sched: affine sync wakeups
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
f5ff8422 64#include <linux/pagemap.h>
1da177e4 65
5517d86b 66#include <asm/tlb.h>
1da177e4 67
b035b6de
AD
68/*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73unsigned long long __attribute__((weak)) sched_clock(void)
74{
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76}
77
1da177e4
LT
78/*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87/*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96/*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
a4ec24b4 99#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
1da177e4
LT
100#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
5517d86b
ED
113#ifdef CONFIG_SMP
114/*
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
117 */
118static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
119{
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
121}
122
123/*
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
126 */
127static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
128{
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
131}
132#endif
133
e05606d3
IM
134static inline int rt_policy(int policy)
135{
136 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
137 return 1;
138 return 0;
139}
140
141static inline int task_has_rt_policy(struct task_struct *p)
142{
143 return rt_policy(p->policy);
144}
145
1da177e4 146/*
6aa645ea 147 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 148 */
6aa645ea
IM
149struct rt_prio_array {
150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 struct list_head queue[MAX_RT_PRIO];
152};
153
29f59db3
SV
154#ifdef CONFIG_FAIR_GROUP_SCHED
155
29f59db3
SV
156struct cfs_rq;
157
158/* task group related information */
4cf86d77 159struct task_group {
29f59db3
SV
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity **se;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq **cfs_rq;
164 unsigned long shares;
5cb350ba
DG
165 /* spinlock to serialize modification to shares */
166 spinlock_t lock;
29f59db3
SV
167};
168
169/* Default task group's sched entity on each cpu */
170static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
171/* Default task group's cfs_rq on each cpu */
172static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
173
9b5b7751
SV
174static struct sched_entity *init_sched_entity_p[NR_CPUS];
175static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3
SV
176
177/* Default task group.
3a252015 178 * Every task in system belong to this group at bootup.
29f59db3 179 */
4cf86d77 180struct task_group init_task_group = {
3a252015
IM
181 .se = init_sched_entity_p,
182 .cfs_rq = init_cfs_rq_p,
183};
9b5b7751 184
24e377a8 185#ifdef CONFIG_FAIR_USER_SCHED
3a252015 186# define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
24e377a8 187#else
3a252015 188# define INIT_TASK_GRP_LOAD NICE_0_LOAD
24e377a8
SV
189#endif
190
4cf86d77 191static int init_task_group_load = INIT_TASK_GRP_LOAD;
29f59db3
SV
192
193/* return group to which a task belongs */
4cf86d77 194static inline struct task_group *task_group(struct task_struct *p)
29f59db3 195{
4cf86d77 196 struct task_group *tg;
9b5b7751 197
24e377a8
SV
198#ifdef CONFIG_FAIR_USER_SCHED
199 tg = p->user->tg;
200#else
4cf86d77 201 tg = &init_task_group;
24e377a8 202#endif
9b5b7751
SV
203
204 return tg;
29f59db3
SV
205}
206
207/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
208static inline void set_task_cfs_rq(struct task_struct *p)
209{
4cf86d77
IM
210 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
211 p->se.parent = task_group(p)->se[task_cpu(p)];
29f59db3
SV
212}
213
214#else
215
216static inline void set_task_cfs_rq(struct task_struct *p) { }
217
218#endif /* CONFIG_FAIR_GROUP_SCHED */
219
6aa645ea
IM
220/* CFS-related fields in a runqueue */
221struct cfs_rq {
222 struct load_weight load;
223 unsigned long nr_running;
224
6aa645ea 225 u64 exec_clock;
e9acbff6 226 u64 min_vruntime;
6aa645ea
IM
227
228 struct rb_root tasks_timeline;
229 struct rb_node *rb_leftmost;
230 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
231 /* 'curr' points to currently running entity on this cfs_rq.
232 * It is set to NULL otherwise (i.e when none are currently running).
233 */
234 struct sched_entity *curr;
ddc97297
PZ
235
236 unsigned long nr_spread_over;
237
62160e3f 238#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
239 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
240
241 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
242 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
243 * (like users, containers etc.)
244 *
245 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
246 * list is used during load balance.
247 */
248 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
4cf86d77 249 struct task_group *tg; /* group that "owns" this runqueue */
9b5b7751 250 struct rcu_head rcu;
6aa645ea
IM
251#endif
252};
1da177e4 253
6aa645ea
IM
254/* Real-Time classes' related field in a runqueue: */
255struct rt_rq {
256 struct rt_prio_array active;
257 int rt_load_balance_idx;
258 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
259};
260
1da177e4
LT
261/*
262 * This is the main, per-CPU runqueue data structure.
263 *
264 * Locking rule: those places that want to lock multiple runqueues
265 * (such as the load balancing or the thread migration code), lock
266 * acquire operations must be ordered by ascending &runqueue.
267 */
70b97a7f 268struct rq {
6aa645ea 269 spinlock_t lock; /* runqueue lock */
1da177e4
LT
270
271 /*
272 * nr_running and cpu_load should be in the same cacheline because
273 * remote CPUs use both these fields when doing load calculation.
274 */
275 unsigned long nr_running;
6aa645ea
IM
276 #define CPU_LOAD_IDX_MAX 5
277 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 278 unsigned char idle_at_tick;
46cb4b7c
SS
279#ifdef CONFIG_NO_HZ
280 unsigned char in_nohz_recently;
281#endif
495eca49 282 struct load_weight load; /* capture load from *all* tasks on this cpu */
6aa645ea
IM
283 unsigned long nr_load_updates;
284 u64 nr_switches;
285
286 struct cfs_rq cfs;
287#ifdef CONFIG_FAIR_GROUP_SCHED
288 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 289#endif
6aa645ea 290 struct rt_rq rt;
1da177e4
LT
291
292 /*
293 * This is part of a global counter where only the total sum
294 * over all CPUs matters. A task can increase this counter on
295 * one CPU and if it got migrated afterwards it may decrease
296 * it on another CPU. Always updated under the runqueue lock:
297 */
298 unsigned long nr_uninterruptible;
299
36c8b586 300 struct task_struct *curr, *idle;
c9819f45 301 unsigned long next_balance;
1da177e4 302 struct mm_struct *prev_mm;
6aa645ea 303
6aa645ea
IM
304 u64 clock, prev_clock_raw;
305 s64 clock_max_delta;
306
307 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
308 u64 idle_clock;
309 unsigned int clock_deep_idle_events;
529c7726 310 u64 tick_timestamp;
6aa645ea 311
1da177e4
LT
312 atomic_t nr_iowait;
313
314#ifdef CONFIG_SMP
315 struct sched_domain *sd;
316
317 /* For active balancing */
318 int active_balance;
319 int push_cpu;
0a2966b4 320 int cpu; /* cpu of this runqueue */
1da177e4 321
36c8b586 322 struct task_struct *migration_thread;
1da177e4
LT
323 struct list_head migration_queue;
324#endif
325
326#ifdef CONFIG_SCHEDSTATS
327 /* latency stats */
328 struct sched_info rq_sched_info;
329
330 /* sys_sched_yield() stats */
331 unsigned long yld_exp_empty;
332 unsigned long yld_act_empty;
333 unsigned long yld_both_empty;
2d72376b 334 unsigned long yld_count;
1da177e4
LT
335
336 /* schedule() stats */
337 unsigned long sched_switch;
2d72376b 338 unsigned long sched_count;
1da177e4
LT
339 unsigned long sched_goidle;
340
341 /* try_to_wake_up() stats */
2d72376b 342 unsigned long ttwu_count;
1da177e4 343 unsigned long ttwu_local;
b8efb561
IM
344
345 /* BKL stats */
2d72376b 346 unsigned long bkl_count;
1da177e4 347#endif
fcb99371 348 struct lock_class_key rq_lock_key;
1da177e4
LT
349};
350
f34e3b61 351static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 352static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 353
dd41f596
IM
354static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
355{
356 rq->curr->sched_class->check_preempt_curr(rq, p);
357}
358
0a2966b4
CL
359static inline int cpu_of(struct rq *rq)
360{
361#ifdef CONFIG_SMP
362 return rq->cpu;
363#else
364 return 0;
365#endif
366}
367
20d315d4 368/*
b04a0f4c
IM
369 * Update the per-runqueue clock, as finegrained as the platform can give
370 * us, but without assuming monotonicity, etc.:
20d315d4 371 */
b04a0f4c 372static void __update_rq_clock(struct rq *rq)
20d315d4
IM
373{
374 u64 prev_raw = rq->prev_clock_raw;
375 u64 now = sched_clock();
376 s64 delta = now - prev_raw;
377 u64 clock = rq->clock;
378
b04a0f4c
IM
379#ifdef CONFIG_SCHED_DEBUG
380 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
381#endif
20d315d4
IM
382 /*
383 * Protect against sched_clock() occasionally going backwards:
384 */
385 if (unlikely(delta < 0)) {
386 clock++;
387 rq->clock_warps++;
388 } else {
389 /*
390 * Catch too large forward jumps too:
391 */
529c7726
IM
392 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
393 if (clock < rq->tick_timestamp + TICK_NSEC)
394 clock = rq->tick_timestamp + TICK_NSEC;
395 else
396 clock++;
20d315d4
IM
397 rq->clock_overflows++;
398 } else {
399 if (unlikely(delta > rq->clock_max_delta))
400 rq->clock_max_delta = delta;
401 clock += delta;
402 }
403 }
404
405 rq->prev_clock_raw = now;
406 rq->clock = clock;
b04a0f4c 407}
20d315d4 408
b04a0f4c
IM
409static void update_rq_clock(struct rq *rq)
410{
411 if (likely(smp_processor_id() == cpu_of(rq)))
412 __update_rq_clock(rq);
20d315d4
IM
413}
414
674311d5
NP
415/*
416 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 417 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
418 *
419 * The domain tree of any CPU may only be accessed from within
420 * preempt-disabled sections.
421 */
48f24c4d
IM
422#define for_each_domain(cpu, __sd) \
423 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
424
425#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
426#define this_rq() (&__get_cpu_var(runqueues))
427#define task_rq(p) cpu_rq(task_cpu(p))
428#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
429
bf5c91ba
IM
430/*
431 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
432 */
433#ifdef CONFIG_SCHED_DEBUG
434# define const_debug __read_mostly
435#else
436# define const_debug static const
437#endif
438
439/*
440 * Debugging: various feature bits
441 */
442enum {
bbdba7c0
IM
443 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
444 SCHED_FEAT_START_DEBIT = 2,
06877c33 445 SCHED_FEAT_TREE_AVG = 4,
bbdba7c0 446 SCHED_FEAT_APPROX_AVG = 8,
ce6c1311 447 SCHED_FEAT_WAKEUP_PREEMPT = 16,
95938a35 448 SCHED_FEAT_PREEMPT_RESTRICT = 32,
bf5c91ba
IM
449};
450
451const_debug unsigned int sysctl_sched_features =
bf5c91ba 452 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
94dfb5e7 453 SCHED_FEAT_START_DEBIT *1 |
06877c33 454 SCHED_FEAT_TREE_AVG *0 |
ce6c1311 455 SCHED_FEAT_APPROX_AVG *0 |
95938a35
MG
456 SCHED_FEAT_WAKEUP_PREEMPT *1 |
457 SCHED_FEAT_PREEMPT_RESTRICT *1;
bf5c91ba
IM
458
459#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
460
e436d800
IM
461/*
462 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
463 * clock constructed from sched_clock():
464 */
465unsigned long long cpu_clock(int cpu)
466{
e436d800
IM
467 unsigned long long now;
468 unsigned long flags;
b04a0f4c 469 struct rq *rq;
e436d800 470
2cd4d0ea 471 local_irq_save(flags);
b04a0f4c
IM
472 rq = cpu_rq(cpu);
473 update_rq_clock(rq);
474 now = rq->clock;
2cd4d0ea 475 local_irq_restore(flags);
e436d800
IM
476
477 return now;
478}
a58f6f25 479EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 480
1da177e4 481#ifndef prepare_arch_switch
4866cde0
NP
482# define prepare_arch_switch(next) do { } while (0)
483#endif
484#ifndef finish_arch_switch
485# define finish_arch_switch(prev) do { } while (0)
486#endif
487
488#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 489static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
490{
491 return rq->curr == p;
492}
493
70b97a7f 494static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
495{
496}
497
70b97a7f 498static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 499{
da04c035
IM
500#ifdef CONFIG_DEBUG_SPINLOCK
501 /* this is a valid case when another task releases the spinlock */
502 rq->lock.owner = current;
503#endif
8a25d5de
IM
504 /*
505 * If we are tracking spinlock dependencies then we have to
506 * fix up the runqueue lock - which gets 'carried over' from
507 * prev into current:
508 */
509 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
510
4866cde0
NP
511 spin_unlock_irq(&rq->lock);
512}
513
514#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 515static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
516{
517#ifdef CONFIG_SMP
518 return p->oncpu;
519#else
520 return rq->curr == p;
521#endif
522}
523
70b97a7f 524static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
525{
526#ifdef CONFIG_SMP
527 /*
528 * We can optimise this out completely for !SMP, because the
529 * SMP rebalancing from interrupt is the only thing that cares
530 * here.
531 */
532 next->oncpu = 1;
533#endif
534#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
535 spin_unlock_irq(&rq->lock);
536#else
537 spin_unlock(&rq->lock);
538#endif
539}
540
70b97a7f 541static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
542{
543#ifdef CONFIG_SMP
544 /*
545 * After ->oncpu is cleared, the task can be moved to a different CPU.
546 * We must ensure this doesn't happen until the switch is completely
547 * finished.
548 */
549 smp_wmb();
550 prev->oncpu = 0;
551#endif
552#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
553 local_irq_enable();
1da177e4 554#endif
4866cde0
NP
555}
556#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 557
b29739f9
IM
558/*
559 * __task_rq_lock - lock the runqueue a given task resides on.
560 * Must be called interrupts disabled.
561 */
70b97a7f 562static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
563 __acquires(rq->lock)
564{
3a5c359a
AK
565 for (;;) {
566 struct rq *rq = task_rq(p);
567 spin_lock(&rq->lock);
568 if (likely(rq == task_rq(p)))
569 return rq;
b29739f9 570 spin_unlock(&rq->lock);
b29739f9 571 }
b29739f9
IM
572}
573
1da177e4
LT
574/*
575 * task_rq_lock - lock the runqueue a given task resides on and disable
576 * interrupts. Note the ordering: we can safely lookup the task_rq without
577 * explicitly disabling preemption.
578 */
70b97a7f 579static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
580 __acquires(rq->lock)
581{
70b97a7f 582 struct rq *rq;
1da177e4 583
3a5c359a
AK
584 for (;;) {
585 local_irq_save(*flags);
586 rq = task_rq(p);
587 spin_lock(&rq->lock);
588 if (likely(rq == task_rq(p)))
589 return rq;
1da177e4 590 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 591 }
1da177e4
LT
592}
593
a9957449 594static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
595 __releases(rq->lock)
596{
597 spin_unlock(&rq->lock);
598}
599
70b97a7f 600static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
601 __releases(rq->lock)
602{
603 spin_unlock_irqrestore(&rq->lock, *flags);
604}
605
1da177e4 606/*
cc2a73b5 607 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 608 */
a9957449 609static struct rq *this_rq_lock(void)
1da177e4
LT
610 __acquires(rq->lock)
611{
70b97a7f 612 struct rq *rq;
1da177e4
LT
613
614 local_irq_disable();
615 rq = this_rq();
616 spin_lock(&rq->lock);
617
618 return rq;
619}
620
1b9f19c2 621/*
2aa44d05 622 * We are going deep-idle (irqs are disabled):
1b9f19c2 623 */
2aa44d05 624void sched_clock_idle_sleep_event(void)
1b9f19c2 625{
2aa44d05
IM
626 struct rq *rq = cpu_rq(smp_processor_id());
627
628 spin_lock(&rq->lock);
629 __update_rq_clock(rq);
630 spin_unlock(&rq->lock);
631 rq->clock_deep_idle_events++;
632}
633EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
634
635/*
636 * We just idled delta nanoseconds (called with irqs disabled):
637 */
638void sched_clock_idle_wakeup_event(u64 delta_ns)
639{
640 struct rq *rq = cpu_rq(smp_processor_id());
641 u64 now = sched_clock();
1b9f19c2 642
2aa44d05
IM
643 rq->idle_clock += delta_ns;
644 /*
645 * Override the previous timestamp and ignore all
646 * sched_clock() deltas that occured while we idled,
647 * and use the PM-provided delta_ns to advance the
648 * rq clock:
649 */
650 spin_lock(&rq->lock);
651 rq->prev_clock_raw = now;
652 rq->clock += delta_ns;
653 spin_unlock(&rq->lock);
1b9f19c2 654}
2aa44d05 655EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 656
c24d20db
IM
657/*
658 * resched_task - mark a task 'to be rescheduled now'.
659 *
660 * On UP this means the setting of the need_resched flag, on SMP it
661 * might also involve a cross-CPU call to trigger the scheduler on
662 * the target CPU.
663 */
664#ifdef CONFIG_SMP
665
666#ifndef tsk_is_polling
667#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
668#endif
669
670static void resched_task(struct task_struct *p)
671{
672 int cpu;
673
674 assert_spin_locked(&task_rq(p)->lock);
675
676 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
677 return;
678
679 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
680
681 cpu = task_cpu(p);
682 if (cpu == smp_processor_id())
683 return;
684
685 /* NEED_RESCHED must be visible before we test polling */
686 smp_mb();
687 if (!tsk_is_polling(p))
688 smp_send_reschedule(cpu);
689}
690
691static void resched_cpu(int cpu)
692{
693 struct rq *rq = cpu_rq(cpu);
694 unsigned long flags;
695
696 if (!spin_trylock_irqsave(&rq->lock, flags))
697 return;
698 resched_task(cpu_curr(cpu));
699 spin_unlock_irqrestore(&rq->lock, flags);
700}
701#else
702static inline void resched_task(struct task_struct *p)
703{
704 assert_spin_locked(&task_rq(p)->lock);
705 set_tsk_need_resched(p);
706}
707#endif
708
45bf76df
IM
709#if BITS_PER_LONG == 32
710# define WMULT_CONST (~0UL)
711#else
712# define WMULT_CONST (1UL << 32)
713#endif
714
715#define WMULT_SHIFT 32
716
194081eb
IM
717/*
718 * Shift right and round:
719 */
cf2ab469 720#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 721
cb1c4fc9 722static unsigned long
45bf76df
IM
723calc_delta_mine(unsigned long delta_exec, unsigned long weight,
724 struct load_weight *lw)
725{
726 u64 tmp;
727
728 if (unlikely(!lw->inv_weight))
194081eb 729 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
730
731 tmp = (u64)delta_exec * weight;
732 /*
733 * Check whether we'd overflow the 64-bit multiplication:
734 */
194081eb 735 if (unlikely(tmp > WMULT_CONST))
cf2ab469 736 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
737 WMULT_SHIFT/2);
738 else
cf2ab469 739 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 740
ecf691da 741 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
742}
743
744static inline unsigned long
745calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
746{
747 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
748}
749
1091985b 750static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
751{
752 lw->weight += inc;
45bf76df
IM
753}
754
1091985b 755static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
756{
757 lw->weight -= dec;
45bf76df
IM
758}
759
2dd73a4f
PW
760/*
761 * To aid in avoiding the subversion of "niceness" due to uneven distribution
762 * of tasks with abnormal "nice" values across CPUs the contribution that
763 * each task makes to its run queue's load is weighted according to its
764 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
765 * scaled version of the new time slice allocation that they receive on time
766 * slice expiry etc.
767 */
768
dd41f596
IM
769#define WEIGHT_IDLEPRIO 2
770#define WMULT_IDLEPRIO (1 << 31)
771
772/*
773 * Nice levels are multiplicative, with a gentle 10% change for every
774 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
775 * nice 1, it will get ~10% less CPU time than another CPU-bound task
776 * that remained on nice 0.
777 *
778 * The "10% effect" is relative and cumulative: from _any_ nice level,
779 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
780 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
781 * If a task goes up by ~10% and another task goes down by ~10% then
782 * the relative distance between them is ~25%.)
dd41f596
IM
783 */
784static const int prio_to_weight[40] = {
254753dc
IM
785 /* -20 */ 88761, 71755, 56483, 46273, 36291,
786 /* -15 */ 29154, 23254, 18705, 14949, 11916,
787 /* -10 */ 9548, 7620, 6100, 4904, 3906,
788 /* -5 */ 3121, 2501, 1991, 1586, 1277,
789 /* 0 */ 1024, 820, 655, 526, 423,
790 /* 5 */ 335, 272, 215, 172, 137,
791 /* 10 */ 110, 87, 70, 56, 45,
792 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
793};
794
5714d2de
IM
795/*
796 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
797 *
798 * In cases where the weight does not change often, we can use the
799 * precalculated inverse to speed up arithmetics by turning divisions
800 * into multiplications:
801 */
dd41f596 802static const u32 prio_to_wmult[40] = {
254753dc
IM
803 /* -20 */ 48388, 59856, 76040, 92818, 118348,
804 /* -15 */ 147320, 184698, 229616, 287308, 360437,
805 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
806 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
807 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
808 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
809 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
810 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 811};
2dd73a4f 812
dd41f596
IM
813static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
814
815/*
816 * runqueue iterator, to support SMP load-balancing between different
817 * scheduling classes, without having to expose their internal data
818 * structures to the load-balancing proper:
819 */
820struct rq_iterator {
821 void *arg;
822 struct task_struct *(*start)(void *);
823 struct task_struct *(*next)(void *);
824};
825
826static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
827 unsigned long max_nr_move, unsigned long max_load_move,
828 struct sched_domain *sd, enum cpu_idle_type idle,
829 int *all_pinned, unsigned long *load_moved,
a4ac01c3 830 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
831
832#include "sched_stats.h"
dd41f596 833#include "sched_idletask.c"
5522d5d5
IM
834#include "sched_fair.c"
835#include "sched_rt.c"
dd41f596
IM
836#ifdef CONFIG_SCHED_DEBUG
837# include "sched_debug.c"
838#endif
839
840#define sched_class_highest (&rt_sched_class)
841
9c217245
IM
842/*
843 * Update delta_exec, delta_fair fields for rq.
844 *
845 * delta_fair clock advances at a rate inversely proportional to
495eca49 846 * total load (rq->load.weight) on the runqueue, while
9c217245
IM
847 * delta_exec advances at the same rate as wall-clock (provided
848 * cpu is not idle).
849 *
850 * delta_exec / delta_fair is a measure of the (smoothened) load on this
851 * runqueue over any given interval. This (smoothened) load is used
852 * during load balance.
853 *
495eca49 854 * This function is called /before/ updating rq->load
9c217245
IM
855 * and when switching tasks.
856 */
29b4b623 857static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 858{
495eca49 859 update_load_add(&rq->load, p->se.load.weight);
9c217245
IM
860}
861
79b5dddf 862static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 863{
495eca49 864 update_load_sub(&rq->load, p->se.load.weight);
9c217245
IM
865}
866
e5fa2237 867static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
868{
869 rq->nr_running++;
29b4b623 870 inc_load(rq, p);
9c217245
IM
871}
872
db53181e 873static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
874{
875 rq->nr_running--;
79b5dddf 876 dec_load(rq, p);
9c217245
IM
877}
878
45bf76df
IM
879static void set_load_weight(struct task_struct *p)
880{
881 if (task_has_rt_policy(p)) {
dd41f596
IM
882 p->se.load.weight = prio_to_weight[0] * 2;
883 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
884 return;
885 }
45bf76df 886
dd41f596
IM
887 /*
888 * SCHED_IDLE tasks get minimal weight:
889 */
890 if (p->policy == SCHED_IDLE) {
891 p->se.load.weight = WEIGHT_IDLEPRIO;
892 p->se.load.inv_weight = WMULT_IDLEPRIO;
893 return;
894 }
71f8bd46 895
dd41f596
IM
896 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
897 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
898}
899
8159f87e 900static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 901{
dd41f596 902 sched_info_queued(p);
fd390f6a 903 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 904 p->se.on_rq = 1;
71f8bd46
IM
905}
906
69be72c1 907static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 908{
f02231e5 909 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 910 p->se.on_rq = 0;
71f8bd46
IM
911}
912
14531189 913/*
dd41f596 914 * __normal_prio - return the priority that is based on the static prio
14531189 915 */
14531189
IM
916static inline int __normal_prio(struct task_struct *p)
917{
dd41f596 918 return p->static_prio;
14531189
IM
919}
920
b29739f9
IM
921/*
922 * Calculate the expected normal priority: i.e. priority
923 * without taking RT-inheritance into account. Might be
924 * boosted by interactivity modifiers. Changes upon fork,
925 * setprio syscalls, and whenever the interactivity
926 * estimator recalculates.
927 */
36c8b586 928static inline int normal_prio(struct task_struct *p)
b29739f9
IM
929{
930 int prio;
931
e05606d3 932 if (task_has_rt_policy(p))
b29739f9
IM
933 prio = MAX_RT_PRIO-1 - p->rt_priority;
934 else
935 prio = __normal_prio(p);
936 return prio;
937}
938
939/*
940 * Calculate the current priority, i.e. the priority
941 * taken into account by the scheduler. This value might
942 * be boosted by RT tasks, or might be boosted by
943 * interactivity modifiers. Will be RT if the task got
944 * RT-boosted. If not then it returns p->normal_prio.
945 */
36c8b586 946static int effective_prio(struct task_struct *p)
b29739f9
IM
947{
948 p->normal_prio = normal_prio(p);
949 /*
950 * If we are RT tasks or we were boosted to RT priority,
951 * keep the priority unchanged. Otherwise, update priority
952 * to the normal priority:
953 */
954 if (!rt_prio(p->prio))
955 return p->normal_prio;
956 return p->prio;
957}
958
1da177e4 959/*
dd41f596 960 * activate_task - move a task to the runqueue.
1da177e4 961 */
dd41f596 962static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 963{
dd41f596
IM
964 if (p->state == TASK_UNINTERRUPTIBLE)
965 rq->nr_uninterruptible--;
1da177e4 966
8159f87e 967 enqueue_task(rq, p, wakeup);
e5fa2237 968 inc_nr_running(p, rq);
1da177e4
LT
969}
970
1da177e4
LT
971/*
972 * deactivate_task - remove a task from the runqueue.
973 */
2e1cb74a 974static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 975{
dd41f596
IM
976 if (p->state == TASK_UNINTERRUPTIBLE)
977 rq->nr_uninterruptible++;
978
69be72c1 979 dequeue_task(rq, p, sleep);
db53181e 980 dec_nr_running(p, rq);
1da177e4
LT
981}
982
1da177e4
LT
983/**
984 * task_curr - is this task currently executing on a CPU?
985 * @p: the task in question.
