sched: 64-bit: fix arithmetics overflow
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4
LT
76
77/*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
d7876a08 96 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 97 */
d6322faf 98#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 99
6aa645ea
IM
100#define NICE_0_LOAD SCHED_LOAD_SCALE
101#define NICE_0_SHIFT SCHED_LOAD_SHIFT
102
1da177e4
LT
103/*
104 * These are the 'tuning knobs' of the scheduler:
105 *
a4ec24b4 106 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
107 * Timeslices get refilled after they expire.
108 */
1da177e4 109#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 110
d0b27fa7
PZ
111/*
112 * single value that denotes runtime == period, ie unlimited time.
113 */
114#define RUNTIME_INF ((u64)~0ULL)
115
5517d86b
ED
116#ifdef CONFIG_SMP
117/*
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 */
121static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122{
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124}
125
126/*
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
129 */
130static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131{
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134}
135#endif
136
e05606d3
IM
137static inline int rt_policy(int policy)
138{
3f33a7ce 139 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
140 return 1;
141 return 0;
142}
143
144static inline int task_has_rt_policy(struct task_struct *p)
145{
146 return rt_policy(p->policy);
147}
148
1da177e4 149/*
6aa645ea 150 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 151 */
6aa645ea
IM
152struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 struct list_head queue[MAX_RT_PRIO];
155};
156
d0b27fa7 157struct rt_bandwidth {
ea736ed5
IM
158 /* nests inside the rq lock: */
159 spinlock_t rt_runtime_lock;
160 ktime_t rt_period;
161 u64 rt_runtime;
162 struct hrtimer rt_period_timer;
d0b27fa7
PZ
163};
164
165static struct rt_bandwidth def_rt_bandwidth;
166
167static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
168
169static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
170{
171 struct rt_bandwidth *rt_b =
172 container_of(timer, struct rt_bandwidth, rt_period_timer);
173 ktime_t now;
174 int overrun;
175 int idle = 0;
176
177 for (;;) {
178 now = hrtimer_cb_get_time(timer);
179 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
180
181 if (!overrun)
182 break;
183
184 idle = do_sched_rt_period_timer(rt_b, overrun);
185 }
186
187 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
188}
189
190static
191void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
192{
193 rt_b->rt_period = ns_to_ktime(period);
194 rt_b->rt_runtime = runtime;
195
ac086bc2
PZ
196 spin_lock_init(&rt_b->rt_runtime_lock);
197
d0b27fa7
PZ
198 hrtimer_init(&rt_b->rt_period_timer,
199 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
200 rt_b->rt_period_timer.function = sched_rt_period_timer;
201 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
202}
203
204static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
205{
206 ktime_t now;
207
208 if (rt_b->rt_runtime == RUNTIME_INF)
209 return;
210
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 return;
213
214 spin_lock(&rt_b->rt_runtime_lock);
215 for (;;) {
216 if (hrtimer_active(&rt_b->rt_period_timer))
217 break;
218
219 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
220 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
221 hrtimer_start(&rt_b->rt_period_timer,
222 rt_b->rt_period_timer.expires,
223 HRTIMER_MODE_ABS);
224 }
225 spin_unlock(&rt_b->rt_runtime_lock);
226}
227
228#ifdef CONFIG_RT_GROUP_SCHED
229static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
230{
231 hrtimer_cancel(&rt_b->rt_period_timer);
232}
233#endif
234
712555ee
HC
235/*
236 * sched_domains_mutex serializes calls to arch_init_sched_domains,
237 * detach_destroy_domains and partition_sched_domains.
238 */
239static DEFINE_MUTEX(sched_domains_mutex);
240
052f1dc7 241#ifdef CONFIG_GROUP_SCHED
29f59db3 242
68318b8e
SV
243#include <linux/cgroup.h>
244
29f59db3
SV
245struct cfs_rq;
246
6f505b16
PZ
247static LIST_HEAD(task_groups);
248
29f59db3 249/* task group related information */
4cf86d77 250struct task_group {
052f1dc7 251#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
252 struct cgroup_subsys_state css;
253#endif
052f1dc7
PZ
254
255#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
256 /* schedulable entities of this group on each cpu */
257 struct sched_entity **se;
258 /* runqueue "owned" by this group on each cpu */
259 struct cfs_rq **cfs_rq;
260 unsigned long shares;
052f1dc7
PZ
261#endif
262
263#ifdef CONFIG_RT_GROUP_SCHED
264 struct sched_rt_entity **rt_se;
265 struct rt_rq **rt_rq;
266
d0b27fa7 267 struct rt_bandwidth rt_bandwidth;
052f1dc7 268#endif
6b2d7700 269
ae8393e5 270 struct rcu_head rcu;
6f505b16 271 struct list_head list;
f473aa5e
PZ
272
273 struct task_group *parent;
274 struct list_head siblings;
275 struct list_head children;
29f59db3
SV
276};
277
354d60c2 278#ifdef CONFIG_USER_SCHED
eff766a6
PZ
279
280/*
281 * Root task group.
282 * Every UID task group (including init_task_group aka UID-0) will
283 * be a child to this group.
284 */
285struct task_group root_task_group;
286
052f1dc7 287#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
288/* Default task group's sched entity on each cpu */
289static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
290/* Default task group's cfs_rq on each cpu */
291static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
052f1dc7
PZ
292#endif
293
294#ifdef CONFIG_RT_GROUP_SCHED
295static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
296static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
052f1dc7 297#endif
eff766a6
PZ
298#else
299#define root_task_group init_task_group
354d60c2 300#endif
6f505b16 301
8ed36996 302/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
303 * a task group's cpu shares.
304 */
8ed36996 305static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 306
052f1dc7 307#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
308#ifdef CONFIG_USER_SCHED
309# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
310#else
311# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
312#endif
313
cb4ad1ff 314/*
2e084786
LJ
315 * A weight of 0 or 1 can cause arithmetics problems.
316 * A weight of a cfs_rq is the sum of weights of which entities
317 * are queued on this cfs_rq, so a weight of a entity should not be
318 * too large, so as the shares value of a task group.
cb4ad1ff
MX
319 * (The default weight is 1024 - so there's no practical
320 * limitation from this.)
321 */
18d95a28 322#define MIN_SHARES 2
2e084786 323#define MAX_SHARES (1UL << 18)
18d95a28 324
052f1dc7
PZ
325static int init_task_group_load = INIT_TASK_GROUP_LOAD;
326#endif
327
29f59db3 328/* Default task group.
3a252015 329 * Every task in system belong to this group at bootup.
29f59db3 330 */
434d53b0 331struct task_group init_task_group;
29f59db3
SV
332
333/* return group to which a task belongs */
4cf86d77 334static inline struct task_group *task_group(struct task_struct *p)
29f59db3 335{
4cf86d77 336 struct task_group *tg;
9b5b7751 337
052f1dc7 338#ifdef CONFIG_USER_SCHED
24e377a8 339 tg = p->user->tg;
052f1dc7 340#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
341 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
342 struct task_group, css);
24e377a8 343#else
41a2d6cf 344 tg = &init_task_group;
24e377a8 345#endif
9b5b7751 346 return tg;
29f59db3
SV
347}
348
349/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 350static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 351{
052f1dc7 352#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
353 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
354 p->se.parent = task_group(p)->se[cpu];
052f1dc7 355#endif
6f505b16 356
052f1dc7 357#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
358 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
359 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 360#endif
29f59db3
SV
361}
362
363#else
364
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 366
052f1dc7 367#endif /* CONFIG_GROUP_SCHED */
29f59db3 368
6aa645ea
IM
369/* CFS-related fields in a runqueue */
370struct cfs_rq {
371 struct load_weight load;
372 unsigned long nr_running;
373
6aa645ea 374 u64 exec_clock;
e9acbff6 375 u64 min_vruntime;
6aa645ea
IM
376
377 struct rb_root tasks_timeline;
378 struct rb_node *rb_leftmost;
4a55bd5e
PZ
379
380 struct list_head tasks;
381 struct list_head *balance_iterator;
382
383 /*
384 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
385 * It is set to NULL otherwise (i.e when none are currently running).
386 */
aa2ac252 387 struct sched_entity *curr, *next;
ddc97297
PZ
388
389 unsigned long nr_spread_over;
390
62160e3f 391#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
392 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
393
41a2d6cf
IM
394 /*
395 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
396 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
397 * (like users, containers etc.)
398 *
399 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
400 * list is used during load balance.
401 */
41a2d6cf
IM
402 struct list_head leaf_cfs_rq_list;
403 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
404#endif
405};
1da177e4 406
6aa645ea
IM
407/* Real-Time classes' related field in a runqueue: */
408struct rt_rq {
409 struct rt_prio_array active;
63489e45 410 unsigned long rt_nr_running;
052f1dc7 411#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
412 int highest_prio; /* highest queued rt task prio */
413#endif
fa85ae24 414#ifdef CONFIG_SMP
73fe6aae 415 unsigned long rt_nr_migratory;
a22d7fc1 416 int overloaded;
fa85ae24 417#endif
6f505b16 418 int rt_throttled;
fa85ae24 419 u64 rt_time;
ac086bc2 420 u64 rt_runtime;
ea736ed5 421 /* Nests inside the rq lock: */
ac086bc2 422 spinlock_t rt_runtime_lock;
6f505b16 423
052f1dc7 424#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
425 unsigned long rt_nr_boosted;
426
6f505b16
PZ
427 struct rq *rq;
428 struct list_head leaf_rt_rq_list;
429 struct task_group *tg;
430 struct sched_rt_entity *rt_se;
431#endif
6aa645ea
IM
432};
433
57d885fe
GH
434#ifdef CONFIG_SMP
435
436/*
437 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
438 * variables. Each exclusive cpuset essentially defines an island domain by
439 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
440 * exclusive cpuset is created, we also create and attach a new root-domain
441 * object.
442 *
57d885fe
GH
443 */
444struct root_domain {
445 atomic_t refcount;
446 cpumask_t span;
447 cpumask_t online;
637f5085 448
0eab9146 449 /*
637f5085
GH
450 * The "RT overload" flag: it gets set if a CPU has more than
451 * one runnable RT task.
452 */
453 cpumask_t rto_mask;
0eab9146 454 atomic_t rto_count;
57d885fe
GH
455};
456
dc938520
GH
457/*
458 * By default the system creates a single root-domain with all cpus as
459 * members (mimicking the global state we have today).
460 */
57d885fe
GH
461static struct root_domain def_root_domain;
462
463#endif
464
1da177e4
LT
465/*
466 * This is the main, per-CPU runqueue data structure.
467 *
468 * Locking rule: those places that want to lock multiple runqueues
469 * (such as the load balancing or the thread migration code), lock
470 * acquire operations must be ordered by ascending &runqueue.
471 */
70b97a7f 472struct rq {
d8016491
IM
473 /* runqueue lock: */
474 spinlock_t lock;
1da177e4
LT
475
476 /*
477 * nr_running and cpu_load should be in the same cacheline because
478 * remote CPUs use both these fields when doing load calculation.
479 */
480 unsigned long nr_running;
6aa645ea
IM
481 #define CPU_LOAD_IDX_MAX 5
482 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 483 unsigned char idle_at_tick;
46cb4b7c 484#ifdef CONFIG_NO_HZ
15934a37 485 unsigned long last_tick_seen;
46cb4b7c
SS
486 unsigned char in_nohz_recently;
487#endif
d8016491
IM
488 /* capture load from *all* tasks on this cpu: */
489 struct load_weight load;
6aa645ea
IM
490 unsigned long nr_load_updates;
491 u64 nr_switches;
492
493 struct cfs_rq cfs;
6f505b16 494 struct rt_rq rt;
6f505b16 495
6aa645ea 496#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
497 /* list of leaf cfs_rq on this cpu: */
498 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
499#endif
500#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 501 struct list_head leaf_rt_rq_list;
1da177e4 502#endif
1da177e4
LT
503
504 /*
505 * This is part of a global counter where only the total sum
506 * over all CPUs matters. A task can increase this counter on
507 * one CPU and if it got migrated afterwards it may decrease
508 * it on another CPU. Always updated under the runqueue lock:
509 */
510 unsigned long nr_uninterruptible;
511
36c8b586 512 struct task_struct *curr, *idle;
c9819f45 513 unsigned long next_balance;
1da177e4 514 struct mm_struct *prev_mm;
6aa645ea 515
3e51f33f 516 u64 clock;
6aa645ea 517
1da177e4
LT
518 atomic_t nr_iowait;
519
520#ifdef CONFIG_SMP
0eab9146 521 struct root_domain *rd;
1da177e4
LT
522 struct sched_domain *sd;
523
524 /* For active balancing */
525 int active_balance;
526 int push_cpu;
d8016491
IM
527 /* cpu of this runqueue: */
528 int cpu;
1da177e4 529
36c8b586 530 struct task_struct *migration_thread;
1da177e4
LT
531 struct list_head migration_queue;
532#endif
533
8f4d37ec
PZ
534#ifdef CONFIG_SCHED_HRTICK
535 unsigned long hrtick_flags;
536 ktime_t hrtick_expire;
537 struct hrtimer hrtick_timer;
538#endif
539
1da177e4
LT
540#ifdef CONFIG_SCHEDSTATS
541 /* latency stats */
542 struct sched_info rq_sched_info;
543
544 /* sys_sched_yield() stats */
480b9434
KC
545 unsigned int yld_exp_empty;
546 unsigned int yld_act_empty;
547 unsigned int yld_both_empty;
548 unsigned int yld_count;
1da177e4
LT
549
550 /* schedule() stats */
480b9434
KC
551 unsigned int sched_switch;
552 unsigned int sched_count;
553 unsigned int sched_goidle;
1da177e4
LT
554
555 /* try_to_wake_up() stats */
480b9434
KC
556 unsigned int ttwu_count;
557 unsigned int ttwu_local;
b8efb561
IM
558
559 /* BKL stats */
480b9434 560 unsigned int bkl_count;
1da177e4 561#endif
fcb99371 562 struct lock_class_key rq_lock_key;
1da177e4
LT
563};
564
f34e3b61 565static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 566
dd41f596
IM
567static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
568{
569 rq->curr->sched_class->check_preempt_curr(rq, p);
570}
571
0a2966b4
CL
572static inline int cpu_of(struct rq *rq)
573{
574#ifdef CONFIG_SMP
575 return rq->cpu;
576#else
577 return 0;
578#endif
579}
580
674311d5
NP
581/*
582 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 583 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
584 *
585 * The domain tree of any CPU may only be accessed from within
586 * preempt-disabled sections.
587 */
48f24c4d
IM
588#define for_each_domain(cpu, __sd) \
589 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
590
591#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
592#define this_rq() (&__get_cpu_var(runqueues))
593#define task_rq(p) cpu_rq(task_cpu(p))
594#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
595
3e51f33f
PZ
596static inline void update_rq_clock(struct rq *rq)
597{
598 rq->clock = sched_clock_cpu(cpu_of(rq));
599}
600
bf5c91ba
IM
601/*
602 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
603 */
604#ifdef CONFIG_SCHED_DEBUG
605# define const_debug __read_mostly
606#else
607# define const_debug static const
608#endif
609
610/*
611 * Debugging: various feature bits
612 */
f00b45c1
PZ
613
614#define SCHED_FEAT(name, enabled) \
615 __SCHED_FEAT_##name ,
616
bf5c91ba 617enum {
f00b45c1 618#include "sched_features.h"
bf5c91ba
IM
619};
620
f00b45c1
PZ
621#undef SCHED_FEAT
622
623#define SCHED_FEAT(name, enabled) \
624 (1UL << __SCHED_FEAT_##name) * enabled |
625
bf5c91ba 626const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
627#include "sched_features.h"
628 0;
629
630#undef SCHED_FEAT
631
632#ifdef CONFIG_SCHED_DEBUG
633#define SCHED_FEAT(name, enabled) \
634 #name ,
635
983ed7a6 636static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
637#include "sched_features.h"
638 NULL
639};
640
641#undef SCHED_FEAT
642
983ed7a6 643static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
644{
645 filp->private_data = inode->i_private;
646 return 0;
647}
648
649static ssize_t
650sched_feat_read(struct file *filp, char __user *ubuf,
651 size_t cnt, loff_t *ppos)
652{
653 char *buf;
654 int r = 0;
655 int len = 0;
656 int i;
657
658 for (i = 0; sched_feat_names[i]; i++) {
659 len += strlen(sched_feat_names[i]);
660 len += 4;
661 }
662
663 buf = kmalloc(len + 2, GFP_KERNEL);
664 if (!buf)
665 return -ENOMEM;
666
667 for (i = 0; sched_feat_names[i]; i++) {
668 if (sysctl_sched_features & (1UL << i))
669 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
670 else
c24b7c52 671 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
672 }
673
674 r += sprintf(buf + r, "\n");
675 WARN_ON(r >= len + 2);
676
677 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
678
679 kfree(buf);
680
681 return r;
682}
683
684static ssize_t
685sched_feat_write(struct file *filp, const char __user *ubuf,
686 size_t cnt, loff_t *ppos)
687{
688 char buf[64];
689 char *cmp = buf;
690 int neg = 0;
691 int i;
692
693 if (cnt > 63)
694 cnt = 63;
695
696 if (copy_from_user(&buf, ubuf, cnt))
697 return -EFAULT;
698
699 buf[cnt] = 0;
700
c24b7c52 701 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
702 neg = 1;
703 cmp += 3;
704 }
705
706 for (i = 0; sched_feat_names[i]; i++) {
707 int len = strlen(sched_feat_names[i]);
708
709 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
710 if (neg)
711 sysctl_sched_features &= ~(1UL << i);
712 else
713 sysctl_sched_features |= (1UL << i);
714 break;
715 }
716 }
717
718 if (!sched_feat_names[i])
719 return -EINVAL;
720
721 filp->f_pos += cnt;
722
723 return cnt;
724}
725
726static struct file_operations sched_feat_fops = {
727 .open = sched_feat_open,
728 .read = sched_feat_read,
729 .write = sched_feat_write,
730};
731
732static __init int sched_init_debug(void)
733{
f00b45c1
PZ
734 debugfs_create_file("sched_features", 0644, NULL, NULL,
735 &sched_feat_fops);
736
737 return 0;
738}
739late_initcall(sched_init_debug);
740
741#endif
742
743#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 744
b82d9fdd
PZ
745/*
746 * Number of tasks to iterate in a single balance run.
747 * Limited because this is done with IRQs disabled.
748 */
749const_debug unsigned int sysctl_sched_nr_migrate = 32;
750
fa85ae24 751/*
9f0c1e56 752 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
753 * default: 1s
754 */
9f0c1e56 755unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 756
6892b75e
IM
757static __read_mostly int scheduler_running;
758
9f0c1e56
PZ
759/*
760 * part of the period that we allow rt tasks to run in us.
761 * default: 0.95s
762 */
763int sysctl_sched_rt_runtime = 950000;
fa85ae24 764
d0b27fa7
PZ
765static inline u64 global_rt_period(void)
766{
767 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
768}
769
770static inline u64 global_rt_runtime(void)
771{
772 if (sysctl_sched_rt_period < 0)
773 return RUNTIME_INF;
774
775 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
776}
fa85ae24 777
690229a0 778unsigned long long time_sync_thresh = 100000;
27ec4407
IM
779
780static DEFINE_PER_CPU(unsigned long long, time_offset);
781static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
782
e436d800 783/*
27ec4407
IM
784 * Global lock which we take every now and then to synchronize
785 * the CPUs time. This method is not warp-safe, but it's good
786 * enough to synchronize slowly diverging time sources and thus
787 * it's good enough for tracing:
e436d800 788 */
27ec4407
IM
789static DEFINE_SPINLOCK(time_sync_lock);
790static unsigned long long prev_global_time;
791
dfbf4a1b 792static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
27ec4407 793{
dfbf4a1b
IM
794 /*
795 * We want this inlined, to not get tracer function calls
796 * in this critical section:
797 */
798 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
799 __raw_spin_lock(&time_sync_lock.raw_lock);
27ec4407
IM
800
801 if (time < prev_global_time) {
802 per_cpu(time_offset, cpu) += prev_global_time - time;
803 time = prev_global_time;
804 } else {
805 prev_global_time = time;
806 }
807
dfbf4a1b
IM
808 __raw_spin_unlock(&time_sync_lock.raw_lock);
809 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
27ec4407
IM
810
811 return time;
812}
813
814static unsigned long long __cpu_clock(int cpu)
e436d800 815{
e436d800 816 unsigned long long now;
e436d800 817
8ced5f69
IM
818 /*
819 * Only call sched_clock() if the scheduler has already been
820 * initialized (some code might call cpu_clock() very early):
821 */
6892b75e
IM
822 if (unlikely(!scheduler_running))
823 return 0;
824
3e51f33f 825 now = sched_clock_cpu(cpu);
e436d800
IM
826
827 return now;
828}
27ec4407
IM
829
830/*
831 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
832 * clock constructed from sched_clock():
833 */
834unsigned long long cpu_clock(int cpu)
835{
836 unsigned long long prev_cpu_time, time, delta_time;
dfbf4a1b 837 unsigned long flags;
27ec4407 838
dfbf4a1b 839 local_irq_save(flags);
27ec4407
IM
840 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
841 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
842 delta_time = time-prev_cpu_time;
843
dfbf4a1b 844 if (unlikely(delta_time > time_sync_thresh)) {
27ec4407 845 time = __sync_cpu_clock(time, cpu);
dfbf4a1b
IM
846 per_cpu(prev_cpu_time, cpu) = time;
847 }
848 local_irq_restore(flags);
27ec4407
IM
849
850 return time;
851}
a58f6f25 852EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 853
1da177e4 854#ifndef prepare_arch_switch
4866cde0
NP
855# define prepare_arch_switch(next) do { } while (0)
856#endif
857#ifndef finish_arch_switch
858# define finish_arch_switch(prev) do { } while (0)
859#endif
860
051a1d1a
DA
861static inline int task_current(struct rq *rq, struct task_struct *p)
862{
863 return rq->curr == p;
864}
865
4866cde0 866#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 867static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 868{
051a1d1a 869 return task_current(rq, p);
4866cde0
NP
870}
871
70b97a7f 872static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
873{
874}
875
70b97a7f 876static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 877{
da04c035
IM
878#ifdef CONFIG_DEBUG_SPINLOCK
879 /* this is a valid case when another task releases the spinlock */
880 rq->lock.owner = current;
881#endif
8a25d5de
IM
882 /*
883 * If we are tracking spinlock dependencies then we have to
884 * fix up the runqueue lock - which gets 'carried over' from
885 * prev into current:
886 */
887 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
888
4866cde0
NP
889 spin_unlock_irq(&rq->lock);
890}
891
892#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 893static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
894{
895#ifdef CONFIG_SMP
896 return p->oncpu;
897#else
051a1d1a 898 return task_current(rq, p);
4866cde0
NP
899#endif
900}
901
70b97a7f 902static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
903{
904#ifdef CONFIG_SMP
905 /*
906 * We can optimise this out completely for !SMP, because the
907 * SMP rebalancing from interrupt is the only thing that cares
908 * here.
909 */
910 next->oncpu = 1;
911#endif
912#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 spin_unlock_irq(&rq->lock);
914#else
915 spin_unlock(&rq->lock);
916#endif
917}
918
70b97a7f 919static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
920{
921#ifdef CONFIG_SMP
922 /*
923 * After ->oncpu is cleared, the task can be moved to a different CPU.
924 * We must ensure this doesn't happen until the switch is completely
925 * finished.
926 */
927 smp_wmb();
928 prev->oncpu = 0;
929#endif
930#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 local_irq_enable();
1da177e4 932#endif
4866cde0
NP
933}
934#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 935
b29739f9
IM
936/*
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
939 */
70b97a7f 940static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
941 __acquires(rq->lock)
942{
3a5c359a
AK
943 for (;;) {
944 struct rq *rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
b29739f9 948 spin_unlock(&rq->lock);
b29739f9 949 }
b29739f9
IM
950}
951
1da177e4
LT
952/*
953 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 954 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
955 * explicitly disabling preemption.
956 */
70b97a7f 957static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
958 __acquires(rq->lock)
959{
70b97a7f 960 struct rq *rq;
1da177e4 961
3a5c359a
AK
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
1da177e4 968 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 969 }
1da177e4
LT
970}
971
a9957449 972static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
973 __releases(rq->lock)
974{
975 spin_unlock(&rq->lock);
976}
977
70b97a7f 978static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
979 __releases(rq->lock)
980{
981 spin_unlock_irqrestore(&rq->lock, *flags);
982}
983
1da177e4 984/*
cc2a73b5 985 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 986 */
a9957449 987static struct rq *this_rq_lock(void)
1da177e4
LT
988 __acquires(rq->lock)
989{
70b97a7f 990 struct rq *rq;
1da177e4
LT
991
992 local_irq_disable();
993 rq = this_rq();
994 spin_lock(&rq->lock);
995
996 return rq;
997}
998
8f4d37ec
PZ
999static void __resched_task(struct task_struct *p, int tif_bit);
1000
1001static inline void resched_task(struct task_struct *p)
1002{
1003 __resched_task(p, TIF_NEED_RESCHED);
1004}
1005
1006#ifdef CONFIG_SCHED_HRTICK
1007/*
1008 * Use HR-timers to deliver accurate preemption points.
1009 *
1010 * Its all a bit involved since we cannot program an hrt while holding the
1011 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012 * reschedule event.
1013 *
1014 * When we get rescheduled we reprogram the hrtick_timer outside of the
1015 * rq->lock.
1016 */
1017static inline void resched_hrt(struct task_struct *p)
1018{
1019 __resched_task(p, TIF_HRTICK_RESCHED);
1020}
1021
1022static inline void resched_rq(struct rq *rq)
1023{
1024 unsigned long flags;
1025
1026 spin_lock_irqsave(&rq->lock, flags);
1027 resched_task(rq->curr);
1028 spin_unlock_irqrestore(&rq->lock, flags);
1029}
1030
1031enum {
1032 HRTICK_SET, /* re-programm hrtick_timer */
1033 HRTICK_RESET, /* not a new slice */
b328ca18 1034 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
1035};
1036
1037/*
1038 * Use hrtick when:
1039 * - enabled by features
1040 * - hrtimer is actually high res
1041 */
1042static inline int hrtick_enabled(struct rq *rq)
1043{
1044 if (!sched_feat(HRTICK))
1045 return 0;
b328ca18
PZ
1046 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1047 return 0;
8f4d37ec
PZ
1048 return hrtimer_is_hres_active(&rq->hrtick_timer);
1049}
1050
1051/*
1052 * Called to set the hrtick timer state.
1053 *
1054 * called with rq->lock held and irqs disabled
1055 */
1056static void hrtick_start(struct rq *rq, u64 delay, int reset)
1057{
1058 assert_spin_locked(&rq->lock);
1059
1060 /*
1061 * preempt at: now + delay
1062 */
1063 rq->hrtick_expire =
1064 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1065 /*
1066 * indicate we need to program the timer
1067 */
1068 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1069 if (reset)
1070 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1071
1072 /*
1073 * New slices are called from the schedule path and don't need a
1074 * forced reschedule.
1075 */
1076 if (reset)
1077 resched_hrt(rq->curr);
1078}
1079
1080static void hrtick_clear(struct rq *rq)
1081{
1082 if (hrtimer_active(&rq->hrtick_timer))
1083 hrtimer_cancel(&rq->hrtick_timer);
1084}
1085
1086/*
1087 * Update the timer from the possible pending state.
1088 */
1089static void hrtick_set(struct rq *rq)
1090{
1091 ktime_t time;
1092 int set, reset;
1093 unsigned long flags;
1094
1095 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1096
1097 spin_lock_irqsave(&rq->lock, flags);
1098 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1099 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1100 time = rq->hrtick_expire;
1101 clear_thread_flag(TIF_HRTICK_RESCHED);
1102 spin_unlock_irqrestore(&rq->lock, flags);
1103
1104 if (set) {
1105 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1106 if (reset && !hrtimer_active(&rq->hrtick_timer))
1107 resched_rq(rq);
1108 } else
1109 hrtick_clear(rq);
1110}
1111
1112/*
1113 * High-resolution timer tick.
1114 * Runs from hardirq context with interrupts disabled.
1115 */
1116static enum hrtimer_restart hrtick(struct hrtimer *timer)
1117{
1118 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1119
1120 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1121
1122 spin_lock(&rq->lock);
3e51f33f 1123 update_rq_clock(rq);
8f4d37ec
PZ
1124 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1125 spin_unlock(&rq->lock);
1126
1127 return HRTIMER_NORESTART;
1128}
1129
b328ca18
PZ
1130static void hotplug_hrtick_disable(int cpu)
1131{
1132 struct rq *rq = cpu_rq(cpu);
1133 unsigned long flags;
1134
1135 spin_lock_irqsave(&rq->lock, flags);
1136 rq->hrtick_flags = 0;
1137 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1138 spin_unlock_irqrestore(&rq->lock, flags);
1139
1140 hrtick_clear(rq);
1141}
1142
1143static void hotplug_hrtick_enable(int cpu)
1144{
1145 struct rq *rq = cpu_rq(cpu);
1146 unsigned long flags;
1147
1148 spin_lock_irqsave(&rq->lock, flags);
1149 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1150 spin_unlock_irqrestore(&rq->lock, flags);
1151}
1152
1153static int
1154hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1155{
1156 int cpu = (int)(long)hcpu;
1157
1158 switch (action) {
1159 case CPU_UP_CANCELED:
1160 case CPU_UP_CANCELED_FROZEN:
1161 case CPU_DOWN_PREPARE:
1162 case CPU_DOWN_PREPARE_FROZEN:
1163 case CPU_DEAD:
1164 case CPU_DEAD_FROZEN:
1165 hotplug_hrtick_disable(cpu);
1166 return NOTIFY_OK;
1167
1168 case CPU_UP_PREPARE:
1169 case CPU_UP_PREPARE_FROZEN:
1170 case CPU_DOWN_FAILED:
1171 case CPU_DOWN_FAILED_FROZEN:
1172 case CPU_ONLINE:
1173 case CPU_ONLINE_FROZEN:
1174 hotplug_hrtick_enable(cpu);
1175 return NOTIFY_OK;
1176 }
1177
1178 return NOTIFY_DONE;
1179}
1180
1181static void init_hrtick(void)
1182{
1183 hotcpu_notifier(hotplug_hrtick, 0);
1184}
1185
1186static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1187{
1188 rq->hrtick_flags = 0;
1189 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1190 rq->hrtick_timer.function = hrtick;
1191 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1192}
1193
1194void hrtick_resched(void)
1195{
1196 struct rq *rq;
1197 unsigned long flags;
1198
1199 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1200 return;
1201
1202 local_irq_save(flags);
1203 rq = cpu_rq(smp_processor_id());
1204 hrtick_set(rq);
1205 local_irq_restore(flags);
1206}
1207#else
1208static inline void hrtick_clear(struct rq *rq)
1209{
1210}
1211
1212static inline void hrtick_set(struct rq *rq)
1213{
1214}
1215
1216static inline void init_rq_hrtick(struct rq *rq)
1217{
1218}
1219
1220void hrtick_resched(void)
1221{
1222}
b328ca18
PZ
1223
1224static inline void init_hrtick(void)
1225{
1226}
8f4d37ec
PZ
1227#endif
1228
c24d20db
IM
1229/*
1230 * resched_task - mark a task 'to be rescheduled now'.
1231 *
1232 * On UP this means the setting of the need_resched flag, on SMP it
1233 * might also involve a cross-CPU call to trigger the scheduler on
1234 * the target CPU.
1235 */
1236#ifdef CONFIG_SMP
1237
1238#ifndef tsk_is_polling
1239#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1240#endif
1241
8f4d37ec 1242static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1243{
1244 int cpu;
1245
1246 assert_spin_locked(&task_rq(p)->lock);
1247
8f4d37ec 1248 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1249 return;
1250
8f4d37ec 1251 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1252
1253 cpu = task_cpu(p);
1254 if (cpu == smp_processor_id())
1255 return;
1256
1257 /* NEED_RESCHED must be visible before we test polling */
1258 smp_mb();
1259 if (!tsk_is_polling(p))
1260 smp_send_reschedule(cpu);
1261}
1262
1263static void resched_cpu(int cpu)
1264{
1265 struct rq *rq = cpu_rq(cpu);
1266 unsigned long flags;
1267
1268 if (!spin_trylock_irqsave(&rq->lock, flags))
1269 return;
1270 resched_task(cpu_curr(cpu));
1271 spin_unlock_irqrestore(&rq->lock, flags);
1272}
06d8308c
TG
1273
1274#ifdef CONFIG_NO_HZ
1275/*
1276 * When add_timer_on() enqueues a timer into the timer wheel of an
1277 * idle CPU then this timer might expire before the next timer event
1278 * which is scheduled to wake up that CPU. In case of a completely
1279 * idle system the next event might even be infinite time into the
1280 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1281 * leaves the inner idle loop so the newly added timer is taken into
1282 * account when the CPU goes back to idle and evaluates the timer
1283 * wheel for the next timer event.
1284 */
1285void wake_up_idle_cpu(int cpu)
1286{
1287 struct rq *rq = cpu_rq(cpu);
1288
1289 if (cpu == smp_processor_id())
1290 return;
1291
1292 /*
1293 * This is safe, as this function is called with the timer
1294 * wheel base lock of (cpu) held. When the CPU is on the way
1295 * to idle and has not yet set rq->curr to idle then it will
1296 * be serialized on the timer wheel base lock and take the new
1297 * timer into account automatically.
