perfcounters: fix "perf counters kills oprofile" bug, v2
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b 127#ifdef CONFIG_SMP
fd2ab30b
SN
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
5517d86b
ED
131/*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136{
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138}
139
140/*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145{
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148}
149#endif
150
e05606d3
IM
151static inline int rt_policy(int policy)
152{
3f33a7ce 153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
154 return 1;
155 return 0;
156}
157
158static inline int task_has_rt_policy(struct task_struct *p)
159{
160 return rt_policy(p->policy);
161}
162
1da177e4 163/*
6aa645ea 164 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 165 */
6aa645ea
IM
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
d0b27fa7 171struct rt_bandwidth {
ea736ed5
IM
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
d0b27fa7
PZ
177};
178
179static struct rt_bandwidth def_rt_bandwidth;
180
181static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184{
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202}
203
204static
205void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206{
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
ac086bc2
PZ
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
d0b27fa7
PZ
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
215}
216
c8bfff6d
KH
217static inline int rt_bandwidth_enabled(void)
218{
219 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
220}
221
222static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223{
224 ktime_t now;
225
0b148fa0 226 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
236
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
d0b27fa7
PZ
241 }
242 spin_unlock(&rt_b->rt_runtime_lock);
243}
244
245#ifdef CONFIG_RT_GROUP_SCHED
246static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247{
248 hrtimer_cancel(&rt_b->rt_period_timer);
249}
250#endif
251
712555ee
HC
252/*
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
255 */
256static DEFINE_MUTEX(sched_domains_mutex);
257
052f1dc7 258#ifdef CONFIG_GROUP_SCHED
29f59db3 259
68318b8e
SV
260#include <linux/cgroup.h>
261
29f59db3
SV
262struct cfs_rq;
263
6f505b16
PZ
264static LIST_HEAD(task_groups);
265
29f59db3 266/* task group related information */
4cf86d77 267struct task_group {
052f1dc7 268#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
269 struct cgroup_subsys_state css;
270#endif
052f1dc7 271
6c415b92
AB
272#ifdef CONFIG_USER_SCHED
273 uid_t uid;
274#endif
275
052f1dc7 276#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
052f1dc7
PZ
282#endif
283
284#ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
287
d0b27fa7 288 struct rt_bandwidth rt_bandwidth;
052f1dc7 289#endif
6b2d7700 290
ae8393e5 291 struct rcu_head rcu;
6f505b16 292 struct list_head list;
f473aa5e
PZ
293
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
29f59db3
SV
297};
298
354d60c2 299#ifdef CONFIG_USER_SCHED
eff766a6 300
6c415b92
AB
301/* Helper function to pass uid information to create_sched_user() */
302void set_tg_uid(struct user_struct *user)
303{
304 user->tg->uid = user->uid;
305}
306
eff766a6
PZ
307/*
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
311 */
312struct task_group root_task_group;
313
052f1dc7 314#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
315/* Default task group's sched entity on each cpu */
316static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317/* Default task group's cfs_rq on each cpu */
318static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 319#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
320
321#ifdef CONFIG_RT_GROUP_SCHED
322static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 324#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 325#else /* !CONFIG_USER_SCHED */
eff766a6 326#define root_task_group init_task_group
9a7e0b18 327#endif /* CONFIG_USER_SCHED */
6f505b16 328
8ed36996 329/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
330 * a task group's cpu shares.
331 */
8ed36996 332static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 333
052f1dc7 334#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
335#ifdef CONFIG_USER_SCHED
336# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 337#else /* !CONFIG_USER_SCHED */
052f1dc7 338# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 339#endif /* CONFIG_USER_SCHED */
052f1dc7 340
cb4ad1ff 341/*
2e084786
LJ
342 * A weight of 0 or 1 can cause arithmetics problems.
343 * A weight of a cfs_rq is the sum of weights of which entities
344 * are queued on this cfs_rq, so a weight of a entity should not be
345 * too large, so as the shares value of a task group.
cb4ad1ff
MX
346 * (The default weight is 1024 - so there's no practical
347 * limitation from this.)
348 */
18d95a28 349#define MIN_SHARES 2
2e084786 350#define MAX_SHARES (1UL << 18)
18d95a28 351
052f1dc7
PZ
352static int init_task_group_load = INIT_TASK_GROUP_LOAD;
353#endif
354
29f59db3 355/* Default task group.
3a252015 356 * Every task in system belong to this group at bootup.
29f59db3 357 */
434d53b0 358struct task_group init_task_group;
29f59db3
SV
359
360/* return group to which a task belongs */
4cf86d77 361static inline struct task_group *task_group(struct task_struct *p)
29f59db3 362{
4cf86d77 363 struct task_group *tg;
9b5b7751 364
052f1dc7 365#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
366 rcu_read_lock();
367 tg = __task_cred(p)->user->tg;
368 rcu_read_unlock();
052f1dc7 369#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
370 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
371 struct task_group, css);
24e377a8 372#else
41a2d6cf 373 tg = &init_task_group;
24e377a8 374#endif
9b5b7751 375 return tg;
29f59db3
SV
376}
377
378/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 379static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 380{
052f1dc7 381#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
382 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
383 p->se.parent = task_group(p)->se[cpu];
052f1dc7 384#endif
6f505b16 385
052f1dc7 386#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
387 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
388 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 389#endif
29f59db3
SV
390}
391
392#else
393
6f505b16 394static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
395static inline struct task_group *task_group(struct task_struct *p)
396{
397 return NULL;
398}
29f59db3 399
052f1dc7 400#endif /* CONFIG_GROUP_SCHED */
29f59db3 401
6aa645ea
IM
402/* CFS-related fields in a runqueue */
403struct cfs_rq {
404 struct load_weight load;
405 unsigned long nr_running;
406
6aa645ea 407 u64 exec_clock;
e9acbff6 408 u64 min_vruntime;
6aa645ea
IM
409
410 struct rb_root tasks_timeline;
411 struct rb_node *rb_leftmost;
4a55bd5e
PZ
412
413 struct list_head tasks;
414 struct list_head *balance_iterator;
415
416 /*
417 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
418 * It is set to NULL otherwise (i.e when none are currently running).
419 */
4793241b 420 struct sched_entity *curr, *next, *last;
ddc97297 421
5ac5c4d6 422 unsigned int nr_spread_over;
ddc97297 423
62160e3f 424#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
425 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
426
41a2d6cf
IM
427 /*
428 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
429 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
430 * (like users, containers etc.)
431 *
432 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
433 * list is used during load balance.
434 */
41a2d6cf
IM
435 struct list_head leaf_cfs_rq_list;
436 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
437
438#ifdef CONFIG_SMP
c09595f6 439 /*
c8cba857 440 * the part of load.weight contributed by tasks
c09595f6 441 */
c8cba857 442 unsigned long task_weight;
c09595f6 443
c8cba857
PZ
444 /*
445 * h_load = weight * f(tg)
446 *
447 * Where f(tg) is the recursive weight fraction assigned to
448 * this group.
449 */
450 unsigned long h_load;
c09595f6 451
c8cba857
PZ
452 /*
453 * this cpu's part of tg->shares
454 */
455 unsigned long shares;
f1d239f7
PZ
456
457 /*
458 * load.weight at the time we set shares
459 */
460 unsigned long rq_weight;
c09595f6 461#endif
6aa645ea
IM
462#endif
463};
1da177e4 464
6aa645ea
IM
465/* Real-Time classes' related field in a runqueue: */
466struct rt_rq {
467 struct rt_prio_array active;
63489e45 468 unsigned long rt_nr_running;
052f1dc7 469#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
470 int highest_prio; /* highest queued rt task prio */
471#endif
fa85ae24 472#ifdef CONFIG_SMP
73fe6aae 473 unsigned long rt_nr_migratory;
a22d7fc1 474 int overloaded;
fa85ae24 475#endif
6f505b16 476 int rt_throttled;
fa85ae24 477 u64 rt_time;
ac086bc2 478 u64 rt_runtime;
ea736ed5 479 /* Nests inside the rq lock: */
ac086bc2 480 spinlock_t rt_runtime_lock;
6f505b16 481
052f1dc7 482#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
483 unsigned long rt_nr_boosted;
484
6f505b16
PZ
485 struct rq *rq;
486 struct list_head leaf_rt_rq_list;
487 struct task_group *tg;
488 struct sched_rt_entity *rt_se;
489#endif
6aa645ea
IM
490};
491
57d885fe
GH
492#ifdef CONFIG_SMP
493
494/*
495 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
496 * variables. Each exclusive cpuset essentially defines an island domain by
497 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
498 * exclusive cpuset is created, we also create and attach a new root-domain
499 * object.
500 *
57d885fe
GH
501 */
502struct root_domain {
503 atomic_t refcount;
c6c4927b
RR
504 cpumask_var_t span;
505 cpumask_var_t online;
637f5085 506
0eab9146 507 /*
637f5085
GH
508 * The "RT overload" flag: it gets set if a CPU has more than
509 * one runnable RT task.
510 */
c6c4927b 511 cpumask_var_t rto_mask;
0eab9146 512 atomic_t rto_count;
6e0534f2
GH
513#ifdef CONFIG_SMP
514 struct cpupri cpupri;
515#endif
7a09b1a2
VS
516#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
517 /*
518 * Preferred wake up cpu nominated by sched_mc balance that will be
519 * used when most cpus are idle in the system indicating overall very
520 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
521 */
522 unsigned int sched_mc_preferred_wakeup_cpu;
523#endif
57d885fe
GH
524};
525
dc938520
GH
526/*
527 * By default the system creates a single root-domain with all cpus as
528 * members (mimicking the global state we have today).
529 */
57d885fe
GH
530static struct root_domain def_root_domain;
531
532#endif
533
1da177e4
LT
534/*
535 * This is the main, per-CPU runqueue data structure.
536 *
537 * Locking rule: those places that want to lock multiple runqueues
538 * (such as the load balancing or the thread migration code), lock
539 * acquire operations must be ordered by ascending &runqueue.
540 */
70b97a7f 541struct rq {
d8016491
IM
542 /* runqueue lock: */
543 spinlock_t lock;
1da177e4
LT
544
545 /*
546 * nr_running and cpu_load should be in the same cacheline because
547 * remote CPUs use both these fields when doing load calculation.