986 */
36c8b586 987inline int task_curr(const struct task_struct *p)
1da177e4
LT
988{
989 return cpu_curr(task_cpu(p)) == p;
990}
991
2dd73a4f
PW
992/* Used instead of source_load when we know the type == 0 */
993unsigned long weighted_cpuload(const int cpu)
994{
495eca49 995 return cpu_rq(cpu)->load.weight;
dd41f596
IM
996}
997
998static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
999{
1000#ifdef CONFIG_SMP
1001 task_thread_info(p)->cpu = cpu;
dd41f596 1002#endif
29f59db3 1003 set_task_cfs_rq(p);
2dd73a4f
PW
1004}
1005
1da177e4 1006#ifdef CONFIG_SMP
c65cc870 1007
cc367732
IM
1008/*
1009 * Is this task likely cache-hot:
1010 */
1011static inline int
1012task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1013{
1014 s64 delta;
1015
1016 if (p->sched_class != &fair_sched_class)
1017 return 0;
1018
6bc1665b
IM
1019 if (sysctl_sched_migration_cost == -1)
1020 return 1;
1021 if (sysctl_sched_migration_cost == 0)
1022 return 0;
1023
cc367732
IM
1024 delta = now - p->se.exec_start;
1025
1026 return delta < (s64)sysctl_sched_migration_cost;
1027}
1028
1029
dd41f596 1030void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1031{
dd41f596
IM
1032 int old_cpu = task_cpu(p);
1033 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1034 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1035 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1036 u64 clock_offset;
dd41f596
IM
1037
1038 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1039
1040#ifdef CONFIG_SCHEDSTATS
1041 if (p->se.wait_start)
1042 p->se.wait_start -= clock_offset;
dd41f596
IM
1043 if (p->se.sleep_start)
1044 p->se.sleep_start -= clock_offset;
1045 if (p->se.block_start)
1046 p->se.block_start -= clock_offset;
cc367732
IM
1047 if (old_cpu != new_cpu) {
1048 schedstat_inc(p, se.nr_migrations);
1049 if (task_hot(p, old_rq->clock, NULL))
1050 schedstat_inc(p, se.nr_forced2_migrations);
1051 }
6cfb0d5d 1052#endif
2830cf8c
SV
1053 p->se.vruntime -= old_cfsrq->min_vruntime -
1054 new_cfsrq->min_vruntime;
dd41f596
IM
1055
1056 __set_task_cpu(p, new_cpu);
c65cc870
IM
1057}
1058
70b97a7f 1059struct migration_req {
1da177e4 1060 struct list_head list;
1da177e4 1061
36c8b586 1062 struct task_struct *task;
1da177e4
LT
1063 int dest_cpu;
1064
1da177e4 1065 struct completion done;
70b97a7f 1066};
1da177e4
LT
1067
1068/*
1069 * The task's runqueue lock must be held.
1070 * Returns true if you have to wait for migration thread.
1071 */
36c8b586 1072static int
70b97a7f 1073migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1074{
70b97a7f 1075 struct rq *rq = task_rq(p);
1da177e4
LT
1076
1077 /*
1078 * If the task is not on a runqueue (and not running), then
1079 * it is sufficient to simply update the task's cpu field.
1080 */
dd41f596 1081 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1082 set_task_cpu(p, dest_cpu);
1083 return 0;
1084 }
1085
1086 init_completion(&req->done);
1da177e4
LT
1087 req->task = p;
1088 req->dest_cpu = dest_cpu;
1089 list_add(&req->list, &rq->migration_queue);
48f24c4d 1090
1da177e4
LT
1091 return 1;
1092}
1093
1094/*
1095 * wait_task_inactive - wait for a thread to unschedule.
1096 *
1097 * The caller must ensure that the task *will* unschedule sometime soon,
1098 * else this function might spin for a *long* time. This function can't
1099 * be called with interrupts off, or it may introduce deadlock with
1100 * smp_call_function() if an IPI is sent by the same process we are
1101 * waiting to become inactive.
1102 */
36c8b586 1103void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1104{
1105 unsigned long flags;
dd41f596 1106 int running, on_rq;
70b97a7f 1107 struct rq *rq;
1da177e4 1108
3a5c359a
AK
1109 for (;;) {
1110 /*
1111 * We do the initial early heuristics without holding
1112 * any task-queue locks at all. We'll only try to get
1113 * the runqueue lock when things look like they will
1114 * work out!
1115 */
1116 rq = task_rq(p);
fa490cfd 1117
3a5c359a
AK
1118 /*
1119 * If the task is actively running on another CPU
1120 * still, just relax and busy-wait without holding
1121 * any locks.
1122 *
1123 * NOTE! Since we don't hold any locks, it's not
1124 * even sure that "rq" stays as the right runqueue!
1125 * But we don't care, since "task_running()" will
1126 * return false if the runqueue has changed and p
1127 * is actually now running somewhere else!
1128 */
1129 while (task_running(rq, p))
1130 cpu_relax();
fa490cfd 1131
3a5c359a
AK
1132 /*
1133 * Ok, time to look more closely! We need the rq
1134 * lock now, to be *sure*. If we're wrong, we'll
1135 * just go back and repeat.
1136 */
1137 rq = task_rq_lock(p, &flags);
1138 running = task_running(rq, p);
1139 on_rq = p->se.on_rq;
1140 task_rq_unlock(rq, &flags);
fa490cfd 1141
3a5c359a
AK
1142 /*
1143 * Was it really running after all now that we
1144 * checked with the proper locks actually held?
1145 *
1146 * Oops. Go back and try again..
1147 */
1148 if (unlikely(running)) {
1149 cpu_relax();
1150 continue;
1151 }
fa490cfd 1152
3a5c359a
AK
1153 /*
1154 * It's not enough that it's not actively running,
1155 * it must be off the runqueue _entirely_, and not
1156 * preempted!
1157 *
1158 * So if it wa still runnable (but just not actively
1159 * running right now), it's preempted, and we should
1160 * yield - it could be a while.
1161 */
1162 if (unlikely(on_rq)) {
1163 schedule_timeout_uninterruptible(1);
1164 continue;
1165 }
fa490cfd 1166
3a5c359a
AK
1167 /*
1168 * Ahh, all good. It wasn't running, and it wasn't
1169 * runnable, which means that it will never become
1170 * running in the future either. We're all done!
1171 */
1172 break;
1173 }
1da177e4
LT
1174}
1175
1176/***
1177 * kick_process - kick a running thread to enter/exit the kernel
1178 * @p: the to-be-kicked thread
1179 *
1180 * Cause a process which is running on another CPU to enter
1181 * kernel-mode, without any delay. (to get signals handled.)
1182 *
1183 * NOTE: this function doesnt have to take the runqueue lock,
1184 * because all it wants to ensure is that the remote task enters
1185 * the kernel. If the IPI races and the task has been migrated
1186 * to another CPU then no harm is done and the purpose has been
1187 * achieved as well.
1188 */
36c8b586 1189void kick_process(struct task_struct *p)
1da177e4
LT
1190{
1191 int cpu;
1192
1193 preempt_disable();
1194 cpu = task_cpu(p);
1195 if ((cpu != smp_processor_id()) && task_curr(p))
1196 smp_send_reschedule(cpu);
1197 preempt_enable();
1198}
1199
1200/*
2dd73a4f
PW
1201 * Return a low guess at the load of a migration-source cpu weighted
1202 * according to the scheduling class and "nice" value.
1da177e4
LT
1203 *
1204 * We want to under-estimate the load of migration sources, to
1205 * balance conservatively.
1206 */
a9957449 1207static unsigned long source_load(int cpu, int type)
1da177e4 1208{
70b97a7f 1209 struct rq *rq = cpu_rq(cpu);
dd41f596 1210 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1211
3b0bd9bc 1212 if (type == 0)
dd41f596 1213 return total;
b910472d 1214
dd41f596 1215 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1216}
1217
1218/*
2dd73a4f
PW
1219 * Return a high guess at the load of a migration-target cpu weighted
1220 * according to the scheduling class and "nice" value.
1da177e4 1221 */
a9957449 1222static unsigned long target_load(int cpu, int type)
1da177e4 1223{
70b97a7f 1224 struct rq *rq = cpu_rq(cpu);
dd41f596 1225 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1226
7897986b 1227 if (type == 0)
dd41f596 1228 return total;
3b0bd9bc 1229
dd41f596 1230 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1231}
1232
1233/*
1234 * Return the average load per task on the cpu's run queue
1235 */
1236static inline unsigned long cpu_avg_load_per_task(int cpu)
1237{
70b97a7f 1238 struct rq *rq = cpu_rq(cpu);
dd41f596 1239 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1240 unsigned long n = rq->nr_running;
1241
dd41f596 1242 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1243}
1244
147cbb4b
NP
1245/*
1246 * find_idlest_group finds and returns the least busy CPU group within the
1247 * domain.
1248 */
1249static struct sched_group *
1250find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1251{
1252 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1253 unsigned long min_load = ULONG_MAX, this_load = 0;
1254 int load_idx = sd->forkexec_idx;
1255 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1256
1257 do {
1258 unsigned long load, avg_load;
1259 int local_group;
1260 int i;
1261
da5a5522
BD
1262 /* Skip over this group if it has no CPUs allowed */
1263 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1264 continue;
da5a5522 1265
147cbb4b 1266 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1267
1268 /* Tally up the load of all CPUs in the group */
1269 avg_load = 0;
1270
1271 for_each_cpu_mask(i, group->cpumask) {
1272 /* Bias balancing toward cpus of our domain */
1273 if (local_group)
1274 load = source_load(i, load_idx);
1275 else
1276 load = target_load(i, load_idx);
1277
1278 avg_load += load;
1279 }
1280
1281 /* Adjust by relative CPU power of the group */
5517d86b
ED
1282 avg_load = sg_div_cpu_power(group,
1283 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1284
1285 if (local_group) {
1286 this_load = avg_load;
1287 this = group;
1288 } else if (avg_load < min_load) {
1289 min_load = avg_load;
1290 idlest = group;
1291 }
3a5c359a 1292 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1293
1294 if (!idlest || 100*this_load < imbalance*min_load)
1295 return NULL;
1296 return idlest;
1297}
1298
1299/*
0feaece9 1300 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1301 */
95cdf3b7
IM
1302static int
1303find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1304{
da5a5522 1305 cpumask_t tmp;
147cbb4b
NP
1306 unsigned long load, min_load = ULONG_MAX;
1307 int idlest = -1;
1308 int i;
1309
da5a5522
BD
1310 /* Traverse only the allowed CPUs */
1311 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1312
1313 for_each_cpu_mask(i, tmp) {
2dd73a4f 1314 load = weighted_cpuload(i);
147cbb4b
NP
1315
1316 if (load < min_load || (load == min_load && i == this_cpu)) {
1317 min_load = load;
1318 idlest = i;
1319 }
1320 }
1321
1322 return idlest;
1323}
1324
476d139c
NP
1325/*
1326 * sched_balance_self: balance the current task (running on cpu) in domains
1327 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1328 * SD_BALANCE_EXEC.
1329 *
1330 * Balance, ie. select the least loaded group.
1331 *
1332 * Returns the target CPU number, or the same CPU if no balancing is needed.
1333 *
1334 * preempt must be disabled.
1335 */
1336static int sched_balance_self(int cpu, int flag)
1337{
1338 struct task_struct *t = current;
1339 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1340
c96d145e 1341 for_each_domain(cpu, tmp) {
9761eea8
IM
1342 /*
1343 * If power savings logic is enabled for a domain, stop there.
1344 */
5c45bf27
SS
1345 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1346 break;
476d139c
NP
1347 if (tmp->flags & flag)
1348 sd = tmp;
c96d145e 1349 }
476d139c
NP
1350
1351 while (sd) {
1352 cpumask_t span;
1353 struct sched_group *group;
1a848870
SS
1354 int new_cpu, weight;
1355
1356 if (!(sd->flags & flag)) {
1357 sd = sd->child;
1358 continue;
1359 }
476d139c
NP
1360
1361 span = sd->span;
1362 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1363 if (!group) {
1364 sd = sd->child;
1365 continue;
1366 }
476d139c 1367
da5a5522 1368 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1369 if (new_cpu == -1 || new_cpu == cpu) {
1370 /* Now try balancing at a lower domain level of cpu */
1371 sd = sd->child;
1372 continue;
1373 }
476d139c 1374
1a848870 1375 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1376 cpu = new_cpu;
476d139c
NP
1377 sd = NULL;
1378 weight = cpus_weight(span);
1379 for_each_domain(cpu, tmp) {
1380 if (weight <= cpus_weight(tmp->span))
1381 break;
1382 if (tmp->flags & flag)
1383 sd = tmp;
1384 }
1385 /* while loop will break here if sd == NULL */
1386 }
1387
1388 return cpu;
1389}
1390
1391#endif /* CONFIG_SMP */
1da177e4
LT
1392
1393/*
1394 * wake_idle() will wake a task on an idle cpu if task->cpu is
1395 * not idle and an idle cpu is available. The span of cpus to
1396 * search starts with cpus closest then further out as needed,
1397 * so we always favor a closer, idle cpu.
1398 *
1399 * Returns the CPU we should wake onto.
1400 */
1401#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1402static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1403{
1404 cpumask_t tmp;
1405 struct sched_domain *sd;
1406 int i;
1407
4953198b
SS
1408 /*
1409 * If it is idle, then it is the best cpu to run this task.
1410 *
1411 * This cpu is also the best, if it has more than one task already.
1412 * Siblings must be also busy(in most cases) as they didn't already
1413 * pickup the extra load from this cpu and hence we need not check
1414 * sibling runqueue info. This will avoid the checks and cache miss
1415 * penalities associated with that.
1416 */
1417 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1418 return cpu;
1419
1420 for_each_domain(cpu, sd) {
1421 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1422 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4 1423 for_each_cpu_mask(i, tmp) {
cc367732
IM
1424 if (idle_cpu(i)) {
1425 if (i != task_cpu(p)) {
1426 schedstat_inc(p,
1427 se.nr_wakeups_idle);
1428 }
1da177e4 1429 return i;
cc367732 1430 }
1da177e4 1431 }
9761eea8 1432 } else {
e0f364f4 1433 break;
9761eea8 1434 }
1da177e4
LT
1435 }
1436 return cpu;
1437}
1438#else
36c8b586 1439static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1440{
1441 return cpu;
1442}
1443#endif
1444
1445/***
1446 * try_to_wake_up - wake up a thread
1447 * @p: the to-be-woken-up thread
1448 * @state: the mask of task states that can be woken
1449 * @sync: do a synchronous wakeup?
1450 *
1451 * Put it on the run-queue if it's not already there. The "current"
1452 * thread is always on the run-queue (except when the actual
1453 * re-schedule is in progress), and as such you're allowed to do
1454 * the simpler "current->state = TASK_RUNNING" to mark yourself
1455 * runnable without the overhead of this.
1456 *
1457 * returns failure only if the task is already active.
1458 */
36c8b586 1459static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1460{
cc367732 1461 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1462 unsigned long flags;
1463 long old_state;
70b97a7f 1464 struct rq *rq;
1da177e4 1465#ifdef CONFIG_SMP
7897986b 1466 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1467 unsigned long load, this_load;
1da177e4
LT
1468 int new_cpu;
1469#endif
1470
1471 rq = task_rq_lock(p, &flags);
1472 old_state = p->state;
1473 if (!(old_state & state))
1474 goto out;
1475
dd41f596 1476 if (p->se.on_rq)
1da177e4
LT
1477 goto out_running;
1478
1479 cpu = task_cpu(p);
cc367732 1480 orig_cpu = cpu;
1da177e4
LT
1481 this_cpu = smp_processor_id();
1482
1483#ifdef CONFIG_SMP
1484 if (unlikely(task_running(rq, p)))
1485 goto out_activate;
1486
7897986b
NP
1487 new_cpu = cpu;
1488
2d72376b 1489 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1490 if (cpu == this_cpu) {
1491 schedstat_inc(rq, ttwu_local);
7897986b
NP
1492 goto out_set_cpu;
1493 }
1494
1495 for_each_domain(this_cpu, sd) {
1496 if (cpu_isset(cpu, sd->span)) {
1497 schedstat_inc(sd, ttwu_wake_remote);
1498 this_sd = sd;
1499 break;
1da177e4
LT
1500 }
1501 }
1da177e4 1502
7897986b 1503 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1504 goto out_set_cpu;
1505
1da177e4 1506 /*
7897986b 1507 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1508 */
7897986b
NP
1509 if (this_sd) {
1510 int idx = this_sd->wake_idx;
1511 unsigned int imbalance;
1da177e4 1512
a3f21bce
NP
1513 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1514
7897986b
NP
1515 load = source_load(cpu, idx);
1516 this_load = target_load(this_cpu, idx);
1da177e4 1517
7897986b
NP
1518 new_cpu = this_cpu; /* Wake to this CPU if we can */
1519
a3f21bce
NP
1520 if (this_sd->flags & SD_WAKE_AFFINE) {
1521 unsigned long tl = this_load;
33859f7f
MOS
1522 unsigned long tl_per_task;
1523
71e20f18
IM
1524 /*
1525 * Attract cache-cold tasks on sync wakeups:
1526 */
1527 if (sync && !task_hot(p, rq->clock, this_sd))
1528 goto out_set_cpu;
1529
cc367732 1530 schedstat_inc(p, se.nr_wakeups_affine_attempts);
33859f7f 1531 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1532
1da177e4 1533 /*
a3f21bce
NP
1534 * If sync wakeup then subtract the (maximum possible)
1535 * effect of the currently running task from the load
1536 * of the current CPU:
1da177e4 1537 */
a3f21bce 1538 if (sync)
dd41f596 1539 tl -= current->se.load.weight;
a3f21bce
NP
1540
1541 if ((tl <= load &&
2dd73a4f 1542 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1543 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1544 /*
1545 * This domain has SD_WAKE_AFFINE and
1546 * p is cache cold in this domain, and
1547 * there is no bad imbalance.
1548 */
1549 schedstat_inc(this_sd, ttwu_move_affine);
cc367732 1550 schedstat_inc(p, se.nr_wakeups_affine);
a3f21bce
NP
1551 goto out_set_cpu;
1552 }
1553 }
1554
1555 /*
1556 * Start passive balancing when half the imbalance_pct
1557 * limit is reached.
1558 */
1559 if (this_sd->flags & SD_WAKE_BALANCE) {
1560 if (imbalance*this_load <= 100*load) {
1561 schedstat_inc(this_sd, ttwu_move_balance);
cc367732 1562 schedstat_inc(p, se.nr_wakeups_passive);
a3f21bce
NP
1563 goto out_set_cpu;
1564 }
1da177e4
LT
1565 }
1566 }
1567
1568 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1569out_set_cpu:
1570 new_cpu = wake_idle(new_cpu, p);
1571 if (new_cpu != cpu) {
1572 set_task_cpu(p, new_cpu);
1573 task_rq_unlock(rq, &flags);
1574 /* might preempt at this point */
1575 rq = task_rq_lock(p, &flags);
1576 old_state = p->state;
1577 if (!(old_state & state))
1578 goto out;
dd41f596 1579 if (p->se.on_rq)
1da177e4
LT
1580 goto out_running;
1581
1582 this_cpu = smp_processor_id();
1583 cpu = task_cpu(p);
1584 }
1585
1586out_activate:
1587#endif /* CONFIG_SMP */
cc367732
IM
1588 schedstat_inc(p, se.nr_wakeups);
1589 if (sync)
1590 schedstat_inc(p, se.nr_wakeups_sync);
1591 if (orig_cpu != cpu)
1592 schedstat_inc(p, se.nr_wakeups_migrate);
1593 if (cpu == this_cpu)
1594 schedstat_inc(p, se.nr_wakeups_local);
1595 else
1596 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1597 update_rq_clock(rq);
dd41f596 1598 activate_task(rq, p, 1);
1da177e4
LT
1599 /*
1600 * Sync wakeups (i.e. those types of wakeups where the waker
1601 * has indicated that it will leave the CPU in short order)
1602 * don't trigger a preemption, if the woken up task will run on
1603 * this cpu. (in this case the 'I will reschedule' promise of
1604 * the waker guarantees that the freshly woken up task is going
1605 * to be considered on this CPU.)
1606 */
71e20f18 1607 if (!sync || rq->curr == rq->idle)
dd41f596 1608 check_preempt_curr(rq, p);
1da177e4
LT
1609 success = 1;
1610
1611out_running:
1612 p->state = TASK_RUNNING;
1613out:
1614 task_rq_unlock(rq, &flags);
1615
1616 return success;
1617}
1618
36c8b586 1619int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1620{
1621 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1622 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1623}
1da177e4
LT
1624EXPORT_SYMBOL(wake_up_process);
1625
36c8b586 1626int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1627{
1628 return try_to_wake_up(p, state, 0);
1629}
1630
1da177e4
LT
1631/*
1632 * Perform scheduler related setup for a newly forked process p.
1633 * p is forked by current.
dd41f596
IM
1634 *
1635 * __sched_fork() is basic setup used by init_idle() too:
1636 */
1637static void __sched_fork(struct task_struct *p)
1638{
dd41f596
IM
1639 p->se.exec_start = 0;
1640 p->se.sum_exec_runtime = 0;
f6cf891c 1641 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1642
1643#ifdef CONFIG_SCHEDSTATS
1644 p->se.wait_start = 0;
dd41f596
IM
1645 p->se.sum_sleep_runtime = 0;
1646 p->se.sleep_start = 0;
dd41f596
IM
1647 p->se.block_start = 0;
1648 p->se.sleep_max = 0;
1649 p->se.block_max = 0;
1650 p->se.exec_max = 0;
eba1ed4b 1651 p->se.slice_max = 0;
dd41f596 1652 p->se.wait_max = 0;
6cfb0d5d 1653#endif
476d139c 1654
dd41f596
IM
1655 INIT_LIST_HEAD(&p->run_list);
1656 p->se.on_rq = 0;
476d139c 1657
e107be36
AK
1658#ifdef CONFIG_PREEMPT_NOTIFIERS
1659 INIT_HLIST_HEAD(&p->preempt_notifiers);
1660#endif
1661
1da177e4
LT
1662 /*
1663 * We mark the process as running here, but have not actually
1664 * inserted it onto the runqueue yet. This guarantees that
1665 * nobody will actually run it, and a signal or other external
1666 * event cannot wake it up and insert it on the runqueue either.
1667 */
1668 p->state = TASK_RUNNING;
dd41f596
IM
1669}
1670
1671/*
1672 * fork()/clone()-time setup:
1673 */
1674void sched_fork(struct task_struct *p, int clone_flags)
1675{
1676 int cpu = get_cpu();
1677
1678 __sched_fork(p);
1679
1680#ifdef CONFIG_SMP
1681 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1682#endif
02e4bac2 1683 set_task_cpu(p, cpu);
b29739f9
IM
1684
1685 /*
1686 * Make sure we do not leak PI boosting priority to the child:
1687 */
1688 p->prio = current->normal_prio;
2ddbf952
HS
1689 if (!rt_prio(p->prio))
1690 p->sched_class = &fair_sched_class;
b29739f9 1691
52f17b6c 1692#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1693 if (likely(sched_info_on()))
52f17b6c 1694 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1695#endif
d6077cb8 1696#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1697 p->oncpu = 0;
1698#endif
1da177e4 1699#ifdef CONFIG_PREEMPT
4866cde0 1700 /* Want to start with kernel preemption disabled. */
a1261f54 1701 task_thread_info(p)->preempt_count = 1;
1da177e4 1702#endif
476d139c 1703 put_cpu();
1da177e4
LT
1704}
1705
1706/*
1707 * wake_up_new_task - wake up a newly created task for the first time.
1708 *
1709 * This function will do some initial scheduler statistics housekeeping
1710 * that must be done for every newly created context, then puts the task
1711 * on the runqueue and wakes it.
1712 */
36c8b586 1713void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1714{
1715 unsigned long flags;
dd41f596 1716 struct rq *rq;
1da177e4
LT
1717
1718 rq = task_rq_lock(p, &flags);
147cbb4b 1719 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1720 update_rq_clock(rq);
1da177e4
LT
1721
1722 p->prio = effective_prio(p);
1723
00bf7bfc 1724 if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
dd41f596 1725 activate_task(rq, p, 0);
1da177e4 1726 } else {
1da177e4 1727 /*
dd41f596
IM
1728 * Let the scheduling class do new task startup
1729 * management (if any):
1da177e4 1730 */
ee0827d8 1731 p->sched_class->task_new(rq, p);
e5fa2237 1732 inc_nr_running(p, rq);
1da177e4 1733 }
dd41f596
IM
1734 check_preempt_curr(rq, p);
1735 task_rq_unlock(rq, &flags);
1da177e4
LT
1736}
1737
e107be36
AK
1738#ifdef CONFIG_PREEMPT_NOTIFIERS
1739
1740/**
421cee29
RD
1741 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1742 * @notifier: notifier struct to register
e107be36
AK
1743 */
1744void preempt_notifier_register(struct preempt_notifier *notifier)
1745{
1746 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1747}
1748EXPORT_SYMBOL_GPL(preempt_notifier_register);
1749
1750/**
1751 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1752 * @notifier: notifier struct to unregister
e107be36
AK
1753 *
1754 * This is safe to call from within a preemption notifier.
1755 */
1756void preempt_notifier_unregister(struct preempt_notifier *notifier)
1757{
1758 hlist_del(&notifier->link);
1759}
1760EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1761
1762static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1763{
1764 struct preempt_notifier *notifier;
1765 struct hlist_node *node;
1766
1767 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1768 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1769}
1770
1771static void
1772fire_sched_out_preempt_notifiers(struct task_struct *curr,
1773 struct task_struct *next)
1774{
1775 struct preempt_notifier *notifier;
1776 struct hlist_node *node;
1777
1778 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1779 notifier->ops->sched_out(notifier, next);
1780}
1781
1782#else
1783
1784static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1785{
1786}
1787
1788static void
1789fire_sched_out_preempt_notifiers(struct task_struct *curr,
1790 struct task_struct *next)
1791{
1792}
1793
1794#endif
1795
4866cde0
NP
1796/**
1797 * prepare_task_switch - prepare to switch tasks
1798 * @rq: the runqueue preparing to switch
421cee29 1799 * @prev: the current task that is being switched out
4866cde0
NP
1800 * @next: the task we are going to switch to.
1801 *
1802 * This is called with the rq lock held and interrupts off. It must
1803 * be paired with a subsequent finish_task_switch after the context
1804 * switch.
1805 *
1806 * prepare_task_switch sets up locking and calls architecture specific
1807 * hooks.
1808 */
e107be36
AK
1809static inline void
1810prepare_task_switch(struct rq *rq, struct task_struct *prev,
1811 struct task_struct *next)
4866cde0 1812{
e107be36 1813 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1814 prepare_lock_switch(rq, next);
1815 prepare_arch_switch(next);
1816}
1817
1da177e4
LT
1818/**
1819 * finish_task_switch - clean up after a task-switch
344babaa 1820 * @rq: runqueue associated with task-switch
1da177e4
LT
1821 * @prev: the thread we just switched away from.
1822 *
4866cde0
NP
1823 * finish_task_switch must be called after the context switch, paired
1824 * with a prepare_task_switch call before the context switch.
1825 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1826 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1827 *
1828 * Note that we may have delayed dropping an mm in context_switch(). If
1829 * so, we finish that here outside of the runqueue lock. (Doing it
1830 * with the lock held can cause deadlocks; see schedule() for
1831 * details.)
1832 */
a9957449 1833static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1834 __releases(rq->lock)
1835{
1da177e4 1836 struct mm_struct *mm = rq->prev_mm;
55a101f8 1837 long prev_state;
1da177e4
LT
1838
1839 rq->prev_mm = NULL;
1840
1841 /*
1842 * A task struct has one reference for the use as "current".
c394cc9f 1843 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1844 * schedule one last time. The schedule call will never return, and
1845 * the scheduled task must drop that reference.
c394cc9f 1846 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1847 * still held, otherwise prev could be scheduled on another cpu, die
1848 * there before we look at prev->state, and then the reference would
1849 * be dropped twice.
1850 * Manfred Spraul <manfred@colorfullife.com>
1851 */
55a101f8 1852 prev_state = prev->state;
4866cde0
NP
1853 finish_arch_switch(prev);
1854 finish_lock_switch(rq, prev);
e107be36 1855 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1856 if (mm)
1857 mmdrop(mm);
c394cc9f 1858 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1859 /*
1860 * Remove function-return probe instances associated with this
1861 * task and put them back on the free list.
9761eea8 1862 */
c6fd91f0 1863 kprobe_flush_task(prev);
1da177e4 1864 put_task_struct(prev);
c6fd91f0 1865 }
1da177e4
LT
1866}
1867
1868/**
1869 * schedule_tail - first thing a freshly forked thread must call.