1298 */
1299 if (rq->curr != rq->idle)
1300 return;
1301
1302 /*
1303 * We can set TIF_RESCHED on the idle task of the other CPU
1304 * lockless. The worst case is that the other CPU runs the
1305 * idle task through an additional NOOP schedule()
1306 */
1307 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1308
1309 /* NEED_RESCHED must be visible before we test polling */
1310 smp_mb();
1311 if (!tsk_is_polling(rq->idle))
1312 smp_send_reschedule(cpu);
1313}
1314#endif
1315
c24d20db 1316#else
8f4d37ec 1317static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1318{
1319 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1320 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1321}
1322#endif
1323
45bf76df
IM
1324#if BITS_PER_LONG == 32
1325# define WMULT_CONST (~0UL)
1326#else
1327# define WMULT_CONST (1UL << 32)
1328#endif
1329
1330#define WMULT_SHIFT 32
1331
194081eb
IM
1332/*
1333 * Shift right and round:
1334 */
cf2ab469 1335#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1336
cb1c4fc9 1337static unsigned long
45bf76df
IM
1338calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1339 struct load_weight *lw)
1340{
1341 u64 tmp;
1342
7a232e03
LJ
1343 if (!lw->inv_weight) {
1344 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1345 lw->inv_weight = 1;
1346 else
1347 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1348 / (lw->weight+1);
1349 }
45bf76df
IM
1350
1351 tmp = (u64)delta_exec * weight;
1352 /*
1353 * Check whether we'd overflow the 64-bit multiplication:
1354 */
194081eb 1355 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1356 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1357 WMULT_SHIFT/2);
1358 else
cf2ab469 1359 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1360
ecf691da 1361 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1362}
1363
f9305d4a
IM
1364static inline unsigned long
1365calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1366{
1367 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1368}
1369
1091985b 1370static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1371{
1372 lw->weight += inc;
e89996ae 1373 lw->inv_weight = 0;
45bf76df
IM
1374}
1375
1091985b 1376static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1377{
1378 lw->weight -= dec;
e89996ae 1379 lw->inv_weight = 0;
45bf76df
IM
1380}
1381
2dd73a4f
PW
1382/*
1383 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1384 * of tasks with abnormal "nice" values across CPUs the contribution that
1385 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1386 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1387 * scaled version of the new time slice allocation that they receive on time
1388 * slice expiry etc.
1389 */
1390
dd41f596
IM
1391#define WEIGHT_IDLEPRIO 2
1392#define WMULT_IDLEPRIO (1 << 31)
1393
1394/*
1395 * Nice levels are multiplicative, with a gentle 10% change for every
1396 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1397 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1398 * that remained on nice 0.
1399 *
1400 * The "10% effect" is relative and cumulative: from _any_ nice level,
1401 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1402 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1403 * If a task goes up by ~10% and another task goes down by ~10% then
1404 * the relative distance between them is ~25%.)
dd41f596
IM
1405 */
1406static const int prio_to_weight[40] = {
254753dc
IM
1407 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1408 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1409 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1410 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1411 /* 0 */ 1024, 820, 655, 526, 423,
1412 /* 5 */ 335, 272, 215, 172, 137,
1413 /* 10 */ 110, 87, 70, 56, 45,
1414 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1415};
1416
5714d2de
IM
1417/*
1418 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1419 *
1420 * In cases where the weight does not change often, we can use the
1421 * precalculated inverse to speed up arithmetics by turning divisions
1422 * into multiplications:
1423 */
dd41f596 1424static const u32 prio_to_wmult[40] = {
254753dc
IM
1425 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1426 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1427 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1428 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1429 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1430 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1431 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1432 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1433};
2dd73a4f 1434
dd41f596
IM
1435static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1436
1437/*
1438 * runqueue iterator, to support SMP load-balancing between different
1439 * scheduling classes, without having to expose their internal data
1440 * structures to the load-balancing proper:
1441 */
1442struct rq_iterator {
1443 void *arg;
1444 struct task_struct *(*start)(void *);
1445 struct task_struct *(*next)(void *);
1446};
1447
e1d1484f
PW
1448#ifdef CONFIG_SMP
1449static unsigned long
1450balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1451 unsigned long max_load_move, struct sched_domain *sd,
1452 enum cpu_idle_type idle, int *all_pinned,
1453 int *this_best_prio, struct rq_iterator *iterator);
1454
1455static int
1456iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1457 struct sched_domain *sd, enum cpu_idle_type idle,
1458 struct rq_iterator *iterator);
e1d1484f 1459#endif
dd41f596 1460
d842de87
SV
1461#ifdef CONFIG_CGROUP_CPUACCT
1462static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1463#else
1464static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1465#endif
1466
18d95a28
PZ
1467static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1468{
1469 update_load_add(&rq->load, load);
1470}
1471
1472static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1473{
1474 update_load_sub(&rq->load, load);
1475}
1476
e7693a36
GH
1477#ifdef CONFIG_SMP
1478static unsigned long source_load(int cpu, int type);
1479static unsigned long target_load(int cpu, int type);
1480static unsigned long cpu_avg_load_per_task(int cpu);
1481static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
18d95a28
PZ
1482#else /* CONFIG_SMP */
1483
1484#ifdef CONFIG_FAIR_GROUP_SCHED
1485static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1486{
1487}
1488#endif
1489
e7693a36
GH
1490#endif /* CONFIG_SMP */
1491
dd41f596 1492#include "sched_stats.h"
dd41f596 1493#include "sched_idletask.c"
5522d5d5
IM
1494#include "sched_fair.c"
1495#include "sched_rt.c"
dd41f596
IM
1496#ifdef CONFIG_SCHED_DEBUG
1497# include "sched_debug.c"
1498#endif
1499
1500#define sched_class_highest (&rt_sched_class)
1501
6363ca57
IM
1502static inline void inc_load(struct rq *rq, const struct task_struct *p)
1503{
1504 update_load_add(&rq->load, p->se.load.weight);
1505}
1506
1507static inline void dec_load(struct rq *rq, const struct task_struct *p)
1508{
1509 update_load_sub(&rq->load, p->se.load.weight);
1510}
1511
1512static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1513{
1514 rq->nr_running++;
6363ca57 1515 inc_load(rq, p);
9c217245
IM
1516}
1517
6363ca57 1518static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1519{
1520 rq->nr_running--;
6363ca57 1521 dec_load(rq, p);
9c217245
IM
1522}
1523
45bf76df
IM
1524static void set_load_weight(struct task_struct *p)
1525{
1526 if (task_has_rt_policy(p)) {
dd41f596
IM
1527 p->se.load.weight = prio_to_weight[0] * 2;
1528 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1529 return;
1530 }
45bf76df 1531
dd41f596
IM
1532 /*
1533 * SCHED_IDLE tasks get minimal weight:
1534 */
1535 if (p->policy == SCHED_IDLE) {
1536 p->se.load.weight = WEIGHT_IDLEPRIO;
1537 p->se.load.inv_weight = WMULT_IDLEPRIO;
1538 return;
1539 }
71f8bd46 1540
dd41f596
IM
1541 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1542 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1543}
1544
8159f87e 1545static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1546{
dd41f596 1547 sched_info_queued(p);
fd390f6a 1548 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1549 p->se.on_rq = 1;
71f8bd46
IM
1550}
1551
69be72c1 1552static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1553{
f02231e5 1554 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1555 p->se.on_rq = 0;
71f8bd46
IM
1556}
1557
14531189 1558/*
dd41f596 1559 * __normal_prio - return the priority that is based on the static prio
14531189 1560 */
14531189
IM
1561static inline int __normal_prio(struct task_struct *p)
1562{
dd41f596 1563 return p->static_prio;
14531189
IM
1564}
1565
b29739f9
IM
1566/*
1567 * Calculate the expected normal priority: i.e. priority
1568 * without taking RT-inheritance into account. Might be
1569 * boosted by interactivity modifiers. Changes upon fork,
1570 * setprio syscalls, and whenever the interactivity
1571 * estimator recalculates.
1572 */
36c8b586 1573static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1574{
1575 int prio;
1576
e05606d3 1577 if (task_has_rt_policy(p))
b29739f9
IM
1578 prio = MAX_RT_PRIO-1 - p->rt_priority;
1579 else
1580 prio = __normal_prio(p);
1581 return prio;
1582}
1583
1584/*
1585 * Calculate the current priority, i.e. the priority
1586 * taken into account by the scheduler. This value might
1587 * be boosted by RT tasks, or might be boosted by
1588 * interactivity modifiers. Will be RT if the task got
1589 * RT-boosted. If not then it returns p->normal_prio.
1590 */
36c8b586 1591static int effective_prio(struct task_struct *p)
b29739f9
IM
1592{
1593 p->normal_prio = normal_prio(p);
1594 /*
1595 * If we are RT tasks or we were boosted to RT priority,
1596 * keep the priority unchanged. Otherwise, update priority
1597 * to the normal priority:
1598 */
1599 if (!rt_prio(p->prio))
1600 return p->normal_prio;
1601 return p->prio;
1602}
1603
1da177e4 1604/*
dd41f596 1605 * activate_task - move a task to the runqueue.
1da177e4 1606 */
dd41f596 1607static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1608{
d9514f6c 1609 if (task_contributes_to_load(p))
dd41f596 1610 rq->nr_uninterruptible--;
1da177e4 1611
8159f87e 1612 enqueue_task(rq, p, wakeup);
6363ca57 1613 inc_nr_running(p, rq);
1da177e4
LT
1614}
1615
1da177e4
LT
1616/*
1617 * deactivate_task - remove a task from the runqueue.
1618 */
2e1cb74a 1619static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1620{
d9514f6c 1621 if (task_contributes_to_load(p))
dd41f596
IM
1622 rq->nr_uninterruptible++;
1623
69be72c1 1624 dequeue_task(rq, p, sleep);
6363ca57 1625 dec_nr_running(p, rq);
1da177e4
LT
1626}
1627
1da177e4
LT
1628/**
1629 * task_curr - is this task currently executing on a CPU?
1630 * @p: the task in question.
1631 */
36c8b586 1632inline int task_curr(const struct task_struct *p)
1da177e4
LT
1633{
1634 return cpu_curr(task_cpu(p)) == p;
1635}
1636
2dd73a4f
PW
1637/* Used instead of source_load when we know the type == 0 */
1638unsigned long weighted_cpuload(const int cpu)
1639{
495eca49 1640 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1641}
1642
1643static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1644{
6f505b16 1645 set_task_rq(p, cpu);
dd41f596 1646#ifdef CONFIG_SMP
ce96b5ac
DA
1647 /*
1648 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1649 * successfuly executed on another CPU. We must ensure that updates of
1650 * per-task data have been completed by this moment.
1651 */
1652 smp_wmb();
dd41f596 1653 task_thread_info(p)->cpu = cpu;
dd41f596 1654#endif
2dd73a4f
PW
1655}
1656
cb469845
SR
1657static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1658 const struct sched_class *prev_class,
1659 int oldprio, int running)
1660{
1661 if (prev_class != p->sched_class) {
1662 if (prev_class->switched_from)
1663 prev_class->switched_from(rq, p, running);
1664 p->sched_class->switched_to(rq, p, running);
1665 } else
1666 p->sched_class->prio_changed(rq, p, oldprio, running);
1667}
1668
1da177e4 1669#ifdef CONFIG_SMP
c65cc870 1670
cc367732
IM
1671/*
1672 * Is this task likely cache-hot:
1673 */
e7693a36 1674static int
cc367732
IM
1675task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1676{
1677 s64 delta;
1678
f540a608
IM
1679 /*
1680 * Buddy candidates are cache hot:
1681 */
d25ce4cd 1682 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1683 return 1;
1684
cc367732
IM
1685 if (p->sched_class != &fair_sched_class)
1686 return 0;
1687
6bc1665b
IM
1688 if (sysctl_sched_migration_cost == -1)
1689 return 1;
1690 if (sysctl_sched_migration_cost == 0)
1691 return 0;
1692
cc367732
IM
1693 delta = now - p->se.exec_start;
1694
1695 return delta < (s64)sysctl_sched_migration_cost;
1696}
1697
1698
dd41f596 1699void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1700{
dd41f596
IM
1701 int old_cpu = task_cpu(p);
1702 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1703 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1704 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1705 u64 clock_offset;
dd41f596
IM
1706
1707 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1708
1709#ifdef CONFIG_SCHEDSTATS
1710 if (p->se.wait_start)
1711 p->se.wait_start -= clock_offset;
dd41f596
IM
1712 if (p->se.sleep_start)
1713 p->se.sleep_start -= clock_offset;
1714 if (p->se.block_start)
1715 p->se.block_start -= clock_offset;
cc367732
IM
1716 if (old_cpu != new_cpu) {
1717 schedstat_inc(p, se.nr_migrations);
1718 if (task_hot(p, old_rq->clock, NULL))
1719 schedstat_inc(p, se.nr_forced2_migrations);
1720 }
6cfb0d5d 1721#endif
2830cf8c
SV
1722 p->se.vruntime -= old_cfsrq->min_vruntime -
1723 new_cfsrq->min_vruntime;
dd41f596
IM
1724
1725 __set_task_cpu(p, new_cpu);
c65cc870
IM
1726}
1727
70b97a7f 1728struct migration_req {
1da177e4 1729 struct list_head list;
1da177e4 1730
36c8b586 1731 struct task_struct *task;
1da177e4
LT
1732 int dest_cpu;
1733
1da177e4 1734 struct completion done;
70b97a7f 1735};
1da177e4
LT
1736
1737/*
1738 * The task's runqueue lock must be held.
1739 * Returns true if you have to wait for migration thread.
1740 */
36c8b586 1741static int
70b97a7f 1742migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1743{
70b97a7f 1744 struct rq *rq = task_rq(p);
1da177e4
LT
1745
1746 /*
1747 * If the task is not on a runqueue (and not running), then
1748 * it is sufficient to simply update the task's cpu field.
1749 */
dd41f596 1750 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1751 set_task_cpu(p, dest_cpu);
1752 return 0;
1753 }
1754
1755 init_completion(&req->done);
1da177e4
LT
1756 req->task = p;
1757 req->dest_cpu = dest_cpu;
1758 list_add(&req->list, &rq->migration_queue);
48f24c4d 1759
1da177e4
LT
1760 return 1;
1761}
1762
1763/*
1764 * wait_task_inactive - wait for a thread to unschedule.
1765 *
1766 * The caller must ensure that the task *will* unschedule sometime soon,
1767 * else this function might spin for a *long* time. This function can't
1768 * be called with interrupts off, or it may introduce deadlock with
1769 * smp_call_function() if an IPI is sent by the same process we are
1770 * waiting to become inactive.
1771 */
36c8b586 1772void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1773{
1774 unsigned long flags;
dd41f596 1775 int running, on_rq;
70b97a7f 1776 struct rq *rq;
1da177e4 1777
3a5c359a
AK
1778 for (;;) {
1779 /*
1780 * We do the initial early heuristics without holding
1781 * any task-queue locks at all. We'll only try to get
1782 * the runqueue lock when things look like they will
1783 * work out!
1784 */
1785 rq = task_rq(p);
fa490cfd 1786
3a5c359a
AK
1787 /*
1788 * If the task is actively running on another CPU
1789 * still, just relax and busy-wait without holding
1790 * any locks.
1791 *
1792 * NOTE! Since we don't hold any locks, it's not
1793 * even sure that "rq" stays as the right runqueue!
1794 * But we don't care, since "task_running()" will
1795 * return false if the runqueue has changed and p
1796 * is actually now running somewhere else!
1797 */
1798 while (task_running(rq, p))
1799 cpu_relax();
fa490cfd 1800
3a5c359a
AK
1801 /*
1802 * Ok, time to look more closely! We need the rq
1803 * lock now, to be *sure*. If we're wrong, we'll
1804 * just go back and repeat.
1805 */
1806 rq = task_rq_lock(p, &flags);
1807 running = task_running(rq, p);
1808 on_rq = p->se.on_rq;
1809 task_rq_unlock(rq, &flags);
fa490cfd 1810
3a5c359a
AK
1811 /*
1812 * Was it really running after all now that we
1813 * checked with the proper locks actually held?
1814 *
1815 * Oops. Go back and try again..
1816 */
1817 if (unlikely(running)) {
1818 cpu_relax();
1819 continue;
1820 }
fa490cfd 1821
3a5c359a
AK
1822 /*
1823 * It's not enough that it's not actively running,
1824 * it must be off the runqueue _entirely_, and not
1825 * preempted!
1826 *
1827 * So if it wa still runnable (but just not actively
1828 * running right now), it's preempted, and we should
1829 * yield - it could be a while.
1830 */
1831 if (unlikely(on_rq)) {
1832 schedule_timeout_uninterruptible(1);
1833 continue;
1834 }
fa490cfd 1835
3a5c359a
AK
1836 /*
1837 * Ahh, all good. It wasn't running, and it wasn't
1838 * runnable, which means that it will never become
1839 * running in the future either. We're all done!
1840 */
1841 break;
1842 }
1da177e4
LT
1843}
1844
1845/***
1846 * kick_process - kick a running thread to enter/exit the kernel
1847 * @p: the to-be-kicked thread
1848 *
1849 * Cause a process which is running on another CPU to enter
1850 * kernel-mode, without any delay. (to get signals handled.)
1851 *
1852 * NOTE: this function doesnt have to take the runqueue lock,
1853 * because all it wants to ensure is that the remote task enters
1854 * the kernel. If the IPI races and the task has been migrated
1855 * to another CPU then no harm is done and the purpose has been
1856 * achieved as well.
1857 */
36c8b586 1858void kick_process(struct task_struct *p)
1da177e4
LT
1859{
1860 int cpu;
1861
1862 preempt_disable();
1863 cpu = task_cpu(p);
1864 if ((cpu != smp_processor_id()) && task_curr(p))
1865 smp_send_reschedule(cpu);
1866 preempt_enable();
1867}
1868
1869/*
2dd73a4f
PW
1870 * Return a low guess at the load of a migration-source cpu weighted
1871 * according to the scheduling class and "nice" value.
1da177e4
LT
1872 *
1873 * We want to under-estimate the load of migration sources, to
1874 * balance conservatively.
1875 */
a9957449 1876static unsigned long source_load(int cpu, int type)
1da177e4 1877{
70b97a7f 1878 struct rq *rq = cpu_rq(cpu);
dd41f596 1879 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1880
3b0bd9bc 1881 if (type == 0)
dd41f596 1882 return total;
b910472d 1883
dd41f596 1884 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1885}
1886
1887/*
2dd73a4f
PW
1888 * Return a high guess at the load of a migration-target cpu weighted
1889 * according to the scheduling class and "nice" value.
1da177e4 1890 */
a9957449 1891static unsigned long target_load(int cpu, int type)
1da177e4 1892{
70b97a7f 1893 struct rq *rq = cpu_rq(cpu);
dd41f596 1894 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1895
7897986b 1896 if (type == 0)
dd41f596 1897 return total;
3b0bd9bc 1898
dd41f596 1899 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1900}
1901
1902/*
1903 * Return the average load per task on the cpu's run queue
1904 */
e7693a36 1905static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1906{
70b97a7f 1907 struct rq *rq = cpu_rq(cpu);
dd41f596 1908 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1909 unsigned long n = rq->nr_running;
1910
dd41f596 1911 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1912}
1913
147cbb4b
NP
1914/*
1915 * find_idlest_group finds and returns the least busy CPU group within the
1916 * domain.
1917 */
1918static struct sched_group *
1919find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1920{
1921 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1922 unsigned long min_load = ULONG_MAX, this_load = 0;
1923 int load_idx = sd->forkexec_idx;
1924 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1925
1926 do {
1927 unsigned long load, avg_load;
1928 int local_group;
1929 int i;
1930
da5a5522
BD
1931 /* Skip over this group if it has no CPUs allowed */
1932 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1933 continue;
da5a5522 1934
147cbb4b 1935 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1936
1937 /* Tally up the load of all CPUs in the group */
1938 avg_load = 0;
1939
1940 for_each_cpu_mask(i, group->cpumask) {
1941 /* Bias balancing toward cpus of our domain */
1942 if (local_group)
1943 load = source_load(i, load_idx);
1944 else
1945 load = target_load(i, load_idx);
1946
1947 avg_load += load;
1948 }
1949
1950 /* Adjust by relative CPU power of the group */
5517d86b
ED
1951 avg_load = sg_div_cpu_power(group,
1952 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1953
1954 if (local_group) {
1955 this_load = avg_load;
1956 this = group;
1957 } else if (avg_load < min_load) {
1958 min_load = avg_load;
1959 idlest = group;
1960 }
3a5c359a 1961 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1962
1963 if (!idlest || 100*this_load < imbalance*min_load)
1964 return NULL;
1965 return idlest;
1966}
1967
1968/*
0feaece9 1969 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1970 */
95cdf3b7 1971static int
7c16ec58
MT
1972find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1973 cpumask_t *tmp)
147cbb4b
NP
1974{
1975 unsigned long load, min_load = ULONG_MAX;
1976 int idlest = -1;
1977 int i;
1978
da5a5522 1979 /* Traverse only the allowed CPUs */
7c16ec58 1980 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 1981
7c16ec58 1982 for_each_cpu_mask(i, *tmp) {
2dd73a4f 1983 load = weighted_cpuload(i);
147cbb4b
NP
1984
1985 if (load < min_load || (load == min_load && i == this_cpu)) {
1986 min_load = load;
1987 idlest = i;
1988 }
1989 }
1990
1991 return idlest;
1992}
1993
476d139c
NP
1994/*
1995 * sched_balance_self: balance the current task (running on cpu) in domains
1996 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1997 * SD_BALANCE_EXEC.
1998 *
1999 * Balance, ie. select the least loaded group.
2000 *
2001 * Returns the target CPU number, or the same CPU if no balancing is needed.
2002 *
2003 * preempt must be disabled.
2004 */
2005static int sched_balance_self(int cpu, int flag)
2006{
2007 struct task_struct *t = current;
2008 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2009
c96d145e 2010 for_each_domain(cpu, tmp) {
9761eea8
IM
2011 /*
2012 * If power savings logic is enabled for a domain, stop there.
2013 */
5c45bf27
SS
2014 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2015 break;
476d139c
NP
2016 if (tmp->flags & flag)
2017 sd = tmp;
c96d145e 2018 }
476d139c
NP
2019
2020 while (sd) {
7c16ec58 2021 cpumask_t span, tmpmask;
476d139c 2022 struct sched_group *group;
1a848870
SS
2023 int new_cpu, weight;
2024
2025 if (!(sd->flags & flag)) {
2026 sd = sd->child;
2027 continue;
2028 }
476d139c
NP
2029
2030 span = sd->span;
2031 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2032 if (!group) {
2033 sd = sd->child;
2034 continue;
2035 }
476d139c 2036
7c16ec58 2037 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2038 if (new_cpu == -1 || new_cpu == cpu) {
2039 /* Now try balancing at a lower domain level of cpu */
2040 sd = sd->child;
2041 continue;
2042 }
476d139c 2043
1a848870 2044 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2045 cpu = new_cpu;
476d139c
NP
2046 sd = NULL;
2047 weight = cpus_weight(span);
2048 for_each_domain(cpu, tmp) {
2049 if (weight <= cpus_weight(tmp->span))
2050 break;
2051 if (tmp->flags & flag)
2052 sd = tmp;
2053 }
2054 /* while loop will break here if sd == NULL */
2055 }
2056
2057 return cpu;
2058}
2059
2060#endif /* CONFIG_SMP */
1da177e4 2061
1da177e4
LT
2062/***
2063 * try_to_wake_up - wake up a thread
2064 * @p: the to-be-woken-up thread
2065 * @state: the mask of task states that can be woken
2066 * @sync: do a synchronous wakeup?
2067 *
2068 * Put it on the run-queue if it's not already there. The "current"
2069 * thread is always on the run-queue (except when the actual
2070 * re-schedule is in progress), and as such you're allowed to do
2071 * the simpler "current->state = TASK_RUNNING" to mark yourself
2072 * runnable without the overhead of this.
2073 *
2074 * returns failure only if the task is already active.
2075 */
36c8b586 2076static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2077{
cc367732 2078 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2079 unsigned long flags;
2080 long old_state;
70b97a7f 2081 struct rq *rq;
1da177e4 2082
b85d0667
IM
2083 if (!sched_feat(SYNC_WAKEUPS))
2084 sync = 0;
2085
04e2f174 2086 smp_wmb();
1da177e4
LT
2087 rq = task_rq_lock(p, &flags);
2088 old_state = p->state;
2089 if (!(old_state & state))
2090 goto out;
2091
dd41f596 2092 if (p->se.on_rq)
1da177e4
LT
2093 goto out_running;
2094
2095 cpu = task_cpu(p);
cc367732 2096 orig_cpu = cpu;
1da177e4
LT
2097 this_cpu = smp_processor_id();
2098
2099#ifdef CONFIG_SMP
2100 if (unlikely(task_running(rq, p)))
2101 goto out_activate;
2102
5d2f5a61
DA
2103 cpu = p->sched_class->select_task_rq(p, sync);
2104 if (cpu != orig_cpu) {
2105 set_task_cpu(p, cpu);
1da177e4
LT
2106 task_rq_unlock(rq, &flags);
2107 /* might preempt at this point */
2108 rq = task_rq_lock(p, &flags);
2109 old_state = p->state;
2110 if (!(old_state & state))
2111 goto out;
dd41f596 2112 if (p->se.on_rq)
1da177e4
LT
2113 goto out_running;
2114
2115 this_cpu = smp_processor_id();
2116 cpu = task_cpu(p);
2117 }
2118
e7693a36
GH
2119#ifdef CONFIG_SCHEDSTATS
2120 schedstat_inc(rq, ttwu_count);
2121 if (cpu == this_cpu)
2122 schedstat_inc(rq, ttwu_local);
2123 else {
2124 struct sched_domain *sd;
2125 for_each_domain(this_cpu, sd) {
2126 if (cpu_isset(cpu, sd->span)) {
2127 schedstat_inc(sd, ttwu_wake_remote);
2128 break;
2129 }
2130 }
2131 }
e7693a36
GH
2132#endif
2133
1da177e4
LT
2134out_activate:
2135#endif /* CONFIG_SMP */
cc367732
IM
2136 schedstat_inc(p, se.nr_wakeups);
2137 if (sync)
2138 schedstat_inc(p, se.nr_wakeups_sync);
2139 if (orig_cpu != cpu)
2140 schedstat_inc(p, se.nr_wakeups_migrate);
2141 if (cpu == this_cpu)
2142 schedstat_inc(p, se.nr_wakeups_local);
2143 else
2144 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2145 update_rq_clock(rq);
dd41f596 2146 activate_task(rq, p, 1);
1da177e4
LT
2147 success = 1;
2148
2149out_running:
4ae7d5ce
IM
2150 check_preempt_curr(rq, p);
2151
1da177e4 2152 p->state = TASK_RUNNING;
9a897c5a
SR
2153#ifdef CONFIG_SMP
2154 if (p->sched_class->task_wake_up)
2155 p->sched_class->task_wake_up(rq, p);
2156#endif
1da177e4
LT
2157out:
2158 task_rq_unlock(rq, &flags);
2159
2160 return success;
2161}
2162
7ad5b3a5 2163int wake_up_process(struct task_struct *p)
1da177e4 2164{
d9514f6c 2165 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2166}
1da177e4
LT
2167EXPORT_SYMBOL(wake_up_process);
2168
7ad5b3a5 2169int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2170{
2171 return try_to_wake_up(p, state, 0);
2172}
2173
1da177e4
LT
2174/*
2175 * Perform scheduler related setup for a newly forked process p.
2176 * p is forked by current.
dd41f596
IM
2177 *
2178 * __sched_fork() is basic setup used by init_idle() too:
2179 */
2180static void __sched_fork(struct task_struct *p)
2181{
dd41f596
IM
2182 p->se.exec_start = 0;
2183 p->se.sum_exec_runtime = 0;
f6cf891c 2184 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2185 p->se.last_wakeup = 0;
2186 p->se.avg_overlap = 0;
6cfb0d5d
IM
2187
2188#ifdef CONFIG_SCHEDSTATS
2189 p->se.wait_start = 0;
dd41f596
IM
2190 p->se.sum_sleep_runtime = 0;
2191 p->se.sleep_start = 0;
dd41f596
IM
2192 p->se.block_start = 0;
2193 p->se.sleep_max = 0;
2194 p->se.block_max = 0;
2195 p->se.exec_max = 0;
eba1ed4b 2196 p->se.slice_max = 0;
dd41f596 2197 p->se.wait_max = 0;
6cfb0d5d 2198#endif
476d139c 2199
fa717060 2200 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2201 p->se.on_rq = 0;
4a55bd5e 2202 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2203
e107be36
AK
2204#ifdef CONFIG_PREEMPT_NOTIFIERS
2205 INIT_HLIST_HEAD(&p->preempt_notifiers);
2206#endif
2207
1da177e4
LT
2208 /*
2209 * We mark the process as running here, but have not actually
2210 * inserted it onto the runqueue yet. This guarantees that
2211 * nobody will actually run it, and a signal or other external
2212 * event cannot wake it up and insert it on the runqueue either.
2213 */
2214 p->state = TASK_RUNNING;
dd41f596
IM
2215}
2216
2217/*
2218 * fork()/clone()-time setup:
2219 */
2220void sched_fork(struct task_struct *p, int clone_flags)
2221{
2222 int cpu = get_cpu();
2223
2224 __sched_fork(p);
2225
2226#ifdef CONFIG_SMP
2227 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2228#endif
02e4bac2 2229 set_task_cpu(p, cpu);
b29739f9
IM
2230
2231 /*
2232 * Make sure we do not leak PI boosting priority to the child:
2233 */
2234 p->prio = current->normal_prio;
2ddbf952
HS
2235 if (!rt_prio(p->prio))
2236 p->sched_class = &fair_sched_class;
b29739f9 2237
52f17b6c 2238#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2239 if (likely(sched_info_on()))
52f17b6c 2240 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2241#endif
d6077cb8 2242#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2243 p->oncpu = 0;
2244#endif
1da177e4 2245#ifdef CONFIG_PREEMPT
4866cde0 2246 /* Want to start with kernel preemption disabled. */
a1261f54 2247 task_thread_info(p)->preempt_count = 1;
1da177e4 2248#endif
476d139c 2249 put_cpu();
1da177e4
LT
2250}
2251
2252/*
2253 * wake_up_new_task - wake up a newly created task for the first time.
2254 *
2255 * This function will do some initial scheduler statistics housekeeping
2256 * that must be done for every newly created context, then puts the task
2257 * on the runqueue and wakes it.
2258 */
7ad5b3a5 2259void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2260{
2261 unsigned long flags;
dd41f596 2262 struct rq *rq;
1da177e4
LT
2263
2264 rq = task_rq_lock(p, &flags);
147cbb4b 2265 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2266 update_rq_clock(rq);
1da177e4
LT
2267
2268 p->prio = effective_prio(p);
2269
b9dca1e0 2270 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2271 activate_task(rq, p, 0);
1da177e4 2272 } else {
1da177e4 2273 /*
dd41f596
IM
2274 * Let the scheduling class do new task startup
2275 * management (if any):
1da177e4 2276 */
ee0827d8 2277 p->sched_class->task_new(rq, p);
6363ca57 2278 inc_nr_running(p, rq);
1da177e4 2279 }
dd41f596 2280 check_preempt_curr(rq, p);
9a897c5a
SR
2281#ifdef CONFIG_SMP
2282 if (p->sched_class->task_wake_up)
2283 p->sched_class->task_wake_up(rq, p);
2284#endif
dd41f596 2285 task_rq_unlock(rq, &flags);
1da177e4
LT
2286}
2287
e107be36
AK
2288#ifdef CONFIG_PREEMPT_NOTIFIERS
2289
2290/**
421cee29
RD
2291 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2292 * @notifier: notifier struct to register
e107be36
AK
2293 */
2294void preempt_notifier_register(struct preempt_notifier *notifier)
2295{
2296 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2297}
2298EXPORT_SYMBOL_GPL(preempt_notifier_register);
2299
2300/**
2301 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2302 * @notifier: notifier struct to unregister
e107be36
AK
2303 *
2304 * This is safe to call from within a preemption notifier.
2305 */
2306void preempt_notifier_unregister(struct preempt_notifier *notifier)
2307{
2308 hlist_del(&notifier->link);
2309}
2310EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2311
2312static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2313{
2314 struct preempt_notifier *notifier;
2315 struct hlist_node *node;
2316
2317 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2318 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2319}
2320
2321static void
2322fire_sched_out_preempt_notifiers(struct task_struct *curr,
2323 struct task_struct *next)
2324{
2325 struct preempt_notifier *notifier;
2326 struct hlist_node *node;
2327
2328 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2329 notifier->ops->sched_out(notifier, next);
2330}
2331
2332#else
2333
2334static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2335{
2336}
2337
2338static void
2339fire_sched_out_preempt_notifiers(struct task_struct *curr,
2340 struct task_struct *next)
2341{
2342}
2343
2344#endif
2345
4866cde0
NP
2346/**
2347 * prepare_task_switch - prepare to switch tasks
2348 * @rq: the runqueue preparing to switch
421cee29 2349 * @prev: the current task that is being switched out
4866cde0
NP
2350 * @next: the task we are going to switch to.
2351 *
2352 * This is called with the rq lock held and interrupts off. It must
2353 * be paired with a subsequent finish_task_switch after the context
2354 * switch.
2355 *
2356 * prepare_task_switch sets up locking and calls architecture specific
2357 * hooks.
2358 */
e107be36
AK
2359static inline void
2360prepare_task_switch(struct rq *rq, struct task_struct *prev,
2361 struct task_struct *next)
4866cde0 2362{
e107be36 2363 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2364 prepare_lock_switch(rq, next);
2365 prepare_arch_switch(next);
2366}
2367
1da177e4
LT
2368/**
2369 * finish_task_switch - clean up after a task-switch
344babaa 2370 * @rq: runqueue associated with task-switch
1da177e4
LT
2371 * @prev: the thread we just switched away from.
2372 *
4866cde0
NP
2373 * finish_task_switch must be called after the context switch, paired
2374 * with a prepare_task_switch call before the context switch.
2375 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2376 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2377 *
2378 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2379 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2380 * with the lock held can cause deadlocks; see schedule() for
2381 * details.)
2382 */
a9957449 2383static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2384 __releases(rq->lock)
2385{
1da177e4 2386 struct mm_struct *mm = rq->prev_mm;
55a101f8 2387 long prev_state;
1da177e4
LT
2388
2389 rq->prev_mm = NULL;
2390
2391 /*
2392 * A task struct has one reference for the use as "current".
c394cc9f 2393 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2394 * schedule one last time. The schedule call will never return, and
2395 * the scheduled task must drop that reference.
c394cc9f 2396 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2397 * still held, otherwise prev could be scheduled on another cpu, die
2398 * there before we look at prev->state, and then the reference would
2399 * be dropped twice.
