ceph: fix snap writeback when racing with writes
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
3f33a7ce 127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee 233/*
c4a8849a 234 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
cd62287e
MG
295#define MIN_SHARES (1UL << 1)
296#define MAX_SHARES (1UL << 18)
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
3fe1698b
PZ
315#ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317#endif
6aa645ea
IM
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
4a55bd5e
PZ
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
ac53db59 329 struct sched_entity *curr, *next, *last, *skip;
ddc97297 330
4934a4d3 331#ifdef CONFIG_SCHED_DEBUG
5ac5c4d6 332 unsigned int nr_spread_over;
4934a4d3 333#endif
ddc97297 334
62160e3f 335#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
336 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
337
41a2d6cf
IM
338 /*
339 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
340 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
341 * (like users, containers etc.)
342 *
343 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
344 * list is used during load balance.
345 */
3d4b47b4 346 int on_list;
41a2d6cf
IM
347 struct list_head leaf_cfs_rq_list;
348 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
349
350#ifdef CONFIG_SMP
c09595f6 351 /*
c8cba857 352 * the part of load.weight contributed by tasks
c09595f6 353 */
c8cba857 354 unsigned long task_weight;
c09595f6 355
c8cba857
PZ
356 /*
357 * h_load = weight * f(tg)
358 *
359 * Where f(tg) is the recursive weight fraction assigned to
360 * this group.
361 */
362 unsigned long h_load;
c09595f6 363
c8cba857 364 /*
3b3d190e
PT
365 * Maintaining per-cpu shares distribution for group scheduling
366 *
367 * load_stamp is the last time we updated the load average
368 * load_last is the last time we updated the load average and saw load
369 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 370 */
2069dd75
PZ
371 u64 load_avg;
372 u64 load_period;
3b3d190e 373 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 374
2069dd75 375 unsigned long load_contribution;
c09595f6 376#endif
6aa645ea
IM
377#endif
378};
1da177e4 379
6aa645ea
IM
380/* Real-Time classes' related field in a runqueue: */
381struct rt_rq {
382 struct rt_prio_array active;
63489e45 383 unsigned long rt_nr_running;
052f1dc7 384#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
385 struct {
386 int curr; /* highest queued rt task prio */
398a153b 387#ifdef CONFIG_SMP
e864c499 388 int next; /* next highest */
398a153b 389#endif
e864c499 390 } highest_prio;
6f505b16 391#endif
fa85ae24 392#ifdef CONFIG_SMP
73fe6aae 393 unsigned long rt_nr_migratory;
a1ba4d8b 394 unsigned long rt_nr_total;
a22d7fc1 395 int overloaded;
917b627d 396 struct plist_head pushable_tasks;
fa85ae24 397#endif
6f505b16 398 int rt_throttled;
fa85ae24 399 u64 rt_time;
ac086bc2 400 u64 rt_runtime;
ea736ed5 401 /* Nests inside the rq lock: */
0986b11b 402 raw_spinlock_t rt_runtime_lock;
6f505b16 403
052f1dc7 404#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
405 unsigned long rt_nr_boosted;
406
6f505b16
PZ
407 struct rq *rq;
408 struct list_head leaf_rt_rq_list;
409 struct task_group *tg;
6f505b16 410#endif
6aa645ea
IM
411};
412
57d885fe
GH
413#ifdef CONFIG_SMP
414
415/*
416 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
417 * variables. Each exclusive cpuset essentially defines an island domain by
418 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
419 * exclusive cpuset is created, we also create and attach a new root-domain
420 * object.
421 *
57d885fe
GH
422 */
423struct root_domain {
424 atomic_t refcount;
dce840a0 425 struct rcu_head rcu;
c6c4927b
RR
426 cpumask_var_t span;
427 cpumask_var_t online;
637f5085 428
0eab9146 429 /*
637f5085
GH
430 * The "RT overload" flag: it gets set if a CPU has more than
431 * one runnable RT task.
432 */
c6c4927b 433 cpumask_var_t rto_mask;
0eab9146 434 atomic_t rto_count;
6e0534f2 435 struct cpupri cpupri;
57d885fe
GH
436};
437
dc938520
GH
438/*
439 * By default the system creates a single root-domain with all cpus as
440 * members (mimicking the global state we have today).
441 */
57d885fe
GH
442static struct root_domain def_root_domain;
443
ed2d372c 444#endif /* CONFIG_SMP */
57d885fe 445
1da177e4
LT
446/*
447 * This is the main, per-CPU runqueue data structure.
448 *
449 * Locking rule: those places that want to lock multiple runqueues
450 * (such as the load balancing or the thread migration code), lock
451 * acquire operations must be ordered by ascending &runqueue.
452 */
70b97a7f 453struct rq {
d8016491 454 /* runqueue lock: */
05fa785c 455 raw_spinlock_t lock;
1da177e4
LT
456
457 /*
458 * nr_running and cpu_load should be in the same cacheline because
459 * remote CPUs use both these fields when doing load calculation.
460 */
461 unsigned long nr_running;
6aa645ea
IM
462 #define CPU_LOAD_IDX_MAX 5
463 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 464 unsigned long last_load_update_tick;
46cb4b7c 465#ifdef CONFIG_NO_HZ
39c0cbe2 466 u64 nohz_stamp;
83cd4fe2 467 unsigned char nohz_balance_kick;
46cb4b7c 468#endif
61eadef6 469 int skip_clock_update;
a64692a3 470
d8016491
IM
471 /* capture load from *all* tasks on this cpu: */
472 struct load_weight load;
6aa645ea
IM
473 unsigned long nr_load_updates;
474 u64 nr_switches;
475
476 struct cfs_rq cfs;
6f505b16 477 struct rt_rq rt;
6f505b16 478
6aa645ea 479#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
480 /* list of leaf cfs_rq on this cpu: */
481 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
482#endif
483#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 484 struct list_head leaf_rt_rq_list;
1da177e4 485#endif
1da177e4
LT
486
487 /*
488 * This is part of a global counter where only the total sum
489 * over all CPUs matters. A task can increase this counter on
490 * one CPU and if it got migrated afterwards it may decrease
491 * it on another CPU. Always updated under the runqueue lock:
492 */
493 unsigned long nr_uninterruptible;
494
34f971f6 495 struct task_struct *curr, *idle, *stop;
c9819f45 496 unsigned long next_balance;
1da177e4 497 struct mm_struct *prev_mm;
6aa645ea 498
3e51f33f 499 u64 clock;
305e6835 500 u64 clock_task;
6aa645ea 501
1da177e4
LT
502 atomic_t nr_iowait;
503
504#ifdef CONFIG_SMP
0eab9146 505 struct root_domain *rd;
1da177e4
LT
506 struct sched_domain *sd;
507
e51fd5e2
PZ
508 unsigned long cpu_power;
509
a0a522ce 510 unsigned char idle_at_tick;
1da177e4 511 /* For active balancing */
3f029d3c 512 int post_schedule;
1da177e4
LT
513 int active_balance;
514 int push_cpu;
969c7921 515 struct cpu_stop_work active_balance_work;
d8016491
IM
516 /* cpu of this runqueue: */
517 int cpu;
1f11eb6a 518 int online;
1da177e4 519
a8a51d5e 520 unsigned long avg_load_per_task;
1da177e4 521
e9e9250b
PZ
522 u64 rt_avg;
523 u64 age_stamp;
1b9508f6
MG
524 u64 idle_stamp;
525 u64 avg_idle;
1da177e4
LT
526#endif
527
aa483808
VP
528#ifdef CONFIG_IRQ_TIME_ACCOUNTING
529 u64 prev_irq_time;
530#endif
531
dce48a84
TG
532 /* calc_load related fields */
533 unsigned long calc_load_update;
534 long calc_load_active;
535
8f4d37ec 536#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
537#ifdef CONFIG_SMP
538 int hrtick_csd_pending;
539 struct call_single_data hrtick_csd;
540#endif
8f4d37ec
PZ
541 struct hrtimer hrtick_timer;
542#endif
543
1da177e4
LT
544#ifdef CONFIG_SCHEDSTATS
545 /* latency stats */
546 struct sched_info rq_sched_info;
9c2c4802
KC
547 unsigned long long rq_cpu_time;
548 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
549
550 /* sys_sched_yield() stats */
480b9434 551 unsigned int yld_count;
1da177e4
LT
552
553 /* schedule() stats */
480b9434
KC
554 unsigned int sched_switch;
555 unsigned int sched_count;
556 unsigned int sched_goidle;
1da177e4
LT
557
558 /* try_to_wake_up() stats */
480b9434
KC
559 unsigned int ttwu_count;
560 unsigned int ttwu_local;
1da177e4 561#endif
317f3941
PZ
562
563#ifdef CONFIG_SMP
564 struct task_struct *wake_list;
565#endif
1da177e4
LT
566};
567
f34e3b61 568static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 569
a64692a3 570
1e5a7405 571static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 572
0a2966b4
CL
573static inline int cpu_of(struct rq *rq)
574{
575#ifdef CONFIG_SMP
576 return rq->cpu;
577#else
578 return 0;
579#endif
580}
581
497f0ab3 582#define rcu_dereference_check_sched_domain(p) \
d11c563d 583 rcu_dereference_check((p), \
dce840a0 584 rcu_read_lock_held() || \
d11c563d
PM
585 lockdep_is_held(&sched_domains_mutex))
586
674311d5
NP
587/*
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 589 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
590 *
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
593 */
48f24c4d 594#define for_each_domain(cpu, __sd) \
497f0ab3 595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
596
597#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598#define this_rq() (&__get_cpu_var(runqueues))
599#define task_rq(p) cpu_rq(task_cpu(p))
600#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 601#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 602
dc61b1d6
PZ
603#ifdef CONFIG_CGROUP_SCHED
604
605/*
606 * Return the group to which this tasks belongs.
607 *
6c6c54e1
PZ
608 * We use task_subsys_state_check() and extend the RCU verification with
609 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
610 * task it moves into the cgroup. Therefore by holding either of those locks,
611 * we pin the task to the current cgroup.
dc61b1d6
PZ
612 */
613static inline struct task_group *task_group(struct task_struct *p)
614{
5091faa4 615 struct task_group *tg;
dc61b1d6
PZ
616 struct cgroup_subsys_state *css;
617
618 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
6c6c54e1
PZ
619 lockdep_is_held(&p->pi_lock) ||
620 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
621 tg = container_of(css, struct task_group, css);
622
623 return autogroup_task_group(p, tg);
dc61b1d6
PZ
624}
625
626/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
627static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
628{
629#ifdef CONFIG_FAIR_GROUP_SCHED
630 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
631 p->se.parent = task_group(p)->se[cpu];
632#endif
633
634#ifdef CONFIG_RT_GROUP_SCHED
635 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
636 p->rt.parent = task_group(p)->rt_se[cpu];
637#endif
638}
639
640#else /* CONFIG_CGROUP_SCHED */
641
642static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
643static inline struct task_group *task_group(struct task_struct *p)
644{
645 return NULL;
646}
647
648#endif /* CONFIG_CGROUP_SCHED */
649
fe44d621 650static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 651
fe44d621 652static void update_rq_clock(struct rq *rq)
3e51f33f 653{
fe44d621 654 s64 delta;
305e6835 655
61eadef6 656 if (rq->skip_clock_update > 0)
f26f9aff 657 return;
aa483808 658
fe44d621
PZ
659 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
660 rq->clock += delta;
661 update_rq_clock_task(rq, delta);
3e51f33f
PZ
662}
663
bf5c91ba
IM
664/*
665 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
666 */
667#ifdef CONFIG_SCHED_DEBUG
668# define const_debug __read_mostly
669#else
670# define const_debug static const
671#endif
672
017730c1 673/**
1fd06bb1 674 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 675 * @cpu: the processor in question.
017730c1 676 *
017730c1
IM
677 * This interface allows printk to be called with the runqueue lock
678 * held and know whether or not it is OK to wake up the klogd.
679 */
89f19f04 680int runqueue_is_locked(int cpu)
017730c1 681{
05fa785c 682 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
683}
684
bf5c91ba
IM
685/*
686 * Debugging: various feature bits
687 */
f00b45c1
PZ
688
689#define SCHED_FEAT(name, enabled) \
690 __SCHED_FEAT_##name ,
691
bf5c91ba 692enum {
f00b45c1 693#include "sched_features.h"
bf5c91ba
IM
694};
695
f00b45c1
PZ
696#undef SCHED_FEAT
697
698#define SCHED_FEAT(name, enabled) \
699 (1UL << __SCHED_FEAT_##name) * enabled |
700
bf5c91ba 701const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
702#include "sched_features.h"
703 0;
704
705#undef SCHED_FEAT
706
707#ifdef CONFIG_SCHED_DEBUG
708#define SCHED_FEAT(name, enabled) \
709 #name ,
710
983ed7a6 711static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
712#include "sched_features.h"
713 NULL
714};
715
716#undef SCHED_FEAT
717
34f3a814 718static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 719{
f00b45c1
PZ
720 int i;
721
722 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
723 if (!(sysctl_sched_features & (1UL << i)))
724 seq_puts(m, "NO_");
725 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 726 }
34f3a814 727 seq_puts(m, "\n");
f00b45c1 728
34f3a814 729 return 0;
f00b45c1
PZ
730}
731
732static ssize_t
733sched_feat_write(struct file *filp, const char __user *ubuf,
734 size_t cnt, loff_t *ppos)
735{
736 char buf[64];
7740191c 737 char *cmp;
f00b45c1
PZ
738 int neg = 0;
739 int i;
740
741 if (cnt > 63)
742 cnt = 63;
743
744 if (copy_from_user(&buf, ubuf, cnt))
745 return -EFAULT;
746
747 buf[cnt] = 0;
7740191c 748 cmp = strstrip(buf);
f00b45c1 749
524429c3 750 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
751 neg = 1;
752 cmp += 3;
753 }
754
755 for (i = 0; sched_feat_names[i]; i++) {
7740191c 756 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
757 if (neg)
758 sysctl_sched_features &= ~(1UL << i);
759 else
760 sysctl_sched_features |= (1UL << i);
761 break;
762 }
763 }
764
765 if (!sched_feat_names[i])
766 return -EINVAL;
767
42994724 768 *ppos += cnt;
f00b45c1
PZ
769
770 return cnt;
771}
772
34f3a814
LZ
773static int sched_feat_open(struct inode *inode, struct file *filp)
774{
775 return single_open(filp, sched_feat_show, NULL);
776}
777
828c0950 778static const struct file_operations sched_feat_fops = {
34f3a814
LZ
779 .open = sched_feat_open,
780 .write = sched_feat_write,
781 .read = seq_read,
782 .llseek = seq_lseek,
783 .release = single_release,
f00b45c1
PZ
784};
785
786static __init int sched_init_debug(void)
787{
f00b45c1
PZ
788 debugfs_create_file("sched_features", 0644, NULL, NULL,
789 &sched_feat_fops);
790
791 return 0;
792}
793late_initcall(sched_init_debug);
794
795#endif
796
797#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 798
b82d9fdd
PZ
799/*
800 * Number of tasks to iterate in a single balance run.
801 * Limited because this is done with IRQs disabled.
802 */
803const_debug unsigned int sysctl_sched_nr_migrate = 32;
804
e9e9250b
PZ
805/*
806 * period over which we average the RT time consumption, measured
807 * in ms.
808 *
809 * default: 1s
810 */
811const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
812
fa85ae24 813/*
9f0c1e56 814 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
815 * default: 1s
816 */
9f0c1e56 817unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 818
6892b75e
IM
819static __read_mostly int scheduler_running;
820
9f0c1e56
PZ
821/*
822 * part of the period that we allow rt tasks to run in us.
823 * default: 0.95s
824 */
825int sysctl_sched_rt_runtime = 950000;
fa85ae24 826
d0b27fa7
PZ
827static inline u64 global_rt_period(void)
828{
829 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
830}
831
832static inline u64 global_rt_runtime(void)
833{
e26873bb 834 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
835 return RUNTIME_INF;
836
837 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
838}
fa85ae24 839
1da177e4 840#ifndef prepare_arch_switch
4866cde0
NP
841# define prepare_arch_switch(next) do { } while (0)
842#endif
843#ifndef finish_arch_switch
844# define finish_arch_switch(prev) do { } while (0)
845#endif
846
051a1d1a
DA
847static inline int task_current(struct rq *rq, struct task_struct *p)
848{
849 return rq->curr == p;
850}
851
70b97a7f 852static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 853{
3ca7a440
PZ
854#ifdef CONFIG_SMP
855 return p->on_cpu;
856#else
051a1d1a 857 return task_current(rq, p);
3ca7a440 858#endif
4866cde0
NP
859}
860
3ca7a440 861#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 862static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 863{
3ca7a440
PZ
864#ifdef CONFIG_SMP
865 /*
866 * We can optimise this out completely for !SMP, because the
867 * SMP rebalancing from interrupt is the only thing that cares
868 * here.
869 */
870 next->on_cpu = 1;
871#endif
4866cde0
NP
872}
873
70b97a7f 874static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 875{
3ca7a440
PZ
876#ifdef CONFIG_SMP
877 /*
878 * After ->on_cpu is cleared, the task can be moved to a different CPU.
879 * We must ensure this doesn't happen until the switch is completely
880 * finished.
881 */
882 smp_wmb();
883 prev->on_cpu = 0;
884#endif
da04c035
IM
885#ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888#endif
8a25d5de
IM
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
05fa785c 896 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
897}
898
899#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 900static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
901{
902#ifdef CONFIG_SMP
903 /*
904 * We can optimise this out completely for !SMP, because the
905 * SMP rebalancing from interrupt is the only thing that cares
906 * here.
907 */
3ca7a440 908 next->on_cpu = 1;
4866cde0
NP
909#endif
910#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 911 raw_spin_unlock_irq(&rq->lock);
4866cde0 912#else
05fa785c 913 raw_spin_unlock(&rq->lock);
4866cde0
NP
914#endif
915}
916
70b97a7f 917static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
918{
919#ifdef CONFIG_SMP
920 /*
3ca7a440 921 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
922 * We must ensure this doesn't happen until the switch is completely
923 * finished.
924 */
925 smp_wmb();
3ca7a440 926 prev->on_cpu = 0;
4866cde0
NP
927#endif
928#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
929 local_irq_enable();
1da177e4 930#endif
4866cde0
NP
931}
932#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 933
0970d299 934/*
0122ec5b 935 * __task_rq_lock - lock the rq @p resides on.
b29739f9 936 */
70b97a7f 937static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
938 __acquires(rq->lock)
939{
0970d299
PZ
940 struct rq *rq;
941
0122ec5b
PZ
942 lockdep_assert_held(&p->pi_lock);
943
3a5c359a 944 for (;;) {
0970d299 945 rq = task_rq(p);
05fa785c 946 raw_spin_lock(&rq->lock);
65cc8e48 947 if (likely(rq == task_rq(p)))
3a5c359a 948 return rq;
05fa785c 949 raw_spin_unlock(&rq->lock);
b29739f9 950 }
b29739f9
IM
951}
952
1da177e4 953/*
0122ec5b 954 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 955 */
70b97a7f 956static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 957 __acquires(p->pi_lock)
1da177e4
LT
958 __acquires(rq->lock)
959{
70b97a7f 960 struct rq *rq;
1da177e4 961
3a5c359a 962 for (;;) {
0122ec5b 963 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 964 rq = task_rq(p);
05fa785c 965 raw_spin_lock(&rq->lock);
65cc8e48 966 if (likely(rq == task_rq(p)))
3a5c359a 967 return rq;
0122ec5b
PZ
968 raw_spin_unlock(&rq->lock);
969 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 970 }
1da177e4
LT
971}
972
a9957449 973static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
974 __releases(rq->lock)
975{
05fa785c 976 raw_spin_unlock(&rq->lock);
b29739f9
IM
977}
978
0122ec5b
PZ
979static inline void
980task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 981 __releases(rq->lock)
0122ec5b 982 __releases(p->pi_lock)
1da177e4 983{
0122ec5b
PZ
984 raw_spin_unlock(&rq->lock);
985 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
986}
987
1da177e4 988/*
cc2a73b5 989 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 990 */
a9957449 991static struct rq *this_rq_lock(void)
1da177e4
LT
992 __acquires(rq->lock)
993{
70b97a7f 994 struct rq *rq;
1da177e4
LT
995
996 local_irq_disable();
997 rq = this_rq();
05fa785c 998 raw_spin_lock(&rq->lock);
1da177e4
LT
999
1000 return rq;
1001}
1002
8f4d37ec
PZ
1003#ifdef CONFIG_SCHED_HRTICK
1004/*
1005 * Use HR-timers to deliver accurate preemption points.
1006 *
1007 * Its all a bit involved since we cannot program an hrt while holding the
1008 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1009 * reschedule event.
1010 *
1011 * When we get rescheduled we reprogram the hrtick_timer outside of the
1012 * rq->lock.
1013 */
8f4d37ec
PZ
1014
1015/*
1016 * Use hrtick when:
1017 * - enabled by features
1018 * - hrtimer is actually high res
1019 */
1020static inline int hrtick_enabled(struct rq *rq)
1021{
1022 if (!sched_feat(HRTICK))
1023 return 0;
ba42059f 1024 if (!cpu_active(cpu_of(rq)))
b328ca18 1025 return 0;
8f4d37ec
PZ
1026 return hrtimer_is_hres_active(&rq->hrtick_timer);
1027}
1028
8f4d37ec
PZ
1029static void hrtick_clear(struct rq *rq)
1030{
1031 if (hrtimer_active(&rq->hrtick_timer))
1032 hrtimer_cancel(&rq->hrtick_timer);
1033}
1034
8f4d37ec
PZ
1035/*
1036 * High-resolution timer tick.
1037 * Runs from hardirq context with interrupts disabled.
1038 */
1039static enum hrtimer_restart hrtick(struct hrtimer *timer)
1040{
1041 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1042
1043 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1044
05fa785c 1045 raw_spin_lock(&rq->lock);
3e51f33f 1046 update_rq_clock(rq);
8f4d37ec 1047 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1048 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1049
1050 return HRTIMER_NORESTART;
1051}
1052
95e904c7 1053#ifdef CONFIG_SMP
31656519
PZ
1054/*
1055 * called from hardirq (IPI) context
1056 */
1057static void __hrtick_start(void *arg)
b328ca18 1058{
31656519 1059 struct rq *rq = arg;
b328ca18 1060
05fa785c 1061 raw_spin_lock(&rq->lock);
31656519
PZ
1062 hrtimer_restart(&rq->hrtick_timer);
1063 rq->hrtick_csd_pending = 0;
05fa785c 1064 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1065}
1066
31656519
PZ
1067/*
1068 * Called to set the hrtick timer state.
1069 *
1070 * called with rq->lock held and irqs disabled
1071 */
1072static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1073{
31656519
PZ
1074 struct hrtimer *timer = &rq->hrtick_timer;
1075 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1076
cc584b21 1077 hrtimer_set_expires(timer, time);
31656519
PZ
1078
1079 if (rq == this_rq()) {
1080 hrtimer_restart(timer);
1081 } else if (!rq->hrtick_csd_pending) {
6e275637 1082 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1083 rq->hrtick_csd_pending = 1;
1084 }
b328ca18
PZ
1085}
1086
1087static int
1088hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1089{
1090 int cpu = (int)(long)hcpu;
1091
1092 switch (action) {
1093 case CPU_UP_CANCELED:
1094 case CPU_UP_CANCELED_FROZEN:
1095 case CPU_DOWN_PREPARE:
1096 case CPU_DOWN_PREPARE_FROZEN:
1097 case CPU_DEAD:
1098 case CPU_DEAD_FROZEN:
31656519 1099 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1100 return NOTIFY_OK;
1101 }
1102
1103 return NOTIFY_DONE;
1104}
1105
fa748203 1106static __init void init_hrtick(void)
b328ca18
PZ
1107{
1108 hotcpu_notifier(hotplug_hrtick, 0);
1109}
31656519
PZ
1110#else
1111/*
1112 * Called to set the hrtick timer state.
1113 *
1114 * called with rq->lock held and irqs disabled
1115 */
1116static void hrtick_start(struct rq *rq, u64 delay)
1117{
7f1e2ca9 1118 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1119 HRTIMER_MODE_REL_PINNED, 0);
31656519 1120}
b328ca18 1121
006c75f1 1122static inline void init_hrtick(void)
8f4d37ec 1123{
8f4d37ec 1124}
31656519 1125#endif /* CONFIG_SMP */
8f4d37ec 1126
31656519 1127static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1128{
31656519
PZ
1129#ifdef CONFIG_SMP
1130 rq->hrtick_csd_pending = 0;
8f4d37ec 1131
31656519
PZ
1132 rq->hrtick_csd.flags = 0;
1133 rq->hrtick_csd.func = __hrtick_start;
1134 rq->hrtick_csd.info = rq;
1135#endif
8f4d37ec 1136
31656519
PZ
1137 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1138 rq->hrtick_timer.function = hrtick;
8f4d37ec 1139}
006c75f1 1140#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1141static inline void hrtick_clear(struct rq *rq)
1142{
1143}
1144
8f4d37ec
PZ
1145static inline void init_rq_hrtick(struct rq *rq)
1146{
1147}
1148
b328ca18
PZ
1149static inline void init_hrtick(void)
1150{
1151}
006c75f1 1152#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1153
c24d20db
IM
1154/*
1155 * resched_task - mark a task 'to be rescheduled now'.
1156 *
1157 * On UP this means the setting of the need_resched flag, on SMP it
1158 * might also involve a cross-CPU call to trigger the scheduler on
1159 * the target CPU.
1160 */
1161#ifdef CONFIG_SMP
1162
1163#ifndef tsk_is_polling
1164#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1165#endif
1166
31656519 1167static void resched_task(struct task_struct *p)
c24d20db
IM
1168{
1169 int cpu;
1170
05fa785c 1171 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1172
5ed0cec0 1173 if (test_tsk_need_resched(p))
c24d20db
IM
1174 return;
1175
5ed0cec0 1176 set_tsk_need_resched(p);
c24d20db
IM
1177
1178 cpu = task_cpu(p);
1179 if (cpu == smp_processor_id())
1180 return;
1181
1182 /* NEED_RESCHED must be visible before we test polling */
1183 smp_mb();
1184 if (!tsk_is_polling(p))
1185 smp_send_reschedule(cpu);
1186}
1187
1188static void resched_cpu(int cpu)
1189{
1190 struct rq *rq = cpu_rq(cpu);
1191 unsigned long flags;
1192
05fa785c 1193 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1194 return;
1195 resched_task(cpu_curr(cpu));
05fa785c 1196 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1197}
06d8308c
TG
1198
1199#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1200/*
1201 * In the semi idle case, use the nearest busy cpu for migrating timers
1202 * from an idle cpu. This is good for power-savings.
1203 *
1204 * We don't do similar optimization for completely idle system, as
1205 * selecting an idle cpu will add more delays to the timers than intended
1206 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1207 */
1208int get_nohz_timer_target(void)
1209{
1210 int cpu = smp_processor_id();
1211 int i;
1212 struct sched_domain *sd;
1213
057f3fad 1214 rcu_read_lock();
83cd4fe2 1215 for_each_domain(cpu, sd) {
057f3fad
PZ
1216 for_each_cpu(i, sched_domain_span(sd)) {
1217 if (!idle_cpu(i)) {
1218 cpu = i;
1219 goto unlock;
1220 }
1221 }
83cd4fe2 1222 }
057f3fad
PZ
1223unlock:
1224 rcu_read_unlock();
83cd4fe2
VP
1225 return cpu;
1226}
06d8308c
TG
1227/*
1228 * When add_timer_on() enqueues a timer into the timer wheel of an
1229 * idle CPU then this timer might expire before the next timer event
1230 * which is scheduled to wake up that CPU. In case of a completely
1231 * idle system the next event might even be infinite time into the
1232 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1233 * leaves the inner idle loop so the newly added timer is taken into
1234 * account when the CPU goes back to idle and evaluates the timer
1235 * wheel for the next timer event.
1236 */
1237void wake_up_idle_cpu(int cpu)
1238{
1239 struct rq *rq = cpu_rq(cpu);
1240
1241 if (cpu == smp_processor_id())
1242 return;
1243
1244 /*
1245 * This is safe, as this function is called with the timer
1246 * wheel base lock of (cpu) held. When the CPU is on the way
1247 * to idle and has not yet set rq->curr to idle then it will
1248 * be serialized on the timer wheel base lock and take the new
1249 * timer into account automatically.
1250 */
1251 if (rq->curr != rq->idle)
1252 return;
1253
1254 /*
1255 * We can set TIF_RESCHED on the idle task of the other CPU
1256 * lockless. The worst case is that the other CPU runs the
1257 * idle task through an additional NOOP schedule()
1258 */
5ed0cec0 1259 set_tsk_need_resched(rq->idle);
06d8308c
TG
1260
1261 /* NEED_RESCHED must be visible before we test polling */
1262 smp_mb();
1263 if (!tsk_is_polling(rq->idle))
1264 smp_send_reschedule(cpu);
1265}
39c0cbe2 1266
6d6bc0ad 1267#endif /* CONFIG_NO_HZ */
06d8308c 1268
e9e9250b
PZ
1269static u64 sched_avg_period(void)
1270{
1271 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1272}
1273
1274static void sched_avg_update(struct rq *rq)
1275{
1276 s64 period = sched_avg_period();
1277
1278 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1279 /*
1280 * Inline assembly required to prevent the compiler
1281 * optimising this loop into a divmod call.
1282 * See __iter_div_u64_rem() for another example of this.
1283 */
1284 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1285 rq->age_stamp += period;
1286 rq->rt_avg /= 2;
1287 }
1288}
1289
1290static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1291{
1292 rq->rt_avg += rt_delta;
1293 sched_avg_update(rq);
1294}
1295
6d6bc0ad 1296#else /* !CONFIG_SMP */
31656519 1297static void resched_task(struct task_struct *p)
c24d20db 1298{
05fa785c 1299 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1300 set_tsk_need_resched(p);
c24d20db 1301}
e9e9250b
PZ
1302
1303static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1304{
1305}
da2b71ed
SS
1306
1307static void sched_avg_update(struct rq *rq)
1308{
1309}
6d6bc0ad 1310#endif /* CONFIG_SMP */
c24d20db 1311
45bf76df
IM
1312#if BITS_PER_LONG == 32
1313# define WMULT_CONST (~0UL)
1314#else
1315# define WMULT_CONST (1UL << 32)
1316#endif
1317
1318#define WMULT_SHIFT 32
1319
194081eb
IM
1320/*
1321 * Shift right and round:
1322 */
cf2ab469 1323#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1324
a7be37ac
PZ
1325/*
1326 * delta *= weight / lw
1327 */
cb1c4fc9 1328static unsigned long
45bf76df
IM
1329calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1330 struct load_weight *lw)
1331{
1332 u64 tmp;
1333
c8b28116
NR
1334 /*
1335 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1336 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1337 * 2^SCHED_LOAD_RESOLUTION.
1338 */
1339 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1340 tmp = (u64)delta_exec * scale_load_down(weight);
1341 else
1342 tmp = (u64)delta_exec;
db670dac 1343
7a232e03 1344 if (!lw->inv_weight) {
c8b28116
NR
1345 unsigned long w = scale_load_down(lw->weight);
1346
1347 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
7a232e03 1348 lw->inv_weight = 1;
c8b28116
NR
1349 else if (unlikely(!w))
1350 lw->inv_weight = WMULT_CONST;
7a232e03 1351 else
c8b28116 1352 lw->inv_weight = WMULT_CONST / w;
7a232e03 1353 }
45bf76df 1354
45bf76df
IM
1355 /*
1356 * Check whether we'd overflow the 64-bit multiplication:
1357 */
194081eb 1358 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1359 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1360 WMULT_SHIFT/2);
1361 else
cf2ab469 1362 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1363
ecf691da 1364 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1365}
1366
1091985b 1367static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1368{
1369 lw->weight += inc;
e89996ae 1370 lw->inv_weight = 0;
45bf76df
IM
1371}
1372
1091985b 1373static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1374{
1375 lw->weight -= dec;
e89996ae 1376 lw->inv_weight = 0;
45bf76df
IM
1377}
1378
2069dd75
PZ
1379static inline void update_load_set(struct load_weight *lw, unsigned long w)
1380{
1381 lw->weight = w;
1382 lw->inv_weight = 0;
1383}
1384
2dd73a4f
PW
1385/*
1386 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1387 * of tasks with abnormal "nice" values across CPUs the contribution that
1388 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1389 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1390 * scaled version of the new time slice allocation that they receive on time
1391 * slice expiry etc.
1392 */
1393
cce7ade8
PZ
1394#define WEIGHT_IDLEPRIO 3
1395#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1396
1397/*
1398 * Nice levels are multiplicative, with a gentle 10% change for every
1399 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1400 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1401 * that remained on nice 0.
1402 *
1403 * The "10% effect" is relative and cumulative: from _any_ nice level,
1404 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1405 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1406 * If a task goes up by ~10% and another task goes down by ~10% then
1407 * the relative distance between them is ~25%.)
dd41f596
IM
1408 */
1409static const int prio_to_weight[40] = {
254753dc
IM
1410 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1411 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1412 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1413 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1414 /* 0 */ 1024, 820, 655, 526, 423,
1415 /* 5 */ 335, 272, 215, 172, 137,
1416 /* 10 */ 110, 87, 70, 56, 45,
1417 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1418};
1419
5714d2de
IM
1420/*
1421 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1422 *
1423 * In cases where the weight does not change often, we can use the
1424 * precalculated inverse to speed up arithmetics by turning divisions
1425 * into multiplications:
1426 */
dd41f596 1427static const u32 prio_to_wmult[40] = {
254753dc
IM
1428 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1429 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1430 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1431 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1432 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1433 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1434 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1435 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1436};
2dd73a4f 1437
ef12fefa
BR
1438/* Time spent by the tasks of the cpu accounting group executing in ... */
1439enum cpuacct_stat_index {
1440 CPUACCT_STAT_USER, /* ... user mode */
1441 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1442
1443 CPUACCT_STAT_NSTATS,
1444};
1445
d842de87
SV
1446#ifdef CONFIG_CGROUP_CPUACCT
1447static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1448static void cpuacct_update_stats(struct task_struct *tsk,
1449 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1450#else
1451static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1452static inline void cpuacct_update_stats(struct task_struct *tsk,
1453 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1454#endif
1455
18d95a28
PZ
1456static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1457{
1458 update_load_add(&rq->load, load);
1459}
1460
1461static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1462{
1463 update_load_sub(&rq->load, load);
1464}
1465
7940ca36 1466#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1467typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1468
1469/*
1470 * Iterate the full tree, calling @down when first entering a node and @up when
1471 * leaving it for the final time.