1870 * @prev: the thread we just switched away from.
1871 */
36c8b586 1872asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1873 __releases(rq->lock)
1874{
70b97a7f
IM
1875 struct rq *rq = this_rq();
1876
4866cde0
NP
1877 finish_task_switch(rq, prev);
1878#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1879 /* In this case, finish_task_switch does not reenable preemption */
1880 preempt_enable();
1881#endif
1da177e4
LT
1882 if (current->set_child_tid)
1883 put_user(current->pid, current->set_child_tid);
1884}
1885
1886/*
1887 * context_switch - switch to the new MM and the new
1888 * thread's register state.
1889 */
dd41f596 1890static inline void
70b97a7f 1891context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1892 struct task_struct *next)
1da177e4 1893{
dd41f596 1894 struct mm_struct *mm, *oldmm;
1da177e4 1895
e107be36 1896 prepare_task_switch(rq, prev, next);
dd41f596
IM
1897 mm = next->mm;
1898 oldmm = prev->active_mm;
9226d125
ZA
1899 /*
1900 * For paravirt, this is coupled with an exit in switch_to to
1901 * combine the page table reload and the switch backend into
1902 * one hypercall.
1903 */
1904 arch_enter_lazy_cpu_mode();
1905
dd41f596 1906 if (unlikely(!mm)) {
1da177e4
LT
1907 next->active_mm = oldmm;
1908 atomic_inc(&oldmm->mm_count);
1909 enter_lazy_tlb(oldmm, next);
1910 } else
1911 switch_mm(oldmm, mm, next);
1912
dd41f596 1913 if (unlikely(!prev->mm)) {
1da177e4 1914 prev->active_mm = NULL;
1da177e4
LT
1915 rq->prev_mm = oldmm;
1916 }
3a5f5e48
IM
1917 /*
1918 * Since the runqueue lock will be released by the next
1919 * task (which is an invalid locking op but in the case
1920 * of the scheduler it's an obvious special-case), so we
1921 * do an early lockdep release here:
1922 */
1923#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1924 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1925#endif
1da177e4
LT
1926
1927 /* Here we just switch the register state and the stack. */
1928 switch_to(prev, next, prev);
1929
dd41f596
IM
1930 barrier();
1931 /*
1932 * this_rq must be evaluated again because prev may have moved
1933 * CPUs since it called schedule(), thus the 'rq' on its stack
1934 * frame will be invalid.
1935 */
1936 finish_task_switch(this_rq(), prev);
1da177e4
LT
1937}
1938
1939/*
1940 * nr_running, nr_uninterruptible and nr_context_switches:
1941 *
1942 * externally visible scheduler statistics: current number of runnable
1943 * threads, current number of uninterruptible-sleeping threads, total
1944 * number of context switches performed since bootup.
1945 */
1946unsigned long nr_running(void)
1947{
1948 unsigned long i, sum = 0;
1949
1950 for_each_online_cpu(i)
1951 sum += cpu_rq(i)->nr_running;
1952
1953 return sum;
1954}
1955
1956unsigned long nr_uninterruptible(void)
1957{
1958 unsigned long i, sum = 0;
1959
0a945022 1960 for_each_possible_cpu(i)
1da177e4
LT
1961 sum += cpu_rq(i)->nr_uninterruptible;
1962
1963 /*
1964 * Since we read the counters lockless, it might be slightly
1965 * inaccurate. Do not allow it to go below zero though:
1966 */
1967 if (unlikely((long)sum < 0))
1968 sum = 0;
1969
1970 return sum;
1971}
1972
1973unsigned long long nr_context_switches(void)
1974{
cc94abfc
SR
1975 int i;
1976 unsigned long long sum = 0;
1da177e4 1977
0a945022 1978 for_each_possible_cpu(i)
1da177e4
LT
1979 sum += cpu_rq(i)->nr_switches;
1980
1981 return sum;
1982}
1983
1984unsigned long nr_iowait(void)
1985{
1986 unsigned long i, sum = 0;
1987
0a945022 1988 for_each_possible_cpu(i)
1da177e4
LT
1989 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1990
1991 return sum;
1992}
1993
db1b1fef
JS
1994unsigned long nr_active(void)
1995{
1996 unsigned long i, running = 0, uninterruptible = 0;
1997
1998 for_each_online_cpu(i) {
1999 running += cpu_rq(i)->nr_running;
2000 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2001 }
2002
2003 if (unlikely((long)uninterruptible < 0))
2004 uninterruptible = 0;
2005
2006 return running + uninterruptible;
2007}
2008
48f24c4d 2009/*
dd41f596
IM
2010 * Update rq->cpu_load[] statistics. This function is usually called every
2011 * scheduler tick (TICK_NSEC).
48f24c4d 2012 */
dd41f596 2013static void update_cpu_load(struct rq *this_rq)
48f24c4d 2014{
495eca49 2015 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2016 int i, scale;
2017
2018 this_rq->nr_load_updates++;
dd41f596
IM
2019
2020 /* Update our load: */
2021 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2022 unsigned long old_load, new_load;
2023
2024 /* scale is effectively 1 << i now, and >> i divides by scale */
2025
2026 old_load = this_rq->cpu_load[i];
2027 new_load = this_load;
a25707f3
IM
2028 /*
2029 * Round up the averaging division if load is increasing. This
2030 * prevents us from getting stuck on 9 if the load is 10, for
2031 * example.
2032 */
2033 if (new_load > old_load)
2034 new_load += scale-1;
dd41f596
IM
2035 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2036 }
48f24c4d
IM
2037}
2038
dd41f596
IM
2039#ifdef CONFIG_SMP
2040
1da177e4
LT
2041/*
2042 * double_rq_lock - safely lock two runqueues
2043 *
2044 * Note this does not disable interrupts like task_rq_lock,
2045 * you need to do so manually before calling.
2046 */
70b97a7f 2047static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2048 __acquires(rq1->lock)
2049 __acquires(rq2->lock)
2050{
054b9108 2051 BUG_ON(!irqs_disabled());
1da177e4
LT
2052 if (rq1 == rq2) {
2053 spin_lock(&rq1->lock);
2054 __acquire(rq2->lock); /* Fake it out ;) */
2055 } else {
c96d145e 2056 if (rq1 < rq2) {
1da177e4
LT
2057 spin_lock(&rq1->lock);
2058 spin_lock(&rq2->lock);
2059 } else {
2060 spin_lock(&rq2->lock);
2061 spin_lock(&rq1->lock);
2062 }
2063 }
6e82a3be
IM
2064 update_rq_clock(rq1);
2065 update_rq_clock(rq2);
1da177e4
LT
2066}
2067
2068/*
2069 * double_rq_unlock - safely unlock two runqueues
2070 *
2071 * Note this does not restore interrupts like task_rq_unlock,
2072 * you need to do so manually after calling.
2073 */
70b97a7f 2074static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2075 __releases(rq1->lock)
2076 __releases(rq2->lock)
2077{
2078 spin_unlock(&rq1->lock);
2079 if (rq1 != rq2)
2080 spin_unlock(&rq2->lock);
2081 else
2082 __release(rq2->lock);
2083}
2084
2085/*
2086 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2087 */
70b97a7f 2088static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2089 __releases(this_rq->lock)
2090 __acquires(busiest->lock)
2091 __acquires(this_rq->lock)
2092{
054b9108
KK
2093 if (unlikely(!irqs_disabled())) {
2094 /* printk() doesn't work good under rq->lock */
2095 spin_unlock(&this_rq->lock);
2096 BUG_ON(1);
2097 }
1da177e4 2098 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2099 if (busiest < this_rq) {
1da177e4
LT
2100 spin_unlock(&this_rq->lock);
2101 spin_lock(&busiest->lock);
2102 spin_lock(&this_rq->lock);
2103 } else
2104 spin_lock(&busiest->lock);
2105 }
2106}
2107
1da177e4
LT
2108/*
2109 * If dest_cpu is allowed for this process, migrate the task to it.
2110 * This is accomplished by forcing the cpu_allowed mask to only
2111 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2112 * the cpu_allowed mask is restored.
2113 */
36c8b586 2114static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2115{
70b97a7f 2116 struct migration_req req;
1da177e4 2117 unsigned long flags;
70b97a7f 2118 struct rq *rq;
1da177e4
LT
2119
2120 rq = task_rq_lock(p, &flags);
2121 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2122 || unlikely(cpu_is_offline(dest_cpu)))
2123 goto out;
2124
2125 /* force the process onto the specified CPU */
2126 if (migrate_task(p, dest_cpu, &req)) {
2127 /* Need to wait for migration thread (might exit: take ref). */
2128 struct task_struct *mt = rq->migration_thread;
36c8b586 2129
1da177e4
LT
2130 get_task_struct(mt);
2131 task_rq_unlock(rq, &flags);
2132 wake_up_process(mt);
2133 put_task_struct(mt);
2134 wait_for_completion(&req.done);
36c8b586 2135
1da177e4
LT
2136 return;
2137 }
2138out:
2139 task_rq_unlock(rq, &flags);
2140}
2141
2142/*
476d139c
NP
2143 * sched_exec - execve() is a valuable balancing opportunity, because at
2144 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2145 */
2146void sched_exec(void)
2147{
1da177e4 2148 int new_cpu, this_cpu = get_cpu();
476d139c 2149 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2150 put_cpu();
476d139c
NP
2151 if (new_cpu != this_cpu)
2152 sched_migrate_task(current, new_cpu);
1da177e4
LT
2153}
2154
2155/*
2156 * pull_task - move a task from a remote runqueue to the local runqueue.
2157 * Both runqueues must be locked.
2158 */
dd41f596
IM
2159static void pull_task(struct rq *src_rq, struct task_struct *p,
2160 struct rq *this_rq, int this_cpu)
1da177e4 2161{
2e1cb74a 2162 deactivate_task(src_rq, p, 0);
1da177e4 2163 set_task_cpu(p, this_cpu);
dd41f596 2164 activate_task(this_rq, p, 0);
1da177e4
LT
2165 /*
2166 * Note that idle threads have a prio of MAX_PRIO, for this test
2167 * to be always true for them.
2168 */
dd41f596 2169 check_preempt_curr(this_rq, p);
1da177e4
LT
2170}
2171
2172/*
2173 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2174 */
858119e1 2175static
70b97a7f 2176int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2177 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2178 int *all_pinned)
1da177e4
LT
2179{
2180 /*
2181 * We do not migrate tasks that are:
2182 * 1) running (obviously), or
2183 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2184 * 3) are cache-hot on their current CPU.
2185 */
cc367732
IM
2186 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2187 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2188 return 0;
cc367732 2189 }
81026794
NP
2190 *all_pinned = 0;
2191
cc367732
IM
2192 if (task_running(rq, p)) {
2193 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2194 return 0;
cc367732 2195 }
1da177e4 2196
da84d961
IM
2197 /*
2198 * Aggressive migration if:
2199 * 1) task is cache cold, or
2200 * 2) too many balance attempts have failed.
2201 */
2202
6bc1665b
IM
2203 if (!task_hot(p, rq->clock, sd) ||
2204 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2205#ifdef CONFIG_SCHEDSTATS
cc367732 2206 if (task_hot(p, rq->clock, sd)) {
da84d961 2207 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2208 schedstat_inc(p, se.nr_forced_migrations);
2209 }
da84d961
IM
2210#endif
2211 return 1;
2212 }
2213
cc367732
IM
2214 if (task_hot(p, rq->clock, sd)) {
2215 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2216 return 0;
cc367732 2217 }
1da177e4
LT
2218 return 1;
2219}
2220
dd41f596 2221static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2222 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2223 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2224 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2225 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2226{
dd41f596
IM
2227 int pulled = 0, pinned = 0, skip_for_load;
2228 struct task_struct *p;
2229 long rem_load_move = max_load_move;
1da177e4 2230
2dd73a4f 2231 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2232 goto out;
2233
81026794
NP
2234 pinned = 1;
2235
1da177e4 2236 /*
dd41f596 2237 * Start the load-balancing iterator:
1da177e4 2238 */
dd41f596
IM
2239 p = iterator->start(iterator->arg);
2240next:
2241 if (!p)
1da177e4 2242 goto out;
50ddd969
PW
2243 /*
2244 * To help distribute high priority tasks accross CPUs we don't
2245 * skip a task if it will be the highest priority task (i.e. smallest
2246 * prio value) on its new queue regardless of its load weight
2247 */
dd41f596
IM
2248 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2249 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2250 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2251 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2252 p = iterator->next(iterator->arg);
2253 goto next;
1da177e4
LT
2254 }
2255
dd41f596 2256 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2257 pulled++;
dd41f596 2258 rem_load_move -= p->se.load.weight;
1da177e4 2259
2dd73a4f
PW
2260 /*
2261 * We only want to steal up to the prescribed number of tasks
2262 * and the prescribed amount of weighted load.
2263 */
2264 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2265 if (p->prio < *this_best_prio)
2266 *this_best_prio = p->prio;
dd41f596
IM
2267 p = iterator->next(iterator->arg);
2268 goto next;
1da177e4
LT
2269 }
2270out:
2271 /*
2272 * Right now, this is the only place pull_task() is called,
2273 * so we can safely collect pull_task() stats here rather than
2274 * inside pull_task().
2275 */
2276 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2277
2278 if (all_pinned)
2279 *all_pinned = pinned;
dd41f596 2280 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2281 return pulled;
2282}
2283
dd41f596 2284/*
43010659
PW
2285 * move_tasks tries to move up to max_load_move weighted load from busiest to
2286 * this_rq, as part of a balancing operation within domain "sd".
2287 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2288 *
2289 * Called with both runqueues locked.
2290 */
2291static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2292 unsigned long max_load_move,
dd41f596
IM
2293 struct sched_domain *sd, enum cpu_idle_type idle,
2294 int *all_pinned)
2295{
5522d5d5 2296 const struct sched_class *class = sched_class_highest;
43010659 2297 unsigned long total_load_moved = 0;
a4ac01c3 2298 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2299
2300 do {
43010659
PW
2301 total_load_moved +=
2302 class->load_balance(this_rq, this_cpu, busiest,
2303 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2304 sd, idle, all_pinned, &this_best_prio);
dd41f596 2305 class = class->next;
43010659 2306 } while (class && max_load_move > total_load_moved);
dd41f596 2307
43010659
PW
2308 return total_load_moved > 0;
2309}
2310
2311/*
2312 * move_one_task tries to move exactly one task from busiest to this_rq, as
2313 * part of active balancing operations within "domain".
2314 * Returns 1 if successful and 0 otherwise.
2315 *
2316 * Called with both runqueues locked.
2317 */
2318static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2319 struct sched_domain *sd, enum cpu_idle_type idle)
2320{
5522d5d5 2321 const struct sched_class *class;
a4ac01c3 2322 int this_best_prio = MAX_PRIO;
43010659
PW
2323
2324 for (class = sched_class_highest; class; class = class->next)
2325 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2326 1, ULONG_MAX, sd, idle, NULL,
2327 &this_best_prio))
43010659
PW
2328 return 1;
2329
2330 return 0;
dd41f596
IM
2331}
2332
1da177e4
LT
2333/*
2334 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2335 * domain. It calculates and returns the amount of weighted load which
2336 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2337 */
2338static struct sched_group *
2339find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2340 unsigned long *imbalance, enum cpu_idle_type idle,
2341 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2342{
2343 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2344 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2345 unsigned long max_pull;
2dd73a4f
PW
2346 unsigned long busiest_load_per_task, busiest_nr_running;
2347 unsigned long this_load_per_task, this_nr_running;
7897986b 2348 int load_idx;
5c45bf27
SS
2349#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2350 int power_savings_balance = 1;
2351 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2352 unsigned long min_nr_running = ULONG_MAX;
2353 struct sched_group *group_min = NULL, *group_leader = NULL;
2354#endif
1da177e4
LT
2355
2356 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2357 busiest_load_per_task = busiest_nr_running = 0;
2358 this_load_per_task = this_nr_running = 0;
d15bcfdb 2359 if (idle == CPU_NOT_IDLE)
7897986b 2360 load_idx = sd->busy_idx;
d15bcfdb 2361 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2362 load_idx = sd->newidle_idx;
2363 else
2364 load_idx = sd->idle_idx;
1da177e4
LT
2365
2366 do {
5c45bf27 2367 unsigned long load, group_capacity;
1da177e4
LT
2368 int local_group;
2369 int i;
783609c6 2370 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2371 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2372
2373 local_group = cpu_isset(this_cpu, group->cpumask);
2374
783609c6
SS
2375 if (local_group)
2376 balance_cpu = first_cpu(group->cpumask);
2377
1da177e4 2378 /* Tally up the load of all CPUs in the group */
2dd73a4f 2379 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2380
2381 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2382 struct rq *rq;
2383
2384 if (!cpu_isset(i, *cpus))
2385 continue;
2386
2387 rq = cpu_rq(i);
2dd73a4f 2388
9439aab8 2389 if (*sd_idle && rq->nr_running)
5969fe06
NP
2390 *sd_idle = 0;
2391
1da177e4 2392 /* Bias balancing toward cpus of our domain */
783609c6
SS
2393 if (local_group) {
2394 if (idle_cpu(i) && !first_idle_cpu) {
2395 first_idle_cpu = 1;
2396 balance_cpu = i;
2397 }
2398
a2000572 2399 load = target_load(i, load_idx);
783609c6 2400 } else
a2000572 2401 load = source_load(i, load_idx);
1da177e4
LT
2402
2403 avg_load += load;
2dd73a4f 2404 sum_nr_running += rq->nr_running;
dd41f596 2405 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2406 }
2407
783609c6
SS
2408 /*
2409 * First idle cpu or the first cpu(busiest) in this sched group
2410 * is eligible for doing load balancing at this and above
9439aab8
SS
2411 * domains. In the newly idle case, we will allow all the cpu's
2412 * to do the newly idle load balance.
783609c6 2413 */
9439aab8
SS
2414 if (idle != CPU_NEWLY_IDLE && local_group &&
2415 balance_cpu != this_cpu && balance) {
783609c6
SS
2416 *balance = 0;
2417 goto ret;
2418 }
2419
1da177e4 2420 total_load += avg_load;
5517d86b 2421 total_pwr += group->__cpu_power;
1da177e4
LT
2422
2423 /* Adjust by relative CPU power of the group */
5517d86b
ED
2424 avg_load = sg_div_cpu_power(group,
2425 avg_load * SCHED_LOAD_SCALE);
1da177e4 2426
5517d86b 2427 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2428
1da177e4
LT
2429 if (local_group) {
2430 this_load = avg_load;
2431 this = group;
2dd73a4f
PW
2432 this_nr_running = sum_nr_running;
2433 this_load_per_task = sum_weighted_load;
2434 } else if (avg_load > max_load &&
5c45bf27 2435 sum_nr_running > group_capacity) {
1da177e4
LT
2436 max_load = avg_load;
2437 busiest = group;
2dd73a4f
PW
2438 busiest_nr_running = sum_nr_running;
2439 busiest_load_per_task = sum_weighted_load;
1da177e4 2440 }
5c45bf27
SS
2441
2442#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2443 /*
2444 * Busy processors will not participate in power savings
2445 * balance.
2446 */
dd41f596
IM
2447 if (idle == CPU_NOT_IDLE ||
2448 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2449 goto group_next;
5c45bf27
SS
2450
2451 /*
2452 * If the local group is idle or completely loaded
2453 * no need to do power savings balance at this domain
2454 */
2455 if (local_group && (this_nr_running >= group_capacity ||
2456 !this_nr_running))
2457 power_savings_balance = 0;
2458
dd41f596 2459 /*
5c45bf27
SS
2460 * If a group is already running at full capacity or idle,
2461 * don't include that group in power savings calculations
dd41f596
IM
2462 */
2463 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2464 || !sum_nr_running)
dd41f596 2465 goto group_next;
5c45bf27 2466
dd41f596 2467 /*
5c45bf27 2468 * Calculate the group which has the least non-idle load.
dd41f596
IM
2469 * This is the group from where we need to pick up the load
2470 * for saving power
2471 */
2472 if ((sum_nr_running < min_nr_running) ||
2473 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2474 first_cpu(group->cpumask) <
2475 first_cpu(group_min->cpumask))) {
dd41f596
IM
2476 group_min = group;
2477 min_nr_running = sum_nr_running;
5c45bf27
SS
2478 min_load_per_task = sum_weighted_load /
2479 sum_nr_running;
dd41f596 2480 }
5c45bf27 2481
dd41f596 2482 /*
5c45bf27 2483 * Calculate the group which is almost near its
dd41f596
IM
2484 * capacity but still has some space to pick up some load
2485 * from other group and save more power
2486 */
2487 if (sum_nr_running <= group_capacity - 1) {
2488 if (sum_nr_running > leader_nr_running ||
2489 (sum_nr_running == leader_nr_running &&
2490 first_cpu(group->cpumask) >
2491 first_cpu(group_leader->cpumask))) {
2492 group_leader = group;
2493 leader_nr_running = sum_nr_running;
2494 }
48f24c4d 2495 }
5c45bf27
SS
2496group_next:
2497#endif
1da177e4
LT
2498 group = group->next;
2499 } while (group != sd->groups);
2500
2dd73a4f 2501 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2502 goto out_balanced;
2503
2504 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2505
2506 if (this_load >= avg_load ||
2507 100*max_load <= sd->imbalance_pct*this_load)
2508 goto out_balanced;
2509
2dd73a4f 2510 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2511 /*
2512 * We're trying to get all the cpus to the average_load, so we don't
2513 * want to push ourselves above the average load, nor do we wish to
2514 * reduce the max loaded cpu below the average load, as either of these
2515 * actions would just result in more rebalancing later, and ping-pong
2516 * tasks around. Thus we look for the minimum possible imbalance.
2517 * Negative imbalances (*we* are more loaded than anyone else) will
2518 * be counted as no imbalance for these purposes -- we can't fix that
2519 * by pulling tasks to us. Be careful of negative numbers as they'll
2520 * appear as very large values with unsigned longs.
2521 */
2dd73a4f
PW
2522 if (max_load <= busiest_load_per_task)
2523 goto out_balanced;
2524
2525 /*
2526 * In the presence of smp nice balancing, certain scenarios can have
2527 * max load less than avg load(as we skip the groups at or below
2528 * its cpu_power, while calculating max_load..)
2529 */
2530 if (max_load < avg_load) {
2531 *imbalance = 0;
2532 goto small_imbalance;
2533 }
0c117f1b
SS
2534
2535 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2536 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2537
1da177e4 2538 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2539 *imbalance = min(max_pull * busiest->__cpu_power,
2540 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2541 / SCHED_LOAD_SCALE;
2542
2dd73a4f
PW
2543 /*
2544 * if *imbalance is less than the average load per runnable task
2545 * there is no gaurantee that any tasks will be moved so we'll have
2546 * a think about bumping its value to force at least one task to be
2547 * moved
2548 */
7fd0d2dd 2549 if (*imbalance < busiest_load_per_task) {
48f24c4d 2550 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2551 unsigned int imbn;
2552
2553small_imbalance:
2554 pwr_move = pwr_now = 0;
2555 imbn = 2;
2556 if (this_nr_running) {
2557 this_load_per_task /= this_nr_running;
2558 if (busiest_load_per_task > this_load_per_task)
2559 imbn = 1;
2560 } else
2561 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2562
dd41f596
IM
2563 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2564 busiest_load_per_task * imbn) {
2dd73a4f 2565 *imbalance = busiest_load_per_task;
1da177e4
LT
2566 return busiest;
2567 }
2568
2569 /*
2570 * OK, we don't have enough imbalance to justify moving tasks,
2571 * however we may be able to increase total CPU power used by
2572 * moving them.
2573 */
2574
5517d86b
ED
2575 pwr_now += busiest->__cpu_power *
2576 min(busiest_load_per_task, max_load);
2577 pwr_now += this->__cpu_power *
2578 min(this_load_per_task, this_load);
1da177e4
LT
2579 pwr_now /= SCHED_LOAD_SCALE;
2580
2581 /* Amount of load we'd subtract */
5517d86b
ED
2582 tmp = sg_div_cpu_power(busiest,
2583 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2584 if (max_load > tmp)
5517d86b 2585 pwr_move += busiest->__cpu_power *
2dd73a4f 2586 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2587
2588 /* Amount of load we'd add */
5517d86b 2589 if (max_load * busiest->__cpu_power <
33859f7f 2590 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2591 tmp = sg_div_cpu_power(this,
2592 max_load * busiest->__cpu_power);
1da177e4 2593 else
5517d86b
ED
2594 tmp = sg_div_cpu_power(this,
2595 busiest_load_per_task * SCHED_LOAD_SCALE);
2596 pwr_move += this->__cpu_power *
2597 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2598 pwr_move /= SCHED_LOAD_SCALE;
2599
2600 /* Move if we gain throughput */
7fd0d2dd
SS
2601 if (pwr_move > pwr_now)
2602 *imbalance = busiest_load_per_task;
1da177e4
LT
2603 }
2604
1da177e4
LT
2605 return busiest;
2606
2607out_balanced:
5c45bf27 2608#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2609 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2610 goto ret;
1da177e4 2611
5c45bf27
SS
2612 if (this == group_leader && group_leader != group_min) {
2613 *imbalance = min_load_per_task;
2614 return group_min;
2615 }
5c45bf27 2616#endif
783609c6 2617ret:
1da177e4
LT
2618 *imbalance = 0;
2619 return NULL;
2620}
2621
2622/*
2623 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2624 */
70b97a7f 2625static struct rq *
d15bcfdb 2626find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2627 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2628{
70b97a7f 2629 struct rq *busiest = NULL, *rq;
2dd73a4f 2630 unsigned long max_load = 0;
1da177e4
LT
2631 int i;
2632
2633 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2634 unsigned long wl;
0a2966b4
CL
2635
2636 if (!cpu_isset(i, *cpus))
2637 continue;
2638
48f24c4d 2639 rq = cpu_rq(i);
dd41f596 2640 wl = weighted_cpuload(i);
2dd73a4f 2641
dd41f596 2642 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2643 continue;
1da177e4 2644
dd41f596
IM
2645 if (wl > max_load) {
2646 max_load = wl;
48f24c4d 2647 busiest = rq;
1da177e4
LT
2648 }
2649 }
2650
2651 return busiest;
2652}
2653
77391d71
NP
2654/*
2655 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2656 * so long as it is large enough.
2657 */
2658#define MAX_PINNED_INTERVAL 512
2659
1da177e4
LT
2660/*
2661 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2662 * tasks if there is an imbalance.
1da177e4 2663 */
70b97a7f 2664static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2665 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2666 int *balance)
1da177e4 2667{
43010659 2668 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2669 struct sched_group *group;
1da177e4 2670 unsigned long imbalance;
70b97a7f 2671 struct rq *busiest;
0a2966b4 2672 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2673 unsigned long flags;
5969fe06 2674
89c4710e
SS
2675 /*
2676 * When power savings policy is enabled for the parent domain, idle
2677 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2678 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2679 * portraying it as CPU_NOT_IDLE.
89c4710e 2680 */
d15bcfdb 2681 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2682 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2683 sd_idle = 1;
1da177e4 2684
2d72376b 2685 schedstat_inc(sd, lb_count[idle]);
1da177e4 2686
0a2966b4
CL
2687redo:
2688 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2689 &cpus, balance);
2690
06066714 2691 if (*balance == 0)
783609c6 2692 goto out_balanced;
783609c6 2693
1da177e4
LT
2694 if (!group) {
2695 schedstat_inc(sd, lb_nobusyg[idle]);
2696 goto out_balanced;
2697 }
2698
0a2966b4 2699 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2700 if (!busiest) {
2701 schedstat_inc(sd, lb_nobusyq[idle]);
2702 goto out_balanced;
2703 }
2704
db935dbd 2705 BUG_ON(busiest == this_rq);
1da177e4
LT
2706
2707 schedstat_add(sd, lb_imbalance[idle], imbalance);
2708
43010659 2709 ld_moved = 0;
1da177e4
LT
2710 if (busiest->nr_running > 1) {
2711 /*
2712 * Attempt to move tasks. If find_busiest_group has found
2713 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2714 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2715 * correctly treated as an imbalance.