2400 * Manfred Spraul <manfred@colorfullife.com>
2401 */
55a101f8 2402 prev_state = prev->state;
4866cde0
NP
2403 finish_arch_switch(prev);
2404 finish_lock_switch(rq, prev);
9a897c5a
SR
2405#ifdef CONFIG_SMP
2406 if (current->sched_class->post_schedule)
2407 current->sched_class->post_schedule(rq);
2408#endif
e8fa1362 2409
e107be36 2410 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2411 if (mm)
2412 mmdrop(mm);
c394cc9f 2413 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2414 /*
2415 * Remove function-return probe instances associated with this
2416 * task and put them back on the free list.
9761eea8 2417 */
c6fd91f0 2418 kprobe_flush_task(prev);
1da177e4 2419 put_task_struct(prev);
c6fd91f0 2420 }
1da177e4
LT
2421}
2422
2423/**
2424 * schedule_tail - first thing a freshly forked thread must call.
2425 * @prev: the thread we just switched away from.
2426 */
36c8b586 2427asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2428 __releases(rq->lock)
2429{
70b97a7f
IM
2430 struct rq *rq = this_rq();
2431
4866cde0
NP
2432 finish_task_switch(rq, prev);
2433#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2434 /* In this case, finish_task_switch does not reenable preemption */
2435 preempt_enable();
2436#endif
1da177e4 2437 if (current->set_child_tid)
b488893a 2438 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2439}
2440
2441/*
2442 * context_switch - switch to the new MM and the new
2443 * thread's register state.
2444 */
dd41f596 2445static inline void
70b97a7f 2446context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2447 struct task_struct *next)
1da177e4 2448{
dd41f596 2449 struct mm_struct *mm, *oldmm;
1da177e4 2450
e107be36 2451 prepare_task_switch(rq, prev, next);
dd41f596
IM
2452 mm = next->mm;
2453 oldmm = prev->active_mm;
9226d125
ZA
2454 /*
2455 * For paravirt, this is coupled with an exit in switch_to to
2456 * combine the page table reload and the switch backend into
2457 * one hypercall.
2458 */
2459 arch_enter_lazy_cpu_mode();
2460
dd41f596 2461 if (unlikely(!mm)) {
1da177e4
LT
2462 next->active_mm = oldmm;
2463 atomic_inc(&oldmm->mm_count);
2464 enter_lazy_tlb(oldmm, next);
2465 } else
2466 switch_mm(oldmm, mm, next);
2467
dd41f596 2468 if (unlikely(!prev->mm)) {
1da177e4 2469 prev->active_mm = NULL;
1da177e4
LT
2470 rq->prev_mm = oldmm;
2471 }
3a5f5e48
IM
2472 /*
2473 * Since the runqueue lock will be released by the next
2474 * task (which is an invalid locking op but in the case
2475 * of the scheduler it's an obvious special-case), so we
2476 * do an early lockdep release here:
2477 */
2478#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2479 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2480#endif
1da177e4
LT
2481
2482 /* Here we just switch the register state and the stack. */
2483 switch_to(prev, next, prev);
2484
dd41f596
IM
2485 barrier();
2486 /*
2487 * this_rq must be evaluated again because prev may have moved
2488 * CPUs since it called schedule(), thus the 'rq' on its stack
2489 * frame will be invalid.
2490 */
2491 finish_task_switch(this_rq(), prev);
1da177e4
LT
2492}
2493
2494/*
2495 * nr_running, nr_uninterruptible and nr_context_switches:
2496 *
2497 * externally visible scheduler statistics: current number of runnable
2498 * threads, current number of uninterruptible-sleeping threads, total
2499 * number of context switches performed since bootup.
2500 */
2501unsigned long nr_running(void)
2502{
2503 unsigned long i, sum = 0;
2504
2505 for_each_online_cpu(i)
2506 sum += cpu_rq(i)->nr_running;
2507
2508 return sum;
2509}
2510
2511unsigned long nr_uninterruptible(void)
2512{
2513 unsigned long i, sum = 0;
2514
0a945022 2515 for_each_possible_cpu(i)
1da177e4
LT
2516 sum += cpu_rq(i)->nr_uninterruptible;
2517
2518 /*
2519 * Since we read the counters lockless, it might be slightly
2520 * inaccurate. Do not allow it to go below zero though:
2521 */
2522 if (unlikely((long)sum < 0))
2523 sum = 0;
2524
2525 return sum;
2526}
2527
2528unsigned long long nr_context_switches(void)
2529{
cc94abfc
SR
2530 int i;
2531 unsigned long long sum = 0;
1da177e4 2532
0a945022 2533 for_each_possible_cpu(i)
1da177e4
LT
2534 sum += cpu_rq(i)->nr_switches;
2535
2536 return sum;
2537}
2538
2539unsigned long nr_iowait(void)
2540{
2541 unsigned long i, sum = 0;
2542
0a945022 2543 for_each_possible_cpu(i)
1da177e4
LT
2544 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2545
2546 return sum;
2547}
2548
db1b1fef
JS
2549unsigned long nr_active(void)
2550{
2551 unsigned long i, running = 0, uninterruptible = 0;
2552
2553 for_each_online_cpu(i) {
2554 running += cpu_rq(i)->nr_running;
2555 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2556 }
2557
2558 if (unlikely((long)uninterruptible < 0))
2559 uninterruptible = 0;
2560
2561 return running + uninterruptible;
2562}
2563
48f24c4d 2564/*
dd41f596
IM
2565 * Update rq->cpu_load[] statistics. This function is usually called every
2566 * scheduler tick (TICK_NSEC).
48f24c4d 2567 */
dd41f596 2568static void update_cpu_load(struct rq *this_rq)
48f24c4d 2569{
495eca49 2570 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2571 int i, scale;
2572
2573 this_rq->nr_load_updates++;
dd41f596
IM
2574
2575 /* Update our load: */
2576 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2577 unsigned long old_load, new_load;
2578
2579 /* scale is effectively 1 << i now, and >> i divides by scale */
2580
2581 old_load = this_rq->cpu_load[i];
2582 new_load = this_load;
a25707f3
IM
2583 /*
2584 * Round up the averaging division if load is increasing. This
2585 * prevents us from getting stuck on 9 if the load is 10, for
2586 * example.
2587 */
2588 if (new_load > old_load)
2589 new_load += scale-1;
dd41f596
IM
2590 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2591 }
48f24c4d
IM
2592}
2593
dd41f596
IM
2594#ifdef CONFIG_SMP
2595
1da177e4
LT
2596/*
2597 * double_rq_lock - safely lock two runqueues
2598 *
2599 * Note this does not disable interrupts like task_rq_lock,
2600 * you need to do so manually before calling.
2601 */
70b97a7f 2602static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2603 __acquires(rq1->lock)
2604 __acquires(rq2->lock)
2605{
054b9108 2606 BUG_ON(!irqs_disabled());
1da177e4
LT
2607 if (rq1 == rq2) {
2608 spin_lock(&rq1->lock);
2609 __acquire(rq2->lock); /* Fake it out ;) */
2610 } else {
c96d145e 2611 if (rq1 < rq2) {
1da177e4
LT
2612 spin_lock(&rq1->lock);
2613 spin_lock(&rq2->lock);
2614 } else {
2615 spin_lock(&rq2->lock);
2616 spin_lock(&rq1->lock);
2617 }
2618 }
6e82a3be
IM
2619 update_rq_clock(rq1);
2620 update_rq_clock(rq2);
1da177e4
LT
2621}
2622
2623/*
2624 * double_rq_unlock - safely unlock two runqueues
2625 *
2626 * Note this does not restore interrupts like task_rq_unlock,
2627 * you need to do so manually after calling.
2628 */
70b97a7f 2629static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2630 __releases(rq1->lock)
2631 __releases(rq2->lock)
2632{
2633 spin_unlock(&rq1->lock);
2634 if (rq1 != rq2)
2635 spin_unlock(&rq2->lock);
2636 else
2637 __release(rq2->lock);
2638}
2639
2640/*
2641 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2642 */
e8fa1362 2643static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2644 __releases(this_rq->lock)
2645 __acquires(busiest->lock)
2646 __acquires(this_rq->lock)
2647{
e8fa1362
SR
2648 int ret = 0;
2649
054b9108
KK
2650 if (unlikely(!irqs_disabled())) {
2651 /* printk() doesn't work good under rq->lock */
2652 spin_unlock(&this_rq->lock);
2653 BUG_ON(1);
2654 }
1da177e4 2655 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2656 if (busiest < this_rq) {
1da177e4
LT
2657 spin_unlock(&this_rq->lock);
2658 spin_lock(&busiest->lock);
2659 spin_lock(&this_rq->lock);
e8fa1362 2660 ret = 1;
1da177e4
LT
2661 } else
2662 spin_lock(&busiest->lock);
2663 }
e8fa1362 2664 return ret;
1da177e4
LT
2665}
2666
1da177e4
LT
2667/*
2668 * If dest_cpu is allowed for this process, migrate the task to it.
2669 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2670 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2671 * the cpu_allowed mask is restored.
2672 */
36c8b586 2673static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2674{
70b97a7f 2675 struct migration_req req;
1da177e4 2676 unsigned long flags;
70b97a7f 2677 struct rq *rq;
1da177e4
LT
2678
2679 rq = task_rq_lock(p, &flags);
2680 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2681 || unlikely(cpu_is_offline(dest_cpu)))
2682 goto out;
2683
2684 /* force the process onto the specified CPU */
2685 if (migrate_task(p, dest_cpu, &req)) {
2686 /* Need to wait for migration thread (might exit: take ref). */
2687 struct task_struct *mt = rq->migration_thread;
36c8b586 2688
1da177e4
LT
2689 get_task_struct(mt);
2690 task_rq_unlock(rq, &flags);
2691 wake_up_process(mt);
2692 put_task_struct(mt);
2693 wait_for_completion(&req.done);
36c8b586 2694
1da177e4
LT
2695 return;
2696 }
2697out:
2698 task_rq_unlock(rq, &flags);
2699}
2700
2701/*
476d139c
NP
2702 * sched_exec - execve() is a valuable balancing opportunity, because at
2703 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2704 */
2705void sched_exec(void)
2706{
1da177e4 2707 int new_cpu, this_cpu = get_cpu();
476d139c 2708 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2709 put_cpu();
476d139c
NP
2710 if (new_cpu != this_cpu)
2711 sched_migrate_task(current, new_cpu);
1da177e4
LT
2712}
2713
2714/*
2715 * pull_task - move a task from a remote runqueue to the local runqueue.
2716 * Both runqueues must be locked.
2717 */
dd41f596
IM
2718static void pull_task(struct rq *src_rq, struct task_struct *p,
2719 struct rq *this_rq, int this_cpu)
1da177e4 2720{
2e1cb74a 2721 deactivate_task(src_rq, p, 0);
1da177e4 2722 set_task_cpu(p, this_cpu);
dd41f596 2723 activate_task(this_rq, p, 0);
1da177e4
LT
2724 /*
2725 * Note that idle threads have a prio of MAX_PRIO, for this test
2726 * to be always true for them.
2727 */
dd41f596 2728 check_preempt_curr(this_rq, p);
1da177e4
LT
2729}
2730
2731/*
2732 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2733 */
858119e1 2734static
70b97a7f 2735int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2736 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2737 int *all_pinned)
1da177e4
LT
2738{
2739 /*
2740 * We do not migrate tasks that are:
2741 * 1) running (obviously), or
2742 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2743 * 3) are cache-hot on their current CPU.
2744 */
cc367732
IM
2745 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2746 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2747 return 0;
cc367732 2748 }
81026794
NP
2749 *all_pinned = 0;
2750
cc367732
IM
2751 if (task_running(rq, p)) {
2752 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2753 return 0;
cc367732 2754 }
1da177e4 2755
da84d961
IM
2756 /*
2757 * Aggressive migration if:
2758 * 1) task is cache cold, or
2759 * 2) too many balance attempts have failed.
2760 */
2761
6bc1665b
IM
2762 if (!task_hot(p, rq->clock, sd) ||
2763 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2764#ifdef CONFIG_SCHEDSTATS
cc367732 2765 if (task_hot(p, rq->clock, sd)) {
da84d961 2766 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2767 schedstat_inc(p, se.nr_forced_migrations);
2768 }
da84d961
IM
2769#endif
2770 return 1;
2771 }
2772
cc367732
IM
2773 if (task_hot(p, rq->clock, sd)) {
2774 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2775 return 0;
cc367732 2776 }
1da177e4
LT
2777 return 1;
2778}
2779
e1d1484f
PW
2780static unsigned long
2781balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2782 unsigned long max_load_move, struct sched_domain *sd,
2783 enum cpu_idle_type idle, int *all_pinned,
2784 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2785{
b82d9fdd 2786 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2787 struct task_struct *p;
2788 long rem_load_move = max_load_move;
1da177e4 2789
e1d1484f 2790 if (max_load_move == 0)
1da177e4
LT
2791 goto out;
2792
81026794
NP
2793 pinned = 1;
2794
1da177e4 2795 /*
dd41f596 2796 * Start the load-balancing iterator:
1da177e4 2797 */
dd41f596
IM
2798 p = iterator->start(iterator->arg);
2799next:
b82d9fdd 2800 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2801 goto out;
50ddd969 2802 /*
b82d9fdd 2803 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2804 * skip a task if it will be the highest priority task (i.e. smallest
2805 * prio value) on its new queue regardless of its load weight
2806 */
dd41f596
IM
2807 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2808 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2809 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2810 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2811 p = iterator->next(iterator->arg);
2812 goto next;
1da177e4
LT
2813 }
2814
dd41f596 2815 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2816 pulled++;
dd41f596 2817 rem_load_move -= p->se.load.weight;
1da177e4 2818
2dd73a4f 2819 /*
b82d9fdd 2820 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2821 */
e1d1484f 2822 if (rem_load_move > 0) {
a4ac01c3
PW
2823 if (p->prio < *this_best_prio)
2824 *this_best_prio = p->prio;
dd41f596
IM
2825 p = iterator->next(iterator->arg);
2826 goto next;
1da177e4
LT
2827 }
2828out:
2829 /*
e1d1484f 2830 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2831 * so we can safely collect pull_task() stats here rather than
2832 * inside pull_task().
2833 */
2834 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2835
2836 if (all_pinned)
2837 *all_pinned = pinned;
e1d1484f
PW
2838
2839 return max_load_move - rem_load_move;
1da177e4
LT
2840}
2841
dd41f596 2842/*
43010659
PW
2843 * move_tasks tries to move up to max_load_move weighted load from busiest to
2844 * this_rq, as part of a balancing operation within domain "sd".
2845 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2846 *
2847 * Called with both runqueues locked.
2848 */
2849static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2850 unsigned long max_load_move,
dd41f596
IM
2851 struct sched_domain *sd, enum cpu_idle_type idle,
2852 int *all_pinned)
2853{
5522d5d5 2854 const struct sched_class *class = sched_class_highest;
43010659 2855 unsigned long total_load_moved = 0;
a4ac01c3 2856 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2857
2858 do {
43010659
PW
2859 total_load_moved +=
2860 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2861 max_load_move - total_load_moved,
a4ac01c3 2862 sd, idle, all_pinned, &this_best_prio);
dd41f596 2863 class = class->next;
43010659 2864 } while (class && max_load_move > total_load_moved);
dd41f596 2865
43010659
PW
2866 return total_load_moved > 0;
2867}
2868
e1d1484f
PW
2869static int
2870iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2871 struct sched_domain *sd, enum cpu_idle_type idle,
2872 struct rq_iterator *iterator)
2873{
2874 struct task_struct *p = iterator->start(iterator->arg);
2875 int pinned = 0;
2876
2877 while (p) {
2878 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2879 pull_task(busiest, p, this_rq, this_cpu);
2880 /*
2881 * Right now, this is only the second place pull_task()
2882 * is called, so we can safely collect pull_task()
2883 * stats here rather than inside pull_task().
2884 */
2885 schedstat_inc(sd, lb_gained[idle]);
2886
2887 return 1;
2888 }
2889 p = iterator->next(iterator->arg);
2890 }
2891
2892 return 0;
2893}
2894
43010659
PW
2895/*
2896 * move_one_task tries to move exactly one task from busiest to this_rq, as
2897 * part of active balancing operations within "domain".
2898 * Returns 1 if successful and 0 otherwise.
2899 *
2900 * Called with both runqueues locked.
2901 */
2902static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2903 struct sched_domain *sd, enum cpu_idle_type idle)
2904{
5522d5d5 2905 const struct sched_class *class;
43010659
PW
2906
2907 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2908 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2909 return 1;
2910
2911 return 0;
dd41f596
IM
2912}
2913
1da177e4
LT
2914/*
2915 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2916 * domain. It calculates and returns the amount of weighted load which
2917 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2918 */
2919static struct sched_group *
2920find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 2921 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 2922 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
2923{
2924 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2925 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2926 unsigned long max_pull;
2dd73a4f
PW
2927 unsigned long busiest_load_per_task, busiest_nr_running;
2928 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2929 int load_idx, group_imb = 0;
5c45bf27
SS
2930#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2931 int power_savings_balance = 1;
2932 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2933 unsigned long min_nr_running = ULONG_MAX;
2934 struct sched_group *group_min = NULL, *group_leader = NULL;
2935#endif
1da177e4
LT
2936
2937 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2938 busiest_load_per_task = busiest_nr_running = 0;
2939 this_load_per_task = this_nr_running = 0;
d15bcfdb 2940 if (idle == CPU_NOT_IDLE)
7897986b 2941 load_idx = sd->busy_idx;
d15bcfdb 2942 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2943 load_idx = sd->newidle_idx;
2944 else
2945 load_idx = sd->idle_idx;
1da177e4
LT
2946
2947 do {
908a7c1b 2948 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2949 int local_group;
2950 int i;
908a7c1b 2951 int __group_imb = 0;
783609c6 2952 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2953 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2954
2955 local_group = cpu_isset(this_cpu, group->cpumask);
2956
783609c6
SS
2957 if (local_group)
2958 balance_cpu = first_cpu(group->cpumask);
2959
1da177e4 2960 /* Tally up the load of all CPUs in the group */
2dd73a4f 2961 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2962 max_cpu_load = 0;
2963 min_cpu_load = ~0UL;
1da177e4
LT
2964
2965 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2966 struct rq *rq;
2967
2968 if (!cpu_isset(i, *cpus))
2969 continue;
2970
2971 rq = cpu_rq(i);
2dd73a4f 2972
9439aab8 2973 if (*sd_idle && rq->nr_running)
5969fe06
NP
2974 *sd_idle = 0;
2975
1da177e4 2976 /* Bias balancing toward cpus of our domain */
783609c6
SS
2977 if (local_group) {
2978 if (idle_cpu(i) && !first_idle_cpu) {
2979 first_idle_cpu = 1;
2980 balance_cpu = i;
2981 }
2982
a2000572 2983 load = target_load(i, load_idx);
908a7c1b 2984 } else {
a2000572 2985 load = source_load(i, load_idx);
908a7c1b
KC
2986 if (load > max_cpu_load)
2987 max_cpu_load = load;
2988 if (min_cpu_load > load)
2989 min_cpu_load = load;
2990 }
1da177e4
LT
2991
2992 avg_load += load;
2dd73a4f 2993 sum_nr_running += rq->nr_running;
dd41f596 2994 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2995 }
2996
783609c6
SS
2997 /*
2998 * First idle cpu or the first cpu(busiest) in this sched group
2999 * is eligible for doing load balancing at this and above
9439aab8
SS
3000 * domains. In the newly idle case, we will allow all the cpu's
3001 * to do the newly idle load balance.
783609c6 3002 */
9439aab8
SS
3003 if (idle != CPU_NEWLY_IDLE && local_group &&
3004 balance_cpu != this_cpu && balance) {
783609c6
SS
3005 *balance = 0;
3006 goto ret;
3007 }
3008
1da177e4 3009 total_load += avg_load;
5517d86b 3010 total_pwr += group->__cpu_power;
1da177e4
LT
3011
3012 /* Adjust by relative CPU power of the group */
5517d86b
ED
3013 avg_load = sg_div_cpu_power(group,
3014 avg_load * SCHED_LOAD_SCALE);
1da177e4 3015
908a7c1b
KC
3016 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3017 __group_imb = 1;
3018
5517d86b 3019 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3020
1da177e4
LT
3021 if (local_group) {
3022 this_load = avg_load;
3023 this = group;
2dd73a4f
PW
3024 this_nr_running = sum_nr_running;
3025 this_load_per_task = sum_weighted_load;
3026 } else if (avg_load > max_load &&
908a7c1b 3027 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3028 max_load = avg_load;
3029 busiest = group;
2dd73a4f
PW
3030 busiest_nr_running = sum_nr_running;
3031 busiest_load_per_task = sum_weighted_load;
908a7c1b 3032 group_imb = __group_imb;
1da177e4 3033 }
5c45bf27
SS
3034
3035#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3036 /*
3037 * Busy processors will not participate in power savings
3038 * balance.
3039 */
dd41f596
IM
3040 if (idle == CPU_NOT_IDLE ||
3041 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3042 goto group_next;
5c45bf27
SS
3043
3044 /*
3045 * If the local group is idle or completely loaded
3046 * no need to do power savings balance at this domain
3047 */
3048 if (local_group && (this_nr_running >= group_capacity ||
3049 !this_nr_running))
3050 power_savings_balance = 0;
3051
dd41f596 3052 /*
5c45bf27
SS
3053 * If a group is already running at full capacity or idle,
3054 * don't include that group in power savings calculations
dd41f596
IM
3055 */
3056 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3057 || !sum_nr_running)
dd41f596 3058 goto group_next;
5c45bf27 3059
dd41f596 3060 /*
5c45bf27 3061 * Calculate the group which has the least non-idle load.
dd41f596
IM
3062 * This is the group from where we need to pick up the load
3063 * for saving power
3064 */
3065 if ((sum_nr_running < min_nr_running) ||
3066 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3067 first_cpu(group->cpumask) <
3068 first_cpu(group_min->cpumask))) {
dd41f596
IM
3069 group_min = group;
3070 min_nr_running = sum_nr_running;
5c45bf27
SS
3071 min_load_per_task = sum_weighted_load /
3072 sum_nr_running;
dd41f596 3073 }
5c45bf27 3074
dd41f596 3075 /*
5c45bf27 3076 * Calculate the group which is almost near its
dd41f596
IM
3077 * capacity but still has some space to pick up some load
3078 * from other group and save more power
3079 */
3080 if (sum_nr_running <= group_capacity - 1) {
3081 if (sum_nr_running > leader_nr_running ||
3082 (sum_nr_running == leader_nr_running &&
3083 first_cpu(group->cpumask) >
3084 first_cpu(group_leader->cpumask))) {
3085 group_leader = group;
3086 leader_nr_running = sum_nr_running;
3087 }
48f24c4d 3088 }
5c45bf27
SS
3089group_next:
3090#endif
1da177e4
LT
3091 group = group->next;
3092 } while (group != sd->groups);
3093
2dd73a4f 3094 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3095 goto out_balanced;
3096
3097 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3098
3099 if (this_load >= avg_load ||
3100 100*max_load <= sd->imbalance_pct*this_load)
3101 goto out_balanced;
3102
2dd73a4f 3103 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3104 if (group_imb)
3105 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3106
1da177e4
LT
3107 /*
3108 * We're trying to get all the cpus to the average_load, so we don't
3109 * want to push ourselves above the average load, nor do we wish to
3110 * reduce the max loaded cpu below the average load, as either of these
3111 * actions would just result in more rebalancing later, and ping-pong
3112 * tasks around. Thus we look for the minimum possible imbalance.
3113 * Negative imbalances (*we* are more loaded than anyone else) will
3114 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3115 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3116 * appear as very large values with unsigned longs.
3117 */
2dd73a4f
PW
3118 if (max_load <= busiest_load_per_task)
3119 goto out_balanced;
3120
3121 /*
3122 * In the presence of smp nice balancing, certain scenarios can have
3123 * max load less than avg load(as we skip the groups at or below
3124 * its cpu_power, while calculating max_load..)
3125 */
3126 if (max_load < avg_load) {
3127 *imbalance = 0;
3128 goto small_imbalance;
3129 }
0c117f1b
SS
3130
3131 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3132 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3133
1da177e4 3134 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3135 *imbalance = min(max_pull * busiest->__cpu_power,
3136 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3137 / SCHED_LOAD_SCALE;
3138
2dd73a4f
PW
3139 /*
3140 * if *imbalance is less than the average load per runnable task
3141 * there is no gaurantee that any tasks will be moved so we'll have
3142 * a think about bumping its value to force at least one task to be
3143 * moved
3144 */
7fd0d2dd 3145 if (*imbalance < busiest_load_per_task) {
48f24c4d 3146 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3147 unsigned int imbn;
3148
3149small_imbalance:
3150 pwr_move = pwr_now = 0;
3151 imbn = 2;
3152 if (this_nr_running) {
3153 this_load_per_task /= this_nr_running;
3154 if (busiest_load_per_task > this_load_per_task)
3155 imbn = 1;
3156 } else
3157 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3158
dd41f596
IM
3159 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3160 busiest_load_per_task * imbn) {
2dd73a4f 3161 *imbalance = busiest_load_per_task;
1da177e4
LT
3162 return busiest;
3163 }
3164
3165 /*
3166 * OK, we don't have enough imbalance to justify moving tasks,
3167 * however we may be able to increase total CPU power used by
3168 * moving them.
3169 */
3170
5517d86b
ED
3171 pwr_now += busiest->__cpu_power *
3172 min(busiest_load_per_task, max_load);
3173 pwr_now += this->__cpu_power *
3174 min(this_load_per_task, this_load);
1da177e4
LT
3175 pwr_now /= SCHED_LOAD_SCALE;
3176
3177 /* Amount of load we'd subtract */
5517d86b
ED
3178 tmp = sg_div_cpu_power(busiest,
3179 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3180 if (max_load > tmp)
5517d86b 3181 pwr_move += busiest->__cpu_power *
2dd73a4f 3182 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3183
3184 /* Amount of load we'd add */
5517d86b 3185 if (max_load * busiest->__cpu_power <
33859f7f 3186 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3187 tmp = sg_div_cpu_power(this,
3188 max_load * busiest->__cpu_power);
1da177e4 3189 else
5517d86b
ED
3190 tmp = sg_div_cpu_power(this,
3191 busiest_load_per_task * SCHED_LOAD_SCALE);
3192 pwr_move += this->__cpu_power *
3193 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3194 pwr_move /= SCHED_LOAD_SCALE;
3195
3196 /* Move if we gain throughput */
7fd0d2dd
SS
3197 if (pwr_move > pwr_now)
3198 *imbalance = busiest_load_per_task;
1da177e4
LT
3199 }
3200
1da177e4
LT
3201 return busiest;
3202
3203out_balanced:
5c45bf27 3204#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3205 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3206 goto ret;
1da177e4 3207
5c45bf27
SS
3208 if (this == group_leader && group_leader != group_min) {
3209 *imbalance = min_load_per_task;
3210 return group_min;
3211 }
5c45bf27 3212#endif
783609c6 3213ret:
1da177e4
LT
3214 *imbalance = 0;
3215 return NULL;
3216}
3217
3218/*
3219 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3220 */
70b97a7f 3221static struct rq *
d15bcfdb 3222find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3223 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3224{
70b97a7f 3225 struct rq *busiest = NULL, *rq;
2dd73a4f 3226 unsigned long max_load = 0;
1da177e4
LT
3227 int i;
3228
3229 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3230 unsigned long wl;
0a2966b4
CL
3231
3232 if (!cpu_isset(i, *cpus))
3233 continue;
3234
48f24c4d 3235 rq = cpu_rq(i);
dd41f596 3236 wl = weighted_cpuload(i);
2dd73a4f 3237
dd41f596 3238 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3239 continue;
1da177e4 3240
dd41f596
IM
3241 if (wl > max_load) {
3242 max_load = wl;
48f24c4d 3243 busiest = rq;
1da177e4
LT
3244 }
3245 }
3246
3247 return busiest;
3248}
3249
77391d71
NP
3250/*
3251 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3252 * so long as it is large enough.
3253 */
3254#define MAX_PINNED_INTERVAL 512
3255
1da177e4
LT
3256/*
3257 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3258 * tasks if there is an imbalance.
1da177e4 3259 */
70b97a7f 3260static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3261 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3262 int *balance, cpumask_t *cpus)
1da177e4 3263{
43010659 3264 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3265 struct sched_group *group;
1da177e4 3266 unsigned long imbalance;
70b97a7f 3267 struct rq *busiest;
fe2eea3f 3268 unsigned long flags;
5969fe06 3269
7c16ec58
MT
3270 cpus_setall(*cpus);
3271
89c4710e
SS
3272 /*
3273 * When power savings policy is enabled for the parent domain, idle
3274 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3275 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3276 * portraying it as CPU_NOT_IDLE.
89c4710e 3277 */
d15bcfdb 3278 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3279 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3280 sd_idle = 1;
1da177e4 3281
2d72376b 3282 schedstat_inc(sd, lb_count[idle]);
1da177e4 3283
0a2966b4
CL
3284redo:
3285 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3286 cpus, balance);
783609c6 3287
06066714 3288 if (*balance == 0)
783609c6 3289 goto out_balanced;
783609c6 3290
1da177e4
LT
3291 if (!group) {
3292 schedstat_inc(sd, lb_nobusyg[idle]);
3293 goto out_balanced;
3294 }
3295
7c16ec58 3296 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3297 if (!busiest) {
3298 schedstat_inc(sd, lb_nobusyq[idle]);
3299 goto out_balanced;
3300 }
3301
db935dbd 3302 BUG_ON(busiest == this_rq);
1da177e4
LT
3303
3304 schedstat_add(sd, lb_imbalance[idle], imbalance);
3305
43010659 3306 ld_moved = 0;
1da177e4
LT
3307 if (busiest->nr_running > 1) {
3308 /*
3309 * Attempt to move tasks. If find_busiest_group has found
3310 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3311 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3312 * correctly treated as an imbalance.
3313 */
fe2eea3f 3314 local_irq_save(flags);
e17224bf 3315 double_rq_lock(this_rq, busiest);
43010659 3316 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3317 imbalance, sd, idle, &all_pinned);
e17224bf 3318 double_rq_unlock(this_rq, busiest);
fe2eea3f 3319 local_irq_restore(flags);
81026794 3320
46cb4b7c
SS
3321 /*
3322 * some other cpu did the load balance for us.
3323 */
43010659 3324 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3325 resched_cpu(this_cpu);
3326
81026794 3327 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3328 if (unlikely(all_pinned)) {
7c16ec58
MT
3329 cpu_clear(cpu_of(busiest), *cpus);
3330 if (!cpus_empty(*cpus))
0a2966b4 3331 goto redo;
81026794 3332 goto out_balanced;
0a2966b4 3333 }
1da177e4 3334 }
81026794 3335
43010659 3336 if (!ld_moved) {
1da177e4
LT
3337 schedstat_inc(sd, lb_failed[idle]);
3338 sd->nr_balance_failed++;
3339
3340 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3341
fe2eea3f 3342 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3343
3344 /* don't kick the migration_thread, if the curr
3345 * task on busiest cpu can't be moved to this_cpu
3346 */
3347 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3348 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3349 all_pinned = 1;
3350 goto out_one_pinned;
3351 }
3352
1da177e4
LT
3353 if (!busiest->active_balance) {
3354 busiest->active_balance = 1;
3355 busiest->push_cpu = this_cpu;
81026794 3356 active_balance = 1;
1da177e4 3357 }
fe2eea3f 3358 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3359 if (active_balance)
1da177e4
LT
3360 wake_up_process(busiest->migration_thread);
3361
3362 /*
3363 * We've kicked active balancing, reset the failure
3364 * counter.
3365 */
39507451 3366 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3367 }
81026794 3368 } else
1da177e4
LT
3369 sd->nr_balance_failed = 0;
3370
81026794 3371 if (likely(!active_balance)) {
1da177e4
LT
3372 /* We were unbalanced, so reset the balancing interval */
3373 sd->balance_interval = sd->min_interval;
81026794
NP
3374 } else {
3375 /*
3376 * If we've begun active balancing, start to back off. This
3377 * case may not be covered by the all_pinned logic if there
3378 * is only 1 task on the busy runqueue (because we don't call
3379 * move_tasks).
3380 */
3381 if (sd->balance_interval < sd->max_interval)
3382 sd->balance_interval *= 2;
1da177e4
LT
3383 }
3384
43010659 3385 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3386 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3387 return -1;
3388 return ld_moved;
1da177e4
LT
3389
3390out_balanced:
1da177e4
LT
3391 schedstat_inc(sd, lb_balanced[idle]);
3392
16cfb1c0 3393 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3394
3395out_one_pinned:
1da177e4 3396 /* tune up the balancing interval */
77391d71
NP
3397 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3398 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3399 sd->balance_interval *= 2;
3400
48f24c4d 3401 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3402 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3403 return -1;
3404 return 0;
1da177e4
LT
3405}
3406
3407/*
3408 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3409 * tasks if there is an imbalance.
3410 *
d15bcfdb 3411 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3412 * this_rq is locked.