1472 */
eb755805 1473static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1474{
1475 struct task_group *parent, *child;
eb755805 1476 int ret;
c09595f6
PZ
1477
1478 rcu_read_lock();
1479 parent = &root_task_group;
1480down:
eb755805
PZ
1481 ret = (*down)(parent, data);
1482 if (ret)
1483 goto out_unlock;
c09595f6
PZ
1484 list_for_each_entry_rcu(child, &parent->children, siblings) {
1485 parent = child;
1486 goto down;
1487
1488up:
1489 continue;
1490 }
eb755805
PZ
1491 ret = (*up)(parent, data);
1492 if (ret)
1493 goto out_unlock;
c09595f6
PZ
1494
1495 child = parent;
1496 parent = parent->parent;
1497 if (parent)
1498 goto up;
eb755805 1499out_unlock:
c09595f6 1500 rcu_read_unlock();
eb755805
PZ
1501
1502 return ret;
c09595f6
PZ
1503}
1504
eb755805
PZ
1505static int tg_nop(struct task_group *tg, void *data)
1506{
1507 return 0;
c09595f6 1508}
eb755805
PZ
1509#endif
1510
1511#ifdef CONFIG_SMP
f5f08f39
PZ
1512/* Used instead of source_load when we know the type == 0 */
1513static unsigned long weighted_cpuload(const int cpu)
1514{
1515 return cpu_rq(cpu)->load.weight;
1516}
1517
1518/*
1519 * Return a low guess at the load of a migration-source cpu weighted
1520 * according to the scheduling class and "nice" value.
1521 *
1522 * We want to under-estimate the load of migration sources, to
1523 * balance conservatively.
1524 */
1525static unsigned long source_load(int cpu, int type)
1526{
1527 struct rq *rq = cpu_rq(cpu);
1528 unsigned long total = weighted_cpuload(cpu);
1529
1530 if (type == 0 || !sched_feat(LB_BIAS))
1531 return total;
1532
1533 return min(rq->cpu_load[type-1], total);
1534}
1535
1536/*
1537 * Return a high guess at the load of a migration-target cpu weighted
1538 * according to the scheduling class and "nice" value.
1539 */
1540static unsigned long target_load(int cpu, int type)
1541{
1542 struct rq *rq = cpu_rq(cpu);
1543 unsigned long total = weighted_cpuload(cpu);
1544
1545 if (type == 0 || !sched_feat(LB_BIAS))
1546 return total;
1547
1548 return max(rq->cpu_load[type-1], total);
1549}
1550
ae154be1
PZ
1551static unsigned long power_of(int cpu)
1552{
e51fd5e2 1553 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1554}
1555
eb755805
PZ
1556static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1557
1558static unsigned long cpu_avg_load_per_task(int cpu)
1559{
1560 struct rq *rq = cpu_rq(cpu);
af6d596f 1561 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1562
4cd42620
SR
1563 if (nr_running)
1564 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1565 else
1566 rq->avg_load_per_task = 0;
eb755805
PZ
1567
1568 return rq->avg_load_per_task;
1569}
1570
1571#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1572
c09595f6 1573/*
c8cba857
PZ
1574 * Compute the cpu's hierarchical load factor for each task group.
1575 * This needs to be done in a top-down fashion because the load of a child
1576 * group is a fraction of its parents load.
c09595f6 1577 */
eb755805 1578static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1579{
c8cba857 1580 unsigned long load;
eb755805 1581 long cpu = (long)data;
c09595f6 1582
c8cba857
PZ
1583 if (!tg->parent) {
1584 load = cpu_rq(cpu)->load.weight;
1585 } else {
1586 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1587 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1588 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1589 }
c09595f6 1590
c8cba857 1591 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1592
eb755805 1593 return 0;
c09595f6
PZ
1594}
1595
eb755805 1596static void update_h_load(long cpu)
c09595f6 1597{
eb755805 1598 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1599}
1600
18d95a28
PZ
1601#endif
1602
8f45e2b5
GH
1603#ifdef CONFIG_PREEMPT
1604
b78bb868
PZ
1605static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1606
70574a99 1607/*
8f45e2b5
GH
1608 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1609 * way at the expense of forcing extra atomic operations in all
1610 * invocations. This assures that the double_lock is acquired using the
1611 * same underlying policy as the spinlock_t on this architecture, which
1612 * reduces latency compared to the unfair variant below. However, it
1613 * also adds more overhead and therefore may reduce throughput.
70574a99 1614 */
8f45e2b5
GH
1615static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1616 __releases(this_rq->lock)
1617 __acquires(busiest->lock)
1618 __acquires(this_rq->lock)
1619{
05fa785c 1620 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1621 double_rq_lock(this_rq, busiest);
1622
1623 return 1;
1624}
1625
1626#else
1627/*
1628 * Unfair double_lock_balance: Optimizes throughput at the expense of
1629 * latency by eliminating extra atomic operations when the locks are
1630 * already in proper order on entry. This favors lower cpu-ids and will
1631 * grant the double lock to lower cpus over higher ids under contention,
1632 * regardless of entry order into the function.
1633 */
1634static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1635 __releases(this_rq->lock)
1636 __acquires(busiest->lock)
1637 __acquires(this_rq->lock)
1638{
1639 int ret = 0;
1640
05fa785c 1641 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1642 if (busiest < this_rq) {
05fa785c
TG
1643 raw_spin_unlock(&this_rq->lock);
1644 raw_spin_lock(&busiest->lock);
1645 raw_spin_lock_nested(&this_rq->lock,
1646 SINGLE_DEPTH_NESTING);
70574a99
AD
1647 ret = 1;
1648 } else
05fa785c
TG
1649 raw_spin_lock_nested(&busiest->lock,
1650 SINGLE_DEPTH_NESTING);
70574a99
AD
1651 }
1652 return ret;
1653}
1654
8f45e2b5
GH
1655#endif /* CONFIG_PREEMPT */
1656
1657/*
1658 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1659 */
1660static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1661{
1662 if (unlikely(!irqs_disabled())) {
1663 /* printk() doesn't work good under rq->lock */
05fa785c 1664 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1665 BUG_ON(1);
1666 }
1667
1668 return _double_lock_balance(this_rq, busiest);
1669}
1670
70574a99
AD
1671static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1672 __releases(busiest->lock)
1673{
05fa785c 1674 raw_spin_unlock(&busiest->lock);
70574a99
AD
1675 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1676}
1e3c88bd
PZ
1677
1678/*
1679 * double_rq_lock - safely lock two runqueues
1680 *
1681 * Note this does not disable interrupts like task_rq_lock,
1682 * you need to do so manually before calling.
1683 */
1684static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1685 __acquires(rq1->lock)
1686 __acquires(rq2->lock)
1687{
1688 BUG_ON(!irqs_disabled());
1689 if (rq1 == rq2) {
1690 raw_spin_lock(&rq1->lock);
1691 __acquire(rq2->lock); /* Fake it out ;) */
1692 } else {
1693 if (rq1 < rq2) {
1694 raw_spin_lock(&rq1->lock);
1695 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1696 } else {
1697 raw_spin_lock(&rq2->lock);
1698 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1699 }
1700 }
1e3c88bd
PZ
1701}
1702
1703/*
1704 * double_rq_unlock - safely unlock two runqueues
1705 *
1706 * Note this does not restore interrupts like task_rq_unlock,
1707 * you need to do so manually after calling.
1708 */
1709static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1710 __releases(rq1->lock)
1711 __releases(rq2->lock)
1712{
1713 raw_spin_unlock(&rq1->lock);
1714 if (rq1 != rq2)
1715 raw_spin_unlock(&rq2->lock);
1716 else
1717 __release(rq2->lock);
1718}
1719
d95f4122
MG
1720#else /* CONFIG_SMP */
1721
1722/*
1723 * double_rq_lock - safely lock two runqueues
1724 *
1725 * Note this does not disable interrupts like task_rq_lock,
1726 * you need to do so manually before calling.
1727 */
1728static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1729 __acquires(rq1->lock)
1730 __acquires(rq2->lock)
1731{
1732 BUG_ON(!irqs_disabled());
1733 BUG_ON(rq1 != rq2);
1734 raw_spin_lock(&rq1->lock);
1735 __acquire(rq2->lock); /* Fake it out ;) */
1736}
1737
1738/*
1739 * double_rq_unlock - safely unlock two runqueues
1740 *
1741 * Note this does not restore interrupts like task_rq_unlock,
1742 * you need to do so manually after calling.
1743 */
1744static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1745 __releases(rq1->lock)
1746 __releases(rq2->lock)
1747{
1748 BUG_ON(rq1 != rq2);
1749 raw_spin_unlock(&rq1->lock);
1750 __release(rq2->lock);
1751}
1752
18d95a28
PZ
1753#endif
1754
74f5187a 1755static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1756static void update_sysctl(void);
acb4a848 1757static int get_update_sysctl_factor(void);
fdf3e95d 1758static void update_cpu_load(struct rq *this_rq);
dce48a84 1759
cd29fe6f
PZ
1760static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1761{
1762 set_task_rq(p, cpu);
1763#ifdef CONFIG_SMP
1764 /*
1765 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1766 * successfuly executed on another CPU. We must ensure that updates of
1767 * per-task data have been completed by this moment.
1768 */
1769 smp_wmb();
1770 task_thread_info(p)->cpu = cpu;
1771#endif
1772}
dce48a84 1773
1e3c88bd 1774static const struct sched_class rt_sched_class;
dd41f596 1775
34f971f6 1776#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1777#define for_each_class(class) \
1778 for (class = sched_class_highest; class; class = class->next)
dd41f596 1779
1e3c88bd
PZ
1780#include "sched_stats.h"
1781
c09595f6 1782static void inc_nr_running(struct rq *rq)
9c217245
IM
1783{
1784 rq->nr_running++;
9c217245
IM
1785}
1786
c09595f6 1787static void dec_nr_running(struct rq *rq)
9c217245
IM
1788{
1789 rq->nr_running--;
9c217245
IM
1790}
1791
45bf76df
IM
1792static void set_load_weight(struct task_struct *p)
1793{
f05998d4
NR
1794 int prio = p->static_prio - MAX_RT_PRIO;
1795 struct load_weight *load = &p->se.load;
1796
dd41f596
IM
1797 /*
1798 * SCHED_IDLE tasks get minimal weight:
1799 */
1800 if (p->policy == SCHED_IDLE) {
c8b28116 1801 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1802 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1803 return;
1804 }
71f8bd46 1805
c8b28116 1806 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 1807 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
1808}
1809
371fd7e7 1810static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1811{
a64692a3 1812 update_rq_clock(rq);
dd41f596 1813 sched_info_queued(p);
371fd7e7 1814 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1815}
1816
371fd7e7 1817static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1818{
a64692a3 1819 update_rq_clock(rq);
46ac22ba 1820 sched_info_dequeued(p);
371fd7e7 1821 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1822}
1823
1e3c88bd
PZ
1824/*
1825 * activate_task - move a task to the runqueue.
1826 */
371fd7e7 1827static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1828{
1829 if (task_contributes_to_load(p))
1830 rq->nr_uninterruptible--;
1831
371fd7e7 1832 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1833 inc_nr_running(rq);
1834}
1835
1836/*
1837 * deactivate_task - remove a task from the runqueue.
1838 */
371fd7e7 1839static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1840{
1841 if (task_contributes_to_load(p))
1842 rq->nr_uninterruptible++;
1843
371fd7e7 1844 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1845 dec_nr_running(rq);
1846}
1847
b52bfee4
VP
1848#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1849
305e6835
VP
1850/*
1851 * There are no locks covering percpu hardirq/softirq time.
1852 * They are only modified in account_system_vtime, on corresponding CPU
1853 * with interrupts disabled. So, writes are safe.
1854 * They are read and saved off onto struct rq in update_rq_clock().
1855 * This may result in other CPU reading this CPU's irq time and can
1856 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1857 * or new value with a side effect of accounting a slice of irq time to wrong
1858 * task when irq is in progress while we read rq->clock. That is a worthy
1859 * compromise in place of having locks on each irq in account_system_time.
305e6835 1860 */
b52bfee4
VP
1861static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1862static DEFINE_PER_CPU(u64, cpu_softirq_time);
1863
1864static DEFINE_PER_CPU(u64, irq_start_time);
1865static int sched_clock_irqtime;
1866
1867void enable_sched_clock_irqtime(void)
1868{
1869 sched_clock_irqtime = 1;
1870}
1871
1872void disable_sched_clock_irqtime(void)
1873{
1874 sched_clock_irqtime = 0;
1875}
1876
8e92c201
PZ
1877#ifndef CONFIG_64BIT
1878static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1879
1880static inline void irq_time_write_begin(void)
1881{
1882 __this_cpu_inc(irq_time_seq.sequence);
1883 smp_wmb();
1884}
1885
1886static inline void irq_time_write_end(void)
1887{
1888 smp_wmb();
1889 __this_cpu_inc(irq_time_seq.sequence);
1890}
1891
1892static inline u64 irq_time_read(int cpu)
1893{
1894 u64 irq_time;
1895 unsigned seq;
1896
1897 do {
1898 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1899 irq_time = per_cpu(cpu_softirq_time, cpu) +
1900 per_cpu(cpu_hardirq_time, cpu);
1901 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1902
1903 return irq_time;
1904}
1905#else /* CONFIG_64BIT */
1906static inline void irq_time_write_begin(void)
1907{
1908}
1909
1910static inline void irq_time_write_end(void)
1911{
1912}
1913
1914static inline u64 irq_time_read(int cpu)
305e6835 1915{
305e6835
VP
1916 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1917}
8e92c201 1918#endif /* CONFIG_64BIT */
305e6835 1919
fe44d621
PZ
1920/*
1921 * Called before incrementing preempt_count on {soft,}irq_enter
1922 * and before decrementing preempt_count on {soft,}irq_exit.
1923 */
b52bfee4
VP
1924void account_system_vtime(struct task_struct *curr)
1925{
1926 unsigned long flags;
fe44d621 1927 s64 delta;
b52bfee4 1928 int cpu;
b52bfee4
VP
1929
1930 if (!sched_clock_irqtime)
1931 return;
1932
1933 local_irq_save(flags);
1934
b52bfee4 1935 cpu = smp_processor_id();
fe44d621
PZ
1936 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1937 __this_cpu_add(irq_start_time, delta);
1938
8e92c201 1939 irq_time_write_begin();
b52bfee4
VP
1940 /*
1941 * We do not account for softirq time from ksoftirqd here.
1942 * We want to continue accounting softirq time to ksoftirqd thread
1943 * in that case, so as not to confuse scheduler with a special task
1944 * that do not consume any time, but still wants to run.
1945 */
1946 if (hardirq_count())
fe44d621 1947 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1948 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1949 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1950
8e92c201 1951 irq_time_write_end();
b52bfee4
VP
1952 local_irq_restore(flags);
1953}
b7dadc38 1954EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1955
fe44d621 1956static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1957{
fe44d621
PZ
1958 s64 irq_delta;
1959
8e92c201 1960 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1961
1962 /*
1963 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1964 * this case when a previous update_rq_clock() happened inside a
1965 * {soft,}irq region.
1966 *
1967 * When this happens, we stop ->clock_task and only update the
1968 * prev_irq_time stamp to account for the part that fit, so that a next
1969 * update will consume the rest. This ensures ->clock_task is
1970 * monotonic.
1971 *
1972 * It does however cause some slight miss-attribution of {soft,}irq
1973 * time, a more accurate solution would be to update the irq_time using
1974 * the current rq->clock timestamp, except that would require using
1975 * atomic ops.
1976 */
1977 if (irq_delta > delta)
1978 irq_delta = delta;
1979
1980 rq->prev_irq_time += irq_delta;
1981 delta -= irq_delta;
1982 rq->clock_task += delta;
1983
1984 if (irq_delta && sched_feat(NONIRQ_POWER))
1985 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1986}
1987
abb74cef
VP
1988static int irqtime_account_hi_update(void)
1989{
1990 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1991 unsigned long flags;
1992 u64 latest_ns;
1993 int ret = 0;
1994
1995 local_irq_save(flags);
1996 latest_ns = this_cpu_read(cpu_hardirq_time);
1997 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1998 ret = 1;
1999 local_irq_restore(flags);
2000 return ret;
2001}
2002
2003static int irqtime_account_si_update(void)
2004{
2005 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2006 unsigned long flags;
2007 u64 latest_ns;
2008 int ret = 0;
2009
2010 local_irq_save(flags);
2011 latest_ns = this_cpu_read(cpu_softirq_time);
2012 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2013 ret = 1;
2014 local_irq_restore(flags);
2015 return ret;
2016}
2017
fe44d621 2018#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 2019
abb74cef
VP
2020#define sched_clock_irqtime (0)
2021
fe44d621 2022static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 2023{
fe44d621 2024 rq->clock_task += delta;
305e6835
VP
2025}
2026
fe44d621 2027#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 2028
1e3c88bd
PZ
2029#include "sched_idletask.c"
2030#include "sched_fair.c"
2031#include "sched_rt.c"
5091faa4 2032#include "sched_autogroup.c"
34f971f6 2033#include "sched_stoptask.c"
1e3c88bd
PZ
2034#ifdef CONFIG_SCHED_DEBUG
2035# include "sched_debug.c"
2036#endif
2037
34f971f6
PZ
2038void sched_set_stop_task(int cpu, struct task_struct *stop)
2039{
2040 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2041 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2042
2043 if (stop) {
2044 /*
2045 * Make it appear like a SCHED_FIFO task, its something
2046 * userspace knows about and won't get confused about.
2047 *
2048 * Also, it will make PI more or less work without too
2049 * much confusion -- but then, stop work should not
2050 * rely on PI working anyway.
2051 */
2052 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2053
2054 stop->sched_class = &stop_sched_class;
2055 }
2056
2057 cpu_rq(cpu)->stop = stop;
2058
2059 if (old_stop) {
2060 /*
2061 * Reset it back to a normal scheduling class so that
2062 * it can die in pieces.
2063 */
2064 old_stop->sched_class = &rt_sched_class;
2065 }
2066}
2067
14531189 2068/*
dd41f596 2069 * __normal_prio - return the priority that is based on the static prio
14531189 2070 */
14531189
IM
2071static inline int __normal_prio(struct task_struct *p)
2072{
dd41f596 2073 return p->static_prio;
14531189
IM
2074}
2075
b29739f9
IM
2076/*
2077 * Calculate the expected normal priority: i.e. priority
2078 * without taking RT-inheritance into account. Might be
2079 * boosted by interactivity modifiers. Changes upon fork,
2080 * setprio syscalls, and whenever the interactivity
2081 * estimator recalculates.
2082 */
36c8b586 2083static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2084{
2085 int prio;
2086
e05606d3 2087 if (task_has_rt_policy(p))
b29739f9
IM
2088 prio = MAX_RT_PRIO-1 - p->rt_priority;
2089 else
2090 prio = __normal_prio(p);
2091 return prio;
2092}
2093
2094/*
2095 * Calculate the current priority, i.e. the priority
2096 * taken into account by the scheduler. This value might
2097 * be boosted by RT tasks, or might be boosted by
2098 * interactivity modifiers. Will be RT if the task got
2099 * RT-boosted. If not then it returns p->normal_prio.
2100 */
36c8b586 2101static int effective_prio(struct task_struct *p)
b29739f9
IM
2102{
2103 p->normal_prio = normal_prio(p);
2104 /*
2105 * If we are RT tasks or we were boosted to RT priority,
2106 * keep the priority unchanged. Otherwise, update priority
2107 * to the normal priority:
2108 */
2109 if (!rt_prio(p->prio))
2110 return p->normal_prio;
2111 return p->prio;
2112}
2113
1da177e4
LT
2114/**
2115 * task_curr - is this task currently executing on a CPU?
2116 * @p: the task in question.
2117 */
36c8b586 2118inline int task_curr(const struct task_struct *p)
1da177e4
LT
2119{
2120 return cpu_curr(task_cpu(p)) == p;
2121}
2122
cb469845
SR
2123static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2124 const struct sched_class *prev_class,
da7a735e 2125 int oldprio)
cb469845
SR
2126{
2127 if (prev_class != p->sched_class) {
2128 if (prev_class->switched_from)
da7a735e
PZ
2129 prev_class->switched_from(rq, p);
2130 p->sched_class->switched_to(rq, p);
2131 } else if (oldprio != p->prio)
2132 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2133}
2134
1e5a7405
PZ
2135static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2136{
2137 const struct sched_class *class;
2138
2139 if (p->sched_class == rq->curr->sched_class) {
2140 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2141 } else {
2142 for_each_class(class) {
2143 if (class == rq->curr->sched_class)
2144 break;
2145 if (class == p->sched_class) {
2146 resched_task(rq->curr);
2147 break;
2148 }
2149 }
2150 }
2151
2152 /*
2153 * A queue event has occurred, and we're going to schedule. In
2154 * this case, we can save a useless back to back clock update.
2155 */
fd2f4419 2156 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2157 rq->skip_clock_update = 1;
2158}
2159
1da177e4 2160#ifdef CONFIG_SMP
cc367732
IM
2161/*
2162 * Is this task likely cache-hot:
2163 */
e7693a36 2164static int
cc367732
IM
2165task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2166{
2167 s64 delta;
2168
e6c8fba7
PZ
2169 if (p->sched_class != &fair_sched_class)
2170 return 0;
2171
ef8002f6
NR
2172 if (unlikely(p->policy == SCHED_IDLE))
2173 return 0;
2174
f540a608
IM
2175 /*
2176 * Buddy candidates are cache hot:
2177 */
f685ceac 2178 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2179 (&p->se == cfs_rq_of(&p->se)->next ||
2180 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2181 return 1;
2182
6bc1665b
IM
2183 if (sysctl_sched_migration_cost == -1)
2184 return 1;
2185 if (sysctl_sched_migration_cost == 0)
2186 return 0;
2187
cc367732
IM
2188 delta = now - p->se.exec_start;
2189
2190 return delta < (s64)sysctl_sched_migration_cost;
2191}
2192
dd41f596 2193void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2194{
e2912009
PZ
2195#ifdef CONFIG_SCHED_DEBUG
2196 /*
2197 * We should never call set_task_cpu() on a blocked task,
2198 * ttwu() will sort out the placement.
2199 */
077614ee
PZ
2200 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2201 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2202
2203#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2204 /*
2205 * The caller should hold either p->pi_lock or rq->lock, when changing
2206 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2207 *
2208 * sched_move_task() holds both and thus holding either pins the cgroup,
2209 * see set_task_rq().
2210 *
2211 * Furthermore, all task_rq users should acquire both locks, see
2212 * task_rq_lock().
2213 */
0122ec5b
PZ
2214 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2215 lockdep_is_held(&task_rq(p)->lock)));
2216#endif
e2912009
PZ
2217#endif
2218
de1d7286 2219 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2220
0c69774e
PZ
2221 if (task_cpu(p) != new_cpu) {
2222 p->se.nr_migrations++;
2223 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2224 }
dd41f596
IM
2225
2226 __set_task_cpu(p, new_cpu);
c65cc870
IM
2227}
2228
969c7921 2229struct migration_arg {
36c8b586 2230 struct task_struct *task;
1da177e4 2231 int dest_cpu;
70b97a7f 2232};
1da177e4 2233
969c7921
TH
2234static int migration_cpu_stop(void *data);
2235
1da177e4
LT
2236/*
2237 * wait_task_inactive - wait for a thread to unschedule.
2238 *
85ba2d86
RM
2239 * If @match_state is nonzero, it's the @p->state value just checked and
2240 * not expected to change. If it changes, i.e. @p might have woken up,
2241 * then return zero. When we succeed in waiting for @p to be off its CPU,
2242 * we return a positive number (its total switch count). If a second call
2243 * a short while later returns the same number, the caller can be sure that
2244 * @p has remained unscheduled the whole time.
2245 *
1da177e4
LT
2246 * The caller must ensure that the task *will* unschedule sometime soon,
2247 * else this function might spin for a *long* time. This function can't
2248 * be called with interrupts off, or it may introduce deadlock with
2249 * smp_call_function() if an IPI is sent by the same process we are
2250 * waiting to become inactive.
2251 */
85ba2d86 2252unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2253{
2254 unsigned long flags;
dd41f596 2255 int running, on_rq;
85ba2d86 2256 unsigned long ncsw;
70b97a7f 2257 struct rq *rq;
1da177e4 2258
3a5c359a
AK
2259 for (;;) {
2260 /*
2261 * We do the initial early heuristics without holding
2262 * any task-queue locks at all. We'll only try to get
2263 * the runqueue lock when things look like they will
2264 * work out!
2265 */
2266 rq = task_rq(p);
fa490cfd 2267
3a5c359a
AK
2268 /*
2269 * If the task is actively running on another CPU
2270 * still, just relax and busy-wait without holding
2271 * any locks.
2272 *
2273 * NOTE! Since we don't hold any locks, it's not
2274 * even sure that "rq" stays as the right runqueue!
2275 * But we don't care, since "task_running()" will
2276 * return false if the runqueue has changed and p
2277 * is actually now running somewhere else!
2278 */
85ba2d86
RM
2279 while (task_running(rq, p)) {
2280 if (match_state && unlikely(p->state != match_state))
2281 return 0;
3a5c359a 2282 cpu_relax();
85ba2d86 2283 }
fa490cfd 2284
3a5c359a
AK
2285 /*
2286 * Ok, time to look more closely! We need the rq
2287 * lock now, to be *sure*. If we're wrong, we'll
2288 * just go back and repeat.
2289 */
2290 rq = task_rq_lock(p, &flags);
27a9da65 2291 trace_sched_wait_task(p);
3a5c359a 2292 running = task_running(rq, p);
fd2f4419 2293 on_rq = p->on_rq;
85ba2d86 2294 ncsw = 0;
f31e11d8 2295 if (!match_state || p->state == match_state)
93dcf55f 2296 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2297 task_rq_unlock(rq, p, &flags);
fa490cfd 2298
85ba2d86
RM
2299 /*
2300 * If it changed from the expected state, bail out now.
2301 */
2302 if (unlikely(!ncsw))
2303 break;
2304
3a5c359a
AK
2305 /*
2306 * Was it really running after all now that we
2307 * checked with the proper locks actually held?
2308 *
2309 * Oops. Go back and try again..
2310 */
2311 if (unlikely(running)) {
2312 cpu_relax();
2313 continue;
2314 }
fa490cfd 2315
3a5c359a
AK
2316 /*
2317 * It's not enough that it's not actively running,
2318 * it must be off the runqueue _entirely_, and not
2319 * preempted!
2320 *
80dd99b3 2321 * So if it was still runnable (but just not actively
3a5c359a
AK
2322 * running right now), it's preempted, and we should
2323 * yield - it could be a while.
2324 */
2325 if (unlikely(on_rq)) {
8eb90c30
TG
2326 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2327
2328 set_current_state(TASK_UNINTERRUPTIBLE);
2329 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2330 continue;
2331 }
fa490cfd 2332
3a5c359a
AK
2333 /*
2334 * Ahh, all good. It wasn't running, and it wasn't
2335 * runnable, which means that it will never become
2336 * running in the future either. We're all done!
2337 */
2338 break;
2339 }
85ba2d86
RM
2340
2341 return ncsw;
1da177e4
LT
2342}
2343
2344/***
2345 * kick_process - kick a running thread to enter/exit the kernel
2346 * @p: the to-be-kicked thread
2347 *
2348 * Cause a process which is running on another CPU to enter
2349 * kernel-mode, without any delay. (to get signals handled.)
2350 *
25985edc 2351 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2352 * because all it wants to ensure is that the remote task enters
2353 * the kernel. If the IPI races and the task has been migrated
2354 * to another CPU then no harm is done and the purpose has been
2355 * achieved as well.
2356 */
36c8b586 2357void kick_process(struct task_struct *p)
1da177e4
LT
2358{
2359 int cpu;
2360
2361 preempt_disable();
2362 cpu = task_cpu(p);
2363 if ((cpu != smp_processor_id()) && task_curr(p))
2364 smp_send_reschedule(cpu);
2365 preempt_enable();
2366}
b43e3521 2367EXPORT_SYMBOL_GPL(kick_process);
476d139c 2368#endif /* CONFIG_SMP */
1da177e4 2369
970b13ba 2370#ifdef CONFIG_SMP
30da688e 2371/*
013fdb80 2372 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2373 */
5da9a0fb
PZ
2374static int select_fallback_rq(int cpu, struct task_struct *p)
2375{
2376 int dest_cpu;
2377 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2378
2379 /* Look for allowed, online CPU in same node. */
2380 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2381 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2382 return dest_cpu;
2383
2384 /* Any allowed, online CPU? */
2385 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2386 if (dest_cpu < nr_cpu_ids)
2387 return dest_cpu;
2388
2389 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2390 dest_cpu = cpuset_cpus_allowed_fallback(p);
2391 /*
2392 * Don't tell them about moving exiting tasks or
2393 * kernel threads (both mm NULL), since they never
2394 * leave kernel.
2395 */
2396 if (p->mm && printk_ratelimit()) {
2397 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2398 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2399 }
2400
2401 return dest_cpu;
2402}
2403
e2912009 2404/*
013fdb80 2405 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2406 */
970b13ba 2407static inline
7608dec2 2408int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2409{
7608dec2 2410 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2411
2412 /*
2413 * In order not to call set_task_cpu() on a blocking task we need
2414 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2415 * cpu.
2416 *
2417 * Since this is common to all placement strategies, this lives here.
2418 *
2419 * [ this allows ->select_task() to simply return task_cpu(p) and
2420 * not worry about this generic constraint ]
2421 */
2422 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2423 !cpu_online(cpu)))
5da9a0fb 2424 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2425
2426 return cpu;
970b13ba 2427}
09a40af5
MG
2428
2429static void update_avg(u64 *avg, u64 sample)
2430{
2431 s64 diff = sample - *avg;
2432 *avg += diff >> 3;
2433}
970b13ba
PZ
2434#endif
2435
d7c01d27 2436static void
b84cb5df 2437ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2438{
d7c01d27 2439#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2440 struct rq *rq = this_rq();
2441
d7c01d27
PZ
2442#ifdef CONFIG_SMP
2443 int this_cpu = smp_processor_id();
2444
2445 if (cpu == this_cpu) {
2446 schedstat_inc(rq, ttwu_local);
2447 schedstat_inc(p, se.statistics.nr_wakeups_local);
2448 } else {
2449 struct sched_domain *sd;
2450
2451 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 2452 rcu_read_lock();
d7c01d27
PZ
2453 for_each_domain(this_cpu, sd) {
2454 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2455 schedstat_inc(sd, ttwu_wake_remote);
2456 break;
2457 }
2458 }
057f3fad 2459 rcu_read_unlock();
d7c01d27 2460 }
f339b9dc
PZ
2461
2462 if (wake_flags & WF_MIGRATED)
2463 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2464
d7c01d27
PZ
2465#endif /* CONFIG_SMP */
2466
2467 schedstat_inc(rq, ttwu_count);
9ed3811a 2468 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2469
2470 if (wake_flags & WF_SYNC)
9ed3811a 2471 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 2472
d7c01d27
PZ
2473#endif /* CONFIG_SCHEDSTATS */
2474}
2475
2476static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2477{
9ed3811a 2478 activate_task(rq, p, en_flags);
fd2f4419 2479 p->on_rq = 1;
c2f7115e
PZ
2480
2481 /* if a worker is waking up, notify workqueue */
2482 if (p->flags & PF_WQ_WORKER)
2483 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2484}
2485
23f41eeb
PZ
2486/*
2487 * Mark the task runnable and perform wakeup-preemption.
2488 */
89363381 2489static void
23f41eeb 2490ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2491{
89363381 2492 trace_sched_wakeup(p, true);
9ed3811a
TH
2493 check_preempt_curr(rq, p, wake_flags);
2494
2495 p->state = TASK_RUNNING;
2496#ifdef CONFIG_SMP
2497 if (p->sched_class->task_woken)
2498 p->sched_class->task_woken(rq, p);
2499
2500 if (unlikely(rq->idle_stamp)) {
2501 u64 delta = rq->clock - rq->idle_stamp;
2502 u64 max = 2*sysctl_sched_migration_cost;
2503
2504 if (delta > max)
2505 rq->avg_idle = max;
2506 else
2507 update_avg(&rq->avg_idle, delta);
2508 rq->idle_stamp = 0;
2509 }
2510#endif
2511}
2512
c05fbafb
PZ
2513static void
2514ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2515{
2516#ifdef CONFIG_SMP
2517 if (p->sched_contributes_to_load)
2518 rq->nr_uninterruptible--;
2519#endif
2520
2521 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2522 ttwu_do_wakeup(rq, p, wake_flags);
2523}
2524
2525/*
2526 * Called in case the task @p isn't fully descheduled from its runqueue,
2527 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2528 * since all we need to do is flip p->state to TASK_RUNNING, since
2529 * the task is still ->on_rq.
2530 */
2531static int ttwu_remote(struct task_struct *p, int wake_flags)
2532{
2533 struct rq *rq;
2534 int ret = 0;
2535
2536 rq = __task_rq_lock(p);
2537 if (p->on_rq) {
2538 ttwu_do_wakeup(rq, p, wake_flags);
2539 ret = 1;
2540 }
2541 __task_rq_unlock(rq);
2542
2543 return ret;
2544}
2545
317f3941 2546#ifdef CONFIG_SMP
c5d753a5 2547static void sched_ttwu_do_pending(struct task_struct *list)
317f3941
PZ
2548{
2549 struct rq *rq = this_rq();
317f3941
PZ
2550
2551 raw_spin_lock(&rq->lock);
2552
2553 while (list) {
2554 struct task_struct *p = list;
2555 list = list->wake_entry;
2556 ttwu_do_activate(rq, p, 0);
2557 }
2558
2559 raw_spin_unlock(&rq->lock);
2560}
2561
c5d753a5
PZ
2562#ifdef CONFIG_HOTPLUG_CPU
2563
2564static void sched_ttwu_pending(void)
2565{
2566 struct rq *rq = this_rq();
2567 struct task_struct *list = xchg(&rq->wake_list, NULL);
2568
2569 if (!list)
2570 return;
2571
2572 sched_ttwu_do_pending(list);
2573}
2574
2575#endif /* CONFIG_HOTPLUG_CPU */
2576
317f3941
PZ
2577void scheduler_ipi(void)
2578{
c5d753a5
PZ
2579 struct rq *rq = this_rq();
2580 struct task_struct *list = xchg(&rq->wake_list, NULL);
2581
2582 if (!list)
2583 return;
2584
2585 /*
2586 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2587 * traditionally all their work was done from the interrupt return
2588 * path. Now that we actually do some work, we need to make sure
2589 * we do call them.
2590 *
2591 * Some archs already do call them, luckily irq_enter/exit nest
2592 * properly.
2593 *
2594 * Arguably we should visit all archs and update all handlers,
2595 * however a fair share of IPIs are still resched only so this would
2596 * somewhat pessimize the simple resched case.