548 */
549 unsigned long nr_running;
6aa645ea
IM
550 #define CPU_LOAD_IDX_MAX 5
551 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 552 unsigned char idle_at_tick;
46cb4b7c 553#ifdef CONFIG_NO_HZ
15934a37 554 unsigned long last_tick_seen;
46cb4b7c
SS
555 unsigned char in_nohz_recently;
556#endif
d8016491
IM
557 /* capture load from *all* tasks on this cpu: */
558 struct load_weight load;
6aa645ea
IM
559 unsigned long nr_load_updates;
560 u64 nr_switches;
561
562 struct cfs_rq cfs;
6f505b16 563 struct rt_rq rt;
6f505b16 564
6aa645ea 565#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
566 /* list of leaf cfs_rq on this cpu: */
567 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
568#endif
569#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 570 struct list_head leaf_rt_rq_list;
1da177e4 571#endif
1da177e4
LT
572
573 /*
574 * This is part of a global counter where only the total sum
575 * over all CPUs matters. A task can increase this counter on
576 * one CPU and if it got migrated afterwards it may decrease
577 * it on another CPU. Always updated under the runqueue lock:
578 */
579 unsigned long nr_uninterruptible;
580
36c8b586 581 struct task_struct *curr, *idle;
c9819f45 582 unsigned long next_balance;
1da177e4 583 struct mm_struct *prev_mm;
6aa645ea 584
3e51f33f 585 u64 clock;
6aa645ea 586
1da177e4
LT
587 atomic_t nr_iowait;
588
589#ifdef CONFIG_SMP
0eab9146 590 struct root_domain *rd;
1da177e4
LT
591 struct sched_domain *sd;
592
593 /* For active balancing */
594 int active_balance;
595 int push_cpu;
d8016491
IM
596 /* cpu of this runqueue: */
597 int cpu;
1f11eb6a 598 int online;
1da177e4 599
a8a51d5e 600 unsigned long avg_load_per_task;
1da177e4 601
36c8b586 602 struct task_struct *migration_thread;
1da177e4
LT
603 struct list_head migration_queue;
604#endif
605
8f4d37ec 606#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
607#ifdef CONFIG_SMP
608 int hrtick_csd_pending;
609 struct call_single_data hrtick_csd;
610#endif
8f4d37ec
PZ
611 struct hrtimer hrtick_timer;
612#endif
613
1da177e4
LT
614#ifdef CONFIG_SCHEDSTATS
615 /* latency stats */
616 struct sched_info rq_sched_info;
9c2c4802
KC
617 unsigned long long rq_cpu_time;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
619
620 /* sys_sched_yield() stats */
480b9434
KC
621 unsigned int yld_exp_empty;
622 unsigned int yld_act_empty;
623 unsigned int yld_both_empty;
624 unsigned int yld_count;
1da177e4
LT
625
626 /* schedule() stats */
480b9434
KC
627 unsigned int sched_switch;
628 unsigned int sched_count;
629 unsigned int sched_goidle;
1da177e4
LT
630
631 /* try_to_wake_up() stats */
480b9434
KC
632 unsigned int ttwu_count;
633 unsigned int ttwu_local;
b8efb561
IM
634
635 /* BKL stats */
480b9434 636 unsigned int bkl_count;
1da177e4
LT
637#endif
638};
639
f34e3b61 640static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 641
15afe09b 642static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 643{
15afe09b 644 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
645}
646
0a2966b4
CL
647static inline int cpu_of(struct rq *rq)
648{
649#ifdef CONFIG_SMP
650 return rq->cpu;
651#else
652 return 0;
653#endif
654}
655
674311d5
NP
656/*
657 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 658 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
659 *
660 * The domain tree of any CPU may only be accessed from within
661 * preempt-disabled sections.
662 */
48f24c4d
IM
663#define for_each_domain(cpu, __sd) \
664 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
665
666#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
667#define this_rq() (&__get_cpu_var(runqueues))
668#define task_rq(p) cpu_rq(task_cpu(p))
669#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
670
aa9c4c0f 671inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
672{
673 rq->clock = sched_clock_cpu(cpu_of(rq));
674}
675
bf5c91ba
IM
676/*
677 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
678 */
679#ifdef CONFIG_SCHED_DEBUG
680# define const_debug __read_mostly
681#else
682# define const_debug static const
683#endif
684
017730c1
IM
685/**
686 * runqueue_is_locked
687 *
688 * Returns true if the current cpu runqueue is locked.
689 * This interface allows printk to be called with the runqueue lock
690 * held and know whether or not it is OK to wake up the klogd.
691 */
692int runqueue_is_locked(void)
693{
694 int cpu = get_cpu();
695 struct rq *rq = cpu_rq(cpu);
696 int ret;
697
698 ret = spin_is_locked(&rq->lock);
699 put_cpu();
700 return ret;
701}
702
bf5c91ba
IM
703/*
704 * Debugging: various feature bits
705 */
f00b45c1
PZ
706
707#define SCHED_FEAT(name, enabled) \
708 __SCHED_FEAT_##name ,
709
bf5c91ba 710enum {
f00b45c1 711#include "sched_features.h"
bf5c91ba
IM
712};
713
f00b45c1
PZ
714#undef SCHED_FEAT
715
716#define SCHED_FEAT(name, enabled) \
717 (1UL << __SCHED_FEAT_##name) * enabled |
718
bf5c91ba 719const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
720#include "sched_features.h"
721 0;
722
723#undef SCHED_FEAT
724
725#ifdef CONFIG_SCHED_DEBUG
726#define SCHED_FEAT(name, enabled) \
727 #name ,
728
983ed7a6 729static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
730#include "sched_features.h"
731 NULL
732};
733
734#undef SCHED_FEAT
735
34f3a814 736static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 737{
f00b45c1
PZ
738 int i;
739
740 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
741 if (!(sysctl_sched_features & (1UL << i)))
742 seq_puts(m, "NO_");
743 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 744 }
34f3a814 745 seq_puts(m, "\n");
f00b45c1 746
34f3a814 747 return 0;
f00b45c1
PZ
748}
749
750static ssize_t
751sched_feat_write(struct file *filp, const char __user *ubuf,
752 size_t cnt, loff_t *ppos)
753{
754 char buf[64];
755 char *cmp = buf;
756 int neg = 0;
757 int i;
758
759 if (cnt > 63)
760 cnt = 63;
761
762 if (copy_from_user(&buf, ubuf, cnt))
763 return -EFAULT;
764
765 buf[cnt] = 0;
766
c24b7c52 767 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
768 neg = 1;
769 cmp += 3;
770 }
771
772 for (i = 0; sched_feat_names[i]; i++) {
773 int len = strlen(sched_feat_names[i]);
774
775 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
776 if (neg)
777 sysctl_sched_features &= ~(1UL << i);
778 else
779 sysctl_sched_features |= (1UL << i);
780 break;
781 }
782 }
783
784 if (!sched_feat_names[i])
785 return -EINVAL;
786
787 filp->f_pos += cnt;
788
789 return cnt;
790}
791
34f3a814
LZ
792static int sched_feat_open(struct inode *inode, struct file *filp)
793{
794 return single_open(filp, sched_feat_show, NULL);
795}
796
f00b45c1 797static struct file_operations sched_feat_fops = {
34f3a814
LZ
798 .open = sched_feat_open,
799 .write = sched_feat_write,
800 .read = seq_read,
801 .llseek = seq_lseek,
802 .release = single_release,
f00b45c1
PZ
803};
804
805static __init int sched_init_debug(void)
806{
f00b45c1
PZ
807 debugfs_create_file("sched_features", 0644, NULL, NULL,
808 &sched_feat_fops);
809
810 return 0;
811}
812late_initcall(sched_init_debug);
813
814#endif
815
816#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 817
b82d9fdd
PZ
818/*
819 * Number of tasks to iterate in a single balance run.
820 * Limited because this is done with IRQs disabled.
821 */
822const_debug unsigned int sysctl_sched_nr_migrate = 32;
823
2398f2c6
PZ
824/*
825 * ratelimit for updating the group shares.
55cd5340 826 * default: 0.25ms
2398f2c6 827 */
55cd5340 828unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 829
ffda12a1
PZ
830/*
831 * Inject some fuzzyness into changing the per-cpu group shares
832 * this avoids remote rq-locks at the expense of fairness.
833 * default: 4
834 */
835unsigned int sysctl_sched_shares_thresh = 4;
836
fa85ae24 837/*
9f0c1e56 838 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
839 * default: 1s
840 */
9f0c1e56 841unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 842
6892b75e
IM
843static __read_mostly int scheduler_running;
844
9f0c1e56
PZ
845/*
846 * part of the period that we allow rt tasks to run in us.
847 * default: 0.95s
848 */
849int sysctl_sched_rt_runtime = 950000;
fa85ae24 850
d0b27fa7
PZ
851static inline u64 global_rt_period(void)
852{
853 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
854}
855
856static inline u64 global_rt_runtime(void)
857{
e26873bb 858 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
859 return RUNTIME_INF;
860
861 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
862}
fa85ae24 863
1da177e4 864#ifndef prepare_arch_switch
4866cde0
NP
865# define prepare_arch_switch(next) do { } while (0)
866#endif
867#ifndef finish_arch_switch
868# define finish_arch_switch(prev) do { } while (0)
869#endif
870
051a1d1a
DA
871static inline int task_current(struct rq *rq, struct task_struct *p)
872{
873 return rq->curr == p;
874}
875
4866cde0 876#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 877static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 878{
051a1d1a 879 return task_current(rq, p);
4866cde0
NP
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884}
885
70b97a7f 886static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 887{
da04c035
IM
888#ifdef CONFIG_DEBUG_SPINLOCK
889 /* this is a valid case when another task releases the spinlock */
890 rq->lock.owner = current;
891#endif
8a25d5de
IM
892 /*
893 * If we are tracking spinlock dependencies then we have to
894 * fix up the runqueue lock - which gets 'carried over' from
895 * prev into current:
896 */
897 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
898
4866cde0
NP
899 spin_unlock_irq(&rq->lock);
900}
901
902#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 903static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
904{
905#ifdef CONFIG_SMP
906 return p->oncpu;
907#else
051a1d1a 908 return task_current(rq, p);
4866cde0
NP
909#endif
910}
911
70b97a7f 912static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
913{
914#ifdef CONFIG_SMP
915 /*
916 * We can optimise this out completely for !SMP, because the
917 * SMP rebalancing from interrupt is the only thing that cares
918 * here.
919 */
920 next->oncpu = 1;
921#endif
922#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 spin_unlock_irq(&rq->lock);
924#else
925 spin_unlock(&rq->lock);
926#endif
927}
928
70b97a7f 929static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
930{
931#ifdef CONFIG_SMP
932 /*
933 * After ->oncpu is cleared, the task can be moved to a different CPU.
934 * We must ensure this doesn't happen until the switch is completely
935 * finished.
936 */
937 smp_wmb();
938 prev->oncpu = 0;
939#endif
940#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 local_irq_enable();
1da177e4 942#endif
4866cde0
NP
943}
944#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 945
b29739f9
IM
946/*
947 * __task_rq_lock - lock the runqueue a given task resides on.
948 * Must be called interrupts disabled.
949 */
70b97a7f 950static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
951 __acquires(rq->lock)
952{
3a5c359a
AK
953 for (;;) {
954 struct rq *rq = task_rq(p);
955 spin_lock(&rq->lock);
956 if (likely(rq == task_rq(p)))
957 return rq;
b29739f9 958 spin_unlock(&rq->lock);
b29739f9 959 }
b29739f9
IM
960}
961
1da177e4
LT
962/*
963 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 964 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
965 * explicitly disabling preemption.
966 */
70b97a7f 967static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
968 __acquires(rq->lock)
969{
70b97a7f 970 struct rq *rq;
1da177e4 971
3a5c359a
AK
972 for (;;) {
973 local_irq_save(*flags);
974 rq = task_rq(p);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
977 return rq;
1da177e4 978 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 979 }
1da177e4
LT
980}
981
aa9c4c0f
IM
982void curr_rq_lock_irq_save(unsigned long *flags)
983 __acquires(rq->lock)
984{
985 struct rq *rq;
986
987 local_irq_save(*flags);
988 rq = cpu_rq(smp_processor_id());
989 spin_lock(&rq->lock);
990}
991
992void curr_rq_unlock_irq_restore(unsigned long *flags)
993 __releases(rq->lock)
994{
995 struct rq *rq;
996
997 rq = cpu_rq(smp_processor_id());
998 spin_unlock(&rq->lock);
999 local_irq_restore(*flags);
1000}
1001
ad474cac
ON
1002void task_rq_unlock_wait(struct task_struct *p)
1003{
1004 struct rq *rq = task_rq(p);
1005
1006 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1007 spin_unlock_wait(&rq->lock);
1008}
1009
a9957449 1010static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1011 __releases(rq->lock)
1012{
1013 spin_unlock(&rq->lock);
1014}
1015
70b97a7f 1016static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1017 __releases(rq->lock)
1018{
1019 spin_unlock_irqrestore(&rq->lock, *flags);
1020}
1021
1da177e4 1022/*
cc2a73b5 1023 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1024 */
a9957449 1025static struct rq *this_rq_lock(void)
1da177e4
LT
1026 __acquires(rq->lock)
1027{
70b97a7f 1028 struct rq *rq;
1da177e4
LT
1029
1030 local_irq_disable();
1031 rq = this_rq();
1032 spin_lock(&rq->lock);
1033
1034 return rq;
1035}
1036
8f4d37ec
PZ
1037#ifdef CONFIG_SCHED_HRTICK
1038/*
1039 * Use HR-timers to deliver accurate preemption points.
1040 *
1041 * Its all a bit involved since we cannot program an hrt while holding the
1042 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1043 * reschedule event.