3413 */
48f24c4d 3414static int
7c16ec58
MT
3415load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3416 cpumask_t *cpus)
1da177e4
LT
3417{
3418 struct sched_group *group;
70b97a7f 3419 struct rq *busiest = NULL;
1da177e4 3420 unsigned long imbalance;
43010659 3421 int ld_moved = 0;
5969fe06 3422 int sd_idle = 0;
969bb4e4 3423 int all_pinned = 0;
7c16ec58
MT
3424
3425 cpus_setall(*cpus);
5969fe06 3426
89c4710e
SS
3427 /*
3428 * When power savings policy is enabled for the parent domain, idle
3429 * sibling can pick up load irrespective of busy siblings. In this case,
3430 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3431 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3432 */
3433 if (sd->flags & SD_SHARE_CPUPOWER &&
3434 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3435 sd_idle = 1;
1da177e4 3436
2d72376b 3437 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3438redo:
d15bcfdb 3439 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3440 &sd_idle, cpus, NULL);
1da177e4 3441 if (!group) {
d15bcfdb 3442 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3443 goto out_balanced;
1da177e4
LT
3444 }
3445
7c16ec58 3446 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3447 if (!busiest) {
d15bcfdb 3448 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3449 goto out_balanced;
1da177e4
LT
3450 }
3451
db935dbd
NP
3452 BUG_ON(busiest == this_rq);
3453
d15bcfdb 3454 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3455
43010659 3456 ld_moved = 0;
d6d5cfaf
NP
3457 if (busiest->nr_running > 1) {
3458 /* Attempt to move tasks */
3459 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3460 /* this_rq->clock is already updated */
3461 update_rq_clock(busiest);
43010659 3462 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3463 imbalance, sd, CPU_NEWLY_IDLE,
3464 &all_pinned);
d6d5cfaf 3465 spin_unlock(&busiest->lock);
0a2966b4 3466
969bb4e4 3467 if (unlikely(all_pinned)) {
7c16ec58
MT
3468 cpu_clear(cpu_of(busiest), *cpus);
3469 if (!cpus_empty(*cpus))
0a2966b4
CL
3470 goto redo;
3471 }
d6d5cfaf
NP
3472 }
3473
43010659 3474 if (!ld_moved) {
d15bcfdb 3475 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3476 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3477 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3478 return -1;
3479 } else
16cfb1c0 3480 sd->nr_balance_failed = 0;
1da177e4 3481
43010659 3482 return ld_moved;
16cfb1c0
NP
3483
3484out_balanced:
d15bcfdb 3485 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3486 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3487 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3488 return -1;
16cfb1c0 3489 sd->nr_balance_failed = 0;
48f24c4d 3490
16cfb1c0 3491 return 0;
1da177e4
LT
3492}
3493
3494/*
3495 * idle_balance is called by schedule() if this_cpu is about to become
3496 * idle. Attempts to pull tasks from other CPUs.
3497 */
70b97a7f 3498static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3499{
3500 struct sched_domain *sd;
dd41f596
IM
3501 int pulled_task = -1;
3502 unsigned long next_balance = jiffies + HZ;
7c16ec58 3503 cpumask_t tmpmask;
1da177e4
LT
3504
3505 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3506 unsigned long interval;
3507
3508 if (!(sd->flags & SD_LOAD_BALANCE))
3509 continue;
3510
3511 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3512 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3513 pulled_task = load_balance_newidle(this_cpu, this_rq,
3514 sd, &tmpmask);
92c4ca5c
CL
3515
3516 interval = msecs_to_jiffies(sd->balance_interval);
3517 if (time_after(next_balance, sd->last_balance + interval))
3518 next_balance = sd->last_balance + interval;
3519 if (pulled_task)
3520 break;
1da177e4 3521 }
dd41f596 3522 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3523 /*
3524 * We are going idle. next_balance may be set based on
3525 * a busy processor. So reset next_balance.
3526 */
3527 this_rq->next_balance = next_balance;
dd41f596 3528 }
1da177e4
LT
3529}
3530
3531/*
3532 * active_load_balance is run by migration threads. It pushes running tasks
3533 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3534 * running on each physical CPU where possible, and avoids physical /
3535 * logical imbalances.
3536 *
3537 * Called with busiest_rq locked.
3538 */
70b97a7f 3539static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3540{
39507451 3541 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3542 struct sched_domain *sd;
3543 struct rq *target_rq;
39507451 3544
48f24c4d 3545 /* Is there any task to move? */
39507451 3546 if (busiest_rq->nr_running <= 1)
39507451
NP
3547 return;
3548
3549 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3550
3551 /*
39507451 3552 * This condition is "impossible", if it occurs
41a2d6cf 3553 * we need to fix it. Originally reported by
39507451 3554 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3555 */
39507451 3556 BUG_ON(busiest_rq == target_rq);
1da177e4 3557
39507451
NP
3558 /* move a task from busiest_rq to target_rq */
3559 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3560 update_rq_clock(busiest_rq);
3561 update_rq_clock(target_rq);
39507451
NP
3562
3563 /* Search for an sd spanning us and the target CPU. */
c96d145e 3564 for_each_domain(target_cpu, sd) {
39507451 3565 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3566 cpu_isset(busiest_cpu, sd->span))
39507451 3567 break;
c96d145e 3568 }
39507451 3569
48f24c4d 3570 if (likely(sd)) {
2d72376b 3571 schedstat_inc(sd, alb_count);
39507451 3572
43010659
PW
3573 if (move_one_task(target_rq, target_cpu, busiest_rq,
3574 sd, CPU_IDLE))
48f24c4d
IM
3575 schedstat_inc(sd, alb_pushed);
3576 else
3577 schedstat_inc(sd, alb_failed);
3578 }
39507451 3579 spin_unlock(&target_rq->lock);
1da177e4
LT
3580}
3581
46cb4b7c
SS
3582#ifdef CONFIG_NO_HZ
3583static struct {
3584 atomic_t load_balancer;
41a2d6cf 3585 cpumask_t cpu_mask;
46cb4b7c
SS
3586} nohz ____cacheline_aligned = {
3587 .load_balancer = ATOMIC_INIT(-1),
3588 .cpu_mask = CPU_MASK_NONE,
3589};
3590
7835b98b 3591/*
46cb4b7c
SS
3592 * This routine will try to nominate the ilb (idle load balancing)
3593 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3594 * load balancing on behalf of all those cpus. If all the cpus in the system
3595 * go into this tickless mode, then there will be no ilb owner (as there is
3596 * no need for one) and all the cpus will sleep till the next wakeup event
3597 * arrives...
3598 *
3599 * For the ilb owner, tick is not stopped. And this tick will be used
3600 * for idle load balancing. ilb owner will still be part of
3601 * nohz.cpu_mask..
7835b98b 3602 *
46cb4b7c
SS
3603 * While stopping the tick, this cpu will become the ilb owner if there
3604 * is no other owner. And will be the owner till that cpu becomes busy
3605 * or if all cpus in the system stop their ticks at which point
3606 * there is no need for ilb owner.
3607 *
3608 * When the ilb owner becomes busy, it nominates another owner, during the
3609 * next busy scheduler_tick()
3610 */
3611int select_nohz_load_balancer(int stop_tick)
3612{
3613 int cpu = smp_processor_id();
3614
3615 if (stop_tick) {
3616 cpu_set(cpu, nohz.cpu_mask);
3617 cpu_rq(cpu)->in_nohz_recently = 1;
3618
3619 /*
3620 * If we are going offline and still the leader, give up!
3621 */
3622 if (cpu_is_offline(cpu) &&
3623 atomic_read(&nohz.load_balancer) == cpu) {
3624 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3625 BUG();
3626 return 0;
3627 }
3628
3629 /* time for ilb owner also to sleep */
3630 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3631 if (atomic_read(&nohz.load_balancer) == cpu)
3632 atomic_set(&nohz.load_balancer, -1);
3633 return 0;
3634 }
3635
3636 if (atomic_read(&nohz.load_balancer) == -1) {
3637 /* make me the ilb owner */
3638 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3639 return 1;
3640 } else if (atomic_read(&nohz.load_balancer) == cpu)
3641 return 1;
3642 } else {
3643 if (!cpu_isset(cpu, nohz.cpu_mask))
3644 return 0;
3645
3646 cpu_clear(cpu, nohz.cpu_mask);
3647
3648 if (atomic_read(&nohz.load_balancer) == cpu)
3649 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3650 BUG();
3651 }
3652 return 0;
3653}
3654#endif
3655
3656static DEFINE_SPINLOCK(balancing);
3657
3658/*
7835b98b
CL
3659 * It checks each scheduling domain to see if it is due to be balanced,
3660 * and initiates a balancing operation if so.
3661 *
3662 * Balancing parameters are set up in arch_init_sched_domains.
3663 */
a9957449 3664static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3665{
46cb4b7c
SS
3666 int balance = 1;
3667 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3668 unsigned long interval;
3669 struct sched_domain *sd;
46cb4b7c 3670 /* Earliest time when we have to do rebalance again */
c9819f45 3671 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3672 int update_next_balance = 0;
7c16ec58 3673 cpumask_t tmp;
1da177e4 3674
46cb4b7c 3675 for_each_domain(cpu, sd) {
1da177e4
LT
3676 if (!(sd->flags & SD_LOAD_BALANCE))
3677 continue;
3678
3679 interval = sd->balance_interval;
d15bcfdb 3680 if (idle != CPU_IDLE)
1da177e4
LT
3681 interval *= sd->busy_factor;
3682
3683 /* scale ms to jiffies */
3684 interval = msecs_to_jiffies(interval);
3685 if (unlikely(!interval))
3686 interval = 1;
dd41f596
IM
3687 if (interval > HZ*NR_CPUS/10)
3688 interval = HZ*NR_CPUS/10;
3689
1da177e4 3690
08c183f3
CL
3691 if (sd->flags & SD_SERIALIZE) {
3692 if (!spin_trylock(&balancing))
3693 goto out;
3694 }
3695
c9819f45 3696 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3697 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3698 /*
3699 * We've pulled tasks over so either we're no
5969fe06
NP
3700 * longer idle, or one of our SMT siblings is
3701 * not idle.
3702 */
d15bcfdb 3703 idle = CPU_NOT_IDLE;
1da177e4 3704 }
1bd77f2d 3705 sd->last_balance = jiffies;
1da177e4 3706 }
08c183f3
CL
3707 if (sd->flags & SD_SERIALIZE)
3708 spin_unlock(&balancing);
3709out:
f549da84 3710 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3711 next_balance = sd->last_balance + interval;
f549da84
SS
3712 update_next_balance = 1;
3713 }
783609c6
SS
3714
3715 /*
3716 * Stop the load balance at this level. There is another
3717 * CPU in our sched group which is doing load balancing more
3718 * actively.
3719 */
3720 if (!balance)
3721 break;
1da177e4 3722 }
f549da84
SS
3723
3724 /*
3725 * next_balance will be updated only when there is a need.
3726 * When the cpu is attached to null domain for ex, it will not be
3727 * updated.
3728 */
3729 if (likely(update_next_balance))
3730 rq->next_balance = next_balance;
46cb4b7c
SS
3731}
3732
3733/*
3734 * run_rebalance_domains is triggered when needed from the scheduler tick.
3735 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3736 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3737 */
3738static void run_rebalance_domains(struct softirq_action *h)
3739{
dd41f596
IM
3740 int this_cpu = smp_processor_id();
3741 struct rq *this_rq = cpu_rq(this_cpu);
3742 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3743 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3744
dd41f596 3745 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3746
3747#ifdef CONFIG_NO_HZ
3748 /*
3749 * If this cpu is the owner for idle load balancing, then do the
3750 * balancing on behalf of the other idle cpus whose ticks are
3751 * stopped.
3752 */
dd41f596
IM
3753 if (this_rq->idle_at_tick &&
3754 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3755 cpumask_t cpus = nohz.cpu_mask;
3756 struct rq *rq;
3757 int balance_cpu;
3758
dd41f596 3759 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3760 for_each_cpu_mask(balance_cpu, cpus) {
3761 /*
3762 * If this cpu gets work to do, stop the load balancing
3763 * work being done for other cpus. Next load
3764 * balancing owner will pick it up.
3765 */
3766 if (need_resched())
3767 break;
3768
de0cf899 3769 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3770
3771 rq = cpu_rq(balance_cpu);
dd41f596
IM
3772 if (time_after(this_rq->next_balance, rq->next_balance))
3773 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3774 }
3775 }
3776#endif
3777}
3778
3779/*
3780 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3781 *
3782 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3783 * idle load balancing owner or decide to stop the periodic load balancing,
3784 * if the whole system is idle.
3785 */
dd41f596 3786static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3787{
46cb4b7c
SS
3788#ifdef CONFIG_NO_HZ
3789 /*
3790 * If we were in the nohz mode recently and busy at the current
3791 * scheduler tick, then check if we need to nominate new idle
3792 * load balancer.
3793 */
3794 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3795 rq->in_nohz_recently = 0;
3796
3797 if (atomic_read(&nohz.load_balancer) == cpu) {
3798 cpu_clear(cpu, nohz.cpu_mask);
3799 atomic_set(&nohz.load_balancer, -1);
3800 }
3801
3802 if (atomic_read(&nohz.load_balancer) == -1) {
3803 /*
3804 * simple selection for now: Nominate the
3805 * first cpu in the nohz list to be the next
3806 * ilb owner.
3807 *
3808 * TBD: Traverse the sched domains and nominate
3809 * the nearest cpu in the nohz.cpu_mask.
3810 */
3811 int ilb = first_cpu(nohz.cpu_mask);
3812
434d53b0 3813 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3814 resched_cpu(ilb);
3815 }
3816 }
3817
3818 /*
3819 * If this cpu is idle and doing idle load balancing for all the
3820 * cpus with ticks stopped, is it time for that to stop?
3821 */
3822 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3823 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3824 resched_cpu(cpu);
3825 return;
3826 }
3827
3828 /*
3829 * If this cpu is idle and the idle load balancing is done by
3830 * someone else, then no need raise the SCHED_SOFTIRQ
3831 */
3832 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3833 cpu_isset(cpu, nohz.cpu_mask))
3834 return;
3835#endif
3836 if (time_after_eq(jiffies, rq->next_balance))
3837 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3838}
dd41f596
IM
3839
3840#else /* CONFIG_SMP */
3841
1da177e4
LT
3842/*
3843 * on UP we do not need to balance between CPUs:
3844 */
70b97a7f 3845static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3846{
3847}
dd41f596 3848
1da177e4
LT
3849#endif
3850
1da177e4
LT
3851DEFINE_PER_CPU(struct kernel_stat, kstat);
3852
3853EXPORT_PER_CPU_SYMBOL(kstat);
3854
3855/*
41b86e9c
IM
3856 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3857 * that have not yet been banked in case the task is currently running.
1da177e4 3858 */
41b86e9c 3859unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3860{
1da177e4 3861 unsigned long flags;
41b86e9c
IM
3862 u64 ns, delta_exec;
3863 struct rq *rq;
48f24c4d 3864
41b86e9c
IM
3865 rq = task_rq_lock(p, &flags);
3866 ns = p->se.sum_exec_runtime;
051a1d1a 3867 if (task_current(rq, p)) {
a8e504d2
IM
3868 update_rq_clock(rq);
3869 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3870 if ((s64)delta_exec > 0)
3871 ns += delta_exec;
3872 }
3873 task_rq_unlock(rq, &flags);
48f24c4d 3874
1da177e4
LT
3875 return ns;
3876}
3877
1da177e4
LT
3878/*
3879 * Account user cpu time to a process.
3880 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3881 * @cputime: the cpu time spent in user space since the last update
3882 */
3883void account_user_time(struct task_struct *p, cputime_t cputime)
3884{
3885 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3886 cputime64_t tmp;
3887
3888 p->utime = cputime_add(p->utime, cputime);
3889
3890 /* Add user time to cpustat. */
3891 tmp = cputime_to_cputime64(cputime);
3892 if (TASK_NICE(p) > 0)
3893 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3894 else
3895 cpustat->user = cputime64_add(cpustat->user, tmp);
3896}
3897
94886b84
LV
3898/*
3899 * Account guest cpu time to a process.
3900 * @p: the process that the cpu time gets accounted to
3901 * @cputime: the cpu time spent in virtual machine since the last update
3902 */
f7402e03 3903static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3904{
3905 cputime64_t tmp;
3906 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3907
3908 tmp = cputime_to_cputime64(cputime);
3909
3910 p->utime = cputime_add(p->utime, cputime);
3911 p->gtime = cputime_add(p->gtime, cputime);
3912
3913 cpustat->user = cputime64_add(cpustat->user, tmp);
3914 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3915}
3916
c66f08be
MN
3917/*
3918 * Account scaled user cpu time to a process.
3919 * @p: the process that the cpu time gets accounted to
3920 * @cputime: the cpu time spent in user space since the last update
3921 */
3922void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3923{
3924 p->utimescaled = cputime_add(p->utimescaled, cputime);
3925}
3926
1da177e4
LT
3927/*
3928 * Account system cpu time to a process.
3929 * @p: the process that the cpu time gets accounted to
3930 * @hardirq_offset: the offset to subtract from hardirq_count()
3931 * @cputime: the cpu time spent in kernel space since the last update
3932 */
3933void account_system_time(struct task_struct *p, int hardirq_offset,
3934 cputime_t cputime)
3935{
3936 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3937 struct rq *rq = this_rq();
1da177e4
LT
3938 cputime64_t tmp;
3939
983ed7a6
HH
3940 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3941 account_guest_time(p, cputime);
3942 return;
3943 }
94886b84 3944
1da177e4
LT
3945 p->stime = cputime_add(p->stime, cputime);
3946
3947 /* Add system time to cpustat. */
3948 tmp = cputime_to_cputime64(cputime);
3949 if (hardirq_count() - hardirq_offset)
3950 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3951 else if (softirq_count())
3952 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3953 else if (p != rq->idle)
1da177e4 3954 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3955 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3956 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3957 else
3958 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3959 /* Account for system time used */
3960 acct_update_integrals(p);
1da177e4
LT
3961}
3962
c66f08be
MN
3963/*
3964 * Account scaled system cpu time to a process.
3965 * @p: the process that the cpu time gets accounted to
3966 * @hardirq_offset: the offset to subtract from hardirq_count()
3967 * @cputime: the cpu time spent in kernel space since the last update
3968 */
3969void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3970{
3971 p->stimescaled = cputime_add(p->stimescaled, cputime);
3972}
3973
1da177e4
LT
3974/*
3975 * Account for involuntary wait time.
3976 * @p: the process from which the cpu time has been stolen
3977 * @steal: the cpu time spent in involuntary wait
3978 */
3979void account_steal_time(struct task_struct *p, cputime_t steal)
3980{
3981 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3982 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3983 struct rq *rq = this_rq();
1da177e4
LT
3984
3985 if (p == rq->idle) {
3986 p->stime = cputime_add(p->stime, steal);
3987 if (atomic_read(&rq->nr_iowait) > 0)
3988 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3989 else
3990 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3991 } else
1da177e4
LT
3992 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3993}
3994
7835b98b
CL
3995/*
3996 * This function gets called by the timer code, with HZ frequency.
3997 * We call it with interrupts disabled.
3998 *
3999 * It also gets called by the fork code, when changing the parent's
4000 * timeslices.
4001 */
4002void scheduler_tick(void)
4003{
7835b98b
CL
4004 int cpu = smp_processor_id();
4005 struct rq *rq = cpu_rq(cpu);
dd41f596 4006 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4007
4008 sched_clock_tick();
dd41f596
IM
4009
4010 spin_lock(&rq->lock);
3e51f33f 4011 update_rq_clock(rq);
f1a438d8 4012 update_cpu_load(rq);
fa85ae24 4013 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4014 spin_unlock(&rq->lock);
7835b98b 4015
e418e1c2 4016#ifdef CONFIG_SMP
dd41f596
IM
4017 rq->idle_at_tick = idle_cpu(cpu);
4018 trigger_load_balance(rq, cpu);
e418e1c2 4019#endif
1da177e4
LT
4020}
4021
1da177e4
LT
4022#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4023
43627582 4024void __kprobes add_preempt_count(int val)
1da177e4
LT
4025{
4026 /*
4027 * Underflow?
4028 */
9a11b49a
IM
4029 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4030 return;
1da177e4
LT
4031 preempt_count() += val;
4032 /*
4033 * Spinlock count overflowing soon?
4034 */
33859f7f
MOS
4035 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4036 PREEMPT_MASK - 10);
1da177e4
LT
4037}
4038EXPORT_SYMBOL(add_preempt_count);
4039
43627582 4040void __kprobes sub_preempt_count(int val)
1da177e4
LT
4041{
4042 /*
4043 * Underflow?
4044 */
9a11b49a
IM
4045 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4046 return;
1da177e4
LT
4047 /*
4048 * Is the spinlock portion underflowing?
4049 */
9a11b49a
IM
4050 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4051 !(preempt_count() & PREEMPT_MASK)))
4052 return;
4053
1da177e4
LT
4054 preempt_count() -= val;
4055}
4056EXPORT_SYMBOL(sub_preempt_count);
4057
4058#endif
4059
4060/*
dd41f596 4061 * Print scheduling while atomic bug:
1da177e4 4062 */
dd41f596 4063static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4064{
838225b4
SS
4065 struct pt_regs *regs = get_irq_regs();
4066
4067 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4068 prev->comm, prev->pid, preempt_count());
4069
dd41f596
IM
4070 debug_show_held_locks(prev);
4071 if (irqs_disabled())
4072 print_irqtrace_events(prev);
838225b4
SS
4073
4074 if (regs)
4075 show_regs(regs);
4076 else
4077 dump_stack();
dd41f596 4078}
1da177e4 4079
dd41f596
IM
4080/*
4081 * Various schedule()-time debugging checks and statistics:
4082 */
4083static inline void schedule_debug(struct task_struct *prev)
4084{
1da177e4 4085 /*
41a2d6cf 4086 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4087 * schedule() atomically, we ignore that path for now.
4088 * Otherwise, whine if we are scheduling when we should not be.
4089 */
3f33a7ce 4090 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4091 __schedule_bug(prev);
4092
1da177e4
LT
4093 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4094
2d72376b 4095 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4096#ifdef CONFIG_SCHEDSTATS
4097 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4098 schedstat_inc(this_rq(), bkl_count);
4099 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4100 }
4101#endif
dd41f596
IM
4102}
4103
4104/*
4105 * Pick up the highest-prio task:
4106 */
4107static inline struct task_struct *
ff95f3df 4108pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4109{
5522d5d5 4110 const struct sched_class *class;
dd41f596 4111 struct task_struct *p;
1da177e4
LT
4112
4113 /*
dd41f596
IM
4114 * Optimization: we know that if all tasks are in
4115 * the fair class we can call that function directly:
1da177e4 4116 */
dd41f596 4117 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4118 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4119 if (likely(p))
4120 return p;
1da177e4
LT
4121 }
4122
dd41f596
IM
4123 class = sched_class_highest;
4124 for ( ; ; ) {
fb8d4724 4125 p = class->pick_next_task(rq);
dd41f596
IM
4126 if (p)
4127 return p;
4128 /*
4129 * Will never be NULL as the idle class always
4130 * returns a non-NULL p:
4131 */
4132 class = class->next;
4133 }
4134}
1da177e4 4135
dd41f596
IM
4136/*
4137 * schedule() is the main scheduler function.
4138 */
4139asmlinkage void __sched schedule(void)
4140{
4141 struct task_struct *prev, *next;
67ca7bde 4142 unsigned long *switch_count;
dd41f596 4143 struct rq *rq;
dd41f596
IM
4144 int cpu;
4145
4146need_resched:
4147 preempt_disable();
4148 cpu = smp_processor_id();
4149 rq = cpu_rq(cpu);
4150 rcu_qsctr_inc(cpu);
4151 prev = rq->curr;
4152 switch_count = &prev->nivcsw;
4153
4154 release_kernel_lock(prev);
4155need_resched_nonpreemptible:
4156
4157 schedule_debug(prev);
1da177e4 4158
8f4d37ec
PZ
4159 hrtick_clear(rq);
4160
1e819950
IM
4161 /*
4162 * Do the rq-clock update outside the rq lock:
4163 */
4164 local_irq_disable();
3e51f33f 4165 update_rq_clock(rq);
1e819950
IM
4166 spin_lock(&rq->lock);
4167 clear_tsk_need_resched(prev);
1da177e4 4168
1da177e4 4169 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4170 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4171 prev->state = TASK_RUNNING;
16882c1e 4172 else
2e1cb74a 4173 deactivate_task(rq, prev, 1);
dd41f596 4174 switch_count = &prev->nvcsw;
1da177e4
LT
4175 }
4176
9a897c5a
SR
4177#ifdef CONFIG_SMP
4178 if (prev->sched_class->pre_schedule)
4179 prev->sched_class->pre_schedule(rq, prev);
4180#endif
f65eda4f 4181
dd41f596 4182 if (unlikely(!rq->nr_running))
1da177e4 4183 idle_balance(cpu, rq);
1da177e4 4184
31ee529c 4185 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4186 next = pick_next_task(rq, prev);
1da177e4 4187
1da177e4 4188 if (likely(prev != next)) {
673a90a1
DS
4189 sched_info_switch(prev, next);
4190
1da177e4
LT
4191 rq->nr_switches++;
4192 rq->curr = next;
4193 ++*switch_count;
4194
dd41f596 4195 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4196 /*
4197 * the context switch might have flipped the stack from under
4198 * us, hence refresh the local variables.
4199 */
4200 cpu = smp_processor_id();
4201 rq = cpu_rq(cpu);
1da177e4
LT
4202 } else
4203 spin_unlock_irq(&rq->lock);
4204
8f4d37ec
PZ
4205 hrtick_set(rq);
4206
4207 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4208 goto need_resched_nonpreemptible;
8f4d37ec 4209
1da177e4
LT
4210 preempt_enable_no_resched();
4211 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4212 goto need_resched;
4213}
1da177e4
LT
4214EXPORT_SYMBOL(schedule);
4215
4216#ifdef CONFIG_PREEMPT
4217/*
2ed6e34f 4218 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4219 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4220 * occur there and call schedule directly.
4221 */
4222asmlinkage void __sched preempt_schedule(void)
4223{
4224 struct thread_info *ti = current_thread_info();
6478d880 4225
1da177e4
LT
4226 /*
4227 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4228 * we do not want to preempt the current task. Just return..
1da177e4 4229 */
beed33a8 4230 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4231 return;
4232
3a5c359a
AK
4233 do {
4234 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4235 schedule();
3a5c359a 4236 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4237
3a5c359a
AK
4238 /*
4239 * Check again in case we missed a preemption opportunity
4240 * between schedule and now.
4241 */
4242 barrier();
4243 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4244}
1da177e4
LT
4245EXPORT_SYMBOL(preempt_schedule);
4246
4247/*
2ed6e34f 4248 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4249 * off of irq context.
4250 * Note, that this is called and return with irqs disabled. This will
4251 * protect us against recursive calling from irq.
4252 */
4253asmlinkage void __sched preempt_schedule_irq(void)
4254{
4255 struct thread_info *ti = current_thread_info();
6478d880 4256
2ed6e34f 4257 /* Catch callers which need to be fixed */
1da177e4
LT
4258 BUG_ON(ti->preempt_count || !irqs_disabled());
4259
3a5c359a
AK
4260 do {
4261 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4262 local_irq_enable();
4263 schedule();
4264 local_irq_disable();
3a5c359a 4265 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4266
3a5c359a
AK
4267 /*
4268 * Check again in case we missed a preemption opportunity
4269 * between schedule and now.
4270 */
4271 barrier();
4272 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4273}
4274
4275#endif /* CONFIG_PREEMPT */
4276
95cdf3b7
IM
4277int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4278 void *key)
1da177e4 4279{
48f24c4d 4280 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4281}
1da177e4
LT
4282EXPORT_SYMBOL(default_wake_function);
4283
4284/*
41a2d6cf
IM
4285 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4286 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4287 * number) then we wake all the non-exclusive tasks and one exclusive task.
4288 *
4289 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4290 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4291 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4292 */
4293static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4294 int nr_exclusive, int sync, void *key)
4295{
2e45874c 4296 wait_queue_t *curr, *next;
1da177e4 4297
2e45874c 4298 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4299 unsigned flags = curr->flags;
4300
1da177e4 4301 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4302 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4303 break;
4304 }
4305}
4306
4307/**
4308 * __wake_up - wake up threads blocked on a waitqueue.
4309 * @q: the waitqueue
4310 * @mode: which threads
4311 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4312 * @key: is directly passed to the wakeup function
1da177e4 4313 */
7ad5b3a5 4314void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4315 int nr_exclusive, void *key)
1da177e4
LT
4316{
4317 unsigned long flags;
4318
4319 spin_lock_irqsave(&q->lock, flags);
4320 __wake_up_common(q, mode, nr_exclusive, 0, key);
4321 spin_unlock_irqrestore(&q->lock, flags);
4322}
1da177e4
LT
4323EXPORT_SYMBOL(__wake_up);
4324
4325/*
4326 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4327 */
7ad5b3a5 4328void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4329{
4330 __wake_up_common(q, mode, 1, 0, NULL);
4331}
4332
4333/**
67be2dd1 4334 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4335 * @q: the waitqueue
4336 * @mode: which threads
4337 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4338 *
4339 * The sync wakeup differs that the waker knows that it will schedule
4340 * away soon, so while the target thread will be woken up, it will not
4341 * be migrated to another CPU - ie. the two threads are 'synchronized'
4342 * with each other. This can prevent needless bouncing between CPUs.
4343 *
4344 * On UP it can prevent extra preemption.
4345 */
7ad5b3a5 4346void
95cdf3b7 4347__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4348{
4349 unsigned long flags;
4350 int sync = 1;
4351
4352 if (unlikely(!q))
4353 return;
4354
4355 if (unlikely(!nr_exclusive))
4356 sync = 0;
4357
4358 spin_lock_irqsave(&q->lock, flags);
4359 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4360 spin_unlock_irqrestore(&q->lock, flags);
4361}
4362EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4363
b15136e9 4364void complete(struct completion *x)
1da177e4
LT
4365{
4366 unsigned long flags;
4367
4368 spin_lock_irqsave(&x->wait.lock, flags);
4369 x->done++;
d9514f6c 4370 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4371 spin_unlock_irqrestore(&x->wait.lock, flags);
4372}
4373EXPORT_SYMBOL(complete);
4374
b15136e9 4375void complete_all(struct completion *x)
1da177e4
LT
4376{
4377 unsigned long flags;
4378
4379 spin_lock_irqsave(&x->wait.lock, flags);
4380 x->done += UINT_MAX/2;
d9514f6c 4381 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4382 spin_unlock_irqrestore(&x->wait.lock, flags);
4383}
4384EXPORT_SYMBOL(complete_all);
4385
8cbbe86d
AK
4386static inline long __sched
4387do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4388{
1da177e4
LT
4389 if (!x->done) {
4390 DECLARE_WAITQUEUE(wait, current);
4391
4392 wait.flags |= WQ_FLAG_EXCLUSIVE;
4393 __add_wait_queue_tail(&x->wait, &wait);
4394 do {
009e577e
MW
4395 if ((state == TASK_INTERRUPTIBLE &&
4396 signal_pending(current)) ||
4397 (state == TASK_KILLABLE &&
4398 fatal_signal_pending(current))) {
8cbbe86d
AK
4399 __remove_wait_queue(&x->wait, &wait);
4400 return -ERESTARTSYS;
4401 }
4402 __set_current_state(state);
1da177e4
LT
4403 spin_unlock_irq(&x->wait.lock);
4404 timeout = schedule_timeout(timeout);
4405 spin_lock_irq(&x->wait.lock);
4406 if (!timeout) {
4407 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4408 return timeout;
1da177e4
LT
4409 }
4410 } while (!x->done);
4411 __remove_wait_queue(&x->wait, &wait);
4412 }
4413 x->done--;
1da177e4
LT
4414 return timeout;
4415}
1da177e4 4416
8cbbe86d
AK
4417static long __sched
4418wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4419{
1da177e4
LT
4420 might_sleep();
4421
4422 spin_lock_irq(&x->wait.lock);
8cbbe86d 4423 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4424 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4425 return timeout;
4426}
1da177e4 4427
b15136e9 4428void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4429{
4430 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4431}
8cbbe86d 4432EXPORT_SYMBOL(wait_for_completion);
1da177e4 4433
b15136e9 4434unsigned long __sched
8cbbe86d 4435wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4436{
8cbbe86d 4437 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4438}
8cbbe86d 4439EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4440
8cbbe86d 4441int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4442{
51e97990
AK
4443 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4444 if (t == -ERESTARTSYS)
4445 return t;
4446 return 0;
0fec171c 4447}
8cbbe86d 4448EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4449
b15136e9 4450unsigned long __sched
8cbbe86d
AK
4451wait_for_completion_interruptible_timeout(struct completion *x,
4452 unsigned long timeout)
0fec171c 4453{
8cbbe86d 4454 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4455}
8cbbe86d 4456EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4457
009e577e
MW
4458int __sched wait_for_completion_killable(struct completion *x)
4459{
4460 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4461 if (t == -ERESTARTSYS)
4462 return t;
4463 return 0;
4464}
4465EXPORT_SYMBOL(wait_for_completion_killable);
4466
8cbbe86d
AK
4467static long __sched
4468sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4469{
0fec171c
IM
4470 unsigned long flags;
4471 wait_queue_t wait;
4472
4473 init_waitqueue_entry(&wait, current);
1da177e4 4474
8cbbe86d 4475 __set_current_state(state);
1da177e4 4476
8cbbe86d
AK
4477 spin_lock_irqsave(&q->lock, flags);
4478 __add_wait_queue(q, &wait);
4479 spin_unlock(&q->lock);
4480 timeout = schedule_timeout(timeout);
4481 spin_lock_irq(&q->lock);
4482 __remove_wait_queue(q, &wait);
4483 spin_unlock_irqrestore(&q->lock, flags);
4484
4485 return timeout;
4486}
4487
4488void __sched interruptible_sleep_on(wait_queue_head_t *q)
4489{
4490 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4491}
1da177e4
LT
4492EXPORT_SYMBOL(interruptible_sleep_on);
4493
0fec171c 4494long __sched
95cdf3b7 4495interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4496{
8cbbe86d 4497 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4498}
1da177e4
LT
4499EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4500
0fec171c 4501void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4502{
8cbbe86d 4503 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4504}
1da177e4
LT
4505EXPORT_SYMBOL(sleep_on);
4506
0fec171c 4507long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4508{
8cbbe86d 4509 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4510}
1da177e4
LT
4511EXPORT_SYMBOL(sleep_on_timeout);
4512
b29739f9
IM
4513#ifdef CONFIG_RT_MUTEXES
4514
4515/*
4516 * rt_mutex_setprio - set the current priority of a task
4517 * @p: task
4518 * @prio: prio value (kernel-internal form)
4519 *
4520 * This function changes the 'effective' priority of a task. It does
4521 * not touch ->normal_prio like __setscheduler().
