group.
3a252015 305 * Every task in system belong to this group at bootup.
29f59db3 306 */
434d53b0 307struct task_group init_task_group;
29f59db3
SV
308
309/* return group to which a task belongs */
4cf86d77 310static inline struct task_group *task_group(struct task_struct *p)
29f59db3 311{
4cf86d77 312 struct task_group *tg;
9b5b7751 313
7c941438 314#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
316 struct task_group, css);
24e377a8 317#else
41a2d6cf 318 tg = &init_task_group;
24e377a8 319#endif
9b5b7751 320 return tg;
29f59db3
SV
321}
322
323/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 324static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 325{
8b08ca52
PZ
326 /*
327 * Strictly speaking this rcu_read_lock() is not needed since the
328 * task_group is tied to the cgroup, which in turn can never go away
329 * as long as there are tasks attached to it.
330 *
331 * However since task_group() uses task_subsys_state() which is an
332 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
333 */
334 rcu_read_lock();
052f1dc7 335#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
336 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
337 p->se.parent = task_group(p)->se[cpu];
052f1dc7 338#endif
6f505b16 339
052f1dc7 340#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
341 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
342 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 343#endif
8b08ca52 344 rcu_read_unlock();
29f59db3
SV
345}
346
347#else
348
6f505b16 349static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
350static inline struct task_group *task_group(struct task_struct *p)
351{
352 return NULL;
353}
29f59db3 354
7c941438 355#endif /* CONFIG_CGROUP_SCHED */
29f59db3 356
6aa645ea
IM
357/* CFS-related fields in a runqueue */
358struct cfs_rq {
359 struct load_weight load;
360 unsigned long nr_running;
361
6aa645ea 362 u64 exec_clock;
e9acbff6 363 u64 min_vruntime;
6aa645ea
IM
364
365 struct rb_root tasks_timeline;
366 struct rb_node *rb_leftmost;
4a55bd5e
PZ
367
368 struct list_head tasks;
369 struct list_head *balance_iterator;
370
371 /*
372 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
373 * It is set to NULL otherwise (i.e when none are currently running).
374 */
4793241b 375 struct sched_entity *curr, *next, *last;
ddc97297 376
5ac5c4d6 377 unsigned int nr_spread_over;
ddc97297 378
62160e3f 379#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
380 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
381
41a2d6cf
IM
382 /*
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
386 *
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
389 */
41a2d6cf
IM
390 struct list_head leaf_cfs_rq_list;
391 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
392
393#ifdef CONFIG_SMP
c09595f6 394 /*
c8cba857 395 * the part of load.weight contributed by tasks
c09595f6 396 */
c8cba857 397 unsigned long task_weight;
c09595f6 398
c8cba857
PZ
399 /*
400 * h_load = weight * f(tg)
401 *
402 * Where f(tg) is the recursive weight fraction assigned to
403 * this group.
404 */
405 unsigned long h_load;
c09595f6 406
c8cba857
PZ
407 /*
408 * this cpu's part of tg->shares
409 */
410 unsigned long shares;
f1d239f7
PZ
411
412 /*
413 * load.weight at the time we set shares
414 */
415 unsigned long rq_weight;
c09595f6 416#endif
6aa645ea
IM
417#endif
418};
1da177e4 419
6aa645ea
IM
420/* Real-Time classes' related field in a runqueue: */
421struct rt_rq {
422 struct rt_prio_array active;
63489e45 423 unsigned long rt_nr_running;
052f1dc7 424#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
425 struct {
426 int curr; /* highest queued rt task prio */
398a153b 427#ifdef CONFIG_SMP
e864c499 428 int next; /* next highest */
398a153b 429#endif
e864c499 430 } highest_prio;
6f505b16 431#endif
fa85ae24 432#ifdef CONFIG_SMP
73fe6aae 433 unsigned long rt_nr_migratory;
a1ba4d8b 434 unsigned long rt_nr_total;
a22d7fc1 435 int overloaded;
917b627d 436 struct plist_head pushable_tasks;
fa85ae24 437#endif
6f505b16 438 int rt_throttled;
fa85ae24 439 u64 rt_time;
ac086bc2 440 u64 rt_runtime;
ea736ed5 441 /* Nests inside the rq lock: */
0986b11b 442 raw_spinlock_t rt_runtime_lock;
6f505b16 443
052f1dc7 444#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
445 unsigned long rt_nr_boosted;
446
6f505b16
PZ
447 struct rq *rq;
448 struct list_head leaf_rt_rq_list;
449 struct task_group *tg;
6f505b16 450#endif
6aa645ea
IM
451};
452
57d885fe
GH
453#ifdef CONFIG_SMP
454
455/*
456 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
457 * variables. Each exclusive cpuset essentially defines an island domain by
458 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
459 * exclusive cpuset is created, we also create and attach a new root-domain
460 * object.
461 *
57d885fe
GH
462 */
463struct root_domain {
464 atomic_t refcount;
c6c4927b
RR
465 cpumask_var_t span;
466 cpumask_var_t online;
637f5085 467
0eab9146 468 /*
637f5085
GH
469 * The "RT overload" flag: it gets set if a CPU has more than
470 * one runnable RT task.
471 */
c6c4927b 472 cpumask_var_t rto_mask;
0eab9146 473 atomic_t rto_count;
6e0534f2
GH
474#ifdef CONFIG_SMP
475 struct cpupri cpupri;
476#endif
57d885fe
GH
477};
478
dc938520
GH
479/*
480 * By default the system creates a single root-domain with all cpus as
481 * members (mimicking the global state we have today).
482 */
57d885fe
GH
483static struct root_domain def_root_domain;
484
485#endif
486
1da177e4
LT
487/*
488 * This is the main, per-CPU runqueue data structure.
489 *
490 * Locking rule: those places that want to lock multiple runqueues
491 * (such as the load balancing or the thread migration code), lock
492 * acquire operations must be ordered by ascending &runqueue.
493 */
70b97a7f 494struct rq {
d8016491 495 /* runqueue lock: */
05fa785c 496 raw_spinlock_t lock;
1da177e4
LT
497
498 /*
499 * nr_running and cpu_load should be in the same cacheline because
500 * remote CPUs use both these fields when doing load calculation.
501 */
502 unsigned long nr_running;
6aa645ea
IM
503 #define CPU_LOAD_IDX_MAX 5
504 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 505#ifdef CONFIG_NO_HZ
39c0cbe2 506 u64 nohz_stamp;
46cb4b7c
SS
507 unsigned char in_nohz_recently;
508#endif
a64692a3
MG
509 unsigned int skip_clock_update;
510
d8016491
IM
511 /* capture load from *all* tasks on this cpu: */
512 struct load_weight load;
6aa645ea
IM
513 unsigned long nr_load_updates;
514 u64 nr_switches;
515
516 struct cfs_rq cfs;
6f505b16 517 struct rt_rq rt;
6f505b16 518
6aa645ea 519#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
520 /* list of leaf cfs_rq on this cpu: */
521 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
522#endif
523#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 524 struct list_head leaf_rt_rq_list;
1da177e4 525#endif
1da177e4
LT
526
527 /*
528 * This is part of a global counter where only the total sum
529 * over all CPUs matters. A task can increase this counter on
530 * one CPU and if it got migrated afterwards it may decrease
531 * it on another CPU. Always updated under the runqueue lock:
532 */
533 unsigned long nr_uninterruptible;
534
36c8b586 535 struct task_struct *curr, *idle;
c9819f45 536 unsigned long next_balance;
1da177e4 537 struct mm_struct *prev_mm;
6aa645ea 538
3e51f33f 539 u64 clock;
6aa645ea 540
1da177e4
LT
541 atomic_t nr_iowait;
542
543#ifdef CONFIG_SMP
0eab9146 544 struct root_domain *rd;
1da177e4
LT
545 struct sched_domain *sd;
546
e51fd5e2
PZ
547 unsigned long cpu_power;
548
a0a522ce 549 unsigned char idle_at_tick;
1da177e4 550 /* For active balancing */
3f029d3c 551 int post_schedule;
1da177e4
LT
552 int active_balance;
553 int push_cpu;
969c7921 554 struct cpu_stop_work active_balance_work;
d8016491
IM
555 /* cpu of this runqueue: */
556 int cpu;
1f11eb6a 557 int online;
1da177e4 558
a8a51d5e 559 unsigned long avg_load_per_task;
1da177e4 560
e9e9250b
PZ
561 u64 rt_avg;
562 u64 age_stamp;
1b9508f6
MG
563 u64 idle_stamp;
564 u64 avg_idle;
1da177e4
LT
565#endif
566
dce48a84
TG
567 /* calc_load related fields */
568 unsigned long calc_load_update;
569 long calc_load_active;
570
8f4d37ec 571#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
572#ifdef CONFIG_SMP
573 int hrtick_csd_pending;
574 struct call_single_data hrtick_csd;
575#endif
8f4d37ec
PZ
576 struct hrtimer hrtick_timer;
577#endif
578
1da177e4
LT
579#ifdef CONFIG_SCHEDSTATS
580 /* latency stats */
581 struct sched_info rq_sched_info;
9c2c4802
KC
582 unsigned long long rq_cpu_time;
583 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
584
585 /* sys_sched_yield() stats */
480b9434 586 unsigned int yld_count;
1da177e4
LT
587
588 /* schedule() stats */
480b9434
KC
589 unsigned int sched_switch;
590 unsigned int sched_count;
591 unsigned int sched_goidle;
1da177e4
LT
592
593 /* try_to_wake_up() stats */
480b9434
KC
594 unsigned int ttwu_count;
595 unsigned int ttwu_local;
b8efb561
IM
596
597 /* BKL stats */
480b9434 598 unsigned int bkl_count;
1da177e4
LT
599#endif
600};
601
f34e3b61 602static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 603
7d478721
PZ
604static inline
605void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 606{
7d478721 607 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
608
609 /*
610 * A queue event has occurred, and we're going to schedule. In
611 * this case, we can save a useless back to back clock update.
612 */
613 if (test_tsk_need_resched(p))
614 rq->skip_clock_update = 1;
dd41f596
IM
615}
616
0a2966b4
CL
617static inline int cpu_of(struct rq *rq)
618{
619#ifdef CONFIG_SMP
620 return rq->cpu;
621#else
622 return 0;
623#endif
624}
625
497f0ab3 626#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
627 rcu_dereference_check((p), \
628 rcu_read_lock_sched_held() || \
629 lockdep_is_held(&sched_domains_mutex))
630
674311d5
NP
631/*
632 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 633 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
634 *
635 * The domain tree of any CPU may only be accessed from within
636 * preempt-disabled sections.
637 */
48f24c4d 638#define for_each_domain(cpu, __sd) \
497f0ab3 639 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
640
641#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
642#define this_rq() (&__get_cpu_var(runqueues))
643#define task_rq(p) cpu_rq(task_cpu(p))
644#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 645#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 646
aa9c4c0f 647inline void update_rq_clock(struct rq *rq)
3e51f33f 648{
a64692a3
MG
649 if (!rq->skip_clock_update)
650 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
651}
652
bf5c91ba
IM
653/*
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
655 */
656#ifdef CONFIG_SCHED_DEBUG
657# define const_debug __read_mostly
658#else
659# define const_debug static const
660#endif
661
017730c1
IM
662/**
663 * runqueue_is_locked
e17b38bf 664 * @cpu: the processor in question.
017730c1
IM
665 *
666 * Returns true if the current cpu runqueue is locked.
667 * This interface allows printk to be called with the runqueue lock
668 * held and know whether or not it is OK to wake up the klogd.
669 */
89f19f04 670int runqueue_is_locked(int cpu)
017730c1 671{
05fa785c 672 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
673}
674
bf5c91ba
IM
675/*
676 * Debugging: various feature bits
677 */
f00b45c1
PZ
678
679#define SCHED_FEAT(name, enabled) \
680 __SCHED_FEAT_##name ,
681
bf5c91ba 682enum {
f00b45c1 683#include "sched_features.h"
bf5c91ba
IM
684};
685
f00b45c1
PZ
686#undef SCHED_FEAT
687
688#define SCHED_FEAT(name, enabled) \
689 (1UL << __SCHED_FEAT_##name) * enabled |
690
bf5c91ba 691const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
692#include "sched_features.h"
693 0;
694
695#undef SCHED_FEAT
696
697#ifdef CONFIG_SCHED_DEBUG
698#define SCHED_FEAT(name, enabled) \
699 #name ,
700
983ed7a6 701static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
702#include "sched_features.h"
703 NULL
704};
705
706#undef SCHED_FEAT
707
34f3a814 708static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 709{
f00b45c1
PZ
710 int i;
711
712 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
713 if (!(sysctl_sched_features & (1UL << i)))
714 seq_puts(m, "NO_");
715 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 716 }
34f3a814 717 seq_puts(m, "\n");
f00b45c1 718
34f3a814 719 return 0;
f00b45c1
PZ
720}
721
722static ssize_t
723sched_feat_write(struct file *filp, const char __user *ubuf,
724 size_t cnt, loff_t *ppos)
725{
726 char buf[64];
727 char *cmp = buf;
728 int neg = 0;
729 int i;
730
731 if (cnt > 63)
732 cnt = 63;
733
734 if (copy_from_user(&buf, ubuf, cnt))
735 return -EFAULT;
736
737 buf[cnt] = 0;
738
c24b7c52 739 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
740 neg = 1;
741 cmp += 3;
742 }
743
744 for (i = 0; sched_feat_names[i]; i++) {
745 int len = strlen(sched_feat_names[i]);
746
747 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
748 if (neg)
749 sysctl_sched_features &= ~(1UL << i);
750 else
751 sysctl_sched_features |= (1UL << i);
752 break;
753 }
754 }
755
756 if (!sched_feat_names[i])
757 return -EINVAL;
758
42994724 759 *ppos += cnt;
f00b45c1
PZ
760
761 return cnt;
762}
763
34f3a814
LZ
764static int sched_feat_open(struct inode *inode, struct file *filp)
765{
766 return single_open(filp, sched_feat_show, NULL);
767}
768
828c0950 769static const struct file_operations sched_feat_fops = {
34f3a814
LZ
770 .open = sched_feat_open,
771 .write = sched_feat_write,
772 .read = seq_read,
773 .llseek = seq_lseek,
774 .release = single_release,
f00b45c1
PZ
775};
776
777static __init int sched_init_debug(void)
778{
f00b45c1
PZ
779 debugfs_create_file("sched_features", 0644, NULL, NULL,
780 &sched_feat_fops);
781
782 return 0;
783}
784late_initcall(sched_init_debug);
785
786#endif
787
788#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 789
b82d9fdd
PZ
790/*
791 * Number of tasks to iterate in a single balance run.
792 * Limited because this is done with IRQs disabled.
793 */
794const_debug unsigned int sysctl_sched_nr_migrate = 32;
795
2398f2c6
PZ
796/*
797 * ratelimit for updating the group shares.
55cd5340 798 * default: 0.25ms
2398f2c6 799 */
55cd5340 800unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 801unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 802
ffda12a1
PZ
803/*
804 * Inject some fuzzyness into changing the per-cpu group shares
805 * this avoids remote rq-locks at the expense of fairness.
806 * default: 4
807 */
808unsigned int sysctl_sched_shares_thresh = 4;
809
e9e9250b
PZ
810/*
811 * period over which we average the RT time consumption, measured
812 * in ms.
813 *
814 * default: 1s
815 */
816const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
817
fa85ae24 818/*
9f0c1e56 819 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
820 * default: 1s
821 */
9f0c1e56 822unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 823
6892b75e
IM
824static __read_mostly int scheduler_running;
825
9f0c1e56
PZ
826/*
827 * part of the period that we allow rt tasks to run in us.
828 * default: 0.95s
829 */
830int sysctl_sched_rt_runtime = 950000;
fa85ae24 831
d0b27fa7
PZ
832static inline u64 global_rt_period(void)
833{
834 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
835}
836
837static inline u64 global_rt_runtime(void)
838{
e26873bb 839 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
840 return RUNTIME_INF;
841
842 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
843}
fa85ae24 844
1da177e4 845#ifndef prepare_arch_switch
4866cde0
NP
846# define prepare_arch_switch(next) do { } while (0)
847#endif
848#ifndef finish_arch_switch
849# define finish_arch_switch(prev) do { } while (0)
850#endif
851
051a1d1a
DA
852static inline int task_current(struct rq *rq, struct task_struct *p)
853{
854 return rq->curr == p;
855}
856
4866cde0 857#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 858static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 859{
051a1d1a 860 return task_current(rq, p);
4866cde0
NP
861}
862
70b97a7f 863static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
864{
865}
866
70b97a7f 867static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 868{
da04c035
IM
869#ifdef CONFIG_DEBUG_SPINLOCK
870 /* this is a valid case when another task releases the spinlock */
871 rq->lock.owner = current;
872#endif
8a25d5de
IM
873 /*
874 * If we are tracking spinlock dependencies then we have to
875 * fix up the runqueue lock - which gets 'carried over' from
876 * prev into current:
877 */
878 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
879
05fa785c 880 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
881}
882
883#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 884static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
885{
886#ifdef CONFIG_SMP
887 return p->oncpu;
888#else
051a1d1a 889 return task_current(rq, p);
4866cde0
NP
890#endif
891}
892
70b97a7f 893static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
894{
895#ifdef CONFIG_SMP
896 /*
897 * We can optimise this out completely for !SMP, because the
898 * SMP rebalancing from interrupt is the only thing that cares
899 * here.
900 */
901 next->oncpu = 1;
902#endif
903#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 904 raw_spin_unlock_irq(&rq->lock);
4866cde0 905#else
05fa785c 906 raw_spin_unlock(&rq->lock);
4866cde0
NP
907#endif
908}
909
70b97a7f 910static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
911{
912#ifdef CONFIG_SMP
913 /*
914 * After ->oncpu is cleared, the task can be moved to a different CPU.
915 * We must ensure this doesn't happen until the switch is completely
916 * finished.
917 */
918 smp_wmb();
919 prev->oncpu = 0;
920#endif
921#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
922 local_irq_enable();
1da177e4 923#endif
4866cde0
NP
924}
925#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 926
0970d299 927/*
65cc8e48
PZ
928 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
929 * against ttwu().
0970d299
PZ
930 */
931static inline int task_is_waking(struct task_struct *p)
932{
0017d735 933 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
934}
935
b29739f9
IM
936/*
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
939 */
70b97a7f 940static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
941 __acquires(rq->lock)
942{
0970d299
PZ
943 struct rq *rq;
944
3a5c359a 945 for (;;) {
0970d299 946 rq = task_rq(p);
05fa785c 947 raw_spin_lock(&rq->lock);
65cc8e48 948 if (likely(rq == task_rq(p)))
3a5c359a 949 return rq;
05fa785c 950 raw_spin_unlock(&rq->lock);
b29739f9 951 }
b29739f9
IM
952}
953
1da177e4
LT
954/*
955 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 956 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
957 * explicitly disabling preemption.
958 */
70b97a7f 959static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
960 __acquires(rq->lock)
961{
70b97a7f 962 struct rq *rq;
1da177e4 963
3a5c359a
AK
964 for (;;) {
965 local_irq_save(*flags);
966 rq = task_rq(p);
05fa785c 967 raw_spin_lock(&rq->lock);
65cc8e48 968 if (likely(rq == task_rq(p)))
3a5c359a 969 return rq;
05fa785c 970 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 971 }
1da177e4
LT
972}
973
a9957449 974static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
975 __releases(rq->lock)
976{
05fa785c 977 raw_spin_unlock(&rq->lock);
b29739f9
IM
978}
979
70b97a7f 980static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
981 __releases(rq->lock)
982{
05fa785c 983 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
984}
985
1da177e4 986/*
cc2a73b5 987 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 988 */
a9957449 989static struct rq *this_rq_lock(void)
1da177e4
LT
990 __acquires(rq->lock)
991{
70b97a7f 992 struct rq *rq;
1da177e4
LT
993
994 local_irq_disable();
995 rq = this_rq();
05fa785c 996 raw_spin_lock(&rq->lock);
1da177e4
LT
997
998 return rq;
999}
1000
8f4d37ec
PZ
1001#ifdef CONFIG_SCHED_HRTICK
1002/*
1003 * Use HR-timers to deliver accurate preemption points.
1004 *
1005 * Its all a bit involved since we cannot program an hrt while holding the
1006 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1007 * reschedule event.
1008 *
1009 * When we get rescheduled we reprogram the hrtick_timer outside of the
1010 * rq->lock.
1011 */
8f4d37ec
PZ
1012
1013/*
1014 * Use hrtick when:
1015 * - enabled by features
1016 * - hrtimer is actually high res
1017 */
1018static inline int hrtick_enabled(struct rq *rq)
1019{
1020 if (!sched_feat(HRTICK))
1021 return 0;
ba42059f 1022 if (!cpu_active(cpu_of(rq)))
b328ca18 1023 return 0;
8f4d37ec
PZ
1024 return hrtimer_is_hres_active(&rq->hrtick_timer);
1025}
1026
8f4d37ec
PZ
1027static void hrtick_clear(struct rq *rq)
1028{
1029 if (hrtimer_active(&rq->hrtick_timer))
1030 hrtimer_cancel(&rq->hrtick_timer);
1031}
1032
8f4d37ec
PZ
1033/*
1034 * High-resolution timer tick.
1035 * Runs from hardirq context with interrupts disabled.
1036 */
1037static enum hrtimer_restart hrtick(struct hrtimer *timer)
1038{
1039 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1040
1041 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1042
05fa785c 1043 raw_spin_lock(&rq->lock);
3e51f33f 1044 update_rq_clock(rq);
8f4d37ec 1045 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1046 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1047
1048 return HRTIMER_NORESTART;
1049}
1050
95e904c7 1051#ifdef CONFIG_SMP
31656519
PZ
1052/*
1053 * called from hardirq (IPI) context
1054 */
1055static void __hrtick_start(void *arg)
b328ca18 1056{
31656519 1057 struct rq *rq = arg;
b328ca18 1058
05fa785c 1059 raw_spin_lock(&rq->lock);
31656519
PZ
1060 hrtimer_restart(&rq->hrtick_timer);
1061 rq->hrtick_csd_pending = 0;
05fa785c 1062 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1063}
1064
31656519
PZ
1065/*
1066 * Called to set the hrtick timer state.
1067 *
1068 * called with rq->lock held and irqs disabled
1069 */
1070static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1071{
31656519
PZ
1072 struct hrtimer *timer = &rq->hrtick_timer;
1073 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1074
cc584b21 1075 hrtimer_set_expires(timer, time);
31656519
PZ
1076
1077 if (rq == this_rq()) {
1078 hrtimer_restart(timer);
1079 } else if (!rq->hrtick_csd_pending) {
6e275637 1080 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1081 rq->hrtick_csd_pending = 1;
1082 }
b328ca18
PZ
1083}
1084
1085static int
1086hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1087{
1088 int cpu = (int)(long)hcpu;
1089
1090 switch (action) {
1091 case CPU_UP_CANCELED:
1092 case CPU_UP_CANCELED_FROZEN:
1093 case CPU_DOWN_PREPARE:
1094 case CPU_DOWN_PREPARE_FROZEN:
1095 case CPU_DEAD:
1096 case CPU_DEAD_FROZEN:
31656519 1097 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1098 return NOTIFY_OK;
1099 }
1100
1101 return NOTIFY_DONE;
1102}
1103
fa748203 1104static __init void init_hrtick(void)
b328ca18
PZ
1105{
1106 hotcpu_notifier(hotplug_hrtick, 0);
1107}
31656519
PZ
1108#else
1109/*
1110 * Called to set the hrtick timer state.
1111 *
1112 * called with rq->lock held and irqs disabled
1113 */
1114static void hrtick_start(struct rq *rq, u64 delay)
1115{
7f1e2ca9 1116 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1117 HRTIMER_MODE_REL_PINNED, 0);
31656519 1118}
b328ca18 1119
006c75f1 1120static inline void init_hrtick(void)
8f4d37ec 1121{
8f4d37ec 1122}
31656519 1123#endif /* CONFIG_SMP */
8f4d37ec 1124
31656519 1125static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1126{
31656519
PZ
1127#ifdef CONFIG_SMP
1128 rq->hrtick_csd_pending = 0;
8f4d37ec 1129
31656519
PZ
1130 rq->hrtick_csd.flags = 0;
1131 rq->hrtick_csd.func = __hrtick_start;
1132 rq->hrtick_csd.info = rq;
1133#endif
8f4d37ec 1134
31656519
PZ
1135 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1136 rq->hrtick_timer.function = hrtick;
8f4d37ec 1137}
006c75f1 1138#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1139static inline void hrtick_clear(struct rq *rq)
1140{
1141}
1142
8f4d37ec
PZ
1143static inline void init_rq_hrtick(struct rq *rq)
1144{
1145}
1146
b328ca18
PZ
1147static inline void init_hrtick(void)
1148{
1149}
006c75f1 1150#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1151
c24d20db
IM
1152/*
1153 * resched_task - mark a task 'to be rescheduled now'.
1154 *
1155 * On UP this means the setting of the need_resched flag, on SMP it
1156 * might also involve a cross-CPU call to trigger the scheduler on
1157 * the target CPU.
1158 */
1159#ifdef CONFIG_SMP
1160
1161#ifndef tsk_is_polling
1162#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1163#endif
1164
31656519 1165static void resched_task(struct task_struct *p)
c24d20db
IM
1166{
1167 int cpu;
1168
05fa785c 1169 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1170
5ed0cec0 1171 if (test_tsk_need_resched(p))
c24d20db
IM
1172 return;
1173
5ed0cec0 1174 set_tsk_need_resched(p);
c24d20db
IM
1175
1176 cpu = task_cpu(p);
1177 if (cpu == smp_processor_id())
1178 return;
1179
1180 /* NEED_RESCHED must be visible before we test polling */
1181 smp_mb();
1182 if (!tsk_is_polling(p))
1183 smp_send_reschedule(cpu);
1184}
1185
1186static void resched_cpu(int cpu)
1187{
1188 struct rq *rq = cpu_rq(cpu);
1189 unsigned long flags;
1190
05fa785c 1191 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1192 return;
1193 resched_task(cpu_curr(cpu));
05fa785c 1194 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1195}
06d8308c
TG
1196
1197#ifdef CONFIG_NO_HZ
1198/*
1199 * When add_timer_on() enqueues a timer into the timer wheel of an
1200 * idle CPU then this timer might expire before the next timer event
1201 * which is scheduled to wake up that CPU. In case of a completely
1202 * idle system the next event might even be infinite time into the
1203 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1204 * leaves the inner idle loop so the newly added timer is taken into
1205 * account when the CPU goes back to idle and evaluates the timer
1206 * wheel for the next timer event.
1207 */
1208void wake_up_idle_cpu(int cpu)
1209{
1210 struct rq *rq = cpu_rq(cpu);
1211
1212 if (cpu == smp_processor_id())
1213 return;
1214
1215 /*
1216 * This is safe, as this function is called with the timer
1217 * wheel base lock of (cpu) held. When the CPU is on the way
1218 * to idle and has not yet set rq->curr to idle then it will
1219 * be serialized on the timer wheel base lock and take the new
1220 * timer into account automatically.
1221 */
1222 if (rq->curr != rq->idle)
1223 return;
1224
1225 /*
1226 * We can set TIF_RESCHED on the idle task of the other CPU
1227 * lockless. The worst case is that the other CPU runs the
1228 * idle task through an additional NOOP schedule()
1229 */
5ed0cec0 1230 set_tsk_need_resched(rq->idle);
06d8308c
TG
1231
1232 /* NEED_RESCHED must be visible before we test polling */
1233 smp_mb();
1234 if (!tsk_is_polling(rq->idle))
1235 smp_send_reschedule(cpu);
1236}
39c0cbe2
MG
1237
1238int nohz_ratelimit(int cpu)
1239{
1240 struct rq *rq = cpu_rq(cpu);
1241 u64 diff = rq->clock - rq->nohz_stamp;
1242
1243 rq->nohz_stamp = rq->clock;
1244
1245 return diff < (NSEC_PER_SEC / HZ) >> 1;
1246}
1247
6d6bc0ad 1248#endif /* CONFIG_NO_HZ */
06d8308c 1249
e9e9250b
PZ
1250static u64 sched_avg_period(void)
1251{
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253}
1254
1255static void sched_avg_update(struct rq *rq)
1256{
1257 s64 period = sched_avg_period();
1258
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
1260 rq->age_stamp += period;
1261 rq->rt_avg /= 2;
1262 }
1263}
1264
1265static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1266{
1267 rq->rt_avg += rt_delta;
1268 sched_avg_update(rq);
1269}
1270
6d6bc0ad 1271#else /* !CONFIG_SMP */
31656519 1272static void resched_task(struct task_struct *p)
c24d20db 1273{
05fa785c 1274 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1275 set_tsk_need_resched(p);
c24d20db 1276}
e9e9250b
PZ
1277
1278static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279{
1280}
6d6bc0ad 1281#endif /* CONFIG_SMP */
c24d20db 1282
45bf76df
IM
1283#if BITS_PER_LONG == 32
1284# define WMULT_CONST (~0UL)
1285#else
1286# define WMULT_CONST (1UL << 32)
1287#endif
1288
1289#define WMULT_SHIFT 32
1290
194081eb
IM
1291/*
1292 * Shift right and round:
1293 */
cf2ab469 1294#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1295
a7be37ac
PZ
1296/*
1297 * delta *= weight / lw
1298 */
cb1c4fc9 1299static unsigned long
45bf76df
IM
1300calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1301 struct load_weight *lw)
1302{
1303 u64 tmp;
1304
7a232e03
LJ
1305 if (!lw->inv_weight) {
1306 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1307 lw->inv_weight = 1;
1308 else
1309 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1310 / (lw->weight+1);
1311 }
45bf76df
IM
1312
1313 tmp = (u64)delta_exec * weight;
1314 /*
1315 * Check whether we'd overflow the 64-bit multiplication:
1316 */
194081eb 1317 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1318 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1319 WMULT_SHIFT/2);
1320 else
cf2ab469 1321 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1322
ecf691da 1323 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1324}
1325
1091985b 1326static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1327{
1328 lw->weight += inc;
e89996ae 1329 lw->inv_weight = 0;
45bf76df
IM
1330}
1331
1091985b 1332static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1333{
1334 lw->weight -= dec;
e89996ae 1335 lw->inv_weight = 0;
45bf76df
IM
1336}
1337
2dd73a4f
PW
1338/*
1339 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1340 * of tasks with abnormal "nice" values across CPUs the contribution that
1341 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1342 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1343 * scaled version of the new time slice allocation that they receive on time
1344 * slice expiry etc.
1345 */
1346
cce7ade8
PZ
1347#define WEIGHT_IDLEPRIO 3
1348#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1349
1350/*
1351 * Nice levels are multiplicative, with a gentle 10% change for every
1352 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1353 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1354 * that remained on nice 0.
1355 *
1356 * The "10% effect" is relative and cumulative: from _any_ nice level,
1357 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1358 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1359 * If a task goes up by ~10% and another task goes down by ~10% then
1360 * the relative distance between them is ~25%.)
dd41f596
IM
1361 */
1362static const int prio_to_weight[40] = {
254753dc
IM
1363 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1364 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1365 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1366 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1367 /* 0 */ 1024, 820, 655, 526, 423,
1368 /* 5 */ 335, 272, 215, 172, 137,
1369 /* 10 */ 110, 87, 70, 56, 45,
1370 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1371};
1372
5714d2de
IM
1373/*
1374 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1375 *
1376 * In cases where the weight does not change often, we can use the
1377 * precalculated inverse to speed up arithmetics by turning divisions
1378 * into multiplications:
1379 */
dd41f596 1380static const u32 prio_to_wmult[40] = {
254753dc
IM
1381 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1382 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1383 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1384 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1385 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1386 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1387 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1388 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1389};
2dd73a4f 1390
ef12fefa
BR
1391/* Time spent by the tasks of the cpu accounting group executing in ... */
1392enum cpuacct_stat_index {
1393 CPUACCT_STAT_USER, /* ... user mode */
1394 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1395
1396 CPUACCT_STAT_NSTATS,
1397};
1398
d842de87
SV
1399#ifdef CONFIG_CGROUP_CPUACCT
1400static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1401static void cpuacct_update_stats(struct task_struct *tsk,
1402 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1403#else
1404static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1405static inline void cpuacct_update_stats(struct task_struct *tsk,
1406 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1407#endif
1408
18d95a28
PZ
1409static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1410{
1411 update_load_add(&rq->load, load);
1412}
1413
1414static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1415{
1416 update_load_sub(&rq->load, load);
1417}
1418
7940ca36 1419#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1420typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1421
1422/*
1423 * Iterate the full tree, calling @down when first entering a node and @up when
1424 * leaving it for the final time.
1425 */
eb755805 1426static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1427{
1428 struct task_group *parent, *child;
eb755805 1429 int ret;
c09595f6
PZ
1430
1431 rcu_read_lock();
1432 parent = &root_task_group;
1433down:
eb755805
PZ
1434 ret = (*down)(parent, data);
1435 if (ret)
1436 goto out_unlock;
c09595f6
PZ
1437 list_for_each_entry_rcu(child, &parent->children, siblings) {
1438 parent = child;
1439 goto down;
1440
1441up:
1442 continue;
1443 }
eb755805
PZ
1444 ret = (*up)(parent, data);
1445 if (ret)
1446 goto out_unlock;
c09595f6
PZ
1447
1448 child = parent;
1449 parent = parent->parent;
1450 if (parent)
1451 goto up;
eb755805 1452out_unlock:
c09595f6 1453 rcu_read_unlock();
eb755805
PZ
1454
1455 return ret;
c09595f6
PZ
1456}
1457
eb755805
PZ
1458static int tg_nop(struct task_group *tg, void *data)
1459{
1460 return 0;
c09595f6 1461}
eb755805
PZ
1462#endif
1463
1464#ifdef CONFIG_SMP
f5f08f39
PZ
1465/* Used instead of source_load when we know the type == 0 */
1466static unsigned long weighted_cpuload(const int cpu)
1467{
1468 return cpu_rq(cpu)->load.weight;
1469}
1470
1471/*
1472 * Return a low guess at the load of a migration-source cpu weighted
1473 * according to the scheduling class and "nice" value.