1044 *
1045 * When we get rescheduled we reprogram the hrtick_timer outside of the
1046 * rq->lock.
1047 */
8f4d37ec
PZ
1048
1049/*
1050 * Use hrtick when:
1051 * - enabled by features
1052 * - hrtimer is actually high res
1053 */
1054static inline int hrtick_enabled(struct rq *rq)
1055{
1056 if (!sched_feat(HRTICK))
1057 return 0;
ba42059f 1058 if (!cpu_active(cpu_of(rq)))
b328ca18 1059 return 0;
8f4d37ec
PZ
1060 return hrtimer_is_hres_active(&rq->hrtick_timer);
1061}
1062
8f4d37ec
PZ
1063static void hrtick_clear(struct rq *rq)
1064{
1065 if (hrtimer_active(&rq->hrtick_timer))
1066 hrtimer_cancel(&rq->hrtick_timer);
1067}
1068
8f4d37ec
PZ
1069/*
1070 * High-resolution timer tick.
1071 * Runs from hardirq context with interrupts disabled.
1072 */
1073static enum hrtimer_restart hrtick(struct hrtimer *timer)
1074{
1075 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1076
1077 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1078
1079 spin_lock(&rq->lock);
3e51f33f 1080 update_rq_clock(rq);
8f4d37ec
PZ
1081 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1082 spin_unlock(&rq->lock);
1083
1084 return HRTIMER_NORESTART;
1085}
1086
95e904c7 1087#ifdef CONFIG_SMP
31656519
PZ
1088/*
1089 * called from hardirq (IPI) context
1090 */
1091static void __hrtick_start(void *arg)
b328ca18 1092{
31656519 1093 struct rq *rq = arg;
b328ca18 1094
31656519
PZ
1095 spin_lock(&rq->lock);
1096 hrtimer_restart(&rq->hrtick_timer);
1097 rq->hrtick_csd_pending = 0;
1098 spin_unlock(&rq->lock);
b328ca18
PZ
1099}
1100
31656519
PZ
1101/*
1102 * Called to set the hrtick timer state.
1103 *
1104 * called with rq->lock held and irqs disabled
1105 */
1106static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1107{
31656519
PZ
1108 struct hrtimer *timer = &rq->hrtick_timer;
1109 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1110
cc584b21 1111 hrtimer_set_expires(timer, time);
31656519
PZ
1112
1113 if (rq == this_rq()) {
1114 hrtimer_restart(timer);
1115 } else if (!rq->hrtick_csd_pending) {
1116 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1117 rq->hrtick_csd_pending = 1;
1118 }
b328ca18
PZ
1119}
1120
1121static int
1122hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1123{
1124 int cpu = (int)(long)hcpu;
1125
1126 switch (action) {
1127 case CPU_UP_CANCELED:
1128 case CPU_UP_CANCELED_FROZEN:
1129 case CPU_DOWN_PREPARE:
1130 case CPU_DOWN_PREPARE_FROZEN:
1131 case CPU_DEAD:
1132 case CPU_DEAD_FROZEN:
31656519 1133 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1134 return NOTIFY_OK;
1135 }
1136
1137 return NOTIFY_DONE;
1138}
1139
fa748203 1140static __init void init_hrtick(void)
b328ca18
PZ
1141{
1142 hotcpu_notifier(hotplug_hrtick, 0);
1143}
31656519
PZ
1144#else
1145/*
1146 * Called to set the hrtick timer state.
1147 *
1148 * called with rq->lock held and irqs disabled
1149 */
1150static void hrtick_start(struct rq *rq, u64 delay)
1151{
1152 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1153}
b328ca18 1154
006c75f1 1155static inline void init_hrtick(void)
8f4d37ec 1156{
8f4d37ec 1157}
31656519 1158#endif /* CONFIG_SMP */
8f4d37ec 1159
31656519 1160static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1161{
31656519
PZ
1162#ifdef CONFIG_SMP
1163 rq->hrtick_csd_pending = 0;
8f4d37ec 1164
31656519
PZ
1165 rq->hrtick_csd.flags = 0;
1166 rq->hrtick_csd.func = __hrtick_start;
1167 rq->hrtick_csd.info = rq;
1168#endif
8f4d37ec 1169
31656519
PZ
1170 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1171 rq->hrtick_timer.function = hrtick;
8f4d37ec 1172}
006c75f1 1173#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1174static inline void hrtick_clear(struct rq *rq)
1175{
1176}
1177
8f4d37ec
PZ
1178static inline void init_rq_hrtick(struct rq *rq)
1179{
1180}
1181
b328ca18
PZ
1182static inline void init_hrtick(void)
1183{
1184}
006c75f1 1185#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1186
c24d20db
IM
1187/*
1188 * resched_task - mark a task 'to be rescheduled now'.
1189 *
1190 * On UP this means the setting of the need_resched flag, on SMP it
1191 * might also involve a cross-CPU call to trigger the scheduler on
1192 * the target CPU.
1193 */
1194#ifdef CONFIG_SMP
1195
1196#ifndef tsk_is_polling
1197#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1198#endif
1199
31656519 1200static void resched_task(struct task_struct *p)
c24d20db
IM
1201{
1202 int cpu;
1203
1204 assert_spin_locked(&task_rq(p)->lock);
1205
31656519 1206 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1207 return;
1208
31656519 1209 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1210
1211 cpu = task_cpu(p);
1212 if (cpu == smp_processor_id())
1213 return;
1214
1215 /* NEED_RESCHED must be visible before we test polling */
1216 smp_mb();
1217 if (!tsk_is_polling(p))
1218 smp_send_reschedule(cpu);
1219}
1220
1221static void resched_cpu(int cpu)
1222{
1223 struct rq *rq = cpu_rq(cpu);
1224 unsigned long flags;
1225
1226 if (!spin_trylock_irqsave(&rq->lock, flags))
1227 return;
1228 resched_task(cpu_curr(cpu));
1229 spin_unlock_irqrestore(&rq->lock, flags);
1230}
06d8308c
TG
1231
1232#ifdef CONFIG_NO_HZ
1233/*
1234 * When add_timer_on() enqueues a timer into the timer wheel of an
1235 * idle CPU then this timer might expire before the next timer event
1236 * which is scheduled to wake up that CPU. In case of a completely
1237 * idle system the next event might even be infinite time into the
1238 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1239 * leaves the inner idle loop so the newly added timer is taken into
1240 * account when the CPU goes back to idle and evaluates the timer
1241 * wheel for the next timer event.
1242 */
1243void wake_up_idle_cpu(int cpu)
1244{
1245 struct rq *rq = cpu_rq(cpu);
1246
1247 if (cpu == smp_processor_id())
1248 return;
1249
1250 /*
1251 * This is safe, as this function is called with the timer
1252 * wheel base lock of (cpu) held. When the CPU is on the way
1253 * to idle and has not yet set rq->curr to idle then it will
1254 * be serialized on the timer wheel base lock and take the new
1255 * timer into account automatically.
1256 */
1257 if (rq->curr != rq->idle)
1258 return;
1259
1260 /*
1261 * We can set TIF_RESCHED on the idle task of the other CPU
1262 * lockless. The worst case is that the other CPU runs the
1263 * idle task through an additional NOOP schedule()
1264 */
1265 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1266
1267 /* NEED_RESCHED must be visible before we test polling */
1268 smp_mb();
1269 if (!tsk_is_polling(rq->idle))
1270 smp_send_reschedule(cpu);
1271}
6d6bc0ad 1272#endif /* CONFIG_NO_HZ */
06d8308c 1273
6d6bc0ad 1274#else /* !CONFIG_SMP */
31656519 1275static void resched_task(struct task_struct *p)
c24d20db
IM
1276{
1277 assert_spin_locked(&task_rq(p)->lock);
31656519 1278 set_tsk_need_resched(p);
c24d20db 1279}
6d6bc0ad 1280#endif /* CONFIG_SMP */
c24d20db 1281
45bf76df
IM
1282#if BITS_PER_LONG == 32
1283# define WMULT_CONST (~0UL)
1284#else
1285# define WMULT_CONST (1UL << 32)
1286#endif
1287
1288#define WMULT_SHIFT 32
1289
194081eb
IM
1290/*
1291 * Shift right and round:
1292 */
cf2ab469 1293#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1294
a7be37ac
PZ
1295/*
1296 * delta *= weight / lw
1297 */
cb1c4fc9 1298static unsigned long
45bf76df
IM
1299calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1300 struct load_weight *lw)
1301{
1302 u64 tmp;
1303
7a232e03
LJ
1304 if (!lw->inv_weight) {
1305 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1306 lw->inv_weight = 1;
1307 else
1308 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1309 / (lw->weight+1);
1310 }
45bf76df
IM
1311
1312 tmp = (u64)delta_exec * weight;
1313 /*
1314 * Check whether we'd overflow the 64-bit multiplication:
1315 */
194081eb 1316 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1317 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1318 WMULT_SHIFT/2);
1319 else
cf2ab469 1320 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1321
ecf691da 1322 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1323}
1324
1091985b 1325static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1326{
1327 lw->weight += inc;
e89996ae 1328 lw->inv_weight = 0;
45bf76df
IM
1329}
1330
1091985b 1331static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1332{
1333 lw->weight -= dec;
e89996ae 1334 lw->inv_weight = 0;
45bf76df
IM
1335}
1336
2dd73a4f
PW
1337/*
1338 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1339 * of tasks with abnormal "nice" values across CPUs the contribution that
1340 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1341 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1342 * scaled version of the new time slice allocation that they receive on time
1343 * slice expiry etc.
1344 */
1345
cce7ade8
PZ
1346#define WEIGHT_IDLEPRIO 3
1347#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1348
1349/*
1350 * Nice levels are multiplicative, with a gentle 10% change for every
1351 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1352 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1353 * that remained on nice 0.
1354 *
1355 * The "10% effect" is relative and cumulative: from _any_ nice level,
1356 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1357 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1358 * If a task goes up by ~10% and another task goes down by ~10% then
1359 * the relative distance between them is ~25%.)
dd41f596
IM
1360 */
1361static const int prio_to_weight[40] = {
254753dc
IM
1362 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1363 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1364 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1365 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1366 /* 0 */ 1024, 820, 655, 526, 423,
1367 /* 5 */ 335, 272, 215, 172, 137,
1368 /* 10 */ 110, 87, 70, 56, 45,
1369 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1370};
1371
5714d2de
IM
1372/*
1373 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1374 *
1375 * In cases where the weight does not change often, we can use the
1376 * precalculated inverse to speed up arithmetics by turning divisions
1377 * into multiplications:
1378 */
dd41f596 1379static const u32 prio_to_wmult[40] = {
254753dc
IM
1380 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1381 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1382 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1383 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1384 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1385 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1386 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1387 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1388};
2dd73a4f 1389
dd41f596
IM
1390static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1391
1392/*
1393 * runqueue iterator, to support SMP load-balancing between different
1394 * scheduling classes, without having to expose their internal data
1395 * structures to the load-balancing proper:
1396 */
1397struct rq_iterator {
1398 void *arg;
1399 struct task_struct *(*start)(void *);
1400 struct task_struct *(*next)(void *);
1401};
1402
e1d1484f
PW
1403#ifdef CONFIG_SMP
1404static unsigned long
1405balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1406 unsigned long max_load_move, struct sched_domain *sd,
1407 enum cpu_idle_type idle, int *all_pinned,
1408 int *this_best_prio, struct rq_iterator *iterator);
1409
1410static int
1411iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 struct sched_domain *sd, enum cpu_idle_type idle,
1413 struct rq_iterator *iterator);
e1d1484f 1414#endif
dd41f596 1415
d842de87
SV
1416#ifdef CONFIG_CGROUP_CPUACCT
1417static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1418#else
1419static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1420#endif
1421
18d95a28
PZ
1422static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1423{
1424 update_load_add(&rq->load, load);
1425}
1426
1427static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1428{
1429 update_load_sub(&rq->load, load);
1430}
1431
7940ca36 1432#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1433typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1434
1435/*
1436 * Iterate the full tree, calling @down when first entering a node and @up when
1437 * leaving it for the final time.