4522 *
4523 * Used by the rt_mutex code to implement priority inheritance logic.
4524 */
36c8b586 4525void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4526{
4527 unsigned long flags;
83b699ed 4528 int oldprio, on_rq, running;
70b97a7f 4529 struct rq *rq;
cb469845 4530 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4531
4532 BUG_ON(prio < 0 || prio > MAX_PRIO);
4533
4534 rq = task_rq_lock(p, &flags);
a8e504d2 4535 update_rq_clock(rq);
b29739f9 4536
d5f9f942 4537 oldprio = p->prio;
dd41f596 4538 on_rq = p->se.on_rq;
051a1d1a 4539 running = task_current(rq, p);
0e1f3483 4540 if (on_rq)
69be72c1 4541 dequeue_task(rq, p, 0);
0e1f3483
HS
4542 if (running)
4543 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4544
4545 if (rt_prio(prio))
4546 p->sched_class = &rt_sched_class;
4547 else
4548 p->sched_class = &fair_sched_class;
4549
b29739f9
IM
4550 p->prio = prio;
4551
0e1f3483
HS
4552 if (running)
4553 p->sched_class->set_curr_task(rq);
dd41f596 4554 if (on_rq) {
8159f87e 4555 enqueue_task(rq, p, 0);
cb469845
SR
4556
4557 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4558 }
4559 task_rq_unlock(rq, &flags);
4560}
4561
4562#endif
4563
36c8b586 4564void set_user_nice(struct task_struct *p, long nice)
1da177e4 4565{
dd41f596 4566 int old_prio, delta, on_rq;
1da177e4 4567 unsigned long flags;
70b97a7f 4568 struct rq *rq;
1da177e4
LT
4569
4570 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4571 return;
4572 /*
4573 * We have to be careful, if called from sys_setpriority(),
4574 * the task might be in the middle of scheduling on another CPU.
4575 */
4576 rq = task_rq_lock(p, &flags);
a8e504d2 4577 update_rq_clock(rq);
1da177e4
LT
4578 /*
4579 * The RT priorities are set via sched_setscheduler(), but we still
4580 * allow the 'normal' nice value to be set - but as expected
4581 * it wont have any effect on scheduling until the task is
dd41f596 4582 * SCHED_FIFO/SCHED_RR:
1da177e4 4583 */
e05606d3 4584 if (task_has_rt_policy(p)) {
1da177e4
LT
4585 p->static_prio = NICE_TO_PRIO(nice);
4586 goto out_unlock;
4587 }
dd41f596 4588 on_rq = p->se.on_rq;
6363ca57 4589 if (on_rq) {
69be72c1 4590 dequeue_task(rq, p, 0);
6363ca57
IM
4591 dec_load(rq, p);
4592 }
1da177e4 4593
1da177e4 4594 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4595 set_load_weight(p);
b29739f9
IM
4596 old_prio = p->prio;
4597 p->prio = effective_prio(p);
4598 delta = p->prio - old_prio;
1da177e4 4599
dd41f596 4600 if (on_rq) {
8159f87e 4601 enqueue_task(rq, p, 0);
6363ca57 4602 inc_load(rq, p);
1da177e4 4603 /*
d5f9f942
AM
4604 * If the task increased its priority or is running and
4605 * lowered its priority, then reschedule its CPU:
1da177e4 4606 */
d5f9f942 4607 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4608 resched_task(rq->curr);
4609 }
4610out_unlock:
4611 task_rq_unlock(rq, &flags);
4612}
1da177e4
LT
4613EXPORT_SYMBOL(set_user_nice);
4614
e43379f1
MM
4615/*
4616 * can_nice - check if a task can reduce its nice value
4617 * @p: task
4618 * @nice: nice value
4619 */
36c8b586 4620int can_nice(const struct task_struct *p, const int nice)
e43379f1 4621{
024f4747
MM
4622 /* convert nice value [19,-20] to rlimit style value [1,40] */
4623 int nice_rlim = 20 - nice;
48f24c4d 4624
e43379f1
MM
4625 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4626 capable(CAP_SYS_NICE));
4627}
4628
1da177e4
LT
4629#ifdef __ARCH_WANT_SYS_NICE
4630
4631/*
4632 * sys_nice - change the priority of the current process.
4633 * @increment: priority increment
4634 *
4635 * sys_setpriority is a more generic, but much slower function that
4636 * does similar things.
4637 */
4638asmlinkage long sys_nice(int increment)
4639{
48f24c4d 4640 long nice, retval;
1da177e4
LT
4641
4642 /*
4643 * Setpriority might change our priority at the same moment.
4644 * We don't have to worry. Conceptually one call occurs first
4645 * and we have a single winner.
4646 */
e43379f1
MM
4647 if (increment < -40)
4648 increment = -40;
1da177e4
LT
4649 if (increment > 40)
4650 increment = 40;
4651
4652 nice = PRIO_TO_NICE(current->static_prio) + increment;
4653 if (nice < -20)
4654 nice = -20;
4655 if (nice > 19)
4656 nice = 19;
4657
e43379f1
MM
4658 if (increment < 0 && !can_nice(current, nice))
4659 return -EPERM;
4660
1da177e4
LT
4661 retval = security_task_setnice(current, nice);
4662 if (retval)
4663 return retval;
4664
4665 set_user_nice(current, nice);
4666 return 0;
4667}
4668
4669#endif
4670
4671/**
4672 * task_prio - return the priority value of a given task.
4673 * @p: the task in question.
4674 *
4675 * This is the priority value as seen by users in /proc.
4676 * RT tasks are offset by -200. Normal tasks are centered
4677 * around 0, value goes from -16 to +15.
4678 */
36c8b586 4679int task_prio(const struct task_struct *p)
1da177e4
LT
4680{
4681 return p->prio - MAX_RT_PRIO;
4682}
4683
4684/**
4685 * task_nice - return the nice value of a given task.
4686 * @p: the task in question.
4687 */
36c8b586 4688int task_nice(const struct task_struct *p)
1da177e4
LT
4689{
4690 return TASK_NICE(p);
4691}
150d8bed 4692EXPORT_SYMBOL(task_nice);
1da177e4
LT
4693
4694/**
4695 * idle_cpu - is a given cpu idle currently?
4696 * @cpu: the processor in question.
4697 */
4698int idle_cpu(int cpu)
4699{
4700 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4701}
4702
1da177e4
LT
4703/**
4704 * idle_task - return the idle task for a given cpu.
4705 * @cpu: the processor in question.
4706 */
36c8b586 4707struct task_struct *idle_task(int cpu)
1da177e4
LT
4708{
4709 return cpu_rq(cpu)->idle;
4710}
4711
4712/**
4713 * find_process_by_pid - find a process with a matching PID value.
4714 * @pid: the pid in question.
4715 */
a9957449 4716static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4717{
228ebcbe 4718 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4719}
4720
4721/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4722static void
4723__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4724{
dd41f596 4725 BUG_ON(p->se.on_rq);
48f24c4d 4726
1da177e4 4727 p->policy = policy;
dd41f596
IM
4728 switch (p->policy) {
4729 case SCHED_NORMAL:
4730 case SCHED_BATCH:
4731 case SCHED_IDLE:
4732 p->sched_class = &fair_sched_class;
4733 break;
4734 case SCHED_FIFO:
4735 case SCHED_RR:
4736 p->sched_class = &rt_sched_class;
4737 break;
4738 }
4739
1da177e4 4740 p->rt_priority = prio;
b29739f9
IM
4741 p->normal_prio = normal_prio(p);
4742 /* we are holding p->pi_lock already */
4743 p->prio = rt_mutex_getprio(p);
2dd73a4f 4744 set_load_weight(p);
1da177e4
LT
4745}
4746
4747/**
72fd4a35 4748 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4749 * @p: the task in question.
4750 * @policy: new policy.
4751 * @param: structure containing the new RT priority.
5fe1d75f 4752 *
72fd4a35 4753 * NOTE that the task may be already dead.
1da177e4 4754 */
95cdf3b7
IM
4755int sched_setscheduler(struct task_struct *p, int policy,
4756 struct sched_param *param)
1da177e4 4757{
83b699ed 4758 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4759 unsigned long flags;
cb469845 4760 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4761 struct rq *rq;
1da177e4 4762
66e5393a
SR
4763 /* may grab non-irq protected spin_locks */
4764 BUG_ON(in_interrupt());
1da177e4
LT
4765recheck:
4766 /* double check policy once rq lock held */
4767 if (policy < 0)
4768 policy = oldpolicy = p->policy;
4769 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4770 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4771 policy != SCHED_IDLE)
b0a9499c 4772 return -EINVAL;
1da177e4
LT
4773 /*
4774 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4775 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4776 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4777 */
4778 if (param->sched_priority < 0 ||
95cdf3b7 4779 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4780 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4781 return -EINVAL;
e05606d3 4782 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4783 return -EINVAL;
4784
37e4ab3f
OC
4785 /*
4786 * Allow unprivileged RT tasks to decrease priority:
4787 */
4788 if (!capable(CAP_SYS_NICE)) {
e05606d3 4789 if (rt_policy(policy)) {
8dc3e909 4790 unsigned long rlim_rtprio;
8dc3e909
ON
4791
4792 if (!lock_task_sighand(p, &flags))
4793 return -ESRCH;
4794 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4795 unlock_task_sighand(p, &flags);
4796
4797 /* can't set/change the rt policy */
4798 if (policy != p->policy && !rlim_rtprio)
4799 return -EPERM;
4800
4801 /* can't increase priority */
4802 if (param->sched_priority > p->rt_priority &&
4803 param->sched_priority > rlim_rtprio)
4804 return -EPERM;
4805 }
dd41f596
IM
4806 /*
4807 * Like positive nice levels, dont allow tasks to
4808 * move out of SCHED_IDLE either:
4809 */
4810 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4811 return -EPERM;
5fe1d75f 4812
37e4ab3f
OC
4813 /* can't change other user's priorities */
4814 if ((current->euid != p->euid) &&
4815 (current->euid != p->uid))
4816 return -EPERM;
4817 }
1da177e4 4818
b68aa230
PZ
4819#ifdef CONFIG_RT_GROUP_SCHED
4820 /*
4821 * Do not allow realtime tasks into groups that have no runtime
4822 * assigned.
4823 */
d0b27fa7 4824 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4825 return -EPERM;
4826#endif
4827
1da177e4
LT
4828 retval = security_task_setscheduler(p, policy, param);
4829 if (retval)
4830 return retval;
b29739f9
IM
4831 /*
4832 * make sure no PI-waiters arrive (or leave) while we are
4833 * changing the priority of the task:
4834 */
4835 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4836 /*
4837 * To be able to change p->policy safely, the apropriate
4838 * runqueue lock must be held.
4839 */
b29739f9 4840 rq = __task_rq_lock(p);
1da177e4
LT
4841 /* recheck policy now with rq lock held */
4842 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4843 policy = oldpolicy = -1;
b29739f9
IM
4844 __task_rq_unlock(rq);
4845 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4846 goto recheck;
4847 }
2daa3577 4848 update_rq_clock(rq);
dd41f596 4849 on_rq = p->se.on_rq;
051a1d1a 4850 running = task_current(rq, p);
0e1f3483 4851 if (on_rq)
2e1cb74a 4852 deactivate_task(rq, p, 0);
0e1f3483
HS
4853 if (running)
4854 p->sched_class->put_prev_task(rq, p);
f6b53205 4855
1da177e4 4856 oldprio = p->prio;
dd41f596 4857 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4858
0e1f3483
HS
4859 if (running)
4860 p->sched_class->set_curr_task(rq);
dd41f596
IM
4861 if (on_rq) {
4862 activate_task(rq, p, 0);
cb469845
SR
4863
4864 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4865 }
b29739f9
IM
4866 __task_rq_unlock(rq);
4867 spin_unlock_irqrestore(&p->pi_lock, flags);
4868
95e02ca9
TG
4869 rt_mutex_adjust_pi(p);
4870
1da177e4
LT
4871 return 0;
4872}
4873EXPORT_SYMBOL_GPL(sched_setscheduler);
4874
95cdf3b7
IM
4875static int
4876do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4877{
1da177e4
LT
4878 struct sched_param lparam;
4879 struct task_struct *p;
36c8b586 4880 int retval;
1da177e4
LT
4881
4882 if (!param || pid < 0)
4883 return -EINVAL;
4884 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4885 return -EFAULT;
5fe1d75f
ON
4886
4887 rcu_read_lock();
4888 retval = -ESRCH;
1da177e4 4889 p = find_process_by_pid(pid);
5fe1d75f
ON
4890 if (p != NULL)
4891 retval = sched_setscheduler(p, policy, &lparam);
4892 rcu_read_unlock();
36c8b586 4893
1da177e4
LT
4894 return retval;
4895}
4896
4897/**
4898 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4899 * @pid: the pid in question.
4900 * @policy: new policy.
4901 * @param: structure containing the new RT priority.
4902 */
41a2d6cf
IM
4903asmlinkage long
4904sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4905{
c21761f1
JB
4906 /* negative values for policy are not valid */
4907 if (policy < 0)
4908 return -EINVAL;
4909
1da177e4
LT
4910 return do_sched_setscheduler(pid, policy, param);
4911}
4912
4913/**
4914 * sys_sched_setparam - set/change the RT priority of a thread
4915 * @pid: the pid in question.
4916 * @param: structure containing the new RT priority.
4917 */
4918asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4919{
4920 return do_sched_setscheduler(pid, -1, param);
4921}
4922
4923/**
4924 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4925 * @pid: the pid in question.
4926 */
4927asmlinkage long sys_sched_getscheduler(pid_t pid)
4928{
36c8b586 4929 struct task_struct *p;
3a5c359a 4930 int retval;
1da177e4
LT
4931
4932 if (pid < 0)
3a5c359a 4933 return -EINVAL;
1da177e4
LT
4934
4935 retval = -ESRCH;
4936 read_lock(&tasklist_lock);
4937 p = find_process_by_pid(pid);
4938 if (p) {
4939 retval = security_task_getscheduler(p);
4940 if (!retval)
4941 retval = p->policy;
4942 }
4943 read_unlock(&tasklist_lock);
1da177e4
LT
4944 return retval;
4945}
4946
4947/**
4948 * sys_sched_getscheduler - get the RT priority of a thread
4949 * @pid: the pid in question.
4950 * @param: structure containing the RT priority.
4951 */
4952asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4953{
4954 struct sched_param lp;
36c8b586 4955 struct task_struct *p;
3a5c359a 4956 int retval;
1da177e4
LT
4957
4958 if (!param || pid < 0)
3a5c359a 4959 return -EINVAL;
1da177e4
LT
4960
4961 read_lock(&tasklist_lock);
4962 p = find_process_by_pid(pid);
4963 retval = -ESRCH;
4964 if (!p)
4965 goto out_unlock;
4966
4967 retval = security_task_getscheduler(p);
4968 if (retval)
4969 goto out_unlock;
4970
4971 lp.sched_priority = p->rt_priority;
4972 read_unlock(&tasklist_lock);
4973
4974 /*
4975 * This one might sleep, we cannot do it with a spinlock held ...
4976 */
4977 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4978
1da177e4
LT
4979 return retval;
4980
4981out_unlock:
4982 read_unlock(&tasklist_lock);
4983 return retval;
4984}
4985
b53e921b 4986long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 4987{
1da177e4 4988 cpumask_t cpus_allowed;
b53e921b 4989 cpumask_t new_mask = *in_mask;
36c8b586
IM
4990 struct task_struct *p;
4991 int retval;
1da177e4 4992
95402b38 4993 get_online_cpus();
1da177e4
LT
4994 read_lock(&tasklist_lock);
4995
4996 p = find_process_by_pid(pid);
4997 if (!p) {
4998 read_unlock(&tasklist_lock);
95402b38 4999 put_online_cpus();
1da177e4
LT
5000 return -ESRCH;
5001 }
5002
5003 /*
5004 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5005 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5006 * usage count and then drop tasklist_lock.
5007 */
5008 get_task_struct(p);
5009 read_unlock(&tasklist_lock);
5010
5011 retval = -EPERM;
5012 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5013 !capable(CAP_SYS_NICE))
5014 goto out_unlock;
5015
e7834f8f
DQ
5016 retval = security_task_setscheduler(p, 0, NULL);
5017 if (retval)
5018 goto out_unlock;
5019
f9a86fcb 5020 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5021 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5022 again:
7c16ec58 5023 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5024
8707d8b8 5025 if (!retval) {
f9a86fcb 5026 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5027 if (!cpus_subset(new_mask, cpus_allowed)) {
5028 /*
5029 * We must have raced with a concurrent cpuset
5030 * update. Just reset the cpus_allowed to the
5031 * cpuset's cpus_allowed
5032 */
5033 new_mask = cpus_allowed;
5034 goto again;
5035 }
5036 }
1da177e4
LT
5037out_unlock:
5038 put_task_struct(p);
95402b38 5039 put_online_cpus();
1da177e4
LT
5040 return retval;
5041}
5042
5043static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5044 cpumask_t *new_mask)
5045{
5046 if (len < sizeof(cpumask_t)) {
5047 memset(new_mask, 0, sizeof(cpumask_t));
5048 } else if (len > sizeof(cpumask_t)) {
5049 len = sizeof(cpumask_t);
5050 }
5051 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5052}
5053
5054/**
5055 * sys_sched_setaffinity - set the cpu affinity of a process
5056 * @pid: pid of the process
5057 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5058 * @user_mask_ptr: user-space pointer to the new cpu mask
5059 */
5060asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5061 unsigned long __user *user_mask_ptr)
5062{
5063 cpumask_t new_mask;
5064 int retval;
5065
5066 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5067 if (retval)
5068 return retval;
5069
b53e921b 5070 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5071}
5072
5073/*
5074 * Represents all cpu's present in the system
5075 * In systems capable of hotplug, this map could dynamically grow
5076 * as new cpu's are detected in the system via any platform specific
5077 * method, such as ACPI for e.g.
5078 */
5079
4cef0c61 5080cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
5081EXPORT_SYMBOL(cpu_present_map);
5082
5083#ifndef CONFIG_SMP
4cef0c61 5084cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
5085EXPORT_SYMBOL(cpu_online_map);
5086
4cef0c61 5087cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 5088EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
5089#endif
5090
5091long sched_getaffinity(pid_t pid, cpumask_t *mask)
5092{
36c8b586 5093 struct task_struct *p;
1da177e4 5094 int retval;
1da177e4 5095
95402b38 5096 get_online_cpus();
1da177e4
LT
5097 read_lock(&tasklist_lock);
5098
5099 retval = -ESRCH;
5100 p = find_process_by_pid(pid);
5101 if (!p)
5102 goto out_unlock;
5103
e7834f8f
DQ
5104 retval = security_task_getscheduler(p);
5105 if (retval)
5106 goto out_unlock;
5107
2f7016d9 5108 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5109
5110out_unlock:
5111 read_unlock(&tasklist_lock);
95402b38 5112 put_online_cpus();
1da177e4 5113
9531b62f 5114 return retval;
1da177e4
LT
5115}
5116
5117/**
5118 * sys_sched_getaffinity - get the cpu affinity of a process
5119 * @pid: pid of the process
5120 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5121 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5122 */
5123asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5124 unsigned long __user *user_mask_ptr)
5125{
5126 int ret;
5127 cpumask_t mask;
5128
5129 if (len < sizeof(cpumask_t))
5130 return -EINVAL;
5131
5132 ret = sched_getaffinity(pid, &mask);
5133 if (ret < 0)
5134 return ret;
5135
5136 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5137 return -EFAULT;
5138
5139 return sizeof(cpumask_t);
5140}
5141
5142/**
5143 * sys_sched_yield - yield the current processor to other threads.
5144 *
dd41f596
IM
5145 * This function yields the current CPU to other tasks. If there are no
5146 * other threads running on this CPU then this function will return.
1da177e4
LT
5147 */
5148asmlinkage long sys_sched_yield(void)
5149{
70b97a7f 5150 struct rq *rq = this_rq_lock();
1da177e4 5151
2d72376b 5152 schedstat_inc(rq, yld_count);
4530d7ab 5153 current->sched_class->yield_task(rq);
1da177e4
LT
5154
5155 /*
5156 * Since we are going to call schedule() anyway, there's
5157 * no need to preempt or enable interrupts:
5158 */
5159 __release(rq->lock);
8a25d5de 5160 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5161 _raw_spin_unlock(&rq->lock);
5162 preempt_enable_no_resched();
5163
5164 schedule();
5165
5166 return 0;
5167}
5168
e7b38404 5169static void __cond_resched(void)
1da177e4 5170{
8e0a43d8
IM
5171#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5172 __might_sleep(__FILE__, __LINE__);
5173#endif
5bbcfd90
IM
5174 /*
5175 * The BKS might be reacquired before we have dropped
5176 * PREEMPT_ACTIVE, which could trigger a second
5177 * cond_resched() call.
5178 */
1da177e4
LT
5179 do {
5180 add_preempt_count(PREEMPT_ACTIVE);
5181 schedule();
5182 sub_preempt_count(PREEMPT_ACTIVE);
5183 } while (need_resched());
5184}
5185
02b67cc3 5186int __sched _cond_resched(void)
1da177e4 5187{
9414232f
IM
5188 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5189 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5190 __cond_resched();
5191 return 1;
5192 }
5193 return 0;
5194}
02b67cc3 5195EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5196
5197/*
5198 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5199 * call schedule, and on return reacquire the lock.
5200 *
41a2d6cf 5201 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5202 * operations here to prevent schedule() from being called twice (once via
5203 * spin_unlock(), once by hand).
5204 */
95cdf3b7 5205int cond_resched_lock(spinlock_t *lock)
1da177e4 5206{
95c354fe 5207 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5208 int ret = 0;
5209
95c354fe 5210 if (spin_needbreak(lock) || resched) {
1da177e4 5211 spin_unlock(lock);
95c354fe
NP
5212 if (resched && need_resched())
5213 __cond_resched();
5214 else
5215 cpu_relax();
6df3cecb 5216 ret = 1;
1da177e4 5217 spin_lock(lock);
1da177e4 5218 }
6df3cecb 5219 return ret;
1da177e4 5220}
1da177e4
LT
5221EXPORT_SYMBOL(cond_resched_lock);
5222
5223int __sched cond_resched_softirq(void)
5224{
5225 BUG_ON(!in_softirq());
5226
9414232f 5227 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5228 local_bh_enable();
1da177e4
LT
5229 __cond_resched();
5230 local_bh_disable();
5231 return 1;
5232 }
5233 return 0;
5234}
1da177e4
LT
5235EXPORT_SYMBOL(cond_resched_softirq);
5236
1da177e4
LT
5237/**
5238 * yield - yield the current processor to other threads.
5239 *
72fd4a35 5240 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5241 * thread runnable and calls sys_sched_yield().
5242 */
5243void __sched yield(void)
5244{
5245 set_current_state(TASK_RUNNING);
5246 sys_sched_yield();
5247}
1da177e4
LT
5248EXPORT_SYMBOL(yield);
5249
5250/*
41a2d6cf 5251 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5252 * that process accounting knows that this is a task in IO wait state.
5253 *
5254 * But don't do that if it is a deliberate, throttling IO wait (this task
5255 * has set its backing_dev_info: the queue against which it should throttle)
5256 */
5257void __sched io_schedule(void)
5258{
70b97a7f 5259 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5260
0ff92245 5261 delayacct_blkio_start();
1da177e4
LT
5262 atomic_inc(&rq->nr_iowait);
5263 schedule();
5264 atomic_dec(&rq->nr_iowait);
0ff92245 5265 delayacct_blkio_end();
1da177e4 5266}
1da177e4
LT
5267EXPORT_SYMBOL(io_schedule);
5268
5269long __sched io_schedule_timeout(long timeout)
5270{
70b97a7f 5271 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5272 long ret;
5273
0ff92245 5274 delayacct_blkio_start();
1da177e4
LT
5275 atomic_inc(&rq->nr_iowait);
5276 ret = schedule_timeout(timeout);
5277 atomic_dec(&rq->nr_iowait);
0ff92245 5278 delayacct_blkio_end();
1da177e4
LT
5279 return ret;
5280}
5281
5282/**
5283 * sys_sched_get_priority_max - return maximum RT priority.
5284 * @policy: scheduling class.
5285 *
5286 * this syscall returns the maximum rt_priority that can be used
5287 * by a given scheduling class.
5288 */
5289asmlinkage long sys_sched_get_priority_max(int policy)
5290{
5291 int ret = -EINVAL;
5292
5293 switch (policy) {
5294 case SCHED_FIFO:
5295 case SCHED_RR:
5296 ret = MAX_USER_RT_PRIO-1;
5297 break;
5298 case SCHED_NORMAL:
b0a9499c 5299 case SCHED_BATCH:
dd41f596 5300 case SCHED_IDLE:
1da177e4
LT
5301 ret = 0;
5302 break;
5303 }
5304 return ret;
5305}
5306
5307/**
5308 * sys_sched_get_priority_min - return minimum RT priority.
5309 * @policy: scheduling class.
5310 *
5311 * this syscall returns the minimum rt_priority that can be used
5312 * by a given scheduling class.
5313 */
5314asmlinkage long sys_sched_get_priority_min(int policy)
5315{
5316 int ret = -EINVAL;
5317
5318 switch (policy) {
5319 case SCHED_FIFO:
5320 case SCHED_RR:
5321 ret = 1;
5322 break;
5323 case SCHED_NORMAL:
b0a9499c 5324 case SCHED_BATCH:
dd41f596 5325 case SCHED_IDLE:
1da177e4
LT
5326 ret = 0;
5327 }
5328 return ret;
5329}
5330
5331/**
5332 * sys_sched_rr_get_interval - return the default timeslice of a process.
5333 * @pid: pid of the process.
5334 * @interval: userspace pointer to the timeslice value.
5335 *
5336 * this syscall writes the default timeslice value of a given process
5337 * into the user-space timespec buffer. A value of '0' means infinity.
5338 */
5339asmlinkage
5340long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5341{
36c8b586 5342 struct task_struct *p;
a4ec24b4 5343 unsigned int time_slice;
3a5c359a 5344 int retval;
1da177e4 5345 struct timespec t;
1da177e4
LT
5346
5347 if (pid < 0)
3a5c359a 5348 return -EINVAL;
1da177e4
LT
5349
5350 retval = -ESRCH;
5351 read_lock(&tasklist_lock);
5352 p = find_process_by_pid(pid);
5353 if (!p)
5354 goto out_unlock;
5355
5356 retval = security_task_getscheduler(p);
5357 if (retval)
5358 goto out_unlock;
5359
77034937
IM
5360 /*
5361 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5362 * tasks that are on an otherwise idle runqueue:
5363 */
5364 time_slice = 0;
5365 if (p->policy == SCHED_RR) {
a4ec24b4 5366 time_slice = DEF_TIMESLICE;
1868f958 5367 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5368 struct sched_entity *se = &p->se;
5369 unsigned long flags;
5370 struct rq *rq;
5371
5372 rq = task_rq_lock(p, &flags);
77034937
IM
5373 if (rq->cfs.load.weight)
5374 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5375 task_rq_unlock(rq, &flags);
5376 }
1da177e4 5377 read_unlock(&tasklist_lock);
a4ec24b4 5378 jiffies_to_timespec(time_slice, &t);
1da177e4 5379 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5380 return retval;
3a5c359a 5381
1da177e4
LT
5382out_unlock:
5383 read_unlock(&tasklist_lock);
5384 return retval;
5385}
5386
2ed6e34f 5387static const char stat_nam[] = "RSDTtZX";
36c8b586 5388
82a1fcb9 5389void sched_show_task(struct task_struct *p)
1da177e4 5390{
1da177e4 5391 unsigned long free = 0;
36c8b586 5392 unsigned state;
1da177e4 5393
1da177e4 5394 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5395 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5396 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5397#if BITS_PER_LONG == 32
1da177e4 5398 if (state == TASK_RUNNING)
cc4ea795 5399 printk(KERN_CONT " running ");
1da177e4 5400 else
cc4ea795 5401 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5402#else
5403 if (state == TASK_RUNNING)
cc4ea795 5404 printk(KERN_CONT " running task ");
1da177e4 5405 else
cc4ea795 5406 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5407#endif
5408#ifdef CONFIG_DEBUG_STACK_USAGE
5409 {
10ebffde 5410 unsigned long *n = end_of_stack(p);
1da177e4
LT
5411 while (!*n)
5412 n++;
10ebffde 5413 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5414 }
5415#endif
ba25f9dc 5416 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5417 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5418
5fb5e6de 5419 show_stack(p, NULL);
1da177e4
LT
5420}
5421
e59e2ae2 5422void show_state_filter(unsigned long state_filter)
1da177e4 5423{
36c8b586 5424 struct task_struct *g, *p;
1da177e4 5425
4bd77321
IM
5426#if BITS_PER_LONG == 32
5427 printk(KERN_INFO
5428 " task PC stack pid father\n");
1da177e4 5429#else
4bd77321
IM
5430 printk(KERN_INFO
5431 " task PC stack pid father\n");
1da177e4
LT
5432#endif
5433 read_lock(&tasklist_lock);
5434 do_each_thread(g, p) {
5435 /*
5436 * reset the NMI-timeout, listing all files on a slow
5437 * console might take alot of time:
5438 */
5439 touch_nmi_watchdog();
39bc89fd 5440 if (!state_filter || (p->state & state_filter))
82a1fcb9 5441 sched_show_task(p);
1da177e4
LT
5442 } while_each_thread(g, p);
5443
04c9167f
JF
5444 touch_all_softlockup_watchdogs();
5445
dd41f596
IM
5446#ifdef CONFIG_SCHED_DEBUG
5447 sysrq_sched_debug_show();
5448#endif
1da177e4 5449 read_unlock(&tasklist_lock);
e59e2ae2
IM
5450 /*
5451 * Only show locks if all tasks are dumped:
5452 */
5453 if (state_filter == -1)
5454 debug_show_all_locks();
1da177e4
LT
5455}
5456
1df21055
IM
5457void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5458{
dd41f596 5459 idle->sched_class = &idle_sched_class;
1df21055
IM
5460}
5461
f340c0d1
IM
5462/**
5463 * init_idle - set up an idle thread for a given CPU
5464 * @idle: task in question
5465 * @cpu: cpu the idle task belongs to
5466 *
5467 * NOTE: this function does not set the idle thread's NEED_RESCHED
5468 * flag, to make booting more robust.
5469 */
5c1e1767 5470void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5471{
70b97a7f 5472 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5473 unsigned long flags;
5474
dd41f596
IM
5475 __sched_fork(idle);
5476 idle->se.exec_start = sched_clock();
5477
b29739f9 5478 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5479 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5480 __set_task_cpu(idle, cpu);
1da177e4
LT
5481
5482 spin_lock_irqsave(&rq->lock, flags);
5483 rq->curr = rq->idle = idle;
4866cde0
NP
5484#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5485 idle->oncpu = 1;
5486#endif
1da177e4
LT
5487 spin_unlock_irqrestore(&rq->lock, flags);
5488
5489 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5490#if defined(CONFIG_PREEMPT)
5491 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5492#else
a1261f54 5493 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5494#endif
dd41f596
IM
5495 /*
5496 * The idle tasks have their own, simple scheduling class:
5497 */
5498 idle->sched_class = &idle_sched_class;
1da177e4
LT
5499}
5500
5501/*
5502 * In a system that switches off the HZ timer nohz_cpu_mask
5503 * indicates which cpus entered this state. This is used
5504 * in the rcu update to wait only for active cpus. For system
5505 * which do not switch off the HZ timer nohz_cpu_mask should
5506 * always be CPU_MASK_NONE.
5507 */
5508cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5509
19978ca6
IM
5510/*
5511 * Increase the granularity value when there are more CPUs,
5512 * because with more CPUs the 'effective latency' as visible
5513 * to users decreases. But the relationship is not linear,
5514 * so pick a second-best guess by going with the log2 of the
5515 * number of CPUs.
5516 *
5517 * This idea comes from the SD scheduler of Con Kolivas:
5518 */
5519static inline void sched_init_granularity(void)
5520{
5521 unsigned int factor = 1 + ilog2(num_online_cpus());
5522 const unsigned long limit = 200000000;
5523
5524 sysctl_sched_min_granularity *= factor;
5525 if (sysctl_sched_min_granularity > limit)
5526 sysctl_sched_min_granularity = limit;
5527
5528 sysctl_sched_latency *= factor;
5529 if (sysctl_sched_latency > limit)
5530 sysctl_sched_latency = limit;
5531
5532 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5533}
5534
1da177e4
LT
5535#ifdef CONFIG_SMP
5536/*
5537 * This is how migration works:
5538 *
70b97a7f 5539 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5540 * runqueue and wake up that CPU's migration thread.
5541 * 2) we down() the locked semaphore => thread blocks.
5542 * 3) migration thread wakes up (implicitly it forces the migrated
5543 * thread off the CPU)
5544 * 4) it gets the migration request and checks whether the migrated
5545 * task is still in the wrong runqueue.
5546 * 5) if it's in the wrong runqueue then the migration thread removes
5547 * it and puts it into the right queue.
5548 * 6) migration thread up()s the semaphore.
5549 * 7) we wake up and the migration is done.
5550 */
5551
5552/*
5553 * Change a given task's CPU affinity. Migrate the thread to a
5554 * proper CPU and schedule it away if the CPU it's executing on
5555 * is removed from the allowed bitmask.
5556 *
5557 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5558 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5559 * call is not atomic; no spinlocks may be held.