2716 */
fe2eea3f 2717 local_irq_save(flags);
e17224bf 2718 double_rq_lock(this_rq, busiest);
43010659 2719 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2720 imbalance, sd, idle, &all_pinned);
e17224bf 2721 double_rq_unlock(this_rq, busiest);
fe2eea3f 2722 local_irq_restore(flags);
81026794 2723
46cb4b7c
SS
2724 /*
2725 * some other cpu did the load balance for us.
2726 */
43010659 2727 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2728 resched_cpu(this_cpu);
2729
81026794 2730 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2731 if (unlikely(all_pinned)) {
2732 cpu_clear(cpu_of(busiest), cpus);
2733 if (!cpus_empty(cpus))
2734 goto redo;
81026794 2735 goto out_balanced;
0a2966b4 2736 }
1da177e4 2737 }
81026794 2738
43010659 2739 if (!ld_moved) {
1da177e4
LT
2740 schedstat_inc(sd, lb_failed[idle]);
2741 sd->nr_balance_failed++;
2742
2743 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2744
fe2eea3f 2745 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2746
2747 /* don't kick the migration_thread, if the curr
2748 * task on busiest cpu can't be moved to this_cpu
2749 */
2750 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2751 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2752 all_pinned = 1;
2753 goto out_one_pinned;
2754 }
2755
1da177e4
LT
2756 if (!busiest->active_balance) {
2757 busiest->active_balance = 1;
2758 busiest->push_cpu = this_cpu;
81026794 2759 active_balance = 1;
1da177e4 2760 }
fe2eea3f 2761 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2762 if (active_balance)
1da177e4
LT
2763 wake_up_process(busiest->migration_thread);
2764
2765 /*
2766 * We've kicked active balancing, reset the failure
2767 * counter.
2768 */
39507451 2769 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2770 }
81026794 2771 } else
1da177e4
LT
2772 sd->nr_balance_failed = 0;
2773
81026794 2774 if (likely(!active_balance)) {
1da177e4
LT
2775 /* We were unbalanced, so reset the balancing interval */
2776 sd->balance_interval = sd->min_interval;
81026794
NP
2777 } else {
2778 /*
2779 * If we've begun active balancing, start to back off. This
2780 * case may not be covered by the all_pinned logic if there
2781 * is only 1 task on the busy runqueue (because we don't call
2782 * move_tasks).
2783 */
2784 if (sd->balance_interval < sd->max_interval)
2785 sd->balance_interval *= 2;
1da177e4
LT
2786 }
2787
43010659 2788 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2789 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2790 return -1;
43010659 2791 return ld_moved;
1da177e4
LT
2792
2793out_balanced:
1da177e4
LT
2794 schedstat_inc(sd, lb_balanced[idle]);
2795
16cfb1c0 2796 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2797
2798out_one_pinned:
1da177e4 2799 /* tune up the balancing interval */
77391d71
NP
2800 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2801 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2802 sd->balance_interval *= 2;
2803
48f24c4d 2804 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2805 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2806 return -1;
1da177e4
LT
2807 return 0;
2808}
2809
2810/*
2811 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2812 * tasks if there is an imbalance.
2813 *
d15bcfdb 2814 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2815 * this_rq is locked.
2816 */
48f24c4d 2817static int
70b97a7f 2818load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2819{
2820 struct sched_group *group;
70b97a7f 2821 struct rq *busiest = NULL;
1da177e4 2822 unsigned long imbalance;
43010659 2823 int ld_moved = 0;
5969fe06 2824 int sd_idle = 0;
969bb4e4 2825 int all_pinned = 0;
0a2966b4 2826 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2827
89c4710e
SS
2828 /*
2829 * When power savings policy is enabled for the parent domain, idle
2830 * sibling can pick up load irrespective of busy siblings. In this case,
2831 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2832 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2833 */
2834 if (sd->flags & SD_SHARE_CPUPOWER &&
2835 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2836 sd_idle = 1;
1da177e4 2837
2d72376b 2838 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2839redo:
d15bcfdb 2840 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2841 &sd_idle, &cpus, NULL);
1da177e4 2842 if (!group) {
d15bcfdb 2843 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2844 goto out_balanced;
1da177e4
LT
2845 }
2846
d15bcfdb 2847 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2848 &cpus);
db935dbd 2849 if (!busiest) {
d15bcfdb 2850 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2851 goto out_balanced;
1da177e4
LT
2852 }
2853
db935dbd
NP
2854 BUG_ON(busiest == this_rq);
2855
d15bcfdb 2856 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2857
43010659 2858 ld_moved = 0;
d6d5cfaf
NP
2859 if (busiest->nr_running > 1) {
2860 /* Attempt to move tasks */
2861 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2862 /* this_rq->clock is already updated */
2863 update_rq_clock(busiest);
43010659 2864 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2865 imbalance, sd, CPU_NEWLY_IDLE,
2866 &all_pinned);
d6d5cfaf 2867 spin_unlock(&busiest->lock);
0a2966b4 2868
969bb4e4 2869 if (unlikely(all_pinned)) {
0a2966b4
CL
2870 cpu_clear(cpu_of(busiest), cpus);
2871 if (!cpus_empty(cpus))
2872 goto redo;
2873 }
d6d5cfaf
NP
2874 }
2875
43010659 2876 if (!ld_moved) {
d15bcfdb 2877 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2878 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2879 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2880 return -1;
2881 } else
16cfb1c0 2882 sd->nr_balance_failed = 0;
1da177e4 2883
43010659 2884 return ld_moved;
16cfb1c0
NP
2885
2886out_balanced:
d15bcfdb 2887 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2888 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2889 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2890 return -1;
16cfb1c0 2891 sd->nr_balance_failed = 0;
48f24c4d 2892
16cfb1c0 2893 return 0;
1da177e4
LT
2894}
2895
2896/*
2897 * idle_balance is called by schedule() if this_cpu is about to become
2898 * idle. Attempts to pull tasks from other CPUs.
2899 */
70b97a7f 2900static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2901{
2902 struct sched_domain *sd;
dd41f596
IM
2903 int pulled_task = -1;
2904 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2905
2906 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2907 unsigned long interval;
2908
2909 if (!(sd->flags & SD_LOAD_BALANCE))
2910 continue;
2911
2912 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2913 /* If we've pulled tasks over stop searching: */
1bd77f2d 2914 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2915 this_rq, sd);
2916
2917 interval = msecs_to_jiffies(sd->balance_interval);
2918 if (time_after(next_balance, sd->last_balance + interval))
2919 next_balance = sd->last_balance + interval;
2920 if (pulled_task)
2921 break;
1da177e4 2922 }
dd41f596 2923 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2924 /*
2925 * We are going idle. next_balance may be set based on
2926 * a busy processor. So reset next_balance.
2927 */
2928 this_rq->next_balance = next_balance;
dd41f596 2929 }
1da177e4
LT
2930}
2931
2932/*
2933 * active_load_balance is run by migration threads. It pushes running tasks
2934 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2935 * running on each physical CPU where possible, and avoids physical /
2936 * logical imbalances.
2937 *
2938 * Called with busiest_rq locked.
2939 */
70b97a7f 2940static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2941{
39507451 2942 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2943 struct sched_domain *sd;
2944 struct rq *target_rq;
39507451 2945
48f24c4d 2946 /* Is there any task to move? */
39507451 2947 if (busiest_rq->nr_running <= 1)
39507451
NP
2948 return;
2949
2950 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2951
2952 /*
39507451
NP
2953 * This condition is "impossible", if it occurs
2954 * we need to fix it. Originally reported by
2955 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2956 */
39507451 2957 BUG_ON(busiest_rq == target_rq);
1da177e4 2958
39507451
NP
2959 /* move a task from busiest_rq to target_rq */
2960 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2961 update_rq_clock(busiest_rq);
2962 update_rq_clock(target_rq);
39507451
NP
2963
2964 /* Search for an sd spanning us and the target CPU. */
c96d145e 2965 for_each_domain(target_cpu, sd) {
39507451 2966 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2967 cpu_isset(busiest_cpu, sd->span))
39507451 2968 break;
c96d145e 2969 }
39507451 2970
48f24c4d 2971 if (likely(sd)) {
2d72376b 2972 schedstat_inc(sd, alb_count);
39507451 2973
43010659
PW
2974 if (move_one_task(target_rq, target_cpu, busiest_rq,
2975 sd, CPU_IDLE))
48f24c4d
IM
2976 schedstat_inc(sd, alb_pushed);
2977 else
2978 schedstat_inc(sd, alb_failed);
2979 }
39507451 2980 spin_unlock(&target_rq->lock);
1da177e4
LT
2981}
2982
46cb4b7c
SS
2983#ifdef CONFIG_NO_HZ
2984static struct {
2985 atomic_t load_balancer;
2986 cpumask_t cpu_mask;
2987} nohz ____cacheline_aligned = {
2988 .load_balancer = ATOMIC_INIT(-1),
2989 .cpu_mask = CPU_MASK_NONE,
2990};
2991
7835b98b 2992/*
46cb4b7c
SS
2993 * This routine will try to nominate the ilb (idle load balancing)
2994 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2995 * load balancing on behalf of all those cpus. If all the cpus in the system
2996 * go into this tickless mode, then there will be no ilb owner (as there is
2997 * no need for one) and all the cpus will sleep till the next wakeup event
2998 * arrives...
2999 *
3000 * For the ilb owner, tick is not stopped. And this tick will be used
3001 * for idle load balancing. ilb owner will still be part of
3002 * nohz.cpu_mask..
7835b98b 3003 *
46cb4b7c
SS
3004 * While stopping the tick, this cpu will become the ilb owner if there
3005 * is no other owner. And will be the owner till that cpu becomes busy
3006 * or if all cpus in the system stop their ticks at which point
3007 * there is no need for ilb owner.
3008 *
3009 * When the ilb owner becomes busy, it nominates another owner, during the
3010 * next busy scheduler_tick()
3011 */
3012int select_nohz_load_balancer(int stop_tick)
3013{
3014 int cpu = smp_processor_id();
3015
3016 if (stop_tick) {
3017 cpu_set(cpu, nohz.cpu_mask);
3018 cpu_rq(cpu)->in_nohz_recently = 1;
3019
3020 /*
3021 * If we are going offline and still the leader, give up!
3022 */
3023 if (cpu_is_offline(cpu) &&
3024 atomic_read(&nohz.load_balancer) == cpu) {
3025 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3026 BUG();
3027 return 0;
3028 }
3029
3030 /* time for ilb owner also to sleep */
3031 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3032 if (atomic_read(&nohz.load_balancer) == cpu)
3033 atomic_set(&nohz.load_balancer, -1);
3034 return 0;
3035 }
3036
3037 if (atomic_read(&nohz.load_balancer) == -1) {
3038 /* make me the ilb owner */
3039 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3040 return 1;
3041 } else if (atomic_read(&nohz.load_balancer) == cpu)
3042 return 1;
3043 } else {
3044 if (!cpu_isset(cpu, nohz.cpu_mask))
3045 return 0;
3046
3047 cpu_clear(cpu, nohz.cpu_mask);
3048
3049 if (atomic_read(&nohz.load_balancer) == cpu)
3050 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3051 BUG();
3052 }
3053 return 0;
3054}
3055#endif
3056
3057static DEFINE_SPINLOCK(balancing);
3058
3059/*
7835b98b
CL
3060 * It checks each scheduling domain to see if it is due to be balanced,
3061 * and initiates a balancing operation if so.
3062 *
3063 * Balancing parameters are set up in arch_init_sched_domains.
3064 */
a9957449 3065static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3066{
46cb4b7c
SS
3067 int balance = 1;
3068 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3069 unsigned long interval;
3070 struct sched_domain *sd;
46cb4b7c 3071 /* Earliest time when we have to do rebalance again */
c9819f45 3072 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3073 int update_next_balance = 0;
1da177e4 3074
46cb4b7c 3075 for_each_domain(cpu, sd) {
1da177e4
LT
3076 if (!(sd->flags & SD_LOAD_BALANCE))
3077 continue;
3078
3079 interval = sd->balance_interval;
d15bcfdb 3080 if (idle != CPU_IDLE)
1da177e4
LT
3081 interval *= sd->busy_factor;
3082
3083 /* scale ms to jiffies */
3084 interval = msecs_to_jiffies(interval);
3085 if (unlikely(!interval))
3086 interval = 1;
dd41f596
IM
3087 if (interval > HZ*NR_CPUS/10)
3088 interval = HZ*NR_CPUS/10;
3089
1da177e4 3090
08c183f3
CL
3091 if (sd->flags & SD_SERIALIZE) {
3092 if (!spin_trylock(&balancing))
3093 goto out;
3094 }
3095
c9819f45 3096 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3097 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3098 /*
3099 * We've pulled tasks over so either we're no
5969fe06
NP
3100 * longer idle, or one of our SMT siblings is
3101 * not idle.
3102 */
d15bcfdb 3103 idle = CPU_NOT_IDLE;
1da177e4 3104 }
1bd77f2d 3105 sd->last_balance = jiffies;
1da177e4 3106 }
08c183f3
CL
3107 if (sd->flags & SD_SERIALIZE)
3108 spin_unlock(&balancing);
3109out:
f549da84 3110 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3111 next_balance = sd->last_balance + interval;
f549da84
SS
3112 update_next_balance = 1;
3113 }
783609c6
SS
3114
3115 /*
3116 * Stop the load balance at this level. There is another
3117 * CPU in our sched group which is doing load balancing more
3118 * actively.
3119 */
3120 if (!balance)
3121 break;
1da177e4 3122 }
f549da84
SS
3123
3124 /*
3125 * next_balance will be updated only when there is a need.
3126 * When the cpu is attached to null domain for ex, it will not be
3127 * updated.
3128 */
3129 if (likely(update_next_balance))
3130 rq->next_balance = next_balance;
46cb4b7c
SS
3131}
3132
3133/*
3134 * run_rebalance_domains is triggered when needed from the scheduler tick.
3135 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3136 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3137 */
3138static void run_rebalance_domains(struct softirq_action *h)
3139{
dd41f596
IM
3140 int this_cpu = smp_processor_id();
3141 struct rq *this_rq = cpu_rq(this_cpu);
3142 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3143 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3144
dd41f596 3145 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3146
3147#ifdef CONFIG_NO_HZ
3148 /*
3149 * If this cpu is the owner for idle load balancing, then do the
3150 * balancing on behalf of the other idle cpus whose ticks are
3151 * stopped.
3152 */
dd41f596
IM
3153 if (this_rq->idle_at_tick &&
3154 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3155 cpumask_t cpus = nohz.cpu_mask;
3156 struct rq *rq;
3157 int balance_cpu;
3158
dd41f596 3159 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3160 for_each_cpu_mask(balance_cpu, cpus) {
3161 /*
3162 * If this cpu gets work to do, stop the load balancing
3163 * work being done for other cpus. Next load
3164 * balancing owner will pick it up.
3165 */
3166 if (need_resched())
3167 break;
3168
de0cf899 3169 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3170
3171 rq = cpu_rq(balance_cpu);
dd41f596
IM
3172 if (time_after(this_rq->next_balance, rq->next_balance))
3173 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3174 }
3175 }
3176#endif
3177}
3178
3179/*
3180 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3181 *
3182 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3183 * idle load balancing owner or decide to stop the periodic load balancing,
3184 * if the whole system is idle.
3185 */
dd41f596 3186static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3187{
46cb4b7c
SS
3188#ifdef CONFIG_NO_HZ
3189 /*
3190 * If we were in the nohz mode recently and busy at the current
3191 * scheduler tick, then check if we need to nominate new idle
3192 * load balancer.
3193 */
3194 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3195 rq->in_nohz_recently = 0;
3196
3197 if (atomic_read(&nohz.load_balancer) == cpu) {
3198 cpu_clear(cpu, nohz.cpu_mask);
3199 atomic_set(&nohz.load_balancer, -1);
3200 }
3201
3202 if (atomic_read(&nohz.load_balancer) == -1) {
3203 /*
3204 * simple selection for now: Nominate the
3205 * first cpu in the nohz list to be the next
3206 * ilb owner.
3207 *
3208 * TBD: Traverse the sched domains and nominate
3209 * the nearest cpu in the nohz.cpu_mask.
3210 */
3211 int ilb = first_cpu(nohz.cpu_mask);
3212
3213 if (ilb != NR_CPUS)
3214 resched_cpu(ilb);
3215 }
3216 }
3217
3218 /*
3219 * If this cpu is idle and doing idle load balancing for all the
3220 * cpus with ticks stopped, is it time for that to stop?
3221 */
3222 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3223 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3224 resched_cpu(cpu);
3225 return;
3226 }
3227
3228 /*
3229 * If this cpu is idle and the idle load balancing is done by
3230 * someone else, then no need raise the SCHED_SOFTIRQ
3231 */
3232 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3233 cpu_isset(cpu, nohz.cpu_mask))
3234 return;
3235#endif
3236 if (time_after_eq(jiffies, rq->next_balance))
3237 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3238}
dd41f596
IM
3239
3240#else /* CONFIG_SMP */
3241
1da177e4
LT
3242/*
3243 * on UP we do not need to balance between CPUs:
3244 */
70b97a7f 3245static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3246{
3247}
dd41f596
IM
3248
3249/* Avoid "used but not defined" warning on UP */
3250static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3251 unsigned long max_nr_move, unsigned long max_load_move,
3252 struct sched_domain *sd, enum cpu_idle_type idle,
3253 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3254 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3255{
3256 *load_moved = 0;
3257
3258 return 0;
3259}
3260
1da177e4
LT
3261#endif
3262
1da177e4
LT
3263DEFINE_PER_CPU(struct kernel_stat, kstat);
3264
3265EXPORT_PER_CPU_SYMBOL(kstat);
3266
3267/*
41b86e9c
IM
3268 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3269 * that have not yet been banked in case the task is currently running.
1da177e4 3270 */
41b86e9c 3271unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3272{
1da177e4 3273 unsigned long flags;
41b86e9c
IM
3274 u64 ns, delta_exec;
3275 struct rq *rq;
48f24c4d 3276
41b86e9c
IM
3277 rq = task_rq_lock(p, &flags);
3278 ns = p->se.sum_exec_runtime;
3279 if (rq->curr == p) {
a8e504d2
IM
3280 update_rq_clock(rq);
3281 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3282 if ((s64)delta_exec > 0)
3283 ns += delta_exec;
3284 }
3285 task_rq_unlock(rq, &flags);
48f24c4d 3286
1da177e4
LT
3287 return ns;
3288}
3289
1da177e4
LT
3290/*
3291 * Account user cpu time to a process.
3292 * @p: the process that the cpu time gets accounted to
3293 * @hardirq_offset: the offset to subtract from hardirq_count()
3294 * @cputime: the cpu time spent in user space since the last update
3295 */
3296void account_user_time(struct task_struct *p, cputime_t cputime)
3297{
3298 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3299 cputime64_t tmp;
3300
3301 p->utime = cputime_add(p->utime, cputime);
3302
3303 /* Add user time to cpustat. */
3304 tmp = cputime_to_cputime64(cputime);
3305 if (TASK_NICE(p) > 0)
3306 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3307 else
3308 cpustat->user = cputime64_add(cpustat->user, tmp);
3309}
3310
94886b84
LV
3311/*
3312 * Account guest cpu time to a process.
3313 * @p: the process that the cpu time gets accounted to
3314 * @cputime: the cpu time spent in virtual machine since the last update
3315 */
3316void account_guest_time(struct task_struct *p, cputime_t cputime)
3317{
3318 cputime64_t tmp;
3319 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3320
3321 tmp = cputime_to_cputime64(cputime);
3322
3323 p->utime = cputime_add(p->utime, cputime);
3324 p->gtime = cputime_add(p->gtime, cputime);
3325
3326 cpustat->user = cputime64_add(cpustat->user, tmp);
3327 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3328}
3329
1da177e4
LT
3330/*
3331 * Account system cpu time to a process.
3332 * @p: the process that the cpu time gets accounted to
3333 * @hardirq_offset: the offset to subtract from hardirq_count()
3334 * @cputime: the cpu time spent in kernel space since the last update
3335 */
3336void account_system_time(struct task_struct *p, int hardirq_offset,
3337 cputime_t cputime)
3338{
3339 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3340 struct rq *rq = this_rq();
1da177e4
LT
3341 cputime64_t tmp;
3342
94886b84
LV
3343 if (p->flags & PF_VCPU) {
3344 account_guest_time(p, cputime);
3345 p->flags &= ~PF_VCPU;
3346 return;
3347 }
3348
1da177e4
LT
3349 p->stime = cputime_add(p->stime, cputime);
3350
3351 /* Add system time to cpustat. */
3352 tmp = cputime_to_cputime64(cputime);
3353 if (hardirq_count() - hardirq_offset)
3354 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3355 else if (softirq_count())
3356 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3357 else if (p != rq->idle)
3358 cpustat->system = cputime64_add(cpustat->system, tmp);
3359 else if (atomic_read(&rq->nr_iowait) > 0)
3360 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3361 else
3362 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3363 /* Account for system time used */
3364 acct_update_integrals(p);
1da177e4
LT
3365}
3366
3367/*
3368 * Account for involuntary wait time.
3369 * @p: the process from which the cpu time has been stolen
3370 * @steal: the cpu time spent in involuntary wait
3371 */
3372void account_steal_time(struct task_struct *p, cputime_t steal)
3373{
3374 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3375 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3376 struct rq *rq = this_rq();
1da177e4
LT
3377
3378 if (p == rq->idle) {
3379 p->stime = cputime_add(p->stime, steal);
3380 if (atomic_read(&rq->nr_iowait) > 0)
3381 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3382 else
3383 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3384 } else
3385 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3386}
3387
7835b98b
CL
3388/*
3389 * This function gets called by the timer code, with HZ frequency.
3390 * We call it with interrupts disabled.
3391 *
3392 * It also gets called by the fork code, when changing the parent's
3393 * timeslices.
3394 */
3395void scheduler_tick(void)
3396{
7835b98b
CL
3397 int cpu = smp_processor_id();
3398 struct rq *rq = cpu_rq(cpu);
dd41f596 3399 struct task_struct *curr = rq->curr;
529c7726 3400 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3401
3402 spin_lock(&rq->lock);
546fe3c9 3403 __update_rq_clock(rq);
529c7726
IM
3404 /*
3405 * Let rq->clock advance by at least TICK_NSEC:
3406 */
3407 if (unlikely(rq->clock < next_tick))
3408 rq->clock = next_tick;
3409 rq->tick_timestamp = rq->clock;
f1a438d8 3410 update_cpu_load(rq);
dd41f596
IM
3411 if (curr != rq->idle) /* FIXME: needed? */
3412 curr->sched_class->task_tick(rq, curr);
dd41f596 3413 spin_unlock(&rq->lock);
7835b98b 3414
e418e1c2 3415#ifdef CONFIG_SMP
dd41f596
IM
3416 rq->idle_at_tick = idle_cpu(cpu);
3417 trigger_load_balance(rq, cpu);
e418e1c2 3418#endif
1da177e4
LT
3419}
3420
1da177e4
LT
3421#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3422
3423void fastcall add_preempt_count(int val)
3424{
3425 /*
3426 * Underflow?
3427 */
9a11b49a
IM
3428 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3429 return;
1da177e4
LT
3430 preempt_count() += val;
3431 /*
3432 * Spinlock count overflowing soon?
3433 */
33859f7f
MOS
3434 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3435 PREEMPT_MASK - 10);
1da177e4
LT
3436}
3437EXPORT_SYMBOL(add_preempt_count);
3438
3439void fastcall sub_preempt_count(int val)
3440{
3441 /*
3442 * Underflow?
3443 */
9a11b49a
IM
3444 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3445 return;
1da177e4
LT
3446 /*
3447 * Is the spinlock portion underflowing?
3448 */
9a11b49a
IM
3449 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3450 !(preempt_count() & PREEMPT_MASK)))
3451 return;
3452
1da177e4
LT
3453 preempt_count() -= val;
3454}
3455EXPORT_SYMBOL(sub_preempt_count);
3456
3457#endif
3458
3459/*
dd41f596 3460 * Print scheduling while atomic bug:
1da177e4 3461 */
dd41f596 3462static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3463{
dd41f596
IM
3464 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3465 prev->comm, preempt_count(), prev->pid);
3466 debug_show_held_locks(prev);
3467 if (irqs_disabled())
3468 print_irqtrace_events(prev);
3469 dump_stack();
3470}
1da177e4 3471
dd41f596
IM
3472/*
3473 * Various schedule()-time debugging checks and statistics:
3474 */
3475static inline void schedule_debug(struct task_struct *prev)
3476{
1da177e4
LT
3477 /*
3478 * Test if we are atomic. Since do_exit() needs to call into
3479 * schedule() atomically, we ignore that path for now.
3480 * Otherwise, whine if we are scheduling when we should not be.
3481 */
dd41f596
IM
3482 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3483 __schedule_bug(prev);
3484
1da177e4
LT
3485 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3486
2d72376b 3487 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3488#ifdef CONFIG_SCHEDSTATS
3489 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3490 schedstat_inc(this_rq(), bkl_count);
3491 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3492 }
3493#endif
dd41f596
IM
3494}
3495
3496/*
3497 * Pick up the highest-prio task:
3498 */
3499static inline struct task_struct *
ff95f3df 3500pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3501{
5522d5d5 3502 const struct sched_class *class;
dd41f596 3503 struct task_struct *p;
1da177e4
LT
3504
3505 /*
dd41f596
IM
3506 * Optimization: we know that if all tasks are in
3507 * the fair class we can call that function directly:
1da177e4 3508 */
dd41f596 3509 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3510 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3511 if (likely(p))
3512 return p;
1da177e4
LT
3513 }
3514
dd41f596
IM
3515 class = sched_class_highest;
3516 for ( ; ; ) {
fb8d4724 3517 p = class->pick_next_task(rq);
dd41f596
IM
3518 if (p)
3519 return p;
3520 /*
3521 * Will never be NULL as the idle class always
3522 * returns a non-NULL p:
3523 */
3524 class = class->next;
3525 }
3526}
1da177e4 3527
dd41f596
IM
3528/*
3529 * schedule() is the main scheduler function.
3530 */
3531asmlinkage void __sched schedule(void)
3532{
3533 struct task_struct *prev, *next;
3534 long *switch_count;
3535 struct rq *rq;
dd41f596
IM
3536 int cpu;
3537
3538need_resched:
3539 preempt_disable();
3540 cpu = smp_processor_id();
3541 rq = cpu_rq(cpu);
3542 rcu_qsctr_inc(cpu);
3543 prev = rq->curr;
3544 switch_count = &prev->nivcsw;
3545
3546 release_kernel_lock(prev);
3547need_resched_nonpreemptible:
3548
3549 schedule_debug(prev);
1da177e4 3550
1e819950
IM
3551 /*
3552 * Do the rq-clock update outside the rq lock:
3553 */
3554 local_irq_disable();
c1b3da3e 3555 __update_rq_clock(rq);
1e819950
IM
3556 spin_lock(&rq->lock);
3557 clear_tsk_need_resched(prev);
1da177e4 3558
1da177e4 3559 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3560 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3561 unlikely(signal_pending(prev)))) {
1da177e4 3562 prev->state = TASK_RUNNING;
dd41f596 3563 } else {
2e1cb74a 3564 deactivate_task(rq, prev, 1);
1da177e4 3565 }
dd41f596 3566 switch_count = &prev->nvcsw;
1da177e4
LT
3567 }
3568
dd41f596 3569 if (unlikely(!rq->nr_running))
1da177e4 3570 idle_balance(cpu, rq);
1da177e4 3571
31ee529c 3572 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3573 next = pick_next_task(rq, prev);
1da177e4
LT
3574
3575 sched_info_switch(prev, next);
dd41f596 3576
1da177e4 3577 if (likely(prev != next)) {
1da177e4
LT
3578 rq->nr_switches++;
3579 rq->curr = next;
3580 ++*switch_count;
3581
dd41f596 3582 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3583 } else
3584 spin_unlock_irq(&rq->lock);
3585
dd41f596
IM
3586 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3587 cpu = smp_processor_id();
3588 rq = cpu_rq(cpu);
1da177e4 3589 goto need_resched_nonpreemptible;
dd41f596 3590 }
1da177e4
LT
3591 preempt_enable_no_resched();
3592 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3593 goto need_resched;
3594}
1da177e4
LT
3595EXPORT_SYMBOL(schedule);
3596
3597#ifdef CONFIG_PREEMPT
3598/*
2ed6e34f 3599 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3600 * off of preempt_enable. Kernel preemptions off return from interrupt
3601 * occur there and call schedule directly.