2597 */
2598 irq_enter();
2599 sched_ttwu_do_pending(list);
2600 irq_exit();
317f3941
PZ
2601}
2602
2603static void ttwu_queue_remote(struct task_struct *p, int cpu)
2604{
2605 struct rq *rq = cpu_rq(cpu);
2606 struct task_struct *next = rq->wake_list;
2607
2608 for (;;) {
2609 struct task_struct *old = next;
2610
2611 p->wake_entry = next;
2612 next = cmpxchg(&rq->wake_list, old, p);
2613 if (next == old)
2614 break;
2615 }
2616
2617 if (!next)
2618 smp_send_reschedule(cpu);
2619}
d6aa8f85
PZ
2620
2621#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2622static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2623{
2624 struct rq *rq;
2625 int ret = 0;
2626
2627 rq = __task_rq_lock(p);
2628 if (p->on_cpu) {
2629 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2630 ttwu_do_wakeup(rq, p, wake_flags);
2631 ret = 1;
2632 }
2633 __task_rq_unlock(rq);
2634
2635 return ret;
2636
2637}
2638#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2639#endif /* CONFIG_SMP */
317f3941 2640
c05fbafb
PZ
2641static void ttwu_queue(struct task_struct *p, int cpu)
2642{
2643 struct rq *rq = cpu_rq(cpu);
2644
17d9f311 2645#if defined(CONFIG_SMP)
317f3941 2646 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
f01114cb 2647 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
2648 ttwu_queue_remote(p, cpu);
2649 return;
2650 }
2651#endif
2652
c05fbafb
PZ
2653 raw_spin_lock(&rq->lock);
2654 ttwu_do_activate(rq, p, 0);
2655 raw_spin_unlock(&rq->lock);
9ed3811a
TH
2656}
2657
2658/**
1da177e4 2659 * try_to_wake_up - wake up a thread
9ed3811a 2660 * @p: the thread to be awakened
1da177e4 2661 * @state: the mask of task states that can be woken
9ed3811a 2662 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2663 *
2664 * Put it on the run-queue if it's not already there. The "current"
2665 * thread is always on the run-queue (except when the actual
2666 * re-schedule is in progress), and as such you're allowed to do
2667 * the simpler "current->state = TASK_RUNNING" to mark yourself
2668 * runnable without the overhead of this.
2669 *
9ed3811a
TH
2670 * Returns %true if @p was woken up, %false if it was already running
2671 * or @state didn't match @p's state.
1da177e4 2672 */
e4a52bcb
PZ
2673static int
2674try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2675{
1da177e4 2676 unsigned long flags;
c05fbafb 2677 int cpu, success = 0;
2398f2c6 2678
04e2f174 2679 smp_wmb();
013fdb80 2680 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2681 if (!(p->state & state))
1da177e4
LT
2682 goto out;
2683
c05fbafb 2684 success = 1; /* we're going to change ->state */
1da177e4 2685 cpu = task_cpu(p);
1da177e4 2686
c05fbafb
PZ
2687 if (p->on_rq && ttwu_remote(p, wake_flags))
2688 goto stat;
1da177e4 2689
1da177e4 2690#ifdef CONFIG_SMP
e9c84311 2691 /*
c05fbafb
PZ
2692 * If the owning (remote) cpu is still in the middle of schedule() with
2693 * this task as prev, wait until its done referencing the task.
e9c84311 2694 */
e4a52bcb
PZ
2695 while (p->on_cpu) {
2696#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2697 /*
d6aa8f85
PZ
2698 * In case the architecture enables interrupts in
2699 * context_switch(), we cannot busy wait, since that
2700 * would lead to deadlocks when an interrupt hits and
2701 * tries to wake up @prev. So bail and do a complete
2702 * remote wakeup.
e4a52bcb 2703 */
d6aa8f85 2704 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 2705 goto stat;
d6aa8f85 2706#else
e4a52bcb 2707 cpu_relax();
d6aa8f85 2708#endif
371fd7e7 2709 }
0970d299 2710 /*
e4a52bcb 2711 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 2712 */
e4a52bcb 2713 smp_rmb();
1da177e4 2714
a8e4f2ea 2715 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2716 p->state = TASK_WAKING;
e7693a36 2717
e4a52bcb 2718 if (p->sched_class->task_waking)
74f8e4b2 2719 p->sched_class->task_waking(p);
efbbd05a 2720
7608dec2 2721 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2722 if (task_cpu(p) != cpu) {
2723 wake_flags |= WF_MIGRATED;
e4a52bcb 2724 set_task_cpu(p, cpu);
f339b9dc 2725 }
1da177e4 2726#endif /* CONFIG_SMP */
1da177e4 2727
c05fbafb
PZ
2728 ttwu_queue(p, cpu);
2729stat:
b84cb5df 2730 ttwu_stat(p, cpu, wake_flags);
1da177e4 2731out:
013fdb80 2732 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2733
2734 return success;
2735}
2736
21aa9af0
TH
2737/**
2738 * try_to_wake_up_local - try to wake up a local task with rq lock held
2739 * @p: the thread to be awakened
2740 *
2acca55e 2741 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2742 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2743 * the current task.
21aa9af0
TH
2744 */
2745static void try_to_wake_up_local(struct task_struct *p)
2746{
2747 struct rq *rq = task_rq(p);
21aa9af0
TH
2748
2749 BUG_ON(rq != this_rq());
2750 BUG_ON(p == current);
2751 lockdep_assert_held(&rq->lock);
2752
2acca55e
PZ
2753 if (!raw_spin_trylock(&p->pi_lock)) {
2754 raw_spin_unlock(&rq->lock);
2755 raw_spin_lock(&p->pi_lock);
2756 raw_spin_lock(&rq->lock);
2757 }
2758
21aa9af0 2759 if (!(p->state & TASK_NORMAL))
2acca55e 2760 goto out;
21aa9af0 2761
fd2f4419 2762 if (!p->on_rq)
d7c01d27
PZ
2763 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2764
23f41eeb 2765 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2766 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2767out:
2768 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2769}
2770
50fa610a
DH
2771/**
2772 * wake_up_process - Wake up a specific process
2773 * @p: The process to be woken up.
2774 *
2775 * Attempt to wake up the nominated process and move it to the set of runnable
2776 * processes. Returns 1 if the process was woken up, 0 if it was already
2777 * running.
2778 *
2779 * It may be assumed that this function implies a write memory barrier before
2780 * changing the task state if and only if any tasks are woken up.
2781 */
7ad5b3a5 2782int wake_up_process(struct task_struct *p)
1da177e4 2783{
d9514f6c 2784 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2785}
1da177e4
LT
2786EXPORT_SYMBOL(wake_up_process);
2787
7ad5b3a5 2788int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2789{
2790 return try_to_wake_up(p, state, 0);
2791}
2792
1da177e4
LT
2793/*
2794 * Perform scheduler related setup for a newly forked process p.
2795 * p is forked by current.
dd41f596
IM
2796 *
2797 * __sched_fork() is basic setup used by init_idle() too:
2798 */
2799static void __sched_fork(struct task_struct *p)
2800{
fd2f4419
PZ
2801 p->on_rq = 0;
2802
2803 p->se.on_rq = 0;
dd41f596
IM
2804 p->se.exec_start = 0;
2805 p->se.sum_exec_runtime = 0;
f6cf891c 2806 p->se.prev_sum_exec_runtime = 0;
6c594c21 2807 p->se.nr_migrations = 0;
da7a735e 2808 p->se.vruntime = 0;
fd2f4419 2809 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2810
2811#ifdef CONFIG_SCHEDSTATS
41acab88 2812 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2813#endif
476d139c 2814
fa717060 2815 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2816
e107be36
AK
2817#ifdef CONFIG_PREEMPT_NOTIFIERS
2818 INIT_HLIST_HEAD(&p->preempt_notifiers);
2819#endif
dd41f596
IM
2820}
2821
2822/*
2823 * fork()/clone()-time setup:
2824 */
3e51e3ed 2825void sched_fork(struct task_struct *p)
dd41f596 2826{
0122ec5b 2827 unsigned long flags;
dd41f596
IM
2828 int cpu = get_cpu();
2829
2830 __sched_fork(p);
06b83b5f 2831 /*
0017d735 2832 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2833 * nobody will actually run it, and a signal or other external
2834 * event cannot wake it up and insert it on the runqueue either.
2835 */
0017d735 2836 p->state = TASK_RUNNING;
dd41f596 2837
b9dc29e7
MG
2838 /*
2839 * Revert to default priority/policy on fork if requested.
2840 */
2841 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2842 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2843 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2844 p->normal_prio = p->static_prio;
2845 }
b9dc29e7 2846
6c697bdf
MG
2847 if (PRIO_TO_NICE(p->static_prio) < 0) {
2848 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2849 p->normal_prio = p->static_prio;
6c697bdf
MG
2850 set_load_weight(p);
2851 }
2852
b9dc29e7
MG
2853 /*
2854 * We don't need the reset flag anymore after the fork. It has
2855 * fulfilled its duty:
2856 */
2857 p->sched_reset_on_fork = 0;
2858 }
ca94c442 2859
f83f9ac2
PW
2860 /*
2861 * Make sure we do not leak PI boosting priority to the child.
2862 */
2863 p->prio = current->normal_prio;
2864
2ddbf952
HS
2865 if (!rt_prio(p->prio))
2866 p->sched_class = &fair_sched_class;
b29739f9 2867
cd29fe6f
PZ
2868 if (p->sched_class->task_fork)
2869 p->sched_class->task_fork(p);
2870
86951599
PZ
2871 /*
2872 * The child is not yet in the pid-hash so no cgroup attach races,
2873 * and the cgroup is pinned to this child due to cgroup_fork()
2874 * is ran before sched_fork().
2875 *
2876 * Silence PROVE_RCU.
2877 */
0122ec5b 2878 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2879 set_task_cpu(p, cpu);
0122ec5b 2880 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2881
52f17b6c 2882#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2883 if (likely(sched_info_on()))
52f17b6c 2884 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2885#endif
3ca7a440
PZ
2886#if defined(CONFIG_SMP)
2887 p->on_cpu = 0;
4866cde0 2888#endif
1da177e4 2889#ifdef CONFIG_PREEMPT
4866cde0 2890 /* Want to start with kernel preemption disabled. */
a1261f54 2891 task_thread_info(p)->preempt_count = 1;
1da177e4 2892#endif
806c09a7 2893#ifdef CONFIG_SMP
917b627d 2894 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2895#endif
917b627d 2896
476d139c 2897 put_cpu();
1da177e4
LT
2898}
2899
2900/*
2901 * wake_up_new_task - wake up a newly created task for the first time.
2902 *
2903 * This function will do some initial scheduler statistics housekeeping
2904 * that must be done for every newly created context, then puts the task
2905 * on the runqueue and wakes it.
2906 */
3e51e3ed 2907void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2908{
2909 unsigned long flags;
dd41f596 2910 struct rq *rq;
fabf318e 2911
ab2515c4 2912 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2913#ifdef CONFIG_SMP
2914 /*
2915 * Fork balancing, do it here and not earlier because:
2916 * - cpus_allowed can change in the fork path
2917 * - any previously selected cpu might disappear through hotplug
fabf318e 2918 */
ab2515c4 2919 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
2920#endif
2921
ab2515c4 2922 rq = __task_rq_lock(p);
cd29fe6f 2923 activate_task(rq, p, 0);
fd2f4419 2924 p->on_rq = 1;
89363381 2925 trace_sched_wakeup_new(p, true);
a7558e01 2926 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2927#ifdef CONFIG_SMP
efbbd05a
PZ
2928 if (p->sched_class->task_woken)
2929 p->sched_class->task_woken(rq, p);
9a897c5a 2930#endif
0122ec5b 2931 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2932}
2933
e107be36
AK
2934#ifdef CONFIG_PREEMPT_NOTIFIERS
2935
2936/**
80dd99b3 2937 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2938 * @notifier: notifier struct to register
e107be36
AK
2939 */
2940void preempt_notifier_register(struct preempt_notifier *notifier)
2941{
2942 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2943}
2944EXPORT_SYMBOL_GPL(preempt_notifier_register);
2945
2946/**
2947 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2948 * @notifier: notifier struct to unregister
e107be36
AK
2949 *
2950 * This is safe to call from within a preemption notifier.
2951 */
2952void preempt_notifier_unregister(struct preempt_notifier *notifier)
2953{
2954 hlist_del(&notifier->link);
2955}
2956EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2957
2958static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2959{
2960 struct preempt_notifier *notifier;
2961 struct hlist_node *node;
2962
2963 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2964 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2965}
2966
2967static void
2968fire_sched_out_preempt_notifiers(struct task_struct *curr,
2969 struct task_struct *next)
2970{
2971 struct preempt_notifier *notifier;
2972 struct hlist_node *node;
2973
2974 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2975 notifier->ops->sched_out(notifier, next);
2976}
2977
6d6bc0ad 2978#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2979
2980static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2981{
2982}
2983
2984static void
2985fire_sched_out_preempt_notifiers(struct task_struct *curr,
2986 struct task_struct *next)
2987{
2988}
2989
6d6bc0ad 2990#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2991
4866cde0
NP
2992/**
2993 * prepare_task_switch - prepare to switch tasks
2994 * @rq: the runqueue preparing to switch
421cee29 2995 * @prev: the current task that is being switched out
4866cde0
NP
2996 * @next: the task we are going to switch to.
2997 *
2998 * This is called with the rq lock held and interrupts off. It must
2999 * be paired with a subsequent finish_task_switch after the context
3000 * switch.
3001 *
3002 * prepare_task_switch sets up locking and calls architecture specific
3003 * hooks.
3004 */
e107be36
AK
3005static inline void
3006prepare_task_switch(struct rq *rq, struct task_struct *prev,
3007 struct task_struct *next)
4866cde0 3008{
fe4b04fa
PZ
3009 sched_info_switch(prev, next);
3010 perf_event_task_sched_out(prev, next);
e107be36 3011 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
3012 prepare_lock_switch(rq, next);
3013 prepare_arch_switch(next);
fe4b04fa 3014 trace_sched_switch(prev, next);
4866cde0
NP
3015}
3016
1da177e4
LT
3017/**
3018 * finish_task_switch - clean up after a task-switch
344babaa 3019 * @rq: runqueue associated with task-switch
1da177e4
LT
3020 * @prev: the thread we just switched away from.
3021 *
4866cde0
NP
3022 * finish_task_switch must be called after the context switch, paired
3023 * with a prepare_task_switch call before the context switch.
3024 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3025 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3026 *
3027 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3028 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3029 * with the lock held can cause deadlocks; see schedule() for
3030 * details.)
3031 */
a9957449 3032static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
3033 __releases(rq->lock)
3034{
1da177e4 3035 struct mm_struct *mm = rq->prev_mm;
55a101f8 3036 long prev_state;
1da177e4
LT
3037
3038 rq->prev_mm = NULL;
3039
3040 /*
3041 * A task struct has one reference for the use as "current".
c394cc9f 3042 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3043 * schedule one last time. The schedule call will never return, and
3044 * the scheduled task must drop that reference.
c394cc9f 3045 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
3046 * still held, otherwise prev could be scheduled on another cpu, die
3047 * there before we look at prev->state, and then the reference would
3048 * be dropped twice.
3049 * Manfred Spraul <manfred@colorfullife.com>
3050 */
55a101f8 3051 prev_state = prev->state;
4866cde0 3052 finish_arch_switch(prev);
8381f65d
JI
3053#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3054 local_irq_disable();
3055#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 3056 perf_event_task_sched_in(current);
8381f65d
JI
3057#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3058 local_irq_enable();
3059#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 3060 finish_lock_switch(rq, prev);
e8fa1362 3061
e107be36 3062 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
3063 if (mm)
3064 mmdrop(mm);
c394cc9f 3065 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 3066 /*
3067 * Remove function-return probe instances associated with this
3068 * task and put them back on the free list.
9761eea8 3069 */
c6fd91f0 3070 kprobe_flush_task(prev);
1da177e4 3071 put_task_struct(prev);
c6fd91f0 3072 }
1da177e4
LT
3073}
3074
3f029d3c
GH
3075#ifdef CONFIG_SMP
3076
3077/* assumes rq->lock is held */
3078static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3079{
3080 if (prev->sched_class->pre_schedule)
3081 prev->sched_class->pre_schedule(rq, prev);
3082}
3083
3084/* rq->lock is NOT held, but preemption is disabled */
3085static inline void post_schedule(struct rq *rq)
3086{
3087 if (rq->post_schedule) {
3088 unsigned long flags;
3089
05fa785c 3090 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3091 if (rq->curr->sched_class->post_schedule)
3092 rq->curr->sched_class->post_schedule(rq);
05fa785c 3093 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3094
3095 rq->post_schedule = 0;
3096 }
3097}
3098
3099#else
da19ab51 3100
3f029d3c
GH
3101static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3102{
3103}
3104
3105static inline void post_schedule(struct rq *rq)
3106{
1da177e4
LT
3107}
3108
3f029d3c
GH
3109#endif
3110
1da177e4
LT
3111/**
3112 * schedule_tail - first thing a freshly forked thread must call.
3113 * @prev: the thread we just switched away from.
3114 */
36c8b586 3115asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3116 __releases(rq->lock)
3117{
70b97a7f
IM
3118 struct rq *rq = this_rq();
3119
4866cde0 3120 finish_task_switch(rq, prev);
da19ab51 3121
3f029d3c
GH
3122 /*
3123 * FIXME: do we need to worry about rq being invalidated by the
3124 * task_switch?
3125 */
3126 post_schedule(rq);
70b97a7f 3127
4866cde0
NP
3128#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3129 /* In this case, finish_task_switch does not reenable preemption */
3130 preempt_enable();
3131#endif
1da177e4 3132 if (current->set_child_tid)
b488893a 3133 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3134}
3135
3136/*
3137 * context_switch - switch to the new MM and the new
3138 * thread's register state.
3139 */
dd41f596 3140static inline void
70b97a7f 3141context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3142 struct task_struct *next)
1da177e4 3143{
dd41f596 3144 struct mm_struct *mm, *oldmm;
1da177e4 3145
e107be36 3146 prepare_task_switch(rq, prev, next);
fe4b04fa 3147
dd41f596
IM
3148 mm = next->mm;
3149 oldmm = prev->active_mm;
9226d125
ZA
3150 /*
3151 * For paravirt, this is coupled with an exit in switch_to to
3152 * combine the page table reload and the switch backend into
3153 * one hypercall.
3154 */
224101ed 3155 arch_start_context_switch(prev);
9226d125 3156
31915ab4 3157 if (!mm) {
1da177e4
LT
3158 next->active_mm = oldmm;
3159 atomic_inc(&oldmm->mm_count);
3160 enter_lazy_tlb(oldmm, next);
3161 } else
3162 switch_mm(oldmm, mm, next);
3163
31915ab4 3164 if (!prev->mm) {
1da177e4 3165 prev->active_mm = NULL;
1da177e4
LT
3166 rq->prev_mm = oldmm;
3167 }
3a5f5e48
IM
3168 /*
3169 * Since the runqueue lock will be released by the next
3170 * task (which is an invalid locking op but in the case
3171 * of the scheduler it's an obvious special-case), so we
3172 * do an early lockdep release here:
3173 */
3174#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3175 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3176#endif
1da177e4
LT
3177
3178 /* Here we just switch the register state and the stack. */
3179 switch_to(prev, next, prev);
3180
dd41f596
IM
3181 barrier();
3182 /*
3183 * this_rq must be evaluated again because prev may have moved
3184 * CPUs since it called schedule(), thus the 'rq' on its stack
3185 * frame will be invalid.
3186 */
3187 finish_task_switch(this_rq(), prev);
1da177e4
LT
3188}
3189
3190/*
3191 * nr_running, nr_uninterruptible and nr_context_switches:
3192 *
3193 * externally visible scheduler statistics: current number of runnable
3194 * threads, current number of uninterruptible-sleeping threads, total
3195 * number of context switches performed since bootup.
3196 */
3197unsigned long nr_running(void)
3198{
3199 unsigned long i, sum = 0;
3200
3201 for_each_online_cpu(i)
3202 sum += cpu_rq(i)->nr_running;
3203
3204 return sum;
f711f609 3205}
1da177e4
LT
3206
3207unsigned long nr_uninterruptible(void)
f711f609 3208{
1da177e4 3209 unsigned long i, sum = 0;
f711f609 3210
0a945022 3211 for_each_possible_cpu(i)
1da177e4 3212 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3213
3214 /*
1da177e4
LT
3215 * Since we read the counters lockless, it might be slightly
3216 * inaccurate. Do not allow it to go below zero though:
f711f609 3217 */
1da177e4
LT
3218 if (unlikely((long)sum < 0))
3219 sum = 0;
f711f609 3220
1da177e4 3221 return sum;
f711f609 3222}
f711f609 3223
1da177e4 3224unsigned long long nr_context_switches(void)
46cb4b7c 3225{
cc94abfc
SR
3226 int i;
3227 unsigned long long sum = 0;
46cb4b7c 3228
0a945022 3229 for_each_possible_cpu(i)
1da177e4 3230 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3231
1da177e4
LT
3232 return sum;
3233}
483b4ee6 3234
1da177e4
LT
3235unsigned long nr_iowait(void)
3236{
3237 unsigned long i, sum = 0;
483b4ee6 3238
0a945022 3239 for_each_possible_cpu(i)
1da177e4 3240 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3241
1da177e4
LT
3242 return sum;
3243}
483b4ee6 3244
8c215bd3 3245unsigned long nr_iowait_cpu(int cpu)
69d25870 3246{
8c215bd3 3247 struct rq *this = cpu_rq(cpu);
69d25870
AV
3248 return atomic_read(&this->nr_iowait);
3249}
46cb4b7c 3250
69d25870
AV
3251unsigned long this_cpu_load(void)
3252{
3253 struct rq *this = this_rq();
3254 return this->cpu_load[0];
3255}
e790fb0b 3256
46cb4b7c 3257
dce48a84
TG
3258/* Variables and functions for calc_load */
3259static atomic_long_t calc_load_tasks;
3260static unsigned long calc_load_update;
3261unsigned long avenrun[3];
3262EXPORT_SYMBOL(avenrun);
46cb4b7c 3263
74f5187a
PZ
3264static long calc_load_fold_active(struct rq *this_rq)
3265{
3266 long nr_active, delta = 0;
3267
3268 nr_active = this_rq->nr_running;
3269 nr_active += (long) this_rq->nr_uninterruptible;
3270
3271 if (nr_active != this_rq->calc_load_active) {
3272 delta = nr_active - this_rq->calc_load_active;
3273 this_rq->calc_load_active = nr_active;
3274 }
3275
3276 return delta;
3277}
3278
0f004f5a
PZ
3279static unsigned long
3280calc_load(unsigned long load, unsigned long exp, unsigned long active)
3281{
3282 load *= exp;
3283 load += active * (FIXED_1 - exp);
3284 load += 1UL << (FSHIFT - 1);
3285 return load >> FSHIFT;
3286}
3287
74f5187a
PZ
3288#ifdef CONFIG_NO_HZ
3289/*
3290 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3291 *
3292 * When making the ILB scale, we should try to pull this in as well.
3293 */
3294static atomic_long_t calc_load_tasks_idle;
3295
3296static void calc_load_account_idle(struct rq *this_rq)
3297{
3298 long delta;
3299
3300 delta = calc_load_fold_active(this_rq);
3301 if (delta)
3302 atomic_long_add(delta, &calc_load_tasks_idle);
3303}
3304
3305static long calc_load_fold_idle(void)
3306{
3307 long delta = 0;
3308
3309 /*
3310 * Its got a race, we don't care...
3311 */
3312 if (atomic_long_read(&calc_load_tasks_idle))
3313 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3314
3315 return delta;
3316}
0f004f5a
PZ
3317
3318/**
3319 * fixed_power_int - compute: x^n, in O(log n) time
3320 *
3321 * @x: base of the power
3322 * @frac_bits: fractional bits of @x
3323 * @n: power to raise @x to.
3324 *
3325 * By exploiting the relation between the definition of the natural power
3326 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3327 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3328 * (where: n_i \elem {0, 1}, the binary vector representing n),
3329 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3330 * of course trivially computable in O(log_2 n), the length of our binary
3331 * vector.
3332 */
3333static unsigned long
3334fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3335{
3336 unsigned long result = 1UL << frac_bits;
3337
3338 if (n) for (;;) {
3339 if (n & 1) {
3340 result *= x;
3341 result += 1UL << (frac_bits - 1);
3342 result >>= frac_bits;
3343 }
3344 n >>= 1;
3345 if (!n)
3346 break;
3347 x *= x;
3348 x += 1UL << (frac_bits - 1);
3349 x >>= frac_bits;
3350 }
3351
3352 return result;
3353}
3354
3355/*
3356 * a1 = a0 * e + a * (1 - e)
3357 *
3358 * a2 = a1 * e + a * (1 - e)
3359 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3360 * = a0 * e^2 + a * (1 - e) * (1 + e)
3361 *
3362 * a3 = a2 * e + a * (1 - e)
3363 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3364 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3365 *
3366 * ...
3367 *
3368 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3369 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3370 * = a0 * e^n + a * (1 - e^n)
3371 *
3372 * [1] application of the geometric series:
3373 *
3374 * n 1 - x^(n+1)
3375 * S_n := \Sum x^i = -------------
3376 * i=0 1 - x
3377 */
3378static unsigned long
3379calc_load_n(unsigned long load, unsigned long exp,
3380 unsigned long active, unsigned int n)
3381{
3382
3383 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3384}
3385
3386/*
3387 * NO_HZ can leave us missing all per-cpu ticks calling
3388 * calc_load_account_active(), but since an idle CPU folds its delta into
3389 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3390 * in the pending idle delta if our idle period crossed a load cycle boundary.
3391 *
3392 * Once we've updated the global active value, we need to apply the exponential
3393 * weights adjusted to the number of cycles missed.
3394 */
3395static void calc_global_nohz(unsigned long ticks)
3396{
3397 long delta, active, n;
3398
3399 if (time_before(jiffies, calc_load_update))
3400 return;
3401
3402 /*
3403 * If we crossed a calc_load_update boundary, make sure to fold
3404 * any pending idle changes, the respective CPUs might have
3405 * missed the tick driven calc_load_account_active() update
3406 * due to NO_HZ.
3407 */
3408 delta = calc_load_fold_idle();
3409 if (delta)
3410 atomic_long_add(delta, &calc_load_tasks);
3411
3412 /*
3413 * If we were idle for multiple load cycles, apply them.
3414 */
3415 if (ticks >= LOAD_FREQ) {
3416 n = ticks / LOAD_FREQ;
3417
3418 active = atomic_long_read(&calc_load_tasks);
3419 active = active > 0 ? active * FIXED_1 : 0;
3420
3421 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3422 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3423 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3424
3425 calc_load_update += n * LOAD_FREQ;
3426 }
3427
3428 /*
3429 * Its possible the remainder of the above division also crosses
3430 * a LOAD_FREQ period, the regular check in calc_global_load()
3431 * which comes after this will take care of that.
3432 *
3433 * Consider us being 11 ticks before a cycle completion, and us
3434 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3435 * age us 4 cycles, and the test in calc_global_load() will
3436 * pick up the final one.
3437 */
3438}
74f5187a
PZ
3439#else
3440static void calc_load_account_idle(struct rq *this_rq)
3441{
3442}
3443
3444static inline long calc_load_fold_idle(void)
3445{
3446 return 0;
3447}
0f004f5a
PZ
3448
3449static void calc_global_nohz(unsigned long ticks)
3450{
3451}
74f5187a
PZ
3452#endif
3453
2d02494f
TG
3454/**
3455 * get_avenrun - get the load average array
3456 * @loads: pointer to dest load array
3457 * @offset: offset to add
3458 * @shift: shift count to shift the result left
3459 *
3460 * These values are estimates at best, so no need for locking.
3461 */
3462void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3463{
3464 loads[0] = (avenrun[0] + offset) << shift;
3465 loads[1] = (avenrun[1] + offset) << shift;
3466 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3467}
46cb4b7c 3468
46cb4b7c 3469/*
dce48a84
TG
3470 * calc_load - update the avenrun load estimates 10 ticks after the
3471 * CPUs have updated calc_load_tasks.
7835b98b 3472 */
0f004f5a 3473void calc_global_load(unsigned long ticks)
7835b98b 3474{
dce48a84 3475 long active;
1da177e4 3476
0f004f5a
PZ
3477 calc_global_nohz(ticks);
3478
3479 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3480 return;
1da177e4 3481
dce48a84
TG
3482 active = atomic_long_read(&calc_load_tasks);
3483 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3484
dce48a84
TG
3485 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3486 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3487 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3488
dce48a84
TG
3489 calc_load_update += LOAD_FREQ;
3490}
1da177e4 3491
dce48a84 3492/*
74f5187a
PZ
3493 * Called from update_cpu_load() to periodically update this CPU's
3494 * active count.
dce48a84
TG
3495 */
3496static void calc_load_account_active(struct rq *this_rq)
3497{
74f5187a 3498 long delta;
08c183f3 3499
74f5187a
PZ
3500 if (time_before(jiffies, this_rq->calc_load_update))
3501 return;
783609c6 3502
74f5187a
PZ
3503 delta = calc_load_fold_active(this_rq);
3504 delta += calc_load_fold_idle();
3505 if (delta)
dce48a84 3506 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3507
3508 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3509}
3510
fdf3e95d
VP
3511/*
3512 * The exact cpuload at various idx values, calculated at every tick would be
3513 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3514 *
3515 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3516 * on nth tick when cpu may be busy, then we have:
3517 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3518 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3519 *
3520 * decay_load_missed() below does efficient calculation of
3521 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3522 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3523 *
3524 * The calculation is approximated on a 128 point scale.
3525 * degrade_zero_ticks is the number of ticks after which load at any
3526 * particular idx is approximated to be zero.
3527 * degrade_factor is a precomputed table, a row for each load idx.
3528 * Each column corresponds to degradation factor for a power of two ticks,
3529 * based on 128 point scale.
3530 * Example:
3531 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3532 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3533 *
3534 * With this power of 2 load factors, we can degrade the load n times
3535 * by looking at 1 bits in n and doing as many mult/shift instead of
3536 * n mult/shifts needed by the exact degradation.
3537 */
3538#define DEGRADE_SHIFT 7
3539static const unsigned char
3540 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3541static const unsigned char
3542 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3543 {0, 0, 0, 0, 0, 0, 0, 0},
3544 {64, 32, 8, 0, 0, 0, 0, 0},
3545 {96, 72, 40, 12, 1, 0, 0},
3546 {112, 98, 75, 43, 15, 1, 0},
3547 {120, 112, 98, 76, 45, 16, 2} };
3548
3549/*
3550 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3551 * would be when CPU is idle and so we just decay the old load without
3552 * adding any new load.
3553 */
3554static unsigned long
3555decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3556{
3557 int j = 0;
3558
3559 if (!missed_updates)
3560 return load;
3561
3562 if (missed_updates >= degrade_zero_ticks[idx])
3563 return 0;
3564
3565 if (idx == 1)
3566 return load >> missed_updates;
3567
3568 while (missed_updates) {
3569 if (missed_updates % 2)
3570 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3571
3572 missed_updates >>= 1;
3573 j++;
3574 }
3575 return load;
3576}
3577
46cb4b7c 3578/*
dd41f596 3579 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3580 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3581 * every tick. We fix it up based on jiffies.
46cb4b7c 3582 */
dd41f596 3583static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3584{
495eca49 3585 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3586 unsigned long curr_jiffies = jiffies;
3587 unsigned long pending_updates;
dd41f596 3588 int i, scale;
46cb4b7c 3589
dd41f596 3590 this_rq->nr_load_updates++;
46cb4b7c 3591
fdf3e95d
VP
3592 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3593 if (curr_jiffies == this_rq->last_load_update_tick)
3594 return;
3595
3596 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3597 this_rq->last_load_update_tick = curr_jiffies;
3598
dd41f596 3599 /* Update our load: */
fdf3e95d
VP
3600 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3601 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3602 unsigned long old_load, new_load;
7d1e6a9b 3603
dd41f596 3604 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3605
dd41f596 3606 old_load = this_rq->cpu_load[i];
fdf3e95d 3607 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3608 new_load = this_load;
a25707f3
IM
3609 /*
3610 * Round up the averaging division if load is increasing. This
3611 * prevents us from getting stuck on 9 if the load is 10, for
3612 * example.
3613 */
3614 if (new_load > old_load)
fdf3e95d
VP
3615 new_load += scale - 1;
3616
3617 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3618 }
da2b71ed
SS
3619
3620 sched_avg_update(this_rq);
fdf3e95d
VP
3621}
3622
3623static void update_cpu_load_active(struct rq *this_rq)
3624{
3625 update_cpu_load(this_rq);
46cb4b7c 3626
74f5187a 3627 calc_load_account_active(this_rq);
46cb4b7c
SS
3628}
3629
dd41f596 3630#ifdef CONFIG_SMP
8a0be9ef 3631
46cb4b7c 3632/*
38022906
PZ
3633 * sched_exec - execve() is a valuable balancing opportunity, because at
3634 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3635 */
38022906 3636void sched_exec(void)
46cb4b7c 3637{
38022906 3638 struct task_struct *p = current;
1da177e4 3639 unsigned long flags;
0017d735 3640 int dest_cpu;
46cb4b7c 3641
8f42ced9 3642 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3643 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3644 if (dest_cpu == smp_processor_id())
3645 goto unlock;
38022906 3646
8f42ced9 3647 if (likely(cpu_active(dest_cpu))) {
969c7921 3648 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3649
8f42ced9
PZ
3650 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3651 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3652 return;
3653 }
0017d735 3654unlock:
8f42ced9 3655 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3656}
dd41f596 3657
1da177e4
LT
3658#endif
3659
1da177e4
LT
3660DEFINE_PER_CPU(struct kernel_stat, kstat);
3661
3662EXPORT_PER_CPU_SYMBOL(kstat);
3663
3664/*
c5f8d995 3665 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3666 * @p in case that task is currently running.
c5f8d995
HS
3667 *
3668 * Called with task_rq_lock() held on @rq.
1da177e4 3669 */
c5f8d995
HS
3670static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3671{
3672 u64 ns = 0;
3673
3674 if (task_current(rq, p)) {
3675 update_rq_clock(rq);
305e6835 3676 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3677 if ((s64)ns < 0)
3678 ns = 0;
3679 }
3680
3681 return ns;
3682}
3683
bb34d92f 3684unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3685{
1da177e4 3686 unsigned long flags;
41b86e9c 3687 struct rq *rq;
bb34d92f 3688 u64 ns = 0;
48f24c4d 3689
41b86e9c 3690 rq = task_rq_lock(p, &flags);
c5f8d995 3691 ns = do_task_delta_exec(p, rq);
0122ec5b 3692 task_rq_unlock(rq, p, &flags);
1508487e 3693
c5f8d995
HS
3694 return ns;
3695}
f06febc9 3696
c5f8d995
HS
3697/*
3698 * Return accounted runtime for the task.