5560 */
cd8ba7cd 5561int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5562{
70b97a7f 5563 struct migration_req req;
1da177e4 5564 unsigned long flags;
70b97a7f 5565 struct rq *rq;
48f24c4d 5566 int ret = 0;
1da177e4
LT
5567
5568 rq = task_rq_lock(p, &flags);
cd8ba7cd 5569 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5570 ret = -EINVAL;
5571 goto out;
5572 }
5573
73fe6aae 5574 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5575 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5576 else {
cd8ba7cd
MT
5577 p->cpus_allowed = *new_mask;
5578 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5579 }
5580
1da177e4 5581 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5582 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5583 goto out;
5584
cd8ba7cd 5585 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5586 /* Need help from migration thread: drop lock and wait. */
5587 task_rq_unlock(rq, &flags);
5588 wake_up_process(rq->migration_thread);
5589 wait_for_completion(&req.done);
5590 tlb_migrate_finish(p->mm);
5591 return 0;
5592 }
5593out:
5594 task_rq_unlock(rq, &flags);
48f24c4d 5595
1da177e4
LT
5596 return ret;
5597}
cd8ba7cd 5598EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5599
5600/*
41a2d6cf 5601 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5602 * this because either it can't run here any more (set_cpus_allowed()
5603 * away from this CPU, or CPU going down), or because we're
5604 * attempting to rebalance this task on exec (sched_exec).
5605 *
5606 * So we race with normal scheduler movements, but that's OK, as long
5607 * as the task is no longer on this CPU.
efc30814
KK
5608 *
5609 * Returns non-zero if task was successfully migrated.
1da177e4 5610 */
efc30814 5611static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5612{
70b97a7f 5613 struct rq *rq_dest, *rq_src;
dd41f596 5614 int ret = 0, on_rq;
1da177e4
LT
5615
5616 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5617 return ret;
1da177e4
LT
5618
5619 rq_src = cpu_rq(src_cpu);
5620 rq_dest = cpu_rq(dest_cpu);
5621
5622 double_rq_lock(rq_src, rq_dest);
5623 /* Already moved. */
5624 if (task_cpu(p) != src_cpu)
5625 goto out;
5626 /* Affinity changed (again). */
5627 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5628 goto out;
5629
dd41f596 5630 on_rq = p->se.on_rq;
6e82a3be 5631 if (on_rq)
2e1cb74a 5632 deactivate_task(rq_src, p, 0);
6e82a3be 5633
1da177e4 5634 set_task_cpu(p, dest_cpu);
dd41f596
IM
5635 if (on_rq) {
5636 activate_task(rq_dest, p, 0);
5637 check_preempt_curr(rq_dest, p);
1da177e4 5638 }
efc30814 5639 ret = 1;
1da177e4
LT
5640out:
5641 double_rq_unlock(rq_src, rq_dest);
efc30814 5642 return ret;
1da177e4
LT
5643}
5644
5645/*
5646 * migration_thread - this is a highprio system thread that performs
5647 * thread migration by bumping thread off CPU then 'pushing' onto
5648 * another runqueue.
5649 */
95cdf3b7 5650static int migration_thread(void *data)
1da177e4 5651{
1da177e4 5652 int cpu = (long)data;
70b97a7f 5653 struct rq *rq;
1da177e4
LT
5654
5655 rq = cpu_rq(cpu);
5656 BUG_ON(rq->migration_thread != current);
5657
5658 set_current_state(TASK_INTERRUPTIBLE);
5659 while (!kthread_should_stop()) {
70b97a7f 5660 struct migration_req *req;
1da177e4 5661 struct list_head *head;
1da177e4 5662
1da177e4
LT
5663 spin_lock_irq(&rq->lock);
5664
5665 if (cpu_is_offline(cpu)) {
5666 spin_unlock_irq(&rq->lock);
5667 goto wait_to_die;
5668 }
5669
5670 if (rq->active_balance) {
5671 active_load_balance(rq, cpu);
5672 rq->active_balance = 0;
5673 }
5674
5675 head = &rq->migration_queue;
5676
5677 if (list_empty(head)) {
5678 spin_unlock_irq(&rq->lock);
5679 schedule();
5680 set_current_state(TASK_INTERRUPTIBLE);
5681 continue;
5682 }
70b97a7f 5683 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5684 list_del_init(head->next);
5685
674311d5
NP
5686 spin_unlock(&rq->lock);
5687 __migrate_task(req->task, cpu, req->dest_cpu);
5688 local_irq_enable();
1da177e4
LT
5689
5690 complete(&req->done);
5691 }
5692 __set_current_state(TASK_RUNNING);
5693 return 0;
5694
5695wait_to_die:
5696 /* Wait for kthread_stop */
5697 set_current_state(TASK_INTERRUPTIBLE);
5698 while (!kthread_should_stop()) {
5699 schedule();
5700 set_current_state(TASK_INTERRUPTIBLE);
5701 }
5702 __set_current_state(TASK_RUNNING);
5703 return 0;
5704}
5705
5706#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5707
5708static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5709{
5710 int ret;
5711
5712 local_irq_disable();
5713 ret = __migrate_task(p, src_cpu, dest_cpu);
5714 local_irq_enable();
5715 return ret;
5716}
5717
054b9108 5718/*
3a4fa0a2 5719 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5720 * NOTE: interrupts should be disabled by the caller
5721 */
48f24c4d 5722static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5723{
efc30814 5724 unsigned long flags;
1da177e4 5725 cpumask_t mask;
70b97a7f
IM
5726 struct rq *rq;
5727 int dest_cpu;
1da177e4 5728
3a5c359a
AK
5729 do {
5730 /* On same node? */
5731 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5732 cpus_and(mask, mask, p->cpus_allowed);
5733 dest_cpu = any_online_cpu(mask);
5734
5735 /* On any allowed CPU? */
434d53b0 5736 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5737 dest_cpu = any_online_cpu(p->cpus_allowed);
5738
5739 /* No more Mr. Nice Guy. */
434d53b0 5740 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5741 cpumask_t cpus_allowed;
5742
5743 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5744 /*
5745 * Try to stay on the same cpuset, where the
5746 * current cpuset may be a subset of all cpus.
5747 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5748 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5749 * called within calls to cpuset_lock/cpuset_unlock.
5750 */
3a5c359a 5751 rq = task_rq_lock(p, &flags);
470fd646 5752 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5753 dest_cpu = any_online_cpu(p->cpus_allowed);
5754 task_rq_unlock(rq, &flags);
1da177e4 5755
3a5c359a
AK
5756 /*
5757 * Don't tell them about moving exiting tasks or
5758 * kernel threads (both mm NULL), since they never
5759 * leave kernel.
5760 */
41a2d6cf 5761 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5762 printk(KERN_INFO "process %d (%s) no "
5763 "longer affine to cpu%d\n",
41a2d6cf
IM
5764 task_pid_nr(p), p->comm, dead_cpu);
5765 }
3a5c359a 5766 }
f7b4cddc 5767 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5768}
5769
5770/*
5771 * While a dead CPU has no uninterruptible tasks queued at this point,
5772 * it might still have a nonzero ->nr_uninterruptible counter, because
5773 * for performance reasons the counter is not stricly tracking tasks to
5774 * their home CPUs. So we just add the counter to another CPU's counter,
5775 * to keep the global sum constant after CPU-down:
5776 */
70b97a7f 5777static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5778{
7c16ec58 5779 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5780 unsigned long flags;
5781
5782 local_irq_save(flags);
5783 double_rq_lock(rq_src, rq_dest);
5784 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5785 rq_src->nr_uninterruptible = 0;
5786 double_rq_unlock(rq_src, rq_dest);
5787 local_irq_restore(flags);
5788}
5789
5790/* Run through task list and migrate tasks from the dead cpu. */
5791static void migrate_live_tasks(int src_cpu)
5792{
48f24c4d 5793 struct task_struct *p, *t;
1da177e4 5794
f7b4cddc 5795 read_lock(&tasklist_lock);
1da177e4 5796
48f24c4d
IM
5797 do_each_thread(t, p) {
5798 if (p == current)
1da177e4
LT
5799 continue;
5800
48f24c4d
IM
5801 if (task_cpu(p) == src_cpu)
5802 move_task_off_dead_cpu(src_cpu, p);
5803 } while_each_thread(t, p);
1da177e4 5804
f7b4cddc 5805 read_unlock(&tasklist_lock);
1da177e4
LT
5806}
5807
dd41f596
IM
5808/*
5809 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5810 * It does so by boosting its priority to highest possible.
5811 * Used by CPU offline code.
1da177e4
LT
5812 */
5813void sched_idle_next(void)
5814{
48f24c4d 5815 int this_cpu = smp_processor_id();
70b97a7f 5816 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5817 struct task_struct *p = rq->idle;
5818 unsigned long flags;
5819
5820 /* cpu has to be offline */
48f24c4d 5821 BUG_ON(cpu_online(this_cpu));
1da177e4 5822
48f24c4d
IM
5823 /*
5824 * Strictly not necessary since rest of the CPUs are stopped by now
5825 * and interrupts disabled on the current cpu.
1da177e4
LT
5826 */
5827 spin_lock_irqsave(&rq->lock, flags);
5828
dd41f596 5829 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5830
94bc9a7b
DA
5831 update_rq_clock(rq);
5832 activate_task(rq, p, 0);
1da177e4
LT
5833
5834 spin_unlock_irqrestore(&rq->lock, flags);
5835}
5836
48f24c4d
IM
5837/*
5838 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5839 * offline.
5840 */
5841void idle_task_exit(void)
5842{
5843 struct mm_struct *mm = current->active_mm;
5844
5845 BUG_ON(cpu_online(smp_processor_id()));
5846
5847 if (mm != &init_mm)
5848 switch_mm(mm, &init_mm, current);
5849 mmdrop(mm);
5850}
5851
054b9108 5852/* called under rq->lock with disabled interrupts */
36c8b586 5853static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5854{
70b97a7f 5855 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5856
5857 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5858 BUG_ON(!p->exit_state);
1da177e4
LT
5859
5860 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5861 BUG_ON(p->state == TASK_DEAD);
1da177e4 5862
48f24c4d 5863 get_task_struct(p);
1da177e4
LT
5864
5865 /*
5866 * Drop lock around migration; if someone else moves it,
41a2d6cf 5867 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5868 * fine.
5869 */
f7b4cddc 5870 spin_unlock_irq(&rq->lock);
48f24c4d 5871 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5872 spin_lock_irq(&rq->lock);
1da177e4 5873
48f24c4d 5874 put_task_struct(p);
1da177e4
LT
5875}
5876
5877/* release_task() removes task from tasklist, so we won't find dead tasks. */
5878static void migrate_dead_tasks(unsigned int dead_cpu)
5879{
70b97a7f 5880 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5881 struct task_struct *next;
48f24c4d 5882
dd41f596
IM
5883 for ( ; ; ) {
5884 if (!rq->nr_running)
5885 break;
a8e504d2 5886 update_rq_clock(rq);
ff95f3df 5887 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5888 if (!next)
5889 break;
5890 migrate_dead(dead_cpu, next);
e692ab53 5891
1da177e4
LT
5892 }
5893}
5894#endif /* CONFIG_HOTPLUG_CPU */
5895
e692ab53
NP
5896#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5897
5898static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5899 {
5900 .procname = "sched_domain",
c57baf1e 5901 .mode = 0555,
e0361851 5902 },
38605cae 5903 {0, },
e692ab53
NP
5904};
5905
5906static struct ctl_table sd_ctl_root[] = {
e0361851 5907 {
c57baf1e 5908 .ctl_name = CTL_KERN,
e0361851 5909 .procname = "kernel",
c57baf1e 5910 .mode = 0555,
e0361851
AD
5911 .child = sd_ctl_dir,
5912 },
38605cae 5913 {0, },
e692ab53
NP
5914};
5915
5916static struct ctl_table *sd_alloc_ctl_entry(int n)
5917{
5918 struct ctl_table *entry =
5cf9f062 5919 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5920
e692ab53
NP
5921 return entry;
5922}
5923
6382bc90
MM
5924static void sd_free_ctl_entry(struct ctl_table **tablep)
5925{
cd790076 5926 struct ctl_table *entry;
6382bc90 5927
cd790076
MM
5928 /*
5929 * In the intermediate directories, both the child directory and
5930 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5931 * will always be set. In the lowest directory the names are
cd790076
MM
5932 * static strings and all have proc handlers.
5933 */
5934 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5935 if (entry->child)
5936 sd_free_ctl_entry(&entry->child);
cd790076
MM
5937 if (entry->proc_handler == NULL)
5938 kfree(entry->procname);
5939 }
6382bc90
MM
5940
5941 kfree(*tablep);
5942 *tablep = NULL;
5943}
5944
e692ab53 5945static void
e0361851 5946set_table_entry(struct ctl_table *entry,
e692ab53
NP
5947 const char *procname, void *data, int maxlen,
5948 mode_t mode, proc_handler *proc_handler)
5949{
e692ab53
NP
5950 entry->procname = procname;
5951 entry->data = data;
5952 entry->maxlen = maxlen;
5953 entry->mode = mode;
5954 entry->proc_handler = proc_handler;
5955}
5956
5957static struct ctl_table *
5958sd_alloc_ctl_domain_table(struct sched_domain *sd)
5959{
ace8b3d6 5960 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5961
ad1cdc1d
MM
5962 if (table == NULL)
5963 return NULL;
5964
e0361851 5965 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5966 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5967 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5968 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5969 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5970 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5971 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5972 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5973 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5974 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5975 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5976 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5977 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5978 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5979 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5980 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5981 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5982 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5983 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5984 &sd->cache_nice_tries,
5985 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5986 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5987 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5988 /* &table[11] is terminator */
e692ab53
NP
5989
5990 return table;
5991}
5992
9a4e7159 5993static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5994{
5995 struct ctl_table *entry, *table;
5996 struct sched_domain *sd;
5997 int domain_num = 0, i;
5998 char buf[32];
5999
6000 for_each_domain(cpu, sd)
6001 domain_num++;
6002 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6003 if (table == NULL)
6004 return NULL;
e692ab53
NP
6005
6006 i = 0;
6007 for_each_domain(cpu, sd) {
6008 snprintf(buf, 32, "domain%d", i);
e692ab53 6009 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6010 entry->mode = 0555;
e692ab53
NP
6011 entry->child = sd_alloc_ctl_domain_table(sd);
6012 entry++;
6013 i++;
6014 }
6015 return table;
6016}
6017
6018static struct ctl_table_header *sd_sysctl_header;
6382bc90 6019static void register_sched_domain_sysctl(void)
e692ab53
NP
6020{
6021 int i, cpu_num = num_online_cpus();
6022 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6023 char buf[32];
6024
7378547f
MM
6025 WARN_ON(sd_ctl_dir[0].child);
6026 sd_ctl_dir[0].child = entry;
6027
ad1cdc1d
MM
6028 if (entry == NULL)
6029 return;
6030
97b6ea7b 6031 for_each_online_cpu(i) {
e692ab53 6032 snprintf(buf, 32, "cpu%d", i);
e692ab53 6033 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6034 entry->mode = 0555;
e692ab53 6035 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6036 entry++;
e692ab53 6037 }
7378547f
MM
6038
6039 WARN_ON(sd_sysctl_header);
e692ab53
NP
6040 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6041}
6382bc90 6042
7378547f 6043/* may be called multiple times per register */
6382bc90
MM
6044static void unregister_sched_domain_sysctl(void)
6045{
7378547f
MM
6046 if (sd_sysctl_header)
6047 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6048 sd_sysctl_header = NULL;
7378547f
MM
6049 if (sd_ctl_dir[0].child)
6050 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6051}
e692ab53 6052#else
6382bc90
MM
6053static void register_sched_domain_sysctl(void)
6054{
6055}
6056static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6057{
6058}
6059#endif
6060
1da177e4
LT
6061/*
6062 * migration_call - callback that gets triggered when a CPU is added.
6063 * Here we can start up the necessary migration thread for the new CPU.
6064 */
48f24c4d
IM
6065static int __cpuinit
6066migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6067{
1da177e4 6068 struct task_struct *p;
48f24c4d 6069 int cpu = (long)hcpu;
1da177e4 6070 unsigned long flags;
70b97a7f 6071 struct rq *rq;
1da177e4
LT
6072
6073 switch (action) {
5be9361c 6074
1da177e4 6075 case CPU_UP_PREPARE:
8bb78442 6076 case CPU_UP_PREPARE_FROZEN:
dd41f596 6077 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6078 if (IS_ERR(p))
6079 return NOTIFY_BAD;
1da177e4
LT
6080 kthread_bind(p, cpu);
6081 /* Must be high prio: stop_machine expects to yield to it. */
6082 rq = task_rq_lock(p, &flags);
dd41f596 6083 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6084 task_rq_unlock(rq, &flags);
6085 cpu_rq(cpu)->migration_thread = p;
6086 break;
48f24c4d 6087
1da177e4 6088 case CPU_ONLINE:
8bb78442 6089 case CPU_ONLINE_FROZEN:
3a4fa0a2 6090 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6091 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6092
6093 /* Update our root-domain */
6094 rq = cpu_rq(cpu);
6095 spin_lock_irqsave(&rq->lock, flags);
6096 if (rq->rd) {
6097 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6098 cpu_set(cpu, rq->rd->online);
6099 }
6100 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6101 break;
48f24c4d 6102
1da177e4
LT
6103#ifdef CONFIG_HOTPLUG_CPU
6104 case CPU_UP_CANCELED:
8bb78442 6105 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6106 if (!cpu_rq(cpu)->migration_thread)
6107 break;
41a2d6cf 6108 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6109 kthread_bind(cpu_rq(cpu)->migration_thread,
6110 any_online_cpu(cpu_online_map));
1da177e4
LT
6111 kthread_stop(cpu_rq(cpu)->migration_thread);
6112 cpu_rq(cpu)->migration_thread = NULL;
6113 break;
48f24c4d 6114
1da177e4 6115 case CPU_DEAD:
8bb78442 6116 case CPU_DEAD_FROZEN:
470fd646 6117 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6118 migrate_live_tasks(cpu);
6119 rq = cpu_rq(cpu);
6120 kthread_stop(rq->migration_thread);
6121 rq->migration_thread = NULL;
6122 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6123 spin_lock_irq(&rq->lock);
a8e504d2 6124 update_rq_clock(rq);
2e1cb74a 6125 deactivate_task(rq, rq->idle, 0);
1da177e4 6126 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6127 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6128 rq->idle->sched_class = &idle_sched_class;
1da177e4 6129 migrate_dead_tasks(cpu);
d2da272a 6130 spin_unlock_irq(&rq->lock);
470fd646 6131 cpuset_unlock();
1da177e4
LT
6132 migrate_nr_uninterruptible(rq);
6133 BUG_ON(rq->nr_running != 0);
6134
41a2d6cf
IM
6135 /*
6136 * No need to migrate the tasks: it was best-effort if
6137 * they didn't take sched_hotcpu_mutex. Just wake up
6138 * the requestors.
6139 */
1da177e4
LT
6140 spin_lock_irq(&rq->lock);
6141 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6142 struct migration_req *req;
6143
1da177e4 6144 req = list_entry(rq->migration_queue.next,
70b97a7f 6145 struct migration_req, list);
1da177e4
LT
6146 list_del_init(&req->list);
6147 complete(&req->done);
6148 }
6149 spin_unlock_irq(&rq->lock);
6150 break;
57d885fe 6151
08f503b0
GH
6152 case CPU_DYING:
6153 case CPU_DYING_FROZEN:
57d885fe
GH
6154 /* Update our root-domain */
6155 rq = cpu_rq(cpu);
6156 spin_lock_irqsave(&rq->lock, flags);
6157 if (rq->rd) {
6158 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6159 cpu_clear(cpu, rq->rd->online);
6160 }
6161 spin_unlock_irqrestore(&rq->lock, flags);
6162 break;
1da177e4
LT
6163#endif
6164 }
6165 return NOTIFY_OK;
6166}
6167
6168/* Register at highest priority so that task migration (migrate_all_tasks)
6169 * happens before everything else.
6170 */
26c2143b 6171static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6172 .notifier_call = migration_call,
6173 .priority = 10
6174};
6175
e6fe6649 6176void __init migration_init(void)
1da177e4
LT
6177{
6178 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6179 int err;
48f24c4d
IM
6180
6181 /* Start one for the boot CPU: */
07dccf33
AM
6182 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6183 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6184 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6185 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6186}
6187#endif
6188
6189#ifdef CONFIG_SMP
476f3534 6190
3e9830dc 6191#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6192
7c16ec58
MT
6193static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6194 cpumask_t *groupmask)
1da177e4 6195{
4dcf6aff 6196 struct sched_group *group = sd->groups;
434d53b0 6197 char str[256];
1da177e4 6198
434d53b0 6199 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6200 cpus_clear(*groupmask);
4dcf6aff
IM
6201
6202 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6203
6204 if (!(sd->flags & SD_LOAD_BALANCE)) {
6205 printk("does not load-balance\n");
6206 if (sd->parent)
6207 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6208 " has parent");
6209 return -1;
41c7ce9a
NP
6210 }
6211
4dcf6aff
IM
6212 printk(KERN_CONT "span %s\n", str);
6213
6214 if (!cpu_isset(cpu, sd->span)) {
6215 printk(KERN_ERR "ERROR: domain->span does not contain "
6216 "CPU%d\n", cpu);
6217 }
6218 if (!cpu_isset(cpu, group->cpumask)) {
6219 printk(KERN_ERR "ERROR: domain->groups does not contain"
6220 " CPU%d\n", cpu);
6221 }
1da177e4 6222
4dcf6aff 6223 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6224 do {
4dcf6aff
IM
6225 if (!group) {
6226 printk("\n");
6227 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6228 break;
6229 }
6230
4dcf6aff
IM
6231 if (!group->__cpu_power) {
6232 printk(KERN_CONT "\n");
6233 printk(KERN_ERR "ERROR: domain->cpu_power not "
6234 "set\n");
6235 break;
6236 }
1da177e4 6237
4dcf6aff
IM
6238 if (!cpus_weight(group->cpumask)) {
6239 printk(KERN_CONT "\n");
6240 printk(KERN_ERR "ERROR: empty group\n");
6241 break;
6242 }
1da177e4 6243
7c16ec58 6244 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6245 printk(KERN_CONT "\n");
6246 printk(KERN_ERR "ERROR: repeated CPUs\n");
6247 break;
6248 }
1da177e4 6249
7c16ec58 6250 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6251
434d53b0 6252 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6253 printk(KERN_CONT " %s", str);
1da177e4 6254
4dcf6aff
IM
6255 group = group->next;
6256 } while (group != sd->groups);
6257 printk(KERN_CONT "\n");
1da177e4 6258
7c16ec58 6259 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6260 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6261
7c16ec58 6262 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6263 printk(KERN_ERR "ERROR: parent span is not a superset "
6264 "of domain->span\n");
6265 return 0;
6266}
1da177e4 6267
4dcf6aff
IM
6268static void sched_domain_debug(struct sched_domain *sd, int cpu)
6269{
7c16ec58 6270 cpumask_t *groupmask;
4dcf6aff 6271 int level = 0;
1da177e4 6272
4dcf6aff
IM
6273 if (!sd) {
6274 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6275 return;
6276 }
1da177e4 6277
4dcf6aff
IM
6278 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6279
7c16ec58
MT
6280 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6281 if (!groupmask) {
6282 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6283 return;
6284 }
6285
4dcf6aff 6286 for (;;) {
7c16ec58 6287 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6288 break;
1da177e4
LT
6289 level++;
6290 sd = sd->parent;
33859f7f 6291 if (!sd)
4dcf6aff
IM
6292 break;
6293 }
7c16ec58 6294 kfree(groupmask);
1da177e4
LT
6295}
6296#else
48f24c4d 6297# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6298#endif
6299
1a20ff27 6300static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6301{
6302 if (cpus_weight(sd->span) == 1)
6303 return 1;
6304
6305 /* Following flags need at least 2 groups */
6306 if (sd->flags & (SD_LOAD_BALANCE |
6307 SD_BALANCE_NEWIDLE |
6308 SD_BALANCE_FORK |
89c4710e
SS
6309 SD_BALANCE_EXEC |
6310 SD_SHARE_CPUPOWER |
6311 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6312 if (sd->groups != sd->groups->next)
6313 return 0;
6314 }
6315
6316 /* Following flags don't use groups */
6317 if (sd->flags & (SD_WAKE_IDLE |
6318 SD_WAKE_AFFINE |
6319 SD_WAKE_BALANCE))
6320 return 0;
6321
6322 return 1;
6323}
6324
48f24c4d
IM
6325static int
6326sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6327{
6328 unsigned long cflags = sd->flags, pflags = parent->flags;
6329
6330 if (sd_degenerate(parent))
6331 return 1;
6332
6333 if (!cpus_equal(sd->span, parent->span))
6334 return 0;
6335
6336 /* Does parent contain flags not in child? */
6337 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6338 if (cflags & SD_WAKE_AFFINE)
6339 pflags &= ~SD_WAKE_BALANCE;
6340 /* Flags needing groups don't count if only 1 group in parent */
6341 if (parent->groups == parent->groups->next) {
6342 pflags &= ~(SD_LOAD_BALANCE |
6343 SD_BALANCE_NEWIDLE |
6344 SD_BALANCE_FORK |
89c4710e
SS
6345 SD_BALANCE_EXEC |
6346 SD_SHARE_CPUPOWER |
6347 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6348 }
6349 if (~cflags & pflags)
6350 return 0;
6351
6352 return 1;
6353}
6354
57d885fe
GH
6355static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6356{
6357 unsigned long flags;
6358 const struct sched_class *class;
6359
6360 spin_lock_irqsave(&rq->lock, flags);
6361
6362 if (rq->rd) {
6363 struct root_domain *old_rd = rq->rd;
6364
0eab9146 6365 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6366 if (class->leave_domain)
6367 class->leave_domain(rq);
0eab9146 6368 }
57d885fe 6369
dc938520
GH
6370 cpu_clear(rq->cpu, old_rd->span);
6371 cpu_clear(rq->cpu, old_rd->online);
6372
57d885fe
GH
6373 if (atomic_dec_and_test(&old_rd->refcount))
6374 kfree(old_rd);
6375 }
6376
6377 atomic_inc(&rd->refcount);
6378 rq->rd = rd;
6379
dc938520 6380 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6381 if (cpu_isset(rq->cpu, cpu_online_map))
6382 cpu_set(rq->cpu, rd->online);
dc938520 6383
0eab9146 6384 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6385 if (class->join_domain)
6386 class->join_domain(rq);
0eab9146 6387 }
57d885fe
GH
6388
6389 spin_unlock_irqrestore(&rq->lock, flags);
6390}
6391
dc938520 6392static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6393{
6394 memset(rd, 0, sizeof(*rd));
6395
dc938520
GH
6396 cpus_clear(rd->span);
6397 cpus_clear(rd->online);
57d885fe
GH
6398}
6399
6400static void init_defrootdomain(void)
6401{
dc938520 6402 init_rootdomain(&def_root_domain);
57d885fe
GH
6403 atomic_set(&def_root_domain.refcount, 1);
6404}
6405
dc938520 6406static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6407{
6408 struct root_domain *rd;
6409
6410 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6411 if (!rd)
6412 return NULL;
6413
dc938520 6414 init_rootdomain(rd);
57d885fe
GH
6415
6416 return rd;
6417}
6418
1da177e4 6419/*
0eab9146 6420 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6421 * hold the hotplug lock.
6422 */
0eab9146
IM
6423static void
6424cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6425{
70b97a7f 6426 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6427 struct sched_domain *tmp;
6428
6429 /* Remove the sched domains which do not contribute to scheduling. */
6430 for (tmp = sd; tmp; tmp = tmp->parent) {
6431 struct sched_domain *parent = tmp->parent;
6432 if (!parent)
6433 break;
1a848870 6434 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6435 tmp->parent = parent->parent;
1a848870
SS
6436 if (parent->parent)
6437 parent->parent->child = tmp;
6438 }
245af2c7
SS
6439 }
6440
1a848870 6441 if (sd && sd_degenerate(sd)) {
245af2c7 6442 sd = sd->parent;
1a848870
SS
6443 if (sd)
6444 sd->child = NULL;
6445 }
1da177e4
LT
6446
6447 sched_domain_debug(sd, cpu);
6448
57d885fe 6449 rq_attach_root(rq, rd);
674311d5 6450 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6451}
6452
6453/* cpus with isolated domains */
67af63a6 6454static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6455
6456/* Setup the mask of cpus configured for isolated domains */
6457static int __init isolated_cpu_setup(char *str)
6458{
6459 int ints[NR_CPUS], i;
6460
6461 str = get_options(str, ARRAY_SIZE(ints), ints);
6462 cpus_clear(cpu_isolated_map);
6463 for (i = 1; i <= ints[0]; i++)
6464 if (ints[i] < NR_CPUS)
6465 cpu_set(ints[i], cpu_isolated_map);
6466 return 1;
6467}
6468
8927f494 6469__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6470
6471/*
6711cab4
SS
6472 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6473 * to a function which identifies what group(along with sched group) a CPU
6474 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6475 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6476 *
6477 * init_sched_build_groups will build a circular linked list of the groups
6478 * covered by the given span, and will set each group's ->cpumask correctly,
6479 * and ->cpu_power to 0.
6480 */
a616058b 6481static void
7c16ec58 6482init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6483 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6484 struct sched_group **sg,
6485 cpumask_t *tmpmask),
6486 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6487{
6488 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6489 int i;
6490
7c16ec58
MT
6491 cpus_clear(*covered);
6492
6493 for_each_cpu_mask(i, *span) {
6711cab4 6494 struct sched_group *sg;
7c16ec58 6495 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6496 int j;
6497
7c16ec58 6498 if (cpu_isset(i, *covered))
1da177e4
LT
6499 continue;
6500
7c16ec58 6501 cpus_clear(sg->cpumask);
5517d86b 6502 sg->__cpu_power = 0;
1da177e4 6503
7c16ec58
MT
6504 for_each_cpu_mask(j, *span) {
6505 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6506 continue;
6507
7c16ec58 6508 cpu_set(j, *covered);
1da177e4
LT
6509 cpu_set(j, sg->cpumask);
6510 }
6511 if (!first)
6512 first = sg;
6513 if (last)
6514 last->next = sg;
6515 last = sg;
6516 }
6517 last->next = first;
6518}
6519
9c1cfda2 6520#define SD_NODES_PER_DOMAIN 16
1da177e4 6521
9c1cfda2 6522#ifdef CONFIG_NUMA
198e2f18 6523
9c1cfda2
JH
6524/**
6525 * find_next_best_node - find the next node to include in a sched_domain
6526 * @node: node whose sched_domain we're building
6527 * @used_nodes: nodes already in the sched_domain
6528 *
41a2d6cf 6529 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6530 * finds the closest node not already in the @used_nodes map.
6531 *
6532 * Should use nodemask_t.
6533 */
c5f59f08 6534static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6535{
6536 int i, n, val, min_val, best_node = 0;
6537
6538 min_val = INT_MAX;
6539
6540 for (i = 0; i < MAX_NUMNODES; i++) {
6541 /* Start at @node */
6542 n = (node + i) % MAX_NUMNODES;
6543
6544 if (!nr_cpus_node(n))
6545 continue;
6546
6547 /* Skip already used nodes */
c5f59f08 6548 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6549 continue;
6550
6551 /* Simple min distance search */
6552 val = node_distance(node, n);
6553
6554 if (val < min_val) {
6555 min_val = val;
6556 best_node = n;
6557 }
6558 }
6559
c5f59f08 6560 node_set(best_node, *used_nodes);
9c1cfda2
JH
6561 return best_node;
6562}
6563
6564/**
6565 * sched_domain_node_span - get a cpumask for a node's sched_domain
6566 * @node: node whose cpumask we're constructing
73486722 6567 * @span: resulting cpumask
9c1cfda2 6568 *
41a2d6cf 6569 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6570 * should be one that prevents unnecessary balancing, but also spreads tasks
6571 * out optimally.
6572 */
4bdbaad3 6573static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6574{
c5f59f08 6575 nodemask_t used_nodes;
c5f59f08 6576 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6577 int i;
9c1cfda2 6578
4bdbaad3 6579 cpus_clear(*span);
c5f59f08 6580 nodes_clear(used_nodes);
9c1cfda2 6581
4bdbaad3 6582 cpus_or(*span, *span, *nodemask);
c5f59f08 6583 node_set(node, used_nodes);
9c1cfda2
JH
6584
6585 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6586 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6587
c5f59f08 6588 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6589 cpus_or(*span, *span, *nodemask);
9c1cfda2 6590 }
9c1cfda2
JH
6591}
6592#endif
6593
5c45bf27 6594int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6595
9c1cfda2 6596/*
48f24c4d 6597 * SMT sched-domains:
9c1cfda2 6598 */
1da177e4
LT
6599#ifdef CONFIG_SCHED_SMT
6600static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6601static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6602
41a2d6cf 6603static int
7c16ec58
MT
6604cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6605 cpumask_t *unused)
1da177e4 6606{
6711cab4
SS
6607 if (sg)
6608 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6609 return cpu;
6610}
6611#endif
6612
48f24c4d
IM
6613/*
6614 * multi-core sched-domains:
6615 */
1e9f28fa
SS
6616#ifdef CONFIG_SCHED_MC
6617static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6618static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6619#endif
6620
6621#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6622static int
7c16ec58
MT
6623cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6624 cpumask_t *mask)
1e9f28fa 6625{
6711cab4 6626 int group;
7c16ec58
MT
6627
6628 *mask = per_cpu(cpu_sibling_map, cpu);
6629 cpus_and(*mask, *mask, *cpu_map);
6630 group = first_cpu(*mask);
6711cab4
SS
6631 if (sg)
6632 *sg = &per_cpu(sched_group_core, group);
6633 return group;
1e9f28fa
SS
6634}
6635#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6636static int
7c16ec58
MT
6637cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6638 cpumask_t *unused)
1e9f28fa 6639{
6711cab4
SS
6640 if (sg)
6641 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6642 return cpu;
6643}
6644#endif
6645
1da177e4 6646static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6647static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6648
41a2d6cf 6649static int
7c16ec58
MT
6650cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6651 cpumask_t *mask)
1da177e4 6652{
6711cab4 6653 int group;
48f24c4d 6654#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6655 *mask = cpu_coregroup_map(cpu);
6656 cpus_and(*mask, *mask, *cpu_map);
6657 group = first_cpu(*mask);
1e9f28fa 6658#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6659 *mask = per_cpu(cpu_sibling_map, cpu);
6660 cpus_and(*mask, *mask, *cpu_map);
6661 group = first_cpu(*mask);
1da177e4 6662#else
6711cab4 6663 group = cpu;
1da177e4 6664#endif
6711cab4
SS
6665 if (sg)
6666 *sg = &per_cpu(sched_group_phys, group);
6667 return group;
1da177e4
LT
6668}
6669
6670#ifdef CONFIG_NUMA
1da177e4 6671/*
9c1cfda2
JH
6672 * The init_sched_build_groups can't handle what we want to do with node
6673 * groups, so roll our own. Now each node has its own list of groups which
6674 * gets dynamically allocated.