3602 */
3603asmlinkage void __sched preempt_schedule(void)
3604{
3605 struct thread_info *ti = current_thread_info();
3606#ifdef CONFIG_PREEMPT_BKL
3607 struct task_struct *task = current;
3608 int saved_lock_depth;
3609#endif
3610 /*
3611 * If there is a non-zero preempt_count or interrupts are disabled,
3612 * we do not want to preempt the current task. Just return..
3613 */
beed33a8 3614 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3615 return;
3616
3a5c359a
AK
3617 do {
3618 add_preempt_count(PREEMPT_ACTIVE);
3619
3620 /*
3621 * We keep the big kernel semaphore locked, but we
3622 * clear ->lock_depth so that schedule() doesnt
3623 * auto-release the semaphore:
3624 */
1da177e4 3625#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3626 saved_lock_depth = task->lock_depth;
3627 task->lock_depth = -1;
1da177e4 3628#endif
3a5c359a 3629 schedule();
1da177e4 3630#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3631 task->lock_depth = saved_lock_depth;
1da177e4 3632#endif
3a5c359a 3633 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3634
3a5c359a
AK
3635 /*
3636 * Check again in case we missed a preemption opportunity
3637 * between schedule and now.
3638 */
3639 barrier();
3640 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3641}
1da177e4
LT
3642EXPORT_SYMBOL(preempt_schedule);
3643
3644/*
2ed6e34f 3645 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3646 * off of irq context.
3647 * Note, that this is called and return with irqs disabled. This will
3648 * protect us against recursive calling from irq.
3649 */
3650asmlinkage void __sched preempt_schedule_irq(void)
3651{
3652 struct thread_info *ti = current_thread_info();
3653#ifdef CONFIG_PREEMPT_BKL
3654 struct task_struct *task = current;
3655 int saved_lock_depth;
3656#endif
2ed6e34f 3657 /* Catch callers which need to be fixed */
1da177e4
LT
3658 BUG_ON(ti->preempt_count || !irqs_disabled());
3659
3a5c359a
AK
3660 do {
3661 add_preempt_count(PREEMPT_ACTIVE);
3662
3663 /*
3664 * We keep the big kernel semaphore locked, but we
3665 * clear ->lock_depth so that schedule() doesnt
3666 * auto-release the semaphore:
3667 */
1da177e4 3668#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3669 saved_lock_depth = task->lock_depth;
3670 task->lock_depth = -1;
1da177e4 3671#endif
3a5c359a
AK
3672 local_irq_enable();
3673 schedule();
3674 local_irq_disable();
1da177e4 3675#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3676 task->lock_depth = saved_lock_depth;
1da177e4 3677#endif
3a5c359a 3678 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3679
3a5c359a
AK
3680 /*
3681 * Check again in case we missed a preemption opportunity
3682 * between schedule and now.
3683 */
3684 barrier();
3685 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3686}
3687
3688#endif /* CONFIG_PREEMPT */
3689
95cdf3b7
IM
3690int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3691 void *key)
1da177e4 3692{
48f24c4d 3693 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3694}
1da177e4
LT
3695EXPORT_SYMBOL(default_wake_function);
3696
3697/*
3698 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3699 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3700 * number) then we wake all the non-exclusive tasks and one exclusive task.
3701 *
3702 * There are circumstances in which we can try to wake a task which has already
3703 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3704 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3705 */
3706static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3707 int nr_exclusive, int sync, void *key)
3708{
2e45874c 3709 wait_queue_t *curr, *next;
1da177e4 3710
2e45874c 3711 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3712 unsigned flags = curr->flags;
3713
1da177e4 3714 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3715 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3716 break;
3717 }
3718}
3719
3720/**
3721 * __wake_up - wake up threads blocked on a waitqueue.
3722 * @q: the waitqueue
3723 * @mode: which threads
3724 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3725 * @key: is directly passed to the wakeup function
1da177e4
LT
3726 */
3727void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3728 int nr_exclusive, void *key)
1da177e4
LT
3729{
3730 unsigned long flags;
3731
3732 spin_lock_irqsave(&q->lock, flags);
3733 __wake_up_common(q, mode, nr_exclusive, 0, key);
3734 spin_unlock_irqrestore(&q->lock, flags);
3735}
1da177e4
LT
3736EXPORT_SYMBOL(__wake_up);
3737
3738/*
3739 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3740 */
3741void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3742{
3743 __wake_up_common(q, mode, 1, 0, NULL);
3744}
3745
3746/**
67be2dd1 3747 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3748 * @q: the waitqueue
3749 * @mode: which threads
3750 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3751 *
3752 * The sync wakeup differs that the waker knows that it will schedule
3753 * away soon, so while the target thread will be woken up, it will not
3754 * be migrated to another CPU - ie. the two threads are 'synchronized'
3755 * with each other. This can prevent needless bouncing between CPUs.
3756 *
3757 * On UP it can prevent extra preemption.
3758 */
95cdf3b7
IM
3759void fastcall
3760__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3761{
3762 unsigned long flags;
3763 int sync = 1;
3764
3765 if (unlikely(!q))
3766 return;
3767
3768 if (unlikely(!nr_exclusive))
3769 sync = 0;
3770
3771 spin_lock_irqsave(&q->lock, flags);
3772 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3773 spin_unlock_irqrestore(&q->lock, flags);
3774}
3775EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3776
3777void fastcall complete(struct completion *x)
3778{
3779 unsigned long flags;
3780
3781 spin_lock_irqsave(&x->wait.lock, flags);
3782 x->done++;
3783 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3784 1, 0, NULL);
3785 spin_unlock_irqrestore(&x->wait.lock, flags);
3786}
3787EXPORT_SYMBOL(complete);
3788
3789void fastcall complete_all(struct completion *x)
3790{
3791 unsigned long flags;
3792
3793 spin_lock_irqsave(&x->wait.lock, flags);
3794 x->done += UINT_MAX/2;
3795 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3796 0, 0, NULL);
3797 spin_unlock_irqrestore(&x->wait.lock, flags);
3798}
3799EXPORT_SYMBOL(complete_all);
3800
8cbbe86d
AK
3801static inline long __sched
3802do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3803{
1da177e4
LT
3804 if (!x->done) {
3805 DECLARE_WAITQUEUE(wait, current);
3806
3807 wait.flags |= WQ_FLAG_EXCLUSIVE;
3808 __add_wait_queue_tail(&x->wait, &wait);
3809 do {
8cbbe86d
AK
3810 if (state == TASK_INTERRUPTIBLE &&
3811 signal_pending(current)) {
3812 __remove_wait_queue(&x->wait, &wait);
3813 return -ERESTARTSYS;
3814 }
3815 __set_current_state(state);
1da177e4
LT
3816 spin_unlock_irq(&x->wait.lock);
3817 timeout = schedule_timeout(timeout);
3818 spin_lock_irq(&x->wait.lock);
3819 if (!timeout) {
3820 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3821 return timeout;
1da177e4
LT
3822 }
3823 } while (!x->done);
3824 __remove_wait_queue(&x->wait, &wait);
3825 }
3826 x->done--;
1da177e4
LT
3827 return timeout;
3828}
1da177e4 3829
8cbbe86d
AK
3830static long __sched
3831wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3832{
1da177e4
LT
3833 might_sleep();
3834
3835 spin_lock_irq(&x->wait.lock);
8cbbe86d 3836 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3837 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3838 return timeout;
3839}
1da177e4 3840
8cbbe86d
AK
3841void fastcall __sched wait_for_completion(struct completion *x)
3842{
3843 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3844}
8cbbe86d 3845EXPORT_SYMBOL(wait_for_completion);
1da177e4
LT
3846
3847unsigned long fastcall __sched
8cbbe86d 3848wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3849{
8cbbe86d 3850 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3851}
8cbbe86d 3852EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3853
8cbbe86d 3854int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3855{
8cbbe86d 3856 return wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
0fec171c 3857}
8cbbe86d 3858EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3859
8cbbe86d
AK
3860unsigned long fastcall __sched
3861wait_for_completion_interruptible_timeout(struct completion *x,
3862 unsigned long timeout)
0fec171c 3863{
8cbbe86d 3864 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3865}
8cbbe86d 3866EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3867
8cbbe86d
AK
3868static long __sched
3869sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3870{
0fec171c
IM
3871 unsigned long flags;
3872 wait_queue_t wait;
3873
3874 init_waitqueue_entry(&wait, current);
1da177e4 3875
8cbbe86d 3876 __set_current_state(state);
1da177e4 3877
8cbbe86d
AK
3878 spin_lock_irqsave(&q->lock, flags);
3879 __add_wait_queue(q, &wait);
3880 spin_unlock(&q->lock);
3881 timeout = schedule_timeout(timeout);
3882 spin_lock_irq(&q->lock);
3883 __remove_wait_queue(q, &wait);
3884 spin_unlock_irqrestore(&q->lock, flags);
3885
3886 return timeout;
3887}
3888
3889void __sched interruptible_sleep_on(wait_queue_head_t *q)
3890{
3891 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3892}
1da177e4
LT
3893EXPORT_SYMBOL(interruptible_sleep_on);
3894
0fec171c 3895long __sched
95cdf3b7 3896interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3897{
8cbbe86d 3898 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3899}
1da177e4
LT
3900EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3901
0fec171c 3902void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3903{
8cbbe86d 3904 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3905}
1da177e4
LT
3906EXPORT_SYMBOL(sleep_on);
3907
0fec171c 3908long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3909{
8cbbe86d 3910 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3911}
1da177e4
LT
3912EXPORT_SYMBOL(sleep_on_timeout);
3913
b29739f9
IM
3914#ifdef CONFIG_RT_MUTEXES
3915
3916/*
3917 * rt_mutex_setprio - set the current priority of a task
3918 * @p: task
3919 * @prio: prio value (kernel-internal form)
3920 *
3921 * This function changes the 'effective' priority of a task. It does
3922 * not touch ->normal_prio like __setscheduler().
3923 *
3924 * Used by the rt_mutex code to implement priority inheritance logic.
3925 */
36c8b586 3926void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3927{
3928 unsigned long flags;
83b699ed 3929 int oldprio, on_rq, running;
70b97a7f 3930 struct rq *rq;
b29739f9
IM
3931
3932 BUG_ON(prio < 0 || prio > MAX_PRIO);
3933
3934 rq = task_rq_lock(p, &flags);
a8e504d2 3935 update_rq_clock(rq);
b29739f9 3936
d5f9f942 3937 oldprio = p->prio;
dd41f596 3938 on_rq = p->se.on_rq;
83b699ed
SV
3939 running = task_running(rq, p);
3940 if (on_rq) {
69be72c1 3941 dequeue_task(rq, p, 0);
83b699ed
SV
3942 if (running)
3943 p->sched_class->put_prev_task(rq, p);
3944 }
dd41f596
IM
3945
3946 if (rt_prio(prio))
3947 p->sched_class = &rt_sched_class;
3948 else
3949 p->sched_class = &fair_sched_class;
3950
b29739f9
IM
3951 p->prio = prio;
3952
dd41f596 3953 if (on_rq) {
83b699ed
SV
3954 if (running)
3955 p->sched_class->set_curr_task(rq);
8159f87e 3956 enqueue_task(rq, p, 0);
b29739f9
IM
3957 /*
3958 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3959 * our priority decreased, or if we are not currently running on
3960 * this runqueue and our priority is higher than the current's
b29739f9 3961 */
83b699ed 3962 if (running) {
d5f9f942
AM
3963 if (p->prio > oldprio)
3964 resched_task(rq->curr);
dd41f596
IM
3965 } else {
3966 check_preempt_curr(rq, p);
3967 }
b29739f9
IM
3968 }
3969 task_rq_unlock(rq, &flags);
3970}
3971
3972#endif
3973
36c8b586 3974void set_user_nice(struct task_struct *p, long nice)
1da177e4 3975{
dd41f596 3976 int old_prio, delta, on_rq;
1da177e4 3977 unsigned long flags;
70b97a7f 3978 struct rq *rq;
1da177e4
LT
3979
3980 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3981 return;
3982 /*
3983 * We have to be careful, if called from sys_setpriority(),
3984 * the task might be in the middle of scheduling on another CPU.
3985 */
3986 rq = task_rq_lock(p, &flags);
a8e504d2 3987 update_rq_clock(rq);
1da177e4
LT
3988 /*
3989 * The RT priorities are set via sched_setscheduler(), but we still
3990 * allow the 'normal' nice value to be set - but as expected
3991 * it wont have any effect on scheduling until the task is
dd41f596 3992 * SCHED_FIFO/SCHED_RR:
1da177e4 3993 */
e05606d3 3994 if (task_has_rt_policy(p)) {
1da177e4
LT
3995 p->static_prio = NICE_TO_PRIO(nice);
3996 goto out_unlock;
3997 }
dd41f596
IM
3998 on_rq = p->se.on_rq;
3999 if (on_rq) {
69be72c1 4000 dequeue_task(rq, p, 0);
79b5dddf 4001 dec_load(rq, p);
2dd73a4f 4002 }
1da177e4 4003
1da177e4 4004 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4005 set_load_weight(p);
b29739f9
IM
4006 old_prio = p->prio;
4007 p->prio = effective_prio(p);
4008 delta = p->prio - old_prio;
1da177e4 4009
dd41f596 4010 if (on_rq) {
8159f87e 4011 enqueue_task(rq, p, 0);
29b4b623 4012 inc_load(rq, p);
1da177e4 4013 /*
d5f9f942
AM
4014 * If the task increased its priority or is running and
4015 * lowered its priority, then reschedule its CPU:
1da177e4 4016 */
d5f9f942 4017 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4018 resched_task(rq->curr);
4019 }
4020out_unlock:
4021 task_rq_unlock(rq, &flags);
4022}
1da177e4
LT
4023EXPORT_SYMBOL(set_user_nice);
4024
e43379f1
MM
4025/*
4026 * can_nice - check if a task can reduce its nice value
4027 * @p: task
4028 * @nice: nice value
4029 */
36c8b586 4030int can_nice(const struct task_struct *p, const int nice)
e43379f1 4031{
024f4747
MM
4032 /* convert nice value [19,-20] to rlimit style value [1,40] */
4033 int nice_rlim = 20 - nice;
48f24c4d 4034
e43379f1
MM
4035 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4036 capable(CAP_SYS_NICE));
4037}
4038
1da177e4
LT
4039#ifdef __ARCH_WANT_SYS_NICE
4040
4041/*
4042 * sys_nice - change the priority of the current process.
4043 * @increment: priority increment
4044 *
4045 * sys_setpriority is a more generic, but much slower function that
4046 * does similar things.
4047 */
4048asmlinkage long sys_nice(int increment)
4049{
48f24c4d 4050 long nice, retval;
1da177e4
LT
4051
4052 /*
4053 * Setpriority might change our priority at the same moment.
4054 * We don't have to worry. Conceptually one call occurs first
4055 * and we have a single winner.
4056 */
e43379f1
MM
4057 if (increment < -40)
4058 increment = -40;
1da177e4
LT
4059 if (increment > 40)
4060 increment = 40;
4061
4062 nice = PRIO_TO_NICE(current->static_prio) + increment;
4063 if (nice < -20)
4064 nice = -20;
4065 if (nice > 19)
4066 nice = 19;
4067
e43379f1
MM
4068 if (increment < 0 && !can_nice(current, nice))
4069 return -EPERM;
4070
1da177e4
LT
4071 retval = security_task_setnice(current, nice);
4072 if (retval)
4073 return retval;
4074
4075 set_user_nice(current, nice);
4076 return 0;
4077}
4078
4079#endif
4080
4081/**
4082 * task_prio - return the priority value of a given task.
4083 * @p: the task in question.
4084 *
4085 * This is the priority value as seen by users in /proc.
4086 * RT tasks are offset by -200. Normal tasks are centered
4087 * around 0, value goes from -16 to +15.
4088 */
36c8b586 4089int task_prio(const struct task_struct *p)
1da177e4
LT
4090{
4091 return p->prio - MAX_RT_PRIO;
4092}
4093
4094/**
4095 * task_nice - return the nice value of a given task.
4096 * @p: the task in question.
4097 */
36c8b586 4098int task_nice(const struct task_struct *p)
1da177e4
LT
4099{
4100 return TASK_NICE(p);
4101}
1da177e4 4102EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4103
4104/**
4105 * idle_cpu - is a given cpu idle currently?
4106 * @cpu: the processor in question.
4107 */
4108int idle_cpu(int cpu)
4109{
4110 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4111}
4112
1da177e4
LT
4113/**
4114 * idle_task - return the idle task for a given cpu.
4115 * @cpu: the processor in question.
4116 */
36c8b586 4117struct task_struct *idle_task(int cpu)
1da177e4
LT
4118{
4119 return cpu_rq(cpu)->idle;
4120}
4121
4122/**
4123 * find_process_by_pid - find a process with a matching PID value.
4124 * @pid: the pid in question.
4125 */
a9957449 4126static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4127{
4128 return pid ? find_task_by_pid(pid) : current;
4129}
4130
4131/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4132static void
4133__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4134{
dd41f596 4135 BUG_ON(p->se.on_rq);
48f24c4d 4136
1da177e4 4137 p->policy = policy;
dd41f596
IM
4138 switch (p->policy) {
4139 case SCHED_NORMAL:
4140 case SCHED_BATCH:
4141 case SCHED_IDLE:
4142 p->sched_class = &fair_sched_class;
4143 break;
4144 case SCHED_FIFO:
4145 case SCHED_RR:
4146 p->sched_class = &rt_sched_class;
4147 break;
4148 }
4149
1da177e4 4150 p->rt_priority = prio;
b29739f9
IM
4151 p->normal_prio = normal_prio(p);
4152 /* we are holding p->pi_lock already */
4153 p->prio = rt_mutex_getprio(p);
2dd73a4f 4154 set_load_weight(p);
1da177e4
LT
4155}
4156
4157/**
72fd4a35 4158 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4159 * @p: the task in question.
4160 * @policy: new policy.
4161 * @param: structure containing the new RT priority.
5fe1d75f 4162 *
72fd4a35 4163 * NOTE that the task may be already dead.
1da177e4 4164 */
95cdf3b7
IM
4165int sched_setscheduler(struct task_struct *p, int policy,
4166 struct sched_param *param)
1da177e4 4167{
83b699ed 4168 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4169 unsigned long flags;
70b97a7f 4170 struct rq *rq;
1da177e4 4171
66e5393a
SR
4172 /* may grab non-irq protected spin_locks */
4173 BUG_ON(in_interrupt());
1da177e4
LT
4174recheck:
4175 /* double check policy once rq lock held */
4176 if (policy < 0)
4177 policy = oldpolicy = p->policy;
4178 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4179 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4180 policy != SCHED_IDLE)
b0a9499c 4181 return -EINVAL;
1da177e4
LT
4182 /*
4183 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4184 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4185 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4186 */
4187 if (param->sched_priority < 0 ||
95cdf3b7 4188 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4189 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4190 return -EINVAL;
e05606d3 4191 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4192 return -EINVAL;
4193
37e4ab3f
OC
4194 /*
4195 * Allow unprivileged RT tasks to decrease priority:
4196 */
4197 if (!capable(CAP_SYS_NICE)) {
e05606d3 4198 if (rt_policy(policy)) {
8dc3e909 4199 unsigned long rlim_rtprio;
8dc3e909
ON
4200
4201 if (!lock_task_sighand(p, &flags))
4202 return -ESRCH;
4203 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4204 unlock_task_sighand(p, &flags);
4205
4206 /* can't set/change the rt policy */
4207 if (policy != p->policy && !rlim_rtprio)
4208 return -EPERM;
4209
4210 /* can't increase priority */
4211 if (param->sched_priority > p->rt_priority &&
4212 param->sched_priority > rlim_rtprio)
4213 return -EPERM;
4214 }
dd41f596
IM
4215 /*
4216 * Like positive nice levels, dont allow tasks to
4217 * move out of SCHED_IDLE either:
4218 */
4219 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4220 return -EPERM;
5fe1d75f 4221
37e4ab3f
OC
4222 /* can't change other user's priorities */
4223 if ((current->euid != p->euid) &&
4224 (current->euid != p->uid))
4225 return -EPERM;
4226 }
1da177e4
LT
4227
4228 retval = security_task_setscheduler(p, policy, param);
4229 if (retval)
4230 return retval;
b29739f9
IM
4231 /*
4232 * make sure no PI-waiters arrive (or leave) while we are
4233 * changing the priority of the task:
4234 */
4235 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4236 /*
4237 * To be able to change p->policy safely, the apropriate
4238 * runqueue lock must be held.
4239 */
b29739f9 4240 rq = __task_rq_lock(p);
1da177e4
LT
4241 /* recheck policy now with rq lock held */
4242 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4243 policy = oldpolicy = -1;
b29739f9
IM
4244 __task_rq_unlock(rq);
4245 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4246 goto recheck;
4247 }
2daa3577 4248 update_rq_clock(rq);
dd41f596 4249 on_rq = p->se.on_rq;
83b699ed
SV
4250 running = task_running(rq, p);
4251 if (on_rq) {
2e1cb74a 4252 deactivate_task(rq, p, 0);
83b699ed
SV
4253 if (running)
4254 p->sched_class->put_prev_task(rq, p);
4255 }
f6b53205 4256
1da177e4 4257 oldprio = p->prio;
dd41f596 4258 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4259
dd41f596 4260 if (on_rq) {
83b699ed
SV
4261 if (running)
4262 p->sched_class->set_curr_task(rq);
dd41f596 4263 activate_task(rq, p, 0);
1da177e4
LT
4264 /*
4265 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4266 * our priority decreased, or if we are not currently running on
4267 * this runqueue and our priority is higher than the current's
1da177e4 4268 */
83b699ed 4269 if (running) {
d5f9f942
AM
4270 if (p->prio > oldprio)
4271 resched_task(rq->curr);
dd41f596
IM
4272 } else {
4273 check_preempt_curr(rq, p);
4274 }
1da177e4 4275 }
b29739f9
IM
4276 __task_rq_unlock(rq);
4277 spin_unlock_irqrestore(&p->pi_lock, flags);
4278
95e02ca9
TG
4279 rt_mutex_adjust_pi(p);
4280
1da177e4
LT
4281 return 0;
4282}
4283EXPORT_SYMBOL_GPL(sched_setscheduler);
4284
95cdf3b7
IM
4285static int
4286do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4287{
1da177e4
LT
4288 struct sched_param lparam;
4289 struct task_struct *p;
36c8b586 4290 int retval;
1da177e4
LT
4291
4292 if (!param || pid < 0)
4293 return -EINVAL;
4294 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4295 return -EFAULT;
5fe1d75f
ON
4296
4297 rcu_read_lock();
4298 retval = -ESRCH;
1da177e4 4299 p = find_process_by_pid(pid);
5fe1d75f
ON
4300 if (p != NULL)
4301 retval = sched_setscheduler(p, policy, &lparam);
4302 rcu_read_unlock();
36c8b586 4303
1da177e4
LT
4304 return retval;
4305}
4306
4307/**
4308 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4309 * @pid: the pid in question.
4310 * @policy: new policy.
4311 * @param: structure containing the new RT priority.
4312 */
4313asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4314 struct sched_param __user *param)
4315{
c21761f1
JB
4316 /* negative values for policy are not valid */
4317 if (policy < 0)
4318 return -EINVAL;
4319
1da177e4
LT
4320 return do_sched_setscheduler(pid, policy, param);
4321}
4322
4323/**
4324 * sys_sched_setparam - set/change the RT priority of a thread
4325 * @pid: the pid in question.
4326 * @param: structure containing the new RT priority.
4327 */
4328asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4329{
4330 return do_sched_setscheduler(pid, -1, param);
4331}
4332
4333/**
4334 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4335 * @pid: the pid in question.
4336 */
4337asmlinkage long sys_sched_getscheduler(pid_t pid)
4338{
36c8b586 4339 struct task_struct *p;
3a5c359a 4340 int retval;
1da177e4
LT
4341
4342 if (pid < 0)
3a5c359a 4343 return -EINVAL;
1da177e4
LT
4344
4345 retval = -ESRCH;
4346 read_lock(&tasklist_lock);
4347 p = find_process_by_pid(pid);
4348 if (p) {
4349 retval = security_task_getscheduler(p);
4350 if (!retval)
4351 retval = p->policy;
4352 }
4353 read_unlock(&tasklist_lock);
1da177e4
LT
4354 return retval;
4355}
4356
4357/**
4358 * sys_sched_getscheduler - get the RT priority of a thread
4359 * @pid: the pid in question.
4360 * @param: structure containing the RT priority.
4361 */
4362asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4363{
4364 struct sched_param lp;
36c8b586 4365 struct task_struct *p;
3a5c359a 4366 int retval;
1da177e4
LT
4367
4368 if (!param || pid < 0)
3a5c359a 4369 return -EINVAL;
1da177e4
LT
4370
4371 read_lock(&tasklist_lock);
4372 p = find_process_by_pid(pid);
4373 retval = -ESRCH;
4374 if (!p)
4375 goto out_unlock;
4376
4377 retval = security_task_getscheduler(p);
4378 if (retval)
4379 goto out_unlock;
4380
4381 lp.sched_priority = p->rt_priority;
4382 read_unlock(&tasklist_lock);
4383
4384 /*
4385 * This one might sleep, we cannot do it with a spinlock held ...
4386 */
4387 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4388
1da177e4
LT
4389 return retval;
4390
4391out_unlock:
4392 read_unlock(&tasklist_lock);
4393 return retval;
4394}
4395
4396long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4397{
1da177e4 4398 cpumask_t cpus_allowed;
36c8b586
IM
4399 struct task_struct *p;
4400 int retval;
1da177e4 4401
5be9361c 4402 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4403 read_lock(&tasklist_lock);
4404
4405 p = find_process_by_pid(pid);
4406 if (!p) {
4407 read_unlock(&tasklist_lock);
5be9361c 4408 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4409 return -ESRCH;
4410 }
4411
4412 /*
4413 * It is not safe to call set_cpus_allowed with the
4414 * tasklist_lock held. We will bump the task_struct's
4415 * usage count and then drop tasklist_lock.