1474 *
1475 * We want to under-estimate the load of migration sources, to
1476 * balance conservatively.
1477 */
1478static unsigned long source_load(int cpu, int type)
1479{
1480 struct rq *rq = cpu_rq(cpu);
1481 unsigned long total = weighted_cpuload(cpu);
1482
1483 if (type == 0 || !sched_feat(LB_BIAS))
1484 return total;
1485
1486 return min(rq->cpu_load[type-1], total);
1487}
1488
1489/*
1490 * Return a high guess at the load of a migration-target cpu weighted
1491 * according to the scheduling class and "nice" value.
1492 */
1493static unsigned long target_load(int cpu, int type)
1494{
1495 struct rq *rq = cpu_rq(cpu);
1496 unsigned long total = weighted_cpuload(cpu);
1497
1498 if (type == 0 || !sched_feat(LB_BIAS))
1499 return total;
1500
1501 return max(rq->cpu_load[type-1], total);
1502}
1503
ae154be1
PZ
1504static unsigned long power_of(int cpu)
1505{
e51fd5e2 1506 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1507}
1508
eb755805
PZ
1509static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1510
1511static unsigned long cpu_avg_load_per_task(int cpu)
1512{
1513 struct rq *rq = cpu_rq(cpu);
af6d596f 1514 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1515
4cd42620
SR
1516 if (nr_running)
1517 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1518 else
1519 rq->avg_load_per_task = 0;
eb755805
PZ
1520
1521 return rq->avg_load_per_task;
1522}
1523
1524#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1525
43cf38eb 1526static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1527
c09595f6
PZ
1528static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1529
1530/*
1531 * Calculate and set the cpu's group shares.
1532 */
34d76c41
PZ
1533static void update_group_shares_cpu(struct task_group *tg, int cpu,
1534 unsigned long sd_shares,
1535 unsigned long sd_rq_weight,
4a6cc4bd 1536 unsigned long *usd_rq_weight)
18d95a28 1537{
34d76c41 1538 unsigned long shares, rq_weight;
a5004278 1539 int boost = 0;
c09595f6 1540
4a6cc4bd 1541 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1542 if (!rq_weight) {
1543 boost = 1;
1544 rq_weight = NICE_0_LOAD;
1545 }
c8cba857 1546
c09595f6 1547 /*
a8af7246
PZ
1548 * \Sum_j shares_j * rq_weight_i
1549 * shares_i = -----------------------------
1550 * \Sum_j rq_weight_j
c09595f6 1551 */
ec4e0e2f 1552 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1553 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1554
ffda12a1
PZ
1555 if (abs(shares - tg->se[cpu]->load.weight) >
1556 sysctl_sched_shares_thresh) {
1557 struct rq *rq = cpu_rq(cpu);
1558 unsigned long flags;
c09595f6 1559
05fa785c 1560 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1561 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1562 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1563 __set_se_shares(tg->se[cpu], shares);
05fa785c 1564 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1565 }
18d95a28 1566}
c09595f6
PZ
1567
1568/*
c8cba857
PZ
1569 * Re-compute the task group their per cpu shares over the given domain.
1570 * This needs to be done in a bottom-up fashion because the rq weight of a
1571 * parent group depends on the shares of its child groups.
c09595f6 1572 */
eb755805 1573static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1574{
cd8ad40d 1575 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1576 unsigned long *usd_rq_weight;
eb755805 1577 struct sched_domain *sd = data;
34d76c41 1578 unsigned long flags;
c8cba857 1579 int i;
c09595f6 1580
34d76c41
PZ
1581 if (!tg->se[0])
1582 return 0;
1583
1584 local_irq_save(flags);
4a6cc4bd 1585 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1586
758b2cdc 1587 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1588 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1589 usd_rq_weight[i] = weight;
34d76c41 1590
cd8ad40d 1591 rq_weight += weight;
ec4e0e2f
KC
1592 /*
1593 * If there are currently no tasks on the cpu pretend there
1594 * is one of average load so that when a new task gets to
1595 * run here it will not get delayed by group starvation.
1596 */
ec4e0e2f
KC
1597 if (!weight)
1598 weight = NICE_0_LOAD;
1599
cd8ad40d 1600 sum_weight += weight;
c8cba857 1601 shares += tg->cfs_rq[i]->shares;
c09595f6 1602 }
c09595f6 1603
cd8ad40d
PZ
1604 if (!rq_weight)
1605 rq_weight = sum_weight;
1606
c8cba857
PZ
1607 if ((!shares && rq_weight) || shares > tg->shares)
1608 shares = tg->shares;
1609
1610 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1611 shares = tg->shares;
c09595f6 1612
758b2cdc 1613 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1614 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1615
1616 local_irq_restore(flags);
eb755805
PZ
1617
1618 return 0;
c09595f6
PZ
1619}
1620
1621/*
c8cba857
PZ
1622 * Compute the cpu's hierarchical load factor for each task group.
1623 * This needs to be done in a top-down fashion because the load of a child
1624 * group is a fraction of its parents load.
c09595f6 1625 */
eb755805 1626static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1627{
c8cba857 1628 unsigned long load;
eb755805 1629 long cpu = (long)data;
c09595f6 1630
c8cba857
PZ
1631 if (!tg->parent) {
1632 load = cpu_rq(cpu)->load.weight;
1633 } else {
1634 load = tg->parent->cfs_rq[cpu]->h_load;
1635 load *= tg->cfs_rq[cpu]->shares;
1636 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1637 }
c09595f6 1638
c8cba857 1639 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1640
eb755805 1641 return 0;
c09595f6
PZ
1642}
1643
c8cba857 1644static void update_shares(struct sched_domain *sd)
4d8d595d 1645{
e7097159
PZ
1646 s64 elapsed;
1647 u64 now;
1648
1649 if (root_task_group_empty())
1650 return;
1651
1652 now = cpu_clock(raw_smp_processor_id());
1653 elapsed = now - sd->last_update;
2398f2c6
PZ
1654
1655 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1656 sd->last_update = now;
eb755805 1657 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1658 }
4d8d595d
PZ
1659}
1660
eb755805 1661static void update_h_load(long cpu)
c09595f6 1662{
e7097159
PZ
1663 if (root_task_group_empty())
1664 return;
1665
eb755805 1666 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1667}
1668
c09595f6
PZ
1669#else
1670
c8cba857 1671static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1672{
1673}
1674
18d95a28
PZ
1675#endif
1676
8f45e2b5
GH
1677#ifdef CONFIG_PREEMPT
1678
b78bb868
PZ
1679static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1680
70574a99 1681/*
8f45e2b5
GH
1682 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1683 * way at the expense of forcing extra atomic operations in all
1684 * invocations. This assures that the double_lock is acquired using the
1685 * same underlying policy as the spinlock_t on this architecture, which
1686 * reduces latency compared to the unfair variant below. However, it
1687 * also adds more overhead and therefore may reduce throughput.
70574a99 1688 */
8f45e2b5
GH
1689static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1690 __releases(this_rq->lock)
1691 __acquires(busiest->lock)
1692 __acquires(this_rq->lock)
1693{
05fa785c 1694 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1695 double_rq_lock(this_rq, busiest);
1696
1697 return 1;
1698}
1699
1700#else
1701/*
1702 * Unfair double_lock_balance: Optimizes throughput at the expense of
1703 * latency by eliminating extra atomic operations when the locks are
1704 * already in proper order on entry. This favors lower cpu-ids and will
1705 * grant the double lock to lower cpus over higher ids under contention,
1706 * regardless of entry order into the function.
1707 */
1708static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1709 __releases(this_rq->lock)
1710 __acquires(busiest->lock)
1711 __acquires(this_rq->lock)
1712{
1713 int ret = 0;
1714
05fa785c 1715 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1716 if (busiest < this_rq) {
05fa785c
TG
1717 raw_spin_unlock(&this_rq->lock);
1718 raw_spin_lock(&busiest->lock);
1719 raw_spin_lock_nested(&this_rq->lock,
1720 SINGLE_DEPTH_NESTING);
70574a99
AD
1721 ret = 1;
1722 } else
05fa785c
TG
1723 raw_spin_lock_nested(&busiest->lock,
1724 SINGLE_DEPTH_NESTING);
70574a99
AD
1725 }
1726 return ret;
1727}
1728
8f45e2b5
GH
1729#endif /* CONFIG_PREEMPT */
1730
1731/*
1732 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1733 */
1734static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1735{
1736 if (unlikely(!irqs_disabled())) {
1737 /* printk() doesn't work good under rq->lock */
05fa785c 1738 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1739 BUG_ON(1);
1740 }
1741
1742 return _double_lock_balance(this_rq, busiest);
1743}
1744
70574a99
AD
1745static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1746 __releases(busiest->lock)
1747{
05fa785c 1748 raw_spin_unlock(&busiest->lock);
70574a99
AD
1749 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1750}
1e3c88bd
PZ
1751
1752/*
1753 * double_rq_lock - safely lock two runqueues
1754 *
1755 * Note this does not disable interrupts like task_rq_lock,
1756 * you need to do so manually before calling.
1757 */
1758static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1759 __acquires(rq1->lock)
1760 __acquires(rq2->lock)
1761{
1762 BUG_ON(!irqs_disabled());
1763 if (rq1 == rq2) {
1764 raw_spin_lock(&rq1->lock);
1765 __acquire(rq2->lock); /* Fake it out ;) */
1766 } else {
1767 if (rq1 < rq2) {
1768 raw_spin_lock(&rq1->lock);
1769 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1770 } else {
1771 raw_spin_lock(&rq2->lock);
1772 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1773 }
1774 }
1e3c88bd
PZ
1775}
1776
1777/*
1778 * double_rq_unlock - safely unlock two runqueues
1779 *
1780 * Note this does not restore interrupts like task_rq_unlock,
1781 * you need to do so manually after calling.
1782 */
1783static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1784 __releases(rq1->lock)
1785 __releases(rq2->lock)
1786{
1787 raw_spin_unlock(&rq1->lock);
1788 if (rq1 != rq2)
1789 raw_spin_unlock(&rq2->lock);
1790 else
1791 __release(rq2->lock);
1792}
1793
18d95a28
PZ
1794#endif
1795
30432094 1796#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1797static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1798{
30432094 1799#ifdef CONFIG_SMP
34e83e85
IM
1800 cfs_rq->shares = shares;
1801#endif
1802}
30432094 1803#endif
e7693a36 1804
74f5187a 1805static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1806static void update_sysctl(void);
acb4a848 1807static int get_update_sysctl_factor(void);
dce48a84 1808
cd29fe6f
PZ
1809static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1810{
1811 set_task_rq(p, cpu);
1812#ifdef CONFIG_SMP
1813 /*
1814 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1815 * successfuly executed on another CPU. We must ensure that updates of
1816 * per-task data have been completed by this moment.
1817 */
1818 smp_wmb();
1819 task_thread_info(p)->cpu = cpu;
1820#endif
1821}
dce48a84 1822
1e3c88bd 1823static const struct sched_class rt_sched_class;
dd41f596
IM
1824
1825#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1826#define for_each_class(class) \
1827 for (class = sched_class_highest; class; class = class->next)
dd41f596 1828
1e3c88bd
PZ
1829#include "sched_stats.h"
1830
c09595f6 1831static void inc_nr_running(struct rq *rq)
9c217245
IM
1832{
1833 rq->nr_running++;
9c217245
IM
1834}
1835
c09595f6 1836static void dec_nr_running(struct rq *rq)
9c217245
IM
1837{
1838 rq->nr_running--;
9c217245
IM
1839}
1840
45bf76df
IM
1841static void set_load_weight(struct task_struct *p)
1842{
1843 if (task_has_rt_policy(p)) {
e51fd5e2
PZ
1844 p->se.load.weight = 0;
1845 p->se.load.inv_weight = WMULT_CONST;
dd41f596
IM
1846 return;
1847 }
45bf76df 1848
dd41f596
IM
1849 /*
1850 * SCHED_IDLE tasks get minimal weight:
1851 */
1852 if (p->policy == SCHED_IDLE) {
1853 p->se.load.weight = WEIGHT_IDLEPRIO;
1854 p->se.load.inv_weight = WMULT_IDLEPRIO;
1855 return;
1856 }
71f8bd46 1857
dd41f596
IM
1858 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1859 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1860}
1861
371fd7e7 1862static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1863{
a64692a3 1864 update_rq_clock(rq);
dd41f596 1865 sched_info_queued(p);
371fd7e7 1866 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1867 p->se.on_rq = 1;
71f8bd46
IM
1868}
1869
371fd7e7 1870static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1871{
a64692a3 1872 update_rq_clock(rq);
46ac22ba 1873 sched_info_dequeued(p);
371fd7e7 1874 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1875 p->se.on_rq = 0;
71f8bd46
IM
1876}
1877
1e3c88bd
PZ
1878/*
1879 * activate_task - move a task to the runqueue.
1880 */
371fd7e7 1881static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1882{
1883 if (task_contributes_to_load(p))
1884 rq->nr_uninterruptible--;
1885
371fd7e7 1886 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1887 inc_nr_running(rq);
1888}
1889
1890/*
1891 * deactivate_task - remove a task from the runqueue.
1892 */
371fd7e7 1893static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1894{
1895 if (task_contributes_to_load(p))
1896 rq->nr_uninterruptible++;
1897
371fd7e7 1898 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1899 dec_nr_running(rq);
1900}
1901
1902#include "sched_idletask.c"
1903#include "sched_fair.c"
1904#include "sched_rt.c"
1905#ifdef CONFIG_SCHED_DEBUG
1906# include "sched_debug.c"
1907#endif
1908
14531189 1909/*
dd41f596 1910 * __normal_prio - return the priority that is based on the static prio
14531189 1911 */
14531189
IM
1912static inline int __normal_prio(struct task_struct *p)
1913{
dd41f596 1914 return p->static_prio;
14531189
IM
1915}
1916
b29739f9
IM
1917/*
1918 * Calculate the expected normal priority: i.e. priority
1919 * without taking RT-inheritance into account. Might be
1920 * boosted by interactivity modifiers. Changes upon fork,
1921 * setprio syscalls, and whenever the interactivity
1922 * estimator recalculates.
1923 */
36c8b586 1924static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1925{
1926 int prio;
1927
e05606d3 1928 if (task_has_rt_policy(p))
b29739f9
IM
1929 prio = MAX_RT_PRIO-1 - p->rt_priority;
1930 else
1931 prio = __normal_prio(p);
1932 return prio;
1933}
1934
1935/*
1936 * Calculate the current priority, i.e. the priority
1937 * taken into account by the scheduler. This value might
1938 * be boosted by RT tasks, or might be boosted by
1939 * interactivity modifiers. Will be RT if the task got
1940 * RT-boosted. If not then it returns p->normal_prio.
1941 */
36c8b586 1942static int effective_prio(struct task_struct *p)
b29739f9
IM
1943{
1944 p->normal_prio = normal_prio(p);
1945 /*
1946 * If we are RT tasks or we were boosted to RT priority,
1947 * keep the priority unchanged. Otherwise, update priority
1948 * to the normal priority:
1949 */
1950 if (!rt_prio(p->prio))
1951 return p->normal_prio;
1952 return p->prio;
1953}
1954
1da177e4
LT
1955/**
1956 * task_curr - is this task currently executing on a CPU?
1957 * @p: the task in question.
1958 */
36c8b586 1959inline int task_curr(const struct task_struct *p)
1da177e4
LT
1960{
1961 return cpu_curr(task_cpu(p)) == p;
1962}
1963
cb469845
SR
1964static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1965 const struct sched_class *prev_class,
1966 int oldprio, int running)
1967{
1968 if (prev_class != p->sched_class) {
1969 if (prev_class->switched_from)
1970 prev_class->switched_from(rq, p, running);
1971 p->sched_class->switched_to(rq, p, running);
1972 } else
1973 p->sched_class->prio_changed(rq, p, oldprio, running);
1974}
1975
1da177e4 1976#ifdef CONFIG_SMP
cc367732
IM
1977/*
1978 * Is this task likely cache-hot:
1979 */
e7693a36 1980static int
cc367732
IM
1981task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1982{
1983 s64 delta;
1984
e6c8fba7
PZ
1985 if (p->sched_class != &fair_sched_class)
1986 return 0;
1987
f540a608
IM
1988 /*
1989 * Buddy candidates are cache hot:
1990 */
f685ceac 1991 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
1992 (&p->se == cfs_rq_of(&p->se)->next ||
1993 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1994 return 1;
1995
6bc1665b
IM
1996 if (sysctl_sched_migration_cost == -1)
1997 return 1;
1998 if (sysctl_sched_migration_cost == 0)
1999 return 0;
2000
cc367732
IM
2001 delta = now - p->se.exec_start;
2002
2003 return delta < (s64)sysctl_sched_migration_cost;
2004}
2005
dd41f596 2006void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2007{
e2912009
PZ
2008#ifdef CONFIG_SCHED_DEBUG
2009 /*
2010 * We should never call set_task_cpu() on a blocked task,
2011 * ttwu() will sort out the placement.
2012 */
077614ee
PZ
2013 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2014 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2015#endif
2016
de1d7286 2017 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2018
0c69774e
PZ
2019 if (task_cpu(p) != new_cpu) {
2020 p->se.nr_migrations++;
2021 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2022 }
dd41f596
IM
2023
2024 __set_task_cpu(p, new_cpu);
c65cc870
IM
2025}
2026
969c7921 2027struct migration_arg {
36c8b586 2028 struct task_struct *task;
1da177e4 2029 int dest_cpu;
70b97a7f 2030};
1da177e4 2031
969c7921
TH
2032static int migration_cpu_stop(void *data);
2033
1da177e4
LT
2034/*
2035 * The task's runqueue lock must be held.
2036 * Returns true if you have to wait for migration thread.
2037 */
969c7921 2038static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2039{
70b97a7f 2040 struct rq *rq = task_rq(p);
1da177e4
LT
2041
2042 /*
2043 * If the task is not on a runqueue (and not running), then
e2912009 2044 * the next wake-up will properly place the task.
1da177e4 2045 */
969c7921 2046 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2047}
2048
2049/*
2050 * wait_task_inactive - wait for a thread to unschedule.
2051 *
85ba2d86
RM
2052 * If @match_state is nonzero, it's the @p->state value just checked and
2053 * not expected to change. If it changes, i.e. @p might have woken up,
2054 * then return zero. When we succeed in waiting for @p to be off its CPU,
2055 * we return a positive number (its total switch count). If a second call
2056 * a short while later returns the same number, the caller can be sure that
2057 * @p has remained unscheduled the whole time.
2058 *
1da177e4
LT
2059 * The caller must ensure that the task *will* unschedule sometime soon,
2060 * else this function might spin for a *long* time. This function can't
2061 * be called with interrupts off, or it may introduce deadlock with
2062 * smp_call_function() if an IPI is sent by the same process we are
2063 * waiting to become inactive.
2064 */
85ba2d86 2065unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2066{
2067 unsigned long flags;
dd41f596 2068 int running, on_rq;
85ba2d86 2069 unsigned long ncsw;
70b97a7f 2070 struct rq *rq;
1da177e4 2071
3a5c359a
AK
2072 for (;;) {
2073 /*
2074 * We do the initial early heuristics without holding
2075 * any task-queue locks at all. We'll only try to get
2076 * the runqueue lock when things look like they will
2077 * work out!
2078 */
2079 rq = task_rq(p);
fa490cfd 2080
3a5c359a
AK
2081 /*
2082 * If the task is actively running on another CPU
2083 * still, just relax and busy-wait without holding
2084 * any locks.
2085 *
2086 * NOTE! Since we don't hold any locks, it's not
2087 * even sure that "rq" stays as the right runqueue!
2088 * But we don't care, since "task_running()" will
2089 * return false if the runqueue has changed and p
2090 * is actually now running somewhere else!
2091 */
85ba2d86
RM
2092 while (task_running(rq, p)) {
2093 if (match_state && unlikely(p->state != match_state))
2094 return 0;
3a5c359a 2095 cpu_relax();
85ba2d86 2096 }
fa490cfd 2097
3a5c359a
AK
2098 /*
2099 * Ok, time to look more closely! We need the rq
2100 * lock now, to be *sure*. If we're wrong, we'll
2101 * just go back and repeat.
2102 */
2103 rq = task_rq_lock(p, &flags);
27a9da65 2104 trace_sched_wait_task(p);
3a5c359a
AK
2105 running = task_running(rq, p);
2106 on_rq = p->se.on_rq;
85ba2d86 2107 ncsw = 0;
f31e11d8 2108 if (!match_state || p->state == match_state)
93dcf55f 2109 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2110 task_rq_unlock(rq, &flags);
fa490cfd 2111
85ba2d86
RM
2112 /*
2113 * If it changed from the expected state, bail out now.
2114 */
2115 if (unlikely(!ncsw))
2116 break;
2117
3a5c359a
AK
2118 /*
2119 * Was it really running after all now that we
2120 * checked with the proper locks actually held?
2121 *
2122 * Oops. Go back and try again..
2123 */
2124 if (unlikely(running)) {
2125 cpu_relax();
2126 continue;
2127 }
fa490cfd 2128
3a5c359a
AK
2129 /*
2130 * It's not enough that it's not actively running,
2131 * it must be off the runqueue _entirely_, and not
2132 * preempted!
2133 *
80dd99b3 2134 * So if it was still runnable (but just not actively
3a5c359a
AK
2135 * running right now), it's preempted, and we should
2136 * yield - it could be a while.
2137 */
2138 if (unlikely(on_rq)) {
2139 schedule_timeout_uninterruptible(1);
2140 continue;
2141 }
fa490cfd 2142
3a5c359a
AK
2143 /*
2144 * Ahh, all good. It wasn't running, and it wasn't
2145 * runnable, which means that it will never become
2146 * running in the future either. We're all done!
2147 */
2148 break;
2149 }
85ba2d86
RM
2150
2151 return ncsw;
1da177e4
LT
2152}
2153
2154/***
2155 * kick_process - kick a running thread to enter/exit the kernel
2156 * @p: the to-be-kicked thread
2157 *
2158 * Cause a process which is running on another CPU to enter
2159 * kernel-mode, without any delay. (to get signals handled.)
2160 *
2161 * NOTE: this function doesnt have to take the runqueue lock,
2162 * because all it wants to ensure is that the remote task enters
2163 * the kernel. If the IPI races and the task has been migrated
2164 * to another CPU then no harm is done and the purpose has been
2165 * achieved as well.
2166 */
36c8b586 2167void kick_process(struct task_struct *p)
1da177e4
LT
2168{
2169 int cpu;
2170
2171 preempt_disable();
2172 cpu = task_cpu(p);
2173 if ((cpu != smp_processor_id()) && task_curr(p))
2174 smp_send_reschedule(cpu);
2175 preempt_enable();
2176}
b43e3521 2177EXPORT_SYMBOL_GPL(kick_process);
476d139c 2178#endif /* CONFIG_SMP */
1da177e4 2179
0793a61d
TG
2180/**
2181 * task_oncpu_function_call - call a function on the cpu on which a task runs
2182 * @p: the task to evaluate
2183 * @func: the function to be called
2184 * @info: the function call argument
2185 *
2186 * Calls the function @func when the task is currently running. This might
2187 * be on the current CPU, which just calls the function directly
2188 */
2189void task_oncpu_function_call(struct task_struct *p,
2190 void (*func) (void *info), void *info)
2191{
2192 int cpu;
2193
2194 preempt_disable();
2195 cpu = task_cpu(p);
2196 if (task_curr(p))
2197 smp_call_function_single(cpu, func, info, 1);
2198 preempt_enable();
2199}
2200
970b13ba 2201#ifdef CONFIG_SMP
30da688e
ON
2202/*
2203 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2204 */
5da9a0fb
PZ
2205static int select_fallback_rq(int cpu, struct task_struct *p)
2206{
2207 int dest_cpu;
2208 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2209
2210 /* Look for allowed, online CPU in same node. */
2211 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2212 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2213 return dest_cpu;
2214
2215 /* Any allowed, online CPU? */
2216 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2217 if (dest_cpu < nr_cpu_ids)
2218 return dest_cpu;
2219
2220 /* No more Mr. Nice Guy. */
897f0b3c 2221 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2222 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2223 /*
2224 * Don't tell them about moving exiting tasks or
2225 * kernel threads (both mm NULL), since they never
2226 * leave kernel.
2227 */
2228 if (p->mm && printk_ratelimit()) {
2229 printk(KERN_INFO "process %d (%s) no "
2230 "longer affine to cpu%d\n",
2231 task_pid_nr(p), p->comm, cpu);
2232 }
2233 }
2234
2235 return dest_cpu;
2236}
2237
e2912009 2238/*
30da688e 2239 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2240 */
970b13ba 2241static inline
0017d735 2242int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2243{
0017d735 2244 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2245
2246 /*
2247 * In order not to call set_task_cpu() on a blocking task we need
2248 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2249 * cpu.
2250 *
2251 * Since this is common to all placement strategies, this lives here.
2252 *
2253 * [ this allows ->select_task() to simply return task_cpu(p) and
2254 * not worry about this generic constraint ]
2255 */
2256 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2257 !cpu_online(cpu)))
5da9a0fb 2258 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2259
2260 return cpu;
970b13ba 2261}
09a40af5
MG
2262
2263static void update_avg(u64 *avg, u64 sample)
2264{
2265 s64 diff = sample - *avg;
2266 *avg += diff >> 3;
2267}
970b13ba
PZ
2268#endif
2269
1da177e4
LT
2270/***
2271 * try_to_wake_up - wake up a thread
2272 * @p: the to-be-woken-up thread
2273 * @state: the mask of task states that can be woken
2274 * @sync: do a synchronous wakeup?
2275 *
2276 * Put it on the run-queue if it's not already there. The "current"
2277 * thread is always on the run-queue (except when the actual
2278 * re-schedule is in progress), and as such you're allowed to do
2279 * the simpler "current->state = TASK_RUNNING" to mark yourself
2280 * runnable without the overhead of this.
2281 *
2282 * returns failure only if the task is already active.
2283 */
7d478721
PZ
2284static int try_to_wake_up(struct task_struct *p, unsigned int state,
2285 int wake_flags)
1da177e4 2286{
cc367732 2287 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2288 unsigned long flags;
371fd7e7 2289 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2290 struct rq *rq;
1da177e4 2291
e9c84311 2292 this_cpu = get_cpu();
2398f2c6 2293
04e2f174 2294 smp_wmb();
ab3b3aa5 2295 rq = task_rq_lock(p, &flags);
e9c84311 2296 if (!(p->state & state))
1da177e4
LT
2297 goto out;
2298
dd41f596 2299 if (p->se.on_rq)
1da177e4
LT
2300 goto out_running;
2301
2302 cpu = task_cpu(p);
cc367732 2303 orig_cpu = cpu;
1da177e4
LT
2304
2305#ifdef CONFIG_SMP
2306 if (unlikely(task_running(rq, p)))
2307 goto out_activate;
2308
e9c84311
PZ
2309 /*
2310 * In order to handle concurrent wakeups and release the rq->lock
2311 * we put the task in TASK_WAKING state.
eb24073b
IM
2312 *
2313 * First fix up the nr_uninterruptible count:
e9c84311 2314 */
cc87f76a
PZ
2315 if (task_contributes_to_load(p)) {
2316 if (likely(cpu_online(orig_cpu)))
2317 rq->nr_uninterruptible--;
2318 else
2319 this_rq()->nr_uninterruptible--;
2320 }
e9c84311 2321 p->state = TASK_WAKING;
efbbd05a 2322
371fd7e7 2323 if (p->sched_class->task_waking) {
efbbd05a 2324 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2325 en_flags |= ENQUEUE_WAKING;
2326 }
efbbd05a 2327
0017d735
PZ
2328 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2329 if (cpu != orig_cpu)
5d2f5a61 2330 set_task_cpu(p, cpu);
0017d735 2331 __task_rq_unlock(rq);
ab19cb23 2332
0970d299
PZ
2333 rq = cpu_rq(cpu);
2334 raw_spin_lock(&rq->lock);
f5dc3753 2335
0970d299
PZ
2336 /*
2337 * We migrated the task without holding either rq->lock, however
2338 * since the task is not on the task list itself, nobody else
2339 * will try and migrate the task, hence the rq should match the
2340 * cpu we just moved it to.
2341 */
2342 WARN_ON(task_cpu(p) != cpu);
e9c84311 2343 WARN_ON(p->state != TASK_WAKING);
1da177e4 2344
e7693a36
GH
2345#ifdef CONFIG_SCHEDSTATS
2346 schedstat_inc(rq, ttwu_count);
2347 if (cpu == this_cpu)
2348 schedstat_inc(rq, ttwu_local);
2349 else {
2350 struct sched_domain *sd;
2351 for_each_domain(this_cpu, sd) {
758b2cdc 2352 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2353 schedstat_inc(sd, ttwu_wake_remote);
2354 break;
2355 }
2356 }
2357 }
6d6bc0ad 2358#endif /* CONFIG_SCHEDSTATS */
e7693a36 2359
1da177e4
LT
2360out_activate:
2361#endif /* CONFIG_SMP */
41acab88 2362 schedstat_inc(p, se.statistics.nr_wakeups);
7d478721 2363 if (wake_flags & WF_SYNC)
41acab88 2364 schedstat_inc(p, se.statistics.nr_wakeups_sync);
cc367732 2365 if (orig_cpu != cpu)
41acab88 2366 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
cc367732 2367 if (cpu == this_cpu)
41acab88 2368 schedstat_inc(p, se.statistics.nr_wakeups_local);
cc367732 2369 else
41acab88 2370 schedstat_inc(p, se.statistics.nr_wakeups_remote);
371fd7e7 2371 activate_task(rq, p, en_flags);
1da177e4
LT
2372 success = 1;
2373
2374out_running:
27a9da65 2375 trace_sched_wakeup(p, success);
7d478721 2376 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2377
1da177e4 2378 p->state = TASK_RUNNING;
9a897c5a 2379#ifdef CONFIG_SMP
efbbd05a
PZ
2380 if (p->sched_class->task_woken)
2381 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2382
2383 if (unlikely(rq->idle_stamp)) {
2384 u64 delta = rq->clock - rq->idle_stamp;
2385 u64 max = 2*sysctl_sched_migration_cost;
2386
2387 if (delta > max)
2388 rq->avg_idle = max;
2389 else
2390 update_avg(&rq->avg_idle, delta);
2391 rq->idle_stamp = 0;
2392 }
9a897c5a 2393#endif
1da177e4
LT
2394out:
2395 task_rq_unlock(rq, &flags);
e9c84311 2396 put_cpu();
1da177e4
LT
2397
2398 return success;
2399}
2400
50fa610a
DH
2401/**
2402 * wake_up_process - Wake up a specific process
2403 * @p: The process to be woken up.
2404 *
2405 * Attempt to wake up the nominated process and move it to the set of runnable
2406 * processes. Returns 1 if the process was woken up, 0 if it was already
2407 * running.
2408 *
2409 * It may be assumed that this function implies a write memory barrier before
2410 * changing the task state if and only if any tasks are woken up.
2411 */
7ad5b3a5 2412int wake_up_process(struct task_struct *p)
1da177e4 2413{
d9514f6c 2414 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2415}
1da177e4
LT
2416EXPORT_SYMBOL(wake_up_process);
2417
7ad5b3a5 2418int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2419{
2420 return try_to_wake_up(p, state, 0);
2421}
2422
1da177e4
LT
2423/*
2424 * Perform scheduler related setup for a newly forked process p.
2425 * p is forked by current.
dd41f596
IM
2426 *
2427 * __sched_fork() is basic setup used by init_idle() too:
2428 */
2429static void __sched_fork(struct task_struct *p)
2430{
dd41f596
IM
2431 p->se.exec_start = 0;
2432 p->se.sum_exec_runtime = 0;
f6cf891c 2433 p->se.prev_sum_exec_runtime = 0;
6c594c21 2434 p->se.nr_migrations = 0;
6cfb0d5d
IM
2435
2436#ifdef CONFIG_SCHEDSTATS
41acab88 2437 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2438#endif
476d139c 2439
fa717060 2440 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2441 p->se.on_rq = 0;
4a55bd5e 2442 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2443
e107be36
AK
2444#ifdef CONFIG_PREEMPT_NOTIFIERS
2445 INIT_HLIST_HEAD(&p->preempt_notifiers);
2446#endif
dd41f596
IM
2447}
2448
2449/*
2450 * fork()/clone()-time setup:
2451 */
2452void sched_fork(struct task_struct *p, int clone_flags)
2453{
2454 int cpu = get_cpu();
2455
2456 __sched_fork(p);
06b83b5f 2457 /*
0017d735 2458 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2459 * nobody will actually run it, and a signal or other external
2460 * event cannot wake it up and insert it on the runqueue either.
2461 */
0017d735 2462 p->state = TASK_RUNNING;
dd41f596 2463
b9dc29e7
MG
2464 /*
2465 * Revert to default priority/policy on fork if requested.