1da177e4 6675 */
9c1cfda2 6676static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6677static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6678
9c1cfda2 6679static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6680static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6681
6711cab4 6682static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6683 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6684{
6711cab4
SS
6685 int group;
6686
7c16ec58
MT
6687 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6688 cpus_and(*nodemask, *nodemask, *cpu_map);
6689 group = first_cpu(*nodemask);
6711cab4
SS
6690
6691 if (sg)
6692 *sg = &per_cpu(sched_group_allnodes, group);
6693 return group;
1da177e4 6694}
6711cab4 6695
08069033
SS
6696static void init_numa_sched_groups_power(struct sched_group *group_head)
6697{
6698 struct sched_group *sg = group_head;
6699 int j;
6700
6701 if (!sg)
6702 return;
3a5c359a
AK
6703 do {
6704 for_each_cpu_mask(j, sg->cpumask) {
6705 struct sched_domain *sd;
08069033 6706
3a5c359a
AK
6707 sd = &per_cpu(phys_domains, j);
6708 if (j != first_cpu(sd->groups->cpumask)) {
6709 /*
6710 * Only add "power" once for each
6711 * physical package.
6712 */
6713 continue;
6714 }
08069033 6715
3a5c359a
AK
6716 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6717 }
6718 sg = sg->next;
6719 } while (sg != group_head);
08069033 6720}
1da177e4
LT
6721#endif
6722
a616058b 6723#ifdef CONFIG_NUMA
51888ca2 6724/* Free memory allocated for various sched_group structures */
7c16ec58 6725static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6726{
a616058b 6727 int cpu, i;
51888ca2
SV
6728
6729 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6730 struct sched_group **sched_group_nodes
6731 = sched_group_nodes_bycpu[cpu];
6732
51888ca2
SV
6733 if (!sched_group_nodes)
6734 continue;
6735
6736 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6737 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6738
7c16ec58
MT
6739 *nodemask = node_to_cpumask(i);
6740 cpus_and(*nodemask, *nodemask, *cpu_map);
6741 if (cpus_empty(*nodemask))
51888ca2
SV
6742 continue;
6743
6744 if (sg == NULL)
6745 continue;
6746 sg = sg->next;
6747next_sg:
6748 oldsg = sg;
6749 sg = sg->next;
6750 kfree(oldsg);
6751 if (oldsg != sched_group_nodes[i])
6752 goto next_sg;
6753 }
6754 kfree(sched_group_nodes);
6755 sched_group_nodes_bycpu[cpu] = NULL;
6756 }
51888ca2 6757}
a616058b 6758#else
7c16ec58 6759static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6760{
6761}
6762#endif
51888ca2 6763
89c4710e
SS
6764/*
6765 * Initialize sched groups cpu_power.
6766 *
6767 * cpu_power indicates the capacity of sched group, which is used while
6768 * distributing the load between different sched groups in a sched domain.
6769 * Typically cpu_power for all the groups in a sched domain will be same unless
6770 * there are asymmetries in the topology. If there are asymmetries, group
6771 * having more cpu_power will pickup more load compared to the group having
6772 * less cpu_power.
6773 *
6774 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6775 * the maximum number of tasks a group can handle in the presence of other idle
6776 * or lightly loaded groups in the same sched domain.
6777 */
6778static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6779{
6780 struct sched_domain *child;
6781 struct sched_group *group;
6782
6783 WARN_ON(!sd || !sd->groups);
6784
6785 if (cpu != first_cpu(sd->groups->cpumask))
6786 return;
6787
6788 child = sd->child;
6789
5517d86b
ED
6790 sd->groups->__cpu_power = 0;
6791
89c4710e
SS
6792 /*
6793 * For perf policy, if the groups in child domain share resources
6794 * (for example cores sharing some portions of the cache hierarchy
6795 * or SMT), then set this domain groups cpu_power such that each group
6796 * can handle only one task, when there are other idle groups in the
6797 * same sched domain.
6798 */
6799 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6800 (child->flags &
6801 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6802 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6803 return;
6804 }
6805
89c4710e
SS
6806 /*
6807 * add cpu_power of each child group to this groups cpu_power
6808 */
6809 group = child->groups;
6810 do {
5517d86b 6811 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6812 group = group->next;
6813 } while (group != child->groups);
6814}
6815
7c16ec58
MT
6816/*
6817 * Initializers for schedule domains
6818 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6819 */
6820
6821#define SD_INIT(sd, type) sd_init_##type(sd)
6822#define SD_INIT_FUNC(type) \
6823static noinline void sd_init_##type(struct sched_domain *sd) \
6824{ \
6825 memset(sd, 0, sizeof(*sd)); \
6826 *sd = SD_##type##_INIT; \
1d3504fc 6827 sd->level = SD_LV_##type; \
7c16ec58
MT
6828}
6829
6830SD_INIT_FUNC(CPU)
6831#ifdef CONFIG_NUMA
6832 SD_INIT_FUNC(ALLNODES)
6833 SD_INIT_FUNC(NODE)
6834#endif
6835#ifdef CONFIG_SCHED_SMT
6836 SD_INIT_FUNC(SIBLING)
6837#endif
6838#ifdef CONFIG_SCHED_MC
6839 SD_INIT_FUNC(MC)
6840#endif
6841
6842/*
6843 * To minimize stack usage kmalloc room for cpumasks and share the
6844 * space as the usage in build_sched_domains() dictates. Used only
6845 * if the amount of space is significant.
6846 */
6847struct allmasks {
6848 cpumask_t tmpmask; /* make this one first */
6849 union {
6850 cpumask_t nodemask;
6851 cpumask_t this_sibling_map;
6852 cpumask_t this_core_map;
6853 };
6854 cpumask_t send_covered;
6855
6856#ifdef CONFIG_NUMA
6857 cpumask_t domainspan;
6858 cpumask_t covered;
6859 cpumask_t notcovered;
6860#endif
6861};
6862
6863#if NR_CPUS > 128
6864#define SCHED_CPUMASK_ALLOC 1
6865#define SCHED_CPUMASK_FREE(v) kfree(v)
6866#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6867#else
6868#define SCHED_CPUMASK_ALLOC 0
6869#define SCHED_CPUMASK_FREE(v)
6870#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6871#endif
6872
6873#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6874 ((unsigned long)(a) + offsetof(struct allmasks, v))
6875
1d3504fc
HS
6876static int default_relax_domain_level = -1;
6877
6878static int __init setup_relax_domain_level(char *str)
6879{
6880 default_relax_domain_level = simple_strtoul(str, NULL, 0);
6881 return 1;
6882}
6883__setup("relax_domain_level=", setup_relax_domain_level);
6884
6885static void set_domain_attribute(struct sched_domain *sd,
6886 struct sched_domain_attr *attr)
6887{
6888 int request;
6889
6890 if (!attr || attr->relax_domain_level < 0) {
6891 if (default_relax_domain_level < 0)
6892 return;
6893 else
6894 request = default_relax_domain_level;
6895 } else
6896 request = attr->relax_domain_level;
6897 if (request < sd->level) {
6898 /* turn off idle balance on this domain */
6899 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
6900 } else {
6901 /* turn on idle balance on this domain */
6902 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
6903 }
6904}
6905
1da177e4 6906/*
1a20ff27
DG
6907 * Build sched domains for a given set of cpus and attach the sched domains
6908 * to the individual cpus
1da177e4 6909 */
1d3504fc
HS
6910static int __build_sched_domains(const cpumask_t *cpu_map,
6911 struct sched_domain_attr *attr)
1da177e4
LT
6912{
6913 int i;
57d885fe 6914 struct root_domain *rd;
7c16ec58
MT
6915 SCHED_CPUMASK_DECLARE(allmasks);
6916 cpumask_t *tmpmask;
d1b55138
JH
6917#ifdef CONFIG_NUMA
6918 struct sched_group **sched_group_nodes = NULL;
6711cab4 6919 int sd_allnodes = 0;
d1b55138
JH
6920
6921 /*
6922 * Allocate the per-node list of sched groups
6923 */
5cf9f062 6924 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6925 GFP_KERNEL);
d1b55138
JH
6926 if (!sched_group_nodes) {
6927 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6928 return -ENOMEM;
d1b55138 6929 }
d1b55138 6930#endif
1da177e4 6931
dc938520 6932 rd = alloc_rootdomain();
57d885fe
GH
6933 if (!rd) {
6934 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
6935#ifdef CONFIG_NUMA
6936 kfree(sched_group_nodes);
6937#endif
57d885fe
GH
6938 return -ENOMEM;
6939 }
6940
7c16ec58
MT
6941#if SCHED_CPUMASK_ALLOC
6942 /* get space for all scratch cpumask variables */
6943 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6944 if (!allmasks) {
6945 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6946 kfree(rd);
6947#ifdef CONFIG_NUMA
6948 kfree(sched_group_nodes);
6949#endif
6950 return -ENOMEM;
6951 }
6952#endif
6953 tmpmask = (cpumask_t *)allmasks;
6954
6955
6956#ifdef CONFIG_NUMA
6957 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6958#endif
6959
1da177e4 6960 /*
1a20ff27 6961 * Set up domains for cpus specified by the cpu_map.
1da177e4 6962 */
1a20ff27 6963 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6964 struct sched_domain *sd = NULL, *p;
7c16ec58 6965 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 6966
7c16ec58
MT
6967 *nodemask = node_to_cpumask(cpu_to_node(i));
6968 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
6969
6970#ifdef CONFIG_NUMA
dd41f596 6971 if (cpus_weight(*cpu_map) >
7c16ec58 6972 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 6973 sd = &per_cpu(allnodes_domains, i);
7c16ec58 6974 SD_INIT(sd, ALLNODES);
1d3504fc 6975 set_domain_attribute(sd, attr);
9c1cfda2 6976 sd->span = *cpu_map;
7c16ec58 6977 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 6978 p = sd;
6711cab4 6979 sd_allnodes = 1;
9c1cfda2
JH
6980 } else
6981 p = NULL;
6982
1da177e4 6983 sd = &per_cpu(node_domains, i);
7c16ec58 6984 SD_INIT(sd, NODE);
1d3504fc 6985 set_domain_attribute(sd, attr);
4bdbaad3 6986 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 6987 sd->parent = p;
1a848870
SS
6988 if (p)
6989 p->child = sd;
9c1cfda2 6990 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6991#endif
6992
6993 p = sd;
6994 sd = &per_cpu(phys_domains, i);
7c16ec58 6995 SD_INIT(sd, CPU);
1d3504fc 6996 set_domain_attribute(sd, attr);
7c16ec58 6997 sd->span = *nodemask;
1da177e4 6998 sd->parent = p;
1a848870
SS
6999 if (p)
7000 p->child = sd;
7c16ec58 7001 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7002
1e9f28fa
SS
7003#ifdef CONFIG_SCHED_MC
7004 p = sd;
7005 sd = &per_cpu(core_domains, i);
7c16ec58 7006 SD_INIT(sd, MC);
1d3504fc 7007 set_domain_attribute(sd, attr);
1e9f28fa
SS
7008 sd->span = cpu_coregroup_map(i);
7009 cpus_and(sd->span, sd->span, *cpu_map);
7010 sd->parent = p;
1a848870 7011 p->child = sd;
7c16ec58 7012 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7013#endif
7014
1da177e4
LT
7015#ifdef CONFIG_SCHED_SMT
7016 p = sd;
7017 sd = &per_cpu(cpu_domains, i);
7c16ec58 7018 SD_INIT(sd, SIBLING);
1d3504fc 7019 set_domain_attribute(sd, attr);
d5a7430d 7020 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7021 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7022 sd->parent = p;
1a848870 7023 p->child = sd;
7c16ec58 7024 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7025#endif
7026 }
7027
7028#ifdef CONFIG_SCHED_SMT
7029 /* Set up CPU (sibling) groups */
9c1cfda2 7030 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7031 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7032 SCHED_CPUMASK_VAR(send_covered, allmasks);
7033
7034 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7035 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7036 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7037 continue;
7038
dd41f596 7039 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7040 &cpu_to_cpu_group,
7041 send_covered, tmpmask);
1da177e4
LT
7042 }
7043#endif
7044
1e9f28fa
SS
7045#ifdef CONFIG_SCHED_MC
7046 /* Set up multi-core groups */
7047 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7048 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7049 SCHED_CPUMASK_VAR(send_covered, allmasks);
7050
7051 *this_core_map = cpu_coregroup_map(i);
7052 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7053 if (i != first_cpu(*this_core_map))
1e9f28fa 7054 continue;
7c16ec58 7055
dd41f596 7056 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7057 &cpu_to_core_group,
7058 send_covered, tmpmask);
1e9f28fa
SS
7059 }
7060#endif
7061
1da177e4
LT
7062 /* Set up physical groups */
7063 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7064 SCHED_CPUMASK_VAR(nodemask, allmasks);
7065 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7066
7c16ec58
MT
7067 *nodemask = node_to_cpumask(i);
7068 cpus_and(*nodemask, *nodemask, *cpu_map);
7069 if (cpus_empty(*nodemask))
1da177e4
LT
7070 continue;
7071
7c16ec58
MT
7072 init_sched_build_groups(nodemask, cpu_map,
7073 &cpu_to_phys_group,
7074 send_covered, tmpmask);
1da177e4
LT
7075 }
7076
7077#ifdef CONFIG_NUMA
7078 /* Set up node groups */
7c16ec58
MT
7079 if (sd_allnodes) {
7080 SCHED_CPUMASK_VAR(send_covered, allmasks);
7081
7082 init_sched_build_groups(cpu_map, cpu_map,
7083 &cpu_to_allnodes_group,
7084 send_covered, tmpmask);
7085 }
9c1cfda2
JH
7086
7087 for (i = 0; i < MAX_NUMNODES; i++) {
7088 /* Set up node groups */
7089 struct sched_group *sg, *prev;
7c16ec58
MT
7090 SCHED_CPUMASK_VAR(nodemask, allmasks);
7091 SCHED_CPUMASK_VAR(domainspan, allmasks);
7092 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7093 int j;
7094
7c16ec58
MT
7095 *nodemask = node_to_cpumask(i);
7096 cpus_clear(*covered);
7097
7098 cpus_and(*nodemask, *nodemask, *cpu_map);
7099 if (cpus_empty(*nodemask)) {
d1b55138 7100 sched_group_nodes[i] = NULL;
9c1cfda2 7101 continue;
d1b55138 7102 }
9c1cfda2 7103
4bdbaad3 7104 sched_domain_node_span(i, domainspan);
7c16ec58 7105 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7106
15f0b676 7107 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7108 if (!sg) {
7109 printk(KERN_WARNING "Can not alloc domain group for "
7110 "node %d\n", i);
7111 goto error;
7112 }
9c1cfda2 7113 sched_group_nodes[i] = sg;
7c16ec58 7114 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7115 struct sched_domain *sd;
9761eea8 7116
9c1cfda2
JH
7117 sd = &per_cpu(node_domains, j);
7118 sd->groups = sg;
9c1cfda2 7119 }
5517d86b 7120 sg->__cpu_power = 0;
7c16ec58 7121 sg->cpumask = *nodemask;
51888ca2 7122 sg->next = sg;
7c16ec58 7123 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7124 prev = sg;
7125
7126 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7127 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7128 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7129 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7130
7c16ec58
MT
7131 cpus_complement(*notcovered, *covered);
7132 cpus_and(*tmpmask, *notcovered, *cpu_map);
7133 cpus_and(*tmpmask, *tmpmask, *domainspan);
7134 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7135 break;
7136
7c16ec58
MT
7137 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7138 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7139 continue;
7140
15f0b676
SV
7141 sg = kmalloc_node(sizeof(struct sched_group),
7142 GFP_KERNEL, i);
9c1cfda2
JH
7143 if (!sg) {
7144 printk(KERN_WARNING
7145 "Can not alloc domain group for node %d\n", j);
51888ca2 7146 goto error;
9c1cfda2 7147 }
5517d86b 7148 sg->__cpu_power = 0;
7c16ec58 7149 sg->cpumask = *tmpmask;
51888ca2 7150 sg->next = prev->next;
7c16ec58 7151 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7152 prev->next = sg;
7153 prev = sg;
7154 }
9c1cfda2 7155 }
1da177e4
LT
7156#endif
7157
7158 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7159#ifdef CONFIG_SCHED_SMT
1a20ff27 7160 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7161 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7162
89c4710e 7163 init_sched_groups_power(i, sd);
5c45bf27 7164 }
1da177e4 7165#endif
1e9f28fa 7166#ifdef CONFIG_SCHED_MC
5c45bf27 7167 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7168 struct sched_domain *sd = &per_cpu(core_domains, i);
7169
89c4710e 7170 init_sched_groups_power(i, sd);
5c45bf27
SS
7171 }
7172#endif
1e9f28fa 7173
5c45bf27 7174 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7175 struct sched_domain *sd = &per_cpu(phys_domains, i);
7176
89c4710e 7177 init_sched_groups_power(i, sd);
1da177e4
LT
7178 }
7179
9c1cfda2 7180#ifdef CONFIG_NUMA
08069033
SS
7181 for (i = 0; i < MAX_NUMNODES; i++)
7182 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7183
6711cab4
SS
7184 if (sd_allnodes) {
7185 struct sched_group *sg;
f712c0c7 7186
7c16ec58
MT
7187 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7188 tmpmask);
f712c0c7
SS
7189 init_numa_sched_groups_power(sg);
7190 }
9c1cfda2
JH
7191#endif
7192
1da177e4 7193 /* Attach the domains */
1a20ff27 7194 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7195 struct sched_domain *sd;
7196#ifdef CONFIG_SCHED_SMT
7197 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7198#elif defined(CONFIG_SCHED_MC)
7199 sd = &per_cpu(core_domains, i);
1da177e4
LT
7200#else
7201 sd = &per_cpu(phys_domains, i);
7202#endif
57d885fe 7203 cpu_attach_domain(sd, rd, i);
1da177e4 7204 }
51888ca2 7205
7c16ec58 7206 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7207 return 0;
7208
a616058b 7209#ifdef CONFIG_NUMA
51888ca2 7210error:
7c16ec58
MT
7211 free_sched_groups(cpu_map, tmpmask);
7212 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7213 return -ENOMEM;
a616058b 7214#endif
1da177e4 7215}
029190c5 7216
1d3504fc
HS
7217static int build_sched_domains(const cpumask_t *cpu_map)
7218{
7219 return __build_sched_domains(cpu_map, NULL);
7220}
7221
029190c5
PJ
7222static cpumask_t *doms_cur; /* current sched domains */
7223static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7224static struct sched_domain_attr *dattr_cur;
7225 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7226
7227/*
7228 * Special case: If a kmalloc of a doms_cur partition (array of
7229 * cpumask_t) fails, then fallback to a single sched domain,
7230 * as determined by the single cpumask_t fallback_doms.
7231 */
7232static cpumask_t fallback_doms;
7233
22e52b07
HC
7234void __attribute__((weak)) arch_update_cpu_topology(void)
7235{
7236}
7237
1a20ff27 7238/*
41a2d6cf 7239 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7240 * For now this just excludes isolated cpus, but could be used to
7241 * exclude other special cases in the future.
1a20ff27 7242 */
51888ca2 7243static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7244{
7378547f
MM
7245 int err;
7246
22e52b07 7247 arch_update_cpu_topology();
029190c5
PJ
7248 ndoms_cur = 1;
7249 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7250 if (!doms_cur)
7251 doms_cur = &fallback_doms;
7252 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7253 dattr_cur = NULL;
7378547f 7254 err = build_sched_domains(doms_cur);
6382bc90 7255 register_sched_domain_sysctl();
7378547f
MM
7256
7257 return err;
1a20ff27
DG
7258}
7259
7c16ec58
MT
7260static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7261 cpumask_t *tmpmask)
1da177e4 7262{
7c16ec58 7263 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7264}
1da177e4 7265
1a20ff27
DG
7266/*
7267 * Detach sched domains from a group of cpus specified in cpu_map
7268 * These cpus will now be attached to the NULL domain
7269 */
858119e1 7270static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7271{
7c16ec58 7272 cpumask_t tmpmask;
1a20ff27
DG
7273 int i;
7274
6382bc90
MM
7275 unregister_sched_domain_sysctl();
7276
1a20ff27 7277 for_each_cpu_mask(i, *cpu_map)
57d885fe 7278 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7279 synchronize_sched();
7c16ec58 7280 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7281}
7282
1d3504fc
HS
7283/* handle null as "default" */
7284static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7285 struct sched_domain_attr *new, int idx_new)
7286{
7287 struct sched_domain_attr tmp;
7288
7289 /* fast path */
7290 if (!new && !cur)
7291 return 1;
7292
7293 tmp = SD_ATTR_INIT;
7294 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7295 new ? (new + idx_new) : &tmp,
7296 sizeof(struct sched_domain_attr));
7297}
7298
029190c5
PJ
7299/*
7300 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7301 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7302 * doms_new[] to the current sched domain partitioning, doms_cur[].
7303 * It destroys each deleted domain and builds each new domain.
7304 *
7305 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7306 * The masks don't intersect (don't overlap.) We should setup one
7307 * sched domain for each mask. CPUs not in any of the cpumasks will
7308 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7309 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7310 * it as it is.
7311 *
41a2d6cf
IM
7312 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7313 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7314 * failed the kmalloc call, then it can pass in doms_new == NULL,
7315 * and partition_sched_domains() will fallback to the single partition
7316 * 'fallback_doms'.
7317 *
7318 * Call with hotplug lock held
7319 */
1d3504fc
HS
7320void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7321 struct sched_domain_attr *dattr_new)
029190c5
PJ
7322{
7323 int i, j;
7324
712555ee 7325 mutex_lock(&sched_domains_mutex);
a1835615 7326
7378547f
MM
7327 /* always unregister in case we don't destroy any domains */
7328 unregister_sched_domain_sysctl();
7329
029190c5
PJ
7330 if (doms_new == NULL) {
7331 ndoms_new = 1;
7332 doms_new = &fallback_doms;
7333 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7334 dattr_new = NULL;
029190c5
PJ
7335 }
7336
7337 /* Destroy deleted domains */
7338 for (i = 0; i < ndoms_cur; i++) {
7339 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7340 if (cpus_equal(doms_cur[i], doms_new[j])
7341 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7342 goto match1;
7343 }
7344 /* no match - a current sched domain not in new doms_new[] */
7345 detach_destroy_domains(doms_cur + i);
7346match1:
7347 ;
7348 }
7349
7350 /* Build new domains */
7351 for (i = 0; i < ndoms_new; i++) {
7352 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7353 if (cpus_equal(doms_new[i], doms_cur[j])
7354 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7355 goto match2;
7356 }
7357 /* no match - add a new doms_new */
1d3504fc
HS
7358 __build_sched_domains(doms_new + i,
7359 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7360match2:
7361 ;
7362 }
7363
7364 /* Remember the new sched domains */
7365 if (doms_cur != &fallback_doms)
7366 kfree(doms_cur);
1d3504fc 7367 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7368 doms_cur = doms_new;
1d3504fc 7369 dattr_cur = dattr_new;
029190c5 7370 ndoms_cur = ndoms_new;
7378547f
MM
7371
7372 register_sched_domain_sysctl();
a1835615 7373
712555ee 7374 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7375}
7376
5c45bf27 7377#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7378int arch_reinit_sched_domains(void)
5c45bf27
SS
7379{
7380 int err;
7381
95402b38 7382 get_online_cpus();
712555ee 7383 mutex_lock(&sched_domains_mutex);
5c45bf27
SS
7384 detach_destroy_domains(&cpu_online_map);
7385 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7386 mutex_unlock(&sched_domains_mutex);
95402b38 7387 put_online_cpus();
5c45bf27
SS
7388
7389 return err;
7390}
7391
7392static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7393{
7394 int ret;
7395
7396 if (buf[0] != '0' && buf[0] != '1')
7397 return -EINVAL;
7398
7399 if (smt)
7400 sched_smt_power_savings = (buf[0] == '1');
7401 else
7402 sched_mc_power_savings = (buf[0] == '1');
7403
7404 ret = arch_reinit_sched_domains();
7405
7406 return ret ? ret : count;
7407}
7408
5c45bf27
SS
7409#ifdef CONFIG_SCHED_MC
7410static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7411{
7412 return sprintf(page, "%u\n", sched_mc_power_savings);
7413}
48f24c4d
IM
7414static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7415 const char *buf, size_t count)
5c45bf27
SS
7416{
7417 return sched_power_savings_store(buf, count, 0);
7418}
6707de00
AB
7419static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7420 sched_mc_power_savings_store);
5c45bf27
SS
7421#endif
7422
7423#ifdef CONFIG_SCHED_SMT
7424static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7425{
7426 return sprintf(page, "%u\n", sched_smt_power_savings);
7427}
48f24c4d
IM
7428static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7429 const char *buf, size_t count)
5c45bf27
SS
7430{
7431 return sched_power_savings_store(buf, count, 1);
7432}
6707de00
AB
7433static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7434 sched_smt_power_savings_store);
7435#endif
7436
7437int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7438{
7439 int err = 0;
7440
7441#ifdef CONFIG_SCHED_SMT
7442 if (smt_capable())
7443 err = sysfs_create_file(&cls->kset.kobj,
7444 &attr_sched_smt_power_savings.attr);
7445#endif
7446#ifdef CONFIG_SCHED_MC
7447 if (!err && mc_capable())
7448 err = sysfs_create_file(&cls->kset.kobj,
7449 &attr_sched_mc_power_savings.attr);
7450#endif
7451 return err;
7452}
5c45bf27
SS
7453#endif
7454
1da177e4 7455/*
41a2d6cf 7456 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7457 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7458 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7459 * which will prevent rebalancing while the sched domains are recalculated.
7460 */
7461static int update_sched_domains(struct notifier_block *nfb,
7462 unsigned long action, void *hcpu)
7463{
1da177e4
LT
7464 switch (action) {
7465 case CPU_UP_PREPARE:
8bb78442 7466 case CPU_UP_PREPARE_FROZEN:
1da177e4 7467 case CPU_DOWN_PREPARE:
8bb78442 7468 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7469 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
7470 return NOTIFY_OK;
7471
7472 case CPU_UP_CANCELED:
8bb78442 7473 case CPU_UP_CANCELED_FROZEN:
1da177e4 7474 case CPU_DOWN_FAILED:
8bb78442 7475 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7476 case CPU_ONLINE:
8bb78442 7477 case CPU_ONLINE_FROZEN:
1da177e4 7478 case CPU_DEAD:
8bb78442 7479 case CPU_DEAD_FROZEN:
1da177e4
LT
7480 /*
7481 * Fall through and re-initialise the domains.
7482 */
7483 break;
7484 default:
7485 return NOTIFY_DONE;
7486 }
7487
7488 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7489 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
7490
7491 return NOTIFY_OK;
7492}
1da177e4
LT
7493
7494void __init sched_init_smp(void)
7495{
5c1e1767
NP
7496 cpumask_t non_isolated_cpus;
7497
434d53b0
MT
7498#if defined(CONFIG_NUMA)
7499 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7500 GFP_KERNEL);
7501 BUG_ON(sched_group_nodes_bycpu == NULL);
7502#endif
95402b38 7503 get_online_cpus();
712555ee 7504 mutex_lock(&sched_domains_mutex);
1a20ff27 7505 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7506 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7507 if (cpus_empty(non_isolated_cpus))
7508 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7509 mutex_unlock(&sched_domains_mutex);
95402b38 7510 put_online_cpus();
1da177e4
LT
7511 /* XXX: Theoretical race here - CPU may be hotplugged now */
7512 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7513 init_hrtick();
5c1e1767
NP
7514
7515 /* Move init over to a non-isolated CPU */
7c16ec58 7516 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7517 BUG();
19978ca6 7518 sched_init_granularity();
1da177e4
LT
7519}
7520#else
7521void __init sched_init_smp(void)
7522{
19978ca6 7523 sched_init_granularity();
1da177e4
LT
7524}
7525#endif /* CONFIG_SMP */
7526
7527int in_sched_functions(unsigned long addr)
7528{
1da177e4
LT
7529 return in_lock_functions(addr) ||
7530 (addr >= (unsigned long)__sched_text_start
7531 && addr < (unsigned long)__sched_text_end);
7532}
7533
a9957449 7534static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7535{
7536 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7537 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7538#ifdef CONFIG_FAIR_GROUP_SCHED
7539 cfs_rq->rq = rq;
7540#endif
67e9fb2a 7541 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7542}
7543
fa85ae24
PZ
7544static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7545{
7546 struct rt_prio_array *array;
7547 int i;
7548
7549 array = &rt_rq->active;
7550 for (i = 0; i < MAX_RT_PRIO; i++) {
7551 INIT_LIST_HEAD(array->queue + i);
7552 __clear_bit(i, array->bitmap);
7553 }
7554 /* delimiter for bitsearch: */
7555 __set_bit(MAX_RT_PRIO, array->bitmap);
7556
052f1dc7 7557#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7558 rt_rq->highest_prio = MAX_RT_PRIO;
7559#endif
fa85ae24
PZ
7560#ifdef CONFIG_SMP
7561 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7562 rt_rq->overloaded = 0;
7563#endif
7564
7565 rt_rq->rt_time = 0;
7566 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7567 rt_rq->rt_runtime = 0;
7568 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7569
052f1dc7 7570#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7571 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7572 rt_rq->rq = rq;
7573#endif
fa85ae24
PZ
7574}
7575
6f505b16 7576#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7577static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7578 struct sched_entity *se, int cpu, int add,
7579 struct sched_entity *parent)
6f505b16 7580{
ec7dc8ac 7581 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7582 tg->cfs_rq[cpu] = cfs_rq;
7583 init_cfs_rq(cfs_rq, rq);
7584 cfs_rq->tg = tg;
7585 if (add)
7586 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7587
7588 tg->se[cpu] = se;
354d60c2
DG
7589 /* se could be NULL for init_task_group */
7590 if (!se)
7591 return;
7592
ec7dc8ac
DG
7593 if (!parent)
7594 se->cfs_rq = &rq->cfs;
7595 else
7596 se->cfs_rq = parent->my_q;
7597
6f505b16
PZ
7598 se->my_q = cfs_rq;
7599 se->load.weight = tg->shares;
e05510d0 7600 se->load.inv_weight = 0;
ec7dc8ac 7601 se->parent = parent;
6f505b16 7602}
052f1dc7 7603#endif
6f505b16 7604
052f1dc7 7605#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7606static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7607 struct sched_rt_entity *rt_se, int cpu, int add,
7608 struct sched_rt_entity *parent)
6f505b16 7609{
ec7dc8ac
DG
7610 struct rq *rq = cpu_rq(cpu);
7611
6f505b16
PZ
7612 tg->rt_rq[cpu] = rt_rq;
7613 init_rt_rq(rt_rq, rq);
7614 rt_rq->tg = tg;
7615 rt_rq->rt_se = rt_se;
ac086bc2 7616 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7617 if (add)
7618 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7619
7620 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7621 if (!rt_se)
7622 return;
7623
ec7dc8ac
DG
7624 if (!parent)
7625 rt_se->rt_rq = &rq->rt;
7626 else
7627 rt_se->rt_rq = parent->my_q;
7628
6f505b16
PZ
7629 rt_se->rt_rq = &rq->rt;
7630 rt_se->my_q = rt_rq;
ec7dc8ac 7631 rt_se->parent = parent;
6f505b16
PZ
7632 INIT_LIST_HEAD(&rt_se->run_list);
7633}
7634#endif
7635
1da177e4
LT
7636void __init sched_init(void)
7637{
dd41f596 7638 int i, j;
434d53b0
MT
7639 unsigned long alloc_size = 0, ptr;
7640
7641#ifdef CONFIG_FAIR_GROUP_SCHED
7642 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7643#endif
7644#ifdef CONFIG_RT_GROUP_SCHED
7645 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7646#endif
7647#ifdef CONFIG_USER_SCHED
7648 alloc_size *= 2;
434d53b0
MT
7649#endif
7650 /*
7651 * As sched_init() is called before page_alloc is setup,
7652 * we use alloc_bootmem().