4416 */
4417 get_task_struct(p);
4418 read_unlock(&tasklist_lock);
4419
4420 retval = -EPERM;
4421 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4422 !capable(CAP_SYS_NICE))
4423 goto out_unlock;
4424
e7834f8f
DQ
4425 retval = security_task_setscheduler(p, 0, NULL);
4426 if (retval)
4427 goto out_unlock;
4428
1da177e4
LT
4429 cpus_allowed = cpuset_cpus_allowed(p);
4430 cpus_and(new_mask, new_mask, cpus_allowed);
4431 retval = set_cpus_allowed(p, new_mask);
4432
4433out_unlock:
4434 put_task_struct(p);
5be9361c 4435 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4436 return retval;
4437}
4438
4439static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4440 cpumask_t *new_mask)
4441{
4442 if (len < sizeof(cpumask_t)) {
4443 memset(new_mask, 0, sizeof(cpumask_t));
4444 } else if (len > sizeof(cpumask_t)) {
4445 len = sizeof(cpumask_t);
4446 }
4447 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4448}
4449
4450/**
4451 * sys_sched_setaffinity - set the cpu affinity of a process
4452 * @pid: pid of the process
4453 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4454 * @user_mask_ptr: user-space pointer to the new cpu mask
4455 */
4456asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4457 unsigned long __user *user_mask_ptr)
4458{
4459 cpumask_t new_mask;
4460 int retval;
4461
4462 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4463 if (retval)
4464 return retval;
4465
4466 return sched_setaffinity(pid, new_mask);
4467}
4468
4469/*
4470 * Represents all cpu's present in the system
4471 * In systems capable of hotplug, this map could dynamically grow
4472 * as new cpu's are detected in the system via any platform specific
4473 * method, such as ACPI for e.g.
4474 */
4475
4cef0c61 4476cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4477EXPORT_SYMBOL(cpu_present_map);
4478
4479#ifndef CONFIG_SMP
4cef0c61 4480cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4481EXPORT_SYMBOL(cpu_online_map);
4482
4cef0c61 4483cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4484EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4485#endif
4486
4487long sched_getaffinity(pid_t pid, cpumask_t *mask)
4488{
36c8b586 4489 struct task_struct *p;
1da177e4 4490 int retval;
1da177e4 4491
5be9361c 4492 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4493 read_lock(&tasklist_lock);
4494
4495 retval = -ESRCH;
4496 p = find_process_by_pid(pid);
4497 if (!p)
4498 goto out_unlock;
4499
e7834f8f
DQ
4500 retval = security_task_getscheduler(p);
4501 if (retval)
4502 goto out_unlock;
4503
2f7016d9 4504 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4505
4506out_unlock:
4507 read_unlock(&tasklist_lock);
5be9361c 4508 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4509
9531b62f 4510 return retval;
1da177e4
LT
4511}
4512
4513/**
4514 * sys_sched_getaffinity - get the cpu affinity of a process
4515 * @pid: pid of the process
4516 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4517 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4518 */
4519asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4520 unsigned long __user *user_mask_ptr)
4521{
4522 int ret;
4523 cpumask_t mask;
4524
4525 if (len < sizeof(cpumask_t))
4526 return -EINVAL;
4527
4528 ret = sched_getaffinity(pid, &mask);
4529 if (ret < 0)
4530 return ret;
4531
4532 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4533 return -EFAULT;
4534
4535 return sizeof(cpumask_t);
4536}
4537
4538/**
4539 * sys_sched_yield - yield the current processor to other threads.
4540 *
dd41f596
IM
4541 * This function yields the current CPU to other tasks. If there are no
4542 * other threads running on this CPU then this function will return.
1da177e4
LT
4543 */
4544asmlinkage long sys_sched_yield(void)
4545{
70b97a7f 4546 struct rq *rq = this_rq_lock();
1da177e4 4547
2d72376b 4548 schedstat_inc(rq, yld_count);
4530d7ab 4549 current->sched_class->yield_task(rq);
1da177e4
LT
4550
4551 /*
4552 * Since we are going to call schedule() anyway, there's
4553 * no need to preempt or enable interrupts:
4554 */
4555 __release(rq->lock);
8a25d5de 4556 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4557 _raw_spin_unlock(&rq->lock);
4558 preempt_enable_no_resched();
4559
4560 schedule();
4561
4562 return 0;
4563}
4564
e7b38404 4565static void __cond_resched(void)
1da177e4 4566{
8e0a43d8
IM
4567#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4568 __might_sleep(__FILE__, __LINE__);
4569#endif
5bbcfd90
IM
4570 /*
4571 * The BKS might be reacquired before we have dropped
4572 * PREEMPT_ACTIVE, which could trigger a second
4573 * cond_resched() call.
4574 */
1da177e4
LT
4575 do {
4576 add_preempt_count(PREEMPT_ACTIVE);
4577 schedule();
4578 sub_preempt_count(PREEMPT_ACTIVE);
4579 } while (need_resched());
4580}
4581
4582int __sched cond_resched(void)
4583{
9414232f
IM
4584 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4585 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4586 __cond_resched();
4587 return 1;
4588 }
4589 return 0;
4590}
1da177e4
LT
4591EXPORT_SYMBOL(cond_resched);
4592
4593/*
4594 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4595 * call schedule, and on return reacquire the lock.
4596 *
4597 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4598 * operations here to prevent schedule() from being called twice (once via
4599 * spin_unlock(), once by hand).
4600 */
95cdf3b7 4601int cond_resched_lock(spinlock_t *lock)
1da177e4 4602{
6df3cecb
JK
4603 int ret = 0;
4604
1da177e4
LT
4605 if (need_lockbreak(lock)) {
4606 spin_unlock(lock);
4607 cpu_relax();
6df3cecb 4608 ret = 1;
1da177e4
LT
4609 spin_lock(lock);
4610 }
9414232f 4611 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4612 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4613 _raw_spin_unlock(lock);
4614 preempt_enable_no_resched();
4615 __cond_resched();
6df3cecb 4616 ret = 1;
1da177e4 4617 spin_lock(lock);
1da177e4 4618 }
6df3cecb 4619 return ret;
1da177e4 4620}
1da177e4
LT
4621EXPORT_SYMBOL(cond_resched_lock);
4622
4623int __sched cond_resched_softirq(void)
4624{
4625 BUG_ON(!in_softirq());
4626
9414232f 4627 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4628 local_bh_enable();
1da177e4
LT
4629 __cond_resched();
4630 local_bh_disable();
4631 return 1;
4632 }
4633 return 0;
4634}
1da177e4
LT
4635EXPORT_SYMBOL(cond_resched_softirq);
4636
1da177e4
LT
4637/**
4638 * yield - yield the current processor to other threads.
4639 *
72fd4a35 4640 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4641 * thread runnable and calls sys_sched_yield().
4642 */
4643void __sched yield(void)
4644{
4645 set_current_state(TASK_RUNNING);
4646 sys_sched_yield();
4647}
1da177e4
LT
4648EXPORT_SYMBOL(yield);
4649
4650/*
4651 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4652 * that process accounting knows that this is a task in IO wait state.
4653 *
4654 * But don't do that if it is a deliberate, throttling IO wait (this task
4655 * has set its backing_dev_info: the queue against which it should throttle)
4656 */
4657void __sched io_schedule(void)
4658{
70b97a7f 4659 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4660
0ff92245 4661 delayacct_blkio_start();
1da177e4
LT
4662 atomic_inc(&rq->nr_iowait);
4663 schedule();
4664 atomic_dec(&rq->nr_iowait);
0ff92245 4665 delayacct_blkio_end();
1da177e4 4666}
1da177e4
LT
4667EXPORT_SYMBOL(io_schedule);
4668
4669long __sched io_schedule_timeout(long timeout)
4670{
70b97a7f 4671 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4672 long ret;
4673
0ff92245 4674 delayacct_blkio_start();
1da177e4
LT
4675 atomic_inc(&rq->nr_iowait);
4676 ret = schedule_timeout(timeout);
4677 atomic_dec(&rq->nr_iowait);
0ff92245 4678 delayacct_blkio_end();
1da177e4
LT
4679 return ret;
4680}
4681
4682/**
4683 * sys_sched_get_priority_max - return maximum RT priority.
4684 * @policy: scheduling class.
4685 *
4686 * this syscall returns the maximum rt_priority that can be used
4687 * by a given scheduling class.
4688 */
4689asmlinkage long sys_sched_get_priority_max(int policy)
4690{
4691 int ret = -EINVAL;
4692
4693 switch (policy) {
4694 case SCHED_FIFO:
4695 case SCHED_RR:
4696 ret = MAX_USER_RT_PRIO-1;
4697 break;
4698 case SCHED_NORMAL:
b0a9499c 4699 case SCHED_BATCH:
dd41f596 4700 case SCHED_IDLE:
1da177e4
LT
4701 ret = 0;
4702 break;
4703 }
4704 return ret;
4705}
4706
4707/**
4708 * sys_sched_get_priority_min - return minimum RT priority.
4709 * @policy: scheduling class.
4710 *
4711 * this syscall returns the minimum rt_priority that can be used
4712 * by a given scheduling class.
4713 */
4714asmlinkage long sys_sched_get_priority_min(int policy)
4715{
4716 int ret = -EINVAL;
4717
4718 switch (policy) {
4719 case SCHED_FIFO:
4720 case SCHED_RR:
4721 ret = 1;
4722 break;
4723 case SCHED_NORMAL:
b0a9499c 4724 case SCHED_BATCH:
dd41f596 4725 case SCHED_IDLE:
1da177e4
LT
4726 ret = 0;
4727 }
4728 return ret;
4729}
4730
4731/**
4732 * sys_sched_rr_get_interval - return the default timeslice of a process.
4733 * @pid: pid of the process.
4734 * @interval: userspace pointer to the timeslice value.
4735 *
4736 * this syscall writes the default timeslice value of a given process
4737 * into the user-space timespec buffer. A value of '0' means infinity.
4738 */
4739asmlinkage
4740long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4741{
36c8b586 4742 struct task_struct *p;
a4ec24b4 4743 unsigned int time_slice;
3a5c359a 4744 int retval;
1da177e4 4745 struct timespec t;
1da177e4
LT
4746
4747 if (pid < 0)
3a5c359a 4748 return -EINVAL;
1da177e4
LT
4749
4750 retval = -ESRCH;
4751 read_lock(&tasklist_lock);
4752 p = find_process_by_pid(pid);
4753 if (!p)
4754 goto out_unlock;
4755
4756 retval = security_task_getscheduler(p);
4757 if (retval)
4758 goto out_unlock;
4759
a4ec24b4
DA
4760 if (p->policy == SCHED_FIFO)
4761 time_slice = 0;
4762 else if (p->policy == SCHED_RR)
4763 time_slice = DEF_TIMESLICE;
4764 else {
4765 struct sched_entity *se = &p->se;
4766 unsigned long flags;
4767 struct rq *rq;
4768
4769 rq = task_rq_lock(p, &flags);
4770 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4771 task_rq_unlock(rq, &flags);
4772 }
1da177e4 4773 read_unlock(&tasklist_lock);
a4ec24b4 4774 jiffies_to_timespec(time_slice, &t);
1da177e4 4775 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4776 return retval;
3a5c359a 4777
1da177e4
LT
4778out_unlock:
4779 read_unlock(&tasklist_lock);
4780 return retval;
4781}
4782
2ed6e34f 4783static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4784
4785static void show_task(struct task_struct *p)
1da177e4 4786{
1da177e4 4787 unsigned long free = 0;
36c8b586 4788 unsigned state;
1da177e4 4789
1da177e4 4790 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4791 printk("%-13.13s %c", p->comm,
4792 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4793#if BITS_PER_LONG == 32
1da177e4 4794 if (state == TASK_RUNNING)
4bd77321 4795 printk(" running ");
1da177e4 4796 else
4bd77321 4797 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4798#else
4799 if (state == TASK_RUNNING)
4bd77321 4800 printk(" running task ");
1da177e4
LT
4801 else
4802 printk(" %016lx ", thread_saved_pc(p));
4803#endif
4804#ifdef CONFIG_DEBUG_STACK_USAGE
4805 {
10ebffde 4806 unsigned long *n = end_of_stack(p);
1da177e4
LT
4807 while (!*n)
4808 n++;
10ebffde 4809 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4810 }
4811#endif
4bd77321 4812 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4813
4814 if (state != TASK_RUNNING)
4815 show_stack(p, NULL);
4816}
4817
e59e2ae2 4818void show_state_filter(unsigned long state_filter)
1da177e4 4819{
36c8b586 4820 struct task_struct *g, *p;
1da177e4 4821
4bd77321
IM
4822#if BITS_PER_LONG == 32
4823 printk(KERN_INFO
4824 " task PC stack pid father\n");
1da177e4 4825#else
4bd77321
IM
4826 printk(KERN_INFO
4827 " task PC stack pid father\n");
1da177e4
LT
4828#endif
4829 read_lock(&tasklist_lock);
4830 do_each_thread(g, p) {
4831 /*
4832 * reset the NMI-timeout, listing all files on a slow
4833 * console might take alot of time:
4834 */
4835 touch_nmi_watchdog();
39bc89fd 4836 if (!state_filter || (p->state & state_filter))
e59e2ae2 4837 show_task(p);
1da177e4
LT
4838 } while_each_thread(g, p);
4839
04c9167f
JF
4840 touch_all_softlockup_watchdogs();
4841
dd41f596
IM
4842#ifdef CONFIG_SCHED_DEBUG
4843 sysrq_sched_debug_show();
4844#endif
1da177e4 4845 read_unlock(&tasklist_lock);
e59e2ae2
IM
4846 /*
4847 * Only show locks if all tasks are dumped:
4848 */
4849 if (state_filter == -1)
4850 debug_show_all_locks();
1da177e4
LT
4851}
4852
1df21055
IM
4853void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4854{
dd41f596 4855 idle->sched_class = &idle_sched_class;
1df21055
IM
4856}
4857
f340c0d1
IM
4858/**
4859 * init_idle - set up an idle thread for a given CPU
4860 * @idle: task in question
4861 * @cpu: cpu the idle task belongs to
4862 *
4863 * NOTE: this function does not set the idle thread's NEED_RESCHED
4864 * flag, to make booting more robust.
4865 */
5c1e1767 4866void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4867{
70b97a7f 4868 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4869 unsigned long flags;
4870
dd41f596
IM
4871 __sched_fork(idle);
4872 idle->se.exec_start = sched_clock();
4873
b29739f9 4874 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4875 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4876 __set_task_cpu(idle, cpu);
1da177e4
LT
4877
4878 spin_lock_irqsave(&rq->lock, flags);
4879 rq->curr = rq->idle = idle;
4866cde0
NP
4880#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4881 idle->oncpu = 1;
4882#endif
1da177e4
LT
4883 spin_unlock_irqrestore(&rq->lock, flags);
4884
4885 /* Set the preempt count _outside_ the spinlocks! */
4886#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4887 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4888#else
a1261f54 4889 task_thread_info(idle)->preempt_count = 0;
1da177e4 4890#endif
dd41f596
IM
4891 /*
4892 * The idle tasks have their own, simple scheduling class:
4893 */
4894 idle->sched_class = &idle_sched_class;
1da177e4
LT
4895}
4896
4897/*
4898 * In a system that switches off the HZ timer nohz_cpu_mask
4899 * indicates which cpus entered this state. This is used
4900 * in the rcu update to wait only for active cpus. For system
4901 * which do not switch off the HZ timer nohz_cpu_mask should
4902 * always be CPU_MASK_NONE.
4903 */
4904cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4905
4906#ifdef CONFIG_SMP
4907/*
4908 * This is how migration works:
4909 *
70b97a7f 4910 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4911 * runqueue and wake up that CPU's migration thread.
4912 * 2) we down() the locked semaphore => thread blocks.
4913 * 3) migration thread wakes up (implicitly it forces the migrated
4914 * thread off the CPU)
4915 * 4) it gets the migration request and checks whether the migrated
4916 * task is still in the wrong runqueue.
4917 * 5) if it's in the wrong runqueue then the migration thread removes
4918 * it and puts it into the right queue.
4919 * 6) migration thread up()s the semaphore.
4920 * 7) we wake up and the migration is done.
4921 */
4922
4923/*
4924 * Change a given task's CPU affinity. Migrate the thread to a
4925 * proper CPU and schedule it away if the CPU it's executing on
4926 * is removed from the allowed bitmask.
4927 *
4928 * NOTE: the caller must have a valid reference to the task, the
4929 * task must not exit() & deallocate itself prematurely. The
4930 * call is not atomic; no spinlocks may be held.
4931 */
36c8b586 4932int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4933{
70b97a7f 4934 struct migration_req req;
1da177e4 4935 unsigned long flags;
70b97a7f 4936 struct rq *rq;
48f24c4d 4937 int ret = 0;
1da177e4
LT
4938
4939 rq = task_rq_lock(p, &flags);
4940 if (!cpus_intersects(new_mask, cpu_online_map)) {
4941 ret = -EINVAL;
4942 goto out;
4943 }
4944
4945 p->cpus_allowed = new_mask;
4946 /* Can the task run on the task's current CPU? If so, we're done */
4947 if (cpu_isset(task_cpu(p), new_mask))
4948 goto out;
4949
4950 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4951 /* Need help from migration thread: drop lock and wait. */
4952 task_rq_unlock(rq, &flags);
4953 wake_up_process(rq->migration_thread);
4954 wait_for_completion(&req.done);
4955 tlb_migrate_finish(p->mm);
4956 return 0;
4957 }
4958out:
4959 task_rq_unlock(rq, &flags);
48f24c4d 4960
1da177e4
LT
4961 return ret;
4962}
1da177e4
LT
4963EXPORT_SYMBOL_GPL(set_cpus_allowed);
4964
4965/*
4966 * Move (not current) task off this cpu, onto dest cpu. We're doing
4967 * this because either it can't run here any more (set_cpus_allowed()
4968 * away from this CPU, or CPU going down), or because we're
4969 * attempting to rebalance this task on exec (sched_exec).
4970 *
4971 * So we race with normal scheduler movements, but that's OK, as long
4972 * as the task is no longer on this CPU.
efc30814
KK
4973 *
4974 * Returns non-zero if task was successfully migrated.
1da177e4 4975 */
efc30814 4976static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4977{
70b97a7f 4978 struct rq *rq_dest, *rq_src;
dd41f596 4979 int ret = 0, on_rq;
1da177e4
LT
4980
4981 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4982 return ret;
1da177e4
LT
4983
4984 rq_src = cpu_rq(src_cpu);
4985 rq_dest = cpu_rq(dest_cpu);
4986
4987 double_rq_lock(rq_src, rq_dest);
4988 /* Already moved. */
4989 if (task_cpu(p) != src_cpu)
4990 goto out;
4991 /* Affinity changed (again). */
4992 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4993 goto out;
4994
dd41f596 4995 on_rq = p->se.on_rq;
6e82a3be 4996 if (on_rq)
2e1cb74a 4997 deactivate_task(rq_src, p, 0);
6e82a3be 4998
1da177e4 4999 set_task_cpu(p, dest_cpu);
dd41f596
IM
5000 if (on_rq) {
5001 activate_task(rq_dest, p, 0);
5002 check_preempt_curr(rq_dest, p);
1da177e4 5003 }
efc30814 5004 ret = 1;
1da177e4
LT
5005out:
5006 double_rq_unlock(rq_src, rq_dest);
efc30814 5007 return ret;
1da177e4
LT
5008}
5009
5010/*
5011 * migration_thread - this is a highprio system thread that performs
5012 * thread migration by bumping thread off CPU then 'pushing' onto
5013 * another runqueue.
5014 */
95cdf3b7 5015static int migration_thread(void *data)
1da177e4 5016{
1da177e4 5017 int cpu = (long)data;
70b97a7f 5018 struct rq *rq;
1da177e4
LT
5019
5020 rq = cpu_rq(cpu);
5021 BUG_ON(rq->migration_thread != current);
5022
5023 set_current_state(TASK_INTERRUPTIBLE);
5024 while (!kthread_should_stop()) {
70b97a7f 5025 struct migration_req *req;
1da177e4 5026 struct list_head *head;
1da177e4 5027
1da177e4
LT
5028 spin_lock_irq(&rq->lock);
5029
5030 if (cpu_is_offline(cpu)) {
5031 spin_unlock_irq(&rq->lock);
5032 goto wait_to_die;
5033 }
5034
5035 if (rq->active_balance) {
5036 active_load_balance(rq, cpu);
5037 rq->active_balance = 0;
5038 }
5039
5040 head = &rq->migration_queue;
5041
5042 if (list_empty(head)) {
5043 spin_unlock_irq(&rq->lock);
5044 schedule();
5045 set_current_state(TASK_INTERRUPTIBLE);
5046 continue;
5047 }
70b97a7f 5048 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5049 list_del_init(head->next);
5050
674311d5
NP
5051 spin_unlock(&rq->lock);
5052 __migrate_task(req->task, cpu, req->dest_cpu);
5053 local_irq_enable();
1da177e4
LT
5054
5055 complete(&req->done);
5056 }
5057 __set_current_state(TASK_RUNNING);
5058 return 0;
5059
5060wait_to_die:
5061 /* Wait for kthread_stop */
5062 set_current_state(TASK_INTERRUPTIBLE);
5063 while (!kthread_should_stop()) {
5064 schedule();
5065 set_current_state(TASK_INTERRUPTIBLE);
5066 }
5067 __set_current_state(TASK_RUNNING);
5068 return 0;
5069}
5070
5071#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5072/*
5073 * Figure out where task on dead CPU should go, use force if neccessary.
5074 * NOTE: interrupts should be disabled by the caller
5075 */
48f24c4d 5076static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5077{
efc30814 5078 unsigned long flags;
1da177e4 5079 cpumask_t mask;
70b97a7f
IM
5080 struct rq *rq;
5081 int dest_cpu;
1da177e4 5082
3a5c359a
AK
5083 do {
5084 /* On same node? */
5085 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5086 cpus_and(mask, mask, p->cpus_allowed);
5087 dest_cpu = any_online_cpu(mask);
5088
5089 /* On any allowed CPU? */
5090 if (dest_cpu == NR_CPUS)
5091 dest_cpu = any_online_cpu(p->cpus_allowed);
5092
5093 /* No more Mr. Nice Guy. */
5094 if (dest_cpu == NR_CPUS) {
5095 rq = task_rq_lock(p, &flags);
5096 cpus_setall(p->cpus_allowed);
5097 dest_cpu = any_online_cpu(p->cpus_allowed);
5098 task_rq_unlock(rq, &flags);
1da177e4 5099
3a5c359a
AK
5100 /*
5101 * Don't tell them about moving exiting tasks or
5102 * kernel threads (both mm NULL), since they never
5103 * leave kernel.
5104 */
5105 if (p->mm && printk_ratelimit())
5106 printk(KERN_INFO "process %d (%s) no "
5107 "longer affine to cpu%d\n",
5108 p->pid, p->comm, dead_cpu);
5109 }
5110 } while (!__migrate_task(p, dead_cpu, dest_cpu));
1da177e4
LT
5111}
5112
5113/*
5114 * While a dead CPU has no uninterruptible tasks queued at this point,
5115 * it might still have a nonzero ->nr_uninterruptible counter, because
5116 * for performance reasons the counter is not stricly tracking tasks to
5117 * their home CPUs. So we just add the counter to another CPU's counter,
5118 * to keep the global sum constant after CPU-down:
5119 */
70b97a7f 5120static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5121{
70b97a7f 5122 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5123 unsigned long flags;
5124
5125 local_irq_save(flags);
5126 double_rq_lock(rq_src, rq_dest);
5127 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5128 rq_src->nr_uninterruptible = 0;
5129 double_rq_unlock(rq_src, rq_dest);
5130 local_irq_restore(flags);
5131}
5132
5133/* Run through task list and migrate tasks from the dead cpu. */
5134static void migrate_live_tasks(int src_cpu)
5135{
48f24c4d 5136 struct task_struct *p, *t;
1da177e4
LT
5137
5138 write_lock_irq(&tasklist_lock);
5139
48f24c4d
IM
5140 do_each_thread(t, p) {
5141 if (p == current)
1da177e4
LT
5142 continue;
5143
48f24c4d
IM
5144 if (task_cpu(p) == src_cpu)
5145 move_task_off_dead_cpu(src_cpu, p);
5146 } while_each_thread(t, p);
1da177e4
LT
5147
5148 write_unlock_irq(&tasklist_lock);
5149}
5150
a9957449
AD
5151/*
5152 * activate_idle_task - move idle task to the _front_ of runqueue.
5153 */
5154static void activate_idle_task(struct task_struct *p, struct rq *rq)
5155{
5156 update_rq_clock(rq);
5157
5158 if (p->state == TASK_UNINTERRUPTIBLE)
5159 rq->nr_uninterruptible--;
5160
5161 enqueue_task(rq, p, 0);
5162 inc_nr_running(p, rq);
5163}
5164
dd41f596
IM
5165/*
5166 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5167 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5168 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5169 */
5170void sched_idle_next(void)
5171{
48f24c4d 5172 int this_cpu = smp_processor_id();
70b97a7f 5173 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5174 struct task_struct *p = rq->idle;
5175 unsigned long flags;
5176
5177 /* cpu has to be offline */
48f24c4d 5178 BUG_ON(cpu_online(this_cpu));
1da177e4 5179
48f24c4d
IM
5180 /*
5181 * Strictly not necessary since rest of the CPUs are stopped by now
5182 * and interrupts disabled on the current cpu.
1da177e4
LT
5183 */
5184 spin_lock_irqsave(&rq->lock, flags);
5185
dd41f596 5186 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5187
5188 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5189 activate_idle_task(p, rq);
1da177e4
LT
5190
5191 spin_unlock_irqrestore(&rq->lock, flags);
5192}
5193
48f24c4d
IM
5194/*
5195 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5196 * offline.
5197 */
5198void idle_task_exit(void)
5199{
5200 struct mm_struct *mm = current->active_mm;
5201
5202 BUG_ON(cpu_online(smp_processor_id()));
5203
5204 if (mm != &init_mm)
5205 switch_mm(mm, &init_mm, current);
5206 mmdrop(mm);
5207}
5208
054b9108 5209/* called under rq->lock with disabled interrupts */
36c8b586 5210static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5211{
70b97a7f 5212 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5213
5214 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5215 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5216
5217 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5218 BUG_ON(p->state == TASK_DEAD);
1da177e4 5219
48f24c4d 5220 get_task_struct(p);
1da177e4
LT
5221
5222 /*
5223 * Drop lock around migration; if someone else moves it,
5224 * that's OK. No task can be added to this CPU, so iteration is
5225 * fine.