1438 */
eb755805 1439static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1440{
1441 struct task_group *parent, *child;
eb755805 1442 int ret;
c09595f6
PZ
1443
1444 rcu_read_lock();
1445 parent = &root_task_group;
1446down:
eb755805
PZ
1447 ret = (*down)(parent, data);
1448 if (ret)
1449 goto out_unlock;
c09595f6
PZ
1450 list_for_each_entry_rcu(child, &parent->children, siblings) {
1451 parent = child;
1452 goto down;
1453
1454up:
1455 continue;
1456 }
eb755805
PZ
1457 ret = (*up)(parent, data);
1458 if (ret)
1459 goto out_unlock;
c09595f6
PZ
1460
1461 child = parent;
1462 parent = parent->parent;
1463 if (parent)
1464 goto up;
eb755805 1465out_unlock:
c09595f6 1466 rcu_read_unlock();
eb755805
PZ
1467
1468 return ret;
c09595f6
PZ
1469}
1470
eb755805
PZ
1471static int tg_nop(struct task_group *tg, void *data)
1472{
1473 return 0;
c09595f6 1474}
eb755805
PZ
1475#endif
1476
1477#ifdef CONFIG_SMP
1478static unsigned long source_load(int cpu, int type);
1479static unsigned long target_load(int cpu, int type);
1480static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1481
1482static unsigned long cpu_avg_load_per_task(int cpu)
1483{
1484 struct rq *rq = cpu_rq(cpu);
af6d596f 1485 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1486
4cd42620
SR
1487 if (nr_running)
1488 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1489 else
1490 rq->avg_load_per_task = 0;
eb755805
PZ
1491
1492 return rq->avg_load_per_task;
1493}
1494
1495#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1496
c09595f6
PZ
1497static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1498
1499/*
1500 * Calculate and set the cpu's group shares.
1501 */
1502static void
ffda12a1
PZ
1503update_group_shares_cpu(struct task_group *tg, int cpu,
1504 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1505{
c09595f6
PZ
1506 unsigned long shares;
1507 unsigned long rq_weight;
1508
c8cba857 1509 if (!tg->se[cpu])
c09595f6
PZ
1510 return;
1511
ec4e0e2f 1512 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1513
c09595f6
PZ
1514 /*
1515 * \Sum shares * rq_weight
1516 * shares = -----------------------
1517 * \Sum rq_weight
1518 *
1519 */
ec4e0e2f 1520 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1521 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1522
ffda12a1
PZ
1523 if (abs(shares - tg->se[cpu]->load.weight) >
1524 sysctl_sched_shares_thresh) {
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long flags;
c09595f6 1527
ffda12a1 1528 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1529 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1530
ffda12a1
PZ
1531 __set_se_shares(tg->se[cpu], shares);
1532 spin_unlock_irqrestore(&rq->lock, flags);
1533 }
18d95a28 1534}
c09595f6
PZ
1535
1536/*
c8cba857
PZ
1537 * Re-compute the task group their per cpu shares over the given domain.
1538 * This needs to be done in a bottom-up fashion because the rq weight of a
1539 * parent group depends on the shares of its child groups.
c09595f6 1540 */
eb755805 1541static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1542{
ec4e0e2f 1543 unsigned long weight, rq_weight = 0;
c8cba857 1544 unsigned long shares = 0;
eb755805 1545 struct sched_domain *sd = data;
c8cba857 1546 int i;
c09595f6 1547
758b2cdc 1548 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1549 /*
1550 * If there are currently no tasks on the cpu pretend there
1551 * is one of average load so that when a new task gets to
1552 * run here it will not get delayed by group starvation.
1553 */
1554 weight = tg->cfs_rq[i]->load.weight;
1555 if (!weight)
1556 weight = NICE_0_LOAD;
1557
1558 tg->cfs_rq[i]->rq_weight = weight;
1559 rq_weight += weight;
c8cba857 1560 shares += tg->cfs_rq[i]->shares;
c09595f6 1561 }
c09595f6 1562
c8cba857
PZ
1563 if ((!shares && rq_weight) || shares > tg->shares)
1564 shares = tg->shares;
1565
1566 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1567 shares = tg->shares;
c09595f6 1568
758b2cdc 1569 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1570 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1571
1572 return 0;
c09595f6
PZ
1573}
1574
1575/*
c8cba857
PZ
1576 * Compute the cpu's hierarchical load factor for each task group.
1577 * This needs to be done in a top-down fashion because the load of a child
1578 * group is a fraction of its parents load.
c09595f6 1579 */
eb755805 1580static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1581{
c8cba857 1582 unsigned long load;
eb755805 1583 long cpu = (long)data;
c09595f6 1584
c8cba857
PZ
1585 if (!tg->parent) {
1586 load = cpu_rq(cpu)->load.weight;
1587 } else {
1588 load = tg->parent->cfs_rq[cpu]->h_load;
1589 load *= tg->cfs_rq[cpu]->shares;
1590 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1591 }
c09595f6 1592
c8cba857 1593 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1594
eb755805 1595 return 0;
c09595f6
PZ
1596}
1597
c8cba857 1598static void update_shares(struct sched_domain *sd)
4d8d595d 1599{
2398f2c6
PZ
1600 u64 now = cpu_clock(raw_smp_processor_id());
1601 s64 elapsed = now - sd->last_update;
1602
1603 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1604 sd->last_update = now;
eb755805 1605 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1606 }
4d8d595d
PZ
1607}
1608
3e5459b4
PZ
1609static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1610{
1611 spin_unlock(&rq->lock);
1612 update_shares(sd);
1613 spin_lock(&rq->lock);
1614}
1615
eb755805 1616static void update_h_load(long cpu)
c09595f6 1617{
eb755805 1618 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1619}
1620
c09595f6
PZ
1621#else
1622
c8cba857 1623static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1624{
1625}
1626
3e5459b4
PZ
1627static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1628{
1629}
1630
18d95a28
PZ
1631#endif
1632
70574a99
AD
1633/*
1634 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1635 */
1636static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1637 __releases(this_rq->lock)
1638 __acquires(busiest->lock)
1639 __acquires(this_rq->lock)
1640{
1641 int ret = 0;
1642
1643 if (unlikely(!irqs_disabled())) {
1644 /* printk() doesn't work good under rq->lock */
1645 spin_unlock(&this_rq->lock);
1646 BUG_ON(1);
1647 }
1648 if (unlikely(!spin_trylock(&busiest->lock))) {
1649 if (busiest < this_rq) {
1650 spin_unlock(&this_rq->lock);
1651 spin_lock(&busiest->lock);
1652 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1653 ret = 1;
1654 } else
1655 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1656 }
1657 return ret;
1658}
1659
1660static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1661 __releases(busiest->lock)
1662{
1663 spin_unlock(&busiest->lock);
1664 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1665}
18d95a28
PZ
1666#endif
1667
30432094 1668#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1669static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1670{
30432094 1671#ifdef CONFIG_SMP
34e83e85
IM
1672 cfs_rq->shares = shares;
1673#endif
1674}
30432094 1675#endif
e7693a36 1676
dd41f596 1677#include "sched_stats.h"
dd41f596 1678#include "sched_idletask.c"
5522d5d5
IM
1679#include "sched_fair.c"
1680#include "sched_rt.c"
dd41f596
IM
1681#ifdef CONFIG_SCHED_DEBUG
1682# include "sched_debug.c"
1683#endif
1684
1685#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1686#define for_each_class(class) \
1687 for (class = sched_class_highest; class; class = class->next)
dd41f596 1688
c09595f6 1689static void inc_nr_running(struct rq *rq)
9c217245
IM
1690{
1691 rq->nr_running++;
9c217245
IM
1692}
1693
c09595f6 1694static void dec_nr_running(struct rq *rq)
9c217245
IM
1695{
1696 rq->nr_running--;
9c217245
IM
1697}
1698
45bf76df
IM
1699static void set_load_weight(struct task_struct *p)
1700{
1701 if (task_has_rt_policy(p)) {
dd41f596
IM
1702 p->se.load.weight = prio_to_weight[0] * 2;
1703 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1704 return;
1705 }
45bf76df 1706
dd41f596
IM
1707 /*
1708 * SCHED_IDLE tasks get minimal weight:
1709 */
1710 if (p->policy == SCHED_IDLE) {
1711 p->se.load.weight = WEIGHT_IDLEPRIO;
1712 p->se.load.inv_weight = WMULT_IDLEPRIO;
1713 return;
1714 }
71f8bd46 1715
dd41f596
IM
1716 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1717 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1718}
1719
2087a1ad
GH
1720static void update_avg(u64 *avg, u64 sample)
1721{
1722 s64 diff = sample - *avg;
1723 *avg += diff >> 3;
1724}
1725
8159f87e 1726static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1727{
dd41f596 1728 sched_info_queued(p);
fd390f6a 1729 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1730 p->se.on_rq = 1;
71f8bd46
IM
1731}
1732
69be72c1 1733static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1734{
2087a1ad
GH
1735 if (sleep && p->se.last_wakeup) {
1736 update_avg(&p->se.avg_overlap,
1737 p->se.sum_exec_runtime - p->se.last_wakeup);
1738 p->se.last_wakeup = 0;
1739 }
1740
46ac22ba 1741 sched_info_dequeued(p);
f02231e5 1742 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1743 p->se.on_rq = 0;
71f8bd46
IM
1744}
1745
14531189 1746/*
dd41f596 1747 * __normal_prio - return the priority that is based on the static prio
14531189 1748 */
14531189
IM
1749static inline int __normal_prio(struct task_struct *p)
1750{
dd41f596 1751 return p->static_prio;
14531189
IM
1752}
1753
b29739f9
IM
1754/*
1755 * Calculate the expected normal priority: i.e. priority
1756 * without taking RT-inheritance into account. Might be
1757 * boosted by interactivity modifiers. Changes upon fork,
1758 * setprio syscalls, and whenever the interactivity
1759 * estimator recalculates.
1760 */
36c8b586 1761static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1762{
1763 int prio;
1764
e05606d3 1765 if (task_has_rt_policy(p))
b29739f9
IM
1766 prio = MAX_RT_PRIO-1 - p->rt_priority;
1767 else
1768 prio = __normal_prio(p);
1769 return prio;
1770}
1771
1772/*
1773 * Calculate the current priority, i.e. the priority
1774 * taken into account by the scheduler. This value might
1775 * be boosted by RT tasks, or might be boosted by
1776 * interactivity modifiers. Will be RT if the task got
1777 * RT-boosted. If not then it returns p->normal_prio.
1778 */
36c8b586 1779static int effective_prio(struct task_struct *p)
b29739f9
IM
1780{
1781 p->normal_prio = normal_prio(p);
1782 /*
1783 * If we are RT tasks or we were boosted to RT priority,
1784 * keep the priority unchanged. Otherwise, update priority
1785 * to the normal priority:
1786 */
1787 if (!rt_prio(p->prio))
1788 return p->normal_prio;
1789 return p->prio;
1790}
1791
1da177e4 1792/*
dd41f596 1793 * activate_task - move a task to the runqueue.
1da177e4 1794 */
dd41f596 1795static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1796{
d9514f6c 1797 if (task_contributes_to_load(p))
dd41f596 1798 rq->nr_uninterruptible--;
1da177e4 1799
8159f87e 1800 enqueue_task(rq, p, wakeup);
c09595f6 1801 inc_nr_running(rq);
1da177e4
LT
1802}
1803
1da177e4
LT
1804/*
1805 * deactivate_task - remove a task from the runqueue.
1806 */
2e1cb74a 1807static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1808{
d9514f6c 1809 if (task_contributes_to_load(p))
dd41f596
IM
1810 rq->nr_uninterruptible++;
1811
69be72c1 1812 dequeue_task(rq, p, sleep);
c09595f6 1813 dec_nr_running(rq);
1da177e4
LT
1814}
1815
1da177e4
LT
1816/**
1817 * task_curr - is this task currently executing on a CPU?