2466 */
2467 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2468 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2469 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2470 p->normal_prio = p->static_prio;
2471 }
b9dc29e7 2472
6c697bdf
MG
2473 if (PRIO_TO_NICE(p->static_prio) < 0) {
2474 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2475 p->normal_prio = p->static_prio;
6c697bdf
MG
2476 set_load_weight(p);
2477 }
2478
b9dc29e7
MG
2479 /*
2480 * We don't need the reset flag anymore after the fork. It has
2481 * fulfilled its duty:
2482 */
2483 p->sched_reset_on_fork = 0;
2484 }
ca94c442 2485
f83f9ac2
PW
2486 /*
2487 * Make sure we do not leak PI boosting priority to the child.
2488 */
2489 p->prio = current->normal_prio;
2490
2ddbf952
HS
2491 if (!rt_prio(p->prio))
2492 p->sched_class = &fair_sched_class;
b29739f9 2493
cd29fe6f
PZ
2494 if (p->sched_class->task_fork)
2495 p->sched_class->task_fork(p);
2496
86951599
PZ
2497 /*
2498 * The child is not yet in the pid-hash so no cgroup attach races,
2499 * and the cgroup is pinned to this child due to cgroup_fork()
2500 * is ran before sched_fork().
2501 *
2502 * Silence PROVE_RCU.
2503 */
2504 rcu_read_lock();
5f3edc1b 2505 set_task_cpu(p, cpu);
86951599 2506 rcu_read_unlock();
5f3edc1b 2507
52f17b6c 2508#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2509 if (likely(sched_info_on()))
52f17b6c 2510 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2511#endif
d6077cb8 2512#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2513 p->oncpu = 0;
2514#endif
1da177e4 2515#ifdef CONFIG_PREEMPT
4866cde0 2516 /* Want to start with kernel preemption disabled. */
a1261f54 2517 task_thread_info(p)->preempt_count = 1;
1da177e4 2518#endif
917b627d
GH
2519 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2520
476d139c 2521 put_cpu();
1da177e4
LT
2522}
2523
2524/*
2525 * wake_up_new_task - wake up a newly created task for the first time.
2526 *
2527 * This function will do some initial scheduler statistics housekeeping
2528 * that must be done for every newly created context, then puts the task
2529 * on the runqueue and wakes it.
2530 */
7ad5b3a5 2531void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2532{
2533 unsigned long flags;
dd41f596 2534 struct rq *rq;
c890692b 2535 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2536
2537#ifdef CONFIG_SMP
0017d735
PZ
2538 rq = task_rq_lock(p, &flags);
2539 p->state = TASK_WAKING;
2540
fabf318e
PZ
2541 /*
2542 * Fork balancing, do it here and not earlier because:
2543 * - cpus_allowed can change in the fork path
2544 * - any previously selected cpu might disappear through hotplug
2545 *
0017d735
PZ
2546 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2547 * without people poking at ->cpus_allowed.
fabf318e 2548 */
0017d735 2549 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2550 set_task_cpu(p, cpu);
1da177e4 2551
06b83b5f 2552 p->state = TASK_RUNNING;
0017d735
PZ
2553 task_rq_unlock(rq, &flags);
2554#endif
2555
2556 rq = task_rq_lock(p, &flags);
cd29fe6f 2557 activate_task(rq, p, 0);
27a9da65 2558 trace_sched_wakeup_new(p, 1);
a7558e01 2559 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2560#ifdef CONFIG_SMP
efbbd05a
PZ
2561 if (p->sched_class->task_woken)
2562 p->sched_class->task_woken(rq, p);
9a897c5a 2563#endif
dd41f596 2564 task_rq_unlock(rq, &flags);
fabf318e 2565 put_cpu();
1da177e4
LT
2566}
2567
e107be36
AK
2568#ifdef CONFIG_PREEMPT_NOTIFIERS
2569
2570/**
80dd99b3 2571 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2572 * @notifier: notifier struct to register
e107be36
AK
2573 */
2574void preempt_notifier_register(struct preempt_notifier *notifier)
2575{
2576 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2577}
2578EXPORT_SYMBOL_GPL(preempt_notifier_register);
2579
2580/**
2581 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2582 * @notifier: notifier struct to unregister
e107be36
AK
2583 *
2584 * This is safe to call from within a preemption notifier.
2585 */
2586void preempt_notifier_unregister(struct preempt_notifier *notifier)
2587{
2588 hlist_del(&notifier->link);
2589}
2590EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2591
2592static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2593{
2594 struct preempt_notifier *notifier;
2595 struct hlist_node *node;
2596
2597 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2598 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2599}
2600
2601static void
2602fire_sched_out_preempt_notifiers(struct task_struct *curr,
2603 struct task_struct *next)
2604{
2605 struct preempt_notifier *notifier;
2606 struct hlist_node *node;
2607
2608 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2609 notifier->ops->sched_out(notifier, next);
2610}
2611
6d6bc0ad 2612#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2613
2614static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2615{
2616}
2617
2618static void
2619fire_sched_out_preempt_notifiers(struct task_struct *curr,
2620 struct task_struct *next)
2621{
2622}
2623
6d6bc0ad 2624#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2625
4866cde0
NP
2626/**
2627 * prepare_task_switch - prepare to switch tasks
2628 * @rq: the runqueue preparing to switch
421cee29 2629 * @prev: the current task that is being switched out
4866cde0
NP
2630 * @next: the task we are going to switch to.
2631 *
2632 * This is called with the rq lock held and interrupts off. It must
2633 * be paired with a subsequent finish_task_switch after the context
2634 * switch.
2635 *
2636 * prepare_task_switch sets up locking and calls architecture specific
2637 * hooks.
2638 */
e107be36
AK
2639static inline void
2640prepare_task_switch(struct rq *rq, struct task_struct *prev,
2641 struct task_struct *next)
4866cde0 2642{
e107be36 2643 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2644 prepare_lock_switch(rq, next);
2645 prepare_arch_switch(next);
2646}
2647
1da177e4
LT
2648/**
2649 * finish_task_switch - clean up after a task-switch
344babaa 2650 * @rq: runqueue associated with task-switch
1da177e4
LT
2651 * @prev: the thread we just switched away from.
2652 *
4866cde0
NP
2653 * finish_task_switch must be called after the context switch, paired
2654 * with a prepare_task_switch call before the context switch.
2655 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2656 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2657 *
2658 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2659 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2660 * with the lock held can cause deadlocks; see schedule() for
2661 * details.)
2662 */
a9957449 2663static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2664 __releases(rq->lock)
2665{
1da177e4 2666 struct mm_struct *mm = rq->prev_mm;
55a101f8 2667 long prev_state;
1da177e4
LT
2668
2669 rq->prev_mm = NULL;
2670
2671 /*
2672 * A task struct has one reference for the use as "current".
c394cc9f 2673 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2674 * schedule one last time. The schedule call will never return, and
2675 * the scheduled task must drop that reference.
c394cc9f 2676 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2677 * still held, otherwise prev could be scheduled on another cpu, die
2678 * there before we look at prev->state, and then the reference would
2679 * be dropped twice.
2680 * Manfred Spraul <manfred@colorfullife.com>
2681 */
55a101f8 2682 prev_state = prev->state;
4866cde0 2683 finish_arch_switch(prev);
8381f65d
JI
2684#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2685 local_irq_disable();
2686#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2687 perf_event_task_sched_in(current);
8381f65d
JI
2688#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2689 local_irq_enable();
2690#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2691 finish_lock_switch(rq, prev);
e8fa1362 2692
e107be36 2693 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2694 if (mm)
2695 mmdrop(mm);
c394cc9f 2696 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2697 /*
2698 * Remove function-return probe instances associated with this
2699 * task and put them back on the free list.
9761eea8 2700 */
c6fd91f0 2701 kprobe_flush_task(prev);
1da177e4 2702 put_task_struct(prev);
c6fd91f0 2703 }
1da177e4
LT
2704}
2705
3f029d3c
GH
2706#ifdef CONFIG_SMP
2707
2708/* assumes rq->lock is held */
2709static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2710{
2711 if (prev->sched_class->pre_schedule)
2712 prev->sched_class->pre_schedule(rq, prev);
2713}
2714
2715/* rq->lock is NOT held, but preemption is disabled */
2716static inline void post_schedule(struct rq *rq)
2717{
2718 if (rq->post_schedule) {
2719 unsigned long flags;
2720
05fa785c 2721 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2722 if (rq->curr->sched_class->post_schedule)
2723 rq->curr->sched_class->post_schedule(rq);
05fa785c 2724 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2725
2726 rq->post_schedule = 0;
2727 }
2728}
2729
2730#else
da19ab51 2731
3f029d3c
GH
2732static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2733{
2734}
2735
2736static inline void post_schedule(struct rq *rq)
2737{
1da177e4
LT
2738}
2739
3f029d3c
GH
2740#endif
2741
1da177e4
LT
2742/**
2743 * schedule_tail - first thing a freshly forked thread must call.
2744 * @prev: the thread we just switched away from.
2745 */
36c8b586 2746asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2747 __releases(rq->lock)
2748{
70b97a7f
IM
2749 struct rq *rq = this_rq();
2750
4866cde0 2751 finish_task_switch(rq, prev);
da19ab51 2752
3f029d3c
GH
2753 /*
2754 * FIXME: do we need to worry about rq being invalidated by the
2755 * task_switch?
2756 */
2757 post_schedule(rq);
70b97a7f 2758
4866cde0
NP
2759#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2760 /* In this case, finish_task_switch does not reenable preemption */
2761 preempt_enable();
2762#endif
1da177e4 2763 if (current->set_child_tid)
b488893a 2764 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2765}
2766
2767/*
2768 * context_switch - switch to the new MM and the new
2769 * thread's register state.
2770 */
dd41f596 2771static inline void
70b97a7f 2772context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2773 struct task_struct *next)
1da177e4 2774{
dd41f596 2775 struct mm_struct *mm, *oldmm;
1da177e4 2776
e107be36 2777 prepare_task_switch(rq, prev, next);
27a9da65 2778 trace_sched_switch(prev, next);
dd41f596
IM
2779 mm = next->mm;
2780 oldmm = prev->active_mm;
9226d125
ZA
2781 /*
2782 * For paravirt, this is coupled with an exit in switch_to to
2783 * combine the page table reload and the switch backend into
2784 * one hypercall.
2785 */
224101ed 2786 arch_start_context_switch(prev);
9226d125 2787
710390d9 2788 if (likely(!mm)) {
1da177e4
LT
2789 next->active_mm = oldmm;
2790 atomic_inc(&oldmm->mm_count);
2791 enter_lazy_tlb(oldmm, next);
2792 } else
2793 switch_mm(oldmm, mm, next);
2794
710390d9 2795 if (likely(!prev->mm)) {
1da177e4 2796 prev->active_mm = NULL;
1da177e4
LT
2797 rq->prev_mm = oldmm;
2798 }
3a5f5e48
IM
2799 /*
2800 * Since the runqueue lock will be released by the next
2801 * task (which is an invalid locking op but in the case
2802 * of the scheduler it's an obvious special-case), so we
2803 * do an early lockdep release here:
2804 */
2805#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2806 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2807#endif
1da177e4
LT
2808
2809 /* Here we just switch the register state and the stack. */
2810 switch_to(prev, next, prev);
2811
dd41f596
IM
2812 barrier();
2813 /*
2814 * this_rq must be evaluated again because prev may have moved
2815 * CPUs since it called schedule(), thus the 'rq' on its stack
2816 * frame will be invalid.
2817 */
2818 finish_task_switch(this_rq(), prev);
1da177e4
LT
2819}
2820
2821/*
2822 * nr_running, nr_uninterruptible and nr_context_switches:
2823 *
2824 * externally visible scheduler statistics: current number of runnable
2825 * threads, current number of uninterruptible-sleeping threads, total
2826 * number of context switches performed since bootup.
2827 */
2828unsigned long nr_running(void)
2829{
2830 unsigned long i, sum = 0;
2831
2832 for_each_online_cpu(i)
2833 sum += cpu_rq(i)->nr_running;
2834
2835 return sum;
f711f609 2836}
1da177e4
LT
2837
2838unsigned long nr_uninterruptible(void)
f711f609 2839{
1da177e4 2840 unsigned long i, sum = 0;
f711f609 2841
0a945022 2842 for_each_possible_cpu(i)
1da177e4 2843 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2844
2845 /*
1da177e4
LT
2846 * Since we read the counters lockless, it might be slightly
2847 * inaccurate. Do not allow it to go below zero though:
f711f609 2848 */
1da177e4
LT
2849 if (unlikely((long)sum < 0))
2850 sum = 0;
f711f609 2851
1da177e4 2852 return sum;
f711f609 2853}
f711f609 2854
1da177e4 2855unsigned long long nr_context_switches(void)
46cb4b7c 2856{
cc94abfc
SR
2857 int i;
2858 unsigned long long sum = 0;
46cb4b7c 2859
0a945022 2860 for_each_possible_cpu(i)
1da177e4 2861 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2862
1da177e4
LT
2863 return sum;
2864}
483b4ee6 2865
1da177e4
LT
2866unsigned long nr_iowait(void)
2867{
2868 unsigned long i, sum = 0;
483b4ee6 2869
0a945022 2870 for_each_possible_cpu(i)
1da177e4 2871 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2872
1da177e4
LT
2873 return sum;
2874}
483b4ee6 2875
69d25870
AV
2876unsigned long nr_iowait_cpu(void)
2877{
2878 struct rq *this = this_rq();
2879 return atomic_read(&this->nr_iowait);
2880}
46cb4b7c 2881
69d25870
AV
2882unsigned long this_cpu_load(void)
2883{
2884 struct rq *this = this_rq();
2885 return this->cpu_load[0];
2886}
e790fb0b 2887
46cb4b7c 2888
dce48a84
TG
2889/* Variables and functions for calc_load */
2890static atomic_long_t calc_load_tasks;
2891static unsigned long calc_load_update;
2892unsigned long avenrun[3];
2893EXPORT_SYMBOL(avenrun);
46cb4b7c 2894
74f5187a
PZ
2895static long calc_load_fold_active(struct rq *this_rq)
2896{
2897 long nr_active, delta = 0;
2898
2899 nr_active = this_rq->nr_running;
2900 nr_active += (long) this_rq->nr_uninterruptible;
2901
2902 if (nr_active != this_rq->calc_load_active) {
2903 delta = nr_active - this_rq->calc_load_active;
2904 this_rq->calc_load_active = nr_active;
2905 }
2906
2907 return delta;
2908}
2909
2910#ifdef CONFIG_NO_HZ
2911/*
2912 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2913 *
2914 * When making the ILB scale, we should try to pull this in as well.
2915 */
2916static atomic_long_t calc_load_tasks_idle;
2917
2918static void calc_load_account_idle(struct rq *this_rq)
2919{
2920 long delta;
2921
2922 delta = calc_load_fold_active(this_rq);
2923 if (delta)
2924 atomic_long_add(delta, &calc_load_tasks_idle);
2925}
2926
2927static long calc_load_fold_idle(void)
2928{
2929 long delta = 0;
2930
2931 /*
2932 * Its got a race, we don't care...
2933 */
2934 if (atomic_long_read(&calc_load_tasks_idle))
2935 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2936
2937 return delta;
2938}
2939#else
2940static void calc_load_account_idle(struct rq *this_rq)
2941{
2942}
2943
2944static inline long calc_load_fold_idle(void)
2945{
2946 return 0;
2947}
2948#endif
2949
2d02494f
TG
2950/**
2951 * get_avenrun - get the load average array
2952 * @loads: pointer to dest load array
2953 * @offset: offset to add
2954 * @shift: shift count to shift the result left
2955 *
2956 * These values are estimates at best, so no need for locking.
2957 */
2958void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2959{
2960 loads[0] = (avenrun[0] + offset) << shift;
2961 loads[1] = (avenrun[1] + offset) << shift;
2962 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2963}
46cb4b7c 2964
dce48a84
TG
2965static unsigned long
2966calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2967{
dce48a84
TG
2968 load *= exp;
2969 load += active * (FIXED_1 - exp);
2970 return load >> FSHIFT;
2971}
46cb4b7c
SS
2972
2973/*
dce48a84
TG
2974 * calc_load - update the avenrun load estimates 10 ticks after the
2975 * CPUs have updated calc_load_tasks.
7835b98b 2976 */
dce48a84 2977void calc_global_load(void)
7835b98b 2978{
dce48a84
TG
2979 unsigned long upd = calc_load_update + 10;
2980 long active;
1da177e4 2981
dce48a84
TG
2982 if (time_before(jiffies, upd))
2983 return;
1da177e4 2984
dce48a84
TG
2985 active = atomic_long_read(&calc_load_tasks);
2986 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2987
dce48a84
TG
2988 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2989 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2990 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2991
dce48a84
TG
2992 calc_load_update += LOAD_FREQ;
2993}
1da177e4 2994
dce48a84 2995/*
74f5187a
PZ
2996 * Called from update_cpu_load() to periodically update this CPU's
2997 * active count.
dce48a84
TG
2998 */
2999static void calc_load_account_active(struct rq *this_rq)
3000{
74f5187a 3001 long delta;
08c183f3 3002
74f5187a
PZ
3003 if (time_before(jiffies, this_rq->calc_load_update))
3004 return;
783609c6 3005
74f5187a
PZ
3006 delta = calc_load_fold_active(this_rq);
3007 delta += calc_load_fold_idle();
3008 if (delta)
dce48a84 3009 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3010
3011 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3012}
3013
3014/*
dd41f596
IM
3015 * Update rq->cpu_load[] statistics. This function is usually called every
3016 * scheduler tick (TICK_NSEC).
46cb4b7c 3017 */
dd41f596 3018static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3019{
495eca49 3020 unsigned long this_load = this_rq->load.weight;
dd41f596 3021 int i, scale;
46cb4b7c 3022
dd41f596 3023 this_rq->nr_load_updates++;
46cb4b7c 3024
dd41f596
IM
3025 /* Update our load: */
3026 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3027 unsigned long old_load, new_load;
7d1e6a9b 3028
dd41f596 3029 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3030
dd41f596
IM
3031 old_load = this_rq->cpu_load[i];
3032 new_load = this_load;
a25707f3
IM
3033 /*
3034 * Round up the averaging division if load is increasing. This
3035 * prevents us from getting stuck on 9 if the load is 10, for
3036 * example.
3037 */
3038 if (new_load > old_load)
3039 new_load += scale-1;
dd41f596
IM
3040 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3041 }
46cb4b7c 3042
74f5187a 3043 calc_load_account_active(this_rq);
46cb4b7c
SS
3044}
3045
dd41f596 3046#ifdef CONFIG_SMP
8a0be9ef 3047
46cb4b7c 3048/*
38022906
PZ
3049 * sched_exec - execve() is a valuable balancing opportunity, because at
3050 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3051 */
38022906 3052void sched_exec(void)
46cb4b7c 3053{
38022906 3054 struct task_struct *p = current;
1da177e4 3055 unsigned long flags;
70b97a7f 3056 struct rq *rq;
0017d735 3057 int dest_cpu;
46cb4b7c 3058
1da177e4 3059 rq = task_rq_lock(p, &flags);
0017d735
PZ
3060 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3061 if (dest_cpu == smp_processor_id())
3062 goto unlock;
38022906 3063
46cb4b7c 3064 /*
38022906 3065 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3066 */
30da688e 3067 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3068 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3069 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3070
1da177e4 3071 task_rq_unlock(rq, &flags);
969c7921 3072 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3073 return;
3074 }
0017d735 3075unlock:
1da177e4 3076 task_rq_unlock(rq, &flags);
1da177e4 3077}
dd41f596 3078
1da177e4
LT
3079#endif
3080
1da177e4
LT
3081DEFINE_PER_CPU(struct kernel_stat, kstat);
3082
3083EXPORT_PER_CPU_SYMBOL(kstat);
3084
3085/*
c5f8d995 3086 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3087 * @p in case that task is currently running.
c5f8d995
HS
3088 *
3089 * Called with task_rq_lock() held on @rq.
1da177e4 3090 */
c5f8d995
HS
3091static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3092{
3093 u64 ns = 0;
3094
3095 if (task_current(rq, p)) {
3096 update_rq_clock(rq);
3097 ns = rq->clock - p->se.exec_start;
3098 if ((s64)ns < 0)
3099 ns = 0;
3100 }
3101
3102 return ns;
3103}
3104
bb34d92f 3105unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3106{
1da177e4 3107 unsigned long flags;
41b86e9c 3108 struct rq *rq;
bb34d92f 3109 u64 ns = 0;
48f24c4d 3110
41b86e9c 3111 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3112 ns = do_task_delta_exec(p, rq);
3113 task_rq_unlock(rq, &flags);
1508487e 3114
c5f8d995
HS
3115 return ns;
3116}
f06febc9 3117
c5f8d995
HS
3118/*
3119 * Return accounted runtime for the task.
3120 * In case the task is currently running, return the runtime plus current's
3121 * pending runtime that have not been accounted yet.
3122 */
3123unsigned long long task_sched_runtime(struct task_struct *p)
3124{
3125 unsigned long flags;
3126 struct rq *rq;
3127 u64 ns = 0;
3128
3129 rq = task_rq_lock(p, &flags);
3130 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3131 task_rq_unlock(rq, &flags);
3132
3133 return ns;
3134}
48f24c4d 3135
c5f8d995
HS
3136/*
3137 * Return sum_exec_runtime for the thread group.
3138 * In case the task is currently running, return the sum plus current's
3139 * pending runtime that have not been accounted yet.
3140 *
3141 * Note that the thread group might have other running tasks as well,
3142 * so the return value not includes other pending runtime that other
3143 * running tasks might have.
3144 */
3145unsigned long long thread_group_sched_runtime(struct task_struct *p)
3146{
3147 struct task_cputime totals;
3148 unsigned long flags;
3149 struct rq *rq;
3150 u64 ns;
3151
3152 rq = task_rq_lock(p, &flags);
3153 thread_group_cputime(p, &totals);
3154 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3155 task_rq_unlock(rq, &flags);
48f24c4d 3156
1da177e4
LT
3157 return ns;
3158}
3159
1da177e4
LT
3160/*
3161 * Account user cpu time to a process.
3162 * @p: the process that the cpu time gets accounted to
1da177e4 3163 * @cputime: the cpu time spent in user space since the last update
457533a7 3164 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3165 */
457533a7
MS
3166void account_user_time(struct task_struct *p, cputime_t cputime,
3167 cputime_t cputime_scaled)
1da177e4
LT
3168{
3169 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3170 cputime64_t tmp;
3171
457533a7 3172 /* Add user time to process. */
1da177e4 3173 p->utime = cputime_add(p->utime, cputime);
457533a7 3174 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3175 account_group_user_time(p, cputime);
1da177e4
LT
3176
3177 /* Add user time to cpustat. */
3178 tmp = cputime_to_cputime64(cputime);
3179 if (TASK_NICE(p) > 0)
3180 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3181 else
3182 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3183
3184 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3185 /* Account for user time used */
3186 acct_update_integrals(p);
1da177e4
LT
3187}
3188
94886b84
LV
3189/*
3190 * Account guest cpu time to a process.
3191 * @p: the process that the cpu time gets accounted to
3192 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3193 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3194 */
457533a7
MS
3195static void account_guest_time(struct task_struct *p, cputime_t cputime,
3196 cputime_t cputime_scaled)
94886b84
LV
3197{
3198 cputime64_t tmp;
3199 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3200
3201 tmp = cputime_to_cputime64(cputime);
3202
457533a7 3203 /* Add guest time to process. */
94886b84 3204 p->utime = cputime_add(p->utime, cputime);
457533a7 3205 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3206 account_group_user_time(p, cputime);
94886b84
LV
3207 p->gtime = cputime_add(p->gtime, cputime);
3208
457533a7 3209 /* Add guest time to cpustat. */
ce0e7b28
RO
3210 if (TASK_NICE(p) > 0) {
3211 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3212 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3213 } else {
3214 cpustat->user = cputime64_add(cpustat->user, tmp);
3215 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3216 }
94886b84
LV
3217}
3218
1da177e4
LT
3219/*
3220 * Account system cpu time to a process.
3221 * @p: the process that the cpu time gets accounted to
3222 * @hardirq_offset: the offset to subtract from hardirq_count()
3223 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3224 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3225 */
3226void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3227 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3228{
3229 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3230 cputime64_t tmp;
3231
983ed7a6 3232 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3233 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3234 return;
3235 }
94886b84 3236
457533a7 3237 /* Add system time to process. */
1da177e4 3238 p->stime = cputime_add(p->stime, cputime);
457533a7 3239 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3240 account_group_system_time(p, cputime);
1da177e4
LT
3241
3242 /* Add system time to cpustat. */
3243 tmp = cputime_to_cputime64(cputime);
3244 if (hardirq_count() - hardirq_offset)
3245 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3246 else if (softirq_count())
3247 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3248 else
79741dd3
MS
3249 cpustat->system = cputime64_add(cpustat->system, tmp);
3250
ef12fefa
BR
3251 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3252
1da177e4
LT
3253 /* Account for system time used */
3254 acct_update_integrals(p);
1da177e4
LT
3255}
3256
c66f08be 3257/*
1da177e4 3258 * Account for involuntary wait time.
1da177e4 3259 * @steal: the cpu time spent in involuntary wait
c66f08be 3260 */
79741dd3 3261void account_steal_time(cputime_t cputime)
c66f08be 3262{
79741dd3
MS
3263 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3264 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3265
3266 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3267}
3268
1da177e4 3269/*
79741dd3
MS
3270 * Account for idle time.
3271 * @cputime: the cpu time spent in idle wait
1da177e4 3272 */
79741dd3 3273void account_idle_time(cputime_t cputime)
1da177e4
LT
3274{
3275 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3276 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3277 struct rq *rq = this_rq();
1da177e4 3278
79741dd3
MS
3279 if (atomic_read(&rq->nr_iowait) > 0)
3280 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3281 else
3282 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3283}
3284
79741dd3
MS
3285#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3286
3287/*
3288 * Account a single tick of cpu time.
3289 * @p: the process that the cpu time gets accounted to
3290 * @user_tick: indicates if the tick is a user or a system tick
3291 */
3292void account_process_tick(struct task_struct *p, int user_tick)
3293{
a42548a1 3294 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3295 struct rq *rq = this_rq();
3296
3297 if (user_tick)
a42548a1 3298 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3299 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3300 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3301 one_jiffy_scaled);
3302 else
a42548a1 3303 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3304}
3305
3306/*
3307 * Account multiple ticks of steal time.
3308 * @p: the process from which the cpu time has been stolen
3309 * @ticks: number of stolen ticks
3310 */
3311void account_steal_ticks(unsigned long ticks)
3312{
3313 account_steal_time(jiffies_to_cputime(ticks));
3314}
3315
3316/*
3317 * Account multiple ticks of idle time.
3318 * @ticks: number of stolen ticks
3319 */
3320void account_idle_ticks(unsigned long ticks)
3321{
3322 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3323}
3324
79741dd3
MS
3325#endif
3326
49048622
BS
3327/*
3328 * Use precise platform statistics if available:
3329 */
3330#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3331void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3332{
d99ca3b9
HS
3333 *ut = p->utime;
3334 *st = p->stime;
49048622
BS
3335}
3336
0cf55e1e 3337void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3338{
0cf55e1e
HS
3339 struct task_cputime cputime;
3340
3341 thread_group_cputime(p, &cputime);
3342
3343 *ut = cputime.utime;
3344 *st = cputime.stime;
49048622
BS
3345}
3346#else
761b1d26
HS
3347
3348#ifndef nsecs_to_cputime
b7b20df9 3349# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3350#endif
3351
d180c5bc 3352void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3353{
d99ca3b9 3354 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3355
3356 /*
3357 * Use CFS's precise accounting:
3358 */
d180c5bc 3359 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3360
3361 if (total) {
d180c5bc
HS
3362 u64 temp;
3363
3364 temp = (u64)(rtime * utime);
49048622 3365 do_div(temp, total);
d180c5bc
HS
3366 utime = (cputime_t)temp;
3367 } else
3368 utime = rtime;
49048622 3369
d180c5bc
HS
3370 /*
3371 * Compare with previous values, to keep monotonicity:
3372 */
761b1d26 3373 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3374 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3375
d99ca3b9
HS
3376 *ut = p->prev_utime;
3377 *st = p->prev_stime;
49048622
BS
3378}
3379
0cf55e1e
HS
3380/*
3381 * Must be called with siglock held.
3382 */
3383void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3384{
0cf55e1e
HS
3385 struct signal_struct *sig = p->signal;
3386 struct task_cputime cputime;
3387 cputime_t rtime, utime, total;
49048622 3388
0cf55e1e 3389 thread_group_cputime(p, &cputime);
49048622 3390
0cf55e1e
HS
3391 total = cputime_add(cputime.utime, cputime.stime);
3392 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3393
0cf55e1e
HS
3394 if (total) {
3395 u64 temp;
49048622 3396
0cf55e1e
HS
3397 temp = (u64)(rtime * cputime.utime);
3398 do_div(temp, total);
3399 utime = (cputime_t)temp;
3400 } else
3401 utime = rtime;
3402
3403 sig->prev_utime = max(sig->prev_utime, utime);
3404 sig->prev_stime = max(sig->prev_stime,
3405 cputime_sub(rtime, sig->prev_utime));
3406
3407 *ut = sig->prev_utime;
3408 *st = sig->prev_stime;
49048622 3409}
49048622 3410#endif
49048622 3411
7835b98b
CL
3412/*
3413 * This function gets called by the timer code, with HZ frequency.
3414 * We call it with interrupts disabled.
3415 *
3416 * It also gets called by the fork code, when changing the parent's
3417 * timeslices.
3418 */
3419void scheduler_tick(void)
3420{
7835b98b
CL
3421 int cpu = smp_processor_id();
3422 struct rq *rq = cpu_rq(cpu);
dd41f596 3423 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3424
3425 sched_clock_tick();
dd41f596 3426
05fa785c 3427 raw_spin_lock(&rq->lock);
3e51f33f 3428 update_rq_clock(rq);
f1a438d8 3429 update_cpu_load(rq);
fa85ae24 3430 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3431 raw_spin_unlock(&rq->lock);
7835b98b 3432
49f47433 3433 perf_event_task_tick(curr);
e220d2dc 3434
e418e1c2 3435#ifdef CONFIG_SMP
dd41f596
IM
3436 rq->idle_at_tick = idle_cpu(cpu);
3437 trigger_load_balance(rq, cpu);
e418e1c2 3438#endif
1da177e4
LT
3439}
3440
132380a0 3441notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3442{
3443 if (in_lock_functions(addr)) {
3444 addr = CALLER_ADDR2;
3445 if (in_lock_functions(addr))
3446 addr = CALLER_ADDR3;
3447 }
3448 return addr;
3449}
1da177e4 3450
7e49fcce
SR
3451#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3452 defined(CONFIG_PREEMPT_TRACER))
3453
43627582 3454void __kprobes add_preempt_count(int val)
1da177e4 3455{
6cd8a4bb 3456#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3457 /*
3458 * Underflow?
3459 */
9a11b49a
IM
3460 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3461 return;
6cd8a4bb 3462#endif
1da177e4 3463 preempt_count() += val;
6cd8a4bb 3464#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3465 /*
3466 * Spinlock count overflowing soon?
3467 */
33859f7f
MOS
3468 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3469 PREEMPT_MASK - 10);
6cd8a4bb
SR
3470#endif
3471 if (preempt_count() == val)
3472 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3473}
3474EXPORT_SYMBOL(add_preempt_count);
3475
43627582 3476void __kprobes sub_preempt_count(int val)
1da177e4 3477{
6cd8a4bb 3478#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3479 /*
3480 * Underflow?
3481 */
01e3eb82 3482 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3483 return;
1da177e4
LT
3484 /*
3485 * Is the spinlock portion underflowing?
3486 */
9a11b49a
IM
3487 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3488 !(preempt_count() & PREEMPT_MASK)))
3489 return;
6cd8a4bb 3490#endif
9a11b49a 3491
6cd8a4bb
SR
3492 if (preempt_count() == val)
3493 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3494 preempt_count() -= val;
3495}
3496EXPORT_SYMBOL(sub_preempt_count);
3497
3498#endif
3499
3500/*
dd41f596 3501 * Print scheduling while atomic bug:
1da177e4 3502 */
dd41f596 3503static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3504{
838225b4
SS
3505 struct pt_regs *regs = get_irq_regs();
3506
3df0fc5b
PZ
3507 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3508 prev->comm, prev->pid, preempt_count());
838225b4 3509
dd41f596 3510 debug_show_held_locks(prev);
e21f5b15 3511 print_modules();
dd41f596
IM
3512 if (irqs_disabled())
3513 print_irqtrace_events(prev);
838225b4
SS
3514
3515 if (regs)
3516 show_regs(regs);
3517 else
3518 dump_stack();
dd41f596 3519}
1da177e4 3520
dd41f596
IM
3521/*
3522 * Various schedule()-time debugging checks and statistics:
3523 */
3524static inline void schedule_debug(struct task_struct *prev)
3525{
1da177e4 3526 /*
41a2d6cf 3527 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3528 * schedule() atomically, we ignore that path for now.
3529 * Otherwise, whine if we are scheduling when we should not be.