3699 * In case the task is currently running, return the runtime plus current's
3700 * pending runtime that have not been accounted yet.
3701 */
3702unsigned long long task_sched_runtime(struct task_struct *p)
3703{
3704 unsigned long flags;
3705 struct rq *rq;
3706 u64 ns = 0;
3707
3708 rq = task_rq_lock(p, &flags);
3709 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3710 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3711
3712 return ns;
3713}
48f24c4d 3714
c5f8d995
HS
3715/*
3716 * Return sum_exec_runtime for the thread group.
3717 * In case the task is currently running, return the sum plus current's
3718 * pending runtime that have not been accounted yet.
3719 *
3720 * Note that the thread group might have other running tasks as well,
3721 * so the return value not includes other pending runtime that other
3722 * running tasks might have.
3723 */
3724unsigned long long thread_group_sched_runtime(struct task_struct *p)
3725{
3726 struct task_cputime totals;
3727 unsigned long flags;
3728 struct rq *rq;
3729 u64 ns;
3730
3731 rq = task_rq_lock(p, &flags);
3732 thread_group_cputime(p, &totals);
3733 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3734 task_rq_unlock(rq, p, &flags);
48f24c4d 3735
1da177e4
LT
3736 return ns;
3737}
3738
1da177e4
LT
3739/*
3740 * Account user cpu time to a process.
3741 * @p: the process that the cpu time gets accounted to
1da177e4 3742 * @cputime: the cpu time spent in user space since the last update
457533a7 3743 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3744 */
457533a7
MS
3745void account_user_time(struct task_struct *p, cputime_t cputime,
3746 cputime_t cputime_scaled)
1da177e4
LT
3747{
3748 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3749 cputime64_t tmp;
3750
457533a7 3751 /* Add user time to process. */
1da177e4 3752 p->utime = cputime_add(p->utime, cputime);
457533a7 3753 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3754 account_group_user_time(p, cputime);
1da177e4
LT
3755
3756 /* Add user time to cpustat. */
3757 tmp = cputime_to_cputime64(cputime);
3758 if (TASK_NICE(p) > 0)
3759 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3760 else
3761 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3762
3763 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3764 /* Account for user time used */
3765 acct_update_integrals(p);
1da177e4
LT
3766}
3767
94886b84
LV
3768/*
3769 * Account guest cpu time to a process.
3770 * @p: the process that the cpu time gets accounted to
3771 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3772 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3773 */
457533a7
MS
3774static void account_guest_time(struct task_struct *p, cputime_t cputime,
3775 cputime_t cputime_scaled)
94886b84
LV
3776{
3777 cputime64_t tmp;
3778 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3779
3780 tmp = cputime_to_cputime64(cputime);
3781
457533a7 3782 /* Add guest time to process. */
94886b84 3783 p->utime = cputime_add(p->utime, cputime);
457533a7 3784 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3785 account_group_user_time(p, cputime);
94886b84
LV
3786 p->gtime = cputime_add(p->gtime, cputime);
3787
457533a7 3788 /* Add guest time to cpustat. */
ce0e7b28
RO
3789 if (TASK_NICE(p) > 0) {
3790 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3791 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3792 } else {
3793 cpustat->user = cputime64_add(cpustat->user, tmp);
3794 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3795 }
94886b84
LV
3796}
3797
70a89a66
VP
3798/*
3799 * Account system cpu time to a process and desired cpustat field
3800 * @p: the process that the cpu time gets accounted to
3801 * @cputime: the cpu time spent in kernel space since the last update
3802 * @cputime_scaled: cputime scaled by cpu frequency
3803 * @target_cputime64: pointer to cpustat field that has to be updated
3804 */
3805static inline
3806void __account_system_time(struct task_struct *p, cputime_t cputime,
3807 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3808{
3809 cputime64_t tmp = cputime_to_cputime64(cputime);
3810
3811 /* Add system time to process. */
3812 p->stime = cputime_add(p->stime, cputime);
3813 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3814 account_group_system_time(p, cputime);
3815
3816 /* Add system time to cpustat. */
3817 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3818 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3819
3820 /* Account for system time used */
3821 acct_update_integrals(p);
3822}
3823
1da177e4
LT
3824/*
3825 * Account system cpu time to a process.
3826 * @p: the process that the cpu time gets accounted to
3827 * @hardirq_offset: the offset to subtract from hardirq_count()
3828 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3829 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3830 */
3831void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3832 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3833{
3834 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3835 cputime64_t *target_cputime64;
1da177e4 3836
983ed7a6 3837 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3838 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3839 return;
3840 }
94886b84 3841
1da177e4 3842 if (hardirq_count() - hardirq_offset)
70a89a66 3843 target_cputime64 = &cpustat->irq;
75e1056f 3844 else if (in_serving_softirq())
70a89a66 3845 target_cputime64 = &cpustat->softirq;
1da177e4 3846 else
70a89a66 3847 target_cputime64 = &cpustat->system;
ef12fefa 3848
70a89a66 3849 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3850}
3851
c66f08be 3852/*
1da177e4 3853 * Account for involuntary wait time.
544b4a1f 3854 * @cputime: the cpu time spent in involuntary wait
c66f08be 3855 */
79741dd3 3856void account_steal_time(cputime_t cputime)
c66f08be 3857{
79741dd3
MS
3858 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3859 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3860
3861 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3862}
3863
1da177e4 3864/*
79741dd3
MS
3865 * Account for idle time.
3866 * @cputime: the cpu time spent in idle wait
1da177e4 3867 */
79741dd3 3868void account_idle_time(cputime_t cputime)
1da177e4
LT
3869{
3870 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3871 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3872 struct rq *rq = this_rq();
1da177e4 3873
79741dd3
MS
3874 if (atomic_read(&rq->nr_iowait) > 0)
3875 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3876 else
3877 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3878}
3879
79741dd3
MS
3880#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3881
abb74cef
VP
3882#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3883/*
3884 * Account a tick to a process and cpustat
3885 * @p: the process that the cpu time gets accounted to
3886 * @user_tick: is the tick from userspace
3887 * @rq: the pointer to rq
3888 *
3889 * Tick demultiplexing follows the order
3890 * - pending hardirq update
3891 * - pending softirq update
3892 * - user_time
3893 * - idle_time
3894 * - system time
3895 * - check for guest_time
3896 * - else account as system_time
3897 *
3898 * Check for hardirq is done both for system and user time as there is
3899 * no timer going off while we are on hardirq and hence we may never get an
3900 * opportunity to update it solely in system time.
3901 * p->stime and friends are only updated on system time and not on irq
3902 * softirq as those do not count in task exec_runtime any more.
3903 */
3904static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3905 struct rq *rq)
3906{
3907 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3908 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3909 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3910
3911 if (irqtime_account_hi_update()) {
3912 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3913 } else if (irqtime_account_si_update()) {
3914 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3915 } else if (this_cpu_ksoftirqd() == p) {
3916 /*
3917 * ksoftirqd time do not get accounted in cpu_softirq_time.
3918 * So, we have to handle it separately here.
3919 * Also, p->stime needs to be updated for ksoftirqd.
3920 */
3921 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3922 &cpustat->softirq);
abb74cef
VP
3923 } else if (user_tick) {
3924 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3925 } else if (p == rq->idle) {
3926 account_idle_time(cputime_one_jiffy);
3927 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3928 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3929 } else {
3930 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3931 &cpustat->system);
3932 }
3933}
3934
3935static void irqtime_account_idle_ticks(int ticks)
3936{
3937 int i;
3938 struct rq *rq = this_rq();
3939
3940 for (i = 0; i < ticks; i++)
3941 irqtime_account_process_tick(current, 0, rq);
3942}
544b4a1f 3943#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3944static void irqtime_account_idle_ticks(int ticks) {}
3945static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3946 struct rq *rq) {}
544b4a1f 3947#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3948
3949/*
3950 * Account a single tick of cpu time.
3951 * @p: the process that the cpu time gets accounted to
3952 * @user_tick: indicates if the tick is a user or a system tick
3953 */
3954void account_process_tick(struct task_struct *p, int user_tick)
3955{
a42548a1 3956 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3957 struct rq *rq = this_rq();
3958
abb74cef
VP
3959 if (sched_clock_irqtime) {
3960 irqtime_account_process_tick(p, user_tick, rq);
3961 return;
3962 }
3963
79741dd3 3964 if (user_tick)
a42548a1 3965 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3966 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3967 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3968 one_jiffy_scaled);
3969 else
a42548a1 3970 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3971}
3972
3973/*
3974 * Account multiple ticks of steal time.
3975 * @p: the process from which the cpu time has been stolen
3976 * @ticks: number of stolen ticks
3977 */
3978void account_steal_ticks(unsigned long ticks)
3979{
3980 account_steal_time(jiffies_to_cputime(ticks));
3981}
3982
3983/*
3984 * Account multiple ticks of idle time.
3985 * @ticks: number of stolen ticks
3986 */
3987void account_idle_ticks(unsigned long ticks)
3988{
abb74cef
VP
3989
3990 if (sched_clock_irqtime) {
3991 irqtime_account_idle_ticks(ticks);
3992 return;
3993 }
3994
79741dd3 3995 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3996}
3997
79741dd3
MS
3998#endif
3999
49048622
BS
4000/*
4001 * Use precise platform statistics if available:
4002 */
4003#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 4004void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4005{
d99ca3b9
HS
4006 *ut = p->utime;
4007 *st = p->stime;
49048622
BS
4008}
4009
0cf55e1e 4010void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4011{
0cf55e1e
HS
4012 struct task_cputime cputime;
4013
4014 thread_group_cputime(p, &cputime);
4015
4016 *ut = cputime.utime;
4017 *st = cputime.stime;
49048622
BS
4018}
4019#else
761b1d26
HS
4020
4021#ifndef nsecs_to_cputime
b7b20df9 4022# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
4023#endif
4024
d180c5bc 4025void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4026{
d99ca3b9 4027 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
4028
4029 /*
4030 * Use CFS's precise accounting:
4031 */
d180c5bc 4032 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
4033
4034 if (total) {
e75e863d 4035 u64 temp = rtime;
d180c5bc 4036
e75e863d 4037 temp *= utime;
49048622 4038 do_div(temp, total);
d180c5bc
HS
4039 utime = (cputime_t)temp;
4040 } else
4041 utime = rtime;
49048622 4042
d180c5bc
HS
4043 /*
4044 * Compare with previous values, to keep monotonicity:
4045 */
761b1d26 4046 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 4047 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 4048
d99ca3b9
HS
4049 *ut = p->prev_utime;
4050 *st = p->prev_stime;
49048622
BS
4051}
4052
0cf55e1e
HS
4053/*
4054 * Must be called with siglock held.
4055 */
4056void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4057{
0cf55e1e
HS
4058 struct signal_struct *sig = p->signal;
4059 struct task_cputime cputime;
4060 cputime_t rtime, utime, total;
49048622 4061
0cf55e1e 4062 thread_group_cputime(p, &cputime);
49048622 4063
0cf55e1e
HS
4064 total = cputime_add(cputime.utime, cputime.stime);
4065 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 4066
0cf55e1e 4067 if (total) {
e75e863d 4068 u64 temp = rtime;
49048622 4069
e75e863d 4070 temp *= cputime.utime;
0cf55e1e
HS
4071 do_div(temp, total);
4072 utime = (cputime_t)temp;
4073 } else
4074 utime = rtime;
4075
4076 sig->prev_utime = max(sig->prev_utime, utime);
4077 sig->prev_stime = max(sig->prev_stime,
4078 cputime_sub(rtime, sig->prev_utime));
4079
4080 *ut = sig->prev_utime;
4081 *st = sig->prev_stime;
49048622 4082}
49048622 4083#endif
49048622 4084
7835b98b
CL
4085/*
4086 * This function gets called by the timer code, with HZ frequency.
4087 * We call it with interrupts disabled.
7835b98b
CL
4088 */
4089void scheduler_tick(void)
4090{
7835b98b
CL
4091 int cpu = smp_processor_id();
4092 struct rq *rq = cpu_rq(cpu);
dd41f596 4093 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4094
4095 sched_clock_tick();
dd41f596 4096
05fa785c 4097 raw_spin_lock(&rq->lock);
3e51f33f 4098 update_rq_clock(rq);
fdf3e95d 4099 update_cpu_load_active(rq);
fa85ae24 4100 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4101 raw_spin_unlock(&rq->lock);
7835b98b 4102
e9d2b064 4103 perf_event_task_tick();
e220d2dc 4104
e418e1c2 4105#ifdef CONFIG_SMP
dd41f596
IM
4106 rq->idle_at_tick = idle_cpu(cpu);
4107 trigger_load_balance(rq, cpu);
e418e1c2 4108#endif
1da177e4
LT
4109}
4110
132380a0 4111notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4112{
4113 if (in_lock_functions(addr)) {
4114 addr = CALLER_ADDR2;
4115 if (in_lock_functions(addr))
4116 addr = CALLER_ADDR3;
4117 }
4118 return addr;
4119}
1da177e4 4120
7e49fcce
SR
4121#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4122 defined(CONFIG_PREEMPT_TRACER))
4123
43627582 4124void __kprobes add_preempt_count(int val)
1da177e4 4125{
6cd8a4bb 4126#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4127 /*
4128 * Underflow?
4129 */
9a11b49a
IM
4130 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4131 return;
6cd8a4bb 4132#endif
1da177e4 4133 preempt_count() += val;
6cd8a4bb 4134#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4135 /*
4136 * Spinlock count overflowing soon?
4137 */
33859f7f
MOS
4138 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4139 PREEMPT_MASK - 10);
6cd8a4bb
SR
4140#endif
4141 if (preempt_count() == val)
4142 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4143}
4144EXPORT_SYMBOL(add_preempt_count);
4145
43627582 4146void __kprobes sub_preempt_count(int val)
1da177e4 4147{
6cd8a4bb 4148#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4149 /*
4150 * Underflow?
4151 */
01e3eb82 4152 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4153 return;
1da177e4
LT
4154 /*
4155 * Is the spinlock portion underflowing?
4156 */
9a11b49a
IM
4157 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4158 !(preempt_count() & PREEMPT_MASK)))
4159 return;
6cd8a4bb 4160#endif
9a11b49a 4161
6cd8a4bb
SR
4162 if (preempt_count() == val)
4163 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4164 preempt_count() -= val;
4165}
4166EXPORT_SYMBOL(sub_preempt_count);
4167
4168#endif
4169
4170/*
dd41f596 4171 * Print scheduling while atomic bug:
1da177e4 4172 */
dd41f596 4173static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4174{
838225b4
SS
4175 struct pt_regs *regs = get_irq_regs();
4176
3df0fc5b
PZ
4177 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4178 prev->comm, prev->pid, preempt_count());
838225b4 4179
dd41f596 4180 debug_show_held_locks(prev);
e21f5b15 4181 print_modules();
dd41f596
IM
4182 if (irqs_disabled())
4183 print_irqtrace_events(prev);
838225b4
SS
4184
4185 if (regs)
4186 show_regs(regs);
4187 else
4188 dump_stack();
dd41f596 4189}
1da177e4 4190
dd41f596
IM
4191/*
4192 * Various schedule()-time debugging checks and statistics:
4193 */
4194static inline void schedule_debug(struct task_struct *prev)
4195{
1da177e4 4196 /*
41a2d6cf 4197 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4198 * schedule() atomically, we ignore that path for now.
4199 * Otherwise, whine if we are scheduling when we should not be.
4200 */
3f33a7ce 4201 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4202 __schedule_bug(prev);
4203
1da177e4
LT
4204 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4205
2d72376b 4206 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
4207}
4208
6cecd084 4209static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4210{
61eadef6 4211 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 4212 update_rq_clock(rq);
6cecd084 4213 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4214}
4215
dd41f596
IM
4216/*
4217 * Pick up the highest-prio task:
4218 */
4219static inline struct task_struct *
b67802ea 4220pick_next_task(struct rq *rq)
dd41f596 4221{
5522d5d5 4222 const struct sched_class *class;
dd41f596 4223 struct task_struct *p;
1da177e4
LT
4224
4225 /*
dd41f596
IM
4226 * Optimization: we know that if all tasks are in
4227 * the fair class we can call that function directly:
1da177e4 4228 */
dd41f596 4229 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4230 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4231 if (likely(p))
4232 return p;
1da177e4
LT
4233 }
4234
34f971f6 4235 for_each_class(class) {
fb8d4724 4236 p = class->pick_next_task(rq);
dd41f596
IM
4237 if (p)
4238 return p;
dd41f596 4239 }
34f971f6
PZ
4240
4241 BUG(); /* the idle class will always have a runnable task */
dd41f596 4242}
1da177e4 4243
dd41f596
IM
4244/*
4245 * schedule() is the main scheduler function.
4246 */
ff743345 4247asmlinkage void __sched schedule(void)
dd41f596
IM
4248{
4249 struct task_struct *prev, *next;
67ca7bde 4250 unsigned long *switch_count;
dd41f596 4251 struct rq *rq;
31656519 4252 int cpu;
dd41f596 4253
ff743345
PZ
4254need_resched:
4255 preempt_disable();
dd41f596
IM
4256 cpu = smp_processor_id();
4257 rq = cpu_rq(cpu);
25502a6c 4258 rcu_note_context_switch(cpu);
dd41f596 4259 prev = rq->curr;
dd41f596 4260
dd41f596 4261 schedule_debug(prev);
1da177e4 4262
31656519 4263 if (sched_feat(HRTICK))
f333fdc9 4264 hrtick_clear(rq);
8f4d37ec 4265
05fa785c 4266 raw_spin_lock_irq(&rq->lock);
1da177e4 4267
246d86b5 4268 switch_count = &prev->nivcsw;
1da177e4 4269 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4270 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4271 prev->state = TASK_RUNNING;
21aa9af0 4272 } else {
2acca55e
PZ
4273 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4274 prev->on_rq = 0;
4275
21aa9af0 4276 /*
2acca55e
PZ
4277 * If a worker went to sleep, notify and ask workqueue
4278 * whether it wants to wake up a task to maintain
4279 * concurrency.
21aa9af0
TH
4280 */
4281 if (prev->flags & PF_WQ_WORKER) {
4282 struct task_struct *to_wakeup;
4283
4284 to_wakeup = wq_worker_sleeping(prev, cpu);
4285 if (to_wakeup)
4286 try_to_wake_up_local(to_wakeup);
4287 }
fd2f4419 4288
6631e635 4289 /*
2acca55e
PZ
4290 * If we are going to sleep and we have plugged IO
4291 * queued, make sure to submit it to avoid deadlocks.
6631e635
LT
4292 */
4293 if (blk_needs_flush_plug(prev)) {
4294 raw_spin_unlock(&rq->lock);
a237c1c5 4295 blk_schedule_flush_plug(prev);
6631e635
LT
4296 raw_spin_lock(&rq->lock);
4297 }
21aa9af0 4298 }
dd41f596 4299 switch_count = &prev->nvcsw;
1da177e4
LT
4300 }
4301
3f029d3c 4302 pre_schedule(rq, prev);
f65eda4f 4303
dd41f596 4304 if (unlikely(!rq->nr_running))
1da177e4 4305 idle_balance(cpu, rq);
1da177e4 4306
df1c99d4 4307 put_prev_task(rq, prev);
b67802ea 4308 next = pick_next_task(rq);
f26f9aff
MG
4309 clear_tsk_need_resched(prev);
4310 rq->skip_clock_update = 0;
1da177e4 4311
1da177e4 4312 if (likely(prev != next)) {
1da177e4
LT
4313 rq->nr_switches++;
4314 rq->curr = next;
4315 ++*switch_count;
4316
dd41f596 4317 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4318 /*
246d86b5
ON
4319 * The context switch have flipped the stack from under us
4320 * and restored the local variables which were saved when
4321 * this task called schedule() in the past. prev == current
4322 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4323 */
4324 cpu = smp_processor_id();
4325 rq = cpu_rq(cpu);
1da177e4 4326 } else
05fa785c 4327 raw_spin_unlock_irq(&rq->lock);
1da177e4 4328
3f029d3c 4329 post_schedule(rq);
1da177e4 4330
1da177e4 4331 preempt_enable_no_resched();
ff743345 4332 if (need_resched())
1da177e4
LT
4333 goto need_resched;
4334}
1da177e4
LT
4335EXPORT_SYMBOL(schedule);
4336
c08f7829 4337#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4338
c6eb3dda
PZ
4339static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4340{
4341 bool ret = false;
0d66bf6d 4342
c6eb3dda
PZ
4343 rcu_read_lock();
4344 if (lock->owner != owner)
4345 goto fail;
0d66bf6d
PZ
4346
4347 /*
c6eb3dda
PZ
4348 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4349 * lock->owner still matches owner, if that fails, owner might
4350 * point to free()d memory, if it still matches, the rcu_read_lock()
4351 * ensures the memory stays valid.
0d66bf6d 4352 */
c6eb3dda 4353 barrier();
0d66bf6d 4354
c6eb3dda
PZ
4355 ret = owner->on_cpu;
4356fail:
4357 rcu_read_unlock();
0d66bf6d 4358
c6eb3dda
PZ
4359 return ret;
4360}
0d66bf6d 4361
c6eb3dda
PZ
4362/*
4363 * Look out! "owner" is an entirely speculative pointer
4364 * access and not reliable.
4365 */
4366int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4367{
4368 if (!sched_feat(OWNER_SPIN))
4369 return 0;
0d66bf6d 4370
c6eb3dda
PZ
4371 while (owner_running(lock, owner)) {
4372 if (need_resched())
0d66bf6d
PZ
4373 return 0;
4374
335d7afb 4375 arch_mutex_cpu_relax();
0d66bf6d 4376 }
4b402210 4377
c6eb3dda
PZ
4378 /*
4379 * If the owner changed to another task there is likely
4380 * heavy contention, stop spinning.
4381 */
4382 if (lock->owner)
4383 return 0;
4384
0d66bf6d
PZ
4385 return 1;
4386}
4387#endif
4388
1da177e4
LT
4389#ifdef CONFIG_PREEMPT
4390/*
2ed6e34f 4391 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4392 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4393 * occur there and call schedule directly.
4394 */
d1f74e20 4395asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4396{
4397 struct thread_info *ti = current_thread_info();
6478d880 4398
1da177e4
LT
4399 /*
4400 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4401 * we do not want to preempt the current task. Just return..
1da177e4 4402 */
beed33a8 4403 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4404 return;
4405
3a5c359a 4406 do {
d1f74e20 4407 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4408 schedule();
d1f74e20 4409 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4410
3a5c359a
AK
4411 /*
4412 * Check again in case we missed a preemption opportunity
4413 * between schedule and now.
4414 */
4415 barrier();
5ed0cec0 4416 } while (need_resched());
1da177e4 4417}
1da177e4
LT
4418EXPORT_SYMBOL(preempt_schedule);
4419
4420/*
2ed6e34f 4421 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4422 * off of irq context.
4423 * Note, that this is called and return with irqs disabled. This will
4424 * protect us against recursive calling from irq.
4425 */
4426asmlinkage void __sched preempt_schedule_irq(void)
4427{
4428 struct thread_info *ti = current_thread_info();
6478d880 4429
2ed6e34f 4430 /* Catch callers which need to be fixed */
1da177e4
LT
4431 BUG_ON(ti->preempt_count || !irqs_disabled());
4432
3a5c359a
AK
4433 do {
4434 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4435 local_irq_enable();
4436 schedule();
4437 local_irq_disable();
3a5c359a 4438 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4439
3a5c359a
AK
4440 /*
4441 * Check again in case we missed a preemption opportunity
4442 * between schedule and now.
4443 */
4444 barrier();
5ed0cec0 4445 } while (need_resched());
1da177e4
LT
4446}
4447
4448#endif /* CONFIG_PREEMPT */
4449
63859d4f 4450int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4451 void *key)
1da177e4 4452{
63859d4f 4453 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4454}
1da177e4
LT
4455EXPORT_SYMBOL(default_wake_function);
4456
4457/*
41a2d6cf
IM
4458 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4459 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4460 * number) then we wake all the non-exclusive tasks and one exclusive task.
4461 *
4462 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4463 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4464 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4465 */
78ddb08f 4466static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4467 int nr_exclusive, int wake_flags, void *key)
1da177e4 4468{
2e45874c 4469 wait_queue_t *curr, *next;
1da177e4 4470
2e45874c 4471 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4472 unsigned flags = curr->flags;
4473
63859d4f 4474 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4475 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4476 break;
4477 }
4478}
4479
4480/**
4481 * __wake_up - wake up threads blocked on a waitqueue.
4482 * @q: the waitqueue
4483 * @mode: which threads
4484 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4485 * @key: is directly passed to the wakeup function
50fa610a
DH
4486 *
4487 * It may be assumed that this function implies a write memory barrier before
4488 * changing the task state if and only if any tasks are woken up.
1da177e4 4489 */
7ad5b3a5 4490void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4491 int nr_exclusive, void *key)
1da177e4
LT
4492{
4493 unsigned long flags;
4494
4495 spin_lock_irqsave(&q->lock, flags);
4496 __wake_up_common(q, mode, nr_exclusive, 0, key);
4497 spin_unlock_irqrestore(&q->lock, flags);
4498}
1da177e4
LT
4499EXPORT_SYMBOL(__wake_up);
4500
4501/*
4502 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4503 */
7ad5b3a5 4504void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4505{
4506 __wake_up_common(q, mode, 1, 0, NULL);
4507}
22c43c81 4508EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4509
4ede816a
DL
4510void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4511{
4512 __wake_up_common(q, mode, 1, 0, key);
4513}
bf294b41 4514EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4515
1da177e4 4516/**
4ede816a 4517 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4518 * @q: the waitqueue
4519 * @mode: which threads
4520 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4521 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4522 *
4523 * The sync wakeup differs that the waker knows that it will schedule
4524 * away soon, so while the target thread will be woken up, it will not
4525 * be migrated to another CPU - ie. the two threads are 'synchronized'
4526 * with each other. This can prevent needless bouncing between CPUs.
4527 *
4528 * On UP it can prevent extra preemption.
50fa610a
DH
4529 *
4530 * It may be assumed that this function implies a write memory barrier before
4531 * changing the task state if and only if any tasks are woken up.
1da177e4 4532 */
4ede816a
DL
4533void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4534 int nr_exclusive, void *key)
1da177e4
LT
4535{
4536 unsigned long flags;
7d478721 4537 int wake_flags = WF_SYNC;
1da177e4
LT
4538
4539 if (unlikely(!q))
4540 return;
4541
4542 if (unlikely(!nr_exclusive))
7d478721 4543 wake_flags = 0;
1da177e4
LT
4544
4545 spin_lock_irqsave(&q->lock, flags);
7d478721 4546 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4547 spin_unlock_irqrestore(&q->lock, flags);
4548}
4ede816a
DL
4549EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4550
4551/*
4552 * __wake_up_sync - see __wake_up_sync_key()
4553 */
4554void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4555{
4556 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4557}
1da177e4
LT
4558EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4559
65eb3dc6
KD
4560/**
4561 * complete: - signals a single thread waiting on this completion
4562 * @x: holds the state of this particular completion
4563 *
4564 * This will wake up a single thread waiting on this completion. Threads will be
4565 * awakened in the same order in which they were queued.
4566 *
4567 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4568 *
4569 * It may be assumed that this function implies a write memory barrier before
4570 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4571 */
b15136e9 4572void complete(struct completion *x)
1da177e4
LT
4573{
4574 unsigned long flags;
4575
4576 spin_lock_irqsave(&x->wait.lock, flags);
4577 x->done++;
d9514f6c 4578 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4579 spin_unlock_irqrestore(&x->wait.lock, flags);
4580}
4581EXPORT_SYMBOL(complete);
4582
65eb3dc6
KD
4583/**
4584 * complete_all: - signals all threads waiting on this completion
4585 * @x: holds the state of this particular completion
4586 *
4587 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4588 *
4589 * It may be assumed that this function implies a write memory barrier before
4590 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4591 */
b15136e9 4592void complete_all(struct completion *x)
1da177e4
LT
4593{
4594 unsigned long flags;
4595
4596 spin_lock_irqsave(&x->wait.lock, flags);
4597 x->done += UINT_MAX/2;
d9514f6c 4598 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4599 spin_unlock_irqrestore(&x->wait.lock, flags);
4600}
4601EXPORT_SYMBOL(complete_all);
4602
8cbbe86d
AK
4603static inline long __sched
4604do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4605{
1da177e4
LT
4606 if (!x->done) {
4607 DECLARE_WAITQUEUE(wait, current);
4608
a93d2f17 4609 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4610 do {
94d3d824 4611 if (signal_pending_state(state, current)) {
ea71a546
ON
4612 timeout = -ERESTARTSYS;
4613 break;
8cbbe86d
AK
4614 }
4615 __set_current_state(state);
1da177e4
LT
4616 spin_unlock_irq(&x->wait.lock);
4617 timeout = schedule_timeout(timeout);
4618 spin_lock_irq(&x->wait.lock);
ea71a546 4619 } while (!x->done && timeout);
1da177e4 4620 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4621 if (!x->done)
4622 return timeout;
1da177e4
LT
4623 }
4624 x->done--;
ea71a546 4625 return timeout ?: 1;
1da177e4 4626}
1da177e4 4627
8cbbe86d
AK
4628static long __sched
4629wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4630{
1da177e4
LT
4631 might_sleep();
4632
4633 spin_lock_irq(&x->wait.lock);
8cbbe86d 4634 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4635 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4636 return timeout;
4637}
1da177e4 4638
65eb3dc6
KD
4639/**
4640 * wait_for_completion: - waits for completion of a task
4641 * @x: holds the state of this particular completion
4642 *
4643 * This waits to be signaled for completion of a specific task. It is NOT
4644 * interruptible and there is no timeout.
4645 *
4646 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4647 * and interrupt capability. Also see complete().
4648 */
b15136e9 4649void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4650{
4651 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4652}
8cbbe86d 4653EXPORT_SYMBOL(wait_for_completion);
1da177e4 4654
65eb3dc6
KD
4655/**
4656 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4657 * @x: holds the state of this particular completion
4658 * @timeout: timeout value in jiffies
4659 *
4660 * This waits for either a completion of a specific task to be signaled or for a
4661 * specified timeout to expire. The timeout is in jiffies. It is not
4662 * interruptible.
4663 */
b15136e9 4664unsigned long __sched
8cbbe86d 4665wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4666{
8cbbe86d 4667 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4668}
8cbbe86d 4669EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4670
65eb3dc6
KD
4671/**
4672 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4673 * @x: holds the state of this particular completion
4674 *
4675 * This waits for completion of a specific task to be signaled. It is
4676 * interruptible.
4677 */
8cbbe86d 4678int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4679{
51e97990
AK
4680 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4681 if (t == -ERESTARTSYS)
4682 return t;
4683 return 0;
0fec171c 4684}
8cbbe86d 4685EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4686
65eb3dc6
KD
4687/**
4688 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4689 * @x: holds the state of this particular completion
4690 * @timeout: timeout value in jiffies
4691 *
4692 * This waits for either a completion of a specific task to be signaled or for a
4693 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4694 */
6bf41237 4695long __sched
8cbbe86d
AK
4696wait_for_completion_interruptible_timeout(struct completion *x,
4697 unsigned long timeout)
0fec171c 4698{
8cbbe86d 4699 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4700}
8cbbe86d 4701EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4702
65eb3dc6
KD
4703/**
4704 * wait_for_completion_killable: - waits for completion of a task (killable)
4705 * @x: holds the state of this particular completion
4706 *
4707 * This waits to be signaled for completion of a specific task. It can be
4708 * interrupted by a kill signal.
4709 */
009e577e
MW
4710int __sched wait_for_completion_killable(struct completion *x)
4711{
4712 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4713 if (t == -ERESTARTSYS)
4714 return t;
4715 return 0;
4716}
4717EXPORT_SYMBOL(wait_for_completion_killable);
4718
0aa12fb4
SW
4719/**
4720 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4721 * @x: holds the state of this particular completion
4722 * @timeout: timeout value in jiffies
4723 *
4724 * This waits for either a completion of a specific task to be
4725 * signaled or for a specified timeout to expire. It can be
4726 * interrupted by a kill signal. The timeout is in jiffies.
4727 */
6bf41237 4728long __sched
0aa12fb4
SW
4729wait_for_completion_killable_timeout(struct completion *x,
4730 unsigned long timeout)
4731{
4732 return wait_for_common(x, timeout, TASK_KILLABLE);
4733}
4734EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4735
be4de352
DC
4736/**
4737 * try_wait_for_completion - try to decrement a completion without blocking
4738 * @x: completion structure
4739 *
4740 * Returns: 0 if a decrement cannot be done without blocking
4741 * 1 if a decrement succeeded.
4742 *
4743 * If a completion is being used as a counting completion,
4744 * attempt to decrement the counter without blocking. This
4745 * enables us to avoid waiting if the resource the completion
4746 * is protecting is not available.
4747 */
4748bool try_wait_for_completion(struct completion *x)
4749{
7539a3b3 4750 unsigned long flags;
be4de352
DC
4751 int ret = 1;
4752
7539a3b3 4753 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4754 if (!x->done)
4755 ret = 0;
4756 else
4757 x->done--;
7539a3b3 4758 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4759 return ret;
4760}
4761EXPORT_SYMBOL(try_wait_for_completion);
4762
4763/**
4764 * completion_done - Test to see if a completion has any waiters
4765 * @x: completion structure
4766 *
4767 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4768 * 1 if there are no waiters.
4769 *
4770 */
4771bool completion_done(struct completion *x)
4772{
7539a3b3 4773 unsigned long flags;
be4de352
DC
4774 int ret = 1;
4775
7539a3b3 4776 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4777 if (!x->done)
4778 ret = 0;
7539a3b3 4779 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4780 return ret;
4781}
4782EXPORT_SYMBOL(completion_done);
4783
8cbbe86d
AK
4784static long __sched
4785sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4786{
0fec171c
IM
4787 unsigned long flags;
4788 wait_queue_t wait;
4789
4790 init_waitqueue_entry(&wait, current);
1da177e4 4791
8cbbe86d 4792 __set_current_state(state);
1da177e4 4793
8cbbe86d
AK
4794 spin_lock_irqsave(&q->lock, flags);
4795 __add_wait_queue(q, &wait);
4796 spin_unlock(&q->lock);
4797 timeout = schedule_timeout(timeout);
4798 spin_lock_irq(&q->lock);
4799 __remove_wait_queue(q, &wait);
4800 spin_unlock_irqrestore(&q->lock, flags);
4801
4802 return timeout;
4803}
4804
4805void __sched interruptible_sleep_on(wait_queue_head_t *q)
4806{
4807 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4808}
1da177e4
LT
4809EXPORT_SYMBOL(interruptible_sleep_on);
4810
0fec171c 4811long __sched
95cdf3b7 4812interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4813{
8cbbe86d 4814 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4815}
1da177e4
LT
4816EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4817
0fec171c 4818void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4819{
8cbbe86d 4820 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4821}
1da177e4
LT
4822EXPORT_SYMBOL(sleep_on);
4823
0fec171c 4824long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4825{
8cbbe86d 4826 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4827}
1da177e4
LT
4828EXPORT_SYMBOL(sleep_on_timeout);
4829
b29739f9
IM
4830#ifdef CONFIG_RT_MUTEXES
4831
4832/*
4833 * rt_mutex_setprio - set the current priority of a task
4834 * @p: task
4835 * @prio: prio value (kernel-internal form)
4836 *
4837 * This function changes the 'effective' priority of a task. It does
4838 * not touch ->normal_prio like __setscheduler().