1818 * @p: the task in question.
1819 */
36c8b586 1820inline int task_curr(const struct task_struct *p)
1da177e4
LT
1821{
1822 return cpu_curr(task_cpu(p)) == p;
1823}
1824
dd41f596
IM
1825static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1826{
6f505b16 1827 set_task_rq(p, cpu);
dd41f596 1828#ifdef CONFIG_SMP
ce96b5ac
DA
1829 /*
1830 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1831 * successfuly executed on another CPU. We must ensure that updates of
1832 * per-task data have been completed by this moment.
1833 */
1834 smp_wmb();
dd41f596 1835 task_thread_info(p)->cpu = cpu;
dd41f596 1836#endif
2dd73a4f
PW
1837}
1838
cb469845
SR
1839static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1840 const struct sched_class *prev_class,
1841 int oldprio, int running)
1842{
1843 if (prev_class != p->sched_class) {
1844 if (prev_class->switched_from)
1845 prev_class->switched_from(rq, p, running);
1846 p->sched_class->switched_to(rq, p, running);
1847 } else
1848 p->sched_class->prio_changed(rq, p, oldprio, running);
1849}
1850
1da177e4 1851#ifdef CONFIG_SMP
c65cc870 1852
e958b360
TG
1853/* Used instead of source_load when we know the type == 0 */
1854static unsigned long weighted_cpuload(const int cpu)
1855{
1856 return cpu_rq(cpu)->load.weight;
1857}
1858
cc367732
IM
1859/*
1860 * Is this task likely cache-hot:
1861 */
e7693a36 1862static int
cc367732
IM
1863task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1864{
1865 s64 delta;
1866
f540a608
IM
1867 /*
1868 * Buddy candidates are cache hot:
1869 */
4793241b
PZ
1870 if (sched_feat(CACHE_HOT_BUDDY) &&
1871 (&p->se == cfs_rq_of(&p->se)->next ||
1872 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1873 return 1;
1874
cc367732
IM
1875 if (p->sched_class != &fair_sched_class)
1876 return 0;
1877
6bc1665b
IM
1878 if (sysctl_sched_migration_cost == -1)
1879 return 1;
1880 if (sysctl_sched_migration_cost == 0)
1881 return 0;
1882
cc367732
IM
1883 delta = now - p->se.exec_start;
1884
1885 return delta < (s64)sysctl_sched_migration_cost;
1886}
1887
1888
dd41f596 1889void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1890{
dd41f596
IM
1891 int old_cpu = task_cpu(p);
1892 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1893 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1894 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1895 u64 clock_offset;
dd41f596
IM
1896
1897 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1898
cbc34ed1
PZ
1899 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1900
6cfb0d5d
IM
1901#ifdef CONFIG_SCHEDSTATS
1902 if (p->se.wait_start)
1903 p->se.wait_start -= clock_offset;
dd41f596
IM
1904 if (p->se.sleep_start)
1905 p->se.sleep_start -= clock_offset;
1906 if (p->se.block_start)
1907 p->se.block_start -= clock_offset;
6c594c21 1908#endif
cc367732 1909 if (old_cpu != new_cpu) {
6c594c21
IM
1910 p->se.nr_migrations++;
1911#ifdef CONFIG_SCHEDSTATS
cc367732
IM
1912 if (task_hot(p, old_rq->clock, NULL))
1913 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 1914#endif
6c594c21 1915 }
2830cf8c
SV
1916 p->se.vruntime -= old_cfsrq->min_vruntime -
1917 new_cfsrq->min_vruntime;
dd41f596
IM
1918
1919 __set_task_cpu(p, new_cpu);
c65cc870
IM
1920}
1921
70b97a7f 1922struct migration_req {
1da177e4 1923 struct list_head list;
1da177e4 1924
36c8b586 1925 struct task_struct *task;
1da177e4
LT
1926 int dest_cpu;
1927
1da177e4 1928 struct completion done;
70b97a7f 1929};
1da177e4
LT
1930
1931/*
1932 * The task's runqueue lock must be held.
1933 * Returns true if you have to wait for migration thread.
1934 */
36c8b586 1935static int
70b97a7f 1936migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1937{
70b97a7f 1938 struct rq *rq = task_rq(p);
1da177e4
LT
1939
1940 /*
1941 * If the task is not on a runqueue (and not running), then
1942 * it is sufficient to simply update the task's cpu field.
1943 */
dd41f596 1944 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1945 set_task_cpu(p, dest_cpu);
1946 return 0;
1947 }
1948
1949 init_completion(&req->done);
1da177e4
LT
1950 req->task = p;
1951 req->dest_cpu = dest_cpu;
1952 list_add(&req->list, &rq->migration_queue);
48f24c4d 1953
1da177e4
LT
1954 return 1;
1955}
1956
1957/*
1958 * wait_task_inactive - wait for a thread to unschedule.
1959 *
85ba2d86
RM
1960 * If @match_state is nonzero, it's the @p->state value just checked and
1961 * not expected to change. If it changes, i.e. @p might have woken up,
1962 * then return zero. When we succeed in waiting for @p to be off its CPU,
1963 * we return a positive number (its total switch count). If a second call
1964 * a short while later returns the same number, the caller can be sure that
1965 * @p has remained unscheduled the whole time.
1966 *
1da177e4
LT
1967 * The caller must ensure that the task *will* unschedule sometime soon,
1968 * else this function might spin for a *long* time. This function can't
1969 * be called with interrupts off, or it may introduce deadlock with
1970 * smp_call_function() if an IPI is sent by the same process we are
1971 * waiting to become inactive.
1972 */
85ba2d86 1973unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1974{
1975 unsigned long flags;
dd41f596 1976 int running, on_rq;
85ba2d86 1977 unsigned long ncsw;
70b97a7f 1978 struct rq *rq;
1da177e4 1979
3a5c359a
AK
1980 for (;;) {
1981 /*
1982 * We do the initial early heuristics without holding
1983 * any task-queue locks at all. We'll only try to get
1984 * the runqueue lock when things look like they will
1985 * work out!
1986 */
1987 rq = task_rq(p);
fa490cfd 1988
3a5c359a
AK
1989 /*
1990 * If the task is actively running on another CPU
1991 * still, just relax and busy-wait without holding
1992 * any locks.
1993 *
1994 * NOTE! Since we don't hold any locks, it's not
1995 * even sure that "rq" stays as the right runqueue!
1996 * But we don't care, since "task_running()" will
1997 * return false if the runqueue has changed and p
1998 * is actually now running somewhere else!
1999 */
85ba2d86
RM
2000 while (task_running(rq, p)) {
2001 if (match_state && unlikely(p->state != match_state))
2002 return 0;
3a5c359a 2003 cpu_relax();
85ba2d86 2004 }
fa490cfd 2005
3a5c359a
AK
2006 /*
2007 * Ok, time to look more closely! We need the rq
2008 * lock now, to be *sure*. If we're wrong, we'll
2009 * just go back and repeat.
2010 */
2011 rq = task_rq_lock(p, &flags);
0a16b607 2012 trace_sched_wait_task(rq, p);
3a5c359a
AK
2013 running = task_running(rq, p);
2014 on_rq = p->se.on_rq;
85ba2d86 2015 ncsw = 0;
f31e11d8 2016 if (!match_state || p->state == match_state)
93dcf55f 2017 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2018 task_rq_unlock(rq, &flags);
fa490cfd 2019
85ba2d86
RM
2020 /*
2021 * If it changed from the expected state, bail out now.
2022 */
2023 if (unlikely(!ncsw))
2024 break;
2025
3a5c359a
AK
2026 /*
2027 * Was it really running after all now that we
2028 * checked with the proper locks actually held?
2029 *
2030 * Oops. Go back and try again..
2031 */
2032 if (unlikely(running)) {
2033 cpu_relax();
2034 continue;
2035 }
fa490cfd 2036
3a5c359a
AK
2037 /*
2038 * It's not enough that it's not actively running,
2039 * it must be off the runqueue _entirely_, and not
2040 * preempted!
2041 *
2042 * So if it wa still runnable (but just not actively
2043 * running right now), it's preempted, and we should
2044 * yield - it could be a while.
2045 */
2046 if (unlikely(on_rq)) {
2047 schedule_timeout_uninterruptible(1);
2048 continue;
2049 }
fa490cfd 2050
3a5c359a
AK
2051 /*
2052 * Ahh, all good. It wasn't running, and it wasn't
2053 * runnable, which means that it will never become
2054 * running in the future either. We're all done!
2055 */
2056 break;
2057 }
85ba2d86
RM
2058
2059 return ncsw;
1da177e4
LT
2060}
2061
2062/***
2063 * kick_process - kick a running thread to enter/exit the kernel
2064 * @p: the to-be-kicked thread
2065 *
2066 * Cause a process which is running on another CPU to enter
2067 * kernel-mode, without any delay. (to get signals handled.)
2068 *
2069 * NOTE: this function doesnt have to take the runqueue lock,
2070 * because all it wants to ensure is that the remote task enters
2071 * the kernel. If the IPI races and the task has been migrated
2072 * to another CPU then no harm is done and the purpose has been
2073 * achieved as well.
2074 */
36c8b586 2075void kick_process(struct task_struct *p)
1da177e4
LT
2076{
2077 int cpu;
2078
2079 preempt_disable();
2080 cpu = task_cpu(p);
2081 if ((cpu != smp_processor_id()) && task_curr(p))
2082 smp_send_reschedule(cpu);
2083 preempt_enable();
2084}
2085
2086/*
2dd73a4f
PW
2087 * Return a low guess at the load of a migration-source cpu weighted
2088 * according to the scheduling class and "nice" value.
1da177e4
LT
2089 *
2090 * We want to under-estimate the load of migration sources, to
2091 * balance conservatively.
2092 */
a9957449 2093static unsigned long source_load(int cpu, int type)
1da177e4 2094{
70b97a7f 2095 struct rq *rq = cpu_rq(cpu);
dd41f596 2096 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2097
93b75217 2098 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2099 return total;
b910472d 2100
dd41f596 2101 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2102}
2103
2104/*
2dd73a4f
PW
2105 * Return a high guess at the load of a migration-target cpu weighted
2106 * according to the scheduling class and "nice" value.
1da177e4 2107 */
a9957449 2108static unsigned long target_load(int cpu, int type)
1da177e4 2109{
70b97a7f 2110 struct rq *rq = cpu_rq(cpu);
dd41f596 2111 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2112
93b75217 2113 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2114 return total;
3b0bd9bc 2115
dd41f596 2116 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2117}
2118
147cbb4b
NP
2119/*
2120 * find_idlest_group finds and returns the least busy CPU group within the
2121 * domain.
2122 */
2123static struct sched_group *
2124find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2125{
2126 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2127 unsigned long min_load = ULONG_MAX, this_load = 0;
2128 int load_idx = sd->forkexec_idx;
2129 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2130
2131 do {
2132 unsigned long load, avg_load;
2133 int local_group;
2134 int i;
2135
da5a5522 2136 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2137 if (!cpumask_intersects(sched_group_cpus(group),
2138 &p->cpus_allowed))
3a5c359a 2139 continue;
da5a5522 2140
758b2cdc
RR
2141 local_group = cpumask_test_cpu(this_cpu,
2142 sched_group_cpus(group));
147cbb4b
NP
2143
2144 /* Tally up the load of all CPUs in the group */
2145 avg_load = 0;
2146
758b2cdc 2147 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2148 /* Bias balancing toward cpus of our domain */
2149 if (local_group)
2150 load = source_load(i, load_idx);
2151 else
2152 load = target_load(i, load_idx);
2153
2154 avg_load += load;
2155 }
2156
2157 /* Adjust by relative CPU power of the group */
5517d86b
ED
2158 avg_load = sg_div_cpu_power(group,
2159 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2160
2161 if (local_group) {
2162 this_load = avg_load;
2163 this = group;
2164 } else if (avg_load < min_load) {
2165 min_load = avg_load;
2166 idlest = group;
2167 }
3a5c359a 2168 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2169
2170 if (!idlest || 100*this_load < imbalance*min_load)
2171 return NULL;
2172 return idlest;
2173}
2174
2175/*
0feaece9 2176 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2177 */
95cdf3b7 2178static int
758b2cdc 2179find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2180{
2181 unsigned long load, min_load = ULONG_MAX;
2182 int idlest = -1;
2183 int i;
2184
da5a5522 2185 /* Traverse only the allowed CPUs */
758b2cdc 2186 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2187 load = weighted_cpuload(i);
147cbb4b
NP
2188
2189 if (load < min_load || (load == min_load && i == this_cpu)) {
2190 min_load = load;
2191 idlest = i;
2192 }
2193 }
2194
2195 return idlest;
2196}
2197
476d139c
NP
2198/*
2199 * sched_balance_self: balance the current task (running on cpu) in domains
2200 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2201 * SD_BALANCE_EXEC.