054b9108 5226 * NOTE: interrupts should be left disabled --dev@
1da177e4 5227 */
054b9108 5228 spin_unlock(&rq->lock);
48f24c4d 5229 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5230 spin_lock(&rq->lock);
1da177e4 5231
48f24c4d 5232 put_task_struct(p);
1da177e4
LT
5233}
5234
5235/* release_task() removes task from tasklist, so we won't find dead tasks. */
5236static void migrate_dead_tasks(unsigned int dead_cpu)
5237{
70b97a7f 5238 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5239 struct task_struct *next;
48f24c4d 5240
dd41f596
IM
5241 for ( ; ; ) {
5242 if (!rq->nr_running)
5243 break;
a8e504d2 5244 update_rq_clock(rq);
ff95f3df 5245 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5246 if (!next)
5247 break;
5248 migrate_dead(dead_cpu, next);
e692ab53 5249
1da177e4
LT
5250 }
5251}
5252#endif /* CONFIG_HOTPLUG_CPU */
5253
e692ab53
NP
5254#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5255
5256static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5257 {
5258 .procname = "sched_domain",
c57baf1e 5259 .mode = 0555,
e0361851 5260 },
e692ab53
NP
5261 {0,},
5262};
5263
5264static struct ctl_table sd_ctl_root[] = {
e0361851 5265 {
c57baf1e 5266 .ctl_name = CTL_KERN,
e0361851 5267 .procname = "kernel",
c57baf1e 5268 .mode = 0555,
e0361851
AD
5269 .child = sd_ctl_dir,
5270 },
e692ab53
NP
5271 {0,},
5272};
5273
5274static struct ctl_table *sd_alloc_ctl_entry(int n)
5275{
5276 struct ctl_table *entry =
5cf9f062 5277 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5278
e692ab53
NP
5279 return entry;
5280}
5281
6382bc90
MM
5282static void sd_free_ctl_entry(struct ctl_table **tablep)
5283{
5284 struct ctl_table *entry = *tablep;
5285
5286 for (entry = *tablep; entry->procname; entry++)
5287 if (entry->child)
5288 sd_free_ctl_entry(&entry->child);
5289
5290 kfree(*tablep);
5291 *tablep = NULL;
5292}
5293
e692ab53 5294static void
e0361851 5295set_table_entry(struct ctl_table *entry,
e692ab53
NP
5296 const char *procname, void *data, int maxlen,
5297 mode_t mode, proc_handler *proc_handler)
5298{
e692ab53
NP
5299 entry->procname = procname;
5300 entry->data = data;
5301 entry->maxlen = maxlen;
5302 entry->mode = mode;
5303 entry->proc_handler = proc_handler;
5304}
5305
5306static struct ctl_table *
5307sd_alloc_ctl_domain_table(struct sched_domain *sd)
5308{
ace8b3d6 5309 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5310
ad1cdc1d
MM
5311 if (table == NULL)
5312 return NULL;
5313
e0361851 5314 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5315 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5316 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5317 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5318 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5319 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5320 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5321 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5322 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5323 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5324 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5325 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5326 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5327 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5328 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5329 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5330 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5331 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5332 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5333 &sd->cache_nice_tries,
5334 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5335 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5336 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5337 /* &table[11] is terminator */
e692ab53
NP
5338
5339 return table;
5340}
5341
5342static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5343{
5344 struct ctl_table *entry, *table;
5345 struct sched_domain *sd;
5346 int domain_num = 0, i;
5347 char buf[32];
5348
5349 for_each_domain(cpu, sd)
5350 domain_num++;
5351 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5352 if (table == NULL)
5353 return NULL;
e692ab53
NP
5354
5355 i = 0;
5356 for_each_domain(cpu, sd) {
5357 snprintf(buf, 32, "domain%d", i);
e692ab53 5358 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5359 entry->mode = 0555;
e692ab53
NP
5360 entry->child = sd_alloc_ctl_domain_table(sd);
5361 entry++;
5362 i++;
5363 }
5364 return table;
5365}
5366
5367static struct ctl_table_header *sd_sysctl_header;
6382bc90 5368static void register_sched_domain_sysctl(void)
e692ab53
NP
5369{
5370 int i, cpu_num = num_online_cpus();
5371 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5372 char buf[32];
5373
ad1cdc1d
MM
5374 if (entry == NULL)
5375 return;
5376
e692ab53
NP
5377 sd_ctl_dir[0].child = entry;
5378
97b6ea7b 5379 for_each_online_cpu(i) {
e692ab53 5380 snprintf(buf, 32, "cpu%d", i);
e692ab53 5381 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5382 entry->mode = 0555;
e692ab53 5383 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5384 entry++;
e692ab53
NP
5385 }
5386 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5387}
6382bc90
MM
5388
5389static void unregister_sched_domain_sysctl(void)
5390{
5391 unregister_sysctl_table(sd_sysctl_header);
5392 sd_sysctl_header = NULL;
5393 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5394}
e692ab53 5395#else
6382bc90
MM
5396static void register_sched_domain_sysctl(void)
5397{
5398}
5399static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5400{
5401}
5402#endif
5403
1da177e4
LT
5404/*
5405 * migration_call - callback that gets triggered when a CPU is added.
5406 * Here we can start up the necessary migration thread for the new CPU.
5407 */
48f24c4d
IM
5408static int __cpuinit
5409migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5410{
1da177e4 5411 struct task_struct *p;
48f24c4d 5412 int cpu = (long)hcpu;
1da177e4 5413 unsigned long flags;
70b97a7f 5414 struct rq *rq;
1da177e4
LT
5415
5416 switch (action) {
5be9361c
GS
5417 case CPU_LOCK_ACQUIRE:
5418 mutex_lock(&sched_hotcpu_mutex);
5419 break;
5420
1da177e4 5421 case CPU_UP_PREPARE:
8bb78442 5422 case CPU_UP_PREPARE_FROZEN:
dd41f596 5423 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5424 if (IS_ERR(p))
5425 return NOTIFY_BAD;
1da177e4
LT
5426 kthread_bind(p, cpu);
5427 /* Must be high prio: stop_machine expects to yield to it. */
5428 rq = task_rq_lock(p, &flags);
dd41f596 5429 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5430 task_rq_unlock(rq, &flags);
5431 cpu_rq(cpu)->migration_thread = p;
5432 break;
48f24c4d 5433
1da177e4 5434 case CPU_ONLINE:
8bb78442 5435 case CPU_ONLINE_FROZEN:
1da177e4
LT
5436 /* Strictly unneccessary, as first user will wake it. */
5437 wake_up_process(cpu_rq(cpu)->migration_thread);
5438 break;
48f24c4d 5439
1da177e4
LT
5440#ifdef CONFIG_HOTPLUG_CPU
5441 case CPU_UP_CANCELED:
8bb78442 5442 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5443 if (!cpu_rq(cpu)->migration_thread)
5444 break;
1da177e4 5445 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5446 kthread_bind(cpu_rq(cpu)->migration_thread,
5447 any_online_cpu(cpu_online_map));
1da177e4
LT
5448 kthread_stop(cpu_rq(cpu)->migration_thread);
5449 cpu_rq(cpu)->migration_thread = NULL;
5450 break;
48f24c4d 5451
1da177e4 5452 case CPU_DEAD:
8bb78442 5453 case CPU_DEAD_FROZEN:
1da177e4
LT
5454 migrate_live_tasks(cpu);
5455 rq = cpu_rq(cpu);
5456 kthread_stop(rq->migration_thread);
5457 rq->migration_thread = NULL;
5458 /* Idle task back to normal (off runqueue, low prio) */
5459 rq = task_rq_lock(rq->idle, &flags);
a8e504d2 5460 update_rq_clock(rq);
2e1cb74a 5461 deactivate_task(rq, rq->idle, 0);
1da177e4 5462 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5463 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5464 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5465 migrate_dead_tasks(cpu);
5466 task_rq_unlock(rq, &flags);
5467 migrate_nr_uninterruptible(rq);
5468 BUG_ON(rq->nr_running != 0);
5469
5470 /* No need to migrate the tasks: it was best-effort if
5be9361c 5471 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5472 * the requestors. */
5473 spin_lock_irq(&rq->lock);
5474 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5475 struct migration_req *req;
5476
1da177e4 5477 req = list_entry(rq->migration_queue.next,
70b97a7f 5478 struct migration_req, list);
1da177e4
LT
5479 list_del_init(&req->list);
5480 complete(&req->done);
5481 }
5482 spin_unlock_irq(&rq->lock);
5483 break;
5484#endif
5be9361c
GS
5485 case CPU_LOCK_RELEASE:
5486 mutex_unlock(&sched_hotcpu_mutex);
5487 break;
1da177e4
LT
5488 }
5489 return NOTIFY_OK;
5490}
5491
5492/* Register at highest priority so that task migration (migrate_all_tasks)
5493 * happens before everything else.
5494 */
26c2143b 5495static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5496 .notifier_call = migration_call,
5497 .priority = 10
5498};
5499
5500int __init migration_init(void)
5501{
5502 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5503 int err;
48f24c4d
IM
5504
5505 /* Start one for the boot CPU: */
07dccf33
AM
5506 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5507 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5508 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5509 register_cpu_notifier(&migration_notifier);
48f24c4d 5510
1da177e4
LT
5511 return 0;
5512}
5513#endif
5514
5515#ifdef CONFIG_SMP
476f3534
CL
5516
5517/* Number of possible processor ids */
5518int nr_cpu_ids __read_mostly = NR_CPUS;
5519EXPORT_SYMBOL(nr_cpu_ids);
5520
3e9830dc 5521#ifdef CONFIG_SCHED_DEBUG
1da177e4
LT
5522static void sched_domain_debug(struct sched_domain *sd, int cpu)
5523{
5524 int level = 0;
5525
41c7ce9a
NP
5526 if (!sd) {
5527 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5528 return;
5529 }
5530
1da177e4
LT
5531 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5532
5533 do {
5534 int i;
5535 char str[NR_CPUS];
5536 struct sched_group *group = sd->groups;
5537 cpumask_t groupmask;
5538
5539 cpumask_scnprintf(str, NR_CPUS, sd->span);
5540 cpus_clear(groupmask);
5541
5542 printk(KERN_DEBUG);
5543 for (i = 0; i < level + 1; i++)
5544 printk(" ");
5545 printk("domain %d: ", level);
5546
5547 if (!(sd->flags & SD_LOAD_BALANCE)) {
5548 printk("does not load-balance\n");
5549 if (sd->parent)
33859f7f
MOS
5550 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5551 " has parent");
1da177e4
LT
5552 break;
5553 }
5554
5555 printk("span %s\n", str);
5556
5557 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5558 printk(KERN_ERR "ERROR: domain->span does not contain "
5559 "CPU%d\n", cpu);
1da177e4 5560 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5561 printk(KERN_ERR "ERROR: domain->groups does not contain"
5562 " CPU%d\n", cpu);
1da177e4
LT
5563
5564 printk(KERN_DEBUG);
5565 for (i = 0; i < level + 2; i++)
5566 printk(" ");
5567 printk("groups:");
5568 do {
5569 if (!group) {
5570 printk("\n");
5571 printk(KERN_ERR "ERROR: group is NULL\n");
5572 break;
5573 }
5574
5517d86b 5575 if (!group->__cpu_power) {
1da177e4 5576 printk("\n");
33859f7f
MOS
5577 printk(KERN_ERR "ERROR: domain->cpu_power not "
5578 "set\n");
26797a34 5579 break;
1da177e4
LT
5580 }
5581
5582 if (!cpus_weight(group->cpumask)) {
5583 printk("\n");
5584 printk(KERN_ERR "ERROR: empty group\n");
26797a34 5585 break;
1da177e4
LT
5586 }
5587
5588 if (cpus_intersects(groupmask, group->cpumask)) {
5589 printk("\n");
5590 printk(KERN_ERR "ERROR: repeated CPUs\n");
26797a34 5591 break;
1da177e4
LT
5592 }
5593
5594 cpus_or(groupmask, groupmask, group->cpumask);
5595
5596 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5597 printk(" %s", str);
5598
5599 group = group->next;
5600 } while (group != sd->groups);
5601 printk("\n");
5602
5603 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5604 printk(KERN_ERR "ERROR: groups don't span "
5605 "domain->span\n");
1da177e4
LT
5606
5607 level++;
5608 sd = sd->parent;
33859f7f
MOS
5609 if (!sd)
5610 continue;
1da177e4 5611
33859f7f
MOS
5612 if (!cpus_subset(groupmask, sd->span))
5613 printk(KERN_ERR "ERROR: parent span is not a superset "
5614 "of domain->span\n");
1da177e4
LT
5615
5616 } while (sd);
5617}
5618#else
48f24c4d 5619# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5620#endif
5621
1a20ff27 5622static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5623{
5624 if (cpus_weight(sd->span) == 1)
5625 return 1;
5626
5627 /* Following flags need at least 2 groups */
5628 if (sd->flags & (SD_LOAD_BALANCE |
5629 SD_BALANCE_NEWIDLE |
5630 SD_BALANCE_FORK |
89c4710e
SS
5631 SD_BALANCE_EXEC |
5632 SD_SHARE_CPUPOWER |
5633 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5634 if (sd->groups != sd->groups->next)
5635 return 0;
5636 }
5637
5638 /* Following flags don't use groups */
5639 if (sd->flags & (SD_WAKE_IDLE |
5640 SD_WAKE_AFFINE |
5641 SD_WAKE_BALANCE))
5642 return 0;
5643
5644 return 1;
5645}
5646
48f24c4d
IM
5647static int
5648sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5649{
5650 unsigned long cflags = sd->flags, pflags = parent->flags;
5651
5652 if (sd_degenerate(parent))
5653 return 1;
5654
5655 if (!cpus_equal(sd->span, parent->span))
5656 return 0;
5657
5658 /* Does parent contain flags not in child? */
5659 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5660 if (cflags & SD_WAKE_AFFINE)
5661 pflags &= ~SD_WAKE_BALANCE;
5662 /* Flags needing groups don't count if only 1 group in parent */
5663 if (parent->groups == parent->groups->next) {
5664 pflags &= ~(SD_LOAD_BALANCE |
5665 SD_BALANCE_NEWIDLE |
5666 SD_BALANCE_FORK |
89c4710e
SS
5667 SD_BALANCE_EXEC |
5668 SD_SHARE_CPUPOWER |
5669 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5670 }
5671 if (~cflags & pflags)
5672 return 0;
5673
5674 return 1;
5675}
5676
1da177e4
LT
5677/*
5678 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5679 * hold the hotplug lock.
5680 */
9c1cfda2 5681static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5682{
70b97a7f 5683 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5684 struct sched_domain *tmp;
5685
5686 /* Remove the sched domains which do not contribute to scheduling. */
5687 for (tmp = sd; tmp; tmp = tmp->parent) {
5688 struct sched_domain *parent = tmp->parent;
5689 if (!parent)
5690 break;
1a848870 5691 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5692 tmp->parent = parent->parent;
1a848870
SS
5693 if (parent->parent)
5694 parent->parent->child = tmp;
5695 }
245af2c7
SS
5696 }
5697
1a848870 5698 if (sd && sd_degenerate(sd)) {
245af2c7 5699 sd = sd->parent;
1a848870
SS
5700 if (sd)
5701 sd->child = NULL;
5702 }
1da177e4
LT
5703
5704 sched_domain_debug(sd, cpu);
5705
674311d5 5706 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5707}
5708
5709/* cpus with isolated domains */
67af63a6 5710static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5711
5712/* Setup the mask of cpus configured for isolated domains */
5713static int __init isolated_cpu_setup(char *str)
5714{
5715 int ints[NR_CPUS], i;
5716
5717 str = get_options(str, ARRAY_SIZE(ints), ints);
5718 cpus_clear(cpu_isolated_map);
5719 for (i = 1; i <= ints[0]; i++)
5720 if (ints[i] < NR_CPUS)
5721 cpu_set(ints[i], cpu_isolated_map);
5722 return 1;
5723}
5724
8927f494 5725__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5726
5727/*
6711cab4
SS
5728 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5729 * to a function which identifies what group(along with sched group) a CPU
5730 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5731 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5732 *
5733 * init_sched_build_groups will build a circular linked list of the groups
5734 * covered by the given span, and will set each group's ->cpumask correctly,
5735 * and ->cpu_power to 0.
5736 */
a616058b 5737static void
6711cab4
SS
5738init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5739 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5740 struct sched_group **sg))
1da177e4
LT
5741{
5742 struct sched_group *first = NULL, *last = NULL;
5743 cpumask_t covered = CPU_MASK_NONE;
5744 int i;
5745
5746 for_each_cpu_mask(i, span) {
6711cab4
SS
5747 struct sched_group *sg;
5748 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5749 int j;
5750
5751 if (cpu_isset(i, covered))
5752 continue;
5753
5754 sg->cpumask = CPU_MASK_NONE;
5517d86b 5755 sg->__cpu_power = 0;
1da177e4
LT
5756
5757 for_each_cpu_mask(j, span) {
6711cab4 5758 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5759 continue;
5760
5761 cpu_set(j, covered);
5762 cpu_set(j, sg->cpumask);
5763 }
5764 if (!first)
5765 first = sg;
5766 if (last)
5767 last->next = sg;
5768 last = sg;
5769 }
5770 last->next = first;
5771}
5772
9c1cfda2 5773#define SD_NODES_PER_DOMAIN 16
1da177e4 5774
9c1cfda2 5775#ifdef CONFIG_NUMA
198e2f18 5776
9c1cfda2
JH
5777/**
5778 * find_next_best_node - find the next node to include in a sched_domain
5779 * @node: node whose sched_domain we're building
5780 * @used_nodes: nodes already in the sched_domain
5781 *
5782 * Find the next node to include in a given scheduling domain. Simply
5783 * finds the closest node not already in the @used_nodes map.
5784 *
5785 * Should use nodemask_t.
5786 */
5787static int find_next_best_node(int node, unsigned long *used_nodes)
5788{
5789 int i, n, val, min_val, best_node = 0;
5790
5791 min_val = INT_MAX;
5792
5793 for (i = 0; i < MAX_NUMNODES; i++) {
5794 /* Start at @node */
5795 n = (node + i) % MAX_NUMNODES;
5796
5797 if (!nr_cpus_node(n))
5798 continue;
5799
5800 /* Skip already used nodes */
5801 if (test_bit(n, used_nodes))
5802 continue;
5803
5804 /* Simple min distance search */
5805 val = node_distance(node, n);
5806
5807 if (val < min_val) {
5808 min_val = val;
5809 best_node = n;
5810 }
5811 }
5812
5813 set_bit(best_node, used_nodes);
5814 return best_node;
5815}
5816
5817/**
5818 * sched_domain_node_span - get a cpumask for a node's sched_domain
5819 * @node: node whose cpumask we're constructing
5820 * @size: number of nodes to include in this span
5821 *
5822 * Given a node, construct a good cpumask for its sched_domain to span. It
5823 * should be one that prevents unnecessary balancing, but also spreads tasks
5824 * out optimally.
5825 */
5826static cpumask_t sched_domain_node_span(int node)
5827{
9c1cfda2 5828 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5829 cpumask_t span, nodemask;
5830 int i;
9c1cfda2
JH
5831
5832 cpus_clear(span);
5833 bitmap_zero(used_nodes, MAX_NUMNODES);
5834
5835 nodemask = node_to_cpumask(node);
5836 cpus_or(span, span, nodemask);
5837 set_bit(node, used_nodes);
5838
5839 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5840 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5841
9c1cfda2
JH
5842 nodemask = node_to_cpumask(next_node);
5843 cpus_or(span, span, nodemask);
5844 }
5845
5846 return span;
5847}
5848#endif
5849
5c45bf27 5850int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5851
9c1cfda2 5852/*
48f24c4d 5853 * SMT sched-domains:
9c1cfda2 5854 */
1da177e4
LT
5855#ifdef CONFIG_SCHED_SMT
5856static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5857static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5858
6711cab4
SS
5859static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5860 struct sched_group **sg)
1da177e4 5861{
6711cab4
SS
5862 if (sg)
5863 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5864 return cpu;
5865}
5866#endif
5867
48f24c4d
IM
5868/*
5869 * multi-core sched-domains:
5870 */
1e9f28fa
SS
5871#ifdef CONFIG_SCHED_MC
5872static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5873static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5874#endif
5875
5876#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5877static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5878 struct sched_group **sg)
1e9f28fa 5879{
6711cab4 5880 int group;
a616058b
SS
5881 cpumask_t mask = cpu_sibling_map[cpu];
5882 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5883 group = first_cpu(mask);
5884 if (sg)
5885 *sg = &per_cpu(sched_group_core, group);
5886 return group;
1e9f28fa
SS
5887}
5888#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5889static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5890 struct sched_group **sg)
1e9f28fa 5891{
6711cab4
SS
5892 if (sg)
5893 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5894 return cpu;
5895}
5896#endif
5897
1da177e4 5898static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5899static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5900
6711cab4
SS
5901static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5902 struct sched_group **sg)
1da177e4 5903{
6711cab4 5904 int group;
48f24c4d 5905#ifdef CONFIG_SCHED_MC
1e9f28fa 5906 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5907 cpus_and(mask, mask, *cpu_map);
6711cab4 5908 group = first_cpu(mask);
1e9f28fa 5909#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5910 cpumask_t mask = cpu_sibling_map[cpu];
5911 cpus_and(mask, mask, *cpu_map);
6711cab4 5912 group = first_cpu(mask);
1da177e4 5913#else
6711cab4 5914 group = cpu;
1da177e4 5915#endif
6711cab4
SS
5916 if (sg)
5917 *sg = &per_cpu(sched_group_phys, group);
5918 return group;
1da177e4
LT
5919}
5920
5921#ifdef CONFIG_NUMA
1da177e4 5922/*
9c1cfda2
JH
5923 * The init_sched_build_groups can't handle what we want to do with node
5924 * groups, so roll our own. Now each node has its own list of groups which
5925 * gets dynamically allocated.
1da177e4 5926 */
9c1cfda2 5927static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5928static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5929
9c1cfda2 5930static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5931static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5932
6711cab4
SS
5933static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5934 struct sched_group **sg)
9c1cfda2 5935{
6711cab4
SS
5936 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5937 int group;
5938
5939 cpus_and(nodemask, nodemask, *cpu_map);
5940 group = first_cpu(nodemask);
5941
5942 if (sg)
5943 *sg = &per_cpu(sched_group_allnodes, group);
5944 return group;
1da177e4 5945}
6711cab4 5946
08069033
SS
5947static void init_numa_sched_groups_power(struct sched_group *group_head)
5948{
5949 struct sched_group *sg = group_head;
5950 int j;
5951
5952 if (!sg)
5953 return;
3a5c359a
AK
5954 do {
5955 for_each_cpu_mask(j, sg->cpumask) {
5956 struct sched_domain *sd;
08069033 5957
3a5c359a
AK
5958 sd = &per_cpu(phys_domains, j);
5959 if (j != first_cpu(sd->groups->cpumask)) {
5960 /*
5961 * Only add "power" once for each
5962 * physical package.
5963 */
5964 continue;
5965 }
08069033 5966
3a5c359a
AK
5967 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5968 }
5969 sg = sg->next;
5970 } while (sg != group_head);
08069033 5971}
1da177e4
LT
5972#endif
5973
a616058b 5974#ifdef CONFIG_NUMA
51888ca2
SV
5975/* Free memory allocated for various sched_group structures */
5976static void free_sched_groups(const cpumask_t *cpu_map)
5977{
a616058b 5978 int cpu, i;
51888ca2
SV
5979
5980 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5981 struct sched_group **sched_group_nodes
5982 = sched_group_nodes_bycpu[cpu];
5983
51888ca2
SV
5984 if (!sched_group_nodes)
5985 continue;
5986
5987 for (i = 0; i < MAX_NUMNODES; i++) {
5988 cpumask_t nodemask = node_to_cpumask(i);
5989 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5990
5991 cpus_and(nodemask, nodemask, *cpu_map);
5992 if (cpus_empty(nodemask))
5993 continue;
5994
5995 if (sg == NULL)
5996 continue;
5997 sg = sg->next;
5998next_sg:
5999 oldsg = sg;
6000 sg = sg->next;
6001 kfree(oldsg);
6002 if (oldsg != sched_group_nodes[i])
6003 goto next_sg;
6004 }
6005 kfree(sched_group_nodes);
6006 sched_group_nodes_bycpu[cpu] = NULL;
6007 }
51888ca2 6008}
a616058b
SS
6009#else
6010static void free_sched_groups(const cpumask_t *cpu_map)
6011{
6012}
6013#endif
51888ca2 6014
89c4710e
SS
6015/*
6016 * Initialize sched groups cpu_power.
6017 *
6018 * cpu_power indicates the capacity of sched group, which is used while
6019 * distributing the load between different sched groups in a sched domain.
6020 * Typically cpu_power for all the groups in a sched domain will be same unless
6021 * there are asymmetries in the topology. If there are asymmetries, group
6022 * having more cpu_power will pickup more load compared to the group having
6023 * less cpu_power.
6024 *
6025 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6026 * the maximum number of tasks a group can handle in the presence of other idle
6027 * or lightly loaded groups in the same sched domain.
6028 */
6029static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6030{
6031 struct sched_domain *child;
6032 struct sched_group *group;
6033
6034 WARN_ON(!sd || !sd->groups);
6035
6036 if (cpu != first_cpu(sd->groups->cpumask))
6037 return;
6038
6039 child = sd->child;
6040
5517d86b
ED
6041 sd->groups->__cpu_power = 0;
6042
89c4710e
SS
6043 /*
6044 * For perf policy, if the groups in child domain share resources
6045 * (for example cores sharing some portions of the cache hierarchy
6046 * or SMT), then set this domain groups cpu_power such that each group
6047 * can handle only one task, when there are other idle groups in the
6048 * same sched domain.
6049 */
6050 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6051 (child->flags &
6052 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6053 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6054 return;
6055 }
6056
89c4710e
SS
6057 /*
6058 * add cpu_power of each child group to this groups cpu_power
6059 */
6060 group = child->groups;
6061 do {
5517d86b 6062 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6063 group = group->next;
6064 } while (group != child->groups);
6065}
6066
1da177e4 6067/*
1a20ff27
DG
6068 * Build sched domains for a given set of cpus and attach the sched domains
6069 * to the individual cpus
1da177e4 6070 */
51888ca2 6071static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6072{
6073 int i;
d1b55138
JH
6074#ifdef CONFIG_NUMA
6075 struct sched_group **sched_group_nodes = NULL;
6711cab4 6076 int sd_allnodes = 0;
d1b55138
JH
6077
6078 /*
6079 * Allocate the per-node list of sched groups
6080 */
5cf9f062 6081 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
d3a5aa98 6082 GFP_KERNEL);
d1b55138
JH
6083 if (!sched_group_nodes) {
6084 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6085 return -ENOMEM;
d1b55138
JH
6086 }
6087 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6088#endif
1da177e4
LT
6089
6090 /*
1a20ff27 6091 * Set up domains for cpus specified by the cpu_map.