3530 */
3f33a7ce 3531 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3532 __schedule_bug(prev);
3533
1da177e4
LT
3534 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3535
2d72376b 3536 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3537#ifdef CONFIG_SCHEDSTATS
3538 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3539 schedstat_inc(this_rq(), bkl_count);
3540 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3541 }
3542#endif
dd41f596
IM
3543}
3544
6cecd084 3545static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3546{
a64692a3
MG
3547 if (prev->se.on_rq)
3548 update_rq_clock(rq);
3549 rq->skip_clock_update = 0;
6cecd084 3550 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3551}
3552
dd41f596
IM
3553/*
3554 * Pick up the highest-prio task:
3555 */
3556static inline struct task_struct *
b67802ea 3557pick_next_task(struct rq *rq)
dd41f596 3558{
5522d5d5 3559 const struct sched_class *class;
dd41f596 3560 struct task_struct *p;
1da177e4
LT
3561
3562 /*
dd41f596
IM
3563 * Optimization: we know that if all tasks are in
3564 * the fair class we can call that function directly:
1da177e4 3565 */
dd41f596 3566 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3567 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3568 if (likely(p))
3569 return p;
1da177e4
LT
3570 }
3571
dd41f596
IM
3572 class = sched_class_highest;
3573 for ( ; ; ) {
fb8d4724 3574 p = class->pick_next_task(rq);
dd41f596
IM
3575 if (p)
3576 return p;
3577 /*
3578 * Will never be NULL as the idle class always
3579 * returns a non-NULL p:
3580 */
3581 class = class->next;
3582 }
3583}
1da177e4 3584
dd41f596
IM
3585/*
3586 * schedule() is the main scheduler function.
3587 */
ff743345 3588asmlinkage void __sched schedule(void)
dd41f596
IM
3589{
3590 struct task_struct *prev, *next;
67ca7bde 3591 unsigned long *switch_count;
dd41f596 3592 struct rq *rq;
31656519 3593 int cpu;
dd41f596 3594
ff743345
PZ
3595need_resched:
3596 preempt_disable();
dd41f596
IM
3597 cpu = smp_processor_id();
3598 rq = cpu_rq(cpu);
25502a6c 3599 rcu_note_context_switch(cpu);
dd41f596
IM
3600 prev = rq->curr;
3601 switch_count = &prev->nivcsw;
3602
3603 release_kernel_lock(prev);
3604need_resched_nonpreemptible:
3605
3606 schedule_debug(prev);
1da177e4 3607
31656519 3608 if (sched_feat(HRTICK))
f333fdc9 3609 hrtick_clear(rq);
8f4d37ec 3610
05fa785c 3611 raw_spin_lock_irq(&rq->lock);
1e819950 3612 clear_tsk_need_resched(prev);
1da177e4 3613
1da177e4 3614 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3615 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3616 prev->state = TASK_RUNNING;
16882c1e 3617 else
371fd7e7 3618 deactivate_task(rq, prev, DEQUEUE_SLEEP);
dd41f596 3619 switch_count = &prev->nvcsw;
1da177e4
LT
3620 }
3621
3f029d3c 3622 pre_schedule(rq, prev);
f65eda4f 3623
dd41f596 3624 if (unlikely(!rq->nr_running))
1da177e4 3625 idle_balance(cpu, rq);
1da177e4 3626
df1c99d4 3627 put_prev_task(rq, prev);
b67802ea 3628 next = pick_next_task(rq);
1da177e4 3629
1da177e4 3630 if (likely(prev != next)) {
673a90a1 3631 sched_info_switch(prev, next);
49f47433 3632 perf_event_task_sched_out(prev, next);
673a90a1 3633
1da177e4
LT
3634 rq->nr_switches++;
3635 rq->curr = next;
3636 ++*switch_count;
3637
dd41f596 3638 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3639 /*
3640 * the context switch might have flipped the stack from under
3641 * us, hence refresh the local variables.
3642 */
3643 cpu = smp_processor_id();
3644 rq = cpu_rq(cpu);
1da177e4 3645 } else
05fa785c 3646 raw_spin_unlock_irq(&rq->lock);
1da177e4 3647
3f029d3c 3648 post_schedule(rq);
1da177e4 3649
6d558c3a
YZ
3650 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3651 prev = rq->curr;
3652 switch_count = &prev->nivcsw;
1da177e4 3653 goto need_resched_nonpreemptible;
6d558c3a 3654 }
8f4d37ec 3655
1da177e4 3656 preempt_enable_no_resched();
ff743345 3657 if (need_resched())
1da177e4
LT
3658 goto need_resched;
3659}
1da177e4
LT
3660EXPORT_SYMBOL(schedule);
3661
c08f7829 3662#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3663/*
3664 * Look out! "owner" is an entirely speculative pointer
3665 * access and not reliable.
3666 */
3667int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3668{
3669 unsigned int cpu;
3670 struct rq *rq;
3671
3672 if (!sched_feat(OWNER_SPIN))
3673 return 0;
3674
3675#ifdef CONFIG_DEBUG_PAGEALLOC
3676 /*
3677 * Need to access the cpu field knowing that
3678 * DEBUG_PAGEALLOC could have unmapped it if
3679 * the mutex owner just released it and exited.
3680 */
3681 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3682 return 0;
0d66bf6d
PZ
3683#else
3684 cpu = owner->cpu;
3685#endif
3686
3687 /*
3688 * Even if the access succeeded (likely case),
3689 * the cpu field may no longer be valid.
3690 */
3691 if (cpu >= nr_cpumask_bits)
4b402210 3692 return 0;
0d66bf6d
PZ
3693
3694 /*
3695 * We need to validate that we can do a
3696 * get_cpu() and that we have the percpu area.
3697 */
3698 if (!cpu_online(cpu))
4b402210 3699 return 0;
0d66bf6d
PZ
3700
3701 rq = cpu_rq(cpu);
3702
3703 for (;;) {
3704 /*
3705 * Owner changed, break to re-assess state.
3706 */
3707 if (lock->owner != owner)
3708 break;
3709
3710 /*
3711 * Is that owner really running on that cpu?
3712 */
3713 if (task_thread_info(rq->curr) != owner || need_resched())
3714 return 0;
3715
3716 cpu_relax();
3717 }
4b402210 3718
0d66bf6d
PZ
3719 return 1;
3720}
3721#endif
3722
1da177e4
LT
3723#ifdef CONFIG_PREEMPT
3724/*
2ed6e34f 3725 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3726 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3727 * occur there and call schedule directly.
3728 */
3729asmlinkage void __sched preempt_schedule(void)
3730{
3731 struct thread_info *ti = current_thread_info();
6478d880 3732
1da177e4
LT
3733 /*
3734 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3735 * we do not want to preempt the current task. Just return..
1da177e4 3736 */
beed33a8 3737 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3738 return;
3739
3a5c359a
AK
3740 do {
3741 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3742 schedule();
3a5c359a 3743 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3744
3a5c359a
AK
3745 /*
3746 * Check again in case we missed a preemption opportunity
3747 * between schedule and now.
3748 */
3749 barrier();
5ed0cec0 3750 } while (need_resched());
1da177e4 3751}
1da177e4
LT
3752EXPORT_SYMBOL(preempt_schedule);
3753
3754/*
2ed6e34f 3755 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3756 * off of irq context.
3757 * Note, that this is called and return with irqs disabled. This will
3758 * protect us against recursive calling from irq.
3759 */
3760asmlinkage void __sched preempt_schedule_irq(void)
3761{
3762 struct thread_info *ti = current_thread_info();
6478d880 3763
2ed6e34f 3764 /* Catch callers which need to be fixed */
1da177e4
LT
3765 BUG_ON(ti->preempt_count || !irqs_disabled());
3766
3a5c359a
AK
3767 do {
3768 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3769 local_irq_enable();
3770 schedule();
3771 local_irq_disable();
3a5c359a 3772 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3773
3a5c359a
AK
3774 /*
3775 * Check again in case we missed a preemption opportunity
3776 * between schedule and now.
3777 */
3778 barrier();
5ed0cec0 3779 } while (need_resched());
1da177e4
LT
3780}
3781
3782#endif /* CONFIG_PREEMPT */
3783
63859d4f 3784int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3785 void *key)
1da177e4 3786{
63859d4f 3787 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3788}
1da177e4
LT
3789EXPORT_SYMBOL(default_wake_function);
3790
3791/*
41a2d6cf
IM
3792 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3793 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3794 * number) then we wake all the non-exclusive tasks and one exclusive task.
3795 *
3796 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3797 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3798 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3799 */
78ddb08f 3800static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3801 int nr_exclusive, int wake_flags, void *key)
1da177e4 3802{
2e45874c 3803 wait_queue_t *curr, *next;
1da177e4 3804
2e45874c 3805 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3806 unsigned flags = curr->flags;
3807
63859d4f 3808 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3809 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3810 break;
3811 }
3812}
3813
3814/**
3815 * __wake_up - wake up threads blocked on a waitqueue.
3816 * @q: the waitqueue
3817 * @mode: which threads
3818 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3819 * @key: is directly passed to the wakeup function
50fa610a
DH
3820 *
3821 * It may be assumed that this function implies a write memory barrier before
3822 * changing the task state if and only if any tasks are woken up.
1da177e4 3823 */
7ad5b3a5 3824void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3825 int nr_exclusive, void *key)
1da177e4
LT
3826{
3827 unsigned long flags;
3828
3829 spin_lock_irqsave(&q->lock, flags);
3830 __wake_up_common(q, mode, nr_exclusive, 0, key);
3831 spin_unlock_irqrestore(&q->lock, flags);
3832}
1da177e4
LT
3833EXPORT_SYMBOL(__wake_up);
3834
3835/*
3836 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3837 */
7ad5b3a5 3838void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3839{
3840 __wake_up_common(q, mode, 1, 0, NULL);
3841}
22c43c81 3842EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3843
4ede816a
DL
3844void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3845{
3846 __wake_up_common(q, mode, 1, 0, key);
3847}
3848
1da177e4 3849/**
4ede816a 3850 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3851 * @q: the waitqueue
3852 * @mode: which threads
3853 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3854 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3855 *
3856 * The sync wakeup differs that the waker knows that it will schedule
3857 * away soon, so while the target thread will be woken up, it will not
3858 * be migrated to another CPU - ie. the two threads are 'synchronized'
3859 * with each other. This can prevent needless bouncing between CPUs.
3860 *
3861 * On UP it can prevent extra preemption.
50fa610a
DH
3862 *
3863 * It may be assumed that this function implies a write memory barrier before
3864 * changing the task state if and only if any tasks are woken up.
1da177e4 3865 */
4ede816a
DL
3866void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3867 int nr_exclusive, void *key)
1da177e4
LT
3868{
3869 unsigned long flags;
7d478721 3870 int wake_flags = WF_SYNC;
1da177e4
LT
3871
3872 if (unlikely(!q))
3873 return;
3874
3875 if (unlikely(!nr_exclusive))
7d478721 3876 wake_flags = 0;
1da177e4
LT
3877
3878 spin_lock_irqsave(&q->lock, flags);
7d478721 3879 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3880 spin_unlock_irqrestore(&q->lock, flags);
3881}
4ede816a
DL
3882EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3883
3884/*
3885 * __wake_up_sync - see __wake_up_sync_key()
3886 */
3887void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3888{
3889 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3890}
1da177e4
LT
3891EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3892
65eb3dc6
KD
3893/**
3894 * complete: - signals a single thread waiting on this completion
3895 * @x: holds the state of this particular completion
3896 *
3897 * This will wake up a single thread waiting on this completion. Threads will be
3898 * awakened in the same order in which they were queued.
3899 *
3900 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3901 *
3902 * It may be assumed that this function implies a write memory barrier before
3903 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3904 */
b15136e9 3905void complete(struct completion *x)
1da177e4
LT
3906{
3907 unsigned long flags;
3908
3909 spin_lock_irqsave(&x->wait.lock, flags);
3910 x->done++;
d9514f6c 3911 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3912 spin_unlock_irqrestore(&x->wait.lock, flags);
3913}
3914EXPORT_SYMBOL(complete);
3915
65eb3dc6
KD
3916/**
3917 * complete_all: - signals all threads waiting on this completion
3918 * @x: holds the state of this particular completion
3919 *
3920 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3921 *
3922 * It may be assumed that this function implies a write memory barrier before
3923 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3924 */
b15136e9 3925void complete_all(struct completion *x)
1da177e4
LT
3926{
3927 unsigned long flags;
3928
3929 spin_lock_irqsave(&x->wait.lock, flags);
3930 x->done += UINT_MAX/2;
d9514f6c 3931 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3932 spin_unlock_irqrestore(&x->wait.lock, flags);
3933}
3934EXPORT_SYMBOL(complete_all);
3935
8cbbe86d
AK
3936static inline long __sched
3937do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3938{
1da177e4
LT
3939 if (!x->done) {
3940 DECLARE_WAITQUEUE(wait, current);
3941
a93d2f17 3942 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3943 do {
94d3d824 3944 if (signal_pending_state(state, current)) {
ea71a546
ON
3945 timeout = -ERESTARTSYS;
3946 break;
8cbbe86d
AK
3947 }
3948 __set_current_state(state);
1da177e4
LT
3949 spin_unlock_irq(&x->wait.lock);
3950 timeout = schedule_timeout(timeout);
3951 spin_lock_irq(&x->wait.lock);
ea71a546 3952 } while (!x->done && timeout);
1da177e4 3953 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3954 if (!x->done)
3955 return timeout;
1da177e4
LT
3956 }
3957 x->done--;
ea71a546 3958 return timeout ?: 1;
1da177e4 3959}
1da177e4 3960
8cbbe86d
AK
3961static long __sched
3962wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3963{
1da177e4
LT
3964 might_sleep();
3965
3966 spin_lock_irq(&x->wait.lock);
8cbbe86d 3967 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3968 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3969 return timeout;
3970}
1da177e4 3971
65eb3dc6
KD
3972/**
3973 * wait_for_completion: - waits for completion of a task
3974 * @x: holds the state of this particular completion
3975 *
3976 * This waits to be signaled for completion of a specific task. It is NOT
3977 * interruptible and there is no timeout.
3978 *
3979 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3980 * and interrupt capability. Also see complete().
3981 */
b15136e9 3982void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3983{
3984 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3985}
8cbbe86d 3986EXPORT_SYMBOL(wait_for_completion);
1da177e4 3987
65eb3dc6
KD
3988/**
3989 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3990 * @x: holds the state of this particular completion
3991 * @timeout: timeout value in jiffies
3992 *
3993 * This waits for either a completion of a specific task to be signaled or for a
3994 * specified timeout to expire. The timeout is in jiffies. It is not
3995 * interruptible.
3996 */
b15136e9 3997unsigned long __sched
8cbbe86d 3998wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3999{
8cbbe86d 4000 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4001}
8cbbe86d 4002EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4003
65eb3dc6
KD
4004/**
4005 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4006 * @x: holds the state of this particular completion
4007 *
4008 * This waits for completion of a specific task to be signaled. It is
4009 * interruptible.
4010 */
8cbbe86d 4011int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4012{
51e97990
AK
4013 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4014 if (t == -ERESTARTSYS)
4015 return t;
4016 return 0;
0fec171c 4017}
8cbbe86d 4018EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4019
65eb3dc6
KD
4020/**
4021 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4022 * @x: holds the state of this particular completion
4023 * @timeout: timeout value in jiffies
4024 *
4025 * This waits for either a completion of a specific task to be signaled or for a
4026 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4027 */
b15136e9 4028unsigned long __sched
8cbbe86d
AK
4029wait_for_completion_interruptible_timeout(struct completion *x,
4030 unsigned long timeout)
0fec171c 4031{
8cbbe86d 4032 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4033}
8cbbe86d 4034EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4035
65eb3dc6
KD
4036/**
4037 * wait_for_completion_killable: - waits for completion of a task (killable)
4038 * @x: holds the state of this particular completion
4039 *
4040 * This waits to be signaled for completion of a specific task. It can be
4041 * interrupted by a kill signal.
4042 */
009e577e
MW
4043int __sched wait_for_completion_killable(struct completion *x)
4044{
4045 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4046 if (t == -ERESTARTSYS)
4047 return t;
4048 return 0;
4049}
4050EXPORT_SYMBOL(wait_for_completion_killable);
4051
0aa12fb4
SW
4052/**
4053 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4054 * @x: holds the state of this particular completion
4055 * @timeout: timeout value in jiffies
4056 *
4057 * This waits for either a completion of a specific task to be
4058 * signaled or for a specified timeout to expire. It can be
4059 * interrupted by a kill signal. The timeout is in jiffies.
4060 */
4061unsigned long __sched
4062wait_for_completion_killable_timeout(struct completion *x,
4063 unsigned long timeout)
4064{
4065 return wait_for_common(x, timeout, TASK_KILLABLE);
4066}
4067EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4068
be4de352
DC
4069/**
4070 * try_wait_for_completion - try to decrement a completion without blocking
4071 * @x: completion structure
4072 *
4073 * Returns: 0 if a decrement cannot be done without blocking
4074 * 1 if a decrement succeeded.
4075 *
4076 * If a completion is being used as a counting completion,
4077 * attempt to decrement the counter without blocking. This
4078 * enables us to avoid waiting if the resource the completion
4079 * is protecting is not available.
4080 */
4081bool try_wait_for_completion(struct completion *x)
4082{
7539a3b3 4083 unsigned long flags;
be4de352
DC
4084 int ret = 1;
4085
7539a3b3 4086 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4087 if (!x->done)
4088 ret = 0;
4089 else
4090 x->done--;
7539a3b3 4091 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4092 return ret;
4093}
4094EXPORT_SYMBOL(try_wait_for_completion);
4095
4096/**
4097 * completion_done - Test to see if a completion has any waiters
4098 * @x: completion structure
4099 *
4100 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4101 * 1 if there are no waiters.
4102 *
4103 */
4104bool completion_done(struct completion *x)
4105{
7539a3b3 4106 unsigned long flags;
be4de352
DC
4107 int ret = 1;
4108
7539a3b3 4109 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4110 if (!x->done)
4111 ret = 0;
7539a3b3 4112 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4113 return ret;
4114}
4115EXPORT_SYMBOL(completion_done);
4116
8cbbe86d
AK
4117static long __sched
4118sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4119{
0fec171c
IM
4120 unsigned long flags;
4121 wait_queue_t wait;
4122
4123 init_waitqueue_entry(&wait, current);
1da177e4 4124
8cbbe86d 4125 __set_current_state(state);
1da177e4 4126
8cbbe86d
AK
4127 spin_lock_irqsave(&q->lock, flags);
4128 __add_wait_queue(q, &wait);
4129 spin_unlock(&q->lock);
4130 timeout = schedule_timeout(timeout);
4131 spin_lock_irq(&q->lock);
4132 __remove_wait_queue(q, &wait);
4133 spin_unlock_irqrestore(&q->lock, flags);
4134
4135 return timeout;
4136}
4137
4138void __sched interruptible_sleep_on(wait_queue_head_t *q)
4139{
4140 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4141}
1da177e4
LT
4142EXPORT_SYMBOL(interruptible_sleep_on);
4143
0fec171c 4144long __sched
95cdf3b7 4145interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4146{
8cbbe86d 4147 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4148}
1da177e4
LT
4149EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4150
0fec171c 4151void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4152{
8cbbe86d 4153 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4154}
1da177e4
LT
4155EXPORT_SYMBOL(sleep_on);
4156
0fec171c 4157long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4158{
8cbbe86d 4159 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4160}
1da177e4
LT
4161EXPORT_SYMBOL(sleep_on_timeout);
4162
b29739f9
IM
4163#ifdef CONFIG_RT_MUTEXES
4164
4165/*
4166 * rt_mutex_setprio - set the current priority of a task
4167 * @p: task
4168 * @prio: prio value (kernel-internal form)
4169 *
4170 * This function changes the 'effective' priority of a task. It does
4171 * not touch ->normal_prio like __setscheduler().
4172 *
4173 * Used by the rt_mutex code to implement priority inheritance logic.
4174 */
36c8b586 4175void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4176{
4177 unsigned long flags;
83b699ed 4178 int oldprio, on_rq, running;
70b97a7f 4179 struct rq *rq;
83ab0aa0 4180 const struct sched_class *prev_class;
b29739f9
IM
4181
4182 BUG_ON(prio < 0 || prio > MAX_PRIO);
4183
4184 rq = task_rq_lock(p, &flags);
4185
d5f9f942 4186 oldprio = p->prio;
83ab0aa0 4187 prev_class = p->sched_class;
dd41f596 4188 on_rq = p->se.on_rq;
051a1d1a 4189 running = task_current(rq, p);
0e1f3483 4190 if (on_rq)
69be72c1 4191 dequeue_task(rq, p, 0);
0e1f3483
HS
4192 if (running)
4193 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4194
4195 if (rt_prio(prio))
4196 p->sched_class = &rt_sched_class;
4197 else
4198 p->sched_class = &fair_sched_class;
4199
b29739f9
IM
4200 p->prio = prio;
4201
0e1f3483
HS
4202 if (running)
4203 p->sched_class->set_curr_task(rq);
dd41f596 4204 if (on_rq) {
371fd7e7 4205 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4206
4207 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4208 }
4209 task_rq_unlock(rq, &flags);
4210}
4211
4212#endif
4213
36c8b586 4214void set_user_nice(struct task_struct *p, long nice)
1da177e4 4215{
dd41f596 4216 int old_prio, delta, on_rq;
1da177e4 4217 unsigned long flags;
70b97a7f 4218 struct rq *rq;
1da177e4
LT
4219
4220 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4221 return;
4222 /*
4223 * We have to be careful, if called from sys_setpriority(),
4224 * the task might be in the middle of scheduling on another CPU.
4225 */
4226 rq = task_rq_lock(p, &flags);
4227 /*
4228 * The RT priorities are set via sched_setscheduler(), but we still
4229 * allow the 'normal' nice value to be set - but as expected
4230 * it wont have any effect on scheduling until the task is
dd41f596 4231 * SCHED_FIFO/SCHED_RR:
1da177e4 4232 */
e05606d3 4233 if (task_has_rt_policy(p)) {
1da177e4
LT
4234 p->static_prio = NICE_TO_PRIO(nice);
4235 goto out_unlock;
4236 }
dd41f596 4237 on_rq = p->se.on_rq;
c09595f6 4238 if (on_rq)
69be72c1 4239 dequeue_task(rq, p, 0);
1da177e4 4240
1da177e4 4241 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4242 set_load_weight(p);
b29739f9
IM
4243 old_prio = p->prio;
4244 p->prio = effective_prio(p);
4245 delta = p->prio - old_prio;
1da177e4 4246
dd41f596 4247 if (on_rq) {
371fd7e7 4248 enqueue_task(rq, p, 0);
1da177e4 4249 /*
d5f9f942
AM
4250 * If the task increased its priority or is running and
4251 * lowered its priority, then reschedule its CPU:
1da177e4 4252 */
d5f9f942 4253 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4254 resched_task(rq->curr);
4255 }
4256out_unlock:
4257 task_rq_unlock(rq, &flags);
4258}
1da177e4
LT
4259EXPORT_SYMBOL(set_user_nice);
4260
e43379f1
MM
4261/*
4262 * can_nice - check if a task can reduce its nice value
4263 * @p: task
4264 * @nice: nice value
4265 */
36c8b586 4266int can_nice(const struct task_struct *p, const int nice)
e43379f1 4267{
024f4747
MM
4268 /* convert nice value [19,-20] to rlimit style value [1,40] */
4269 int nice_rlim = 20 - nice;
48f24c4d 4270
78d7d407 4271 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4272 capable(CAP_SYS_NICE));
4273}
4274
1da177e4
LT
4275#ifdef __ARCH_WANT_SYS_NICE
4276
4277/*
4278 * sys_nice - change the priority of the current process.
4279 * @increment: priority increment
4280 *
4281 * sys_setpriority is a more generic, but much slower function that
4282 * does similar things.
4283 */
5add95d4 4284SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4285{
48f24c4d 4286 long nice, retval;
1da177e4
LT
4287
4288 /*
4289 * Setpriority might change our priority at the same moment.
4290 * We don't have to worry. Conceptually one call occurs first
4291 * and we have a single winner.
4292 */
e43379f1
MM
4293 if (increment < -40)
4294 increment = -40;
1da177e4
LT
4295 if (increment > 40)
4296 increment = 40;
4297
2b8f836f 4298 nice = TASK_NICE(current) + increment;
1da177e4
LT
4299 if (nice < -20)
4300 nice = -20;
4301 if (nice > 19)
4302 nice = 19;
4303
e43379f1
MM
4304 if (increment < 0 && !can_nice(current, nice))
4305 return -EPERM;
4306
1da177e4
LT
4307 retval = security_task_setnice(current, nice);
4308 if (retval)
4309 return retval;
4310
4311 set_user_nice(current, nice);
4312 return 0;
4313}
4314
4315#endif
4316
4317/**
4318 * task_prio - return the priority value of a given task.
4319 * @p: the task in question.
4320 *
4321 * This is the priority value as seen by users in /proc.
4322 * RT tasks are offset by -200. Normal tasks are centered
4323 * around 0, value goes from -16 to +15.
4324 */
36c8b586 4325int task_prio(const struct task_struct *p)
1da177e4
LT
4326{
4327 return p->prio - MAX_RT_PRIO;
4328}
4329
4330/**
4331 * task_nice - return the nice value of a given task.
4332 * @p: the task in question.
4333 */
36c8b586 4334int task_nice(const struct task_struct *p)
1da177e4
LT
4335{
4336 return TASK_NICE(p);
4337}
150d8bed 4338EXPORT_SYMBOL(task_nice);
1da177e4
LT
4339
4340/**
4341 * idle_cpu - is a given cpu idle currently?
4342 * @cpu: the processor in question.
4343 */
4344int idle_cpu(int cpu)
4345{
4346 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4347}
4348
1da177e4
LT
4349/**
4350 * idle_task - return the idle task for a given cpu.
4351 * @cpu: the processor in question.
4352 */
36c8b586 4353struct task_struct *idle_task(int cpu)
1da177e4
LT
4354{
4355 return cpu_rq(cpu)->idle;
4356}
4357
4358/**
4359 * find_process_by_pid - find a process with a matching PID value.
4360 * @pid: the pid in question.
4361 */
a9957449 4362static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4363{
228ebcbe 4364 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4365}
4366
4367/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4368static void
4369__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4370{
dd41f596 4371 BUG_ON(p->se.on_rq);
48f24c4d 4372
1da177e4
LT
4373 p->policy = policy;
4374 p->rt_priority = prio;
b29739f9
IM
4375 p->normal_prio = normal_prio(p);
4376 /* we are holding p->pi_lock already */
4377 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4378 if (rt_prio(p->prio))
4379 p->sched_class = &rt_sched_class;
4380 else
4381 p->sched_class = &fair_sched_class;
2dd73a4f 4382 set_load_weight(p);
1da177e4
LT
4383}
4384
c69e8d9c
DH
4385/*
4386 * check the target process has a UID that matches the current process's
4387 */
4388static bool check_same_owner(struct task_struct *p)
4389{
4390 const struct cred *cred = current_cred(), *pcred;
4391 bool match;
4392
4393 rcu_read_lock();
4394 pcred = __task_cred(p);
4395 match = (cred->euid == pcred->euid ||
4396 cred->euid == pcred->uid);
4397 rcu_read_unlock();
4398 return match;
4399}
4400
961ccddd
RR
4401static int __sched_setscheduler(struct task_struct *p, int policy,
4402 struct sched_param *param, bool user)
1da177e4 4403{
83b699ed 4404 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4405 unsigned long flags;
83ab0aa0 4406 const struct sched_class *prev_class;
70b97a7f 4407 struct rq *rq;
ca94c442 4408 int reset_on_fork;
1da177e4 4409
66e5393a
SR
4410 /* may grab non-irq protected spin_locks */
4411 BUG_ON(in_interrupt());
1da177e4
LT
4412recheck:
4413 /* double check policy once rq lock held */
ca94c442
LP
4414 if (policy < 0) {
4415 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4416 policy = oldpolicy = p->policy;
ca94c442
LP
4417 } else {
4418 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4419 policy &= ~SCHED_RESET_ON_FORK;
4420
4421 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4422 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4423 policy != SCHED_IDLE)
4424 return -EINVAL;
4425 }
4426
1da177e4
LT
4427 /*
4428 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4429 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4430 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4431 */
4432 if (param->sched_priority < 0 ||
95cdf3b7 4433 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4434 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4435 return -EINVAL;
e05606d3 4436 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4437 return -EINVAL;
4438
37e4ab3f
OC
4439 /*
4440 * Allow unprivileged RT tasks to decrease priority:
4441 */
961ccddd 4442 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4443 if (rt_policy(policy)) {
8dc3e909 4444 unsigned long rlim_rtprio;
8dc3e909
ON
4445
4446 if (!lock_task_sighand(p, &flags))
4447 return -ESRCH;
78d7d407 4448 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4449 unlock_task_sighand(p, &flags);
4450
4451 /* can't set/change the rt policy */
4452 if (policy != p->policy && !rlim_rtprio)
4453 return -EPERM;
4454
4455 /* can't increase priority */
4456 if (param->sched_priority > p->rt_priority &&
4457 param->sched_priority > rlim_rtprio)
4458 return -EPERM;
4459 }
dd41f596
IM
4460 /*
4461 * Like positive nice levels, dont allow tasks to
4462 * move out of SCHED_IDLE either:
4463 */
4464 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4465 return -EPERM;
5fe1d75f 4466
37e4ab3f 4467 /* can't change other user's priorities */
c69e8d9c 4468 if (!check_same_owner(p))
37e4ab3f 4469 return -EPERM;
ca94c442
LP
4470
4471 /* Normal users shall not reset the sched_reset_on_fork flag */
4472 if (p->sched_reset_on_fork && !reset_on_fork)
4473 return -EPERM;
37e4ab3f 4474 }
1da177e4 4475
725aad24 4476 if (user) {
b68aa230 4477#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
4478 /*
4479 * Do not allow realtime tasks into groups that have no runtime
4480 * assigned.
4481 */
9a7e0b18
PZ
4482 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4483 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 4484 return -EPERM;
b68aa230
PZ
4485#endif
4486
725aad24
JF
4487 retval = security_task_setscheduler(p, policy, param);
4488 if (retval)
4489 return retval;
4490 }
4491
b29739f9
IM
4492 /*
4493 * make sure no PI-waiters arrive (or leave) while we are
4494 * changing the priority of the task:
4495 */
1d615482 4496 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4497 /*
4498 * To be able to change p->policy safely, the apropriate
4499 * runqueue lock must be held.
4500 */
b29739f9 4501 rq = __task_rq_lock(p);
1da177e4
LT
4502 /* recheck policy now with rq lock held */
4503 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4504 policy = oldpolicy = -1;
b29739f9 4505 __task_rq_unlock(rq);
1d615482 4506 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4507 goto recheck;
4508 }
dd41f596 4509 on_rq = p->se.on_rq;
051a1d1a 4510 running = task_current(rq, p);
0e1f3483 4511 if (on_rq)
2e1cb74a 4512 deactivate_task(rq, p, 0);
0e1f3483
HS
4513 if (running)
4514 p->sched_class->put_prev_task(rq, p);
f6b53205 4515
ca94c442
LP
4516 p->sched_reset_on_fork = reset_on_fork;
4517
1da177e4 4518 oldprio = p->prio;
83ab0aa0 4519 prev_class = p->sched_class;
dd41f596 4520 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4521
0e1f3483
HS
4522 if (running)
4523 p->sched_class->set_curr_task(rq);
dd41f596
IM
4524 if (on_rq) {
4525 activate_task(rq, p, 0);
cb469845
SR
4526
4527 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4528 }
b29739f9 4529 __task_rq_unlock(rq);
1d615482 4530 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4531
95e02ca9
TG
4532 rt_mutex_adjust_pi(p);
4533
1da177e4
LT
4534 return 0;
4535}
961ccddd
RR
4536
4537/**
4538 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4539 * @p: the task in question.
4540 * @policy: new policy.
4541 * @param: structure containing the new RT priority.
4542 *
4543 * NOTE that the task may be already dead.
4544 */
4545int sched_setscheduler(struct task_struct *p, int policy,
4546 struct sched_param *param)
4547{
4548 return __sched_setscheduler(p, policy, param, true);
4549}
1da177e4
LT
4550EXPORT_SYMBOL_GPL(sched_setscheduler);
4551
961ccddd
RR
4552/**
4553 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4554 * @p: the task in question.
4555 * @policy: new policy.
4556 * @param: structure containing the new RT priority.
4557 *
4558 * Just like sched_setscheduler, only don't bother checking if the
4559 * current context has permission. For example, this is needed in
4560 * stop_machine(): we create temporary high priority worker threads,
4561 * but our caller might not have that capability.
4562 */
4563int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4564 struct sched_param *param)
4565{
4566 return __sched_setscheduler(p, policy, param, false);
4567}
4568
95cdf3b7
IM
4569static int
4570do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4571{
1da177e4
LT
4572 struct sched_param lparam;
4573 struct task_struct *p;
36c8b586 4574 int retval;
1da177e4
LT
4575
4576 if (!param || pid < 0)
4577 return -EINVAL;
4578 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4579 return -EFAULT;
5fe1d75f
ON
4580
4581 rcu_read_lock();
4582 retval = -ESRCH;
1da177e4 4583 p = find_process_by_pid(pid);
5fe1d75f
ON
4584 if (p != NULL)
4585 retval = sched_setscheduler(p, policy, &lparam);
4586 rcu_read_unlock();
36c8b586 4587
1da177e4
LT
4588 return retval;
4589}
4590
4591/**
4592 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4593 * @pid: the pid in question.
4594 * @policy: new policy.
4595 * @param: structure containing the new RT priority.
4596 */
5add95d4
HC
4597SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4598 struct sched_param __user *, param)
1da177e4 4599{
c21761f1
JB
4600 /* negative values for policy are not valid */
4601 if (policy < 0)
4602 return -EINVAL;
4603
1da177e4
LT
4604 return do_sched_setscheduler(pid, policy, param);
4605}
4606
4607/**
4608 * sys_sched_setparam - set/change the RT priority of a thread
4609 * @pid: the pid in question.
4610 * @param: structure containing the new RT priority.
4611 */
5add95d4 4612SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4613{
4614 return do_sched_setscheduler(pid, -1, param);
4615}
4616
4617/**
4618 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4619 * @pid: the pid in question.