7653 */
7654 if (alloc_size) {
5a9d3225 7655 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7656
7657#ifdef CONFIG_FAIR_GROUP_SCHED
7658 init_task_group.se = (struct sched_entity **)ptr;
7659 ptr += nr_cpu_ids * sizeof(void **);
7660
7661 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7662 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7663
7664#ifdef CONFIG_USER_SCHED
7665 root_task_group.se = (struct sched_entity **)ptr;
7666 ptr += nr_cpu_ids * sizeof(void **);
7667
7668 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7669 ptr += nr_cpu_ids * sizeof(void **);
7670#endif
434d53b0
MT
7671#endif
7672#ifdef CONFIG_RT_GROUP_SCHED
7673 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7674 ptr += nr_cpu_ids * sizeof(void **);
7675
7676 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7677 ptr += nr_cpu_ids * sizeof(void **);
7678
7679#ifdef CONFIG_USER_SCHED
7680 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7681 ptr += nr_cpu_ids * sizeof(void **);
7682
7683 root_task_group.rt_rq = (struct rt_rq **)ptr;
7684 ptr += nr_cpu_ids * sizeof(void **);
7685#endif
434d53b0
MT
7686#endif
7687 }
dd41f596 7688
57d885fe
GH
7689#ifdef CONFIG_SMP
7690 init_defrootdomain();
7691#endif
7692
d0b27fa7
PZ
7693 init_rt_bandwidth(&def_rt_bandwidth,
7694 global_rt_period(), global_rt_runtime());
7695
7696#ifdef CONFIG_RT_GROUP_SCHED
7697 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7698 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7699#ifdef CONFIG_USER_SCHED
7700 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7701 global_rt_period(), RUNTIME_INF);
7702#endif
d0b27fa7
PZ
7703#endif
7704
052f1dc7 7705#ifdef CONFIG_GROUP_SCHED
6f505b16 7706 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7707 INIT_LIST_HEAD(&init_task_group.children);
7708
7709#ifdef CONFIG_USER_SCHED
7710 INIT_LIST_HEAD(&root_task_group.children);
7711 init_task_group.parent = &root_task_group;
7712 list_add(&init_task_group.siblings, &root_task_group.children);
7713#endif
6f505b16
PZ
7714#endif
7715
0a945022 7716 for_each_possible_cpu(i) {
70b97a7f 7717 struct rq *rq;
1da177e4
LT
7718
7719 rq = cpu_rq(i);
7720 spin_lock_init(&rq->lock);
fcb99371 7721 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7722 rq->nr_running = 0;
dd41f596 7723 init_cfs_rq(&rq->cfs, rq);
6f505b16 7724 init_rt_rq(&rq->rt, rq);
dd41f596 7725#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7726 init_task_group.shares = init_task_group_load;
6f505b16 7727 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7728#ifdef CONFIG_CGROUP_SCHED
7729 /*
7730 * How much cpu bandwidth does init_task_group get?
7731 *
7732 * In case of task-groups formed thr' the cgroup filesystem, it
7733 * gets 100% of the cpu resources in the system. This overall
7734 * system cpu resource is divided among the tasks of
7735 * init_task_group and its child task-groups in a fair manner,
7736 * based on each entity's (task or task-group's) weight
7737 * (se->load.weight).
7738 *
7739 * In other words, if init_task_group has 10 tasks of weight
7740 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7741 * then A0's share of the cpu resource is:
7742 *
7743 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7744 *
7745 * We achieve this by letting init_task_group's tasks sit
7746 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7747 */
ec7dc8ac 7748 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 7749#elif defined CONFIG_USER_SCHED
eff766a6
PZ
7750 root_task_group.shares = NICE_0_LOAD;
7751 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
7752 /*
7753 * In case of task-groups formed thr' the user id of tasks,
7754 * init_task_group represents tasks belonging to root user.
7755 * Hence it forms a sibling of all subsequent groups formed.
7756 * In this case, init_task_group gets only a fraction of overall
7757 * system cpu resource, based on the weight assigned to root
7758 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7759 * by letting tasks of init_task_group sit in a separate cfs_rq
7760 * (init_cfs_rq) and having one entity represent this group of
7761 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7762 */
ec7dc8ac 7763 init_tg_cfs_entry(&init_task_group,
6f505b16 7764 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
7765 &per_cpu(init_sched_entity, i), i, 1,
7766 root_task_group.se[i]);
6f505b16 7767
052f1dc7 7768#endif
354d60c2
DG
7769#endif /* CONFIG_FAIR_GROUP_SCHED */
7770
7771 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7772#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7773 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7774#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7775 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7776#elif defined CONFIG_USER_SCHED
eff766a6 7777 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 7778 init_tg_rt_entry(&init_task_group,
6f505b16 7779 &per_cpu(init_rt_rq, i),
eff766a6
PZ
7780 &per_cpu(init_sched_rt_entity, i), i, 1,
7781 root_task_group.rt_se[i]);
354d60c2 7782#endif
dd41f596 7783#endif
1da177e4 7784
dd41f596
IM
7785 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7786 rq->cpu_load[j] = 0;
1da177e4 7787#ifdef CONFIG_SMP
41c7ce9a 7788 rq->sd = NULL;
57d885fe 7789 rq->rd = NULL;
1da177e4 7790 rq->active_balance = 0;
dd41f596 7791 rq->next_balance = jiffies;
1da177e4 7792 rq->push_cpu = 0;
0a2966b4 7793 rq->cpu = i;
1da177e4
LT
7794 rq->migration_thread = NULL;
7795 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7796 rq_attach_root(rq, &def_root_domain);
1da177e4 7797#endif
8f4d37ec 7798 init_rq_hrtick(rq);
1da177e4 7799 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7800 }
7801
2dd73a4f 7802 set_load_weight(&init_task);
b50f60ce 7803
e107be36
AK
7804#ifdef CONFIG_PREEMPT_NOTIFIERS
7805 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7806#endif
7807
c9819f45
CL
7808#ifdef CONFIG_SMP
7809 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7810#endif
7811
b50f60ce
HC
7812#ifdef CONFIG_RT_MUTEXES
7813 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7814#endif
7815
1da177e4
LT
7816 /*
7817 * The boot idle thread does lazy MMU switching as well:
7818 */
7819 atomic_inc(&init_mm.mm_count);
7820 enter_lazy_tlb(&init_mm, current);
7821
7822 /*
7823 * Make us the idle thread. Technically, schedule() should not be
7824 * called from this thread, however somewhere below it might be,
7825 * but because we are the idle thread, we just pick up running again
7826 * when this runqueue becomes "idle".
7827 */
7828 init_idle(current, smp_processor_id());
dd41f596
IM
7829 /*
7830 * During early bootup we pretend to be a normal task:
7831 */
7832 current->sched_class = &fair_sched_class;
6892b75e
IM
7833
7834 scheduler_running = 1;
1da177e4
LT
7835}
7836
7837#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7838void __might_sleep(char *file, int line)
7839{
48f24c4d 7840#ifdef in_atomic
1da177e4
LT
7841 static unsigned long prev_jiffy; /* ratelimiting */
7842
7843 if ((in_atomic() || irqs_disabled()) &&
7844 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7845 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7846 return;
7847 prev_jiffy = jiffies;
91368d73 7848 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7849 " context at %s:%d\n", file, line);
7850 printk("in_atomic():%d, irqs_disabled():%d\n",
7851 in_atomic(), irqs_disabled());
a4c410f0 7852 debug_show_held_locks(current);
3117df04
IM
7853 if (irqs_disabled())
7854 print_irqtrace_events(current);
1da177e4
LT
7855 dump_stack();
7856 }
7857#endif
7858}
7859EXPORT_SYMBOL(__might_sleep);
7860#endif
7861
7862#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7863static void normalize_task(struct rq *rq, struct task_struct *p)
7864{
7865 int on_rq;
3e51f33f 7866
3a5e4dc1
AK
7867 update_rq_clock(rq);
7868 on_rq = p->se.on_rq;
7869 if (on_rq)
7870 deactivate_task(rq, p, 0);
7871 __setscheduler(rq, p, SCHED_NORMAL, 0);
7872 if (on_rq) {
7873 activate_task(rq, p, 0);
7874 resched_task(rq->curr);
7875 }
7876}
7877
1da177e4
LT
7878void normalize_rt_tasks(void)
7879{
a0f98a1c 7880 struct task_struct *g, *p;
1da177e4 7881 unsigned long flags;
70b97a7f 7882 struct rq *rq;
1da177e4 7883
4cf5d77a 7884 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7885 do_each_thread(g, p) {
178be793
IM
7886 /*
7887 * Only normalize user tasks:
7888 */
7889 if (!p->mm)
7890 continue;
7891
6cfb0d5d 7892 p->se.exec_start = 0;
6cfb0d5d 7893#ifdef CONFIG_SCHEDSTATS
dd41f596 7894 p->se.wait_start = 0;
dd41f596 7895 p->se.sleep_start = 0;
dd41f596 7896 p->se.block_start = 0;
6cfb0d5d 7897#endif
dd41f596
IM
7898
7899 if (!rt_task(p)) {
7900 /*
7901 * Renice negative nice level userspace
7902 * tasks back to 0:
7903 */
7904 if (TASK_NICE(p) < 0 && p->mm)
7905 set_user_nice(p, 0);
1da177e4 7906 continue;
dd41f596 7907 }
1da177e4 7908
4cf5d77a 7909 spin_lock(&p->pi_lock);
b29739f9 7910 rq = __task_rq_lock(p);
1da177e4 7911
178be793 7912 normalize_task(rq, p);
3a5e4dc1 7913
b29739f9 7914 __task_rq_unlock(rq);
4cf5d77a 7915 spin_unlock(&p->pi_lock);
a0f98a1c
IM
7916 } while_each_thread(g, p);
7917
4cf5d77a 7918 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7919}
7920
7921#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7922
7923#ifdef CONFIG_IA64
7924/*
7925 * These functions are only useful for the IA64 MCA handling.
7926 *
7927 * They can only be called when the whole system has been
7928 * stopped - every CPU needs to be quiescent, and no scheduling
7929 * activity can take place. Using them for anything else would
7930 * be a serious bug, and as a result, they aren't even visible
7931 * under any other configuration.
7932 */
7933
7934/**
7935 * curr_task - return the current task for a given cpu.
7936 * @cpu: the processor in question.
7937 *
7938 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7939 */
36c8b586 7940struct task_struct *curr_task(int cpu)
1df5c10a
LT
7941{
7942 return cpu_curr(cpu);
7943}
7944
7945/**
7946 * set_curr_task - set the current task for a given cpu.
7947 * @cpu: the processor in question.
7948 * @p: the task pointer to set.
7949 *
7950 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7951 * are serviced on a separate stack. It allows the architecture to switch the
7952 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7953 * must be called with all CPU's synchronized, and interrupts disabled, the
7954 * and caller must save the original value of the current task (see
7955 * curr_task() above) and restore that value before reenabling interrupts and
7956 * re-starting the system.
7957 *
7958 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7959 */
36c8b586 7960void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7961{
7962 cpu_curr(cpu) = p;
7963}
7964
7965#endif
29f59db3 7966
bccbe08a
PZ
7967#ifdef CONFIG_FAIR_GROUP_SCHED
7968static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7969{
7970 int i;
7971
7972 for_each_possible_cpu(i) {
7973 if (tg->cfs_rq)
7974 kfree(tg->cfs_rq[i]);
7975 if (tg->se)
7976 kfree(tg->se[i]);
6f505b16
PZ
7977 }
7978
7979 kfree(tg->cfs_rq);
7980 kfree(tg->se);
6f505b16
PZ
7981}
7982
ec7dc8ac
DG
7983static
7984int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7985{
29f59db3 7986 struct cfs_rq *cfs_rq;
ec7dc8ac 7987 struct sched_entity *se, *parent_se;
9b5b7751 7988 struct rq *rq;
29f59db3
SV
7989 int i;
7990
434d53b0 7991 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7992 if (!tg->cfs_rq)
7993 goto err;
434d53b0 7994 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7995 if (!tg->se)
7996 goto err;
052f1dc7
PZ
7997
7998 tg->shares = NICE_0_LOAD;
29f59db3
SV
7999
8000 for_each_possible_cpu(i) {
9b5b7751 8001 rq = cpu_rq(i);
29f59db3 8002
6f505b16
PZ
8003 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8004 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8005 if (!cfs_rq)
8006 goto err;
8007
6f505b16
PZ
8008 se = kmalloc_node(sizeof(struct sched_entity),
8009 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8010 if (!se)
8011 goto err;
8012
ec7dc8ac
DG
8013 parent_se = parent ? parent->se[i] : NULL;
8014 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8015 }
8016
8017 return 1;
8018
8019 err:
8020 return 0;
8021}
8022
8023static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8024{
8025 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8026 &cpu_rq(cpu)->leaf_cfs_rq_list);
8027}
8028
8029static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8030{
8031 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8032}
8033#else
8034static inline void free_fair_sched_group(struct task_group *tg)
8035{
8036}
8037
ec7dc8ac
DG
8038static inline
8039int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8040{
8041 return 1;
8042}
8043
8044static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8045{
8046}
8047
8048static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8049{
8050}
052f1dc7
PZ
8051#endif
8052
8053#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8054static void free_rt_sched_group(struct task_group *tg)
8055{
8056 int i;
8057
d0b27fa7
PZ
8058 destroy_rt_bandwidth(&tg->rt_bandwidth);
8059
bccbe08a
PZ
8060 for_each_possible_cpu(i) {
8061 if (tg->rt_rq)
8062 kfree(tg->rt_rq[i]);
8063 if (tg->rt_se)
8064 kfree(tg->rt_se[i]);
8065 }
8066
8067 kfree(tg->rt_rq);
8068 kfree(tg->rt_se);
8069}
8070
ec7dc8ac
DG
8071static
8072int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8073{
8074 struct rt_rq *rt_rq;
ec7dc8ac 8075 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8076 struct rq *rq;
8077 int i;
8078
434d53b0 8079 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8080 if (!tg->rt_rq)
8081 goto err;
434d53b0 8082 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8083 if (!tg->rt_se)
8084 goto err;
8085
d0b27fa7
PZ
8086 init_rt_bandwidth(&tg->rt_bandwidth,
8087 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8088
8089 for_each_possible_cpu(i) {
8090 rq = cpu_rq(i);
8091
6f505b16
PZ
8092 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8093 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8094 if (!rt_rq)
8095 goto err;
29f59db3 8096
6f505b16
PZ
8097 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8098 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8099 if (!rt_se)
8100 goto err;
29f59db3 8101
ec7dc8ac
DG
8102 parent_se = parent ? parent->rt_se[i] : NULL;
8103 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8104 }
8105
bccbe08a
PZ
8106 return 1;
8107
8108 err:
8109 return 0;
8110}
8111
8112static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8113{
8114 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8115 &cpu_rq(cpu)->leaf_rt_rq_list);
8116}
8117
8118static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8119{
8120 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8121}
8122#else
8123static inline void free_rt_sched_group(struct task_group *tg)
8124{
8125}
8126
ec7dc8ac
DG
8127static inline
8128int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8129{
8130 return 1;
8131}
8132
8133static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8134{
8135}
8136
8137static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8138{
8139}
8140#endif
8141
d0b27fa7 8142#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8143static void free_sched_group(struct task_group *tg)
8144{
8145 free_fair_sched_group(tg);
8146 free_rt_sched_group(tg);
8147 kfree(tg);
8148}
8149
8150/* allocate runqueue etc for a new task group */
ec7dc8ac 8151struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8152{
8153 struct task_group *tg;
8154 unsigned long flags;
8155 int i;
8156
8157 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8158 if (!tg)
8159 return ERR_PTR(-ENOMEM);
8160
ec7dc8ac 8161 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8162 goto err;
8163
ec7dc8ac 8164 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8165 goto err;
8166
8ed36996 8167 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8168 for_each_possible_cpu(i) {
bccbe08a
PZ
8169 register_fair_sched_group(tg, i);
8170 register_rt_sched_group(tg, i);
9b5b7751 8171 }
6f505b16 8172 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8173
8174 WARN_ON(!parent); /* root should already exist */
8175
8176 tg->parent = parent;
8177 list_add_rcu(&tg->siblings, &parent->children);
8178 INIT_LIST_HEAD(&tg->children);
8ed36996 8179 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8180
9b5b7751 8181 return tg;
29f59db3
SV
8182
8183err:
6f505b16 8184 free_sched_group(tg);
29f59db3
SV
8185 return ERR_PTR(-ENOMEM);
8186}
8187
9b5b7751 8188/* rcu callback to free various structures associated with a task group */
6f505b16 8189static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8190{
29f59db3 8191 /* now it should be safe to free those cfs_rqs */
6f505b16 8192 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8193}
8194
9b5b7751 8195/* Destroy runqueue etc associated with a task group */
4cf86d77 8196void sched_destroy_group(struct task_group *tg)
29f59db3 8197{
8ed36996 8198 unsigned long flags;
9b5b7751 8199 int i;
29f59db3 8200
8ed36996 8201 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8202 for_each_possible_cpu(i) {
bccbe08a
PZ
8203 unregister_fair_sched_group(tg, i);
8204 unregister_rt_sched_group(tg, i);
9b5b7751 8205 }
6f505b16 8206 list_del_rcu(&tg->list);
f473aa5e 8207 list_del_rcu(&tg->siblings);
8ed36996 8208 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8209
9b5b7751 8210 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8211 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8212}
8213
9b5b7751 8214/* change task's runqueue when it moves between groups.
3a252015
IM
8215 * The caller of this function should have put the task in its new group
8216 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8217 * reflect its new group.
9b5b7751
SV
8218 */
8219void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8220{
8221 int on_rq, running;
8222 unsigned long flags;
8223 struct rq *rq;
8224
8225 rq = task_rq_lock(tsk, &flags);
8226
29f59db3
SV
8227 update_rq_clock(rq);
8228
051a1d1a 8229 running = task_current(rq, tsk);
29f59db3
SV
8230 on_rq = tsk->se.on_rq;
8231
0e1f3483 8232 if (on_rq)
29f59db3 8233 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8234 if (unlikely(running))
8235 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8236
6f505b16 8237 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8238
810b3817
PZ
8239#ifdef CONFIG_FAIR_GROUP_SCHED
8240 if (tsk->sched_class->moved_group)
8241 tsk->sched_class->moved_group(tsk);
8242#endif
8243
0e1f3483
HS
8244 if (unlikely(running))
8245 tsk->sched_class->set_curr_task(rq);
8246 if (on_rq)
7074badb 8247 enqueue_task(rq, tsk, 0);
29f59db3 8248
29f59db3
SV
8249 task_rq_unlock(rq, &flags);
8250}
d0b27fa7 8251#endif
29f59db3 8252
052f1dc7 8253#ifdef CONFIG_FAIR_GROUP_SCHED
6363ca57 8254static void set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8255{
8256 struct cfs_rq *cfs_rq = se->cfs_rq;
6363ca57 8257 struct rq *rq = cfs_rq->rq;
29f59db3
SV
8258 int on_rq;
8259
6363ca57
IM
8260 spin_lock_irq(&rq->lock);
8261
29f59db3 8262 on_rq = se->on_rq;
62fb1851 8263 if (on_rq)
29f59db3
SV
8264 dequeue_entity(cfs_rq, se, 0);
8265
8266 se->load.weight = shares;
e05510d0 8267 se->load.inv_weight = 0;
29f59db3 8268
62fb1851 8269 if (on_rq)
29f59db3 8270 enqueue_entity(cfs_rq, se, 0);
62fb1851 8271
6363ca57 8272 spin_unlock_irq(&rq->lock);
29f59db3
SV
8273}
8274
8ed36996
PZ
8275static DEFINE_MUTEX(shares_mutex);
8276
4cf86d77 8277int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8278{
8279 int i;
8ed36996 8280 unsigned long flags;
c61935fd 8281
ec7dc8ac
DG
8282 /*
8283 * We can't change the weight of the root cgroup.
8284 */
8285 if (!tg->se[0])
8286 return -EINVAL;
8287
18d95a28
PZ
8288 if (shares < MIN_SHARES)
8289 shares = MIN_SHARES;
cb4ad1ff
MX
8290 else if (shares > MAX_SHARES)
8291 shares = MAX_SHARES;
62fb1851 8292
8ed36996 8293 mutex_lock(&shares_mutex);
9b5b7751 8294 if (tg->shares == shares)
5cb350ba 8295 goto done;
29f59db3 8296
8ed36996 8297 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8298 for_each_possible_cpu(i)
8299 unregister_fair_sched_group(tg, i);
f473aa5e 8300 list_del_rcu(&tg->siblings);
8ed36996 8301 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8302
8303 /* wait for any ongoing reference to this group to finish */
8304 synchronize_sched();
8305
8306 /*
8307 * Now we are free to modify the group's share on each cpu
8308 * w/o tripping rebalance_share or load_balance_fair.
8309 */
9b5b7751 8310 tg->shares = shares;
6363ca57 8311 for_each_possible_cpu(i)
cb4ad1ff 8312 set_se_shares(tg->se[i], shares);
29f59db3 8313
6b2d7700
SV
8314 /*
8315 * Enable load balance activity on this group, by inserting it back on
8316 * each cpu's rq->leaf_cfs_rq_list.
8317 */
8ed36996 8318 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8319 for_each_possible_cpu(i)
8320 register_fair_sched_group(tg, i);
f473aa5e 8321 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8322 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8323done:
8ed36996 8324 mutex_unlock(&shares_mutex);
9b5b7751 8325 return 0;
29f59db3
SV
8326}
8327
5cb350ba
DG
8328unsigned long sched_group_shares(struct task_group *tg)
8329{
8330 return tg->shares;
8331}
052f1dc7 8332#endif
5cb350ba 8333
052f1dc7 8334#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8335/*
9f0c1e56 8336 * Ensure that the real time constraints are schedulable.
6f505b16 8337 */
9f0c1e56
PZ
8338static DEFINE_MUTEX(rt_constraints_mutex);
8339
8340static unsigned long to_ratio(u64 period, u64 runtime)
8341{
8342 if (runtime == RUNTIME_INF)
8343 return 1ULL << 16;
8344
6f6d6a1a 8345 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8346}
8347
b40b2e8e
PZ
8348#ifdef CONFIG_CGROUP_SCHED
8349static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8350{
8351 struct task_group *tgi, *parent = tg->parent;
8352 unsigned long total = 0;
8353
8354 if (!parent) {
8355 if (global_rt_period() < period)
8356 return 0;
8357
8358 return to_ratio(period, runtime) <
8359 to_ratio(global_rt_period(), global_rt_runtime());
8360 }
8361
8362 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8363 return 0;
8364
8365 rcu_read_lock();
8366 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8367 if (tgi == tg)
8368 continue;
8369
8370 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8371 tgi->rt_bandwidth.rt_runtime);
8372 }
8373 rcu_read_unlock();
8374
8375 return total + to_ratio(period, runtime) <
8376 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8377 parent->rt_bandwidth.rt_runtime);
8378}
8379#elif defined CONFIG_USER_SCHED
9f0c1e56 8380static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8381{
8382 struct task_group *tgi;
8383 unsigned long total = 0;
9f0c1e56 8384 unsigned long global_ratio =
d0b27fa7 8385 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8386
8387 rcu_read_lock();
9f0c1e56
PZ
8388 list_for_each_entry_rcu(tgi, &task_groups, list) {
8389 if (tgi == tg)
8390 continue;
6f505b16 8391
d0b27fa7
PZ
8392 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8393 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8394 }
8395 rcu_read_unlock();
6f505b16 8396
9f0c1e56 8397 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8398}
b40b2e8e 8399#endif
6f505b16 8400
521f1a24
DG
8401/* Must be called with tasklist_lock held */
8402static inline int tg_has_rt_tasks(struct task_group *tg)
8403{
8404 struct task_struct *g, *p;
8405 do_each_thread(g, p) {
8406 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8407 return 1;
8408 } while_each_thread(g, p);
8409 return 0;
8410}
8411
d0b27fa7
PZ
8412static int tg_set_bandwidth(struct task_group *tg,
8413 u64 rt_period, u64 rt_runtime)
6f505b16 8414{
ac086bc2 8415 int i, err = 0;
9f0c1e56 8416
9f0c1e56 8417 mutex_lock(&rt_constraints_mutex);
521f1a24 8418 read_lock(&tasklist_lock);
ac086bc2 8419 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8420 err = -EBUSY;
8421 goto unlock;
8422 }
9f0c1e56
PZ
8423 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8424 err = -EINVAL;
8425 goto unlock;
8426 }
ac086bc2
PZ
8427
8428 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8429 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8430 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8431
8432 for_each_possible_cpu(i) {
8433 struct rt_rq *rt_rq = tg->rt_rq[i];
8434
8435 spin_lock(&rt_rq->rt_runtime_lock);
8436 rt_rq->rt_runtime = rt_runtime;
8437 spin_unlock(&rt_rq->rt_runtime_lock);
8438 }
8439 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8440 unlock:
521f1a24 8441 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8442 mutex_unlock(&rt_constraints_mutex);
8443
8444 return err;
6f505b16
PZ
8445}
8446
d0b27fa7
PZ
8447int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8448{
8449 u64 rt_runtime, rt_period;
8450
8451 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8452 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8453 if (rt_runtime_us < 0)
8454 rt_runtime = RUNTIME_INF;
8455
8456 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8457}
8458
9f0c1e56
PZ
8459long sched_group_rt_runtime(struct task_group *tg)
8460{
8461 u64 rt_runtime_us;
8462
d0b27fa7 8463 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8464 return -1;
8465
d0b27fa7 8466 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8467 do_div(rt_runtime_us, NSEC_PER_USEC);
8468 return rt_runtime_us;
8469}
d0b27fa7
PZ
8470
8471int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8472{
8473 u64 rt_runtime, rt_period;
8474
8475 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8476 rt_runtime = tg->rt_bandwidth.rt_runtime;
8477
8478 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8479}
8480
8481long sched_group_rt_period(struct task_group *tg)
8482{
8483 u64 rt_period_us;
8484
8485 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8486 do_div(rt_period_us, NSEC_PER_USEC);
8487 return rt_period_us;
8488}
8489
8490static int sched_rt_global_constraints(void)
8491{
8492 int ret = 0;
8493
8494 mutex_lock(&rt_constraints_mutex);
8495 if (!__rt_schedulable(NULL, 1, 0))
8496 ret = -EINVAL;
8497 mutex_unlock(&rt_constraints_mutex);
8498
8499 return ret;
8500}
8501#else
8502static int sched_rt_global_constraints(void)
8503{
ac086bc2
PZ
8504 unsigned long flags;
8505 int i;
8506
8507 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8508 for_each_possible_cpu(i) {
8509 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8510
8511 spin_lock(&rt_rq->rt_runtime_lock);
8512 rt_rq->rt_runtime = global_rt_runtime();
8513 spin_unlock(&rt_rq->rt_runtime_lock);
8514 }
8515 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8516
d0b27fa7
PZ
8517 return 0;
8518}
052f1dc7 8519#endif
d0b27fa7
PZ
8520
8521int sched_rt_handler(struct ctl_table *table, int write,
8522 struct file *filp, void __user *buffer, size_t *lenp,
8523 loff_t *ppos)
8524{
8525 int ret;
8526 int old_period, old_runtime;
8527 static DEFINE_MUTEX(mutex);
8528
8529 mutex_lock(&mutex);
8530 old_period = sysctl_sched_rt_period;
8531 old_runtime = sysctl_sched_rt_runtime;
8532
8533 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8534
8535 if (!ret && write) {
8536 ret = sched_rt_global_constraints();
8537 if (ret) {
8538 sysctl_sched_rt_period = old_period;
8539 sysctl_sched_rt_runtime = old_runtime;
8540 } else {
8541 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8542 def_rt_bandwidth.rt_period =
8543 ns_to_ktime(global_rt_period());
8544 }
8545 }
8546 mutex_unlock(&mutex);
8547
8548 return ret;
8549}
68318b8e 8550
052f1dc7 8551#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8552
8553/* return corresponding task_group object of a cgroup */
2b01dfe3 8554static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8555{
2b01dfe3
PM
8556 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8557 struct task_group, css);
68318b8e
SV
8558}
8559
8560static struct cgroup_subsys_state *
2b01dfe3 8561cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8562{
ec7dc8ac 8563 struct task_group *tg, *parent;
68318b8e 8564
2b01dfe3 8565 if (!cgrp->parent) {
68318b8e 8566 /* This is early initialization for the top cgroup */
2b01dfe3 8567 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8568 return &init_task_group.css;
8569 }
8570
ec7dc8ac
DG
8571 parent = cgroup_tg(cgrp->parent);
8572 tg = sched_create_group(parent);
68318b8e
SV
8573 if (IS_ERR(tg))
8574 return ERR_PTR(-ENOMEM);
8575
8576 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8577 tg->css.cgroup = cgrp;
68318b8e
SV
8578
8579 return &tg->css;
8580}
8581
41a2d6cf
IM
8582static void
8583cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8584{
2b01dfe3 8585 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8586
8587 sched_destroy_group(tg);
8588}
8589
41a2d6cf
IM
8590static int
8591cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8592 struct task_struct *tsk)
68318b8e 8593{
b68aa230
PZ
8594#ifdef CONFIG_RT_GROUP_SCHED
8595 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8596 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8597 return -EINVAL;
8598#else
68318b8e
SV
8599 /* We don't support RT-tasks being in separate groups */
8600 if (tsk->sched_class != &fair_sched_class)
8601 return -EINVAL;
b68aa230 8602#endif
68318b8e
SV
8603
8604 return 0;
8605}
8606
8607static void
2b01dfe3 8608cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8609 struct cgroup *old_cont, struct task_struct *tsk)
8610{
8611 sched_move_task(tsk);
8612}
8613
052f1dc7 8614#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8615static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8616 u64 shareval)
68318b8e 8617{
2b01dfe3 8618 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8619}
8620
f4c753b7 8621static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8622{
2b01dfe3 8623 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8624
8625 return (u64) tg->shares;
8626}
052f1dc7 8627#endif
68318b8e 8628
052f1dc7 8629#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8630static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8631 s64 val)
6f505b16 8632{
06ecb27c 8633 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8634}
8635
06ecb27c 8636static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8637{
06ecb27c 8638 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8639}
d0b27fa7
PZ
8640
8641static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8642 u64 rt_period_us)
8643{
8644 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8645}
8646
8647static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8648{
8649 return sched_group_rt_period(cgroup_tg(cgrp));
8650}
052f1dc7 8651#endif
6f505b16 8652
fe5c7cc2 8653static struct cftype cpu_files[] = {
052f1dc7 8654#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8655 {
8656 .name = "shares",
f4c753b7
PM
8657 .read_u64 = cpu_shares_read_u64,
8658 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8659 },
052f1dc7
PZ
8660#endif
8661#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8662 {
9f0c1e56 8663 .name = "rt_runtime_us",
06ecb27c
PM
8664 .read_s64 = cpu_rt_runtime_read,
8665 .write_s64 = cpu_rt_runtime_write,
6f505b16 8666 },
d0b27fa7
PZ
8667 {
8668 .name = "rt_period_us",
f4c753b7
PM
8669 .read_u64 = cpu_rt_period_read_uint,
8670 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8671 },
052f1dc7 8672#endif
68318b8e
SV
8673};
8674
8675static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8676{
fe5c7cc2 8677 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8678}
8679
8680struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8681 .name = "cpu",
8682 .create = cpu_cgroup_create,
8683 .destroy = cpu_cgroup_destroy,
8684 .can_attach = cpu_cgroup_can_attach,
8685 .attach = cpu_cgroup_attach,
8686 .populate = cpu_cgroup_populate,
8687 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8688 .early_init = 1,
8689};
8690
052f1dc7 8691#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8692
8693#ifdef CONFIG_CGROUP_CPUACCT
8694
8695/*
8696 * CPU accounting code for task groups.
8697 *
8698 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8699 * (balbir@in.ibm.com).
8700 */
8701
8702/* track cpu usage of a group of tasks */
8703struct cpuacct {
8704 struct cgroup_subsys_state css;
8705 /* cpuusage holds pointer to a u64-type object on every cpu */
8706 u64 *cpuusage;
8707};
8708
8709struct cgroup_subsys cpuacct_subsys;
8710
8711/* return cpu accounting group corresponding to this container */
32cd756a 8712static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8713{
32cd756a 8714 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8715 struct cpuacct, css);
8716}
8717
8718/* return cpu accounting group to which this task belongs */
8719static inline struct cpuacct *task_ca(struct task_struct *tsk)
8720{
8721 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8722 struct cpuacct, css);
8723}
8724
8725/* create a new cpu accounting group */
8726static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8727 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8728{
8729 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8730
8731 if (!ca)
8732 return ERR_PTR(-ENOMEM);
8733
8734 ca->cpuusage = alloc_percpu(u64);
8735 if (!ca->cpuusage) {
8736 kfree(ca);
8737 return ERR_PTR(-ENOMEM);
8738 }
8739
8740 return &ca->css;
8741}
8742
8743/* destroy an existing cpu accounting group */
41a2d6cf 8744static void
32cd756a 8745cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8746{
32cd756a 8747 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8748
8749 free_percpu(ca->cpuusage);
8750 kfree(ca);
8751}
8752
8753/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8754static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8755{
32cd756a 8756 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8757 u64 totalcpuusage = 0;
8758 int i;
8759
8760 for_each_possible_cpu(i) {
8761 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8762
8763 /*
8764 * Take rq->lock to make 64-bit addition safe on 32-bit
8765 * platforms.
8766 */
8767 spin_lock_irq(&cpu_rq(i)->lock);
8768 totalcpuusage += *cpuusage;
8769 spin_unlock_irq(&cpu_rq(i)->lock);
8770 }
8771
8772 return totalcpuusage;
8773}
8774
0297b803
DG
8775static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8776 u64 reset)
8777{
8778 struct cpuacct *ca = cgroup_ca(cgrp);
8779 int err = 0;
8780 int i;
8781
8782 if (reset) {
8783 err = -EINVAL;
8784 goto out;
8785 }
8786
8787 for_each_possible_cpu(i) {
8788 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8789
8790 spin_lock_irq(&cpu_rq(i)->lock);
8791 *cpuusage = 0;
8792 spin_unlock_irq(&cpu_rq(i)->lock);
8793 }
8794out:
8795 return err;
8796}
8797
d842de87
SV
8798static struct cftype files[] = {
8799 {
8800 .name = "usage",
f4c753b7
PM
8801 .read_u64 = cpuusage_read,
8802 .write_u64 = cpuusage_write,
d842de87
SV
8803 },
8804};
8805
32cd756a 8806static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8807{
32cd756a 8808 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8809}
8810
8811/*
8812 * charge this task's execution time to its accounting group.
8813 *
8814 * called with rq->lock held.
8815 */
8816static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8817{
8818 struct cpuacct *ca;
8819
8820 if (!cpuacct_subsys.active)
8821 return;
8822
8823 ca = task_ca(tsk);
8824 if (ca) {
8825 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8826
8827 *cpuusage += cputime;
8828 }
8829}
8830
8831struct cgroup_subsys cpuacct_subsys = {
8832 .name = "cpuacct",
8833 .create = cpuacct_create,
8834 .destroy = cpuacct_destroy,
8835 .populate = cpuacct_populate,
8836 .subsys_id = cpuacct_subsys_id,
8837};
8838#endif /* CONFIG_CGROUP_CPUACCT */
This page took 1.179242 seconds and 5 git commands to generate.