1da177e4 6092 */
1a20ff27 6093 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6094 struct sched_domain *sd = NULL, *p;
6095 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6096
1a20ff27 6097 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6098
6099#ifdef CONFIG_NUMA
dd41f596
IM
6100 if (cpus_weight(*cpu_map) >
6101 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6102 sd = &per_cpu(allnodes_domains, i);
6103 *sd = SD_ALLNODES_INIT;
6104 sd->span = *cpu_map;
6711cab4 6105 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6106 p = sd;
6711cab4 6107 sd_allnodes = 1;
9c1cfda2
JH
6108 } else
6109 p = NULL;
6110
1da177e4 6111 sd = &per_cpu(node_domains, i);
1da177e4 6112 *sd = SD_NODE_INIT;
9c1cfda2
JH
6113 sd->span = sched_domain_node_span(cpu_to_node(i));
6114 sd->parent = p;
1a848870
SS
6115 if (p)
6116 p->child = sd;
9c1cfda2 6117 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6118#endif
6119
6120 p = sd;
6121 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6122 *sd = SD_CPU_INIT;
6123 sd->span = nodemask;
6124 sd->parent = p;
1a848870
SS
6125 if (p)
6126 p->child = sd;
6711cab4 6127 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6128
1e9f28fa
SS
6129#ifdef CONFIG_SCHED_MC
6130 p = sd;
6131 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6132 *sd = SD_MC_INIT;
6133 sd->span = cpu_coregroup_map(i);
6134 cpus_and(sd->span, sd->span, *cpu_map);
6135 sd->parent = p;
1a848870 6136 p->child = sd;
6711cab4 6137 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6138#endif
6139
1da177e4
LT
6140#ifdef CONFIG_SCHED_SMT
6141 p = sd;
6142 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6143 *sd = SD_SIBLING_INIT;
6144 sd->span = cpu_sibling_map[i];
1a20ff27 6145 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6146 sd->parent = p;
1a848870 6147 p->child = sd;
6711cab4 6148 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6149#endif
6150 }
6151
6152#ifdef CONFIG_SCHED_SMT
6153 /* Set up CPU (sibling) groups */
9c1cfda2 6154 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6155 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6156 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6157 if (i != first_cpu(this_sibling_map))
6158 continue;
6159
dd41f596
IM
6160 init_sched_build_groups(this_sibling_map, cpu_map,
6161 &cpu_to_cpu_group);
1da177e4
LT
6162 }
6163#endif
6164
1e9f28fa
SS
6165#ifdef CONFIG_SCHED_MC
6166 /* Set up multi-core groups */
6167 for_each_cpu_mask(i, *cpu_map) {
6168 cpumask_t this_core_map = cpu_coregroup_map(i);
6169 cpus_and(this_core_map, this_core_map, *cpu_map);
6170 if (i != first_cpu(this_core_map))
6171 continue;
dd41f596
IM
6172 init_sched_build_groups(this_core_map, cpu_map,
6173 &cpu_to_core_group);
1e9f28fa
SS
6174 }
6175#endif
6176
1da177e4
LT
6177 /* Set up physical groups */
6178 for (i = 0; i < MAX_NUMNODES; i++) {
6179 cpumask_t nodemask = node_to_cpumask(i);
6180
1a20ff27 6181 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6182 if (cpus_empty(nodemask))
6183 continue;
6184
6711cab4 6185 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6186 }
6187
6188#ifdef CONFIG_NUMA
6189 /* Set up node groups */
6711cab4 6190 if (sd_allnodes)
dd41f596
IM
6191 init_sched_build_groups(*cpu_map, cpu_map,
6192 &cpu_to_allnodes_group);
9c1cfda2
JH
6193
6194 for (i = 0; i < MAX_NUMNODES; i++) {
6195 /* Set up node groups */
6196 struct sched_group *sg, *prev;
6197 cpumask_t nodemask = node_to_cpumask(i);
6198 cpumask_t domainspan;
6199 cpumask_t covered = CPU_MASK_NONE;
6200 int j;
6201
6202 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6203 if (cpus_empty(nodemask)) {
6204 sched_group_nodes[i] = NULL;
9c1cfda2 6205 continue;
d1b55138 6206 }
9c1cfda2
JH
6207
6208 domainspan = sched_domain_node_span(i);
6209 cpus_and(domainspan, domainspan, *cpu_map);
6210
15f0b676 6211 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6212 if (!sg) {
6213 printk(KERN_WARNING "Can not alloc domain group for "
6214 "node %d\n", i);
6215 goto error;
6216 }
9c1cfda2
JH
6217 sched_group_nodes[i] = sg;
6218 for_each_cpu_mask(j, nodemask) {
6219 struct sched_domain *sd;
9761eea8 6220
9c1cfda2
JH
6221 sd = &per_cpu(node_domains, j);
6222 sd->groups = sg;
9c1cfda2 6223 }
5517d86b 6224 sg->__cpu_power = 0;
9c1cfda2 6225 sg->cpumask = nodemask;
51888ca2 6226 sg->next = sg;
9c1cfda2
JH
6227 cpus_or(covered, covered, nodemask);
6228 prev = sg;
6229
6230 for (j = 0; j < MAX_NUMNODES; j++) {
6231 cpumask_t tmp, notcovered;
6232 int n = (i + j) % MAX_NUMNODES;
6233
6234 cpus_complement(notcovered, covered);
6235 cpus_and(tmp, notcovered, *cpu_map);
6236 cpus_and(tmp, tmp, domainspan);
6237 if (cpus_empty(tmp))
6238 break;
6239
6240 nodemask = node_to_cpumask(n);
6241 cpus_and(tmp, tmp, nodemask);
6242 if (cpus_empty(tmp))
6243 continue;
6244
15f0b676
SV
6245 sg = kmalloc_node(sizeof(struct sched_group),
6246 GFP_KERNEL, i);
9c1cfda2
JH
6247 if (!sg) {
6248 printk(KERN_WARNING
6249 "Can not alloc domain group for node %d\n", j);
51888ca2 6250 goto error;
9c1cfda2 6251 }
5517d86b 6252 sg->__cpu_power = 0;
9c1cfda2 6253 sg->cpumask = tmp;
51888ca2 6254 sg->next = prev->next;
9c1cfda2
JH
6255 cpus_or(covered, covered, tmp);
6256 prev->next = sg;
6257 prev = sg;
6258 }
9c1cfda2 6259 }
1da177e4
LT
6260#endif
6261
6262 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6263#ifdef CONFIG_SCHED_SMT
1a20ff27 6264 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6265 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6266
89c4710e 6267 init_sched_groups_power(i, sd);
5c45bf27 6268 }
1da177e4 6269#endif
1e9f28fa 6270#ifdef CONFIG_SCHED_MC
5c45bf27 6271 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6272 struct sched_domain *sd = &per_cpu(core_domains, i);
6273
89c4710e 6274 init_sched_groups_power(i, sd);
5c45bf27
SS
6275 }
6276#endif
1e9f28fa 6277
5c45bf27 6278 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6279 struct sched_domain *sd = &per_cpu(phys_domains, i);
6280
89c4710e 6281 init_sched_groups_power(i, sd);
1da177e4
LT
6282 }
6283
9c1cfda2 6284#ifdef CONFIG_NUMA
08069033
SS
6285 for (i = 0; i < MAX_NUMNODES; i++)
6286 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6287
6711cab4
SS
6288 if (sd_allnodes) {
6289 struct sched_group *sg;
f712c0c7 6290
6711cab4 6291 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6292 init_numa_sched_groups_power(sg);
6293 }
9c1cfda2
JH
6294#endif
6295
1da177e4 6296 /* Attach the domains */
1a20ff27 6297 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6298 struct sched_domain *sd;
6299#ifdef CONFIG_SCHED_SMT
6300 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6301#elif defined(CONFIG_SCHED_MC)
6302 sd = &per_cpu(core_domains, i);
1da177e4
LT
6303#else
6304 sd = &per_cpu(phys_domains, i);
6305#endif
6306 cpu_attach_domain(sd, i);
6307 }
51888ca2
SV
6308
6309 return 0;
6310
a616058b 6311#ifdef CONFIG_NUMA
51888ca2
SV
6312error:
6313 free_sched_groups(cpu_map);
6314 return -ENOMEM;
a616058b 6315#endif
1da177e4 6316}
1a20ff27
DG
6317/*
6318 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6319 */
51888ca2 6320static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6321{
6322 cpumask_t cpu_default_map;
51888ca2 6323 int err;
1da177e4 6324
1a20ff27
DG
6325 /*
6326 * Setup mask for cpus without special case scheduling requirements.
6327 * For now this just excludes isolated cpus, but could be used to
6328 * exclude other special cases in the future.
6329 */
6330 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6331
51888ca2
SV
6332 err = build_sched_domains(&cpu_default_map);
6333
6382bc90
MM
6334 register_sched_domain_sysctl();
6335
51888ca2 6336 return err;
1a20ff27
DG
6337}
6338
6339static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6340{
51888ca2 6341 free_sched_groups(cpu_map);
9c1cfda2 6342}
1da177e4 6343
1a20ff27
DG
6344/*
6345 * Detach sched domains from a group of cpus specified in cpu_map
6346 * These cpus will now be attached to the NULL domain
6347 */
858119e1 6348static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6349{
6350 int i;
6351
6382bc90
MM
6352 unregister_sched_domain_sysctl();
6353
1a20ff27
DG
6354 for_each_cpu_mask(i, *cpu_map)
6355 cpu_attach_domain(NULL, i);
6356 synchronize_sched();
6357 arch_destroy_sched_domains(cpu_map);
6358}
6359
6360/*
6361 * Partition sched domains as specified by the cpumasks below.
6362 * This attaches all cpus from the cpumasks to the NULL domain,
6363 * waits for a RCU quiescent period, recalculates sched
6364 * domain information and then attaches them back to the
6365 * correct sched domains
6366 * Call with hotplug lock held
6367 */
51888ca2 6368int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6369{
6370 cpumask_t change_map;
51888ca2 6371 int err = 0;
1a20ff27
DG
6372
6373 cpus_and(*partition1, *partition1, cpu_online_map);
6374 cpus_and(*partition2, *partition2, cpu_online_map);
6375 cpus_or(change_map, *partition1, *partition2);
6376
6377 /* Detach sched domains from all of the affected cpus */
6378 detach_destroy_domains(&change_map);
6379 if (!cpus_empty(*partition1))
51888ca2
SV
6380 err = build_sched_domains(partition1);
6381 if (!err && !cpus_empty(*partition2))
6382 err = build_sched_domains(partition2);
6383
6382bc90
MM
6384 register_sched_domain_sysctl();
6385
51888ca2 6386 return err;
1a20ff27
DG
6387}
6388
5c45bf27 6389#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6390static int arch_reinit_sched_domains(void)
5c45bf27
SS
6391{
6392 int err;
6393
5be9361c 6394 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6395 detach_destroy_domains(&cpu_online_map);
6396 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6397 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6398
6399 return err;
6400}
6401
6402static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6403{
6404 int ret;
6405
6406 if (buf[0] != '0' && buf[0] != '1')
6407 return -EINVAL;
6408
6409 if (smt)
6410 sched_smt_power_savings = (buf[0] == '1');
6411 else
6412 sched_mc_power_savings = (buf[0] == '1');
6413
6414 ret = arch_reinit_sched_domains();
6415
6416 return ret ? ret : count;
6417}
6418
5c45bf27
SS
6419#ifdef CONFIG_SCHED_MC
6420static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6421{
6422 return sprintf(page, "%u\n", sched_mc_power_savings);
6423}
48f24c4d
IM
6424static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6425 const char *buf, size_t count)
5c45bf27
SS
6426{
6427 return sched_power_savings_store(buf, count, 0);
6428}
6707de00
AB
6429static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6430 sched_mc_power_savings_store);
5c45bf27
SS
6431#endif
6432
6433#ifdef CONFIG_SCHED_SMT
6434static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6435{
6436 return sprintf(page, "%u\n", sched_smt_power_savings);
6437}
48f24c4d
IM
6438static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6439 const char *buf, size_t count)
5c45bf27
SS
6440{
6441 return sched_power_savings_store(buf, count, 1);
6442}
6707de00
AB
6443static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6444 sched_smt_power_savings_store);
6445#endif
6446
6447int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6448{
6449 int err = 0;
6450
6451#ifdef CONFIG_SCHED_SMT
6452 if (smt_capable())
6453 err = sysfs_create_file(&cls->kset.kobj,
6454 &attr_sched_smt_power_savings.attr);
6455#endif
6456#ifdef CONFIG_SCHED_MC
6457 if (!err && mc_capable())
6458 err = sysfs_create_file(&cls->kset.kobj,
6459 &attr_sched_mc_power_savings.attr);
6460#endif
6461 return err;
6462}
5c45bf27
SS
6463#endif
6464
1da177e4
LT
6465/*
6466 * Force a reinitialization of the sched domains hierarchy. The domains
6467 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6468 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6469 * which will prevent rebalancing while the sched domains are recalculated.
6470 */
6471static int update_sched_domains(struct notifier_block *nfb,
6472 unsigned long action, void *hcpu)
6473{
1da177e4
LT
6474 switch (action) {
6475 case CPU_UP_PREPARE:
8bb78442 6476 case CPU_UP_PREPARE_FROZEN:
1da177e4 6477 case CPU_DOWN_PREPARE:
8bb78442 6478 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6479 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6480 return NOTIFY_OK;
6481
6482 case CPU_UP_CANCELED:
8bb78442 6483 case CPU_UP_CANCELED_FROZEN:
1da177e4 6484 case CPU_DOWN_FAILED:
8bb78442 6485 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6486 case CPU_ONLINE:
8bb78442 6487 case CPU_ONLINE_FROZEN:
1da177e4 6488 case CPU_DEAD:
8bb78442 6489 case CPU_DEAD_FROZEN:
1da177e4
LT
6490 /*
6491 * Fall through and re-initialise the domains.
6492 */
6493 break;
6494 default:
6495 return NOTIFY_DONE;
6496 }
6497
6498 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6499 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6500
6501 return NOTIFY_OK;
6502}
1da177e4
LT
6503
6504void __init sched_init_smp(void)
6505{
5c1e1767
NP
6506 cpumask_t non_isolated_cpus;
6507
5be9361c 6508 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6509 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6510 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6511 if (cpus_empty(non_isolated_cpus))
6512 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6513 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6514 /* XXX: Theoretical race here - CPU may be hotplugged now */
6515 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6516
6517 /* Move init over to a non-isolated CPU */
6518 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6519 BUG();
1da177e4
LT
6520}
6521#else
6522void __init sched_init_smp(void)
6523{
6524}
6525#endif /* CONFIG_SMP */
6526
6527int in_sched_functions(unsigned long addr)
6528{
6529 /* Linker adds these: start and end of __sched functions */
6530 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6531
1da177e4
LT
6532 return in_lock_functions(addr) ||
6533 (addr >= (unsigned long)__sched_text_start
6534 && addr < (unsigned long)__sched_text_end);
6535}
6536
a9957449 6537static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6538{
6539 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6540#ifdef CONFIG_FAIR_GROUP_SCHED
6541 cfs_rq->rq = rq;
6542#endif
67e9fb2a 6543 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6544}
6545
1da177e4
LT
6546void __init sched_init(void)
6547{
476f3534 6548 int highest_cpu = 0;
dd41f596
IM
6549 int i, j;
6550
0a945022 6551 for_each_possible_cpu(i) {
dd41f596 6552 struct rt_prio_array *array;
70b97a7f 6553 struct rq *rq;
1da177e4
LT
6554
6555 rq = cpu_rq(i);
6556 spin_lock_init(&rq->lock);
fcb99371 6557 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6558 rq->nr_running = 0;
dd41f596
IM
6559 rq->clock = 1;
6560 init_cfs_rq(&rq->cfs, rq);
6561#ifdef CONFIG_FAIR_GROUP_SCHED
6562 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6563 {
6564 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6565 struct sched_entity *se =
6566 &per_cpu(init_sched_entity, i);
6567
6568 init_cfs_rq_p[i] = cfs_rq;
6569 init_cfs_rq(cfs_rq, rq);
4cf86d77 6570 cfs_rq->tg = &init_task_group;
3a252015 6571 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6572 &rq->leaf_cfs_rq_list);
6573
3a252015
IM
6574 init_sched_entity_p[i] = se;
6575 se->cfs_rq = &rq->cfs;
6576 se->my_q = cfs_rq;
4cf86d77 6577 se->load.weight = init_task_group_load;
9b5b7751 6578 se->load.inv_weight =
4cf86d77 6579 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6580 se->parent = NULL;
6581 }
4cf86d77 6582 init_task_group.shares = init_task_group_load;
5cb350ba 6583 spin_lock_init(&init_task_group.lock);
dd41f596 6584#endif
1da177e4 6585
dd41f596
IM
6586 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6587 rq->cpu_load[j] = 0;
1da177e4 6588#ifdef CONFIG_SMP
41c7ce9a 6589 rq->sd = NULL;
1da177e4 6590 rq->active_balance = 0;
dd41f596 6591 rq->next_balance = jiffies;
1da177e4 6592 rq->push_cpu = 0;
0a2966b4 6593 rq->cpu = i;
1da177e4
LT
6594 rq->migration_thread = NULL;
6595 INIT_LIST_HEAD(&rq->migration_queue);
6596#endif
6597 atomic_set(&rq->nr_iowait, 0);
6598
dd41f596
IM
6599 array = &rq->rt.active;
6600 for (j = 0; j < MAX_RT_PRIO; j++) {
6601 INIT_LIST_HEAD(array->queue + j);
6602 __clear_bit(j, array->bitmap);
1da177e4 6603 }
476f3534 6604 highest_cpu = i;
dd41f596
IM
6605 /* delimiter for bitsearch: */
6606 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6607 }
6608
2dd73a4f 6609 set_load_weight(&init_task);
b50f60ce 6610
e107be36
AK
6611#ifdef CONFIG_PREEMPT_NOTIFIERS
6612 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6613#endif
6614
c9819f45 6615#ifdef CONFIG_SMP
476f3534 6616 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6617 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6618#endif
6619
b50f60ce
HC
6620#ifdef CONFIG_RT_MUTEXES
6621 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6622#endif
6623
1da177e4
LT
6624 /*
6625 * The boot idle thread does lazy MMU switching as well:
6626 */
6627 atomic_inc(&init_mm.mm_count);
6628 enter_lazy_tlb(&init_mm, current);
6629
6630 /*
6631 * Make us the idle thread. Technically, schedule() should not be
6632 * called from this thread, however somewhere below it might be,
6633 * but because we are the idle thread, we just pick up running again
6634 * when this runqueue becomes "idle".
6635 */
6636 init_idle(current, smp_processor_id());
dd41f596
IM
6637 /*
6638 * During early bootup we pretend to be a normal task:
6639 */
6640 current->sched_class = &fair_sched_class;
1da177e4
LT
6641}
6642
6643#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6644void __might_sleep(char *file, int line)
6645{
48f24c4d 6646#ifdef in_atomic
1da177e4
LT
6647 static unsigned long prev_jiffy; /* ratelimiting */
6648
6649 if ((in_atomic() || irqs_disabled()) &&
6650 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6651 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6652 return;
6653 prev_jiffy = jiffies;
91368d73 6654 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6655 " context at %s:%d\n", file, line);
6656 printk("in_atomic():%d, irqs_disabled():%d\n",
6657 in_atomic(), irqs_disabled());
a4c410f0 6658 debug_show_held_locks(current);
3117df04
IM
6659 if (irqs_disabled())
6660 print_irqtrace_events(current);
1da177e4
LT
6661 dump_stack();
6662 }
6663#endif
6664}
6665EXPORT_SYMBOL(__might_sleep);
6666#endif
6667
6668#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6669static void normalize_task(struct rq *rq, struct task_struct *p)
6670{
6671 int on_rq;
6672 update_rq_clock(rq);
6673 on_rq = p->se.on_rq;
6674 if (on_rq)
6675 deactivate_task(rq, p, 0);
6676 __setscheduler(rq, p, SCHED_NORMAL, 0);
6677 if (on_rq) {
6678 activate_task(rq, p, 0);
6679 resched_task(rq->curr);
6680 }
6681}
6682
1da177e4
LT
6683void normalize_rt_tasks(void)
6684{
a0f98a1c 6685 struct task_struct *g, *p;
1da177e4 6686 unsigned long flags;
70b97a7f 6687 struct rq *rq;
1da177e4
LT
6688
6689 read_lock_irq(&tasklist_lock);
a0f98a1c 6690 do_each_thread(g, p) {
178be793
IM
6691 /*
6692 * Only normalize user tasks:
6693 */
6694 if (!p->mm)
6695 continue;
6696
6cfb0d5d 6697 p->se.exec_start = 0;
6cfb0d5d 6698#ifdef CONFIG_SCHEDSTATS
dd41f596 6699 p->se.wait_start = 0;
dd41f596 6700 p->se.sleep_start = 0;
dd41f596 6701 p->se.block_start = 0;
6cfb0d5d 6702#endif
dd41f596
IM
6703 task_rq(p)->clock = 0;
6704
6705 if (!rt_task(p)) {
6706 /*
6707 * Renice negative nice level userspace
6708 * tasks back to 0:
6709 */
6710 if (TASK_NICE(p) < 0 && p->mm)
6711 set_user_nice(p, 0);
1da177e4 6712 continue;
dd41f596 6713 }
1da177e4 6714
b29739f9
IM
6715 spin_lock_irqsave(&p->pi_lock, flags);
6716 rq = __task_rq_lock(p);
1da177e4 6717
178be793 6718 normalize_task(rq, p);
3a5e4dc1 6719
b29739f9
IM
6720 __task_rq_unlock(rq);
6721 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6722 } while_each_thread(g, p);
6723
1da177e4
LT
6724 read_unlock_irq(&tasklist_lock);
6725}
6726
6727#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6728
6729#ifdef CONFIG_IA64
6730/*
6731 * These functions are only useful for the IA64 MCA handling.
6732 *
6733 * They can only be called when the whole system has been
6734 * stopped - every CPU needs to be quiescent, and no scheduling
6735 * activity can take place. Using them for anything else would
6736 * be a serious bug, and as a result, they aren't even visible
6737 * under any other configuration.
6738 */
6739
6740/**
6741 * curr_task - return the current task for a given cpu.
6742 * @cpu: the processor in question.
6743 *
6744 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6745 */
36c8b586 6746struct task_struct *curr_task(int cpu)
1df5c10a
LT
6747{
6748 return cpu_curr(cpu);
6749}
6750
6751/**
6752 * set_curr_task - set the current task for a given cpu.
6753 * @cpu: the processor in question.
6754 * @p: the task pointer to set.
6755 *
6756 * Description: This function must only be used when non-maskable interrupts
6757 * are serviced on a separate stack. It allows the architecture to switch the
6758 * notion of the current task on a cpu in a non-blocking manner. This function
6759 * must be called with all CPU's synchronized, and interrupts disabled, the
6760 * and caller must save the original value of the current task (see
6761 * curr_task() above) and restore that value before reenabling interrupts and
6762 * re-starting the system.
6763 *
6764 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6765 */
36c8b586 6766void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6767{
6768 cpu_curr(cpu) = p;
6769}
6770
6771#endif
29f59db3
SV
6772
6773#ifdef CONFIG_FAIR_GROUP_SCHED
6774
29f59db3 6775/* allocate runqueue etc for a new task group */
4cf86d77 6776struct task_group *sched_create_group(void)
29f59db3 6777{
4cf86d77 6778 struct task_group *tg;
29f59db3
SV
6779 struct cfs_rq *cfs_rq;
6780 struct sched_entity *se;
9b5b7751 6781 struct rq *rq;
29f59db3
SV
6782 int i;
6783
29f59db3
SV
6784 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6785 if (!tg)
6786 return ERR_PTR(-ENOMEM);
6787
9b5b7751 6788 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6789 if (!tg->cfs_rq)
6790 goto err;
9b5b7751 6791 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6792 if (!tg->se)
6793 goto err;
6794
6795 for_each_possible_cpu(i) {
9b5b7751 6796 rq = cpu_rq(i);
29f59db3
SV
6797
6798 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6799 cpu_to_node(i));
6800 if (!cfs_rq)
6801 goto err;
6802
6803 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6804 cpu_to_node(i));
6805 if (!se)
6806 goto err;
6807
6808 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6809 memset(se, 0, sizeof(struct sched_entity));
6810
6811 tg->cfs_rq[i] = cfs_rq;
6812 init_cfs_rq(cfs_rq, rq);
6813 cfs_rq->tg = tg;
29f59db3
SV
6814
6815 tg->se[i] = se;
6816 se->cfs_rq = &rq->cfs;
6817 se->my_q = cfs_rq;
6818 se->load.weight = NICE_0_LOAD;
6819 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6820 se->parent = NULL;
6821 }
6822
9b5b7751
SV
6823 for_each_possible_cpu(i) {
6824 rq = cpu_rq(i);
6825 cfs_rq = tg->cfs_rq[i];
6826 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6827 }
29f59db3 6828
9b5b7751 6829 tg->shares = NICE_0_LOAD;
5cb350ba 6830 spin_lock_init(&tg->lock);
29f59db3 6831
9b5b7751 6832 return tg;
29f59db3
SV
6833
6834err:
6835 for_each_possible_cpu(i) {
a65914b3 6836 if (tg->cfs_rq)
29f59db3 6837 kfree(tg->cfs_rq[i]);
a65914b3 6838 if (tg->se)
29f59db3
SV
6839 kfree(tg->se[i]);
6840 }
a65914b3
IM
6841 kfree(tg->cfs_rq);
6842 kfree(tg->se);
6843 kfree(tg);
29f59db3
SV
6844
6845 return ERR_PTR(-ENOMEM);
6846}
6847
9b5b7751
SV
6848/* rcu callback to free various structures associated with a task group */
6849static void free_sched_group(struct rcu_head *rhp)
29f59db3 6850{
9b5b7751 6851 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
4cf86d77 6852 struct task_group *tg = cfs_rq->tg;
29f59db3
SV
6853 struct sched_entity *se;
6854 int i;
6855
29f59db3
SV
6856 /* now it should be safe to free those cfs_rqs */
6857 for_each_possible_cpu(i) {
6858 cfs_rq = tg->cfs_rq[i];
6859 kfree(cfs_rq);
6860
6861 se = tg->se[i];
6862 kfree(se);
6863 }
6864
6865 kfree(tg->cfs_rq);
6866 kfree(tg->se);
6867 kfree(tg);
6868}
6869
9b5b7751 6870/* Destroy runqueue etc associated with a task group */
4cf86d77 6871void sched_destroy_group(struct task_group *tg)
29f59db3 6872{
9b5b7751
SV
6873 struct cfs_rq *cfs_rq;
6874 int i;
29f59db3 6875
9b5b7751
SV
6876 for_each_possible_cpu(i) {
6877 cfs_rq = tg->cfs_rq[i];
6878 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6879 }
6880
6881 cfs_rq = tg->cfs_rq[0];
6882
6883 /* wait for possible concurrent references to cfs_rqs complete */
6884 call_rcu(&cfs_rq->rcu, free_sched_group);
29f59db3
SV
6885}
6886
9b5b7751 6887/* change task's runqueue when it moves between groups.
3a252015
IM
6888 * The caller of this function should have put the task in its new group
6889 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6890 * reflect its new group.
9b5b7751
SV
6891 */
6892void sched_move_task(struct task_struct *tsk)
29f59db3
SV
6893{
6894 int on_rq, running;
6895 unsigned long flags;
6896 struct rq *rq;
6897
6898 rq = task_rq_lock(tsk, &flags);
6899
6900 if (tsk->sched_class != &fair_sched_class)
6901 goto done;
6902
6903 update_rq_clock(rq);
6904
6905 running = task_running(rq, tsk);
6906 on_rq = tsk->se.on_rq;
6907
83b699ed 6908 if (on_rq) {
29f59db3 6909 dequeue_task(rq, tsk, 0);
83b699ed
SV
6910 if (unlikely(running))
6911 tsk->sched_class->put_prev_task(rq, tsk);
6912 }
29f59db3
SV
6913
6914 set_task_cfs_rq(tsk);
6915
83b699ed
SV
6916 if (on_rq) {
6917 if (unlikely(running))
6918 tsk->sched_class->set_curr_task(rq);
7074badb 6919 enqueue_task(rq, tsk, 0);
83b699ed 6920 }
29f59db3
SV
6921
6922done:
6923 task_rq_unlock(rq, &flags);
6924}
6925
6926static void set_se_shares(struct sched_entity *se, unsigned long shares)
6927{
6928 struct cfs_rq *cfs_rq = se->cfs_rq;
6929 struct rq *rq = cfs_rq->rq;
6930 int on_rq;
6931
6932 spin_lock_irq(&rq->lock);
6933
6934 on_rq = se->on_rq;
6935 if (on_rq)
6936 dequeue_entity(cfs_rq, se, 0);
6937
6938 se->load.weight = shares;
6939 se->load.inv_weight = div64_64((1ULL<<32), shares);
6940
6941 if (on_rq)
6942 enqueue_entity(cfs_rq, se, 0);
6943
6944 spin_unlock_irq(&rq->lock);
6945}
6946
4cf86d77 6947int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
6948{
6949 int i;
29f59db3 6950
5cb350ba 6951 spin_lock(&tg->lock);
9b5b7751 6952 if (tg->shares == shares)
5cb350ba 6953 goto done;
29f59db3 6954
9b5b7751 6955 tg->shares = shares;
29f59db3 6956 for_each_possible_cpu(i)
9b5b7751 6957 set_se_shares(tg->se[i], shares);
29f59db3 6958
5cb350ba
DG
6959done:
6960 spin_unlock(&tg->lock);
9b5b7751 6961 return 0;
29f59db3
SV
6962}
6963
5cb350ba
DG
6964unsigned long sched_group_shares(struct task_group *tg)
6965{
6966 return tg->shares;
6967}
6968
3a252015 6969#endif /* CONFIG_FAIR_GROUP_SCHED */
This page took 0.858504 seconds and 5 git commands to generate.