4620 */
5add95d4 4621SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4622{
36c8b586 4623 struct task_struct *p;
3a5c359a 4624 int retval;
1da177e4
LT
4625
4626 if (pid < 0)
3a5c359a 4627 return -EINVAL;
1da177e4
LT
4628
4629 retval = -ESRCH;
5fe85be0 4630 rcu_read_lock();
1da177e4
LT
4631 p = find_process_by_pid(pid);
4632 if (p) {
4633 retval = security_task_getscheduler(p);
4634 if (!retval)
ca94c442
LP
4635 retval = p->policy
4636 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4637 }
5fe85be0 4638 rcu_read_unlock();
1da177e4
LT
4639 return retval;
4640}
4641
4642/**
ca94c442 4643 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4644 * @pid: the pid in question.
4645 * @param: structure containing the RT priority.
4646 */
5add95d4 4647SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4648{
4649 struct sched_param lp;
36c8b586 4650 struct task_struct *p;
3a5c359a 4651 int retval;
1da177e4
LT
4652
4653 if (!param || pid < 0)
3a5c359a 4654 return -EINVAL;
1da177e4 4655
5fe85be0 4656 rcu_read_lock();
1da177e4
LT
4657 p = find_process_by_pid(pid);
4658 retval = -ESRCH;
4659 if (!p)
4660 goto out_unlock;
4661
4662 retval = security_task_getscheduler(p);
4663 if (retval)
4664 goto out_unlock;
4665
4666 lp.sched_priority = p->rt_priority;
5fe85be0 4667 rcu_read_unlock();
1da177e4
LT
4668
4669 /*
4670 * This one might sleep, we cannot do it with a spinlock held ...
4671 */
4672 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4673
1da177e4
LT
4674 return retval;
4675
4676out_unlock:
5fe85be0 4677 rcu_read_unlock();
1da177e4
LT
4678 return retval;
4679}
4680
96f874e2 4681long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4682{
5a16f3d3 4683 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4684 struct task_struct *p;
4685 int retval;
1da177e4 4686
95402b38 4687 get_online_cpus();
23f5d142 4688 rcu_read_lock();
1da177e4
LT
4689
4690 p = find_process_by_pid(pid);
4691 if (!p) {
23f5d142 4692 rcu_read_unlock();
95402b38 4693 put_online_cpus();
1da177e4
LT
4694 return -ESRCH;
4695 }
4696
23f5d142 4697 /* Prevent p going away */
1da177e4 4698 get_task_struct(p);
23f5d142 4699 rcu_read_unlock();
1da177e4 4700
5a16f3d3
RR
4701 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4702 retval = -ENOMEM;
4703 goto out_put_task;
4704 }
4705 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4706 retval = -ENOMEM;
4707 goto out_free_cpus_allowed;
4708 }
1da177e4 4709 retval = -EPERM;
c69e8d9c 4710 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4711 goto out_unlock;
4712
e7834f8f
DQ
4713 retval = security_task_setscheduler(p, 0, NULL);
4714 if (retval)
4715 goto out_unlock;
4716
5a16f3d3
RR
4717 cpuset_cpus_allowed(p, cpus_allowed);
4718 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4719 again:
5a16f3d3 4720 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4721
8707d8b8 4722 if (!retval) {
5a16f3d3
RR
4723 cpuset_cpus_allowed(p, cpus_allowed);
4724 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4725 /*
4726 * We must have raced with a concurrent cpuset
4727 * update. Just reset the cpus_allowed to the
4728 * cpuset's cpus_allowed
4729 */
5a16f3d3 4730 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4731 goto again;
4732 }
4733 }
1da177e4 4734out_unlock:
5a16f3d3
RR
4735 free_cpumask_var(new_mask);
4736out_free_cpus_allowed:
4737 free_cpumask_var(cpus_allowed);
4738out_put_task:
1da177e4 4739 put_task_struct(p);
95402b38 4740 put_online_cpus();
1da177e4
LT
4741 return retval;
4742}
4743
4744static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4745 struct cpumask *new_mask)
1da177e4 4746{
96f874e2
RR
4747 if (len < cpumask_size())
4748 cpumask_clear(new_mask);
4749 else if (len > cpumask_size())
4750 len = cpumask_size();
4751
1da177e4
LT
4752 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4753}
4754
4755/**
4756 * sys_sched_setaffinity - set the cpu affinity of a process
4757 * @pid: pid of the process
4758 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4759 * @user_mask_ptr: user-space pointer to the new cpu mask
4760 */
5add95d4
HC
4761SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4762 unsigned long __user *, user_mask_ptr)
1da177e4 4763{
5a16f3d3 4764 cpumask_var_t new_mask;
1da177e4
LT
4765 int retval;
4766
5a16f3d3
RR
4767 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4768 return -ENOMEM;
1da177e4 4769
5a16f3d3
RR
4770 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4771 if (retval == 0)
4772 retval = sched_setaffinity(pid, new_mask);
4773 free_cpumask_var(new_mask);
4774 return retval;
1da177e4
LT
4775}
4776
96f874e2 4777long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4778{
36c8b586 4779 struct task_struct *p;
31605683
TG
4780 unsigned long flags;
4781 struct rq *rq;
1da177e4 4782 int retval;
1da177e4 4783
95402b38 4784 get_online_cpus();
23f5d142 4785 rcu_read_lock();
1da177e4
LT
4786
4787 retval = -ESRCH;
4788 p = find_process_by_pid(pid);
4789 if (!p)
4790 goto out_unlock;
4791
e7834f8f
DQ
4792 retval = security_task_getscheduler(p);
4793 if (retval)
4794 goto out_unlock;
4795
31605683 4796 rq = task_rq_lock(p, &flags);
96f874e2 4797 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4798 task_rq_unlock(rq, &flags);
1da177e4
LT
4799
4800out_unlock:
23f5d142 4801 rcu_read_unlock();
95402b38 4802 put_online_cpus();
1da177e4 4803
9531b62f 4804 return retval;
1da177e4
LT
4805}
4806
4807/**
4808 * sys_sched_getaffinity - get the cpu affinity of a process
4809 * @pid: pid of the process
4810 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4811 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4812 */
5add95d4
HC
4813SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4814 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4815{
4816 int ret;
f17c8607 4817 cpumask_var_t mask;
1da177e4 4818
84fba5ec 4819 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4820 return -EINVAL;
4821 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4822 return -EINVAL;
4823
f17c8607
RR
4824 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4825 return -ENOMEM;
1da177e4 4826
f17c8607
RR
4827 ret = sched_getaffinity(pid, mask);
4828 if (ret == 0) {
8bc037fb 4829 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4830
4831 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4832 ret = -EFAULT;
4833 else
cd3d8031 4834 ret = retlen;
f17c8607
RR
4835 }
4836 free_cpumask_var(mask);
1da177e4 4837
f17c8607 4838 return ret;
1da177e4
LT
4839}
4840
4841/**
4842 * sys_sched_yield - yield the current processor to other threads.
4843 *
dd41f596
IM
4844 * This function yields the current CPU to other tasks. If there are no
4845 * other threads running on this CPU then this function will return.
1da177e4 4846 */
5add95d4 4847SYSCALL_DEFINE0(sched_yield)
1da177e4 4848{
70b97a7f 4849 struct rq *rq = this_rq_lock();
1da177e4 4850
2d72376b 4851 schedstat_inc(rq, yld_count);
4530d7ab 4852 current->sched_class->yield_task(rq);
1da177e4
LT
4853
4854 /*
4855 * Since we are going to call schedule() anyway, there's
4856 * no need to preempt or enable interrupts:
4857 */
4858 __release(rq->lock);
8a25d5de 4859 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4860 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4861 preempt_enable_no_resched();
4862
4863 schedule();
4864
4865 return 0;
4866}
4867
d86ee480
PZ
4868static inline int should_resched(void)
4869{
4870 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4871}
4872
e7b38404 4873static void __cond_resched(void)
1da177e4 4874{
e7aaaa69
FW
4875 add_preempt_count(PREEMPT_ACTIVE);
4876 schedule();
4877 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4878}
4879
02b67cc3 4880int __sched _cond_resched(void)
1da177e4 4881{
d86ee480 4882 if (should_resched()) {
1da177e4
LT
4883 __cond_resched();
4884 return 1;
4885 }
4886 return 0;
4887}
02b67cc3 4888EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4889
4890/*
613afbf8 4891 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4892 * call schedule, and on return reacquire the lock.
4893 *
41a2d6cf 4894 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4895 * operations here to prevent schedule() from being called twice (once via
4896 * spin_unlock(), once by hand).
4897 */
613afbf8 4898int __cond_resched_lock(spinlock_t *lock)
1da177e4 4899{
d86ee480 4900 int resched = should_resched();
6df3cecb
JK
4901 int ret = 0;
4902
f607c668
PZ
4903 lockdep_assert_held(lock);
4904
95c354fe 4905 if (spin_needbreak(lock) || resched) {
1da177e4 4906 spin_unlock(lock);
d86ee480 4907 if (resched)
95c354fe
NP
4908 __cond_resched();
4909 else
4910 cpu_relax();
6df3cecb 4911 ret = 1;
1da177e4 4912 spin_lock(lock);
1da177e4 4913 }
6df3cecb 4914 return ret;
1da177e4 4915}
613afbf8 4916EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4917
613afbf8 4918int __sched __cond_resched_softirq(void)
1da177e4
LT
4919{
4920 BUG_ON(!in_softirq());
4921
d86ee480 4922 if (should_resched()) {
98d82567 4923 local_bh_enable();
1da177e4
LT
4924 __cond_resched();
4925 local_bh_disable();
4926 return 1;
4927 }
4928 return 0;
4929}
613afbf8 4930EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4931
1da177e4
LT
4932/**
4933 * yield - yield the current processor to other threads.
4934 *
72fd4a35 4935 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4936 * thread runnable and calls sys_sched_yield().
4937 */
4938void __sched yield(void)
4939{
4940 set_current_state(TASK_RUNNING);
4941 sys_sched_yield();
4942}
1da177e4
LT
4943EXPORT_SYMBOL(yield);
4944
4945/*
41a2d6cf 4946 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4947 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4948 */
4949void __sched io_schedule(void)
4950{
54d35f29 4951 struct rq *rq = raw_rq();
1da177e4 4952
0ff92245 4953 delayacct_blkio_start();
1da177e4 4954 atomic_inc(&rq->nr_iowait);
8f0dfc34 4955 current->in_iowait = 1;
1da177e4 4956 schedule();
8f0dfc34 4957 current->in_iowait = 0;
1da177e4 4958 atomic_dec(&rq->nr_iowait);
0ff92245 4959 delayacct_blkio_end();
1da177e4 4960}
1da177e4
LT
4961EXPORT_SYMBOL(io_schedule);
4962
4963long __sched io_schedule_timeout(long timeout)
4964{
54d35f29 4965 struct rq *rq = raw_rq();
1da177e4
LT
4966 long ret;
4967
0ff92245 4968 delayacct_blkio_start();
1da177e4 4969 atomic_inc(&rq->nr_iowait);
8f0dfc34 4970 current->in_iowait = 1;
1da177e4 4971 ret = schedule_timeout(timeout);
8f0dfc34 4972 current->in_iowait = 0;
1da177e4 4973 atomic_dec(&rq->nr_iowait);
0ff92245 4974 delayacct_blkio_end();
1da177e4
LT
4975 return ret;
4976}
4977
4978/**
4979 * sys_sched_get_priority_max - return maximum RT priority.
4980 * @policy: scheduling class.
4981 *
4982 * this syscall returns the maximum rt_priority that can be used
4983 * by a given scheduling class.
4984 */
5add95d4 4985SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4986{
4987 int ret = -EINVAL;
4988
4989 switch (policy) {
4990 case SCHED_FIFO:
4991 case SCHED_RR:
4992 ret = MAX_USER_RT_PRIO-1;
4993 break;
4994 case SCHED_NORMAL:
b0a9499c 4995 case SCHED_BATCH:
dd41f596 4996 case SCHED_IDLE:
1da177e4
LT
4997 ret = 0;
4998 break;
4999 }
5000 return ret;
5001}
5002
5003/**
5004 * sys_sched_get_priority_min - return minimum RT priority.
5005 * @policy: scheduling class.
5006 *
5007 * this syscall returns the minimum rt_priority that can be used
5008 * by a given scheduling class.
5009 */
5add95d4 5010SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5011{
5012 int ret = -EINVAL;
5013
5014 switch (policy) {
5015 case SCHED_FIFO:
5016 case SCHED_RR:
5017 ret = 1;
5018 break;
5019 case SCHED_NORMAL:
b0a9499c 5020 case SCHED_BATCH:
dd41f596 5021 case SCHED_IDLE:
1da177e4
LT
5022 ret = 0;
5023 }
5024 return ret;
5025}
5026
5027/**
5028 * sys_sched_rr_get_interval - return the default timeslice of a process.
5029 * @pid: pid of the process.
5030 * @interval: userspace pointer to the timeslice value.
5031 *
5032 * this syscall writes the default timeslice value of a given process
5033 * into the user-space timespec buffer. A value of '0' means infinity.
5034 */
17da2bd9 5035SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5036 struct timespec __user *, interval)
1da177e4 5037{
36c8b586 5038 struct task_struct *p;
a4ec24b4 5039 unsigned int time_slice;
dba091b9
TG
5040 unsigned long flags;
5041 struct rq *rq;
3a5c359a 5042 int retval;
1da177e4 5043 struct timespec t;
1da177e4
LT
5044
5045 if (pid < 0)
3a5c359a 5046 return -EINVAL;
1da177e4
LT
5047
5048 retval = -ESRCH;
1a551ae7 5049 rcu_read_lock();
1da177e4
LT
5050 p = find_process_by_pid(pid);
5051 if (!p)
5052 goto out_unlock;
5053
5054 retval = security_task_getscheduler(p);
5055 if (retval)
5056 goto out_unlock;
5057
dba091b9
TG
5058 rq = task_rq_lock(p, &flags);
5059 time_slice = p->sched_class->get_rr_interval(rq, p);
5060 task_rq_unlock(rq, &flags);
a4ec24b4 5061
1a551ae7 5062 rcu_read_unlock();
a4ec24b4 5063 jiffies_to_timespec(time_slice, &t);
1da177e4 5064 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5065 return retval;
3a5c359a 5066
1da177e4 5067out_unlock:
1a551ae7 5068 rcu_read_unlock();
1da177e4
LT
5069 return retval;
5070}
5071
7c731e0a 5072static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5073
82a1fcb9 5074void sched_show_task(struct task_struct *p)
1da177e4 5075{
1da177e4 5076 unsigned long free = 0;
36c8b586 5077 unsigned state;
1da177e4 5078
1da177e4 5079 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5080 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5081 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5082#if BITS_PER_LONG == 32
1da177e4 5083 if (state == TASK_RUNNING)
3df0fc5b 5084 printk(KERN_CONT " running ");
1da177e4 5085 else
3df0fc5b 5086 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5087#else
5088 if (state == TASK_RUNNING)
3df0fc5b 5089 printk(KERN_CONT " running task ");
1da177e4 5090 else
3df0fc5b 5091 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5092#endif
5093#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5094 free = stack_not_used(p);
1da177e4 5095#endif
3df0fc5b 5096 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5097 task_pid_nr(p), task_pid_nr(p->real_parent),
5098 (unsigned long)task_thread_info(p)->flags);
1da177e4 5099
5fb5e6de 5100 show_stack(p, NULL);
1da177e4
LT
5101}
5102
e59e2ae2 5103void show_state_filter(unsigned long state_filter)
1da177e4 5104{
36c8b586 5105 struct task_struct *g, *p;
1da177e4 5106
4bd77321 5107#if BITS_PER_LONG == 32
3df0fc5b
PZ
5108 printk(KERN_INFO
5109 " task PC stack pid father\n");
1da177e4 5110#else
3df0fc5b
PZ
5111 printk(KERN_INFO
5112 " task PC stack pid father\n");
1da177e4
LT
5113#endif
5114 read_lock(&tasklist_lock);
5115 do_each_thread(g, p) {
5116 /*
5117 * reset the NMI-timeout, listing all files on a slow
5118 * console might take alot of time:
5119 */
5120 touch_nmi_watchdog();
39bc89fd 5121 if (!state_filter || (p->state & state_filter))
82a1fcb9 5122 sched_show_task(p);
1da177e4
LT
5123 } while_each_thread(g, p);
5124
04c9167f
JF
5125 touch_all_softlockup_watchdogs();
5126
dd41f596
IM
5127#ifdef CONFIG_SCHED_DEBUG
5128 sysrq_sched_debug_show();
5129#endif
1da177e4 5130 read_unlock(&tasklist_lock);
e59e2ae2
IM
5131 /*
5132 * Only show locks if all tasks are dumped:
5133 */
93335a21 5134 if (!state_filter)
e59e2ae2 5135 debug_show_all_locks();
1da177e4
LT
5136}
5137
1df21055
IM
5138void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5139{
dd41f596 5140 idle->sched_class = &idle_sched_class;
1df21055
IM
5141}
5142
f340c0d1
IM
5143/**
5144 * init_idle - set up an idle thread for a given CPU
5145 * @idle: task in question
5146 * @cpu: cpu the idle task belongs to
5147 *
5148 * NOTE: this function does not set the idle thread's NEED_RESCHED
5149 * flag, to make booting more robust.
5150 */
5c1e1767 5151void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5152{
70b97a7f 5153 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5154 unsigned long flags;
5155
05fa785c 5156 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5157
dd41f596 5158 __sched_fork(idle);
06b83b5f 5159 idle->state = TASK_RUNNING;
dd41f596
IM
5160 idle->se.exec_start = sched_clock();
5161
96f874e2 5162 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5163 __set_task_cpu(idle, cpu);
1da177e4 5164
1da177e4 5165 rq->curr = rq->idle = idle;
4866cde0
NP
5166#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5167 idle->oncpu = 1;
5168#endif
05fa785c 5169 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5170
5171 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5172#if defined(CONFIG_PREEMPT)
5173 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5174#else
a1261f54 5175 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5176#endif
dd41f596
IM
5177 /*
5178 * The idle tasks have their own, simple scheduling class:
5179 */
5180 idle->sched_class = &idle_sched_class;
fb52607a 5181 ftrace_graph_init_task(idle);
1da177e4
LT
5182}
5183
5184/*
5185 * In a system that switches off the HZ timer nohz_cpu_mask
5186 * indicates which cpus entered this state. This is used
5187 * in the rcu update to wait only for active cpus. For system
5188 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5189 * always be CPU_BITS_NONE.
1da177e4 5190 */
6a7b3dc3 5191cpumask_var_t nohz_cpu_mask;
1da177e4 5192
19978ca6
IM
5193/*
5194 * Increase the granularity value when there are more CPUs,
5195 * because with more CPUs the 'effective latency' as visible
5196 * to users decreases. But the relationship is not linear,
5197 * so pick a second-best guess by going with the log2 of the
5198 * number of CPUs.
5199 *
5200 * This idea comes from the SD scheduler of Con Kolivas:
5201 */
acb4a848 5202static int get_update_sysctl_factor(void)
19978ca6 5203{
4ca3ef71 5204 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5205 unsigned int factor;
5206
5207 switch (sysctl_sched_tunable_scaling) {
5208 case SCHED_TUNABLESCALING_NONE:
5209 factor = 1;
5210 break;
5211 case SCHED_TUNABLESCALING_LINEAR:
5212 factor = cpus;
5213 break;
5214 case SCHED_TUNABLESCALING_LOG:
5215 default:
5216 factor = 1 + ilog2(cpus);
5217 break;
5218 }
19978ca6 5219
acb4a848
CE
5220 return factor;
5221}
19978ca6 5222
acb4a848
CE
5223static void update_sysctl(void)
5224{
5225 unsigned int factor = get_update_sysctl_factor();
19978ca6 5226
0bcdcf28
CE
5227#define SET_SYSCTL(name) \
5228 (sysctl_##name = (factor) * normalized_sysctl_##name)
5229 SET_SYSCTL(sched_min_granularity);
5230 SET_SYSCTL(sched_latency);
5231 SET_SYSCTL(sched_wakeup_granularity);
5232 SET_SYSCTL(sched_shares_ratelimit);
5233#undef SET_SYSCTL
5234}
55cd5340 5235
0bcdcf28
CE
5236static inline void sched_init_granularity(void)
5237{
5238 update_sysctl();
19978ca6
IM
5239}
5240
1da177e4
LT
5241#ifdef CONFIG_SMP
5242/*
5243 * This is how migration works:
5244 *
969c7921
TH
5245 * 1) we invoke migration_cpu_stop() on the target CPU using
5246 * stop_one_cpu().
5247 * 2) stopper starts to run (implicitly forcing the migrated thread
5248 * off the CPU)
5249 * 3) it checks whether the migrated task is still in the wrong runqueue.
5250 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5251 * it and puts it into the right queue.
969c7921
TH
5252 * 5) stopper completes and stop_one_cpu() returns and the migration
5253 * is done.
1da177e4
LT
5254 */
5255
5256/*
5257 * Change a given task's CPU affinity. Migrate the thread to a
5258 * proper CPU and schedule it away if the CPU it's executing on
5259 * is removed from the allowed bitmask.
5260 *
5261 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5262 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5263 * call is not atomic; no spinlocks may be held.
5264 */
96f874e2 5265int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5266{
5267 unsigned long flags;
70b97a7f 5268 struct rq *rq;
969c7921 5269 unsigned int dest_cpu;
48f24c4d 5270 int ret = 0;
1da177e4 5271
65cc8e48
PZ
5272 /*
5273 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5274 * drop the rq->lock and still rely on ->cpus_allowed.
5275 */
5276again:
5277 while (task_is_waking(p))
5278 cpu_relax();
1da177e4 5279 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5280 if (task_is_waking(p)) {
5281 task_rq_unlock(rq, &flags);
5282 goto again;
5283 }
e2912009 5284
6ad4c188 5285 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5286 ret = -EINVAL;
5287 goto out;
5288 }
5289
9985b0ba 5290 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5291 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5292 ret = -EINVAL;
5293 goto out;
5294 }
5295
73fe6aae 5296 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5297 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5298 else {
96f874e2
RR
5299 cpumask_copy(&p->cpus_allowed, new_mask);
5300 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5301 }
5302
1da177e4 5303 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5304 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5305 goto out;
5306
969c7921
TH
5307 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5308 if (migrate_task(p, dest_cpu)) {
5309 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5310 /* Need help from migration thread: drop lock and wait. */
5311 task_rq_unlock(rq, &flags);
969c7921 5312 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5313 tlb_migrate_finish(p->mm);
5314 return 0;
5315 }
5316out:
5317 task_rq_unlock(rq, &flags);
48f24c4d 5318
1da177e4
LT
5319 return ret;
5320}
cd8ba7cd 5321EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5322
5323/*
41a2d6cf 5324 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5325 * this because either it can't run here any more (set_cpus_allowed()
5326 * away from this CPU, or CPU going down), or because we're
5327 * attempting to rebalance this task on exec (sched_exec).
5328 *
5329 * So we race with normal scheduler movements, but that's OK, as long
5330 * as the task is no longer on this CPU.
efc30814
KK
5331 *
5332 * Returns non-zero if task was successfully migrated.
1da177e4 5333 */
efc30814 5334static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5335{
70b97a7f 5336 struct rq *rq_dest, *rq_src;
e2912009 5337 int ret = 0;
1da177e4 5338
e761b772 5339 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5340 return ret;
1da177e4
LT
5341
5342 rq_src = cpu_rq(src_cpu);
5343 rq_dest = cpu_rq(dest_cpu);
5344
5345 double_rq_lock(rq_src, rq_dest);
5346 /* Already moved. */
5347 if (task_cpu(p) != src_cpu)
b1e38734 5348 goto done;
1da177e4 5349 /* Affinity changed (again). */
96f874e2 5350 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5351 goto fail;
1da177e4 5352
e2912009
PZ
5353 /*
5354 * If we're not on a rq, the next wake-up will ensure we're
5355 * placed properly.
5356 */
5357 if (p->se.on_rq) {
2e1cb74a 5358 deactivate_task(rq_src, p, 0);
e2912009 5359 set_task_cpu(p, dest_cpu);
dd41f596 5360 activate_task(rq_dest, p, 0);
15afe09b 5361 check_preempt_curr(rq_dest, p, 0);
1da177e4 5362 }
b1e38734 5363done:
efc30814 5364 ret = 1;
b1e38734 5365fail:
1da177e4 5366 double_rq_unlock(rq_src, rq_dest);
efc30814 5367 return ret;
1da177e4
LT
5368}
5369
5370/*
969c7921
TH
5371 * migration_cpu_stop - this will be executed by a highprio stopper thread
5372 * and performs thread migration by bumping thread off CPU then
5373 * 'pushing' onto another runqueue.
1da177e4 5374 */
969c7921 5375static int migration_cpu_stop(void *data)
1da177e4 5376{
969c7921 5377 struct migration_arg *arg = data;
f7b4cddc 5378
969c7921
TH
5379 /*
5380 * The original target cpu might have gone down and we might
5381 * be on another cpu but it doesn't matter.
5382 */
f7b4cddc 5383 local_irq_disable();
969c7921 5384 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5385 local_irq_enable();
1da177e4 5386 return 0;
f7b4cddc
ON
5387}
5388
1da177e4 5389#ifdef CONFIG_HOTPLUG_CPU
054b9108 5390/*
3a4fa0a2 5391 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5392 */
6a1bdc1b 5393void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5394{
1445c08d
ON
5395 struct rq *rq = cpu_rq(dead_cpu);
5396 int needs_cpu, uninitialized_var(dest_cpu);
5397 unsigned long flags;
e76bd8d9 5398
1445c08d 5399 local_irq_save(flags);
e76bd8d9 5400
1445c08d
ON
5401 raw_spin_lock(&rq->lock);
5402 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5403 if (needs_cpu)
5404 dest_cpu = select_fallback_rq(dead_cpu, p);
5405 raw_spin_unlock(&rq->lock);
c1804d54
ON
5406 /*
5407 * It can only fail if we race with set_cpus_allowed(),
5408 * in the racer should migrate the task anyway.
5409 */
1445c08d 5410 if (needs_cpu)
c1804d54 5411 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5412 local_irq_restore(flags);
1da177e4
LT
5413}
5414
5415/*
5416 * While a dead CPU has no uninterruptible tasks queued at this point,
5417 * it might still have a nonzero ->nr_uninterruptible counter, because
5418 * for performance reasons the counter is not stricly tracking tasks to
5419 * their home CPUs. So we just add the counter to another CPU's counter,
5420 * to keep the global sum constant after CPU-down:
5421 */
70b97a7f 5422static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5423{
6ad4c188 5424 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5425 unsigned long flags;
5426
5427 local_irq_save(flags);
5428 double_rq_lock(rq_src, rq_dest);
5429 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5430 rq_src->nr_uninterruptible = 0;
5431 double_rq_unlock(rq_src, rq_dest);
5432 local_irq_restore(flags);
5433}
5434
5435/* Run through task list and migrate tasks from the dead cpu. */
5436static void migrate_live_tasks(int src_cpu)
5437{
48f24c4d 5438 struct task_struct *p, *t;
1da177e4 5439
f7b4cddc 5440 read_lock(&tasklist_lock);
1da177e4 5441
48f24c4d
IM
5442 do_each_thread(t, p) {
5443 if (p == current)
1da177e4
LT
5444 continue;
5445
48f24c4d
IM
5446 if (task_cpu(p) == src_cpu)
5447 move_task_off_dead_cpu(src_cpu, p);
5448 } while_each_thread(t, p);
1da177e4 5449
f7b4cddc 5450 read_unlock(&tasklist_lock);
1da177e4
LT
5451}
5452
dd41f596
IM
5453/*
5454 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5455 * It does so by boosting its priority to highest possible.
5456 * Used by CPU offline code.
1da177e4
LT
5457 */
5458void sched_idle_next(void)
5459{
48f24c4d 5460 int this_cpu = smp_processor_id();
70b97a7f 5461 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5462 struct task_struct *p = rq->idle;
5463 unsigned long flags;
5464
5465 /* cpu has to be offline */
48f24c4d 5466 BUG_ON(cpu_online(this_cpu));
1da177e4 5467
48f24c4d
IM
5468 /*
5469 * Strictly not necessary since rest of the CPUs are stopped by now
5470 * and interrupts disabled on the current cpu.
1da177e4 5471 */
05fa785c 5472 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5473
dd41f596 5474 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5475
94bc9a7b 5476 activate_task(rq, p, 0);
1da177e4 5477
05fa785c 5478 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5479}
5480
48f24c4d
IM
5481/*
5482 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5483 * offline.
5484 */
5485void idle_task_exit(void)
5486{
5487 struct mm_struct *mm = current->active_mm;
5488
5489 BUG_ON(cpu_online(smp_processor_id()));
5490
5491 if (mm != &init_mm)
5492 switch_mm(mm, &init_mm, current);
5493 mmdrop(mm);
5494}
5495
054b9108 5496/* called under rq->lock with disabled interrupts */
36c8b586 5497static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5498{
70b97a7f 5499 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5500
5501 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5502 BUG_ON(!p->exit_state);
1da177e4
LT
5503
5504 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5505 BUG_ON(p->state == TASK_DEAD);
1da177e4 5506
48f24c4d 5507 get_task_struct(p);
1da177e4
LT
5508
5509 /*
5510 * Drop lock around migration; if someone else moves it,
41a2d6cf 5511 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5512 * fine.
5513 */
05fa785c 5514 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5515 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5516 raw_spin_lock_irq(&rq->lock);
1da177e4 5517
48f24c4d 5518 put_task_struct(p);
1da177e4
LT
5519}
5520
5521/* release_task() removes task from tasklist, so we won't find dead tasks. */
5522static void migrate_dead_tasks(unsigned int dead_cpu)
5523{
70b97a7f 5524 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5525 struct task_struct *next;
48f24c4d 5526
dd41f596
IM
5527 for ( ; ; ) {
5528 if (!rq->nr_running)
5529 break;
b67802ea 5530 next = pick_next_task(rq);
dd41f596
IM
5531 if (!next)
5532 break;
79c53799 5533 next->sched_class->put_prev_task(rq, next);
dd41f596 5534 migrate_dead(dead_cpu, next);
e692ab53 5535
1da177e4
LT
5536 }
5537}
dce48a84
TG
5538
5539/*
5540 * remove the tasks which were accounted by rq from calc_load_tasks.
5541 */
5542static void calc_global_load_remove(struct rq *rq)
5543{
5544 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5545 rq->calc_load_active = 0;
dce48a84 5546}
1da177e4
LT
5547#endif /* CONFIG_HOTPLUG_CPU */
5548
e692ab53
NP
5549#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5550
5551static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5552 {
5553 .procname = "sched_domain",
c57baf1e 5554 .mode = 0555,
e0361851 5555 },
56992309 5556 {}
e692ab53
NP
5557};
5558
5559static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5560 {
5561 .procname = "kernel",
c57baf1e 5562 .mode = 0555,
e0361851
AD
5563 .child = sd_ctl_dir,
5564 },
56992309 5565 {}
e692ab53
NP
5566};
5567
5568static struct ctl_table *sd_alloc_ctl_entry(int n)
5569{
5570 struct ctl_table *entry =
5cf9f062 5571 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5572
e692ab53
NP
5573 return entry;
5574}
5575
6382bc90
MM
5576static void sd_free_ctl_entry(struct ctl_table **tablep)
5577{
cd790076 5578 struct ctl_table *entry;
6382bc90 5579
cd790076
MM
5580 /*
5581 * In the intermediate directories, both the child directory and
5582 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5583 * will always be set. In the lowest directory the names are
cd790076
MM
5584 * static strings and all have proc handlers.