2202 *
2203 * Balance, ie. select the least loaded group.
2204 *
2205 * Returns the target CPU number, or the same CPU if no balancing is needed.
2206 *
2207 * preempt must be disabled.
2208 */
2209static int sched_balance_self(int cpu, int flag)
2210{
2211 struct task_struct *t = current;
2212 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2213
c96d145e 2214 for_each_domain(cpu, tmp) {
9761eea8
IM
2215 /*
2216 * If power savings logic is enabled for a domain, stop there.
2217 */
5c45bf27
SS
2218 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2219 break;
476d139c
NP
2220 if (tmp->flags & flag)
2221 sd = tmp;
c96d145e 2222 }
476d139c 2223
039a1c41
PZ
2224 if (sd)
2225 update_shares(sd);
2226
476d139c 2227 while (sd) {
476d139c 2228 struct sched_group *group;
1a848870
SS
2229 int new_cpu, weight;
2230
2231 if (!(sd->flags & flag)) {
2232 sd = sd->child;
2233 continue;
2234 }
476d139c 2235
476d139c 2236 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2237 if (!group) {
2238 sd = sd->child;
2239 continue;
2240 }
476d139c 2241
758b2cdc 2242 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2243 if (new_cpu == -1 || new_cpu == cpu) {
2244 /* Now try balancing at a lower domain level of cpu */
2245 sd = sd->child;
2246 continue;
2247 }
476d139c 2248
1a848870 2249 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2250 cpu = new_cpu;
758b2cdc 2251 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2252 sd = NULL;
476d139c 2253 for_each_domain(cpu, tmp) {
758b2cdc 2254 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2255 break;
2256 if (tmp->flags & flag)
2257 sd = tmp;
2258 }
2259 /* while loop will break here if sd == NULL */
2260 }
2261
2262 return cpu;
2263}
2264
2265#endif /* CONFIG_SMP */
1da177e4 2266
0793a61d
TG
2267/**
2268 * task_oncpu_function_call - call a function on the cpu on which a task runs
2269 * @p: the task to evaluate
2270 * @func: the function to be called
2271 * @info: the function call argument
2272 *
2273 * Calls the function @func when the task is currently running. This might
2274 * be on the current CPU, which just calls the function directly
2275 */
2276void task_oncpu_function_call(struct task_struct *p,
2277 void (*func) (void *info), void *info)
2278{
2279 int cpu;
2280
2281 preempt_disable();
2282 cpu = task_cpu(p);
2283 if (task_curr(p))
2284 smp_call_function_single(cpu, func, info, 1);
2285 preempt_enable();
2286}
2287
1da177e4
LT
2288/***
2289 * try_to_wake_up - wake up a thread
2290 * @p: the to-be-woken-up thread
2291 * @state: the mask of task states that can be woken
2292 * @sync: do a synchronous wakeup?
2293 *
2294 * Put it on the run-queue if it's not already there. The "current"
2295 * thread is always on the run-queue (except when the actual
2296 * re-schedule is in progress), and as such you're allowed to do
2297 * the simpler "current->state = TASK_RUNNING" to mark yourself
2298 * runnable without the overhead of this.
2299 *
2300 * returns failure only if the task is already active.
2301 */
36c8b586 2302static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2303{
cc367732 2304 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2305 unsigned long flags;
2306 long old_state;
70b97a7f 2307 struct rq *rq;
1da177e4 2308
b85d0667
IM
2309 if (!sched_feat(SYNC_WAKEUPS))
2310 sync = 0;
2311
2398f2c6
PZ
2312#ifdef CONFIG_SMP
2313 if (sched_feat(LB_WAKEUP_UPDATE)) {
2314 struct sched_domain *sd;
2315
2316 this_cpu = raw_smp_processor_id();
2317 cpu = task_cpu(p);
2318
2319 for_each_domain(this_cpu, sd) {
758b2cdc 2320 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2321 update_shares(sd);
2322 break;
2323 }
2324 }
2325 }
2326#endif
2327
04e2f174 2328 smp_wmb();
1da177e4 2329 rq = task_rq_lock(p, &flags);
03e89e45 2330 update_rq_clock(rq);
1da177e4
LT
2331 old_state = p->state;
2332 if (!(old_state & state))
2333 goto out;
2334
dd41f596 2335 if (p->se.on_rq)
1da177e4
LT
2336 goto out_running;
2337
2338 cpu = task_cpu(p);
cc367732 2339 orig_cpu = cpu;
1da177e4
LT
2340 this_cpu = smp_processor_id();
2341
2342#ifdef CONFIG_SMP
2343 if (unlikely(task_running(rq, p)))
2344 goto out_activate;
2345
5d2f5a61
DA
2346 cpu = p->sched_class->select_task_rq(p, sync);
2347 if (cpu != orig_cpu) {
2348 set_task_cpu(p, cpu);
1da177e4
LT
2349 task_rq_unlock(rq, &flags);
2350 /* might preempt at this point */
2351 rq = task_rq_lock(p, &flags);
2352 old_state = p->state;
2353 if (!(old_state & state))
2354 goto out;
dd41f596 2355 if (p->se.on_rq)
1da177e4
LT
2356 goto out_running;
2357
2358 this_cpu = smp_processor_id();
2359 cpu = task_cpu(p);
2360 }
2361
e7693a36
GH
2362#ifdef CONFIG_SCHEDSTATS
2363 schedstat_inc(rq, ttwu_count);
2364 if (cpu == this_cpu)
2365 schedstat_inc(rq, ttwu_local);
2366 else {
2367 struct sched_domain *sd;
2368 for_each_domain(this_cpu, sd) {
758b2cdc 2369 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2370 schedstat_inc(sd, ttwu_wake_remote);
2371 break;
2372 }
2373 }
2374 }
6d6bc0ad 2375#endif /* CONFIG_SCHEDSTATS */
e7693a36 2376
1da177e4
LT
2377out_activate:
2378#endif /* CONFIG_SMP */
cc367732
IM
2379 schedstat_inc(p, se.nr_wakeups);
2380 if (sync)
2381 schedstat_inc(p, se.nr_wakeups_sync);
2382 if (orig_cpu != cpu)
2383 schedstat_inc(p, se.nr_wakeups_migrate);
2384 if (cpu == this_cpu)
2385 schedstat_inc(p, se.nr_wakeups_local);
2386 else
2387 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2388 activate_task(rq, p, 1);
1da177e4
LT
2389 success = 1;
2390
2391out_running:
468a15bb 2392 trace_sched_wakeup(rq, p, success);
15afe09b 2393 check_preempt_curr(rq, p, sync);
4ae7d5ce 2394
1da177e4 2395 p->state = TASK_RUNNING;
9a897c5a
SR
2396#ifdef CONFIG_SMP
2397 if (p->sched_class->task_wake_up)
2398 p->sched_class->task_wake_up(rq, p);
2399#endif
1da177e4 2400out:
2087a1ad
GH
2401 current->se.last_wakeup = current->se.sum_exec_runtime;
2402
1da177e4
LT
2403 task_rq_unlock(rq, &flags);
2404
2405 return success;
2406}
2407
7ad5b3a5 2408int wake_up_process(struct task_struct *p)
1da177e4 2409{
d9514f6c 2410 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2411}
1da177e4
LT
2412EXPORT_SYMBOL(wake_up_process);
2413
7ad5b3a5 2414int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2415{
2416 return try_to_wake_up(p, state, 0);
2417}
2418
1da177e4
LT
2419/*
2420 * Perform scheduler related setup for a newly forked process p.
2421 * p is forked by current.
dd41f596
IM
2422 *
2423 * __sched_fork() is basic setup used by init_idle() too:
2424 */
2425static void __sched_fork(struct task_struct *p)
2426{
dd41f596
IM
2427 p->se.exec_start = 0;
2428 p->se.sum_exec_runtime = 0;
f6cf891c 2429 p->se.prev_sum_exec_runtime = 0;
6c594c21 2430 p->se.nr_migrations = 0;
4ae7d5ce
IM
2431 p->se.last_wakeup = 0;
2432 p->se.avg_overlap = 0;
6cfb0d5d
IM
2433
2434#ifdef CONFIG_SCHEDSTATS
2435 p->se.wait_start = 0;
dd41f596
IM
2436 p->se.sum_sleep_runtime = 0;
2437 p->se.sleep_start = 0;
dd41f596
IM
2438 p->se.block_start = 0;
2439 p->se.sleep_max = 0;
2440 p->se.block_max = 0;
2441 p->se.exec_max = 0;
eba1ed4b 2442 p->se.slice_max = 0;
dd41f596 2443 p->se.wait_max = 0;
6cfb0d5d 2444#endif
476d139c 2445
fa717060 2446 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2447 p->se.on_rq = 0;
4a55bd5e 2448 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2449
e107be36
AK
2450#ifdef CONFIG_PREEMPT_NOTIFIERS
2451 INIT_HLIST_HEAD(&p->preempt_notifiers);
2452#endif
2453
1da177e4
LT
2454 /*
2455 * We mark the process as running here, but have not actually
2456 * inserted it onto the runqueue yet. This guarantees that
2457 * nobody will actually run it, and a signal or other external
2458 * event cannot wake it up and insert it on the runqueue either.
2459 */
2460 p->state = TASK_RUNNING;
dd41f596
IM
2461}
2462
2463/*
2464 * fork()/clone()-time setup:
2465 */
2466void sched_fork(struct task_struct *p, int clone_flags)
2467{
2468 int cpu = get_cpu();
2469
2470 __sched_fork(p);
2471
2472#ifdef CONFIG_SMP
2473 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2474#endif
02e4bac2 2475 set_task_cpu(p, cpu);
b29739f9
IM
2476
2477 /*
2478 * Make sure we do not leak PI boosting priority to the child:
2479 */
2480 p->prio = current->normal_prio;
2ddbf952
HS
2481 if (!rt_prio(p->prio))
2482 p->sched_class = &fair_sched_class;
b29739f9 2483
52f17b6c 2484#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2485 if (likely(sched_info_on()))
52f17b6c 2486 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2487#endif
d6077cb8 2488#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2489 p->oncpu = 0;
2490#endif
1da177e4 2491#ifdef CONFIG_PREEMPT
4866cde0 2492 /* Want to start with kernel preemption disabled. */
a1261f54 2493 task_thread_info(p)->preempt_count = 1;
1da177e4 2494#endif
476d139c 2495 put_cpu();
1da177e4
LT
2496}
2497
2498/*
2499 * wake_up_new_task - wake up a newly created task for the first time.
2500 *
2501 * This function will do some initial scheduler statistics housekeeping
2502 * that must be done for every newly created context, then puts the task
2503 * on the runqueue and wakes it.