4839 *
4840 * Used by the rt_mutex code to implement priority inheritance logic.
4841 */
36c8b586 4842void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4843{
83b699ed 4844 int oldprio, on_rq, running;
70b97a7f 4845 struct rq *rq;
83ab0aa0 4846 const struct sched_class *prev_class;
b29739f9
IM
4847
4848 BUG_ON(prio < 0 || prio > MAX_PRIO);
4849
0122ec5b 4850 rq = __task_rq_lock(p);
b29739f9 4851
a8027073 4852 trace_sched_pi_setprio(p, prio);
d5f9f942 4853 oldprio = p->prio;
83ab0aa0 4854 prev_class = p->sched_class;
fd2f4419 4855 on_rq = p->on_rq;
051a1d1a 4856 running = task_current(rq, p);
0e1f3483 4857 if (on_rq)
69be72c1 4858 dequeue_task(rq, p, 0);
0e1f3483
HS
4859 if (running)
4860 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4861
4862 if (rt_prio(prio))
4863 p->sched_class = &rt_sched_class;
4864 else
4865 p->sched_class = &fair_sched_class;
4866
b29739f9
IM
4867 p->prio = prio;
4868
0e1f3483
HS
4869 if (running)
4870 p->sched_class->set_curr_task(rq);
da7a735e 4871 if (on_rq)
371fd7e7 4872 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4873
da7a735e 4874 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4875 __task_rq_unlock(rq);
b29739f9
IM
4876}
4877
4878#endif
4879
36c8b586 4880void set_user_nice(struct task_struct *p, long nice)
1da177e4 4881{
dd41f596 4882 int old_prio, delta, on_rq;
1da177e4 4883 unsigned long flags;
70b97a7f 4884 struct rq *rq;
1da177e4
LT
4885
4886 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4887 return;
4888 /*
4889 * We have to be careful, if called from sys_setpriority(),
4890 * the task might be in the middle of scheduling on another CPU.
4891 */
4892 rq = task_rq_lock(p, &flags);
4893 /*
4894 * The RT priorities are set via sched_setscheduler(), but we still
4895 * allow the 'normal' nice value to be set - but as expected
4896 * it wont have any effect on scheduling until the task is
dd41f596 4897 * SCHED_FIFO/SCHED_RR:
1da177e4 4898 */
e05606d3 4899 if (task_has_rt_policy(p)) {
1da177e4
LT
4900 p->static_prio = NICE_TO_PRIO(nice);
4901 goto out_unlock;
4902 }
fd2f4419 4903 on_rq = p->on_rq;
c09595f6 4904 if (on_rq)
69be72c1 4905 dequeue_task(rq, p, 0);
1da177e4 4906
1da177e4 4907 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4908 set_load_weight(p);
b29739f9
IM
4909 old_prio = p->prio;
4910 p->prio = effective_prio(p);
4911 delta = p->prio - old_prio;
1da177e4 4912
dd41f596 4913 if (on_rq) {
371fd7e7 4914 enqueue_task(rq, p, 0);
1da177e4 4915 /*
d5f9f942
AM
4916 * If the task increased its priority or is running and
4917 * lowered its priority, then reschedule its CPU:
1da177e4 4918 */
d5f9f942 4919 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4920 resched_task(rq->curr);
4921 }
4922out_unlock:
0122ec5b 4923 task_rq_unlock(rq, p, &flags);
1da177e4 4924}
1da177e4
LT
4925EXPORT_SYMBOL(set_user_nice);
4926
e43379f1
MM
4927/*
4928 * can_nice - check if a task can reduce its nice value
4929 * @p: task
4930 * @nice: nice value
4931 */
36c8b586 4932int can_nice(const struct task_struct *p, const int nice)
e43379f1 4933{
024f4747
MM
4934 /* convert nice value [19,-20] to rlimit style value [1,40] */
4935 int nice_rlim = 20 - nice;
48f24c4d 4936
78d7d407 4937 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4938 capable(CAP_SYS_NICE));
4939}
4940
1da177e4
LT
4941#ifdef __ARCH_WANT_SYS_NICE
4942
4943/*
4944 * sys_nice - change the priority of the current process.
4945 * @increment: priority increment
4946 *
4947 * sys_setpriority is a more generic, but much slower function that
4948 * does similar things.
4949 */
5add95d4 4950SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4951{
48f24c4d 4952 long nice, retval;
1da177e4
LT
4953
4954 /*
4955 * Setpriority might change our priority at the same moment.
4956 * We don't have to worry. Conceptually one call occurs first
4957 * and we have a single winner.
4958 */
e43379f1
MM
4959 if (increment < -40)
4960 increment = -40;
1da177e4
LT
4961 if (increment > 40)
4962 increment = 40;
4963
2b8f836f 4964 nice = TASK_NICE(current) + increment;
1da177e4
LT
4965 if (nice < -20)
4966 nice = -20;
4967 if (nice > 19)
4968 nice = 19;
4969
e43379f1
MM
4970 if (increment < 0 && !can_nice(current, nice))
4971 return -EPERM;
4972
1da177e4
LT
4973 retval = security_task_setnice(current, nice);
4974 if (retval)
4975 return retval;
4976
4977 set_user_nice(current, nice);
4978 return 0;
4979}
4980
4981#endif
4982
4983/**
4984 * task_prio - return the priority value of a given task.
4985 * @p: the task in question.
4986 *
4987 * This is the priority value as seen by users in /proc.
4988 * RT tasks are offset by -200. Normal tasks are centered
4989 * around 0, value goes from -16 to +15.
4990 */
36c8b586 4991int task_prio(const struct task_struct *p)
1da177e4
LT
4992{
4993 return p->prio - MAX_RT_PRIO;
4994}
4995
4996/**
4997 * task_nice - return the nice value of a given task.
4998 * @p: the task in question.
4999 */
36c8b586 5000int task_nice(const struct task_struct *p)
1da177e4
LT
5001{
5002 return TASK_NICE(p);
5003}
150d8bed 5004EXPORT_SYMBOL(task_nice);
1da177e4
LT
5005
5006/**
5007 * idle_cpu - is a given cpu idle currently?
5008 * @cpu: the processor in question.
5009 */
5010int idle_cpu(int cpu)
5011{
5012 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5013}
5014
1da177e4
LT
5015/**
5016 * idle_task - return the idle task for a given cpu.
5017 * @cpu: the processor in question.
5018 */
36c8b586 5019struct task_struct *idle_task(int cpu)
1da177e4
LT
5020{
5021 return cpu_rq(cpu)->idle;
5022}
5023
5024/**
5025 * find_process_by_pid - find a process with a matching PID value.
5026 * @pid: the pid in question.
5027 */
a9957449 5028static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5029{
228ebcbe 5030 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5031}
5032
5033/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5034static void
5035__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5036{
1da177e4
LT
5037 p->policy = policy;
5038 p->rt_priority = prio;
b29739f9
IM
5039 p->normal_prio = normal_prio(p);
5040 /* we are holding p->pi_lock already */
5041 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
5042 if (rt_prio(p->prio))
5043 p->sched_class = &rt_sched_class;
5044 else
5045 p->sched_class = &fair_sched_class;
2dd73a4f 5046 set_load_weight(p);
1da177e4
LT
5047}
5048
c69e8d9c
DH
5049/*
5050 * check the target process has a UID that matches the current process's
5051 */
5052static bool check_same_owner(struct task_struct *p)
5053{
5054 const struct cred *cred = current_cred(), *pcred;
5055 bool match;
5056
5057 rcu_read_lock();
5058 pcred = __task_cred(p);
b0e77598
SH
5059 if (cred->user->user_ns == pcred->user->user_ns)
5060 match = (cred->euid == pcred->euid ||
5061 cred->euid == pcred->uid);
5062 else
5063 match = false;
c69e8d9c
DH
5064 rcu_read_unlock();
5065 return match;
5066}
5067
961ccddd 5068static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5069 const struct sched_param *param, bool user)
1da177e4 5070{
83b699ed 5071 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5072 unsigned long flags;
83ab0aa0 5073 const struct sched_class *prev_class;
70b97a7f 5074 struct rq *rq;
ca94c442 5075 int reset_on_fork;
1da177e4 5076
66e5393a
SR
5077 /* may grab non-irq protected spin_locks */
5078 BUG_ON(in_interrupt());
1da177e4
LT
5079recheck:
5080 /* double check policy once rq lock held */
ca94c442
LP
5081 if (policy < 0) {
5082 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5083 policy = oldpolicy = p->policy;
ca94c442
LP
5084 } else {
5085 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5086 policy &= ~SCHED_RESET_ON_FORK;
5087
5088 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5089 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5090 policy != SCHED_IDLE)
5091 return -EINVAL;
5092 }
5093
1da177e4
LT
5094 /*
5095 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5096 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5097 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5098 */
5099 if (param->sched_priority < 0 ||
95cdf3b7 5100 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5101 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5102 return -EINVAL;
e05606d3 5103 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5104 return -EINVAL;
5105
37e4ab3f
OC
5106 /*
5107 * Allow unprivileged RT tasks to decrease priority:
5108 */
961ccddd 5109 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5110 if (rt_policy(policy)) {
a44702e8
ON
5111 unsigned long rlim_rtprio =
5112 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5113
5114 /* can't set/change the rt policy */
5115 if (policy != p->policy && !rlim_rtprio)
5116 return -EPERM;
5117
5118 /* can't increase priority */
5119 if (param->sched_priority > p->rt_priority &&
5120 param->sched_priority > rlim_rtprio)
5121 return -EPERM;
5122 }
c02aa73b 5123
dd41f596 5124 /*
c02aa73b
DH
5125 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5126 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5127 */
c02aa73b
DH
5128 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5129 if (!can_nice(p, TASK_NICE(p)))
5130 return -EPERM;
5131 }
5fe1d75f 5132
37e4ab3f 5133 /* can't change other user's priorities */
c69e8d9c 5134 if (!check_same_owner(p))
37e4ab3f 5135 return -EPERM;
ca94c442
LP
5136
5137 /* Normal users shall not reset the sched_reset_on_fork flag */
5138 if (p->sched_reset_on_fork && !reset_on_fork)
5139 return -EPERM;
37e4ab3f 5140 }
1da177e4 5141
725aad24 5142 if (user) {
b0ae1981 5143 retval = security_task_setscheduler(p);
725aad24
JF
5144 if (retval)
5145 return retval;
5146 }
5147
b29739f9
IM
5148 /*
5149 * make sure no PI-waiters arrive (or leave) while we are
5150 * changing the priority of the task:
0122ec5b 5151 *
25985edc 5152 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5153 * runqueue lock must be held.
5154 */
0122ec5b 5155 rq = task_rq_lock(p, &flags);
dc61b1d6 5156
34f971f6
PZ
5157 /*
5158 * Changing the policy of the stop threads its a very bad idea
5159 */
5160 if (p == rq->stop) {
0122ec5b 5161 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5162 return -EINVAL;
5163 }
5164
a51e9198
DF
5165 /*
5166 * If not changing anything there's no need to proceed further:
5167 */
5168 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5169 param->sched_priority == p->rt_priority))) {
5170
5171 __task_rq_unlock(rq);
5172 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5173 return 0;
5174 }
5175
dc61b1d6
PZ
5176#ifdef CONFIG_RT_GROUP_SCHED
5177 if (user) {
5178 /*
5179 * Do not allow realtime tasks into groups that have no runtime
5180 * assigned.
5181 */
5182 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5183 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5184 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5185 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5186 return -EPERM;
5187 }
5188 }
5189#endif
5190
1da177e4
LT
5191 /* recheck policy now with rq lock held */
5192 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5193 policy = oldpolicy = -1;
0122ec5b 5194 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5195 goto recheck;
5196 }
fd2f4419 5197 on_rq = p->on_rq;
051a1d1a 5198 running = task_current(rq, p);
0e1f3483 5199 if (on_rq)
2e1cb74a 5200 deactivate_task(rq, p, 0);
0e1f3483
HS
5201 if (running)
5202 p->sched_class->put_prev_task(rq, p);
f6b53205 5203
ca94c442
LP
5204 p->sched_reset_on_fork = reset_on_fork;
5205
1da177e4 5206 oldprio = p->prio;
83ab0aa0 5207 prev_class = p->sched_class;
dd41f596 5208 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5209
0e1f3483
HS
5210 if (running)
5211 p->sched_class->set_curr_task(rq);
da7a735e 5212 if (on_rq)
dd41f596 5213 activate_task(rq, p, 0);
cb469845 5214
da7a735e 5215 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5216 task_rq_unlock(rq, p, &flags);
b29739f9 5217
95e02ca9
TG
5218 rt_mutex_adjust_pi(p);
5219
1da177e4
LT
5220 return 0;
5221}
961ccddd
RR
5222
5223/**
5224 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5225 * @p: the task in question.
5226 * @policy: new policy.
5227 * @param: structure containing the new RT priority.
5228 *
5229 * NOTE that the task may be already dead.
5230 */
5231int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5232 const struct sched_param *param)
961ccddd
RR
5233{
5234 return __sched_setscheduler(p, policy, param, true);
5235}
1da177e4
LT
5236EXPORT_SYMBOL_GPL(sched_setscheduler);
5237
961ccddd
RR
5238/**
5239 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5240 * @p: the task in question.
5241 * @policy: new policy.
5242 * @param: structure containing the new RT priority.
5243 *
5244 * Just like sched_setscheduler, only don't bother checking if the
5245 * current context has permission. For example, this is needed in
5246 * stop_machine(): we create temporary high priority worker threads,
5247 * but our caller might not have that capability.
5248 */
5249int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5250 const struct sched_param *param)
961ccddd
RR
5251{
5252 return __sched_setscheduler(p, policy, param, false);
5253}
5254
95cdf3b7
IM
5255static int
5256do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5257{
1da177e4
LT
5258 struct sched_param lparam;
5259 struct task_struct *p;
36c8b586 5260 int retval;
1da177e4
LT
5261
5262 if (!param || pid < 0)
5263 return -EINVAL;
5264 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5265 return -EFAULT;
5fe1d75f
ON
5266
5267 rcu_read_lock();
5268 retval = -ESRCH;
1da177e4 5269 p = find_process_by_pid(pid);
5fe1d75f
ON
5270 if (p != NULL)
5271 retval = sched_setscheduler(p, policy, &lparam);
5272 rcu_read_unlock();
36c8b586 5273
1da177e4
LT
5274 return retval;
5275}
5276
5277/**
5278 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5279 * @pid: the pid in question.
5280 * @policy: new policy.
5281 * @param: structure containing the new RT priority.
5282 */
5add95d4
HC
5283SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5284 struct sched_param __user *, param)
1da177e4 5285{
c21761f1
JB
5286 /* negative values for policy are not valid */
5287 if (policy < 0)
5288 return -EINVAL;
5289
1da177e4
LT
5290 return do_sched_setscheduler(pid, policy, param);
5291}
5292
5293/**
5294 * sys_sched_setparam - set/change the RT priority of a thread
5295 * @pid: the pid in question.
5296 * @param: structure containing the new RT priority.
5297 */
5add95d4 5298SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5299{
5300 return do_sched_setscheduler(pid, -1, param);
5301}
5302
5303/**
5304 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5305 * @pid: the pid in question.
5306 */
5add95d4 5307SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5308{
36c8b586 5309 struct task_struct *p;
3a5c359a 5310 int retval;
1da177e4
LT
5311
5312 if (pid < 0)
3a5c359a 5313 return -EINVAL;
1da177e4
LT
5314
5315 retval = -ESRCH;
5fe85be0 5316 rcu_read_lock();
1da177e4
LT
5317 p = find_process_by_pid(pid);
5318 if (p) {
5319 retval = security_task_getscheduler(p);
5320 if (!retval)
ca94c442
LP
5321 retval = p->policy
5322 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5323 }
5fe85be0 5324 rcu_read_unlock();
1da177e4
LT
5325 return retval;
5326}
5327
5328/**
ca94c442 5329 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5330 * @pid: the pid in question.
5331 * @param: structure containing the RT priority.
5332 */
5add95d4 5333SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5334{
5335 struct sched_param lp;
36c8b586 5336 struct task_struct *p;
3a5c359a 5337 int retval;
1da177e4
LT
5338
5339 if (!param || pid < 0)
3a5c359a 5340 return -EINVAL;
1da177e4 5341
5fe85be0 5342 rcu_read_lock();
1da177e4
LT
5343 p = find_process_by_pid(pid);
5344 retval = -ESRCH;
5345 if (!p)
5346 goto out_unlock;
5347
5348 retval = security_task_getscheduler(p);
5349 if (retval)
5350 goto out_unlock;
5351
5352 lp.sched_priority = p->rt_priority;
5fe85be0 5353 rcu_read_unlock();
1da177e4
LT
5354
5355 /*
5356 * This one might sleep, we cannot do it with a spinlock held ...
5357 */
5358 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5359
1da177e4
LT
5360 return retval;
5361
5362out_unlock:
5fe85be0 5363 rcu_read_unlock();
1da177e4
LT
5364 return retval;
5365}
5366
96f874e2 5367long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5368{
5a16f3d3 5369 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5370 struct task_struct *p;
5371 int retval;
1da177e4 5372
95402b38 5373 get_online_cpus();
23f5d142 5374 rcu_read_lock();
1da177e4
LT
5375
5376 p = find_process_by_pid(pid);
5377 if (!p) {
23f5d142 5378 rcu_read_unlock();
95402b38 5379 put_online_cpus();
1da177e4
LT
5380 return -ESRCH;
5381 }
5382
23f5d142 5383 /* Prevent p going away */
1da177e4 5384 get_task_struct(p);
23f5d142 5385 rcu_read_unlock();
1da177e4 5386
5a16f3d3
RR
5387 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5388 retval = -ENOMEM;
5389 goto out_put_task;
5390 }
5391 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5392 retval = -ENOMEM;
5393 goto out_free_cpus_allowed;
5394 }
1da177e4 5395 retval = -EPERM;
b0e77598 5396 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5397 goto out_unlock;
5398
b0ae1981 5399 retval = security_task_setscheduler(p);
e7834f8f
DQ
5400 if (retval)
5401 goto out_unlock;
5402
5a16f3d3
RR
5403 cpuset_cpus_allowed(p, cpus_allowed);
5404 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5405again:
5a16f3d3 5406 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5407
8707d8b8 5408 if (!retval) {
5a16f3d3
RR
5409 cpuset_cpus_allowed(p, cpus_allowed);
5410 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5411 /*
5412 * We must have raced with a concurrent cpuset
5413 * update. Just reset the cpus_allowed to the
5414 * cpuset's cpus_allowed
5415 */
5a16f3d3 5416 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5417 goto again;
5418 }
5419 }
1da177e4 5420out_unlock:
5a16f3d3
RR
5421 free_cpumask_var(new_mask);
5422out_free_cpus_allowed:
5423 free_cpumask_var(cpus_allowed);
5424out_put_task:
1da177e4 5425 put_task_struct(p);
95402b38 5426 put_online_cpus();
1da177e4
LT
5427 return retval;
5428}
5429
5430static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5431 struct cpumask *new_mask)
1da177e4 5432{
96f874e2
RR
5433 if (len < cpumask_size())
5434 cpumask_clear(new_mask);
5435 else if (len > cpumask_size())
5436 len = cpumask_size();
5437
1da177e4
LT
5438 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5439}
5440
5441/**
5442 * sys_sched_setaffinity - set the cpu affinity of a process
5443 * @pid: pid of the process
5444 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5445 * @user_mask_ptr: user-space pointer to the new cpu mask
5446 */
5add95d4
HC
5447SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5448 unsigned long __user *, user_mask_ptr)
1da177e4 5449{
5a16f3d3 5450 cpumask_var_t new_mask;
1da177e4
LT
5451 int retval;
5452
5a16f3d3
RR
5453 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5454 return -ENOMEM;
1da177e4 5455
5a16f3d3
RR
5456 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5457 if (retval == 0)
5458 retval = sched_setaffinity(pid, new_mask);
5459 free_cpumask_var(new_mask);
5460 return retval;
1da177e4
LT
5461}
5462
96f874e2 5463long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5464{
36c8b586 5465 struct task_struct *p;
31605683 5466 unsigned long flags;
1da177e4 5467 int retval;
1da177e4 5468
95402b38 5469 get_online_cpus();
23f5d142 5470 rcu_read_lock();
1da177e4
LT
5471
5472 retval = -ESRCH;
5473 p = find_process_by_pid(pid);
5474 if (!p)
5475 goto out_unlock;
5476
e7834f8f
DQ
5477 retval = security_task_getscheduler(p);
5478 if (retval)
5479 goto out_unlock;
5480
013fdb80 5481 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5482 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5483 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5484
5485out_unlock:
23f5d142 5486 rcu_read_unlock();
95402b38 5487 put_online_cpus();
1da177e4 5488
9531b62f 5489 return retval;
1da177e4
LT
5490}
5491
5492/**
5493 * sys_sched_getaffinity - get the cpu affinity of a process
5494 * @pid: pid of the process
5495 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5496 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5497 */
5add95d4
HC
5498SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5499 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5500{
5501 int ret;
f17c8607 5502 cpumask_var_t mask;
1da177e4 5503
84fba5ec 5504 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5505 return -EINVAL;
5506 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5507 return -EINVAL;
5508
f17c8607
RR
5509 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5510 return -ENOMEM;
1da177e4 5511
f17c8607
RR
5512 ret = sched_getaffinity(pid, mask);
5513 if (ret == 0) {
8bc037fb 5514 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5515
5516 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5517 ret = -EFAULT;
5518 else
cd3d8031 5519 ret = retlen;
f17c8607
RR
5520 }
5521 free_cpumask_var(mask);
1da177e4 5522
f17c8607 5523 return ret;
1da177e4
LT
5524}
5525
5526/**
5527 * sys_sched_yield - yield the current processor to other threads.
5528 *
dd41f596
IM
5529 * This function yields the current CPU to other tasks. If there are no
5530 * other threads running on this CPU then this function will return.
1da177e4 5531 */
5add95d4 5532SYSCALL_DEFINE0(sched_yield)
1da177e4 5533{
70b97a7f 5534 struct rq *rq = this_rq_lock();
1da177e4 5535
2d72376b 5536 schedstat_inc(rq, yld_count);
4530d7ab 5537 current->sched_class->yield_task(rq);
1da177e4
LT
5538
5539 /*
5540 * Since we are going to call schedule() anyway, there's
5541 * no need to preempt or enable interrupts:
5542 */
5543 __release(rq->lock);
8a25d5de 5544 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5545 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5546 preempt_enable_no_resched();
5547
5548 schedule();
5549
5550 return 0;
5551}
5552
d86ee480
PZ
5553static inline int should_resched(void)
5554{
5555 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5556}
5557
e7b38404 5558static void __cond_resched(void)
1da177e4 5559{
e7aaaa69
FW
5560 add_preempt_count(PREEMPT_ACTIVE);
5561 schedule();
5562 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5563}
5564
02b67cc3 5565int __sched _cond_resched(void)
1da177e4 5566{
d86ee480 5567 if (should_resched()) {
1da177e4
LT
5568 __cond_resched();
5569 return 1;
5570 }
5571 return 0;
5572}
02b67cc3 5573EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5574
5575/*
613afbf8 5576 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5577 * call schedule, and on return reacquire the lock.
5578 *
41a2d6cf 5579 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5580 * operations here to prevent schedule() from being called twice (once via
5581 * spin_unlock(), once by hand).
5582 */
613afbf8 5583int __cond_resched_lock(spinlock_t *lock)
1da177e4 5584{
d86ee480 5585 int resched = should_resched();
6df3cecb
JK
5586 int ret = 0;
5587
f607c668
PZ
5588 lockdep_assert_held(lock);
5589
95c354fe 5590 if (spin_needbreak(lock) || resched) {
1da177e4 5591 spin_unlock(lock);
d86ee480 5592 if (resched)
95c354fe
NP
5593 __cond_resched();
5594 else
5595 cpu_relax();
6df3cecb 5596 ret = 1;
1da177e4 5597 spin_lock(lock);
1da177e4 5598 }
6df3cecb 5599 return ret;
1da177e4 5600}
613afbf8 5601EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5602
613afbf8 5603int __sched __cond_resched_softirq(void)
1da177e4
LT
5604{
5605 BUG_ON(!in_softirq());
5606
d86ee480 5607 if (should_resched()) {
98d82567 5608 local_bh_enable();
1da177e4
LT
5609 __cond_resched();
5610 local_bh_disable();
5611 return 1;
5612 }
5613 return 0;
5614}
613afbf8 5615EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5616
1da177e4
LT
5617/**
5618 * yield - yield the current processor to other threads.
5619 *
72fd4a35 5620 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5621 * thread runnable and calls sys_sched_yield().
5622 */
5623void __sched yield(void)
5624{
5625 set_current_state(TASK_RUNNING);
5626 sys_sched_yield();
5627}
1da177e4
LT
5628EXPORT_SYMBOL(yield);
5629
d95f4122
MG
5630/**
5631 * yield_to - yield the current processor to another thread in
5632 * your thread group, or accelerate that thread toward the
5633 * processor it's on.
16addf95
RD
5634 * @p: target task
5635 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5636 *
5637 * It's the caller's job to ensure that the target task struct
5638 * can't go away on us before we can do any checks.
5639 *
5640 * Returns true if we indeed boosted the target task.
5641 */
5642bool __sched yield_to(struct task_struct *p, bool preempt)
5643{
5644 struct task_struct *curr = current;
5645 struct rq *rq, *p_rq;
5646 unsigned long flags;
5647 bool yielded = 0;
5648
5649 local_irq_save(flags);
5650 rq = this_rq();
5651
5652again:
5653 p_rq = task_rq(p);
5654 double_rq_lock(rq, p_rq);
5655 while (task_rq(p) != p_rq) {
5656 double_rq_unlock(rq, p_rq);
5657 goto again;
5658 }
5659
5660 if (!curr->sched_class->yield_to_task)
5661 goto out;
5662
5663 if (curr->sched_class != p->sched_class)
5664 goto out;
5665
5666 if (task_running(p_rq, p) || p->state)
5667 goto out;
5668
5669 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5670 if (yielded) {
d95f4122 5671 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5672 /*
5673 * Make p's CPU reschedule; pick_next_entity takes care of
5674 * fairness.
5675 */
5676 if (preempt && rq != p_rq)
5677 resched_task(p_rq->curr);
5678 }
d95f4122
MG
5679
5680out:
5681 double_rq_unlock(rq, p_rq);
5682 local_irq_restore(flags);
5683
5684 if (yielded)
5685 schedule();
5686
5687 return yielded;
5688}
5689EXPORT_SYMBOL_GPL(yield_to);
5690
1da177e4 5691/*
41a2d6cf 5692 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5693 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5694 */
5695void __sched io_schedule(void)
5696{
54d35f29 5697 struct rq *rq = raw_rq();
1da177e4 5698
0ff92245 5699 delayacct_blkio_start();
1da177e4 5700 atomic_inc(&rq->nr_iowait);
73c10101 5701 blk_flush_plug(current);
8f0dfc34 5702 current->in_iowait = 1;
1da177e4 5703 schedule();
8f0dfc34 5704 current->in_iowait = 0;
1da177e4 5705 atomic_dec(&rq->nr_iowait);
0ff92245 5706 delayacct_blkio_end();
1da177e4 5707}
1da177e4
LT
5708EXPORT_SYMBOL(io_schedule);
5709
5710long __sched io_schedule_timeout(long timeout)
5711{
54d35f29 5712 struct rq *rq = raw_rq();
1da177e4
LT
5713 long ret;
5714
0ff92245 5715 delayacct_blkio_start();
1da177e4 5716 atomic_inc(&rq->nr_iowait);
73c10101 5717 blk_flush_plug(current);
8f0dfc34 5718 current->in_iowait = 1;
1da177e4 5719 ret = schedule_timeout(timeout);
8f0dfc34 5720 current->in_iowait = 0;
1da177e4 5721 atomic_dec(&rq->nr_iowait);
0ff92245 5722 delayacct_blkio_end();
1da177e4
LT
5723 return ret;
5724}
5725
5726/**
5727 * sys_sched_get_priority_max - return maximum RT priority.
5728 * @policy: scheduling class.
5729 *
5730 * this syscall returns the maximum rt_priority that can be used
5731 * by a given scheduling class.
5732 */
5add95d4 5733SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5734{
5735 int ret = -EINVAL;
5736
5737 switch (policy) {
5738 case SCHED_FIFO:
5739 case SCHED_RR:
5740 ret = MAX_USER_RT_PRIO-1;
5741 break;
5742 case SCHED_NORMAL:
b0a9499c 5743 case SCHED_BATCH:
dd41f596 5744 case SCHED_IDLE:
1da177e4
LT
5745 ret = 0;
5746 break;
5747 }
5748 return ret;
5749}
5750
5751/**
5752 * sys_sched_get_priority_min - return minimum RT priority.
5753 * @policy: scheduling class.
5754 *
5755 * this syscall returns the minimum rt_priority that can be used
5756 * by a given scheduling class.
5757 */
5add95d4 5758SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5759{
5760 int ret = -EINVAL;
5761
5762 switch (policy) {
5763 case SCHED_FIFO:
5764 case SCHED_RR:
5765 ret = 1;
5766 break;
5767 case SCHED_NORMAL:
b0a9499c 5768 case SCHED_BATCH:
dd41f596 5769 case SCHED_IDLE:
1da177e4
LT
5770 ret = 0;
5771 }
5772 return ret;
5773}
5774
5775/**
5776 * sys_sched_rr_get_interval - return the default timeslice of a process.
5777 * @pid: pid of the process.
5778 * @interval: userspace pointer to the timeslice value.
5779 *
5780 * this syscall writes the default timeslice value of a given process
5781 * into the user-space timespec buffer. A value of '0' means infinity.
5782 */
17da2bd9 5783SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5784 struct timespec __user *, interval)
1da177e4 5785{
36c8b586 5786 struct task_struct *p;
a4ec24b4 5787 unsigned int time_slice;
dba091b9
TG
5788 unsigned long flags;
5789 struct rq *rq;
3a5c359a 5790 int retval;
1da177e4 5791 struct timespec t;
1da177e4
LT
5792
5793 if (pid < 0)
3a5c359a 5794 return -EINVAL;
1da177e4
LT
5795
5796 retval = -ESRCH;
1a551ae7 5797 rcu_read_lock();
1da177e4
LT
5798 p = find_process_by_pid(pid);
5799 if (!p)
5800 goto out_unlock;
5801
5802 retval = security_task_getscheduler(p);
5803 if (retval)
5804 goto out_unlock;
5805
dba091b9
TG
5806 rq = task_rq_lock(p, &flags);
5807 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5808 task_rq_unlock(rq, p, &flags);
a4ec24b4 5809
1a551ae7 5810 rcu_read_unlock();
a4ec24b4 5811 jiffies_to_timespec(time_slice, &t);
1da177e4 5812 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5813 return retval;
3a5c359a 5814
1da177e4 5815out_unlock:
1a551ae7 5816 rcu_read_unlock();
1da177e4
LT
5817 return retval;
5818}
5819
7c731e0a 5820static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5821
82a1fcb9 5822void sched_show_task(struct task_struct *p)
1da177e4 5823{
1da177e4 5824 unsigned long free = 0;
36c8b586 5825 unsigned state;
1da177e4 5826
1da177e4 5827 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5828 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5829 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5830#if BITS_PER_LONG == 32
1da177e4 5831 if (state == TASK_RUNNING)
3df0fc5b 5832 printk(KERN_CONT " running ");
1da177e4 5833 else
3df0fc5b 5834 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5835#else
5836 if (state == TASK_RUNNING)
3df0fc5b 5837 printk(KERN_CONT " running task ");
1da177e4 5838 else
3df0fc5b 5839 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5840#endif
5841#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5842 free = stack_not_used(p);
1da177e4 5843#endif
3df0fc5b 5844 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5845 task_pid_nr(p), task_pid_nr(p->real_parent),
5846 (unsigned long)task_thread_info(p)->flags);
1da177e4 5847
5fb5e6de 5848 show_stack(p, NULL);
1da177e4
LT
5849}
5850
e59e2ae2 5851void show_state_filter(unsigned long state_filter)
1da177e4 5852{
36c8b586 5853 struct task_struct *g, *p;
1da177e4 5854
4bd77321 5855#if BITS_PER_LONG == 32
3df0fc5b
PZ
5856 printk(KERN_INFO
5857 " task PC stack pid father\n");
1da177e4 5858#else
3df0fc5b
PZ
5859 printk(KERN_INFO
5860 " task PC stack pid father\n");
1da177e4
LT
5861#endif
5862 read_lock(&tasklist_lock);
5863 do_each_thread(g, p) {
5864 /*
5865 * reset the NMI-timeout, listing all files on a slow
25985edc 5866 * console might take a lot of time:
1da177e4
LT
5867 */
5868 touch_nmi_watchdog();
39bc89fd 5869 if (!state_filter || (p->state & state_filter))
82a1fcb9 5870 sched_show_task(p);
1da177e4
LT
5871 } while_each_thread(g, p);
5872
04c9167f
JF
5873 touch_all_softlockup_watchdogs();
5874
dd41f596
IM
5875#ifdef CONFIG_SCHED_DEBUG
5876 sysrq_sched_debug_show();
5877#endif
1da177e4 5878 read_unlock(&tasklist_lock);
e59e2ae2
IM
5879 /*
5880 * Only show locks if all tasks are dumped:
5881 */
93335a21 5882 if (!state_filter)
e59e2ae2 5883 debug_show_all_locks();
1da177e4
LT
5884}
5885
1df21055
IM
5886void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5887{
dd41f596 5888 idle->sched_class = &idle_sched_class;
1df21055
IM
5889}
5890
f340c0d1
IM
5891/**
5892 * init_idle - set up an idle thread for a given CPU
5893 * @idle: task in question
5894 * @cpu: cpu the idle task belongs to
5895 *
5896 * NOTE: this function does not set the idle thread's NEED_RESCHED
5897 * flag, to make booting more robust.