5585 */
5586 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5587 if (entry->child)
5588 sd_free_ctl_entry(&entry->child);
cd790076
MM
5589 if (entry->proc_handler == NULL)
5590 kfree(entry->procname);
5591 }
6382bc90
MM
5592
5593 kfree(*tablep);
5594 *tablep = NULL;
5595}
5596
e692ab53 5597static void
e0361851 5598set_table_entry(struct ctl_table *entry,
e692ab53
NP
5599 const char *procname, void *data, int maxlen,
5600 mode_t mode, proc_handler *proc_handler)
5601{
e692ab53
NP
5602 entry->procname = procname;
5603 entry->data = data;
5604 entry->maxlen = maxlen;
5605 entry->mode = mode;
5606 entry->proc_handler = proc_handler;
5607}
5608
5609static struct ctl_table *
5610sd_alloc_ctl_domain_table(struct sched_domain *sd)
5611{
a5d8c348 5612 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5613
ad1cdc1d
MM
5614 if (table == NULL)
5615 return NULL;
5616
e0361851 5617 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5618 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5619 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5620 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5621 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5622 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5623 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5624 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5625 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5626 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5627 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5628 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5629 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5630 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5631 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5632 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5633 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5634 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5635 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5636 &sd->cache_nice_tries,
5637 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5638 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5639 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5640 set_table_entry(&table[11], "name", sd->name,
5641 CORENAME_MAX_SIZE, 0444, proc_dostring);
5642 /* &table[12] is terminator */
e692ab53
NP
5643
5644 return table;
5645}
5646
9a4e7159 5647static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5648{
5649 struct ctl_table *entry, *table;
5650 struct sched_domain *sd;
5651 int domain_num = 0, i;
5652 char buf[32];
5653
5654 for_each_domain(cpu, sd)
5655 domain_num++;
5656 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5657 if (table == NULL)
5658 return NULL;
e692ab53
NP
5659
5660 i = 0;
5661 for_each_domain(cpu, sd) {
5662 snprintf(buf, 32, "domain%d", i);
e692ab53 5663 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5664 entry->mode = 0555;
e692ab53
NP
5665 entry->child = sd_alloc_ctl_domain_table(sd);
5666 entry++;
5667 i++;
5668 }
5669 return table;
5670}
5671
5672static struct ctl_table_header *sd_sysctl_header;
6382bc90 5673static void register_sched_domain_sysctl(void)
e692ab53 5674{
6ad4c188 5675 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5676 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5677 char buf[32];
5678
7378547f
MM
5679 WARN_ON(sd_ctl_dir[0].child);
5680 sd_ctl_dir[0].child = entry;
5681
ad1cdc1d
MM
5682 if (entry == NULL)
5683 return;
5684
6ad4c188 5685 for_each_possible_cpu(i) {
e692ab53 5686 snprintf(buf, 32, "cpu%d", i);
e692ab53 5687 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5688 entry->mode = 0555;
e692ab53 5689 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5690 entry++;
e692ab53 5691 }
7378547f
MM
5692
5693 WARN_ON(sd_sysctl_header);
e692ab53
NP
5694 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5695}
6382bc90 5696
7378547f 5697/* may be called multiple times per register */
6382bc90
MM
5698static void unregister_sched_domain_sysctl(void)
5699{
7378547f
MM
5700 if (sd_sysctl_header)
5701 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5702 sd_sysctl_header = NULL;
7378547f
MM
5703 if (sd_ctl_dir[0].child)
5704 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5705}
e692ab53 5706#else
6382bc90
MM
5707static void register_sched_domain_sysctl(void)
5708{
5709}
5710static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5711{
5712}
5713#endif
5714
1f11eb6a
GH
5715static void set_rq_online(struct rq *rq)
5716{
5717 if (!rq->online) {
5718 const struct sched_class *class;
5719
c6c4927b 5720 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5721 rq->online = 1;
5722
5723 for_each_class(class) {
5724 if (class->rq_online)
5725 class->rq_online(rq);
5726 }
5727 }
5728}
5729
5730static void set_rq_offline(struct rq *rq)
5731{
5732 if (rq->online) {
5733 const struct sched_class *class;
5734
5735 for_each_class(class) {
5736 if (class->rq_offline)
5737 class->rq_offline(rq);
5738 }
5739
c6c4927b 5740 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5741 rq->online = 0;
5742 }
5743}
5744
1da177e4
LT
5745/*
5746 * migration_call - callback that gets triggered when a CPU is added.
5747 * Here we can start up the necessary migration thread for the new CPU.
5748 */
48f24c4d
IM
5749static int __cpuinit
5750migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5751{
48f24c4d 5752 int cpu = (long)hcpu;
1da177e4 5753 unsigned long flags;
969c7921 5754 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5755
5756 switch (action) {
5be9361c 5757
1da177e4 5758 case CPU_UP_PREPARE:
8bb78442 5759 case CPU_UP_PREPARE_FROZEN:
a468d389 5760 rq->calc_load_update = calc_load_update;
1da177e4 5761 break;
48f24c4d 5762
1da177e4 5763 case CPU_ONLINE:
8bb78442 5764 case CPU_ONLINE_FROZEN:
1f94ef59 5765 /* Update our root-domain */
05fa785c 5766 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5767 if (rq->rd) {
c6c4927b 5768 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5769
5770 set_rq_online(rq);
1f94ef59 5771 }
05fa785c 5772 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5773 break;
48f24c4d 5774
1da177e4 5775#ifdef CONFIG_HOTPLUG_CPU
1da177e4 5776 case CPU_DEAD:
8bb78442 5777 case CPU_DEAD_FROZEN:
1da177e4 5778 migrate_live_tasks(cpu);
1da177e4 5779 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5780 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5781 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5782 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5783 rq->idle->sched_class = &idle_sched_class;
1da177e4 5784 migrate_dead_tasks(cpu);
05fa785c 5785 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5786 migrate_nr_uninterruptible(rq);
5787 BUG_ON(rq->nr_running != 0);
dce48a84 5788 calc_global_load_remove(rq);
1da177e4 5789 break;
57d885fe 5790
08f503b0
GH
5791 case CPU_DYING:
5792 case CPU_DYING_FROZEN:
57d885fe 5793 /* Update our root-domain */
05fa785c 5794 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5795 if (rq->rd) {
c6c4927b 5796 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5797 set_rq_offline(rq);
57d885fe 5798 }
05fa785c 5799 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5800 break;
1da177e4
LT
5801#endif
5802 }
5803 return NOTIFY_OK;
5804}
5805
f38b0820
PM
5806/*
5807 * Register at high priority so that task migration (migrate_all_tasks)
5808 * happens before everything else. This has to be lower priority than
cdd6c482 5809 * the notifier in the perf_event subsystem, though.
1da177e4 5810 */
26c2143b 5811static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5812 .notifier_call = migration_call,
5813 .priority = 10
5814};
5815
7babe8db 5816static int __init migration_init(void)
1da177e4
LT
5817{
5818 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5819 int err;
48f24c4d
IM
5820
5821 /* Start one for the boot CPU: */
07dccf33
AM
5822 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5823 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5824 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5825 register_cpu_notifier(&migration_notifier);
7babe8db 5826
a004cd42 5827 return 0;
1da177e4 5828}
7babe8db 5829early_initcall(migration_init);
1da177e4
LT
5830#endif
5831
5832#ifdef CONFIG_SMP
476f3534 5833
3e9830dc 5834#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5835
f6630114
MT
5836static __read_mostly int sched_domain_debug_enabled;
5837
5838static int __init sched_domain_debug_setup(char *str)
5839{
5840 sched_domain_debug_enabled = 1;
5841
5842 return 0;
5843}
5844early_param("sched_debug", sched_domain_debug_setup);
5845
7c16ec58 5846static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5847 struct cpumask *groupmask)
1da177e4 5848{
4dcf6aff 5849 struct sched_group *group = sd->groups;
434d53b0 5850 char str[256];
1da177e4 5851
968ea6d8 5852 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5853 cpumask_clear(groupmask);
4dcf6aff
IM
5854
5855 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5856
5857 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5858 printk("does not load-balance\n");
4dcf6aff 5859 if (sd->parent)
3df0fc5b
PZ
5860 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5861 " has parent");
4dcf6aff 5862 return -1;
41c7ce9a
NP
5863 }
5864
3df0fc5b 5865 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5866
758b2cdc 5867 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5868 printk(KERN_ERR "ERROR: domain->span does not contain "
5869 "CPU%d\n", cpu);
4dcf6aff 5870 }
758b2cdc 5871 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5872 printk(KERN_ERR "ERROR: domain->groups does not contain"
5873 " CPU%d\n", cpu);
4dcf6aff 5874 }
1da177e4 5875
4dcf6aff 5876 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5877 do {
4dcf6aff 5878 if (!group) {
3df0fc5b
PZ
5879 printk("\n");
5880 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5881 break;
5882 }
5883
18a3885f 5884 if (!group->cpu_power) {
3df0fc5b
PZ
5885 printk(KERN_CONT "\n");
5886 printk(KERN_ERR "ERROR: domain->cpu_power not "
5887 "set\n");
4dcf6aff
IM
5888 break;
5889 }
1da177e4 5890
758b2cdc 5891 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5892 printk(KERN_CONT "\n");
5893 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5894 break;
5895 }
1da177e4 5896
758b2cdc 5897 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5898 printk(KERN_CONT "\n");
5899 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5900 break;
5901 }
1da177e4 5902
758b2cdc 5903 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5904
968ea6d8 5905 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5906
3df0fc5b 5907 printk(KERN_CONT " %s", str);
18a3885f 5908 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
5909 printk(KERN_CONT " (cpu_power = %d)",
5910 group->cpu_power);
381512cf 5911 }
1da177e4 5912
4dcf6aff
IM
5913 group = group->next;
5914 } while (group != sd->groups);
3df0fc5b 5915 printk(KERN_CONT "\n");
1da177e4 5916
758b2cdc 5917 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5918 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5919
758b2cdc
RR
5920 if (sd->parent &&
5921 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5922 printk(KERN_ERR "ERROR: parent span is not a superset "
5923 "of domain->span\n");
4dcf6aff
IM
5924 return 0;
5925}
1da177e4 5926
4dcf6aff
IM
5927static void sched_domain_debug(struct sched_domain *sd, int cpu)
5928{
d5dd3db1 5929 cpumask_var_t groupmask;
4dcf6aff 5930 int level = 0;
1da177e4 5931
f6630114
MT
5932 if (!sched_domain_debug_enabled)
5933 return;
5934
4dcf6aff
IM
5935 if (!sd) {
5936 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5937 return;
5938 }
1da177e4 5939
4dcf6aff
IM
5940 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5941
d5dd3db1 5942 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
5943 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
5944 return;
5945 }
5946
4dcf6aff 5947 for (;;) {
7c16ec58 5948 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 5949 break;
1da177e4
LT
5950 level++;
5951 sd = sd->parent;
33859f7f 5952 if (!sd)
4dcf6aff
IM
5953 break;
5954 }
d5dd3db1 5955 free_cpumask_var(groupmask);
1da177e4 5956}
6d6bc0ad 5957#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5958# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5959#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5960
1a20ff27 5961static int sd_degenerate(struct sched_domain *sd)
245af2c7 5962{
758b2cdc 5963 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5964 return 1;
5965
5966 /* Following flags need at least 2 groups */
5967 if (sd->flags & (SD_LOAD_BALANCE |
5968 SD_BALANCE_NEWIDLE |
5969 SD_BALANCE_FORK |
89c4710e
SS
5970 SD_BALANCE_EXEC |
5971 SD_SHARE_CPUPOWER |
5972 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5973 if (sd->groups != sd->groups->next)
5974 return 0;
5975 }
5976
5977 /* Following flags don't use groups */
c88d5910 5978 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5979 return 0;
5980
5981 return 1;
5982}
5983
48f24c4d
IM
5984static int
5985sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5986{
5987 unsigned long cflags = sd->flags, pflags = parent->flags;
5988
5989 if (sd_degenerate(parent))
5990 return 1;
5991
758b2cdc 5992 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5993 return 0;
5994
245af2c7
SS
5995 /* Flags needing groups don't count if only 1 group in parent */
5996 if (parent->groups == parent->groups->next) {
5997 pflags &= ~(SD_LOAD_BALANCE |
5998 SD_BALANCE_NEWIDLE |
5999 SD_BALANCE_FORK |
89c4710e
SS
6000 SD_BALANCE_EXEC |
6001 SD_SHARE_CPUPOWER |
6002 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6003 if (nr_node_ids == 1)
6004 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6005 }
6006 if (~cflags & pflags)
6007 return 0;
6008
6009 return 1;
6010}
6011
c6c4927b
RR
6012static void free_rootdomain(struct root_domain *rd)
6013{
047106ad
PZ
6014 synchronize_sched();
6015
68e74568
RR
6016 cpupri_cleanup(&rd->cpupri);
6017
c6c4927b
RR
6018 free_cpumask_var(rd->rto_mask);
6019 free_cpumask_var(rd->online);
6020 free_cpumask_var(rd->span);
6021 kfree(rd);
6022}
6023
57d885fe
GH
6024static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6025{
a0490fa3 6026 struct root_domain *old_rd = NULL;
57d885fe 6027 unsigned long flags;
57d885fe 6028
05fa785c 6029 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6030
6031 if (rq->rd) {
a0490fa3 6032 old_rd = rq->rd;
57d885fe 6033
c6c4927b 6034 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6035 set_rq_offline(rq);
57d885fe 6036
c6c4927b 6037 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6038
a0490fa3
IM
6039 /*
6040 * If we dont want to free the old_rt yet then
6041 * set old_rd to NULL to skip the freeing later
6042 * in this function:
6043 */
6044 if (!atomic_dec_and_test(&old_rd->refcount))
6045 old_rd = NULL;
57d885fe
GH
6046 }
6047
6048 atomic_inc(&rd->refcount);
6049 rq->rd = rd;
6050
c6c4927b 6051 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6052 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6053 set_rq_online(rq);
57d885fe 6054
05fa785c 6055 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6056
6057 if (old_rd)
6058 free_rootdomain(old_rd);
57d885fe
GH
6059}
6060
fd5e1b5d 6061static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6062{
36b7b6d4
PE
6063 gfp_t gfp = GFP_KERNEL;
6064
57d885fe
GH
6065 memset(rd, 0, sizeof(*rd));
6066
36b7b6d4
PE
6067 if (bootmem)
6068 gfp = GFP_NOWAIT;
c6c4927b 6069
36b7b6d4 6070 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6071 goto out;
36b7b6d4 6072 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6073 goto free_span;
36b7b6d4 6074 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6075 goto free_online;
6e0534f2 6076
0fb53029 6077 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6078 goto free_rto_mask;
c6c4927b 6079 return 0;
6e0534f2 6080
68e74568
RR
6081free_rto_mask:
6082 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6083free_online:
6084 free_cpumask_var(rd->online);
6085free_span:
6086 free_cpumask_var(rd->span);
0c910d28 6087out:
c6c4927b 6088 return -ENOMEM;
57d885fe
GH
6089}
6090
6091static void init_defrootdomain(void)
6092{
c6c4927b
RR
6093 init_rootdomain(&def_root_domain, true);
6094
57d885fe
GH
6095 atomic_set(&def_root_domain.refcount, 1);
6096}
6097
dc938520 6098static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6099{
6100 struct root_domain *rd;
6101
6102 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6103 if (!rd)
6104 return NULL;
6105
c6c4927b
RR
6106 if (init_rootdomain(rd, false) != 0) {
6107 kfree(rd);
6108 return NULL;
6109 }
57d885fe
GH
6110
6111 return rd;
6112}
6113
1da177e4 6114/*
0eab9146 6115 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6116 * hold the hotplug lock.
6117 */
0eab9146
IM
6118static void
6119cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6120{
70b97a7f 6121 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6122 struct sched_domain *tmp;
6123
669c55e9
PZ
6124 for (tmp = sd; tmp; tmp = tmp->parent)
6125 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6126
245af2c7 6127 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6128 for (tmp = sd; tmp; ) {
245af2c7
SS
6129 struct sched_domain *parent = tmp->parent;
6130 if (!parent)
6131 break;
f29c9b1c 6132
1a848870 6133 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6134 tmp->parent = parent->parent;
1a848870
SS
6135 if (parent->parent)
6136 parent->parent->child = tmp;
f29c9b1c
LZ
6137 } else
6138 tmp = tmp->parent;
245af2c7
SS
6139 }
6140
1a848870 6141 if (sd && sd_degenerate(sd)) {
245af2c7 6142 sd = sd->parent;
1a848870
SS
6143 if (sd)
6144 sd->child = NULL;
6145 }
1da177e4
LT
6146
6147 sched_domain_debug(sd, cpu);
6148
57d885fe 6149 rq_attach_root(rq, rd);
674311d5 6150 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6151}
6152
6153/* cpus with isolated domains */
dcc30a35 6154static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6155
6156/* Setup the mask of cpus configured for isolated domains */
6157static int __init isolated_cpu_setup(char *str)
6158{
bdddd296 6159 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6160 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6161 return 1;
6162}
6163
8927f494 6164__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6165
6166/*
6711cab4
SS
6167 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6168 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6169 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6170 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6171 *
6172 * init_sched_build_groups will build a circular linked list of the groups
6173 * covered by the given span, and will set each group's ->cpumask correctly,
6174 * and ->cpu_power to 0.
6175 */
a616058b 6176static void
96f874e2
RR
6177init_sched_build_groups(const struct cpumask *span,
6178 const struct cpumask *cpu_map,
6179 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6180 struct sched_group **sg,
96f874e2
RR
6181 struct cpumask *tmpmask),
6182 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6183{
6184 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6185 int i;
6186
96f874e2 6187 cpumask_clear(covered);
7c16ec58 6188
abcd083a 6189 for_each_cpu(i, span) {
6711cab4 6190 struct sched_group *sg;
7c16ec58 6191 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6192 int j;
6193
758b2cdc 6194 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6195 continue;
6196
758b2cdc 6197 cpumask_clear(sched_group_cpus(sg));
18a3885f 6198 sg->cpu_power = 0;
1da177e4 6199
abcd083a 6200 for_each_cpu(j, span) {
7c16ec58 6201 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6202 continue;
6203
96f874e2 6204 cpumask_set_cpu(j, covered);
758b2cdc 6205 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6206 }
6207 if (!first)
6208 first = sg;
6209 if (last)
6210 last->next = sg;
6211 last = sg;
6212 }
6213 last->next = first;
6214}
6215
9c1cfda2 6216#define SD_NODES_PER_DOMAIN 16
1da177e4 6217
9c1cfda2 6218#ifdef CONFIG_NUMA
198e2f18 6219
9c1cfda2
JH
6220/**
6221 * find_next_best_node - find the next node to include in a sched_domain
6222 * @node: node whose sched_domain we're building
6223 * @used_nodes: nodes already in the sched_domain
6224 *
41a2d6cf 6225 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6226 * finds the closest node not already in the @used_nodes map.
6227 *
6228 * Should use nodemask_t.
6229 */
c5f59f08 6230static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6231{
6232 int i, n, val, min_val, best_node = 0;
6233
6234 min_val = INT_MAX;
6235
076ac2af 6236 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6237 /* Start at @node */
076ac2af 6238 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6239
6240 if (!nr_cpus_node(n))
6241 continue;
6242
6243 /* Skip already used nodes */
c5f59f08 6244 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6245 continue;
6246
6247 /* Simple min distance search */
6248 val = node_distance(node, n);
6249
6250 if (val < min_val) {
6251 min_val = val;
6252 best_node = n;
6253 }
6254 }
6255
c5f59f08 6256 node_set(best_node, *used_nodes);
9c1cfda2
JH
6257 return best_node;
6258}
6259
6260/**
6261 * sched_domain_node_span - get a cpumask for a node's sched_domain
6262 * @node: node whose cpumask we're constructing
73486722 6263 * @span: resulting cpumask
9c1cfda2 6264 *
41a2d6cf 6265 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6266 * should be one that prevents unnecessary balancing, but also spreads tasks
6267 * out optimally.
6268 */
96f874e2 6269static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6270{
c5f59f08 6271 nodemask_t used_nodes;
48f24c4d 6272 int i;
9c1cfda2 6273
6ca09dfc 6274 cpumask_clear(span);
c5f59f08 6275 nodes_clear(used_nodes);
9c1cfda2 6276
6ca09dfc 6277 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6278 node_set(node, used_nodes);
9c1cfda2
JH
6279
6280 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6281 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6282
6ca09dfc 6283 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6284 }
9c1cfda2 6285}
6d6bc0ad 6286#endif /* CONFIG_NUMA */
9c1cfda2 6287
5c45bf27 6288int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6289
6c99e9ad
RR
6290/*
6291 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6292 *
6293 * ( See the the comments in include/linux/sched.h:struct sched_group
6294 * and struct sched_domain. )
6c99e9ad
RR
6295 */
6296struct static_sched_group {
6297 struct sched_group sg;
6298 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6299};
6300
6301struct static_sched_domain {
6302 struct sched_domain sd;
6303 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6304};
6305
49a02c51
AH
6306struct s_data {
6307#ifdef CONFIG_NUMA
6308 int sd_allnodes;
6309 cpumask_var_t domainspan;
6310 cpumask_var_t covered;
6311 cpumask_var_t notcovered;
6312#endif
6313 cpumask_var_t nodemask;
6314 cpumask_var_t this_sibling_map;
6315 cpumask_var_t this_core_map;
6316 cpumask_var_t send_covered;
6317 cpumask_var_t tmpmask;
6318 struct sched_group **sched_group_nodes;
6319 struct root_domain *rd;
6320};
6321
2109b99e
AH
6322enum s_alloc {
6323 sa_sched_groups = 0,
6324 sa_rootdomain,
6325 sa_tmpmask,
6326 sa_send_covered,
6327 sa_this_core_map,
6328 sa_this_sibling_map,
6329 sa_nodemask,
6330 sa_sched_group_nodes,
6331#ifdef CONFIG_NUMA
6332 sa_notcovered,
6333 sa_covered,
6334 sa_domainspan,
6335#endif
6336 sa_none,
6337};
6338
9c1cfda2 6339/*
48f24c4d 6340 * SMT sched-domains:
9c1cfda2 6341 */
1da177e4 6342#ifdef CONFIG_SCHED_SMT
6c99e9ad 6343static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6344static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6345
41a2d6cf 6346static int
96f874e2
RR
6347cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6348 struct sched_group **sg, struct cpumask *unused)
1da177e4 6349{
6711cab4 6350 if (sg)
1871e52c 6351 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6352 return cpu;
6353}
6d6bc0ad 6354#endif /* CONFIG_SCHED_SMT */
1da177e4 6355
48f24c4d
IM
6356/*
6357 * multi-core sched-domains:
6358 */
1e9f28fa 6359#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6360static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6361static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6362#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6363
6364#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6365static int
96f874e2
RR
6366cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6367 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6368{
6711cab4 6369 int group;
7c16ec58 6370
c69fc56d 6371 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6372 group = cpumask_first(mask);
6711cab4 6373 if (sg)
6c99e9ad 6374 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6375 return group;
1e9f28fa
SS
6376}
6377#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6378static int
96f874e2
RR
6379cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6380 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6381{
6711cab4 6382 if (sg)
6c99e9ad 6383 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6384 return cpu;
6385}
6386#endif
6387
6c99e9ad
RR
6388static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6389static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6390
41a2d6cf 6391static int
96f874e2
RR
6392cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6393 struct sched_group **sg, struct cpumask *mask)
1da177e4 6394{
6711cab4 6395 int group;
48f24c4d 6396#ifdef CONFIG_SCHED_MC
6ca09dfc 6397 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6398 group = cpumask_first(mask);
1e9f28fa 6399#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6400 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6401 group = cpumask_first(mask);
1da177e4 6402#else
6711cab4 6403 group = cpu;
1da177e4 6404#endif
6711cab4 6405 if (sg)
6c99e9ad 6406 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6407 return group;
1da177e4
LT
6408}
6409
6410#ifdef CONFIG_NUMA
1da177e4 6411/*
9c1cfda2
JH
6412 * The init_sched_build_groups can't handle what we want to do with node
6413 * groups, so roll our own. Now each node has its own list of groups which
6414 * gets dynamically allocated.
1da177e4 6415 */
62ea9ceb 6416static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6417static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6418
62ea9ceb 6419static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6420static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6421
96f874e2
RR
6422static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6423 struct sched_group **sg,
6424 struct cpumask *nodemask)
9c1cfda2 6425{
6711cab4
SS
6426 int group;
6427
6ca09dfc 6428 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6429 group = cpumask_first(nodemask);
6711cab4
SS
6430
6431 if (sg)
6c99e9ad 6432 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6433 return group;
1da177e4 6434}
6711cab4 6435
08069033
SS
6436static void init_numa_sched_groups_power(struct sched_group *group_head)
6437{
6438 struct sched_group *sg = group_head;
6439 int j;
6440
6441 if (!sg)
6442 return;
3a5c359a 6443 do {
758b2cdc 6444 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6445 struct sched_domain *sd;
08069033 6446
6c99e9ad 6447 sd = &per_cpu(phys_domains, j).sd;
13318a71 6448 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6449 /*
6450 * Only add "power" once for each
6451 * physical package.
6452 */
6453 continue;
6454 }
08069033 6455
18a3885f 6456 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6457 }
6458 sg = sg->next;
6459 } while (sg != group_head);
08069033 6460}
0601a88d
AH
6461
6462static int build_numa_sched_groups(struct s_data *d,
6463 const struct cpumask *cpu_map, int num)
6464{
6465 struct sched_domain *sd;
6466 struct sched_group *sg, *prev;
6467 int n, j;
6468
6469 cpumask_clear(d->covered);
6470 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6471 if (cpumask_empty(d->nodemask)) {
6472 d->sched_group_nodes[num] = NULL;
6473 goto out;
6474 }
6475
6476 sched_domain_node_span(num, d->domainspan);
6477 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6478
6479 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6480 GFP_KERNEL, num);
6481 if (!sg) {
3df0fc5b
PZ
6482 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6483 num);
0601a88d
AH
6484 return -ENOMEM;
6485 }
6486 d->sched_group_nodes[num] = sg;
6487
6488 for_each_cpu(j, d->nodemask) {
6489 sd = &per_cpu(node_domains, j).sd;
6490 sd->groups = sg;
6491 }
6492
18a3885f 6493 sg->cpu_power = 0;
0601a88d
AH
6494 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6495 sg->next = sg;
6496 cpumask_or(d->covered, d->covered, d->nodemask);
6497
6498 prev = sg;
6499 for (j = 0; j < nr_node_ids; j++) {
6500 n = (num + j) % nr_node_ids;
6501 cpumask_complement(d->notcovered, d->covered);
6502 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6503 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6504 if (cpumask_empty(d->tmpmask))
6505 break;
6506 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6507 if (cpumask_empty(d->tmpmask))
6508 continue;
6509 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6510 GFP_KERNEL, num);
6511 if (!sg) {
3df0fc5b
PZ
6512 printk(KERN_WARNING
6513 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6514 return -ENOMEM;
6515 }
18a3885f 6516 sg->cpu_power = 0;
0601a88d
AH
6517 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6518 sg->next = prev->next;
6519 cpumask_or(d->covered, d->covered, d->tmpmask);
6520 prev->next = sg;
6521 prev = sg;
6522 }
6523out:
6524 return 0;
6525}
6d6bc0ad 6526#endif /* CONFIG_NUMA */
1da177e4 6527
a616058b 6528#ifdef CONFIG_NUMA
51888ca2 6529/* Free memory allocated for various sched_group structures */
96f874e2
RR
6530static void free_sched_groups(const struct cpumask *cpu_map,
6531 struct cpumask *nodemask)
51888ca2 6532{
a616058b 6533 int cpu, i;
51888ca2 6534
abcd083a 6535 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6536 struct sched_group **sched_group_nodes
6537 = sched_group_nodes_bycpu[cpu];
6538
51888ca2
SV
6539 if (!sched_group_nodes)
6540 continue;
6541
076ac2af 6542 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6543 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6544
6ca09dfc 6545 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6546 if (cpumask_empty(nodemask))
51888ca2
SV
6547 continue;
6548
6549 if (sg == NULL)
6550 continue;
6551 sg = sg->next;
6552next_sg:
6553 oldsg = sg;
6554 sg = sg->next;
6555 kfree(oldsg);
6556 if (oldsg != sched_group_nodes[i])
6557 goto next_sg;
6558 }
6559 kfree(sched_group_nodes);
6560 sched_group_nodes_bycpu[cpu] = NULL;
6561 }
51888ca2 6562}
6d6bc0ad 6563#else /* !CONFIG_NUMA */
96f874e2
RR
6564static void free_sched_groups(const struct cpumask *cpu_map,
6565 struct cpumask *nodemask)
a616058b
SS
6566{
6567}
6d6bc0ad 6568#endif /* CONFIG_NUMA */
51888ca2 6569
89c4710e
SS
6570/*
6571 * Initialize sched groups cpu_power.
6572 *
6573 * cpu_power indicates the capacity of sched group, which is used while
6574 * distributing the load between different sched groups in a sched domain.
6575 * Typically cpu_power for all the groups in a sched domain will be same unless
6576 * there are asymmetries in the topology. If there are asymmetries, group
6577 * having more cpu_power will pickup more load compared to the group having
6578 * less cpu_power.
89c4710e
SS
6579 */
6580static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6581{
6582 struct sched_domain *child;
6583 struct sched_group *group;
f93e65c1
PZ
6584 long power;
6585 int weight;
89c4710e
SS
6586
6587 WARN_ON(!sd || !sd->groups);
6588
13318a71 6589 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6590 return;
6591
6592 child = sd->child;
6593
18a3885f 6594 sd->groups->cpu_power = 0;
5517d86b 6595
f93e65c1
PZ
6596 if (!child) {
6597 power = SCHED_LOAD_SCALE;
6598 weight = cpumask_weight(sched_domain_span(sd));
6599 /*
6600 * SMT siblings share the power of a single core.
a52bfd73
PZ
6601 * Usually multiple threads get a better yield out of
6602 * that one core than a single thread would have,
6603 * reflect that in sd->smt_gain.
f93e65c1 6604 */
a52bfd73
PZ
6605 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6606 power *= sd->smt_gain;
f93e65c1 6607 power /= weight;
a52bfd73
PZ
6608 power >>= SCHED_LOAD_SHIFT;
6609 }
18a3885f 6610 sd->groups->cpu_power += power;
89c4710e
SS
6611 return;
6612 }
6613
89c4710e 6614 /*
f93e65c1 6615 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6616 */
6617 group = child->groups;
6618 do {
18a3885f 6619 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6620 group = group->next;
6621 } while (group != child->groups);
6622}
6623
7c16ec58
MT
6624/*
6625 * Initializers for schedule domains
6626 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6627 */
6628
a5d8c348
IM
6629#ifdef CONFIG_SCHED_DEBUG
6630# define SD_INIT_NAME(sd, type) sd->name = #type
6631#else
6632# define SD_INIT_NAME(sd, type) do { } while (0)
6633#endif
6634
7c16ec58 6635#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6636
7c16ec58
MT
6637#define SD_INIT_FUNC(type) \
6638static noinline void sd_init_##type(struct sched_domain *sd) \
6639{ \
6640 memset(sd, 0, sizeof(*sd)); \
6641 *sd = SD_##type##_INIT; \
1d3504fc 6642 sd->level = SD_LV_##type; \
a5d8c348 6643 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6644}
6645
6646SD_INIT_FUNC(CPU)
6647#ifdef CONFIG_NUMA
6648 SD_INIT_FUNC(ALLNODES)
6649 SD_INIT_FUNC(NODE)
6650#endif
6651#ifdef CONFIG_SCHED_SMT
6652 SD_INIT_FUNC(SIBLING)
6653#endif
6654#ifdef CONFIG_SCHED_MC
6655 SD_INIT_FUNC(MC)
6656#endif
6657
1d3504fc
HS
6658static int default_relax_domain_level = -1;
6659
6660static int __init setup_relax_domain_level(char *str)
6661{
30e0e178
LZ
6662 unsigned long val;
6663
6664 val = simple_strtoul(str, NULL, 0);
6665 if (val < SD_LV_MAX)
6666 default_relax_domain_level = val;
6667
1d3504fc
HS
6668 return 1;
6669}
6670__setup("relax_domain_level=", setup_relax_domain_level);
6671
6672static void set_domain_attribute(struct sched_domain *sd,
6673 struct sched_domain_attr *attr)
6674{
6675 int request;
6676
6677 if (!attr || attr->relax_domain_level < 0) {
6678 if (default_relax_domain_level < 0)
6679 return;
6680 else
6681 request = default_relax_domain_level;
6682 } else
6683 request = attr->relax_domain_level;
6684 if (request < sd->level) {
6685 /* turn off idle balance on this domain */
c88d5910 6686 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6687 } else {
6688 /* turn on idle balance on this domain */
c88d5910 6689 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6690 }
6691}
6692
2109b99e
AH
6693static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6694 const struct cpumask *cpu_map)
6695{
6696 switch (what) {
6697 case sa_sched_groups:
6698 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6699 d->sched_group_nodes = NULL;
6700 case sa_rootdomain:
6701 free_rootdomain(d->rd); /* fall through */
6702 case sa_tmpmask:
6703 free_cpumask_var(d->tmpmask); /* fall through */
6704 case sa_send_covered:
6705 free_cpumask_var(d->send_covered); /* fall through */
6706 case sa_this_core_map:
6707 free_cpumask_var(d->this_core_map); /* fall through */
6708 case sa_this_sibling_map:
6709 free_cpumask_var(d->this_sibling_map); /* fall through */
6710 case sa_nodemask:
6711 free_cpumask_var(d->nodemask); /* fall through */
6712 case sa_sched_group_nodes:
d1b55138 6713#ifdef CONFIG_NUMA
2109b99e
AH
6714 kfree(d->sched_group_nodes); /* fall through */
6715 case sa_notcovered:
6716 free_cpumask_var(d->notcovered); /* fall through */
6717 case sa_covered:
6718 free_cpumask_var(d->covered); /* fall through */
6719 case sa_domainspan:
6720 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6721#endif
2109b99e
AH
6722 case sa_none:
6723 break;
6724 }
6725}
3404c8d9 6726
2109b99e
AH
6727static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6728 const struct cpumask *cpu_map)
6729{
3404c8d9 6730#ifdef CONFIG_NUMA
2109b99e
AH
6731 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6732 return sa_none;
6733 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6734 return sa_domainspan;
6735 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6736 return sa_covered;
6737 /* Allocate the per-node list of sched groups */
6738 d->sched_group_nodes = kcalloc(nr_node_ids,
6739 sizeof(struct sched_group *), GFP_KERNEL);
6740 if (!d->sched_group_nodes) {
3df0fc5b 6741 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6742 return sa_notcovered;
d1b55138 6743 }
2109b99e 6744 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6745#endif
2109b99e
AH
6746 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6747 return sa_sched_group_nodes;
6748 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6749 return sa_nodemask;
6750 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6751 return sa_this_sibling_map;
6752 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6753 return sa_this_core_map;
6754 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6755 return sa_send_covered;
6756 d->rd = alloc_rootdomain();
6757 if (!d->rd) {
3df0fc5b 6758 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6759 return sa_tmpmask;
57d885fe 6760 }
2109b99e
AH
6761 return sa_rootdomain;
6762}
57d885fe 6763
7f4588f3
AH
6764static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6765 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6766{
6767 struct sched_domain *sd = NULL;
7c16ec58 6768#ifdef CONFIG_NUMA
7f4588f3 6769 struct sched_domain *parent;
1da177e4 6770
7f4588f3
AH
6771 d->sd_allnodes = 0;
6772 if (cpumask_weight(cpu_map) >
6773 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6774 sd = &per_cpu(allnodes_domains, i).sd;
6775 SD_INIT(sd, ALLNODES);
1d3504fc 6776 set_domain_attribute(sd, attr);
7f4588f3
AH
6777 cpumask_copy(sched_domain_span(sd), cpu_map);
6778 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6779 d->sd_allnodes = 1;
6780 }
6781 parent = sd;
6782
6783 sd = &per_cpu(node_domains, i).sd;
6784 SD_INIT(sd, NODE);
6785 set_domain_attribute(sd, attr);
6786 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6787 sd->parent = parent;
6788 if (parent)
6789 parent->child = sd;
6790 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6791#endif
7f4588f3
AH
6792 return sd;
6793}
1da177e4 6794
87cce662
AH
6795static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6796 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6797 struct sched_domain *parent, int i)
6798{
6799 struct sched_domain *sd;
6800 sd = &per_cpu(phys_domains, i).sd;
6801 SD_INIT(sd, CPU);
6802 set_domain_attribute(sd, attr);
6803 cpumask_copy(sched_domain_span(sd), d->nodemask);
6804 sd->parent = parent;
6805 if (parent)
6806 parent->child = sd;
6807 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6808 return sd;
6809}
1da177e4 6810
410c4081
AH
6811static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6812 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6813 struct sched_domain *parent, int i)
6814{
6815 struct sched_domain *sd = parent;
1e9f28fa 6816#ifdef CONFIG_SCHED_MC
410c4081
AH
6817 sd = &per_cpu(core_domains, i).sd;
6818 SD_INIT(sd, MC);
6819 set_domain_attribute(sd, attr);
6820 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6821 sd->parent = parent;
6822 parent->child = sd;
6823 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6824#endif
410c4081
AH
6825 return sd;
6826}
1e9f28fa 6827
d8173535
AH
6828static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6829 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6830 struct sched_domain *parent, int i)
6831{
6832 struct sched_domain *sd = parent;
1da177e4 6833#ifdef CONFIG_SCHED_SMT
d8173535
AH
6834 sd = &per_cpu(cpu_domains, i).sd;
6835 SD_INIT(sd, SIBLING);
6836 set_domain_attribute(sd, attr);
6837 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6838 sd->parent = parent;
6839 parent->child = sd;
6840 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6841#endif
d8173535
AH
6842 return sd;
6843}
1da177e4 6844
0e8e85c9
AH
6845static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6846 const struct cpumask *cpu_map, int cpu)
6847{
6848 switch (l) {
1da177e4 6849#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6850 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6851 cpumask_and(d->this_sibling_map, cpu_map,
6852 topology_thread_cpumask(cpu));
6853 if (cpu == cpumask_first(d->this_sibling_map))
6854 init_sched_build_groups(d->this_sibling_map, cpu_map,
6855 &cpu_to_cpu_group,
6856 d->send_covered, d->tmpmask);
6857 break;
1da177e4 6858#endif
1e9f28fa 6859#ifdef CONFIG_SCHED_MC
a2af04cd
AH
6860 case SD_LV_MC: /* set up multi-core groups */
6861 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6862 if (cpu == cpumask_first(d->this_core_map))
6863 init_sched_build_groups(d->this_core_map, cpu_map,
6864 &cpu_to_core_group,
6865 d->send_covered, d->tmpmask);
6866 break;
1e9f28fa 6867#endif
86548096
AH
6868 case SD_LV_CPU: /* set up physical groups */
6869 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6870 if (!cpumask_empty(d->nodemask))
6871 init_sched_build_groups(d->nodemask, cpu_map,
6872 &cpu_to_phys_group,
6873 d->send_covered, d->tmpmask);
6874 break;
1da177e4 6875#ifdef CONFIG_NUMA
de616e36
AH
6876 case SD_LV_ALLNODES:
6877 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6878 d->send_covered, d->tmpmask);
6879 break;
6880#endif
0e8e85c9
AH
6881 default:
6882 break;
7c16ec58 6883 }
0e8e85c9 6884}
9c1cfda2 6885
2109b99e
AH
6886/*
6887 * Build sched domains for a given set of cpus and attach the sched domains
6888 * to the individual cpus
6889 */
6890static int __build_sched_domains(const struct cpumask *cpu_map,
6891 struct sched_domain_attr *attr)
6892{
6893 enum s_alloc alloc_state = sa_none;
6894 struct s_data d;
294b0c96 6895 struct sched_domain *sd;
2109b99e 6896 int i;
7c16ec58 6897#ifdef CONFIG_NUMA
2109b99e 6898 d.sd_allnodes = 0;
7c16ec58 6899#endif
9c1cfda2 6900
2109b99e
AH
6901 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6902 if (alloc_state != sa_rootdomain)
6903 goto error;
6904 alloc_state = sa_sched_groups;
9c1cfda2 6905
1da177e4 6906 /*
1a20ff27 6907 * Set up domains for cpus specified by the cpu_map.