2504 */
7ad5b3a5 2505void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2506{
2507 unsigned long flags;
dd41f596 2508 struct rq *rq;
1da177e4
LT
2509
2510 rq = task_rq_lock(p, &flags);
147cbb4b 2511 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2512 update_rq_clock(rq);
1da177e4
LT
2513
2514 p->prio = effective_prio(p);
2515
b9dca1e0 2516 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2517 activate_task(rq, p, 0);
1da177e4 2518 } else {
1da177e4 2519 /*
dd41f596
IM
2520 * Let the scheduling class do new task startup
2521 * management (if any):
1da177e4 2522 */
ee0827d8 2523 p->sched_class->task_new(rq, p);
c09595f6 2524 inc_nr_running(rq);
1da177e4 2525 }
c71dd42d 2526 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2527 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2528#ifdef CONFIG_SMP
2529 if (p->sched_class->task_wake_up)
2530 p->sched_class->task_wake_up(rq, p);
2531#endif
dd41f596 2532 task_rq_unlock(rq, &flags);
1da177e4
LT
2533}
2534
e107be36
AK
2535#ifdef CONFIG_PREEMPT_NOTIFIERS
2536
2537/**
421cee29
RD
2538 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2539 * @notifier: notifier struct to register
e107be36
AK
2540 */
2541void preempt_notifier_register(struct preempt_notifier *notifier)
2542{
2543 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2544}
2545EXPORT_SYMBOL_GPL(preempt_notifier_register);
2546
2547/**
2548 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2549 * @notifier: notifier struct to unregister
e107be36
AK
2550 *
2551 * This is safe to call from within a preemption notifier.
2552 */
2553void preempt_notifier_unregister(struct preempt_notifier *notifier)
2554{
2555 hlist_del(&notifier->link);
2556}
2557EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2558
2559static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2560{
2561 struct preempt_notifier *notifier;
2562 struct hlist_node *node;
2563
2564 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2565 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2566}
2567
2568static void
2569fire_sched_out_preempt_notifiers(struct task_struct *curr,
2570 struct task_struct *next)
2571{
2572 struct preempt_notifier *notifier;
2573 struct hlist_node *node;
2574
2575 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2576 notifier->ops->sched_out(notifier, next);
2577}
2578
6d6bc0ad 2579#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2580
2581static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2582{
2583}
2584
2585static void
2586fire_sched_out_preempt_notifiers(struct task_struct *curr,
2587 struct task_struct *next)
2588{
2589}
2590
6d6bc0ad 2591#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2592
4866cde0
NP
2593/**
2594 * prepare_task_switch - prepare to switch tasks
2595 * @rq: the runqueue preparing to switch
421cee29 2596 * @prev: the current task that is being switched out
4866cde0
NP
2597 * @next: the task we are going to switch to.
2598 *
2599 * This is called with the rq lock held and interrupts off. It must
2600 * be paired with a subsequent finish_task_switch after the context
2601 * switch.
2602 *
2603 * prepare_task_switch sets up locking and calls architecture specific
2604 * hooks.
2605 */
e107be36
AK
2606static inline void
2607prepare_task_switch(struct rq *rq, struct task_struct *prev,
2608 struct task_struct *next)
4866cde0 2609{
e107be36 2610 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2611 prepare_lock_switch(rq, next);
2612 prepare_arch_switch(next);
2613}
2614
1da177e4
LT
2615/**
2616 * finish_task_switch - clean up after a task-switch
344babaa 2617 * @rq: runqueue associated with task-switch
1da177e4
LT
2618 * @prev: the thread we just switched away from.
2619 *
4866cde0
NP
2620 * finish_task_switch must be called after the context switch, paired
2621 * with a prepare_task_switch call before the context switch.
2622 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2623 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2624 *
2625 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2626 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2627 * with the lock held can cause deadlocks; see schedule() for
2628 * details.)
2629 */
a9957449 2630static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2631 __releases(rq->lock)
2632{
1da177e4 2633 struct mm_struct *mm = rq->prev_mm;
55a101f8 2634 long prev_state;
1da177e4
LT
2635
2636 rq->prev_mm = NULL;
2637
2638 /*
2639 * A task struct has one reference for the use as "current".
c394cc9f 2640 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2641 * schedule one last time. The schedule call will never return, and
2642 * the scheduled task must drop that reference.
c394cc9f 2643 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2644 * still held, otherwise prev could be scheduled on another cpu, die
2645 * there before we look at prev->state, and then the reference would
2646 * be dropped twice.
2647 * Manfred Spraul <manfred@colorfullife.com>
2648 */
55a101f8 2649 prev_state = prev->state;
4866cde0 2650 finish_arch_switch(prev);
0793a61d 2651 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2652 finish_lock_switch(rq, prev);
9a897c5a
SR
2653#ifdef CONFIG_SMP
2654 if (current->sched_class->post_schedule)
2655 current->sched_class->post_schedule(rq);
2656#endif
e8fa1362 2657
e107be36 2658 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2659 if (mm)
2660 mmdrop(mm);
c394cc9f 2661 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2662 /*
2663 * Remove function-return probe instances associated with this
2664 * task and put them back on the free list.
9761eea8 2665 */
c6fd91f0 2666 kprobe_flush_task(prev);
1da177e4 2667 put_task_struct(prev);
c6fd91f0 2668 }
1da177e4
LT
2669}
2670
2671/**
2672 * schedule_tail - first thing a freshly forked thread must call.
2673 * @prev: the thread we just switched away from.
2674 */
36c8b586 2675asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2676 __releases(rq->lock)
2677{
70b97a7f
IM
2678 struct rq *rq = this_rq();
2679
4866cde0
NP
2680 finish_task_switch(rq, prev);
2681#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2682 /* In this case, finish_task_switch does not reenable preemption */
2683 preempt_enable();
2684#endif
1da177e4 2685 if (current->set_child_tid)
b488893a 2686 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2687}
2688
2689/*
2690 * context_switch - switch to the new MM and the new
2691 * thread's register state.
2692 */
dd41f596 2693static inline void
70b97a7f 2694context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2695 struct task_struct *next)
1da177e4 2696{
dd41f596 2697 struct mm_struct *mm, *oldmm;
1da177e4 2698
e107be36 2699 prepare_task_switch(rq, prev, next);
0a16b607 2700 trace_sched_switch(rq, prev, next);
dd41f596
IM
2701 mm = next->mm;
2702 oldmm = prev->active_mm;
9226d125
ZA
2703 /*
2704 * For paravirt, this is coupled with an exit in switch_to to
2705 * combine the page table reload and the switch backend into
2706 * one hypercall.
2707 */
2708 arch_enter_lazy_cpu_mode();
2709
dd41f596 2710 if (unlikely(!mm)) {
1da177e4
LT
2711 next->active_mm = oldmm;
2712 atomic_inc(&oldmm->mm_count);
2713 enter_lazy_tlb(oldmm, next);
2714 } else
2715 switch_mm(oldmm, mm, next);
2716
dd41f596 2717 if (unlikely(!prev->mm)) {
1da177e4 2718 prev->active_mm = NULL;
1da177e4
LT
2719 rq->prev_mm = oldmm;
2720 }
3a5f5e48
IM
2721 /*
2722 * Since the runqueue lock will be released by the next
2723 * task (which is an invalid locking op but in the case
2724 * of the scheduler it's an obvious special-case), so we
2725 * do an early lockdep release here:
2726 */
2727#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2728 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2729#endif
1da177e4
LT
2730
2731 /* Here we just switch the register state and the stack. */
2732 switch_to(prev, next, prev);
2733
dd41f596
IM
2734 barrier();
2735 /*
2736 * this_rq must be evaluated again because prev may have moved
2737 * CPUs since it called schedule(), thus the 'rq' on its stack
2738 * frame will be invalid.
2739 */
2740 finish_task_switch(this_rq(), prev);
1da177e4
LT
2741}
2742
2743/*
2744 * nr_running, nr_uninterruptible and nr_context_switches:
2745 *
2746 * externally visible scheduler statistics: current number of runnable
2747 * threads, current number of uninterruptible-sleeping threads, total
2748 * number of context switches performed since bootup.
2749 */
2750unsigned long nr_running(void)
2751{
2752 unsigned long i, sum = 0;
2753
2754 for_each_online_cpu(i)
2755 sum += cpu_rq(i)->nr_running;
2756
2757 return sum;
2758}
2759
2760unsigned long nr_uninterruptible(void)
2761{
2762 unsigned long i, sum = 0;
2763
0a945022 2764 for_each_possible_cpu(i)
1da177e4
LT
2765 sum += cpu_rq(i)->nr_uninterruptible;
2766
2767 /*
2768 * Since we read the counters lockless, it might be slightly
2769 * inaccurate. Do not allow it to go below zero though:
2770 */
2771 if (unlikely((long)sum < 0))
2772 sum = 0;
2773
2774 return sum;
2775}
2776
2777unsigned long long nr_context_switches(void)
2778{
cc94abfc
SR
2779 int i;
2780 unsigned long long sum = 0;
1da177e4 2781
0a945022 2782 for_each_possible_cpu(i)
1da177e4
LT
2783 sum += cpu_rq(i)->nr_switches;
2784
2785 return sum;
2786}
2787
2788unsigned long nr_iowait(void)
2789{
2790 unsigned long i, sum = 0;
2791
0a945022 2792 for_each_possible_cpu(i)
1da177e4
LT
2793 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2794
2795 return sum;
2796}
2797
db1b1fef
JS
2798unsigned long nr_active(void)
2799{
2800 unsigned long i, running = 0, uninterruptible = 0;
2801
2802 for_each_online_cpu(i) {
2803 running += cpu_rq(i)->nr_running;
2804 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2805 }
2806
2807 if (unlikely((long)uninterruptible < 0))
2808 uninterruptible = 0;
2809
2810 return running + uninterruptible;
2811}
2812
48f24c4d 2813/*
dd41f596
IM
2814 * Update rq->cpu_load[] statistics. This function is usually called every
2815 * scheduler tick (TICK_NSEC).
48f24c4d 2816 */
dd41f596 2817static void update_cpu_load(struct rq *this_rq)
48f24c4d 2818{
495eca49 2819 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2820 int i, scale;
2821
2822 this_rq->nr_load_updates++;
dd41f596
IM
2823
2824 /* Update our load: */
2825 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2826 unsigned long old_load, new_load;
2827
2828 /* scale is effectively 1 << i now, and >> i divides by scale */
2829
2830 old_load = this_rq->cpu_load[i];
2831 new_load = this_load;
a25707f3
IM
2832 /*
2833 * Round up the averaging division if load is increasing. This
2834 * prevents us from getting stuck on 9 if the load is 10, for
2835 * example.
2836 */
2837 if (new_load > old_load)
2838 new_load += scale-1;
dd41f596
IM
2839 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2840 }
48f24c4d
IM
2841}
2842
dd41f596
IM
2843#ifdef CONFIG_SMP
2844
1da177e4
LT
2845/*
2846 * double_rq_lock - safely lock two runqueues
2847 *
2848 * Note this does not disable interrupts like task_rq_lock,
2849 * you need to do so manually before calling.
2850 */
70b97a7f 2851static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2852 __acquires(rq1->lock)
2853 __acquires(rq2->lock)
2854{
054b9108 2855 BUG_ON(!irqs_disabled());
1da177e4
LT
2856 if (rq1 == rq2) {
2857 spin_lock(&rq1->lock);
2858 __acquire(rq2->lock); /* Fake it out ;) */
2859 } else {
c96d145e 2860 if (rq1 < rq2) {
1da177e4 2861 spin_lock(&rq1->lock);
5e710e37 2862 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2863 } else {
2864 spin_lock(&rq2->lock);
5e710e37 2865 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2866 }
2867 }
6e82a3be
IM
2868 update_rq_clock(rq1);
2869 update_rq_clock(rq2);
1da177e4
LT
2870}
2871
2872/*
2873 * double_rq_unlock - safely unlock two runqueues
2874 *
2875 * Note this does not restore interrupts like task_rq_unlock,
2876 * you need to do so manually after calling.
2877 */
70b97a7f 2878static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2879 __releases(rq1->lock)
2880 __releases(rq2->lock)
2881{
2882 spin_unlock(&rq1->lock);
2883 if (rq1 != rq2)
2884 spin_unlock(&rq2->lock);
2885 else
2886 __release(rq2->lock);
2887}
2888
1da177e4
LT
2889/*
2890 * If dest_cpu is allowed for this process, migrate the task to it.