5898 */
5c1e1767 5899void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5900{
70b97a7f 5901 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5902 unsigned long flags;
5903
05fa785c 5904 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5905
dd41f596 5906 __sched_fork(idle);
06b83b5f 5907 idle->state = TASK_RUNNING;
dd41f596
IM
5908 idle->se.exec_start = sched_clock();
5909
1e1b6c51 5910 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
5911 /*
5912 * We're having a chicken and egg problem, even though we are
5913 * holding rq->lock, the cpu isn't yet set to this cpu so the
5914 * lockdep check in task_group() will fail.
5915 *
5916 * Similar case to sched_fork(). / Alternatively we could
5917 * use task_rq_lock() here and obtain the other rq->lock.
5918 *
5919 * Silence PROVE_RCU
5920 */
5921 rcu_read_lock();
dd41f596 5922 __set_task_cpu(idle, cpu);
6506cf6c 5923 rcu_read_unlock();
1da177e4 5924
1da177e4 5925 rq->curr = rq->idle = idle;
3ca7a440
PZ
5926#if defined(CONFIG_SMP)
5927 idle->on_cpu = 1;
4866cde0 5928#endif
05fa785c 5929 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5930
5931 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5932 task_thread_info(idle)->preempt_count = 0;
625f2a37 5933
dd41f596
IM
5934 /*
5935 * The idle tasks have their own, simple scheduling class:
5936 */
5937 idle->sched_class = &idle_sched_class;
868baf07 5938 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5939}
5940
5941/*
5942 * In a system that switches off the HZ timer nohz_cpu_mask
5943 * indicates which cpus entered this state. This is used
5944 * in the rcu update to wait only for active cpus. For system
5945 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5946 * always be CPU_BITS_NONE.
1da177e4 5947 */
6a7b3dc3 5948cpumask_var_t nohz_cpu_mask;
1da177e4 5949
19978ca6
IM
5950/*
5951 * Increase the granularity value when there are more CPUs,
5952 * because with more CPUs the 'effective latency' as visible
5953 * to users decreases. But the relationship is not linear,
5954 * so pick a second-best guess by going with the log2 of the
5955 * number of CPUs.
5956 *
5957 * This idea comes from the SD scheduler of Con Kolivas:
5958 */
acb4a848 5959static int get_update_sysctl_factor(void)
19978ca6 5960{
4ca3ef71 5961 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5962 unsigned int factor;
5963
5964 switch (sysctl_sched_tunable_scaling) {
5965 case SCHED_TUNABLESCALING_NONE:
5966 factor = 1;
5967 break;
5968 case SCHED_TUNABLESCALING_LINEAR:
5969 factor = cpus;
5970 break;
5971 case SCHED_TUNABLESCALING_LOG:
5972 default:
5973 factor = 1 + ilog2(cpus);
5974 break;
5975 }
19978ca6 5976
acb4a848
CE
5977 return factor;
5978}
19978ca6 5979
acb4a848
CE
5980static void update_sysctl(void)
5981{
5982 unsigned int factor = get_update_sysctl_factor();
19978ca6 5983
0bcdcf28
CE
5984#define SET_SYSCTL(name) \
5985 (sysctl_##name = (factor) * normalized_sysctl_##name)
5986 SET_SYSCTL(sched_min_granularity);
5987 SET_SYSCTL(sched_latency);
5988 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5989#undef SET_SYSCTL
5990}
55cd5340 5991
0bcdcf28
CE
5992static inline void sched_init_granularity(void)
5993{
5994 update_sysctl();
19978ca6
IM
5995}
5996
1da177e4 5997#ifdef CONFIG_SMP
1e1b6c51
KM
5998void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5999{
6000 if (p->sched_class && p->sched_class->set_cpus_allowed)
6001 p->sched_class->set_cpus_allowed(p, new_mask);
6002 else {
6003 cpumask_copy(&p->cpus_allowed, new_mask);
6004 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6005 }
6006}
6007
1da177e4
LT
6008/*
6009 * This is how migration works:
6010 *
969c7921
TH
6011 * 1) we invoke migration_cpu_stop() on the target CPU using
6012 * stop_one_cpu().
6013 * 2) stopper starts to run (implicitly forcing the migrated thread
6014 * off the CPU)
6015 * 3) it checks whether the migrated task is still in the wrong runqueue.
6016 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 6017 * it and puts it into the right queue.
969c7921
TH
6018 * 5) stopper completes and stop_one_cpu() returns and the migration
6019 * is done.
1da177e4
LT
6020 */
6021
6022/*
6023 * Change a given task's CPU affinity. Migrate the thread to a
6024 * proper CPU and schedule it away if the CPU it's executing on
6025 * is removed from the allowed bitmask.
6026 *
6027 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6028 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6029 * call is not atomic; no spinlocks may be held.
6030 */
96f874e2 6031int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
6032{
6033 unsigned long flags;
70b97a7f 6034 struct rq *rq;
969c7921 6035 unsigned int dest_cpu;
48f24c4d 6036 int ret = 0;
1da177e4
LT
6037
6038 rq = task_rq_lock(p, &flags);
e2912009 6039
db44fc01
YZ
6040 if (cpumask_equal(&p->cpus_allowed, new_mask))
6041 goto out;
6042
6ad4c188 6043 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
6044 ret = -EINVAL;
6045 goto out;
6046 }
6047
db44fc01 6048 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
6049 ret = -EINVAL;
6050 goto out;
6051 }
6052
1e1b6c51 6053 do_set_cpus_allowed(p, new_mask);
73fe6aae 6054
1da177e4 6055 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6056 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6057 goto out;
6058
969c7921 6059 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 6060 if (p->on_rq) {
969c7921 6061 struct migration_arg arg = { p, dest_cpu };
1da177e4 6062 /* Need help from migration thread: drop lock and wait. */
0122ec5b 6063 task_rq_unlock(rq, p, &flags);
969c7921 6064 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
6065 tlb_migrate_finish(p->mm);
6066 return 0;
6067 }
6068out:
0122ec5b 6069 task_rq_unlock(rq, p, &flags);
48f24c4d 6070
1da177e4
LT
6071 return ret;
6072}
cd8ba7cd 6073EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6074
6075/*
41a2d6cf 6076 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6077 * this because either it can't run here any more (set_cpus_allowed()
6078 * away from this CPU, or CPU going down), or because we're
6079 * attempting to rebalance this task on exec (sched_exec).
6080 *
6081 * So we race with normal scheduler movements, but that's OK, as long
6082 * as the task is no longer on this CPU.
efc30814
KK
6083 *
6084 * Returns non-zero if task was successfully migrated.
1da177e4 6085 */
efc30814 6086static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6087{
70b97a7f 6088 struct rq *rq_dest, *rq_src;
e2912009 6089 int ret = 0;
1da177e4 6090
e761b772 6091 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6092 return ret;
1da177e4
LT
6093
6094 rq_src = cpu_rq(src_cpu);
6095 rq_dest = cpu_rq(dest_cpu);
6096
0122ec5b 6097 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6098 double_rq_lock(rq_src, rq_dest);
6099 /* Already moved. */
6100 if (task_cpu(p) != src_cpu)
b1e38734 6101 goto done;
1da177e4 6102 /* Affinity changed (again). */
96f874e2 6103 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6104 goto fail;
1da177e4 6105
e2912009
PZ
6106 /*
6107 * If we're not on a rq, the next wake-up will ensure we're
6108 * placed properly.
6109 */
fd2f4419 6110 if (p->on_rq) {
2e1cb74a 6111 deactivate_task(rq_src, p, 0);
e2912009 6112 set_task_cpu(p, dest_cpu);
dd41f596 6113 activate_task(rq_dest, p, 0);
15afe09b 6114 check_preempt_curr(rq_dest, p, 0);
1da177e4 6115 }
b1e38734 6116done:
efc30814 6117 ret = 1;
b1e38734 6118fail:
1da177e4 6119 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6120 raw_spin_unlock(&p->pi_lock);
efc30814 6121 return ret;
1da177e4
LT
6122}
6123
6124/*
969c7921
TH
6125 * migration_cpu_stop - this will be executed by a highprio stopper thread
6126 * and performs thread migration by bumping thread off CPU then
6127 * 'pushing' onto another runqueue.
1da177e4 6128 */
969c7921 6129static int migration_cpu_stop(void *data)
1da177e4 6130{
969c7921 6131 struct migration_arg *arg = data;
f7b4cddc 6132
969c7921
TH
6133 /*
6134 * The original target cpu might have gone down and we might
6135 * be on another cpu but it doesn't matter.
6136 */
f7b4cddc 6137 local_irq_disable();
969c7921 6138 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6139 local_irq_enable();
1da177e4 6140 return 0;
f7b4cddc
ON
6141}
6142
1da177e4 6143#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6144
054b9108 6145/*
48c5ccae
PZ
6146 * Ensures that the idle task is using init_mm right before its cpu goes
6147 * offline.
054b9108 6148 */
48c5ccae 6149void idle_task_exit(void)
1da177e4 6150{
48c5ccae 6151 struct mm_struct *mm = current->active_mm;
e76bd8d9 6152
48c5ccae 6153 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6154
48c5ccae
PZ
6155 if (mm != &init_mm)
6156 switch_mm(mm, &init_mm, current);
6157 mmdrop(mm);
1da177e4
LT
6158}
6159
6160/*
6161 * While a dead CPU has no uninterruptible tasks queued at this point,
6162 * it might still have a nonzero ->nr_uninterruptible counter, because
6163 * for performance reasons the counter is not stricly tracking tasks to
6164 * their home CPUs. So we just add the counter to another CPU's counter,
6165 * to keep the global sum constant after CPU-down:
6166 */
70b97a7f 6167static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6168{
6ad4c188 6169 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6170
1da177e4
LT
6171 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6172 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6173}
6174
dd41f596 6175/*
48c5ccae 6176 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6177 */
48c5ccae 6178static void calc_global_load_remove(struct rq *rq)
1da177e4 6179{
48c5ccae
PZ
6180 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6181 rq->calc_load_active = 0;
1da177e4
LT
6182}
6183
48f24c4d 6184/*
48c5ccae
PZ
6185 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6186 * try_to_wake_up()->select_task_rq().
6187 *
6188 * Called with rq->lock held even though we'er in stop_machine() and
6189 * there's no concurrency possible, we hold the required locks anyway
6190 * because of lock validation efforts.
1da177e4 6191 */
48c5ccae 6192static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6193{
70b97a7f 6194 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6195 struct task_struct *next, *stop = rq->stop;
6196 int dest_cpu;
1da177e4
LT
6197
6198 /*
48c5ccae
PZ
6199 * Fudge the rq selection such that the below task selection loop
6200 * doesn't get stuck on the currently eligible stop task.
6201 *
6202 * We're currently inside stop_machine() and the rq is either stuck
6203 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6204 * either way we should never end up calling schedule() until we're
6205 * done here.
1da177e4 6206 */
48c5ccae 6207 rq->stop = NULL;
48f24c4d 6208
dd41f596 6209 for ( ; ; ) {
48c5ccae
PZ
6210 /*
6211 * There's this thread running, bail when that's the only
6212 * remaining thread.
6213 */
6214 if (rq->nr_running == 1)
dd41f596 6215 break;
48c5ccae 6216
b67802ea 6217 next = pick_next_task(rq);
48c5ccae 6218 BUG_ON(!next);
79c53799 6219 next->sched_class->put_prev_task(rq, next);
e692ab53 6220
48c5ccae
PZ
6221 /* Find suitable destination for @next, with force if needed. */
6222 dest_cpu = select_fallback_rq(dead_cpu, next);
6223 raw_spin_unlock(&rq->lock);
6224
6225 __migrate_task(next, dead_cpu, dest_cpu);
6226
6227 raw_spin_lock(&rq->lock);
1da177e4 6228 }
dce48a84 6229
48c5ccae 6230 rq->stop = stop;
dce48a84 6231}
48c5ccae 6232
1da177e4
LT
6233#endif /* CONFIG_HOTPLUG_CPU */
6234
e692ab53
NP
6235#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6236
6237static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6238 {
6239 .procname = "sched_domain",
c57baf1e 6240 .mode = 0555,
e0361851 6241 },
56992309 6242 {}
e692ab53
NP
6243};
6244
6245static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6246 {
6247 .procname = "kernel",
c57baf1e 6248 .mode = 0555,
e0361851
AD
6249 .child = sd_ctl_dir,
6250 },
56992309 6251 {}
e692ab53
NP
6252};
6253
6254static struct ctl_table *sd_alloc_ctl_entry(int n)
6255{
6256 struct ctl_table *entry =
5cf9f062 6257 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6258
e692ab53
NP
6259 return entry;
6260}
6261
6382bc90
MM
6262static void sd_free_ctl_entry(struct ctl_table **tablep)
6263{
cd790076 6264 struct ctl_table *entry;
6382bc90 6265
cd790076
MM
6266 /*
6267 * In the intermediate directories, both the child directory and
6268 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6269 * will always be set. In the lowest directory the names are
cd790076
MM
6270 * static strings and all have proc handlers.
6271 */
6272 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6273 if (entry->child)
6274 sd_free_ctl_entry(&entry->child);
cd790076
MM
6275 if (entry->proc_handler == NULL)
6276 kfree(entry->procname);
6277 }
6382bc90
MM
6278
6279 kfree(*tablep);
6280 *tablep = NULL;
6281}
6282
e692ab53 6283static void
e0361851 6284set_table_entry(struct ctl_table *entry,
e692ab53
NP
6285 const char *procname, void *data, int maxlen,
6286 mode_t mode, proc_handler *proc_handler)
6287{
e692ab53
NP
6288 entry->procname = procname;
6289 entry->data = data;
6290 entry->maxlen = maxlen;
6291 entry->mode = mode;
6292 entry->proc_handler = proc_handler;
6293}
6294
6295static struct ctl_table *
6296sd_alloc_ctl_domain_table(struct sched_domain *sd)
6297{
a5d8c348 6298 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6299
ad1cdc1d
MM
6300 if (table == NULL)
6301 return NULL;
6302
e0361851 6303 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6304 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6305 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6306 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6307 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6308 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6309 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6310 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6311 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6312 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6313 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6314 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6315 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6316 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6317 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6318 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6319 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6320 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6321 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6322 &sd->cache_nice_tries,
6323 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6324 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6325 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6326 set_table_entry(&table[11], "name", sd->name,
6327 CORENAME_MAX_SIZE, 0444, proc_dostring);
6328 /* &table[12] is terminator */
e692ab53
NP
6329
6330 return table;
6331}
6332
9a4e7159 6333static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6334{
6335 struct ctl_table *entry, *table;
6336 struct sched_domain *sd;
6337 int domain_num = 0, i;
6338 char buf[32];
6339
6340 for_each_domain(cpu, sd)
6341 domain_num++;
6342 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6343 if (table == NULL)
6344 return NULL;
e692ab53
NP
6345
6346 i = 0;
6347 for_each_domain(cpu, sd) {
6348 snprintf(buf, 32, "domain%d", i);
e692ab53 6349 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6350 entry->mode = 0555;
e692ab53
NP
6351 entry->child = sd_alloc_ctl_domain_table(sd);
6352 entry++;
6353 i++;
6354 }
6355 return table;
6356}
6357
6358static struct ctl_table_header *sd_sysctl_header;
6382bc90 6359static void register_sched_domain_sysctl(void)
e692ab53 6360{
6ad4c188 6361 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6362 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6363 char buf[32];
6364
7378547f
MM
6365 WARN_ON(sd_ctl_dir[0].child);
6366 sd_ctl_dir[0].child = entry;
6367
ad1cdc1d
MM
6368 if (entry == NULL)
6369 return;
6370
6ad4c188 6371 for_each_possible_cpu(i) {
e692ab53 6372 snprintf(buf, 32, "cpu%d", i);
e692ab53 6373 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6374 entry->mode = 0555;
e692ab53 6375 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6376 entry++;
e692ab53 6377 }
7378547f
MM
6378
6379 WARN_ON(sd_sysctl_header);
e692ab53
NP
6380 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6381}
6382bc90 6382
7378547f 6383/* may be called multiple times per register */
6382bc90
MM
6384static void unregister_sched_domain_sysctl(void)
6385{
7378547f
MM
6386 if (sd_sysctl_header)
6387 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6388 sd_sysctl_header = NULL;
7378547f
MM
6389 if (sd_ctl_dir[0].child)
6390 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6391}
e692ab53 6392#else
6382bc90
MM
6393static void register_sched_domain_sysctl(void)
6394{
6395}
6396static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6397{
6398}
6399#endif
6400
1f11eb6a
GH
6401static void set_rq_online(struct rq *rq)
6402{
6403 if (!rq->online) {
6404 const struct sched_class *class;
6405
c6c4927b 6406 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6407 rq->online = 1;
6408
6409 for_each_class(class) {
6410 if (class->rq_online)
6411 class->rq_online(rq);
6412 }
6413 }
6414}
6415
6416static void set_rq_offline(struct rq *rq)
6417{
6418 if (rq->online) {
6419 const struct sched_class *class;
6420
6421 for_each_class(class) {
6422 if (class->rq_offline)
6423 class->rq_offline(rq);
6424 }
6425
c6c4927b 6426 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6427 rq->online = 0;
6428 }
6429}
6430
1da177e4
LT
6431/*
6432 * migration_call - callback that gets triggered when a CPU is added.
6433 * Here we can start up the necessary migration thread for the new CPU.
6434 */
48f24c4d
IM
6435static int __cpuinit
6436migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6437{
48f24c4d 6438 int cpu = (long)hcpu;
1da177e4 6439 unsigned long flags;
969c7921 6440 struct rq *rq = cpu_rq(cpu);
1da177e4 6441
48c5ccae 6442 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6443
1da177e4 6444 case CPU_UP_PREPARE:
a468d389 6445 rq->calc_load_update = calc_load_update;
1da177e4 6446 break;
48f24c4d 6447
1da177e4 6448 case CPU_ONLINE:
1f94ef59 6449 /* Update our root-domain */
05fa785c 6450 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6451 if (rq->rd) {
c6c4927b 6452 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6453
6454 set_rq_online(rq);
1f94ef59 6455 }
05fa785c 6456 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6457 break;
48f24c4d 6458
1da177e4 6459#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6460 case CPU_DYING:
317f3941 6461 sched_ttwu_pending();
57d885fe 6462 /* Update our root-domain */
05fa785c 6463 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6464 if (rq->rd) {
c6c4927b 6465 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6466 set_rq_offline(rq);
57d885fe 6467 }
48c5ccae
PZ
6468 migrate_tasks(cpu);
6469 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6470 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6471
6472 migrate_nr_uninterruptible(rq);
6473 calc_global_load_remove(rq);
57d885fe 6474 break;
1da177e4
LT
6475#endif
6476 }
49c022e6
PZ
6477
6478 update_max_interval();
6479
1da177e4
LT
6480 return NOTIFY_OK;
6481}
6482
f38b0820
PM
6483/*
6484 * Register at high priority so that task migration (migrate_all_tasks)
6485 * happens before everything else. This has to be lower priority than
cdd6c482 6486 * the notifier in the perf_event subsystem, though.
1da177e4 6487 */
26c2143b 6488static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6489 .notifier_call = migration_call,
50a323b7 6490 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6491};
6492
3a101d05
TH
6493static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6494 unsigned long action, void *hcpu)
6495{
6496 switch (action & ~CPU_TASKS_FROZEN) {
6497 case CPU_ONLINE:
6498 case CPU_DOWN_FAILED:
6499 set_cpu_active((long)hcpu, true);
6500 return NOTIFY_OK;
6501 default:
6502 return NOTIFY_DONE;
6503 }
6504}
6505
6506static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6507 unsigned long action, void *hcpu)
6508{
6509 switch (action & ~CPU_TASKS_FROZEN) {
6510 case CPU_DOWN_PREPARE:
6511 set_cpu_active((long)hcpu, false);
6512 return NOTIFY_OK;
6513 default:
6514 return NOTIFY_DONE;
6515 }
6516}
6517
7babe8db 6518static int __init migration_init(void)
1da177e4
LT
6519{
6520 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6521 int err;
48f24c4d 6522
3a101d05 6523 /* Initialize migration for the boot CPU */
07dccf33
AM
6524 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6525 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6526 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6527 register_cpu_notifier(&migration_notifier);
7babe8db 6528
3a101d05
TH
6529 /* Register cpu active notifiers */
6530 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6531 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6532
a004cd42 6533 return 0;
1da177e4 6534}
7babe8db 6535early_initcall(migration_init);
1da177e4
LT
6536#endif
6537
6538#ifdef CONFIG_SMP
476f3534 6539
4cb98839
PZ
6540static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6541
3e9830dc 6542#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6543
f6630114
MT
6544static __read_mostly int sched_domain_debug_enabled;
6545
6546static int __init sched_domain_debug_setup(char *str)
6547{
6548 sched_domain_debug_enabled = 1;
6549
6550 return 0;
6551}
6552early_param("sched_debug", sched_domain_debug_setup);
6553
7c16ec58 6554static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6555 struct cpumask *groupmask)
1da177e4 6556{
4dcf6aff 6557 struct sched_group *group = sd->groups;
434d53b0 6558 char str[256];
1da177e4 6559
968ea6d8 6560 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6561 cpumask_clear(groupmask);
4dcf6aff
IM
6562
6563 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6564
6565 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6566 printk("does not load-balance\n");
4dcf6aff 6567 if (sd->parent)
3df0fc5b
PZ
6568 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6569 " has parent");
4dcf6aff 6570 return -1;
41c7ce9a
NP
6571 }
6572
3df0fc5b 6573 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6574
758b2cdc 6575 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6576 printk(KERN_ERR "ERROR: domain->span does not contain "
6577 "CPU%d\n", cpu);
4dcf6aff 6578 }
758b2cdc 6579 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6580 printk(KERN_ERR "ERROR: domain->groups does not contain"
6581 " CPU%d\n", cpu);
4dcf6aff 6582 }
1da177e4 6583
4dcf6aff 6584 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6585 do {
4dcf6aff 6586 if (!group) {
3df0fc5b
PZ
6587 printk("\n");
6588 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6589 break;
6590 }
6591
9c3f75cb 6592 if (!group->sgp->power) {
3df0fc5b
PZ
6593 printk(KERN_CONT "\n");
6594 printk(KERN_ERR "ERROR: domain->cpu_power not "
6595 "set\n");
4dcf6aff
IM
6596 break;
6597 }
1da177e4 6598
758b2cdc 6599 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6600 printk(KERN_CONT "\n");
6601 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6602 break;
6603 }
1da177e4 6604
758b2cdc 6605 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6606 printk(KERN_CONT "\n");
6607 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6608 break;
6609 }
1da177e4 6610
758b2cdc 6611 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6612
968ea6d8 6613 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6614
3df0fc5b 6615 printk(KERN_CONT " %s", str);
9c3f75cb 6616 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 6617 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 6618 group->sgp->power);
381512cf 6619 }
1da177e4 6620
4dcf6aff
IM
6621 group = group->next;
6622 } while (group != sd->groups);
3df0fc5b 6623 printk(KERN_CONT "\n");
1da177e4 6624
758b2cdc 6625 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6626 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6627
758b2cdc
RR
6628 if (sd->parent &&
6629 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6630 printk(KERN_ERR "ERROR: parent span is not a superset "
6631 "of domain->span\n");
4dcf6aff
IM
6632 return 0;
6633}
1da177e4 6634
4dcf6aff
IM
6635static void sched_domain_debug(struct sched_domain *sd, int cpu)
6636{
6637 int level = 0;
1da177e4 6638
f6630114
MT
6639 if (!sched_domain_debug_enabled)
6640 return;
6641
4dcf6aff
IM
6642 if (!sd) {
6643 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6644 return;
6645 }
1da177e4 6646
4dcf6aff
IM
6647 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6648
6649 for (;;) {
4cb98839 6650 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6651 break;
1da177e4
LT
6652 level++;
6653 sd = sd->parent;
33859f7f 6654 if (!sd)
4dcf6aff
IM
6655 break;
6656 }
1da177e4 6657}
6d6bc0ad 6658#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6659# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6660#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6661
1a20ff27 6662static int sd_degenerate(struct sched_domain *sd)
245af2c7 6663{
758b2cdc 6664 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6665 return 1;
6666
6667 /* Following flags need at least 2 groups */
6668 if (sd->flags & (SD_LOAD_BALANCE |
6669 SD_BALANCE_NEWIDLE |
6670 SD_BALANCE_FORK |
89c4710e
SS
6671 SD_BALANCE_EXEC |
6672 SD_SHARE_CPUPOWER |
6673 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6674 if (sd->groups != sd->groups->next)
6675 return 0;
6676 }
6677
6678 /* Following flags don't use groups */
c88d5910 6679 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6680 return 0;
6681
6682 return 1;
6683}
6684
48f24c4d
IM
6685static int
6686sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6687{
6688 unsigned long cflags = sd->flags, pflags = parent->flags;
6689
6690 if (sd_degenerate(parent))
6691 return 1;
6692
758b2cdc 6693 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6694 return 0;
6695
245af2c7
SS
6696 /* Flags needing groups don't count if only 1 group in parent */
6697 if (parent->groups == parent->groups->next) {
6698 pflags &= ~(SD_LOAD_BALANCE |
6699 SD_BALANCE_NEWIDLE |
6700 SD_BALANCE_FORK |
89c4710e
SS
6701 SD_BALANCE_EXEC |
6702 SD_SHARE_CPUPOWER |
6703 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6704 if (nr_node_ids == 1)
6705 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6706 }
6707 if (~cflags & pflags)
6708 return 0;
6709
6710 return 1;
6711}
6712
dce840a0 6713static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6714{
dce840a0 6715 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6716
68e74568 6717 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6718 free_cpumask_var(rd->rto_mask);
6719 free_cpumask_var(rd->online);
6720 free_cpumask_var(rd->span);
6721 kfree(rd);
6722}
6723
57d885fe
GH
6724static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6725{
a0490fa3 6726 struct root_domain *old_rd = NULL;
57d885fe 6727 unsigned long flags;
57d885fe 6728
05fa785c 6729 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6730
6731 if (rq->rd) {
a0490fa3 6732 old_rd = rq->rd;
57d885fe 6733
c6c4927b 6734 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6735 set_rq_offline(rq);
57d885fe 6736
c6c4927b 6737 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6738
a0490fa3
IM
6739 /*
6740 * If we dont want to free the old_rt yet then
6741 * set old_rd to NULL to skip the freeing later
6742 * in this function:
6743 */
6744 if (!atomic_dec_and_test(&old_rd->refcount))
6745 old_rd = NULL;
57d885fe
GH
6746 }
6747
6748 atomic_inc(&rd->refcount);
6749 rq->rd = rd;
6750
c6c4927b 6751 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6752 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6753 set_rq_online(rq);
57d885fe 6754
05fa785c 6755 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6756
6757 if (old_rd)
dce840a0 6758 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6759}
6760
68c38fc3 6761static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6762{
6763 memset(rd, 0, sizeof(*rd));
6764
68c38fc3 6765 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6766 goto out;
68c38fc3 6767 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6768 goto free_span;
68c38fc3 6769 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6770 goto free_online;
6e0534f2 6771
68c38fc3 6772 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6773 goto free_rto_mask;
c6c4927b 6774 return 0;
6e0534f2 6775
68e74568
RR
6776free_rto_mask:
6777 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6778free_online:
6779 free_cpumask_var(rd->online);
6780free_span:
6781 free_cpumask_var(rd->span);
0c910d28 6782out:
c6c4927b 6783 return -ENOMEM;
57d885fe
GH
6784}
6785
6786static void init_defrootdomain(void)
6787{
68c38fc3 6788 init_rootdomain(&def_root_domain);
c6c4927b 6789
57d885fe
GH
6790 atomic_set(&def_root_domain.refcount, 1);
6791}
6792
dc938520 6793static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6794{
6795 struct root_domain *rd;
6796
6797 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6798 if (!rd)
6799 return NULL;
6800
68c38fc3 6801 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6802 kfree(rd);
6803 return NULL;
6804 }
57d885fe
GH
6805
6806 return rd;
6807}
6808
e3589f6c
PZ
6809static void free_sched_groups(struct sched_group *sg, int free_sgp)
6810{
6811 struct sched_group *tmp, *first;
6812
6813 if (!sg)
6814 return;
6815
6816 first = sg;
6817 do {
6818 tmp = sg->next;
6819
6820 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
6821 kfree(sg->sgp);
6822
6823 kfree(sg);
6824 sg = tmp;
6825 } while (sg != first);
6826}
6827
dce840a0
PZ
6828static void free_sched_domain(struct rcu_head *rcu)
6829{
6830 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
6831
6832 /*
6833 * If its an overlapping domain it has private groups, iterate and
6834 * nuke them all.
6835 */
6836 if (sd->flags & SD_OVERLAP) {
6837 free_sched_groups(sd->groups, 1);
6838 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 6839 kfree(sd->groups->sgp);
dce840a0 6840 kfree(sd->groups);
9c3f75cb 6841 }
dce840a0
PZ
6842 kfree(sd);
6843}
6844
6845static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6846{
6847 call_rcu(&sd->rcu, free_sched_domain);
6848}
6849
6850static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6851{
6852 for (; sd; sd = sd->parent)
6853 destroy_sched_domain(sd, cpu);
6854}
6855
1da177e4 6856/*
0eab9146 6857 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6858 * hold the hotplug lock.
6859 */
0eab9146
IM
6860static void
6861cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6862{
70b97a7f 6863 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6864 struct sched_domain *tmp;
6865
6866 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6867 for (tmp = sd; tmp; ) {
245af2c7
SS
6868 struct sched_domain *parent = tmp->parent;
6869 if (!parent)
6870 break;
f29c9b1c 6871
1a848870 6872 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6873 tmp->parent = parent->parent;
1a848870
SS
6874 if (parent->parent)
6875 parent->parent->child = tmp;
dce840a0 6876 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6877 } else
6878 tmp = tmp->parent;
245af2c7
SS
6879 }
6880
1a848870 6881 if (sd && sd_degenerate(sd)) {
dce840a0 6882 tmp = sd;
245af2c7 6883 sd = sd->parent;
dce840a0 6884 destroy_sched_domain(tmp, cpu);
1a848870
SS
6885 if (sd)
6886 sd->child = NULL;
6887 }
1da177e4 6888
4cb98839 6889 sched_domain_debug(sd, cpu);
1da177e4 6890
57d885fe 6891 rq_attach_root(rq, rd);
dce840a0 6892 tmp = rq->sd;
674311d5 6893 rcu_assign_pointer(rq->sd, sd);
dce840a0 6894 destroy_sched_domains(tmp, cpu);
1da177e4
LT
6895}
6896
6897/* cpus with isolated domains */
dcc30a35 6898static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6899
6900/* Setup the mask of cpus configured for isolated domains */
6901static int __init isolated_cpu_setup(char *str)
6902{
bdddd296 6903 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6904 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6905 return 1;
6906}
6907
8927f494 6908__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6909
9c1cfda2 6910#define SD_NODES_PER_DOMAIN 16
1da177e4 6911
9c1cfda2 6912#ifdef CONFIG_NUMA
198e2f18 6913
9c1cfda2
JH
6914/**
6915 * find_next_best_node - find the next node to include in a sched_domain
6916 * @node: node whose sched_domain we're building
6917 * @used_nodes: nodes already in the sched_domain
6918 *
41a2d6cf 6919 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6920 * finds the closest node not already in the @used_nodes map.
6921 *
6922 * Should use nodemask_t.
6923 */
c5f59f08 6924static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 6925{
7142d17e 6926 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
6927
6928 min_val = INT_MAX;
6929
076ac2af 6930 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6931 /* Start at @node */
076ac2af 6932 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6933
6934 if (!nr_cpus_node(n))
6935 continue;
6936
6937 /* Skip already used nodes */
c5f59f08 6938 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6939 continue;
6940
6941 /* Simple min distance search */
6942 val = node_distance(node, n);
6943
6944 if (val < min_val) {
6945 min_val = val;
6946 best_node = n;
6947 }
6948 }
6949
7142d17e
HD
6950 if (best_node != -1)
6951 node_set(best_node, *used_nodes);
9c1cfda2
JH
6952 return best_node;
6953}
6954
6955/**
6956 * sched_domain_node_span - get a cpumask for a node's sched_domain
6957 * @node: node whose cpumask we're constructing
73486722 6958 * @span: resulting cpumask
9c1cfda2 6959 *
41a2d6cf 6960 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6961 * should be one that prevents unnecessary balancing, but also spreads tasks
6962 * out optimally.