1da177e4 6908 */
abcd083a 6909 for_each_cpu(i, cpu_map) {
49a02c51
AH
6910 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6911 cpu_map);
9761eea8 6912
7f4588f3 6913 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 6914 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 6915 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 6916 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 6917 }
9c1cfda2 6918
abcd083a 6919 for_each_cpu(i, cpu_map) {
0e8e85c9 6920 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 6921 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 6922 }
9c1cfda2 6923
1da177e4 6924 /* Set up physical groups */
86548096
AH
6925 for (i = 0; i < nr_node_ids; i++)
6926 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 6927
1da177e4
LT
6928#ifdef CONFIG_NUMA
6929 /* Set up node groups */
de616e36
AH
6930 if (d.sd_allnodes)
6931 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 6932
0601a88d
AH
6933 for (i = 0; i < nr_node_ids; i++)
6934 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 6935 goto error;
1da177e4
LT
6936#endif
6937
6938 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6939#ifdef CONFIG_SCHED_SMT
abcd083a 6940 for_each_cpu(i, cpu_map) {
294b0c96 6941 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 6942 init_sched_groups_power(i, sd);
5c45bf27 6943 }
1da177e4 6944#endif
1e9f28fa 6945#ifdef CONFIG_SCHED_MC
abcd083a 6946 for_each_cpu(i, cpu_map) {
294b0c96 6947 sd = &per_cpu(core_domains, i).sd;
89c4710e 6948 init_sched_groups_power(i, sd);
5c45bf27
SS
6949 }
6950#endif
1e9f28fa 6951
abcd083a 6952 for_each_cpu(i, cpu_map) {
294b0c96 6953 sd = &per_cpu(phys_domains, i).sd;
89c4710e 6954 init_sched_groups_power(i, sd);
1da177e4
LT
6955 }
6956
9c1cfda2 6957#ifdef CONFIG_NUMA
076ac2af 6958 for (i = 0; i < nr_node_ids; i++)
49a02c51 6959 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 6960
49a02c51 6961 if (d.sd_allnodes) {
6711cab4 6962 struct sched_group *sg;
f712c0c7 6963
96f874e2 6964 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 6965 d.tmpmask);
f712c0c7
SS
6966 init_numa_sched_groups_power(sg);
6967 }
9c1cfda2
JH
6968#endif
6969
1da177e4 6970 /* Attach the domains */
abcd083a 6971 for_each_cpu(i, cpu_map) {
1da177e4 6972#ifdef CONFIG_SCHED_SMT
6c99e9ad 6973 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 6974#elif defined(CONFIG_SCHED_MC)
6c99e9ad 6975 sd = &per_cpu(core_domains, i).sd;
1da177e4 6976#else
6c99e9ad 6977 sd = &per_cpu(phys_domains, i).sd;
1da177e4 6978#endif
49a02c51 6979 cpu_attach_domain(sd, d.rd, i);
1da177e4 6980 }
51888ca2 6981
2109b99e
AH
6982 d.sched_group_nodes = NULL; /* don't free this we still need it */
6983 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
6984 return 0;
51888ca2 6985
51888ca2 6986error:
2109b99e
AH
6987 __free_domain_allocs(&d, alloc_state, cpu_map);
6988 return -ENOMEM;
1da177e4 6989}
029190c5 6990
96f874e2 6991static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
6992{
6993 return __build_sched_domains(cpu_map, NULL);
6994}
6995
acc3f5d7 6996static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6997static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6998static struct sched_domain_attr *dattr_cur;
6999 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7000
7001/*
7002 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7003 * cpumask) fails, then fallback to a single sched domain,
7004 * as determined by the single cpumask fallback_doms.
029190c5 7005 */
4212823f 7006static cpumask_var_t fallback_doms;
029190c5 7007
ee79d1bd
HC
7008/*
7009 * arch_update_cpu_topology lets virtualized architectures update the
7010 * cpu core maps. It is supposed to return 1 if the topology changed
7011 * or 0 if it stayed the same.
7012 */
7013int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7014{
ee79d1bd 7015 return 0;
22e52b07
HC
7016}
7017
acc3f5d7
RR
7018cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7019{
7020 int i;
7021 cpumask_var_t *doms;
7022
7023 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7024 if (!doms)
7025 return NULL;
7026 for (i = 0; i < ndoms; i++) {
7027 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7028 free_sched_domains(doms, i);
7029 return NULL;
7030 }
7031 }
7032 return doms;
7033}
7034
7035void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7036{
7037 unsigned int i;
7038 for (i = 0; i < ndoms; i++)
7039 free_cpumask_var(doms[i]);
7040 kfree(doms);
7041}
7042
1a20ff27 7043/*
41a2d6cf 7044 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7045 * For now this just excludes isolated cpus, but could be used to
7046 * exclude other special cases in the future.
1a20ff27 7047 */
96f874e2 7048static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7049{
7378547f
MM
7050 int err;
7051
22e52b07 7052 arch_update_cpu_topology();
029190c5 7053 ndoms_cur = 1;
acc3f5d7 7054 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7055 if (!doms_cur)
acc3f5d7
RR
7056 doms_cur = &fallback_doms;
7057 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7058 dattr_cur = NULL;
acc3f5d7 7059 err = build_sched_domains(doms_cur[0]);
6382bc90 7060 register_sched_domain_sysctl();
7378547f
MM
7061
7062 return err;
1a20ff27
DG
7063}
7064
96f874e2
RR
7065static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7066 struct cpumask *tmpmask)
1da177e4 7067{
7c16ec58 7068 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7069}
1da177e4 7070
1a20ff27
DG
7071/*
7072 * Detach sched domains from a group of cpus specified in cpu_map
7073 * These cpus will now be attached to the NULL domain
7074 */
96f874e2 7075static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7076{
96f874e2
RR
7077 /* Save because hotplug lock held. */
7078 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7079 int i;
7080
abcd083a 7081 for_each_cpu(i, cpu_map)
57d885fe 7082 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7083 synchronize_sched();
96f874e2 7084 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7085}
7086
1d3504fc
HS
7087/* handle null as "default" */
7088static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7089 struct sched_domain_attr *new, int idx_new)
7090{
7091 struct sched_domain_attr tmp;
7092
7093 /* fast path */
7094 if (!new && !cur)
7095 return 1;
7096
7097 tmp = SD_ATTR_INIT;
7098 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7099 new ? (new + idx_new) : &tmp,
7100 sizeof(struct sched_domain_attr));
7101}
7102
029190c5
PJ
7103/*
7104 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7105 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7106 * doms_new[] to the current sched domain partitioning, doms_cur[].
7107 * It destroys each deleted domain and builds each new domain.
7108 *
acc3f5d7 7109 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7110 * The masks don't intersect (don't overlap.) We should setup one
7111 * sched domain for each mask. CPUs not in any of the cpumasks will
7112 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7113 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7114 * it as it is.
7115 *
acc3f5d7
RR
7116 * The passed in 'doms_new' should be allocated using
7117 * alloc_sched_domains. This routine takes ownership of it and will
7118 * free_sched_domains it when done with it. If the caller failed the
7119 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7120 * and partition_sched_domains() will fallback to the single partition
7121 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7122 *
96f874e2 7123 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7124 * ndoms_new == 0 is a special case for destroying existing domains,
7125 * and it will not create the default domain.
dfb512ec 7126 *
029190c5
PJ
7127 * Call with hotplug lock held
7128 */
acc3f5d7 7129void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7130 struct sched_domain_attr *dattr_new)
029190c5 7131{
dfb512ec 7132 int i, j, n;
d65bd5ec 7133 int new_topology;
029190c5 7134
712555ee 7135 mutex_lock(&sched_domains_mutex);
a1835615 7136
7378547f
MM
7137 /* always unregister in case we don't destroy any domains */
7138 unregister_sched_domain_sysctl();
7139
d65bd5ec
HC
7140 /* Let architecture update cpu core mappings. */
7141 new_topology = arch_update_cpu_topology();
7142
dfb512ec 7143 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7144
7145 /* Destroy deleted domains */
7146 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7147 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7148 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7149 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7150 goto match1;
7151 }
7152 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7153 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7154match1:
7155 ;
7156 }
7157
e761b772
MK
7158 if (doms_new == NULL) {
7159 ndoms_cur = 0;
acc3f5d7 7160 doms_new = &fallback_doms;
6ad4c188 7161 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7162 WARN_ON_ONCE(dattr_new);
e761b772
MK
7163 }
7164
029190c5
PJ
7165 /* Build new domains */
7166 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7167 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7168 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7169 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7170 goto match2;
7171 }
7172 /* no match - add a new doms_new */
acc3f5d7 7173 __build_sched_domains(doms_new[i],
1d3504fc 7174 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7175match2:
7176 ;
7177 }
7178
7179 /* Remember the new sched domains */
acc3f5d7
RR
7180 if (doms_cur != &fallback_doms)
7181 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7182 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7183 doms_cur = doms_new;
1d3504fc 7184 dattr_cur = dattr_new;
029190c5 7185 ndoms_cur = ndoms_new;
7378547f
MM
7186
7187 register_sched_domain_sysctl();
a1835615 7188
712555ee 7189 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7190}
7191
5c45bf27 7192#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7193static void arch_reinit_sched_domains(void)
5c45bf27 7194{
95402b38 7195 get_online_cpus();
dfb512ec
MK
7196
7197 /* Destroy domains first to force the rebuild */
7198 partition_sched_domains(0, NULL, NULL);
7199
e761b772 7200 rebuild_sched_domains();
95402b38 7201 put_online_cpus();
5c45bf27
SS
7202}
7203
7204static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7205{
afb8a9b7 7206 unsigned int level = 0;
5c45bf27 7207
afb8a9b7
GS
7208 if (sscanf(buf, "%u", &level) != 1)
7209 return -EINVAL;
7210
7211 /*
7212 * level is always be positive so don't check for
7213 * level < POWERSAVINGS_BALANCE_NONE which is 0
7214 * What happens on 0 or 1 byte write,
7215 * need to check for count as well?
7216 */
7217
7218 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7219 return -EINVAL;
7220
7221 if (smt)
afb8a9b7 7222 sched_smt_power_savings = level;
5c45bf27 7223 else
afb8a9b7 7224 sched_mc_power_savings = level;
5c45bf27 7225
c70f22d2 7226 arch_reinit_sched_domains();
5c45bf27 7227
c70f22d2 7228 return count;
5c45bf27
SS
7229}
7230
5c45bf27 7231#ifdef CONFIG_SCHED_MC
f718cd4a 7232static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7233 struct sysdev_class_attribute *attr,
f718cd4a 7234 char *page)
5c45bf27
SS
7235{
7236 return sprintf(page, "%u\n", sched_mc_power_savings);
7237}
f718cd4a 7238static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7239 struct sysdev_class_attribute *attr,
48f24c4d 7240 const char *buf, size_t count)
5c45bf27
SS
7241{
7242 return sched_power_savings_store(buf, count, 0);
7243}
f718cd4a
AK
7244static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7245 sched_mc_power_savings_show,
7246 sched_mc_power_savings_store);
5c45bf27
SS
7247#endif
7248
7249#ifdef CONFIG_SCHED_SMT
f718cd4a 7250static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7251 struct sysdev_class_attribute *attr,
f718cd4a 7252 char *page)
5c45bf27
SS
7253{
7254 return sprintf(page, "%u\n", sched_smt_power_savings);
7255}
f718cd4a 7256static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7257 struct sysdev_class_attribute *attr,
48f24c4d 7258 const char *buf, size_t count)
5c45bf27
SS
7259{
7260 return sched_power_savings_store(buf, count, 1);
7261}
f718cd4a
AK
7262static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7263 sched_smt_power_savings_show,
6707de00
AB
7264 sched_smt_power_savings_store);
7265#endif
7266
39aac648 7267int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7268{
7269 int err = 0;
7270
7271#ifdef CONFIG_SCHED_SMT
7272 if (smt_capable())
7273 err = sysfs_create_file(&cls->kset.kobj,
7274 &attr_sched_smt_power_savings.attr);
7275#endif
7276#ifdef CONFIG_SCHED_MC
7277 if (!err && mc_capable())
7278 err = sysfs_create_file(&cls->kset.kobj,
7279 &attr_sched_mc_power_savings.attr);
7280#endif
7281 return err;
7282}
6d6bc0ad 7283#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7284
e761b772 7285#ifndef CONFIG_CPUSETS
1da177e4 7286/*
e761b772
MK
7287 * Add online and remove offline CPUs from the scheduler domains.
7288 * When cpusets are enabled they take over this function.
1da177e4
LT
7289 */
7290static int update_sched_domains(struct notifier_block *nfb,
7291 unsigned long action, void *hcpu)
e761b772
MK
7292{
7293 switch (action) {
7294 case CPU_ONLINE:
7295 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7296 case CPU_DOWN_PREPARE:
7297 case CPU_DOWN_PREPARE_FROZEN:
7298 case CPU_DOWN_FAILED:
7299 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7300 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7301 return NOTIFY_OK;
7302
7303 default:
7304 return NOTIFY_DONE;
7305 }
7306}
7307#endif
7308
7309static int update_runtime(struct notifier_block *nfb,
7310 unsigned long action, void *hcpu)
1da177e4 7311{
7def2be1
PZ
7312 int cpu = (int)(long)hcpu;
7313
1da177e4 7314 switch (action) {
1da177e4 7315 case CPU_DOWN_PREPARE:
8bb78442 7316 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7317 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7318 return NOTIFY_OK;
7319
1da177e4 7320 case CPU_DOWN_FAILED:
8bb78442 7321 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7322 case CPU_ONLINE:
8bb78442 7323 case CPU_ONLINE_FROZEN:
7def2be1 7324 enable_runtime(cpu_rq(cpu));
e761b772
MK
7325 return NOTIFY_OK;
7326
1da177e4
LT
7327 default:
7328 return NOTIFY_DONE;
7329 }
1da177e4 7330}
1da177e4
LT
7331
7332void __init sched_init_smp(void)
7333{
dcc30a35
RR
7334 cpumask_var_t non_isolated_cpus;
7335
7336 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7337 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7338
434d53b0
MT
7339#if defined(CONFIG_NUMA)
7340 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7341 GFP_KERNEL);
7342 BUG_ON(sched_group_nodes_bycpu == NULL);
7343#endif
95402b38 7344 get_online_cpus();
712555ee 7345 mutex_lock(&sched_domains_mutex);
6ad4c188 7346 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7347 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7348 if (cpumask_empty(non_isolated_cpus))
7349 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7350 mutex_unlock(&sched_domains_mutex);
95402b38 7351 put_online_cpus();
e761b772
MK
7352
7353#ifndef CONFIG_CPUSETS
1da177e4
LT
7354 /* XXX: Theoretical race here - CPU may be hotplugged now */
7355 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7356#endif
7357
7358 /* RT runtime code needs to handle some hotplug events */
7359 hotcpu_notifier(update_runtime, 0);
7360
b328ca18 7361 init_hrtick();
5c1e1767
NP
7362
7363 /* Move init over to a non-isolated CPU */
dcc30a35 7364 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7365 BUG();
19978ca6 7366 sched_init_granularity();
dcc30a35 7367 free_cpumask_var(non_isolated_cpus);
4212823f 7368
0e3900e6 7369 init_sched_rt_class();
1da177e4
LT
7370}
7371#else
7372void __init sched_init_smp(void)
7373{
19978ca6 7374 sched_init_granularity();
1da177e4
LT
7375}
7376#endif /* CONFIG_SMP */
7377
cd1bb94b
AB
7378const_debug unsigned int sysctl_timer_migration = 1;
7379
1da177e4
LT
7380int in_sched_functions(unsigned long addr)
7381{
1da177e4
LT
7382 return in_lock_functions(addr) ||
7383 (addr >= (unsigned long)__sched_text_start
7384 && addr < (unsigned long)__sched_text_end);
7385}
7386
a9957449 7387static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7388{
7389 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7390 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7391#ifdef CONFIG_FAIR_GROUP_SCHED
7392 cfs_rq->rq = rq;
7393#endif
67e9fb2a 7394 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7395}
7396
fa85ae24
PZ
7397static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7398{
7399 struct rt_prio_array *array;
7400 int i;
7401
7402 array = &rt_rq->active;
7403 for (i = 0; i < MAX_RT_PRIO; i++) {
7404 INIT_LIST_HEAD(array->queue + i);
7405 __clear_bit(i, array->bitmap);
7406 }
7407 /* delimiter for bitsearch: */
7408 __set_bit(MAX_RT_PRIO, array->bitmap);
7409
052f1dc7 7410#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7411 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7412#ifdef CONFIG_SMP
e864c499 7413 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7414#endif
48d5e258 7415#endif
fa85ae24
PZ
7416#ifdef CONFIG_SMP
7417 rt_rq->rt_nr_migratory = 0;
fa85ae24 7418 rt_rq->overloaded = 0;
05fa785c 7419 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7420#endif
7421
7422 rt_rq->rt_time = 0;
7423 rt_rq->rt_throttled = 0;
ac086bc2 7424 rt_rq->rt_runtime = 0;
0986b11b 7425 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7426
052f1dc7 7427#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7428 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7429 rt_rq->rq = rq;
7430#endif
fa85ae24
PZ
7431}
7432
6f505b16 7433#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7434static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7435 struct sched_entity *se, int cpu, int add,
7436 struct sched_entity *parent)
6f505b16 7437{
ec7dc8ac 7438 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7439 tg->cfs_rq[cpu] = cfs_rq;
7440 init_cfs_rq(cfs_rq, rq);
7441 cfs_rq->tg = tg;
7442 if (add)
7443 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7444
7445 tg->se[cpu] = se;
354d60c2
DG
7446 /* se could be NULL for init_task_group */
7447 if (!se)
7448 return;
7449
ec7dc8ac
DG
7450 if (!parent)
7451 se->cfs_rq = &rq->cfs;
7452 else
7453 se->cfs_rq = parent->my_q;
7454
6f505b16
PZ
7455 se->my_q = cfs_rq;
7456 se->load.weight = tg->shares;
e05510d0 7457 se->load.inv_weight = 0;
ec7dc8ac 7458 se->parent = parent;
6f505b16 7459}
052f1dc7 7460#endif
6f505b16 7461
052f1dc7 7462#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7463static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7464 struct sched_rt_entity *rt_se, int cpu, int add,
7465 struct sched_rt_entity *parent)
6f505b16 7466{
ec7dc8ac
DG
7467 struct rq *rq = cpu_rq(cpu);
7468
6f505b16
PZ
7469 tg->rt_rq[cpu] = rt_rq;
7470 init_rt_rq(rt_rq, rq);
7471 rt_rq->tg = tg;
ac086bc2 7472 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7473 if (add)
7474 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7475
7476 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7477 if (!rt_se)
7478 return;
7479
ec7dc8ac
DG
7480 if (!parent)
7481 rt_se->rt_rq = &rq->rt;
7482 else
7483 rt_se->rt_rq = parent->my_q;
7484
6f505b16 7485 rt_se->my_q = rt_rq;
ec7dc8ac 7486 rt_se->parent = parent;
6f505b16
PZ
7487 INIT_LIST_HEAD(&rt_se->run_list);
7488}
7489#endif
7490
1da177e4
LT
7491void __init sched_init(void)
7492{
dd41f596 7493 int i, j;
434d53b0
MT
7494 unsigned long alloc_size = 0, ptr;
7495
7496#ifdef CONFIG_FAIR_GROUP_SCHED
7497 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7498#endif
7499#ifdef CONFIG_RT_GROUP_SCHED
7500 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7501#endif
df7c8e84 7502#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7503 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7504#endif
434d53b0 7505 if (alloc_size) {
36b7b6d4 7506 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7507
7508#ifdef CONFIG_FAIR_GROUP_SCHED
7509 init_task_group.se = (struct sched_entity **)ptr;
7510 ptr += nr_cpu_ids * sizeof(void **);
7511
7512 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7513 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7514
6d6bc0ad 7515#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7516#ifdef CONFIG_RT_GROUP_SCHED
7517 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7518 ptr += nr_cpu_ids * sizeof(void **);
7519
7520 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7521 ptr += nr_cpu_ids * sizeof(void **);
7522
6d6bc0ad 7523#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7524#ifdef CONFIG_CPUMASK_OFFSTACK
7525 for_each_possible_cpu(i) {
7526 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7527 ptr += cpumask_size();
7528 }
7529#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7530 }
dd41f596 7531
57d885fe
GH
7532#ifdef CONFIG_SMP
7533 init_defrootdomain();
7534#endif
7535
d0b27fa7
PZ
7536 init_rt_bandwidth(&def_rt_bandwidth,
7537 global_rt_period(), global_rt_runtime());
7538
7539#ifdef CONFIG_RT_GROUP_SCHED
7540 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7541 global_rt_period(), global_rt_runtime());
6d6bc0ad 7542#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7543
7c941438 7544#ifdef CONFIG_CGROUP_SCHED
6f505b16 7545 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7546 INIT_LIST_HEAD(&init_task_group.children);
7547
7c941438 7548#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7549
4a6cc4bd
JK
7550#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7551 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7552 __alignof__(unsigned long));
7553#endif
0a945022 7554 for_each_possible_cpu(i) {
70b97a7f 7555 struct rq *rq;
1da177e4
LT
7556
7557 rq = cpu_rq(i);
05fa785c 7558 raw_spin_lock_init(&rq->lock);
7897986b 7559 rq->nr_running = 0;
dce48a84
TG
7560 rq->calc_load_active = 0;
7561 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7562 init_cfs_rq(&rq->cfs, rq);
6f505b16 7563 init_rt_rq(&rq->rt, rq);
dd41f596 7564#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7565 init_task_group.shares = init_task_group_load;
6f505b16 7566 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7567#ifdef CONFIG_CGROUP_SCHED
7568 /*
7569 * How much cpu bandwidth does init_task_group get?
7570 *
7571 * In case of task-groups formed thr' the cgroup filesystem, it
7572 * gets 100% of the cpu resources in the system. This overall
7573 * system cpu resource is divided among the tasks of
7574 * init_task_group and its child task-groups in a fair manner,
7575 * based on each entity's (task or task-group's) weight
7576 * (se->load.weight).
7577 *
7578 * In other words, if init_task_group has 10 tasks of weight
7579 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7580 * then A0's share of the cpu resource is:
7581 *
0d905bca 7582 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7583 *
7584 * We achieve this by letting init_task_group's tasks sit
7585 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7586 */
ec7dc8ac 7587 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7588#endif
354d60c2
DG
7589#endif /* CONFIG_FAIR_GROUP_SCHED */
7590
7591 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7592#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7593 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7594#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7595 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7596#endif
dd41f596 7597#endif
1da177e4 7598
dd41f596
IM
7599 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7600 rq->cpu_load[j] = 0;
1da177e4 7601#ifdef CONFIG_SMP
41c7ce9a 7602 rq->sd = NULL;
57d885fe 7603 rq->rd = NULL;
e51fd5e2 7604 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7605 rq->post_schedule = 0;
1da177e4 7606 rq->active_balance = 0;
dd41f596 7607 rq->next_balance = jiffies;
1da177e4 7608 rq->push_cpu = 0;
0a2966b4 7609 rq->cpu = i;
1f11eb6a 7610 rq->online = 0;
eae0c9df
MG
7611 rq->idle_stamp = 0;
7612 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7613 rq_attach_root(rq, &def_root_domain);
1da177e4 7614#endif
8f4d37ec 7615 init_rq_hrtick(rq);
1da177e4 7616 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7617 }
7618
2dd73a4f 7619 set_load_weight(&init_task);
b50f60ce 7620
e107be36
AK
7621#ifdef CONFIG_PREEMPT_NOTIFIERS
7622 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7623#endif
7624
c9819f45 7625#ifdef CONFIG_SMP
962cf36c 7626 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7627#endif
7628
b50f60ce 7629#ifdef CONFIG_RT_MUTEXES
1d615482 7630 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7631#endif
7632
1da177e4
LT
7633 /*
7634 * The boot idle thread does lazy MMU switching as well:
7635 */
7636 atomic_inc(&init_mm.mm_count);
7637 enter_lazy_tlb(&init_mm, current);
7638
7639 /*
7640 * Make us the idle thread. Technically, schedule() should not be
7641 * called from this thread, however somewhere below it might be,
7642 * but because we are the idle thread, we just pick up running again
7643 * when this runqueue becomes "idle".
7644 */
7645 init_idle(current, smp_processor_id());
dce48a84
TG
7646
7647 calc_load_update = jiffies + LOAD_FREQ;
7648
dd41f596
IM
7649 /*
7650 * During early bootup we pretend to be a normal task:
7651 */
7652 current->sched_class = &fair_sched_class;
6892b75e 7653
6a7b3dc3 7654 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7655 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7656#ifdef CONFIG_SMP
7d1e6a9b 7657#ifdef CONFIG_NO_HZ
49557e62 7658 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7659 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7660#endif
bdddd296
RR
7661 /* May be allocated at isolcpus cmdline parse time */
7662 if (cpu_isolated_map == NULL)
7663 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7664#endif /* SMP */
6a7b3dc3 7665
cdd6c482 7666 perf_event_init();
0d905bca 7667
6892b75e 7668 scheduler_running = 1;
1da177e4
LT
7669}
7670
7671#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7672static inline int preempt_count_equals(int preempt_offset)
7673{
234da7bc 7674 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7675
7676 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7677}
7678
d894837f 7679void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7680{
48f24c4d 7681#ifdef in_atomic
1da177e4
LT
7682 static unsigned long prev_jiffy; /* ratelimiting */
7683
e4aafea2
FW
7684 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7685 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7686 return;
7687 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7688 return;
7689 prev_jiffy = jiffies;
7690
3df0fc5b
PZ
7691 printk(KERN_ERR
7692 "BUG: sleeping function called from invalid context at %s:%d\n",
7693 file, line);
7694 printk(KERN_ERR
7695 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7696 in_atomic(), irqs_disabled(),
7697 current->pid, current->comm);
aef745fc
IM
7698
7699 debug_show_held_locks(current);
7700 if (irqs_disabled())
7701 print_irqtrace_events(current);
7702 dump_stack();
1da177e4
LT
7703#endif
7704}
7705EXPORT_SYMBOL(__might_sleep);
7706#endif
7707
7708#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7709static void normalize_task(struct rq *rq, struct task_struct *p)
7710{
7711 int on_rq;
3e51f33f 7712
3a5e4dc1
AK
7713 on_rq = p->se.on_rq;
7714 if (on_rq)
7715 deactivate_task(rq, p, 0);
7716 __setscheduler(rq, p, SCHED_NORMAL, 0);
7717 if (on_rq) {
7718 activate_task(rq, p, 0);
7719 resched_task(rq->curr);
7720 }
7721}
7722
1da177e4
LT
7723void normalize_rt_tasks(void)
7724{
a0f98a1c 7725 struct task_struct *g, *p;
1da177e4 7726 unsigned long flags;
70b97a7f 7727 struct rq *rq;
1da177e4 7728
4cf5d77a 7729 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7730 do_each_thread(g, p) {
178be793
IM
7731 /*
7732 * Only normalize user tasks:
7733 */
7734 if (!p->mm)
7735 continue;
7736
6cfb0d5d 7737 p->se.exec_start = 0;
6cfb0d5d 7738#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7739 p->se.statistics.wait_start = 0;
7740 p->se.statistics.sleep_start = 0;
7741 p->se.statistics.block_start = 0;
6cfb0d5d 7742#endif
dd41f596
IM
7743
7744 if (!rt_task(p)) {
7745 /*
7746 * Renice negative nice level userspace
7747 * tasks back to 0:
7748 */
7749 if (TASK_NICE(p) < 0 && p->mm)
7750 set_user_nice(p, 0);
1da177e4 7751 continue;
dd41f596 7752 }
1da177e4 7753
1d615482 7754 raw_spin_lock(&p->pi_lock);
b29739f9 7755 rq = __task_rq_lock(p);
1da177e4 7756
178be793 7757 normalize_task(rq, p);
3a5e4dc1 7758
b29739f9 7759 __task_rq_unlock(rq);
1d615482 7760 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7761 } while_each_thread(g, p);
7762
4cf5d77a 7763 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7764}
7765
7766#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7767
67fc4e0c 7768#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7769/*
67fc4e0c 7770 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7771 *
7772 * They can only be called when the whole system has been
7773 * stopped - every CPU needs to be quiescent, and no scheduling
7774 * activity can take place. Using them for anything else would
7775 * be a serious bug, and as a result, they aren't even visible
7776 * under any other configuration.
7777 */
7778
7779/**
7780 * curr_task - return the current task for a given cpu.
7781 * @cpu: the processor in question.
7782 *
7783 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7784 */
36c8b586 7785struct task_struct *curr_task(int cpu)
1df5c10a
LT
7786{
7787 return cpu_curr(cpu);
7788}
7789
67fc4e0c
JW
7790#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7791
7792#ifdef CONFIG_IA64
1df5c10a
LT
7793/**
7794 * set_curr_task - set the current task for a given cpu.