6963 */
96f874e2 6964static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6965{
c5f59f08 6966 nodemask_t used_nodes;
48f24c4d 6967 int i;
9c1cfda2 6968
6ca09dfc 6969 cpumask_clear(span);
c5f59f08 6970 nodes_clear(used_nodes);
9c1cfda2 6971
6ca09dfc 6972 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6973 node_set(node, used_nodes);
9c1cfda2
JH
6974
6975 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6976 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
6977 if (next_node < 0)
6978 break;
6ca09dfc 6979 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6980 }
9c1cfda2 6981}
d3081f52
PZ
6982
6983static const struct cpumask *cpu_node_mask(int cpu)
6984{
6985 lockdep_assert_held(&sched_domains_mutex);
6986
6987 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
6988
6989 return sched_domains_tmpmask;
6990}
2c402dc3
PZ
6991
6992static const struct cpumask *cpu_allnodes_mask(int cpu)
6993{
6994 return cpu_possible_mask;
6995}
6d6bc0ad 6996#endif /* CONFIG_NUMA */
9c1cfda2 6997
d3081f52
PZ
6998static const struct cpumask *cpu_cpu_mask(int cpu)
6999{
7000 return cpumask_of_node(cpu_to_node(cpu));
7001}
7002
5c45bf27 7003int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7004
dce840a0
PZ
7005struct sd_data {
7006 struct sched_domain **__percpu sd;
7007 struct sched_group **__percpu sg;
9c3f75cb 7008 struct sched_group_power **__percpu sgp;
dce840a0
PZ
7009};
7010
49a02c51 7011struct s_data {
21d42ccf 7012 struct sched_domain ** __percpu sd;
49a02c51
AH
7013 struct root_domain *rd;
7014};
7015
2109b99e 7016enum s_alloc {
2109b99e 7017 sa_rootdomain,
21d42ccf 7018 sa_sd,
dce840a0 7019 sa_sd_storage,
2109b99e
AH
7020 sa_none,
7021};
7022
54ab4ff4
PZ
7023struct sched_domain_topology_level;
7024
7025typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
7026typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7027
e3589f6c
PZ
7028#define SDTL_OVERLAP 0x01
7029
eb7a74e6 7030struct sched_domain_topology_level {
2c402dc3
PZ
7031 sched_domain_init_f init;
7032 sched_domain_mask_f mask;
e3589f6c 7033 int flags;
54ab4ff4 7034 struct sd_data data;
eb7a74e6
PZ
7035};
7036
e3589f6c
PZ
7037static int
7038build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7039{
7040 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7041 const struct cpumask *span = sched_domain_span(sd);
7042 struct cpumask *covered = sched_domains_tmpmask;
7043 struct sd_data *sdd = sd->private;
7044 struct sched_domain *child;
7045 int i;
7046
7047 cpumask_clear(covered);
7048
7049 for_each_cpu(i, span) {
7050 struct cpumask *sg_span;
7051
7052 if (cpumask_test_cpu(i, covered))
7053 continue;
7054
7055 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7056 GFP_KERNEL, cpu_to_node(i));
7057
7058 if (!sg)
7059 goto fail;
7060
7061 sg_span = sched_group_cpus(sg);
7062
7063 child = *per_cpu_ptr(sdd->sd, i);
7064 if (child->child) {
7065 child = child->child;
7066 cpumask_copy(sg_span, sched_domain_span(child));
7067 } else
7068 cpumask_set_cpu(i, sg_span);
7069
7070 cpumask_or(covered, covered, sg_span);
7071
7072 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7073 atomic_inc(&sg->sgp->ref);
7074
7075 if (cpumask_test_cpu(cpu, sg_span))
7076 groups = sg;
7077
7078 if (!first)
7079 first = sg;
7080 if (last)
7081 last->next = sg;
7082 last = sg;
7083 last->next = first;
7084 }
7085 sd->groups = groups;
7086
7087 return 0;
7088
7089fail:
7090 free_sched_groups(first, 0);
7091
7092 return -ENOMEM;
7093}
7094
dce840a0 7095static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 7096{
dce840a0
PZ
7097 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7098 struct sched_domain *child = sd->child;
1da177e4 7099
dce840a0
PZ
7100 if (child)
7101 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 7102
9c3f75cb 7103 if (sg) {
dce840a0 7104 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 7105 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 7106 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 7107 }
dce840a0
PZ
7108
7109 return cpu;
1e9f28fa 7110}
1e9f28fa 7111
01a08546 7112/*
dce840a0
PZ
7113 * build_sched_groups will build a circular linked list of the groups
7114 * covered by the given span, and will set each group's ->cpumask correctly,
7115 * and ->cpu_power to 0.
e3589f6c
PZ
7116 *
7117 * Assumes the sched_domain tree is fully constructed
01a08546 7118 */
e3589f6c
PZ
7119static int
7120build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 7121{
dce840a0
PZ
7122 struct sched_group *first = NULL, *last = NULL;
7123 struct sd_data *sdd = sd->private;
7124 const struct cpumask *span = sched_domain_span(sd);
f96225fd 7125 struct cpumask *covered;
dce840a0 7126 int i;
9c1cfda2 7127
e3589f6c
PZ
7128 get_group(cpu, sdd, &sd->groups);
7129 atomic_inc(&sd->groups->ref);
7130
7131 if (cpu != cpumask_first(sched_domain_span(sd)))
7132 return 0;
7133
f96225fd
PZ
7134 lockdep_assert_held(&sched_domains_mutex);
7135 covered = sched_domains_tmpmask;
7136
dce840a0 7137 cpumask_clear(covered);
6711cab4 7138
dce840a0
PZ
7139 for_each_cpu(i, span) {
7140 struct sched_group *sg;
7141 int group = get_group(i, sdd, &sg);
7142 int j;
6711cab4 7143
dce840a0
PZ
7144 if (cpumask_test_cpu(i, covered))
7145 continue;
6711cab4 7146
dce840a0 7147 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 7148 sg->sgp->power = 0;
0601a88d 7149
dce840a0
PZ
7150 for_each_cpu(j, span) {
7151 if (get_group(j, sdd, NULL) != group)
7152 continue;
0601a88d 7153
dce840a0
PZ
7154 cpumask_set_cpu(j, covered);
7155 cpumask_set_cpu(j, sched_group_cpus(sg));
7156 }
0601a88d 7157
dce840a0
PZ
7158 if (!first)
7159 first = sg;
7160 if (last)
7161 last->next = sg;
7162 last = sg;
7163 }
7164 last->next = first;
e3589f6c
PZ
7165
7166 return 0;
0601a88d 7167}
51888ca2 7168
89c4710e
SS
7169/*
7170 * Initialize sched groups cpu_power.
7171 *
7172 * cpu_power indicates the capacity of sched group, which is used while
7173 * distributing the load between different sched groups in a sched domain.
7174 * Typically cpu_power for all the groups in a sched domain will be same unless
7175 * there are asymmetries in the topology. If there are asymmetries, group
7176 * having more cpu_power will pickup more load compared to the group having
7177 * less cpu_power.
89c4710e
SS
7178 */
7179static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7180{
e3589f6c 7181 struct sched_group *sg = sd->groups;
89c4710e 7182
e3589f6c
PZ
7183 WARN_ON(!sd || !sg);
7184
7185 do {
7186 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7187 sg = sg->next;
7188 } while (sg != sd->groups);
89c4710e 7189
e3589f6c
PZ
7190 if (cpu != group_first_cpu(sg))
7191 return;
aae6d3dd 7192
d274cb30 7193 update_group_power(sd, cpu);
89c4710e
SS
7194}
7195
7c16ec58
MT
7196/*
7197 * Initializers for schedule domains
7198 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7199 */
7200
a5d8c348
IM
7201#ifdef CONFIG_SCHED_DEBUG
7202# define SD_INIT_NAME(sd, type) sd->name = #type
7203#else
7204# define SD_INIT_NAME(sd, type) do { } while (0)
7205#endif
7206
54ab4ff4
PZ
7207#define SD_INIT_FUNC(type) \
7208static noinline struct sched_domain * \
7209sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7210{ \
7211 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7212 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
7213 SD_INIT_NAME(sd, type); \
7214 sd->private = &tl->data; \
7215 return sd; \
7c16ec58
MT
7216}
7217
7218SD_INIT_FUNC(CPU)
7219#ifdef CONFIG_NUMA
7220 SD_INIT_FUNC(ALLNODES)
7221 SD_INIT_FUNC(NODE)
7222#endif
7223#ifdef CONFIG_SCHED_SMT
7224 SD_INIT_FUNC(SIBLING)
7225#endif
7226#ifdef CONFIG_SCHED_MC
7227 SD_INIT_FUNC(MC)
7228#endif
01a08546
HC
7229#ifdef CONFIG_SCHED_BOOK
7230 SD_INIT_FUNC(BOOK)
7231#endif
7c16ec58 7232
1d3504fc 7233static int default_relax_domain_level = -1;
60495e77 7234int sched_domain_level_max;
1d3504fc
HS
7235
7236static int __init setup_relax_domain_level(char *str)
7237{
30e0e178
LZ
7238 unsigned long val;
7239
7240 val = simple_strtoul(str, NULL, 0);
60495e77 7241 if (val < sched_domain_level_max)
30e0e178
LZ
7242 default_relax_domain_level = val;
7243
1d3504fc
HS
7244 return 1;
7245}
7246__setup("relax_domain_level=", setup_relax_domain_level);
7247
7248static void set_domain_attribute(struct sched_domain *sd,
7249 struct sched_domain_attr *attr)
7250{
7251 int request;
7252
7253 if (!attr || attr->relax_domain_level < 0) {
7254 if (default_relax_domain_level < 0)
7255 return;
7256 else
7257 request = default_relax_domain_level;
7258 } else
7259 request = attr->relax_domain_level;
7260 if (request < sd->level) {
7261 /* turn off idle balance on this domain */
c88d5910 7262 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7263 } else {
7264 /* turn on idle balance on this domain */
c88d5910 7265 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7266 }
7267}
7268
54ab4ff4
PZ
7269static void __sdt_free(const struct cpumask *cpu_map);
7270static int __sdt_alloc(const struct cpumask *cpu_map);
7271
2109b99e
AH
7272static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7273 const struct cpumask *cpu_map)
7274{
7275 switch (what) {
2109b99e 7276 case sa_rootdomain:
822ff793
PZ
7277 if (!atomic_read(&d->rd->refcount))
7278 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7279 case sa_sd:
7280 free_percpu(d->sd); /* fall through */
dce840a0 7281 case sa_sd_storage:
54ab4ff4 7282 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
7283 case sa_none:
7284 break;
7285 }
7286}
3404c8d9 7287
2109b99e
AH
7288static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7289 const struct cpumask *cpu_map)
7290{
dce840a0
PZ
7291 memset(d, 0, sizeof(*d));
7292
54ab4ff4
PZ
7293 if (__sdt_alloc(cpu_map))
7294 return sa_sd_storage;
dce840a0
PZ
7295 d->sd = alloc_percpu(struct sched_domain *);
7296 if (!d->sd)
7297 return sa_sd_storage;
2109b99e 7298 d->rd = alloc_rootdomain();
dce840a0 7299 if (!d->rd)
21d42ccf 7300 return sa_sd;
2109b99e
AH
7301 return sa_rootdomain;
7302}
57d885fe 7303
dce840a0
PZ
7304/*
7305 * NULL the sd_data elements we've used to build the sched_domain and
7306 * sched_group structure so that the subsequent __free_domain_allocs()
7307 * will not free the data we're using.
7308 */
7309static void claim_allocations(int cpu, struct sched_domain *sd)
7310{
7311 struct sd_data *sdd = sd->private;
dce840a0
PZ
7312
7313 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7314 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7315
e3589f6c 7316 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 7317 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
7318
7319 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 7320 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
7321}
7322
2c402dc3
PZ
7323#ifdef CONFIG_SCHED_SMT
7324static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 7325{
2c402dc3 7326 return topology_thread_cpumask(cpu);
3bd65a80 7327}
2c402dc3 7328#endif
7f4588f3 7329
d069b916
PZ
7330/*
7331 * Topology list, bottom-up.
7332 */
2c402dc3 7333static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
7334#ifdef CONFIG_SCHED_SMT
7335 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 7336#endif
1e9f28fa 7337#ifdef CONFIG_SCHED_MC
2c402dc3 7338 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 7339#endif
d069b916
PZ
7340#ifdef CONFIG_SCHED_BOOK
7341 { sd_init_BOOK, cpu_book_mask, },
7342#endif
7343 { sd_init_CPU, cpu_cpu_mask, },
7344#ifdef CONFIG_NUMA
e3589f6c 7345 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 7346 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 7347#endif
eb7a74e6
PZ
7348 { NULL, },
7349};
7350
7351static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7352
54ab4ff4
PZ
7353static int __sdt_alloc(const struct cpumask *cpu_map)
7354{
7355 struct sched_domain_topology_level *tl;
7356 int j;
7357
7358 for (tl = sched_domain_topology; tl->init; tl++) {
7359 struct sd_data *sdd = &tl->data;
7360
7361 sdd->sd = alloc_percpu(struct sched_domain *);
7362 if (!sdd->sd)
7363 return -ENOMEM;
7364
7365 sdd->sg = alloc_percpu(struct sched_group *);
7366 if (!sdd->sg)
7367 return -ENOMEM;
7368
9c3f75cb
PZ
7369 sdd->sgp = alloc_percpu(struct sched_group_power *);
7370 if (!sdd->sgp)
7371 return -ENOMEM;
7372
54ab4ff4
PZ
7373 for_each_cpu(j, cpu_map) {
7374 struct sched_domain *sd;
7375 struct sched_group *sg;
9c3f75cb 7376 struct sched_group_power *sgp;
54ab4ff4
PZ
7377
7378 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7379 GFP_KERNEL, cpu_to_node(j));
7380 if (!sd)
7381 return -ENOMEM;
7382
7383 *per_cpu_ptr(sdd->sd, j) = sd;
7384
7385 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7386 GFP_KERNEL, cpu_to_node(j));
7387 if (!sg)
7388 return -ENOMEM;
7389
7390 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
7391
7392 sgp = kzalloc_node(sizeof(struct sched_group_power),
7393 GFP_KERNEL, cpu_to_node(j));
7394 if (!sgp)
7395 return -ENOMEM;
7396
7397 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
7398 }
7399 }
7400
7401 return 0;
7402}
7403
7404static void __sdt_free(const struct cpumask *cpu_map)
7405{
7406 struct sched_domain_topology_level *tl;
7407 int j;
7408
7409 for (tl = sched_domain_topology; tl->init; tl++) {
7410 struct sd_data *sdd = &tl->data;
7411
7412 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
7413 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7414 if (sd && (sd->flags & SD_OVERLAP))
7415 free_sched_groups(sd->groups, 0);
54ab4ff4 7416 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 7417 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
7418 }
7419 free_percpu(sdd->sd);
7420 free_percpu(sdd->sg);
9c3f75cb 7421 free_percpu(sdd->sgp);
54ab4ff4
PZ
7422 }
7423}
7424
2c402dc3
PZ
7425struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7426 struct s_data *d, const struct cpumask *cpu_map,
d069b916 7427 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
7428 int cpu)
7429{
54ab4ff4 7430 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 7431 if (!sd)
d069b916 7432 return child;
2c402dc3
PZ
7433
7434 set_domain_attribute(sd, attr);
7435 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7436 if (child) {
7437 sd->level = child->level + 1;
7438 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7439 child->parent = sd;
60495e77 7440 }
d069b916 7441 sd->child = child;
2c402dc3
PZ
7442
7443 return sd;
7444}
7445
2109b99e
AH
7446/*
7447 * Build sched domains for a given set of cpus and attach the sched domains
7448 * to the individual cpus
7449 */
dce840a0
PZ
7450static int build_sched_domains(const struct cpumask *cpu_map,
7451 struct sched_domain_attr *attr)
2109b99e
AH
7452{
7453 enum s_alloc alloc_state = sa_none;
dce840a0 7454 struct sched_domain *sd;
2109b99e 7455 struct s_data d;
822ff793 7456 int i, ret = -ENOMEM;
9c1cfda2 7457
2109b99e
AH
7458 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7459 if (alloc_state != sa_rootdomain)
7460 goto error;
9c1cfda2 7461
dce840a0 7462 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7463 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7464 struct sched_domain_topology_level *tl;
7465
3bd65a80 7466 sd = NULL;
e3589f6c 7467 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 7468 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
7469 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7470 sd->flags |= SD_OVERLAP;
d110235d
PZ
7471 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7472 break;
e3589f6c 7473 }
d274cb30 7474
d069b916
PZ
7475 while (sd->child)
7476 sd = sd->child;
7477
21d42ccf 7478 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7479 }
7480
7481 /* Build the groups for the domains */
7482 for_each_cpu(i, cpu_map) {
7483 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7484 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7485 if (sd->flags & SD_OVERLAP) {
7486 if (build_overlap_sched_groups(sd, i))
7487 goto error;
7488 } else {
7489 if (build_sched_groups(sd, i))
7490 goto error;
7491 }
1cf51902 7492 }
a06dadbe 7493 }
9c1cfda2 7494
1da177e4 7495 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7496 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7497 if (!cpumask_test_cpu(i, cpu_map))
7498 continue;
9c1cfda2 7499
dce840a0
PZ
7500 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7501 claim_allocations(i, sd);
cd4ea6ae 7502 init_sched_groups_power(i, sd);
dce840a0 7503 }
f712c0c7 7504 }
9c1cfda2 7505
1da177e4 7506 /* Attach the domains */
dce840a0 7507 rcu_read_lock();
abcd083a 7508 for_each_cpu(i, cpu_map) {
21d42ccf 7509 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7510 cpu_attach_domain(sd, d.rd, i);
1da177e4 7511 }
dce840a0 7512 rcu_read_unlock();
51888ca2 7513
822ff793 7514 ret = 0;
51888ca2 7515error:
2109b99e 7516 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7517 return ret;
1da177e4 7518}
029190c5 7519
acc3f5d7 7520static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7521static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7522static struct sched_domain_attr *dattr_cur;
7523 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7524
7525/*
7526 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7527 * cpumask) fails, then fallback to a single sched domain,
7528 * as determined by the single cpumask fallback_doms.
029190c5 7529 */
4212823f 7530static cpumask_var_t fallback_doms;
029190c5 7531
ee79d1bd
HC
7532/*
7533 * arch_update_cpu_topology lets virtualized architectures update the
7534 * cpu core maps. It is supposed to return 1 if the topology changed
7535 * or 0 if it stayed the same.
7536 */
7537int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7538{
ee79d1bd 7539 return 0;
22e52b07
HC
7540}
7541
acc3f5d7
RR
7542cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7543{
7544 int i;
7545 cpumask_var_t *doms;
7546
7547 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7548 if (!doms)
7549 return NULL;
7550 for (i = 0; i < ndoms; i++) {
7551 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7552 free_sched_domains(doms, i);
7553 return NULL;
7554 }
7555 }
7556 return doms;
7557}
7558
7559void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7560{
7561 unsigned int i;
7562 for (i = 0; i < ndoms; i++)
7563 free_cpumask_var(doms[i]);
7564 kfree(doms);
7565}
7566
1a20ff27 7567/*
41a2d6cf 7568 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7569 * For now this just excludes isolated cpus, but could be used to
7570 * exclude other special cases in the future.
1a20ff27 7571 */
c4a8849a 7572static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7573{
7378547f
MM
7574 int err;
7575
22e52b07 7576 arch_update_cpu_topology();
029190c5 7577 ndoms_cur = 1;
acc3f5d7 7578 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7579 if (!doms_cur)
acc3f5d7
RR
7580 doms_cur = &fallback_doms;
7581 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7582 dattr_cur = NULL;
dce840a0 7583 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7584 register_sched_domain_sysctl();
7378547f
MM
7585
7586 return err;
1a20ff27
DG
7587}
7588
1a20ff27
DG
7589/*
7590 * Detach sched domains from a group of cpus specified in cpu_map
7591 * These cpus will now be attached to the NULL domain
7592 */
96f874e2 7593static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7594{
7595 int i;
7596
dce840a0 7597 rcu_read_lock();
abcd083a 7598 for_each_cpu(i, cpu_map)
57d885fe 7599 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7600 rcu_read_unlock();
1a20ff27
DG
7601}
7602
1d3504fc
HS
7603/* handle null as "default" */
7604static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7605 struct sched_domain_attr *new, int idx_new)
7606{
7607 struct sched_domain_attr tmp;
7608
7609 /* fast path */
7610 if (!new && !cur)
7611 return 1;
7612
7613 tmp = SD_ATTR_INIT;
7614 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7615 new ? (new + idx_new) : &tmp,
7616 sizeof(struct sched_domain_attr));
7617}
7618
029190c5
PJ
7619/*
7620 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7621 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7622 * doms_new[] to the current sched domain partitioning, doms_cur[].
7623 * It destroys each deleted domain and builds each new domain.
7624 *
acc3f5d7 7625 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7626 * The masks don't intersect (don't overlap.) We should setup one
7627 * sched domain for each mask. CPUs not in any of the cpumasks will
7628 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7629 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7630 * it as it is.
7631 *
acc3f5d7
RR
7632 * The passed in 'doms_new' should be allocated using
7633 * alloc_sched_domains. This routine takes ownership of it and will
7634 * free_sched_domains it when done with it. If the caller failed the
7635 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7636 * and partition_sched_domains() will fallback to the single partition
7637 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7638 *
96f874e2 7639 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7640 * ndoms_new == 0 is a special case for destroying existing domains,
7641 * and it will not create the default domain.
dfb512ec 7642 *
029190c5
PJ
7643 * Call with hotplug lock held
7644 */
acc3f5d7 7645void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7646 struct sched_domain_attr *dattr_new)
029190c5 7647{
dfb512ec 7648 int i, j, n;
d65bd5ec 7649 int new_topology;
029190c5 7650
712555ee 7651 mutex_lock(&sched_domains_mutex);
a1835615 7652
7378547f
MM
7653 /* always unregister in case we don't destroy any domains */
7654 unregister_sched_domain_sysctl();
7655
d65bd5ec
HC
7656 /* Let architecture update cpu core mappings. */
7657 new_topology = arch_update_cpu_topology();
7658
dfb512ec 7659 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7660
7661 /* Destroy deleted domains */
7662 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7663 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7664 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7665 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7666 goto match1;
7667 }
7668 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7669 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7670match1:
7671 ;
7672 }
7673
e761b772
MK
7674 if (doms_new == NULL) {
7675 ndoms_cur = 0;
acc3f5d7 7676 doms_new = &fallback_doms;
6ad4c188 7677 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7678 WARN_ON_ONCE(dattr_new);
e761b772
MK
7679 }
7680
029190c5
PJ
7681 /* Build new domains */
7682 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7683 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7684 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7685 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7686 goto match2;
7687 }
7688 /* no match - add a new doms_new */
dce840a0 7689 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7690match2:
7691 ;
7692 }
7693
7694 /* Remember the new sched domains */
acc3f5d7
RR
7695 if (doms_cur != &fallback_doms)
7696 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7697 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7698 doms_cur = doms_new;
1d3504fc 7699 dattr_cur = dattr_new;
029190c5 7700 ndoms_cur = ndoms_new;
7378547f
MM
7701
7702 register_sched_domain_sysctl();
a1835615 7703
712555ee 7704 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7705}
7706
5c45bf27 7707#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7708static void reinit_sched_domains(void)
5c45bf27 7709{
95402b38 7710 get_online_cpus();
dfb512ec
MK
7711
7712 /* Destroy domains first to force the rebuild */
7713 partition_sched_domains(0, NULL, NULL);
7714
e761b772 7715 rebuild_sched_domains();
95402b38 7716 put_online_cpus();
5c45bf27
SS
7717}
7718
7719static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7720{
afb8a9b7 7721 unsigned int level = 0;
5c45bf27 7722
afb8a9b7
GS
7723 if (sscanf(buf, "%u", &level) != 1)
7724 return -EINVAL;
7725
7726 /*
7727 * level is always be positive so don't check for
7728 * level < POWERSAVINGS_BALANCE_NONE which is 0
7729 * What happens on 0 or 1 byte write,
7730 * need to check for count as well?
7731 */
7732
7733 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7734 return -EINVAL;
7735
7736 if (smt)
afb8a9b7 7737 sched_smt_power_savings = level;
5c45bf27 7738 else
afb8a9b7 7739 sched_mc_power_savings = level;
5c45bf27 7740
c4a8849a 7741 reinit_sched_domains();
5c45bf27 7742
c70f22d2 7743 return count;
5c45bf27
SS
7744}
7745
5c45bf27 7746#ifdef CONFIG_SCHED_MC
f718cd4a 7747static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7748 struct sysdev_class_attribute *attr,
f718cd4a 7749 char *page)
5c45bf27
SS
7750{
7751 return sprintf(page, "%u\n", sched_mc_power_savings);
7752}
f718cd4a 7753static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7754 struct sysdev_class_attribute *attr,
48f24c4d 7755 const char *buf, size_t count)
5c45bf27
SS
7756{
7757 return sched_power_savings_store(buf, count, 0);
7758}
f718cd4a
AK
7759static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7760 sched_mc_power_savings_show,
7761 sched_mc_power_savings_store);
5c45bf27
SS
7762#endif
7763
7764#ifdef CONFIG_SCHED_SMT
f718cd4a 7765static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7766 struct sysdev_class_attribute *attr,
f718cd4a 7767 char *page)
5c45bf27
SS
7768{
7769 return sprintf(page, "%u\n", sched_smt_power_savings);
7770}
f718cd4a 7771static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7772 struct sysdev_class_attribute *attr,
48f24c4d 7773 const char *buf, size_t count)
5c45bf27
SS
7774{
7775 return sched_power_savings_store(buf, count, 1);
7776}
f718cd4a
AK
7777static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7778 sched_smt_power_savings_show,
6707de00
AB
7779 sched_smt_power_savings_store);
7780#endif
7781
39aac648 7782int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7783{
7784 int err = 0;
7785
7786#ifdef CONFIG_SCHED_SMT
7787 if (smt_capable())
7788 err = sysfs_create_file(&cls->kset.kobj,
7789 &attr_sched_smt_power_savings.attr);
7790#endif
7791#ifdef CONFIG_SCHED_MC
7792 if (!err && mc_capable())
7793 err = sysfs_create_file(&cls->kset.kobj,
7794 &attr_sched_mc_power_savings.attr);
7795#endif
7796 return err;
7797}
6d6bc0ad 7798#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7799
1da177e4 7800/*
3a101d05
TH
7801 * Update cpusets according to cpu_active mask. If cpusets are
7802 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7803 * around partition_sched_domains().
1da177e4 7804 */
0b2e918a
TH
7805static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7806 void *hcpu)
e761b772 7807{
3a101d05 7808 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7809 case CPU_ONLINE:
6ad4c188 7810 case CPU_DOWN_FAILED:
3a101d05 7811 cpuset_update_active_cpus();
e761b772 7812 return NOTIFY_OK;
3a101d05
TH
7813 default:
7814 return NOTIFY_DONE;
7815 }
7816}
e761b772 7817
0b2e918a
TH
7818static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7819 void *hcpu)
3a101d05
TH
7820{
7821 switch (action & ~CPU_TASKS_FROZEN) {
7822 case CPU_DOWN_PREPARE:
7823 cpuset_update_active_cpus();
7824 return NOTIFY_OK;
e761b772
MK
7825 default:
7826 return NOTIFY_DONE;
7827 }
7828}
e761b772
MK
7829
7830static int update_runtime(struct notifier_block *nfb,
7831 unsigned long action, void *hcpu)
1da177e4 7832{
7def2be1
PZ
7833 int cpu = (int)(long)hcpu;
7834
1da177e4 7835 switch (action) {
1da177e4 7836 case CPU_DOWN_PREPARE:
8bb78442 7837 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7838 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7839 return NOTIFY_OK;
7840
1da177e4 7841 case CPU_DOWN_FAILED:
8bb78442 7842 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7843 case CPU_ONLINE:
8bb78442 7844 case CPU_ONLINE_FROZEN:
7def2be1 7845 enable_runtime(cpu_rq(cpu));
e761b772
MK
7846 return NOTIFY_OK;
7847
1da177e4
LT
7848 default:
7849 return NOTIFY_DONE;
7850 }
1da177e4 7851}
1da177e4
LT
7852
7853void __init sched_init_smp(void)
7854{
dcc30a35
RR
7855 cpumask_var_t non_isolated_cpus;
7856
7857 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7858 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7859
95402b38 7860 get_online_cpus();
712555ee 7861 mutex_lock(&sched_domains_mutex);
c4a8849a 7862 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7863 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7864 if (cpumask_empty(non_isolated_cpus))
7865 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7866 mutex_unlock(&sched_domains_mutex);
95402b38 7867 put_online_cpus();
e761b772 7868
3a101d05
TH
7869 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7870 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7871
7872 /* RT runtime code needs to handle some hotplug events */
7873 hotcpu_notifier(update_runtime, 0);
7874
b328ca18 7875 init_hrtick();
5c1e1767
NP
7876
7877 /* Move init over to a non-isolated CPU */
dcc30a35 7878 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7879 BUG();
19978ca6 7880 sched_init_granularity();
dcc30a35 7881 free_cpumask_var(non_isolated_cpus);
4212823f 7882
0e3900e6 7883 init_sched_rt_class();
1da177e4
LT
7884}
7885#else
7886void __init sched_init_smp(void)
7887{
19978ca6 7888 sched_init_granularity();
1da177e4
LT
7889}
7890#endif /* CONFIG_SMP */
7891
cd1bb94b
AB
7892const_debug unsigned int sysctl_timer_migration = 1;
7893
1da177e4
LT
7894int in_sched_functions(unsigned long addr)
7895{
1da177e4
LT
7896 return in_lock_functions(addr) ||
7897 (addr >= (unsigned long)__sched_text_start
7898 && addr < (unsigned long)__sched_text_end);
7899}
7900
a9957449 7901static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7902{
7903 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7904 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7905#ifdef CONFIG_FAIR_GROUP_SCHED
7906 cfs_rq->rq = rq;
f07333bf 7907 /* allow initial update_cfs_load() to truncate */
6ea72f12 7908#ifdef CONFIG_SMP
f07333bf 7909 cfs_rq->load_stamp = 1;
6ea72f12 7910#endif
dd41f596 7911#endif
67e9fb2a 7912 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
c64be78f
PZ
7913#ifndef CONFIG_64BIT
7914 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7915#endif
dd41f596
IM
7916}
7917
fa85ae24
PZ
7918static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7919{
7920 struct rt_prio_array *array;
7921 int i;
7922
7923 array = &rt_rq->active;
7924 for (i = 0; i < MAX_RT_PRIO; i++) {
7925 INIT_LIST_HEAD(array->queue + i);
7926 __clear_bit(i, array->bitmap);
7927 }
7928 /* delimiter for bitsearch: */
7929 __set_bit(MAX_RT_PRIO, array->bitmap);
7930
052f1dc7 7931#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7932 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7933#ifdef CONFIG_SMP
e864c499 7934 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7935#endif
48d5e258 7936#endif
fa85ae24
PZ
7937#ifdef CONFIG_SMP
7938 rt_rq->rt_nr_migratory = 0;
fa85ae24 7939 rt_rq->overloaded = 0;
05fa785c 7940 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7941#endif
7942
7943 rt_rq->rt_time = 0;
7944 rt_rq->rt_throttled = 0;
ac086bc2 7945 rt_rq->rt_runtime = 0;
0986b11b 7946 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7947
052f1dc7 7948#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7949 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7950 rt_rq->rq = rq;
7951#endif
fa85ae24
PZ
7952}
7953
6f505b16 7954#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7955static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7956 struct sched_entity *se, int cpu,
ec7dc8ac 7957 struct sched_entity *parent)
6f505b16 7958{
ec7dc8ac 7959 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7960 tg->cfs_rq[cpu] = cfs_rq;
7961 init_cfs_rq(cfs_rq, rq);
7962 cfs_rq->tg = tg;
6f505b16
PZ
7963
7964 tg->se[cpu] = se;
07e06b01 7965 /* se could be NULL for root_task_group */
354d60c2
DG
7966 if (!se)
7967 return;
7968
ec7dc8ac
DG
7969 if (!parent)
7970 se->cfs_rq = &rq->cfs;
7971 else
7972 se->cfs_rq = parent->my_q;
7973
6f505b16 7974 se->my_q = cfs_rq;
9437178f 7975 update_load_set(&se->load, 0);
ec7dc8ac 7976 se->parent = parent;
6f505b16 7977}
052f1dc7 7978#endif
6f505b16 7979
052f1dc7 7980#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 7981static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 7982 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 7983 struct sched_rt_entity *parent)
6f505b16 7984{
ec7dc8ac
DG
7985 struct rq *rq = cpu_rq(cpu);
7986
6f505b16
PZ
7987 tg->rt_rq[cpu] = rt_rq;
7988 init_rt_rq(rt_rq, rq);
7989 rt_rq->tg = tg;
ac086bc2 7990 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7991
7992 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7993 if (!rt_se)
7994 return;
7995
ec7dc8ac
DG
7996 if (!parent)
7997 rt_se->rt_rq = &rq->rt;
7998 else
7999 rt_se->rt_rq = parent->my_q;
8000
6f505b16 8001 rt_se->my_q = rt_rq;
ec7dc8ac 8002 rt_se->parent = parent;
6f505b16
PZ
8003 INIT_LIST_HEAD(&rt_se->run_list);
8004}
8005#endif
8006
1da177e4
LT
8007void __init sched_init(void)
8008{
dd41f596 8009 int i, j;
434d53b0
MT
8010 unsigned long alloc_size = 0, ptr;
8011
8012#ifdef CONFIG_FAIR_GROUP_SCHED
8013 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8014#endif
8015#ifdef CONFIG_RT_GROUP_SCHED
8016 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8017#endif
df7c8e84 8018#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8019 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8020#endif
434d53b0 8021 if (alloc_size) {
36b7b6d4 8022 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8023
8024#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8025 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8026 ptr += nr_cpu_ids * sizeof(void **);
8027
07e06b01 8028 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8029 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8030
6d6bc0ad 8031#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8032#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8033 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8034 ptr += nr_cpu_ids * sizeof(void **);
8035
07e06b01 8036 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8037 ptr += nr_cpu_ids * sizeof(void **);
8038
6d6bc0ad 8039#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8040#ifdef CONFIG_CPUMASK_OFFSTACK
8041 for_each_possible_cpu(i) {
8042 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8043 ptr += cpumask_size();
8044 }
8045#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8046 }
dd41f596 8047
57d885fe
GH
8048#ifdef CONFIG_SMP
8049 init_defrootdomain();
8050#endif
8051
d0b27fa7
PZ
8052 init_rt_bandwidth(&def_rt_bandwidth,
8053 global_rt_period(), global_rt_runtime());
8054
8055#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8056 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8057 global_rt_period(), global_rt_runtime());
6d6bc0ad 8058#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8059
7c941438 8060#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8061 list_add(&root_task_group.list, &task_groups);
8062 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8063 autogroup_init(&init_task);
7c941438 8064#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8065
0a945022 8066 for_each_possible_cpu(i) {
70b97a7f 8067 struct rq *rq;
1da177e4
LT
8068
8069 rq = cpu_rq(i);
05fa785c 8070 raw_spin_lock_init(&rq->lock);
7897986b 8071 rq->nr_running = 0;
dce48a84
TG
8072 rq->calc_load_active = 0;
8073 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8074 init_cfs_rq(&rq->cfs, rq);
6f505b16 8075 init_rt_rq(&rq->rt, rq);
dd41f596 8076#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8077 root_task_group.shares = root_task_group_load;
6f505b16 8078 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8079 /*
07e06b01 8080 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8081 *
8082 * In case of task-groups formed thr' the cgroup filesystem, it
8083 * gets 100% of the cpu resources in the system. This overall
8084 * system cpu resource is divided among the tasks of
07e06b01 8085 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8086 * based on each entity's (task or task-group's) weight
8087 * (se->load.weight).
8088 *
07e06b01 8089 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8090 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8091 * then A0's share of the cpu resource is:
8092 *
0d905bca 8093 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8094 *
07e06b01
YZ
8095 * We achieve this by letting root_task_group's tasks sit
8096 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8097 */
07e06b01 8098 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8099#endif /* CONFIG_FAIR_GROUP_SCHED */
8100
8101 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8102#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8103 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8104 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8105#endif
1da177e4 8106
dd41f596
IM
8107 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8108 rq->cpu_load[j] = 0;
fdf3e95d
VP
8109
8110 rq->last_load_update_tick = jiffies;
8111
1da177e4 8112#ifdef CONFIG_SMP
41c7ce9a 8113 rq->sd = NULL;
57d885fe 8114 rq->rd = NULL;
1399fa78 8115 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 8116 rq->post_schedule = 0;
1da177e4 8117 rq->active_balance = 0;
dd41f596 8118 rq->next_balance = jiffies;
1da177e4 8119 rq->push_cpu = 0;
0a2966b4 8120 rq->cpu = i;
1f11eb6a 8121 rq->online = 0;
eae0c9df
MG
8122 rq->idle_stamp = 0;
8123 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8124 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8125#ifdef CONFIG_NO_HZ
8126 rq->nohz_balance_kick = 0;
8127 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8128#endif
1da177e4 8129#endif
8f4d37ec 8130 init_rq_hrtick(rq);
1da177e4 8131 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8132 }
8133
2dd73a4f 8134 set_load_weight(&init_task);
b50f60ce 8135
e107be36
AK
8136#ifdef CONFIG_PREEMPT_NOTIFIERS
8137 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8138#endif
8139
c9819f45 8140#ifdef CONFIG_SMP
962cf36c 8141 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8142#endif
8143
b50f60ce 8144#ifdef CONFIG_RT_MUTEXES
1d615482 8145 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8146#endif
8147
1da177e4
LT
8148 /*
8149 * The boot idle thread does lazy MMU switching as well:
8150 */
8151 atomic_inc(&init_mm.mm_count);
8152 enter_lazy_tlb(&init_mm, current);
8153
8154 /*
8155 * Make us the idle thread. Technically, schedule() should not be
8156 * called from this thread, however somewhere below it might be,
8157 * but because we are the idle thread, we just pick up running again
8158 * when this runqueue becomes "idle".