7795 * @cpu: the processor in question.
7796 * @p: the task pointer to set.
7797 *
7798 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7799 * are serviced on a separate stack. It allows the architecture to switch the
7800 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7801 * must be called with all CPU's synchronized, and interrupts disabled, the
7802 * and caller must save the original value of the current task (see
7803 * curr_task() above) and restore that value before reenabling interrupts and
7804 * re-starting the system.
7805 *
7806 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7807 */
36c8b586 7808void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7809{
7810 cpu_curr(cpu) = p;
7811}
7812
7813#endif
29f59db3 7814
bccbe08a
PZ
7815#ifdef CONFIG_FAIR_GROUP_SCHED
7816static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7817{
7818 int i;
7819
7820 for_each_possible_cpu(i) {
7821 if (tg->cfs_rq)
7822 kfree(tg->cfs_rq[i]);
7823 if (tg->se)
7824 kfree(tg->se[i]);
6f505b16
PZ
7825 }
7826
7827 kfree(tg->cfs_rq);
7828 kfree(tg->se);
6f505b16
PZ
7829}
7830
ec7dc8ac
DG
7831static
7832int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7833{
29f59db3 7834 struct cfs_rq *cfs_rq;
eab17229 7835 struct sched_entity *se;
9b5b7751 7836 struct rq *rq;
29f59db3
SV
7837 int i;
7838
434d53b0 7839 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7840 if (!tg->cfs_rq)
7841 goto err;
434d53b0 7842 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7843 if (!tg->se)
7844 goto err;
052f1dc7
PZ
7845
7846 tg->shares = NICE_0_LOAD;
29f59db3
SV
7847
7848 for_each_possible_cpu(i) {
9b5b7751 7849 rq = cpu_rq(i);
29f59db3 7850
eab17229
LZ
7851 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7852 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
7853 if (!cfs_rq)
7854 goto err;
7855
eab17229
LZ
7856 se = kzalloc_node(sizeof(struct sched_entity),
7857 GFP_KERNEL, cpu_to_node(i));
29f59db3 7858 if (!se)
dfc12eb2 7859 goto err_free_rq;
29f59db3 7860
eab17229 7861 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
7862 }
7863
7864 return 1;
7865
dfc12eb2
PC
7866 err_free_rq:
7867 kfree(cfs_rq);
bccbe08a
PZ
7868 err:
7869 return 0;
7870}
7871
7872static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7873{
7874 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7875 &cpu_rq(cpu)->leaf_cfs_rq_list);
7876}
7877
7878static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7879{
7880 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7881}
6d6bc0ad 7882#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
7883static inline void free_fair_sched_group(struct task_group *tg)
7884{
7885}
7886
ec7dc8ac
DG
7887static inline
7888int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7889{
7890 return 1;
7891}
7892
7893static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7894{
7895}
7896
7897static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7898{
7899}
6d6bc0ad 7900#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
7901
7902#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
7903static void free_rt_sched_group(struct task_group *tg)
7904{
7905 int i;
7906
d0b27fa7
PZ
7907 destroy_rt_bandwidth(&tg->rt_bandwidth);
7908
bccbe08a
PZ
7909 for_each_possible_cpu(i) {
7910 if (tg->rt_rq)
7911 kfree(tg->rt_rq[i]);
7912 if (tg->rt_se)
7913 kfree(tg->rt_se[i]);
7914 }
7915
7916 kfree(tg->rt_rq);
7917 kfree(tg->rt_se);
7918}
7919
ec7dc8ac
DG
7920static
7921int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7922{
7923 struct rt_rq *rt_rq;
eab17229 7924 struct sched_rt_entity *rt_se;
bccbe08a
PZ
7925 struct rq *rq;
7926 int i;
7927
434d53b0 7928 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7929 if (!tg->rt_rq)
7930 goto err;
434d53b0 7931 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7932 if (!tg->rt_se)
7933 goto err;
7934
d0b27fa7
PZ
7935 init_rt_bandwidth(&tg->rt_bandwidth,
7936 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
7937
7938 for_each_possible_cpu(i) {
7939 rq = cpu_rq(i);
7940
eab17229
LZ
7941 rt_rq = kzalloc_node(sizeof(struct rt_rq),
7942 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
7943 if (!rt_rq)
7944 goto err;
29f59db3 7945
eab17229
LZ
7946 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
7947 GFP_KERNEL, cpu_to_node(i));
6f505b16 7948 if (!rt_se)
dfc12eb2 7949 goto err_free_rq;
29f59db3 7950
eab17229 7951 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
7952 }
7953
bccbe08a
PZ
7954 return 1;
7955
dfc12eb2
PC
7956 err_free_rq:
7957 kfree(rt_rq);
bccbe08a
PZ
7958 err:
7959 return 0;
7960}
7961
7962static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7963{
7964 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7965 &cpu_rq(cpu)->leaf_rt_rq_list);
7966}
7967
7968static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7969{
7970 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7971}
6d6bc0ad 7972#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
7973static inline void free_rt_sched_group(struct task_group *tg)
7974{
7975}
7976
ec7dc8ac
DG
7977static inline
7978int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7979{
7980 return 1;
7981}
7982
7983static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7984{
7985}
7986
7987static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7988{
7989}
6d6bc0ad 7990#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 7991
7c941438 7992#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
7993static void free_sched_group(struct task_group *tg)
7994{
7995 free_fair_sched_group(tg);
7996 free_rt_sched_group(tg);
7997 kfree(tg);
7998}
7999
8000/* allocate runqueue etc for a new task group */
ec7dc8ac 8001struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8002{
8003 struct task_group *tg;
8004 unsigned long flags;
8005 int i;
8006
8007 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8008 if (!tg)
8009 return ERR_PTR(-ENOMEM);
8010
ec7dc8ac 8011 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8012 goto err;
8013
ec7dc8ac 8014 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8015 goto err;
8016
8ed36996 8017 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8018 for_each_possible_cpu(i) {
bccbe08a
PZ
8019 register_fair_sched_group(tg, i);
8020 register_rt_sched_group(tg, i);
9b5b7751 8021 }
6f505b16 8022 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8023
8024 WARN_ON(!parent); /* root should already exist */
8025
8026 tg->parent = parent;
f473aa5e 8027 INIT_LIST_HEAD(&tg->children);
09f2724a 8028 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8029 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8030
9b5b7751 8031 return tg;
29f59db3
SV
8032
8033err:
6f505b16 8034 free_sched_group(tg);
29f59db3
SV
8035 return ERR_PTR(-ENOMEM);
8036}
8037
9b5b7751 8038/* rcu callback to free various structures associated with a task group */
6f505b16 8039static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8040{
29f59db3 8041 /* now it should be safe to free those cfs_rqs */
6f505b16 8042 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8043}
8044
9b5b7751 8045/* Destroy runqueue etc associated with a task group */
4cf86d77 8046void sched_destroy_group(struct task_group *tg)
29f59db3 8047{
8ed36996 8048 unsigned long flags;
9b5b7751 8049 int i;
29f59db3 8050
8ed36996 8051 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8052 for_each_possible_cpu(i) {
bccbe08a
PZ
8053 unregister_fair_sched_group(tg, i);
8054 unregister_rt_sched_group(tg, i);
9b5b7751 8055 }
6f505b16 8056 list_del_rcu(&tg->list);
f473aa5e 8057 list_del_rcu(&tg->siblings);
8ed36996 8058 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8059
9b5b7751 8060 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8061 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8062}
8063
9b5b7751 8064/* change task's runqueue when it moves between groups.
3a252015
IM
8065 * The caller of this function should have put the task in its new group
8066 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8067 * reflect its new group.
9b5b7751
SV
8068 */
8069void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8070{
8071 int on_rq, running;
8072 unsigned long flags;
8073 struct rq *rq;
8074
8075 rq = task_rq_lock(tsk, &flags);
8076
051a1d1a 8077 running = task_current(rq, tsk);
29f59db3
SV
8078 on_rq = tsk->se.on_rq;
8079
0e1f3483 8080 if (on_rq)
29f59db3 8081 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8082 if (unlikely(running))
8083 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8084
6f505b16 8085 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8086
810b3817
PZ
8087#ifdef CONFIG_FAIR_GROUP_SCHED
8088 if (tsk->sched_class->moved_group)
88ec22d3 8089 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8090#endif
8091
0e1f3483
HS
8092 if (unlikely(running))
8093 tsk->sched_class->set_curr_task(rq);
8094 if (on_rq)
371fd7e7 8095 enqueue_task(rq, tsk, 0);
29f59db3 8096
29f59db3
SV
8097 task_rq_unlock(rq, &flags);
8098}
7c941438 8099#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8100
052f1dc7 8101#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8102static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8103{
8104 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8105 int on_rq;
8106
29f59db3 8107 on_rq = se->on_rq;
62fb1851 8108 if (on_rq)
29f59db3
SV
8109 dequeue_entity(cfs_rq, se, 0);
8110
8111 se->load.weight = shares;
e05510d0 8112 se->load.inv_weight = 0;
29f59db3 8113
62fb1851 8114 if (on_rq)
29f59db3 8115 enqueue_entity(cfs_rq, se, 0);
c09595f6 8116}
62fb1851 8117
c09595f6
PZ
8118static void set_se_shares(struct sched_entity *se, unsigned long shares)
8119{
8120 struct cfs_rq *cfs_rq = se->cfs_rq;
8121 struct rq *rq = cfs_rq->rq;
8122 unsigned long flags;
8123
05fa785c 8124 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8125 __set_se_shares(se, shares);
05fa785c 8126 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8127}
8128
8ed36996
PZ
8129static DEFINE_MUTEX(shares_mutex);
8130
4cf86d77 8131int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8132{
8133 int i;
8ed36996 8134 unsigned long flags;
c61935fd 8135
ec7dc8ac
DG
8136 /*
8137 * We can't change the weight of the root cgroup.
8138 */
8139 if (!tg->se[0])
8140 return -EINVAL;
8141
18d95a28
PZ
8142 if (shares < MIN_SHARES)
8143 shares = MIN_SHARES;
cb4ad1ff
MX
8144 else if (shares > MAX_SHARES)
8145 shares = MAX_SHARES;
62fb1851 8146
8ed36996 8147 mutex_lock(&shares_mutex);
9b5b7751 8148 if (tg->shares == shares)
5cb350ba 8149 goto done;
29f59db3 8150
8ed36996 8151 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8152 for_each_possible_cpu(i)
8153 unregister_fair_sched_group(tg, i);
f473aa5e 8154 list_del_rcu(&tg->siblings);
8ed36996 8155 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8156
8157 /* wait for any ongoing reference to this group to finish */
8158 synchronize_sched();
8159
8160 /*
8161 * Now we are free to modify the group's share on each cpu
8162 * w/o tripping rebalance_share or load_balance_fair.
8163 */
9b5b7751 8164 tg->shares = shares;
c09595f6
PZ
8165 for_each_possible_cpu(i) {
8166 /*
8167 * force a rebalance
8168 */
8169 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8170 set_se_shares(tg->se[i], shares);
c09595f6 8171 }
29f59db3 8172
6b2d7700
SV
8173 /*
8174 * Enable load balance activity on this group, by inserting it back on
8175 * each cpu's rq->leaf_cfs_rq_list.
8176 */
8ed36996 8177 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8178 for_each_possible_cpu(i)
8179 register_fair_sched_group(tg, i);
f473aa5e 8180 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8181 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8182done:
8ed36996 8183 mutex_unlock(&shares_mutex);
9b5b7751 8184 return 0;
29f59db3
SV
8185}
8186
5cb350ba
DG
8187unsigned long sched_group_shares(struct task_group *tg)
8188{
8189 return tg->shares;
8190}
052f1dc7 8191#endif
5cb350ba 8192
052f1dc7 8193#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8194/*
9f0c1e56 8195 * Ensure that the real time constraints are schedulable.
6f505b16 8196 */
9f0c1e56
PZ
8197static DEFINE_MUTEX(rt_constraints_mutex);
8198
8199static unsigned long to_ratio(u64 period, u64 runtime)
8200{
8201 if (runtime == RUNTIME_INF)
9a7e0b18 8202 return 1ULL << 20;
9f0c1e56 8203
9a7e0b18 8204 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8205}
8206
9a7e0b18
PZ
8207/* Must be called with tasklist_lock held */
8208static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8209{
9a7e0b18 8210 struct task_struct *g, *p;
b40b2e8e 8211
9a7e0b18
PZ
8212 do_each_thread(g, p) {
8213 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8214 return 1;
8215 } while_each_thread(g, p);
b40b2e8e 8216
9a7e0b18
PZ
8217 return 0;
8218}
b40b2e8e 8219
9a7e0b18
PZ
8220struct rt_schedulable_data {
8221 struct task_group *tg;
8222 u64 rt_period;
8223 u64 rt_runtime;
8224};
b40b2e8e 8225
9a7e0b18
PZ
8226static int tg_schedulable(struct task_group *tg, void *data)
8227{
8228 struct rt_schedulable_data *d = data;
8229 struct task_group *child;
8230 unsigned long total, sum = 0;
8231 u64 period, runtime;
b40b2e8e 8232
9a7e0b18
PZ
8233 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8234 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8235
9a7e0b18
PZ
8236 if (tg == d->tg) {
8237 period = d->rt_period;
8238 runtime = d->rt_runtime;
b40b2e8e 8239 }
b40b2e8e 8240
4653f803
PZ
8241 /*
8242 * Cannot have more runtime than the period.
8243 */
8244 if (runtime > period && runtime != RUNTIME_INF)
8245 return -EINVAL;
6f505b16 8246
4653f803
PZ
8247 /*
8248 * Ensure we don't starve existing RT tasks.
8249 */
9a7e0b18
PZ
8250 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8251 return -EBUSY;
6f505b16 8252
9a7e0b18 8253 total = to_ratio(period, runtime);
6f505b16 8254
4653f803
PZ
8255 /*
8256 * Nobody can have more than the global setting allows.
8257 */
8258 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8259 return -EINVAL;
6f505b16 8260
4653f803
PZ
8261 /*
8262 * The sum of our children's runtime should not exceed our own.
8263 */
9a7e0b18
PZ
8264 list_for_each_entry_rcu(child, &tg->children, siblings) {
8265 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8266 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8267
9a7e0b18
PZ
8268 if (child == d->tg) {
8269 period = d->rt_period;
8270 runtime = d->rt_runtime;
8271 }
6f505b16 8272
9a7e0b18 8273 sum += to_ratio(period, runtime);
9f0c1e56 8274 }
6f505b16 8275
9a7e0b18
PZ
8276 if (sum > total)
8277 return -EINVAL;
8278
8279 return 0;
6f505b16
PZ
8280}
8281
9a7e0b18 8282static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8283{
9a7e0b18
PZ
8284 struct rt_schedulable_data data = {
8285 .tg = tg,
8286 .rt_period = period,
8287 .rt_runtime = runtime,
8288 };
8289
8290 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8291}
8292
d0b27fa7
PZ
8293static int tg_set_bandwidth(struct task_group *tg,
8294 u64 rt_period, u64 rt_runtime)
6f505b16 8295{
ac086bc2 8296 int i, err = 0;
9f0c1e56 8297
9f0c1e56 8298 mutex_lock(&rt_constraints_mutex);
521f1a24 8299 read_lock(&tasklist_lock);
9a7e0b18
PZ
8300 err = __rt_schedulable(tg, rt_period, rt_runtime);
8301 if (err)
9f0c1e56 8302 goto unlock;
ac086bc2 8303
0986b11b 8304 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8305 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8306 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8307
8308 for_each_possible_cpu(i) {
8309 struct rt_rq *rt_rq = tg->rt_rq[i];
8310
0986b11b 8311 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8312 rt_rq->rt_runtime = rt_runtime;
0986b11b 8313 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8314 }
0986b11b 8315 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8316 unlock:
521f1a24 8317 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8318 mutex_unlock(&rt_constraints_mutex);
8319
8320 return err;
6f505b16
PZ
8321}
8322
d0b27fa7
PZ
8323int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8324{
8325 u64 rt_runtime, rt_period;
8326
8327 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8328 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8329 if (rt_runtime_us < 0)
8330 rt_runtime = RUNTIME_INF;
8331
8332 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8333}
8334
9f0c1e56
PZ
8335long sched_group_rt_runtime(struct task_group *tg)
8336{
8337 u64 rt_runtime_us;
8338
d0b27fa7 8339 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8340 return -1;
8341
d0b27fa7 8342 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8343 do_div(rt_runtime_us, NSEC_PER_USEC);
8344 return rt_runtime_us;
8345}
d0b27fa7
PZ
8346
8347int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8348{
8349 u64 rt_runtime, rt_period;
8350
8351 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8352 rt_runtime = tg->rt_bandwidth.rt_runtime;
8353
619b0488
R
8354 if (rt_period == 0)
8355 return -EINVAL;
8356
d0b27fa7
PZ
8357 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8358}
8359
8360long sched_group_rt_period(struct task_group *tg)
8361{
8362 u64 rt_period_us;
8363
8364 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8365 do_div(rt_period_us, NSEC_PER_USEC);
8366 return rt_period_us;
8367}
8368
8369static int sched_rt_global_constraints(void)
8370{
4653f803 8371 u64 runtime, period;
d0b27fa7
PZ
8372 int ret = 0;
8373
ec5d4989
HS
8374 if (sysctl_sched_rt_period <= 0)
8375 return -EINVAL;
8376
4653f803
PZ
8377 runtime = global_rt_runtime();
8378 period = global_rt_period();
8379
8380 /*
8381 * Sanity check on the sysctl variables.
8382 */
8383 if (runtime > period && runtime != RUNTIME_INF)
8384 return -EINVAL;
10b612f4 8385
d0b27fa7 8386 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8387 read_lock(&tasklist_lock);
4653f803 8388 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8389 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8390 mutex_unlock(&rt_constraints_mutex);
8391
8392 return ret;
8393}
54e99124
DG
8394
8395int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8396{
8397 /* Don't accept realtime tasks when there is no way for them to run */
8398 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8399 return 0;
8400
8401 return 1;
8402}
8403
6d6bc0ad 8404#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8405static int sched_rt_global_constraints(void)
8406{
ac086bc2
PZ
8407 unsigned long flags;
8408 int i;
8409
ec5d4989
HS
8410 if (sysctl_sched_rt_period <= 0)
8411 return -EINVAL;
8412
60aa605d
PZ
8413 /*
8414 * There's always some RT tasks in the root group
8415 * -- migration, kstopmachine etc..
8416 */
8417 if (sysctl_sched_rt_runtime == 0)
8418 return -EBUSY;
8419
0986b11b 8420 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8421 for_each_possible_cpu(i) {
8422 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8423
0986b11b 8424 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8425 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8426 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8427 }
0986b11b 8428 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8429
d0b27fa7
PZ
8430 return 0;
8431}
6d6bc0ad 8432#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8433
8434int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8435 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8436 loff_t *ppos)
8437{
8438 int ret;
8439 int old_period, old_runtime;
8440 static DEFINE_MUTEX(mutex);
8441
8442 mutex_lock(&mutex);
8443 old_period = sysctl_sched_rt_period;
8444 old_runtime = sysctl_sched_rt_runtime;
8445
8d65af78 8446 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8447
8448 if (!ret && write) {
8449 ret = sched_rt_global_constraints();
8450 if (ret) {
8451 sysctl_sched_rt_period = old_period;
8452 sysctl_sched_rt_runtime = old_runtime;
8453 } else {
8454 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8455 def_rt_bandwidth.rt_period =
8456 ns_to_ktime(global_rt_period());
8457 }
8458 }
8459 mutex_unlock(&mutex);
8460
8461 return ret;
8462}
68318b8e 8463
052f1dc7 8464#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8465
8466/* return corresponding task_group object of a cgroup */
2b01dfe3 8467static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8468{
2b01dfe3
PM
8469 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8470 struct task_group, css);
68318b8e
SV
8471}
8472
8473static struct cgroup_subsys_state *
2b01dfe3 8474cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8475{
ec7dc8ac 8476 struct task_group *tg, *parent;
68318b8e 8477
2b01dfe3 8478 if (!cgrp->parent) {
68318b8e 8479 /* This is early initialization for the top cgroup */
68318b8e
SV
8480 return &init_task_group.css;
8481 }
8482
ec7dc8ac
DG
8483 parent = cgroup_tg(cgrp->parent);
8484 tg = sched_create_group(parent);
68318b8e
SV
8485 if (IS_ERR(tg))
8486 return ERR_PTR(-ENOMEM);
8487
68318b8e
SV
8488 return &tg->css;
8489}
8490
41a2d6cf
IM
8491static void
8492cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8493{
2b01dfe3 8494 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8495
8496 sched_destroy_group(tg);
8497}
8498
41a2d6cf 8499static int
be367d09 8500cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8501{
b68aa230 8502#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8503 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8504 return -EINVAL;
8505#else
68318b8e
SV
8506 /* We don't support RT-tasks being in separate groups */
8507 if (tsk->sched_class != &fair_sched_class)
8508 return -EINVAL;
b68aa230 8509#endif
be367d09
BB
8510 return 0;
8511}
68318b8e 8512
be367d09
BB
8513static int
8514cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8515 struct task_struct *tsk, bool threadgroup)
8516{
8517 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8518 if (retval)
8519 return retval;
8520 if (threadgroup) {
8521 struct task_struct *c;
8522 rcu_read_lock();
8523 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8524 retval = cpu_cgroup_can_attach_task(cgrp, c);
8525 if (retval) {
8526 rcu_read_unlock();
8527 return retval;
8528 }
8529 }
8530 rcu_read_unlock();
8531 }
68318b8e
SV
8532 return 0;
8533}
8534
8535static void
2b01dfe3 8536cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8537 struct cgroup *old_cont, struct task_struct *tsk,
8538 bool threadgroup)
68318b8e
SV
8539{
8540 sched_move_task(tsk);
be367d09
BB
8541 if (threadgroup) {
8542 struct task_struct *c;
8543 rcu_read_lock();
8544 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8545 sched_move_task(c);
8546 }
8547 rcu_read_unlock();
8548 }
68318b8e
SV
8549}
8550
052f1dc7 8551#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8552static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8553 u64 shareval)
68318b8e 8554{
2b01dfe3 8555 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8556}
8557
f4c753b7 8558static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8559{
2b01dfe3 8560 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8561
8562 return (u64) tg->shares;
8563}
6d6bc0ad 8564#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8565
052f1dc7 8566#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8567static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8568 s64 val)
6f505b16 8569{
06ecb27c 8570 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8571}
8572
06ecb27c 8573static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8574{
06ecb27c 8575 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8576}
d0b27fa7
PZ
8577
8578static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8579 u64 rt_period_us)
8580{
8581 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8582}
8583
8584static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8585{
8586 return sched_group_rt_period(cgroup_tg(cgrp));
8587}
6d6bc0ad 8588#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8589
fe5c7cc2 8590static struct cftype cpu_files[] = {
052f1dc7 8591#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8592 {
8593 .name = "shares",
f4c753b7
PM
8594 .read_u64 = cpu_shares_read_u64,
8595 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8596 },
052f1dc7
PZ
8597#endif
8598#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8599 {
9f0c1e56 8600 .name = "rt_runtime_us",
06ecb27c
PM
8601 .read_s64 = cpu_rt_runtime_read,
8602 .write_s64 = cpu_rt_runtime_write,
6f505b16 8603 },
d0b27fa7
PZ
8604 {
8605 .name = "rt_period_us",
f4c753b7
PM
8606 .read_u64 = cpu_rt_period_read_uint,
8607 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8608 },
052f1dc7 8609#endif
68318b8e
SV
8610};
8611
8612static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8613{
fe5c7cc2 8614 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8615}
8616
8617struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8618 .name = "cpu",
8619 .create = cpu_cgroup_create,
8620 .destroy = cpu_cgroup_destroy,
8621 .can_attach = cpu_cgroup_can_attach,
8622 .attach = cpu_cgroup_attach,
8623 .populate = cpu_cgroup_populate,
8624 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8625 .early_init = 1,
8626};
8627
052f1dc7 8628#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8629
8630#ifdef CONFIG_CGROUP_CPUACCT
8631
8632/*
8633 * CPU accounting code for task groups.
8634 *
8635 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8636 * (balbir@in.ibm.com).
8637 */
8638
934352f2 8639/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8640struct cpuacct {
8641 struct cgroup_subsys_state css;
8642 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8643 u64 __percpu *cpuusage;
ef12fefa 8644 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8645 struct cpuacct *parent;
d842de87
SV
8646};
8647
8648struct cgroup_subsys cpuacct_subsys;
8649
8650/* return cpu accounting group corresponding to this container */
32cd756a 8651static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8652{
32cd756a 8653 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8654 struct cpuacct, css);
8655}
8656
8657/* return cpu accounting group to which this task belongs */
8658static inline struct cpuacct *task_ca(struct task_struct *tsk)
8659{
8660 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8661 struct cpuacct, css);
8662}
8663
8664/* create a new cpu accounting group */
8665static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8666 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8667{
8668 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8669 int i;
d842de87
SV
8670
8671 if (!ca)
ef12fefa 8672 goto out;
d842de87
SV
8673
8674 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8675 if (!ca->cpuusage)
8676 goto out_free_ca;
8677
8678 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8679 if (percpu_counter_init(&ca->cpustat[i], 0))
8680 goto out_free_counters;
d842de87 8681
934352f2
BR
8682 if (cgrp->parent)
8683 ca->parent = cgroup_ca(cgrp->parent);
8684
d842de87 8685 return &ca->css;
ef12fefa
BR
8686
8687out_free_counters:
8688 while (--i >= 0)
8689 percpu_counter_destroy(&ca->cpustat[i]);
8690 free_percpu(ca->cpuusage);
8691out_free_ca:
8692 kfree(ca);
8693out:
8694 return ERR_PTR(-ENOMEM);
d842de87
SV
8695}
8696
8697/* destroy an existing cpu accounting group */
41a2d6cf 8698static void
32cd756a 8699cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8700{
32cd756a 8701 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8702 int i;
d842de87 8703
ef12fefa
BR
8704 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8705 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8706 free_percpu(ca->cpuusage);
8707 kfree(ca);
8708}
8709
720f5498
KC
8710static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8711{
b36128c8 8712 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8713 u64 data;
8714
8715#ifndef CONFIG_64BIT
8716 /*
8717 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8718 */
05fa785c 8719 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8720 data = *cpuusage;
05fa785c 8721 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8722#else
8723 data = *cpuusage;
8724#endif
8725
8726 return data;
8727}
8728
8729static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8730{
b36128c8 8731 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8732
8733#ifndef CONFIG_64BIT
8734 /*
8735 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8736 */
05fa785c 8737 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8738 *cpuusage = val;
05fa785c 8739 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8740#else
8741 *cpuusage = val;
8742#endif
8743}
8744
d842de87 8745/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8746static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8747{
32cd756a 8748 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8749 u64 totalcpuusage = 0;
8750 int i;
8751
720f5498
KC
8752 for_each_present_cpu(i)
8753 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8754
8755 return totalcpuusage;
8756}
8757
0297b803
DG
8758static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8759 u64 reset)
8760{
8761 struct cpuacct *ca = cgroup_ca(cgrp);
8762 int err = 0;
8763 int i;
8764
8765 if (reset) {
8766 err = -EINVAL;
8767 goto out;
8768 }
8769
720f5498
KC
8770 for_each_present_cpu(i)
8771 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8772
0297b803
DG
8773out:
8774 return err;
8775}
8776
e9515c3c
KC
8777static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8778 struct seq_file *m)
8779{
8780 struct cpuacct *ca = cgroup_ca(cgroup);
8781 u64 percpu;
8782 int i;
8783
8784 for_each_present_cpu(i) {
8785 percpu = cpuacct_cpuusage_read(ca, i);
8786 seq_printf(m, "%llu ", (unsigned long long) percpu);
8787 }
8788 seq_printf(m, "\n");
8789 return 0;
8790}
8791
ef12fefa
BR
8792static const char *cpuacct_stat_desc[] = {
8793 [CPUACCT_STAT_USER] = "user",
8794 [CPUACCT_STAT_SYSTEM] = "system",
8795};
8796
8797static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8798 struct cgroup_map_cb *cb)
8799{
8800 struct cpuacct *ca = cgroup_ca(cgrp);
8801 int i;
8802
8803 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8804 s64 val = percpu_counter_read(&ca->cpustat[i]);
8805 val = cputime64_to_clock_t(val);
8806 cb->fill(cb, cpuacct_stat_desc[i], val);
8807 }
8808 return 0;
8809}
8810
d842de87
SV
8811static struct cftype files[] = {
8812 {
8813 .name = "usage",
f4c753b7
PM
8814 .read_u64 = cpuusage_read,
8815 .write_u64 = cpuusage_write,
d842de87 8816 },
e9515c3c
KC
8817 {
8818 .name = "usage_percpu",
8819 .read_seq_string = cpuacct_percpu_seq_read,
8820 },
ef12fefa
BR
8821 {
8822 .name = "stat",
8823 .read_map = cpuacct_stats_show,
8824 },
d842de87
SV
8825};
8826
32cd756a 8827static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8828{
32cd756a 8829 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8830}
8831
8832/*
8833 * charge this task's execution time to its accounting group.
8834 *
8835 * called with rq->lock held.
8836 */
8837static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8838{
8839 struct cpuacct *ca;
934352f2 8840 int cpu;
d842de87 8841
c40c6f85 8842 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8843 return;
8844
934352f2 8845 cpu = task_cpu(tsk);
a18b83b7
BR
8846
8847 rcu_read_lock();
8848
d842de87 8849 ca = task_ca(tsk);
d842de87 8850
934352f2 8851 for (; ca; ca = ca->parent) {
b36128c8 8852 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8853 *cpuusage += cputime;
8854 }
a18b83b7
BR
8855
8856 rcu_read_unlock();
d842de87
SV
8857}
8858
fa535a77
AB
8859/*
8860 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8861 * in cputime_t units. As a result, cpuacct_update_stats calls
8862 * percpu_counter_add with values large enough to always overflow the
8863 * per cpu batch limit causing bad SMP scalability.
8864 *
8865 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8866 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8867 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8868 */
8869#ifdef CONFIG_SMP
8870#define CPUACCT_BATCH \
8871 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8872#else
8873#define CPUACCT_BATCH 0
8874#endif
8875
ef12fefa
BR
8876/*
8877 * Charge the system/user time to the task's accounting group.
8878 */
8879static void cpuacct_update_stats(struct task_struct *tsk,
8880 enum cpuacct_stat_index idx, cputime_t val)
8881{
8882 struct cpuacct *ca;
fa535a77 8883 int batch = CPUACCT_BATCH;
ef12fefa
BR
8884
8885 if (unlikely(!cpuacct_subsys.active))
8886 return;
8887
8888 rcu_read_lock();
8889 ca = task_ca(tsk);
8890
8891 do {
fa535a77 8892 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
8893 ca = ca->parent;
8894 } while (ca);
8895 rcu_read_unlock();
8896}
8897
d842de87
SV
8898struct cgroup_subsys cpuacct_subsys = {
8899 .name = "cpuacct",
8900 .create = cpuacct_create,
8901 .destroy = cpuacct_destroy,
8902 .populate = cpuacct_populate,
8903 .subsys_id = cpuacct_subsys_id,
8904};
8905#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
8906
8907#ifndef CONFIG_SMP
8908
03b042bf
PM
8909void synchronize_sched_expedited(void)
8910{
fc390cde 8911 barrier();
03b042bf
PM
8912}
8913EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8914
8915#else /* #ifndef CONFIG_SMP */
8916
cc631fb7 8917static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 8918
cc631fb7 8919static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 8920{
969c7921
TH
8921 /*
8922 * There must be a full memory barrier on each affected CPU
8923 * between the time that try_stop_cpus() is called and the
8924 * time that it returns.
8925 *
8926 * In the current initial implementation of cpu_stop, the
8927 * above condition is already met when the control reaches
8928 * this point and the following smp_mb() is not strictly
8929 * necessary. Do smp_mb() anyway for documentation and
8930 * robustness against future implementation changes.
8931 */
cc631fb7 8932 smp_mb(); /* See above comment block. */
969c7921 8933 return 0;
03b042bf 8934}
03b042bf
PM
8935
8936/*
8937 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
8938 * approach to force grace period to end quickly. This consumes
8939 * significant time on all CPUs, and is thus not recommended for
8940 * any sort of common-case code.
8941 *
8942 * Note that it is illegal to call this function while holding any
8943 * lock that is acquired by a CPU-hotplug notifier. Failing to
8944 * observe this restriction will result in deadlock.
8945 */
8946void synchronize_sched_expedited(void)
8947{
969c7921 8948 int snap, trycount = 0;
03b042bf
PM
8949
8950 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 8951 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 8952 get_online_cpus();
969c7921
TH
8953 while (try_stop_cpus(cpu_online_mask,
8954 synchronize_sched_expedited_cpu_stop,
94458d5e 8955 NULL) == -EAGAIN) {
03b042bf
PM
8956 put_online_cpus();
8957 if (trycount++ < 10)
8958 udelay(trycount * num_online_cpus());
8959 else {
8960 synchronize_sched();
8961 return;
8962 }
969c7921 8963 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
8964 smp_mb(); /* ensure test happens before caller kfree */
8965 return;
8966 }
8967 get_online_cpus();
8968 }
969c7921 8969 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 8970 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 8971 put_online_cpus();
03b042bf
PM
8972}
8973EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8974
8975#endif /* #else #ifndef CONFIG_SMP */
This page took 3.896451 seconds and 5 git commands to generate.