8159 */
8160 init_idle(current, smp_processor_id());
dce48a84
TG
8161
8162 calc_load_update = jiffies + LOAD_FREQ;
8163
dd41f596
IM
8164 /*
8165 * During early bootup we pretend to be a normal task:
8166 */
8167 current->sched_class = &fair_sched_class;
6892b75e 8168
6a7b3dc3 8169 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8170 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8171#ifdef CONFIG_SMP
4cb98839 8172 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 8173#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8174 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8175 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8176 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8177 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8178 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8179#endif
bdddd296
RR
8180 /* May be allocated at isolcpus cmdline parse time */
8181 if (cpu_isolated_map == NULL)
8182 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8183#endif /* SMP */
6a7b3dc3 8184
6892b75e 8185 scheduler_running = 1;
1da177e4
LT
8186}
8187
8188#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8189static inline int preempt_count_equals(int preempt_offset)
8190{
234da7bc 8191 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8192
4ba8216c 8193 return (nested == preempt_offset);
e4aafea2
FW
8194}
8195
d894837f 8196void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8197{
48f24c4d 8198#ifdef in_atomic
1da177e4
LT
8199 static unsigned long prev_jiffy; /* ratelimiting */
8200
e4aafea2
FW
8201 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8202 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8203 return;
8204 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8205 return;
8206 prev_jiffy = jiffies;
8207
3df0fc5b
PZ
8208 printk(KERN_ERR
8209 "BUG: sleeping function called from invalid context at %s:%d\n",
8210 file, line);
8211 printk(KERN_ERR
8212 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8213 in_atomic(), irqs_disabled(),
8214 current->pid, current->comm);
aef745fc
IM
8215
8216 debug_show_held_locks(current);
8217 if (irqs_disabled())
8218 print_irqtrace_events(current);
8219 dump_stack();
1da177e4
LT
8220#endif
8221}
8222EXPORT_SYMBOL(__might_sleep);
8223#endif
8224
8225#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8226static void normalize_task(struct rq *rq, struct task_struct *p)
8227{
da7a735e
PZ
8228 const struct sched_class *prev_class = p->sched_class;
8229 int old_prio = p->prio;
3a5e4dc1 8230 int on_rq;
3e51f33f 8231
fd2f4419 8232 on_rq = p->on_rq;
3a5e4dc1
AK
8233 if (on_rq)
8234 deactivate_task(rq, p, 0);
8235 __setscheduler(rq, p, SCHED_NORMAL, 0);
8236 if (on_rq) {
8237 activate_task(rq, p, 0);
8238 resched_task(rq->curr);
8239 }
da7a735e
PZ
8240
8241 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8242}
8243
1da177e4
LT
8244void normalize_rt_tasks(void)
8245{
a0f98a1c 8246 struct task_struct *g, *p;
1da177e4 8247 unsigned long flags;
70b97a7f 8248 struct rq *rq;
1da177e4 8249
4cf5d77a 8250 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8251 do_each_thread(g, p) {
178be793
IM
8252 /*
8253 * Only normalize user tasks:
8254 */
8255 if (!p->mm)
8256 continue;
8257
6cfb0d5d 8258 p->se.exec_start = 0;
6cfb0d5d 8259#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8260 p->se.statistics.wait_start = 0;
8261 p->se.statistics.sleep_start = 0;
8262 p->se.statistics.block_start = 0;
6cfb0d5d 8263#endif
dd41f596
IM
8264
8265 if (!rt_task(p)) {
8266 /*
8267 * Renice negative nice level userspace
8268 * tasks back to 0:
8269 */
8270 if (TASK_NICE(p) < 0 && p->mm)
8271 set_user_nice(p, 0);
1da177e4 8272 continue;
dd41f596 8273 }
1da177e4 8274
1d615482 8275 raw_spin_lock(&p->pi_lock);
b29739f9 8276 rq = __task_rq_lock(p);
1da177e4 8277
178be793 8278 normalize_task(rq, p);
3a5e4dc1 8279
b29739f9 8280 __task_rq_unlock(rq);
1d615482 8281 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8282 } while_each_thread(g, p);
8283
4cf5d77a 8284 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8285}
8286
8287#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8288
67fc4e0c 8289#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8290/*
67fc4e0c 8291 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8292 *
8293 * They can only be called when the whole system has been
8294 * stopped - every CPU needs to be quiescent, and no scheduling
8295 * activity can take place. Using them for anything else would
8296 * be a serious bug, and as a result, they aren't even visible
8297 * under any other configuration.
8298 */
8299
8300/**
8301 * curr_task - return the current task for a given cpu.
8302 * @cpu: the processor in question.
8303 *
8304 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8305 */
36c8b586 8306struct task_struct *curr_task(int cpu)
1df5c10a
LT
8307{
8308 return cpu_curr(cpu);
8309}
8310
67fc4e0c
JW
8311#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8312
8313#ifdef CONFIG_IA64
1df5c10a
LT
8314/**
8315 * set_curr_task - set the current task for a given cpu.
8316 * @cpu: the processor in question.
8317 * @p: the task pointer to set.
8318 *
8319 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8320 * are serviced on a separate stack. It allows the architecture to switch the
8321 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8322 * must be called with all CPU's synchronized, and interrupts disabled, the
8323 * and caller must save the original value of the current task (see
8324 * curr_task() above) and restore that value before reenabling interrupts and
8325 * re-starting the system.
8326 *
8327 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8328 */
36c8b586 8329void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8330{
8331 cpu_curr(cpu) = p;
8332}
8333
8334#endif
29f59db3 8335
bccbe08a
PZ
8336#ifdef CONFIG_FAIR_GROUP_SCHED
8337static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8338{
8339 int i;
8340
8341 for_each_possible_cpu(i) {
8342 if (tg->cfs_rq)
8343 kfree(tg->cfs_rq[i]);
8344 if (tg->se)
8345 kfree(tg->se[i]);
6f505b16
PZ
8346 }
8347
8348 kfree(tg->cfs_rq);
8349 kfree(tg->se);
6f505b16
PZ
8350}
8351
ec7dc8ac
DG
8352static
8353int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8354{
29f59db3 8355 struct cfs_rq *cfs_rq;
eab17229 8356 struct sched_entity *se;
29f59db3
SV
8357 int i;
8358
434d53b0 8359 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8360 if (!tg->cfs_rq)
8361 goto err;
434d53b0 8362 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8363 if (!tg->se)
8364 goto err;
052f1dc7
PZ
8365
8366 tg->shares = NICE_0_LOAD;
29f59db3
SV
8367
8368 for_each_possible_cpu(i) {
eab17229
LZ
8369 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8370 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8371 if (!cfs_rq)
8372 goto err;
8373
eab17229
LZ
8374 se = kzalloc_node(sizeof(struct sched_entity),
8375 GFP_KERNEL, cpu_to_node(i));
29f59db3 8376 if (!se)
dfc12eb2 8377 goto err_free_rq;
29f59db3 8378
3d4b47b4 8379 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8380 }
8381
8382 return 1;
8383
49246274 8384err_free_rq:
dfc12eb2 8385 kfree(cfs_rq);
49246274 8386err:
bccbe08a
PZ
8387 return 0;
8388}
8389
bccbe08a
PZ
8390static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8391{
3d4b47b4
PZ
8392 struct rq *rq = cpu_rq(cpu);
8393 unsigned long flags;
3d4b47b4
PZ
8394
8395 /*
8396 * Only empty task groups can be destroyed; so we can speculatively
8397 * check on_list without danger of it being re-added.
8398 */
8399 if (!tg->cfs_rq[cpu]->on_list)
8400 return;
8401
8402 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8403 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8404 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8405}
6d6bc0ad 8406#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8407static inline void free_fair_sched_group(struct task_group *tg)
8408{
8409}
8410
ec7dc8ac
DG
8411static inline
8412int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8413{
8414 return 1;
8415}
8416
bccbe08a
PZ
8417static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8418{
8419}
6d6bc0ad 8420#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8421
8422#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8423static void free_rt_sched_group(struct task_group *tg)
8424{
8425 int i;
8426
d0b27fa7
PZ
8427 destroy_rt_bandwidth(&tg->rt_bandwidth);
8428
bccbe08a
PZ
8429 for_each_possible_cpu(i) {
8430 if (tg->rt_rq)
8431 kfree(tg->rt_rq[i]);
8432 if (tg->rt_se)
8433 kfree(tg->rt_se[i]);
8434 }
8435
8436 kfree(tg->rt_rq);
8437 kfree(tg->rt_se);
8438}
8439
ec7dc8ac
DG
8440static
8441int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8442{
8443 struct rt_rq *rt_rq;
eab17229 8444 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8445 int i;
8446
434d53b0 8447 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8448 if (!tg->rt_rq)
8449 goto err;
434d53b0 8450 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8451 if (!tg->rt_se)
8452 goto err;
8453
d0b27fa7
PZ
8454 init_rt_bandwidth(&tg->rt_bandwidth,
8455 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8456
8457 for_each_possible_cpu(i) {
eab17229
LZ
8458 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8459 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8460 if (!rt_rq)
8461 goto err;
29f59db3 8462
eab17229
LZ
8463 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8464 GFP_KERNEL, cpu_to_node(i));
6f505b16 8465 if (!rt_se)
dfc12eb2 8466 goto err_free_rq;
29f59db3 8467
3d4b47b4 8468 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8469 }
8470
bccbe08a
PZ
8471 return 1;
8472
49246274 8473err_free_rq:
dfc12eb2 8474 kfree(rt_rq);
49246274 8475err:
bccbe08a
PZ
8476 return 0;
8477}
6d6bc0ad 8478#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8479static inline void free_rt_sched_group(struct task_group *tg)
8480{
8481}
8482
ec7dc8ac
DG
8483static inline
8484int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8485{
8486 return 1;
8487}
6d6bc0ad 8488#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8489
7c941438 8490#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8491static void free_sched_group(struct task_group *tg)
8492{
8493 free_fair_sched_group(tg);
8494 free_rt_sched_group(tg);
e9aa1dd1 8495 autogroup_free(tg);
bccbe08a
PZ
8496 kfree(tg);
8497}
8498
8499/* allocate runqueue etc for a new task group */
ec7dc8ac 8500struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8501{
8502 struct task_group *tg;
8503 unsigned long flags;
bccbe08a
PZ
8504
8505 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8506 if (!tg)
8507 return ERR_PTR(-ENOMEM);
8508
ec7dc8ac 8509 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8510 goto err;
8511
ec7dc8ac 8512 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8513 goto err;
8514
8ed36996 8515 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8516 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8517
8518 WARN_ON(!parent); /* root should already exist */
8519
8520 tg->parent = parent;
f473aa5e 8521 INIT_LIST_HEAD(&tg->children);
09f2724a 8522 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8523 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8524
9b5b7751 8525 return tg;
29f59db3
SV
8526
8527err:
6f505b16 8528 free_sched_group(tg);
29f59db3
SV
8529 return ERR_PTR(-ENOMEM);
8530}
8531
9b5b7751 8532/* rcu callback to free various structures associated with a task group */
6f505b16 8533static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8534{
29f59db3 8535 /* now it should be safe to free those cfs_rqs */
6f505b16 8536 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8537}
8538
9b5b7751 8539/* Destroy runqueue etc associated with a task group */
4cf86d77 8540void sched_destroy_group(struct task_group *tg)
29f59db3 8541{
8ed36996 8542 unsigned long flags;
9b5b7751 8543 int i;
29f59db3 8544
3d4b47b4
PZ
8545 /* end participation in shares distribution */
8546 for_each_possible_cpu(i)
bccbe08a 8547 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8548
8549 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8550 list_del_rcu(&tg->list);
f473aa5e 8551 list_del_rcu(&tg->siblings);
8ed36996 8552 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8553
9b5b7751 8554 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8555 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8556}
8557
9b5b7751 8558/* change task's runqueue when it moves between groups.
3a252015
IM
8559 * The caller of this function should have put the task in its new group
8560 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8561 * reflect its new group.
9b5b7751
SV
8562 */
8563void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8564{
8565 int on_rq, running;
8566 unsigned long flags;
8567 struct rq *rq;
8568
8569 rq = task_rq_lock(tsk, &flags);
8570
051a1d1a 8571 running = task_current(rq, tsk);
fd2f4419 8572 on_rq = tsk->on_rq;
29f59db3 8573
0e1f3483 8574 if (on_rq)
29f59db3 8575 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8576 if (unlikely(running))
8577 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8578
810b3817 8579#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8580 if (tsk->sched_class->task_move_group)
8581 tsk->sched_class->task_move_group(tsk, on_rq);
8582 else
810b3817 8583#endif
b2b5ce02 8584 set_task_rq(tsk, task_cpu(tsk));
810b3817 8585
0e1f3483
HS
8586 if (unlikely(running))
8587 tsk->sched_class->set_curr_task(rq);
8588 if (on_rq)
371fd7e7 8589 enqueue_task(rq, tsk, 0);
29f59db3 8590
0122ec5b 8591 task_rq_unlock(rq, tsk, &flags);
29f59db3 8592}
7c941438 8593#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8594
052f1dc7 8595#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8596static DEFINE_MUTEX(shares_mutex);
8597
4cf86d77 8598int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8599{
8600 int i;
8ed36996 8601 unsigned long flags;
c61935fd 8602
ec7dc8ac
DG
8603 /*
8604 * We can't change the weight of the root cgroup.
8605 */
8606 if (!tg->se[0])
8607 return -EINVAL;
8608
cd62287e 8609 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
62fb1851 8610
8ed36996 8611 mutex_lock(&shares_mutex);
9b5b7751 8612 if (tg->shares == shares)
5cb350ba 8613 goto done;
29f59db3 8614
9b5b7751 8615 tg->shares = shares;
c09595f6 8616 for_each_possible_cpu(i) {
9437178f
PT
8617 struct rq *rq = cpu_rq(i);
8618 struct sched_entity *se;
8619
8620 se = tg->se[i];
8621 /* Propagate contribution to hierarchy */
8622 raw_spin_lock_irqsave(&rq->lock, flags);
8623 for_each_sched_entity(se)
6d5ab293 8624 update_cfs_shares(group_cfs_rq(se));
9437178f 8625 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8626 }
29f59db3 8627
5cb350ba 8628done:
8ed36996 8629 mutex_unlock(&shares_mutex);
9b5b7751 8630 return 0;
29f59db3
SV
8631}
8632
5cb350ba
DG
8633unsigned long sched_group_shares(struct task_group *tg)
8634{
8635 return tg->shares;
8636}
052f1dc7 8637#endif
5cb350ba 8638
052f1dc7 8639#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8640/*
9f0c1e56 8641 * Ensure that the real time constraints are schedulable.
6f505b16 8642 */
9f0c1e56
PZ
8643static DEFINE_MUTEX(rt_constraints_mutex);
8644
8645static unsigned long to_ratio(u64 period, u64 runtime)
8646{
8647 if (runtime == RUNTIME_INF)
9a7e0b18 8648 return 1ULL << 20;
9f0c1e56 8649
9a7e0b18 8650 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8651}
8652
9a7e0b18
PZ
8653/* Must be called with tasklist_lock held */
8654static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8655{
9a7e0b18 8656 struct task_struct *g, *p;
b40b2e8e 8657
9a7e0b18
PZ
8658 do_each_thread(g, p) {
8659 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8660 return 1;
8661 } while_each_thread(g, p);
b40b2e8e 8662
9a7e0b18
PZ
8663 return 0;
8664}
b40b2e8e 8665
9a7e0b18
PZ
8666struct rt_schedulable_data {
8667 struct task_group *tg;
8668 u64 rt_period;
8669 u64 rt_runtime;
8670};
b40b2e8e 8671
9a7e0b18
PZ
8672static int tg_schedulable(struct task_group *tg, void *data)
8673{
8674 struct rt_schedulable_data *d = data;
8675 struct task_group *child;
8676 unsigned long total, sum = 0;
8677 u64 period, runtime;
b40b2e8e 8678
9a7e0b18
PZ
8679 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8680 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8681
9a7e0b18
PZ
8682 if (tg == d->tg) {
8683 period = d->rt_period;
8684 runtime = d->rt_runtime;
b40b2e8e 8685 }
b40b2e8e 8686
4653f803
PZ
8687 /*
8688 * Cannot have more runtime than the period.
8689 */
8690 if (runtime > period && runtime != RUNTIME_INF)
8691 return -EINVAL;
6f505b16 8692
4653f803
PZ
8693 /*
8694 * Ensure we don't starve existing RT tasks.
8695 */
9a7e0b18
PZ
8696 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8697 return -EBUSY;
6f505b16 8698
9a7e0b18 8699 total = to_ratio(period, runtime);
6f505b16 8700
4653f803
PZ
8701 /*
8702 * Nobody can have more than the global setting allows.
8703 */
8704 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8705 return -EINVAL;
6f505b16 8706
4653f803
PZ
8707 /*
8708 * The sum of our children's runtime should not exceed our own.
8709 */
9a7e0b18
PZ
8710 list_for_each_entry_rcu(child, &tg->children, siblings) {
8711 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8712 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8713
9a7e0b18
PZ
8714 if (child == d->tg) {
8715 period = d->rt_period;
8716 runtime = d->rt_runtime;
8717 }
6f505b16 8718
9a7e0b18 8719 sum += to_ratio(period, runtime);
9f0c1e56 8720 }
6f505b16 8721
9a7e0b18
PZ
8722 if (sum > total)
8723 return -EINVAL;
8724
8725 return 0;
6f505b16
PZ
8726}
8727
9a7e0b18 8728static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8729{
9a7e0b18
PZ
8730 struct rt_schedulable_data data = {
8731 .tg = tg,
8732 .rt_period = period,
8733 .rt_runtime = runtime,
8734 };
8735
8736 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8737}
8738
d0b27fa7
PZ
8739static int tg_set_bandwidth(struct task_group *tg,
8740 u64 rt_period, u64 rt_runtime)
6f505b16 8741{
ac086bc2 8742 int i, err = 0;
9f0c1e56 8743
9f0c1e56 8744 mutex_lock(&rt_constraints_mutex);
521f1a24 8745 read_lock(&tasklist_lock);
9a7e0b18
PZ
8746 err = __rt_schedulable(tg, rt_period, rt_runtime);
8747 if (err)
9f0c1e56 8748 goto unlock;
ac086bc2 8749
0986b11b 8750 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8751 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8752 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8753
8754 for_each_possible_cpu(i) {
8755 struct rt_rq *rt_rq = tg->rt_rq[i];
8756
0986b11b 8757 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8758 rt_rq->rt_runtime = rt_runtime;
0986b11b 8759 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8760 }
0986b11b 8761 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8762unlock:
521f1a24 8763 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8764 mutex_unlock(&rt_constraints_mutex);
8765
8766 return err;
6f505b16
PZ
8767}
8768
d0b27fa7
PZ
8769int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8770{
8771 u64 rt_runtime, rt_period;
8772
8773 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8774 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8775 if (rt_runtime_us < 0)
8776 rt_runtime = RUNTIME_INF;
8777
8778 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8779}
8780
9f0c1e56
PZ
8781long sched_group_rt_runtime(struct task_group *tg)
8782{
8783 u64 rt_runtime_us;
8784
d0b27fa7 8785 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8786 return -1;
8787
d0b27fa7 8788 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8789 do_div(rt_runtime_us, NSEC_PER_USEC);
8790 return rt_runtime_us;
8791}
d0b27fa7
PZ
8792
8793int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8794{
8795 u64 rt_runtime, rt_period;
8796
8797 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8798 rt_runtime = tg->rt_bandwidth.rt_runtime;
8799
619b0488
R
8800 if (rt_period == 0)
8801 return -EINVAL;
8802
d0b27fa7
PZ
8803 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8804}
8805
8806long sched_group_rt_period(struct task_group *tg)
8807{
8808 u64 rt_period_us;
8809
8810 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8811 do_div(rt_period_us, NSEC_PER_USEC);
8812 return rt_period_us;
8813}
8814
8815static int sched_rt_global_constraints(void)
8816{
4653f803 8817 u64 runtime, period;
d0b27fa7
PZ
8818 int ret = 0;
8819
ec5d4989
HS
8820 if (sysctl_sched_rt_period <= 0)
8821 return -EINVAL;
8822
4653f803
PZ
8823 runtime = global_rt_runtime();
8824 period = global_rt_period();
8825
8826 /*
8827 * Sanity check on the sysctl variables.
8828 */
8829 if (runtime > period && runtime != RUNTIME_INF)
8830 return -EINVAL;
10b612f4 8831
d0b27fa7 8832 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8833 read_lock(&tasklist_lock);
4653f803 8834 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8835 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8836 mutex_unlock(&rt_constraints_mutex);
8837
8838 return ret;
8839}
54e99124
DG
8840
8841int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8842{
8843 /* Don't accept realtime tasks when there is no way for them to run */
8844 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8845 return 0;
8846
8847 return 1;
8848}
8849
6d6bc0ad 8850#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8851static int sched_rt_global_constraints(void)
8852{
ac086bc2
PZ
8853 unsigned long flags;
8854 int i;
8855
ec5d4989
HS
8856 if (sysctl_sched_rt_period <= 0)
8857 return -EINVAL;
8858
60aa605d
PZ
8859 /*
8860 * There's always some RT tasks in the root group
8861 * -- migration, kstopmachine etc..
8862 */
8863 if (sysctl_sched_rt_runtime == 0)
8864 return -EBUSY;
8865
0986b11b 8866 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8867 for_each_possible_cpu(i) {
8868 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8869
0986b11b 8870 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8871 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8872 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8873 }
0986b11b 8874 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8875
d0b27fa7
PZ
8876 return 0;
8877}
6d6bc0ad 8878#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8879
8880int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8881 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8882 loff_t *ppos)
8883{
8884 int ret;
8885 int old_period, old_runtime;
8886 static DEFINE_MUTEX(mutex);
8887
8888 mutex_lock(&mutex);
8889 old_period = sysctl_sched_rt_period;
8890 old_runtime = sysctl_sched_rt_runtime;
8891
8d65af78 8892 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8893
8894 if (!ret && write) {
8895 ret = sched_rt_global_constraints();
8896 if (ret) {
8897 sysctl_sched_rt_period = old_period;
8898 sysctl_sched_rt_runtime = old_runtime;
8899 } else {
8900 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8901 def_rt_bandwidth.rt_period =
8902 ns_to_ktime(global_rt_period());
8903 }
8904 }
8905 mutex_unlock(&mutex);
8906
8907 return ret;
8908}
68318b8e 8909
052f1dc7 8910#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8911
8912/* return corresponding task_group object of a cgroup */
2b01dfe3 8913static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8914{
2b01dfe3
PM
8915 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8916 struct task_group, css);
68318b8e
SV
8917}
8918
8919static struct cgroup_subsys_state *
2b01dfe3 8920cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8921{
ec7dc8ac 8922 struct task_group *tg, *parent;
68318b8e 8923
2b01dfe3 8924 if (!cgrp->parent) {
68318b8e 8925 /* This is early initialization for the top cgroup */
07e06b01 8926 return &root_task_group.css;
68318b8e
SV
8927 }
8928
ec7dc8ac
DG
8929 parent = cgroup_tg(cgrp->parent);
8930 tg = sched_create_group(parent);
68318b8e
SV
8931 if (IS_ERR(tg))
8932 return ERR_PTR(-ENOMEM);
8933
68318b8e
SV
8934 return &tg->css;
8935}
8936
41a2d6cf
IM
8937static void
8938cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8939{
2b01dfe3 8940 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8941
8942 sched_destroy_group(tg);
8943}
8944
41a2d6cf 8945static int
be367d09 8946cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8947{
b68aa230 8948#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8949 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8950 return -EINVAL;
8951#else
68318b8e
SV
8952 /* We don't support RT-tasks being in separate groups */
8953 if (tsk->sched_class != &fair_sched_class)
8954 return -EINVAL;
b68aa230 8955#endif
be367d09
BB
8956 return 0;
8957}
68318b8e 8958
68318b8e 8959static void
f780bdb7 8960cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
8961{
8962 sched_move_task(tsk);
8963}
8964
068c5cc5 8965static void
d41d5a01
PZ
8966cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
8967 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
8968{
8969 /*
8970 * cgroup_exit() is called in the copy_process() failure path.
8971 * Ignore this case since the task hasn't ran yet, this avoids
8972 * trying to poke a half freed task state from generic code.
8973 */
8974 if (!(task->flags & PF_EXITING))
8975 return;
8976
8977 sched_move_task(task);
8978}
8979
052f1dc7 8980#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8981static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8982 u64 shareval)
68318b8e 8983{
c8b28116 8984 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
8985}
8986
f4c753b7 8987static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8988{
2b01dfe3 8989 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 8990
c8b28116 8991 return (u64) scale_load_down(tg->shares);
68318b8e 8992}
6d6bc0ad 8993#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8994
052f1dc7 8995#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8996static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8997 s64 val)
6f505b16 8998{
06ecb27c 8999 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9000}
9001
06ecb27c 9002static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9003{
06ecb27c 9004 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9005}
d0b27fa7
PZ
9006
9007static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9008 u64 rt_period_us)
9009{
9010 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9011}
9012
9013static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9014{
9015 return sched_group_rt_period(cgroup_tg(cgrp));
9016}
6d6bc0ad 9017#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9018
fe5c7cc2 9019static struct cftype cpu_files[] = {
052f1dc7 9020#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9021 {
9022 .name = "shares",
f4c753b7
PM
9023 .read_u64 = cpu_shares_read_u64,
9024 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9025 },
052f1dc7
PZ
9026#endif
9027#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9028 {
9f0c1e56 9029 .name = "rt_runtime_us",
06ecb27c
PM
9030 .read_s64 = cpu_rt_runtime_read,
9031 .write_s64 = cpu_rt_runtime_write,
6f505b16 9032 },
d0b27fa7
PZ
9033 {
9034 .name = "rt_period_us",
f4c753b7
PM
9035 .read_u64 = cpu_rt_period_read_uint,
9036 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9037 },
052f1dc7 9038#endif
68318b8e
SV
9039};
9040
9041static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9042{
fe5c7cc2 9043 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9044}
9045
9046struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9047 .name = "cpu",
9048 .create = cpu_cgroup_create,
9049 .destroy = cpu_cgroup_destroy,
f780bdb7
BB
9050 .can_attach_task = cpu_cgroup_can_attach_task,
9051 .attach_task = cpu_cgroup_attach_task,
068c5cc5 9052 .exit = cpu_cgroup_exit,
38605cae
IM
9053 .populate = cpu_cgroup_populate,
9054 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9055 .early_init = 1,
9056};
9057
052f1dc7 9058#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9059
9060#ifdef CONFIG_CGROUP_CPUACCT
9061
9062/*
9063 * CPU accounting code for task groups.
9064 *
9065 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9066 * (balbir@in.ibm.com).
9067 */
9068
934352f2 9069/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9070struct cpuacct {
9071 struct cgroup_subsys_state css;
9072 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9073 u64 __percpu *cpuusage;
ef12fefa 9074 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9075 struct cpuacct *parent;
d842de87
SV
9076};
9077
9078struct cgroup_subsys cpuacct_subsys;
9079
9080/* return cpu accounting group corresponding to this container */
32cd756a 9081static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9082{
32cd756a 9083 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9084 struct cpuacct, css);
9085}
9086
9087/* return cpu accounting group to which this task belongs */
9088static inline struct cpuacct *task_ca(struct task_struct *tsk)
9089{
9090 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9091 struct cpuacct, css);
9092}
9093
9094/* create a new cpu accounting group */
9095static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9096 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9097{
9098 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9099 int i;
d842de87
SV
9100
9101 if (!ca)
ef12fefa 9102 goto out;
d842de87
SV
9103
9104 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9105 if (!ca->cpuusage)
9106 goto out_free_ca;
9107
9108 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9109 if (percpu_counter_init(&ca->cpustat[i], 0))
9110 goto out_free_counters;
d842de87 9111
934352f2
BR
9112 if (cgrp->parent)
9113 ca->parent = cgroup_ca(cgrp->parent);
9114
d842de87 9115 return &ca->css;
ef12fefa
BR
9116
9117out_free_counters:
9118 while (--i >= 0)
9119 percpu_counter_destroy(&ca->cpustat[i]);
9120 free_percpu(ca->cpuusage);
9121out_free_ca:
9122 kfree(ca);
9123out:
9124 return ERR_PTR(-ENOMEM);
d842de87
SV
9125}
9126
9127/* destroy an existing cpu accounting group */
41a2d6cf 9128static void
32cd756a 9129cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9130{
32cd756a 9131 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9132 int i;
d842de87 9133
ef12fefa
BR
9134 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9135 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9136 free_percpu(ca->cpuusage);
9137 kfree(ca);
9138}
9139
720f5498
KC
9140static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9141{
b36128c8 9142 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9143 u64 data;
9144
9145#ifndef CONFIG_64BIT
9146 /*
9147 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9148 */
05fa785c 9149 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9150 data = *cpuusage;
05fa785c 9151 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9152#else
9153 data = *cpuusage;
9154#endif
9155
9156 return data;
9157}
9158
9159static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9160{
b36128c8 9161 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9162
9163#ifndef CONFIG_64BIT
9164 /*
9165 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9166 */
05fa785c 9167 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9168 *cpuusage = val;
05fa785c 9169 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9170#else
9171 *cpuusage = val;
9172#endif
9173}
9174
d842de87 9175/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9176static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9177{
32cd756a 9178 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9179 u64 totalcpuusage = 0;
9180 int i;
9181
720f5498
KC
9182 for_each_present_cpu(i)
9183 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9184
9185 return totalcpuusage;
9186}
9187
0297b803
DG
9188static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9189 u64 reset)
9190{
9191 struct cpuacct *ca = cgroup_ca(cgrp);
9192 int err = 0;
9193 int i;
9194
9195 if (reset) {
9196 err = -EINVAL;
9197 goto out;
9198 }
9199
720f5498
KC
9200 for_each_present_cpu(i)
9201 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9202
0297b803
DG
9203out:
9204 return err;
9205}
9206
e9515c3c
KC
9207static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9208 struct seq_file *m)
9209{
9210 struct cpuacct *ca = cgroup_ca(cgroup);
9211 u64 percpu;
9212 int i;
9213
9214 for_each_present_cpu(i) {
9215 percpu = cpuacct_cpuusage_read(ca, i);
9216 seq_printf(m, "%llu ", (unsigned long long) percpu);
9217 }
9218 seq_printf(m, "\n");
9219 return 0;
9220}
9221
ef12fefa
BR
9222static const char *cpuacct_stat_desc[] = {
9223 [CPUACCT_STAT_USER] = "user",
9224 [CPUACCT_STAT_SYSTEM] = "system",
9225};
9226
9227static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9228 struct cgroup_map_cb *cb)
9229{
9230 struct cpuacct *ca = cgroup_ca(cgrp);
9231 int i;
9232
9233 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9234 s64 val = percpu_counter_read(&ca->cpustat[i]);
9235 val = cputime64_to_clock_t(val);
9236 cb->fill(cb, cpuacct_stat_desc[i], val);
9237 }
9238 return 0;
9239}
9240
d842de87
SV
9241static struct cftype files[] = {
9242 {
9243 .name = "usage",
f4c753b7
PM
9244 .read_u64 = cpuusage_read,
9245 .write_u64 = cpuusage_write,
d842de87 9246 },
e9515c3c
KC
9247 {
9248 .name = "usage_percpu",
9249 .read_seq_string = cpuacct_percpu_seq_read,
9250 },
ef12fefa
BR
9251 {
9252 .name = "stat",
9253 .read_map = cpuacct_stats_show,
9254 },
d842de87
SV
9255};
9256
32cd756a 9257static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9258{
32cd756a 9259 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9260}
9261
9262/*
9263 * charge this task's execution time to its accounting group.
9264 *
9265 * called with rq->lock held.
9266 */
9267static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9268{
9269 struct cpuacct *ca;
934352f2 9270 int cpu;
d842de87 9271
c40c6f85 9272 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9273 return;
9274
934352f2 9275 cpu = task_cpu(tsk);
a18b83b7
BR
9276
9277 rcu_read_lock();
9278
d842de87 9279 ca = task_ca(tsk);
d842de87 9280
934352f2 9281 for (; ca; ca = ca->parent) {
b36128c8 9282 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9283 *cpuusage += cputime;
9284 }
a18b83b7
BR
9285
9286 rcu_read_unlock();
d842de87
SV
9287}
9288
fa535a77
AB
9289/*
9290 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9291 * in cputime_t units. As a result, cpuacct_update_stats calls
9292 * percpu_counter_add with values large enough to always overflow the
9293 * per cpu batch limit causing bad SMP scalability.
9294 *
9295 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9296 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9297 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9298 */
9299#ifdef CONFIG_SMP
9300#define CPUACCT_BATCH \
9301 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9302#else
9303#define CPUACCT_BATCH 0
9304#endif
9305
ef12fefa
BR
9306/*
9307 * Charge the system/user time to the task's accounting group.
9308 */
9309static void cpuacct_update_stats(struct task_struct *tsk,
9310 enum cpuacct_stat_index idx, cputime_t val)
9311{
9312 struct cpuacct *ca;
fa535a77 9313 int batch = CPUACCT_BATCH;
ef12fefa
BR
9314
9315 if (unlikely(!cpuacct_subsys.active))
9316 return;
9317
9318 rcu_read_lock();
9319 ca = task_ca(tsk);
9320
9321 do {
fa535a77 9322 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9323 ca = ca->parent;
9324 } while (ca);
9325 rcu_read_unlock();
9326}
9327
d842de87
SV
9328struct cgroup_subsys cpuacct_subsys = {
9329 .name = "cpuacct",
9330 .create = cpuacct_create,
9331 .destroy = cpuacct_destroy,
9332 .populate = cpuacct_populate,
9333 .subsys_id = cpuacct_subsys_id,
9334};
9335#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9336
This page took 3.634458 seconds and 5 git commands to generate.