2891 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2892 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2893 * the cpu_allowed mask is restored.
2894 */
36c8b586 2895static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2896{
70b97a7f 2897 struct migration_req req;
1da177e4 2898 unsigned long flags;
70b97a7f 2899 struct rq *rq;
1da177e4
LT
2900
2901 rq = task_rq_lock(p, &flags);
96f874e2 2902 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2903 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2904 goto out;
2905
2906 /* force the process onto the specified CPU */
2907 if (migrate_task(p, dest_cpu, &req)) {
2908 /* Need to wait for migration thread (might exit: take ref). */
2909 struct task_struct *mt = rq->migration_thread;
36c8b586 2910
1da177e4
LT
2911 get_task_struct(mt);
2912 task_rq_unlock(rq, &flags);
2913 wake_up_process(mt);
2914 put_task_struct(mt);
2915 wait_for_completion(&req.done);
36c8b586 2916
1da177e4
LT
2917 return;
2918 }
2919out:
2920 task_rq_unlock(rq, &flags);
2921}
2922
2923/*
476d139c
NP
2924 * sched_exec - execve() is a valuable balancing opportunity, because at
2925 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2926 */
2927void sched_exec(void)
2928{
1da177e4 2929 int new_cpu, this_cpu = get_cpu();
476d139c 2930 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2931 put_cpu();
476d139c
NP
2932 if (new_cpu != this_cpu)
2933 sched_migrate_task(current, new_cpu);
1da177e4
LT
2934}
2935
2936/*
2937 * pull_task - move a task from a remote runqueue to the local runqueue.
2938 * Both runqueues must be locked.
2939 */
dd41f596
IM
2940static void pull_task(struct rq *src_rq, struct task_struct *p,
2941 struct rq *this_rq, int this_cpu)
1da177e4 2942{
2e1cb74a 2943 deactivate_task(src_rq, p, 0);
1da177e4 2944 set_task_cpu(p, this_cpu);
dd41f596 2945 activate_task(this_rq, p, 0);
1da177e4
LT
2946 /*
2947 * Note that idle threads have a prio of MAX_PRIO, for this test
2948 * to be always true for them.
2949 */
15afe09b 2950 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2951}
2952
2953/*
2954 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2955 */
858119e1 2956static
70b97a7f 2957int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2958 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2959 int *all_pinned)
1da177e4
LT
2960{
2961 /*
2962 * We do not migrate tasks that are:
2963 * 1) running (obviously), or
2964 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2965 * 3) are cache-hot on their current CPU.
2966 */
96f874e2 2967 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 2968 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2969 return 0;
cc367732 2970 }
81026794
NP
2971 *all_pinned = 0;
2972
cc367732
IM
2973 if (task_running(rq, p)) {
2974 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2975 return 0;
cc367732 2976 }
1da177e4 2977
da84d961
IM
2978 /*
2979 * Aggressive migration if:
2980 * 1) task is cache cold, or
2981 * 2) too many balance attempts have failed.
2982 */
2983
6bc1665b
IM
2984 if (!task_hot(p, rq->clock, sd) ||
2985 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2986#ifdef CONFIG_SCHEDSTATS
cc367732 2987 if (task_hot(p, rq->clock, sd)) {
da84d961 2988 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2989 schedstat_inc(p, se.nr_forced_migrations);
2990 }
da84d961
IM
2991#endif
2992 return 1;
2993 }
2994
cc367732
IM
2995 if (task_hot(p, rq->clock, sd)) {
2996 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2997 return 0;
cc367732 2998 }
1da177e4
LT
2999 return 1;
3000}
3001
e1d1484f
PW
3002static unsigned long
3003balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3004 unsigned long max_load_move, struct sched_domain *sd,
3005 enum cpu_idle_type idle, int *all_pinned,
3006 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3007{
051c6764 3008 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3009 struct task_struct *p;
3010 long rem_load_move = max_load_move;
1da177e4 3011
e1d1484f 3012 if (max_load_move == 0)
1da177e4
LT
3013 goto out;
3014
81026794
NP
3015 pinned = 1;
3016
1da177e4 3017 /*
dd41f596 3018 * Start the load-balancing iterator:
1da177e4 3019 */
dd41f596
IM
3020 p = iterator->start(iterator->arg);
3021next:
b82d9fdd 3022 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3023 goto out;
051c6764
PZ
3024
3025 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3026 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3027 p = iterator->next(iterator->arg);
3028 goto next;
1da177e4
LT
3029 }
3030
dd41f596 3031 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3032 pulled++;
dd41f596 3033 rem_load_move -= p->se.load.weight;
1da177e4 3034
2dd73a4f 3035 /*
b82d9fdd 3036 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3037 */
e1d1484f 3038 if (rem_load_move > 0) {
a4ac01c3
PW
3039 if (p->prio < *this_best_prio)
3040 *this_best_prio = p->prio;
dd41f596
IM
3041 p = iterator->next(iterator->arg);
3042 goto next;
1da177e4
LT
3043 }
3044out:
3045 /*
e1d1484f 3046 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3047 * so we can safely collect pull_task() stats here rather than
3048 * inside pull_task().
3049 */
3050 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3051
3052 if (all_pinned)
3053 *all_pinned = pinned;
e1d1484f
PW
3054
3055 return max_load_move - rem_load_move;
1da177e4
LT
3056}
3057
dd41f596 3058/*
43010659
PW
3059 * move_tasks tries to move up to max_load_move weighted load from busiest to
3060 * this_rq, as part of a balancing operation within domain "sd".
3061 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3062 *
3063 * Called with both runqueues locked.
3064 */
3065static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3066 unsigned long max_load_move,
dd41f596
IM
3067 struct sched_domain *sd, enum cpu_idle_type idle,
3068 int *all_pinned)
3069{
5522d5d5 3070 const struct sched_class *class = sched_class_highest;
43010659 3071 unsigned long total_load_moved = 0;
a4ac01c3 3072 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3073
3074 do {
43010659
PW
3075 total_load_moved +=
3076 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3077 max_load_move - total_load_moved,
a4ac01c3 3078 sd, idle, all_pinned, &this_best_prio);
dd41f596 3079 class = class->next;
c4acb2c0
GH
3080
3081 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3082 break;
3083
43010659 3084 } while (class && max_load_move > total_load_moved);
dd41f596 3085
43010659
PW
3086 return total_load_moved > 0;
3087}
3088
e1d1484f
PW
3089static int
3090iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3091 struct sched_domain *sd, enum cpu_idle_type idle,
3092 struct rq_iterator *iterator)
3093{
3094 struct task_struct *p = iterator->start(iterator->arg);
3095 int pinned = 0;
3096
3097 while (p) {
3098 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3099 pull_task(busiest, p, this_rq, this_cpu);
3100 /*
3101 * Right now, this is only the second place pull_task()
3102 * is called, so we can safely collect pull_task()
3103 * stats here rather than inside pull_task().
3104 */
3105 schedstat_inc(sd, lb_gained[idle]);
3106
3107 return 1;
3108 }
3109 p = iterator->next(iterator->arg);
3110 }
3111
3112 return 0;
3113}
3114
43010659
PW
3115/*
3116 * move_one_task tries to move exactly one task from busiest to this_rq, as
3117 * part of active balancing operations within "domain".
3118 * Returns 1 if successful and 0 otherwise.
3119 *
3120 * Called with both runqueues locked.
3121 */
3122static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3123 struct sched_domain *sd, enum cpu_idle_type idle)
3124{
5522d5d5 3125 const struct sched_class *class;
43010659
PW
3126
3127 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3128 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3129 return 1;
3130
3131 return 0;
dd41f596
IM
3132}
3133
1da177e4
LT
3134/*
3135 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3136 * domain. It calculates and returns the amount of weighted load which
3137 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3138 */
3139static struct sched_group *
3140find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3141 unsigned long *imbalance, enum cpu_idle_type idle,
96f874e2 3142 int *sd_idle, const struct cpumask *cpus, int *balance)
1da177e4
LT
3143{
3144 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3145 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3146 unsigned long max_pull;
2dd73a4f
PW
3147 unsigned long busiest_load_per_task, busiest_nr_running;
3148 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3149 int load_idx, group_imb = 0;
5c45bf27
SS
3150#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3151 int power_savings_balance = 1;
3152 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3153 unsigned long min_nr_running = ULONG_MAX;
3154 struct sched_group *group_min = NULL, *group_leader = NULL;
3155#endif
1da177e4
LT
3156
3157 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3158 busiest_load_per_task = busiest_nr_running = 0;
3159 this_load_per_task = this_nr_running = 0;
408ed066 3160
d15bcfdb 3161 if (idle == CPU_NOT_IDLE)
7897986b 3162 load_idx = sd->busy_idx;
d15bcfdb 3163 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3164 load_idx = sd->newidle_idx;
3165 else
3166 load_idx = sd->idle_idx;
1da177e4
LT
3167
3168 do {
908a7c1b 3169 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3170 int local_group;
3171 int i;
908a7c1b 3172 int __group_imb = 0;
783609c6 3173 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3174 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3175 unsigned long sum_avg_load_per_task;
3176 unsigned long avg_load_per_task;
1da177e4 3177
758b2cdc
RR
3178 local_group = cpumask_test_cpu(this_cpu,
3179 sched_group_cpus(group));
1da177e4 3180
783609c6 3181 if (local_group)
758b2cdc 3182 balance_cpu = cpumask_first(sched_group_cpus(group));
783609c6 3183
1da177e4 3184 /* Tally up the load of all CPUs in the group */
2dd73a4f 3185 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3186 sum_avg_load_per_task = avg_load_per_task = 0;
3187
908a7c1b
KC
3188 max_cpu_load = 0;
3189 min_cpu_load = ~0UL;
1da177e4 3190
758b2cdc
RR
3191 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3192 struct rq *rq = cpu_rq(i);
2dd73a4f 3193
9439aab8 3194 if (*sd_idle && rq->nr_running)
5969fe06
NP
3195 *sd_idle = 0;
3196
1da177e4 3197 /* Bias balancing toward cpus of our domain */
783609c6
SS
3198 if (local_group) {
3199 if (idle_cpu(i) && !first_idle_cpu) {
3200 first_idle_cpu = 1;
3201 balance_cpu = i;
3202 }
3203
a2000572 3204 load = target_load(i, load_idx);
908a7c1b 3205 } else {
a2000572 3206 load = source_load(i, load_idx);
908a7c1b
KC
3207 if (load > max_cpu_load)
3208 max_cpu_load = load;
3209 if (min_cpu_load > load)
3210 min_cpu_load = load;
3211 }
1da177e4
LT
3212
3213 avg_load += load;
2dd73a4f 3214 sum_nr_running += rq->nr_running;
dd41f596 3215 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3216
3217 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3218 }
3219
783609c6
SS
3220 /*
3221 * First idle cpu or the first cpu(busiest) in this sched group
3222 * is eligible for doing load balancing at this and above
9439aab8
SS
3223 * domains. In the newly idle case, we will allow all the cpu's
3224 * to do the newly idle load balance.
783609c6 3225 */
9439aab8
SS
3226 if (idle != CPU_NEWLY_IDLE && local_group &&
3227 balance_cpu != this_cpu && balance) {
783609c6
SS
3228 *balance = 0;
3229 goto ret;
3230 }
3231
1da177e4 3232 total_load += avg_load;
5517d86b 3233 total_pwr += group->__cpu_power;
1da177e4
LT
3234
3235 /* Adjust by relative CPU power of the group */
5517d86b
ED
3236 avg_load = sg_div_cpu_power(group,
3237 avg_load * SCHED_LOAD_SCALE);
1da177e4 3238
408ed066
PZ
3239
3240 /*
3241 * Consider the group unbalanced when the imbalance is larger
3242 * than the average weight of two tasks.
3243 *
3244 * APZ: with cgroup the avg task weight can vary wildly and
3245 * might not be a suitable number - should we keep a
3246 * normalized nr_running number somewhere that negates
3247 * the hierarchy?
3248 */
3249 avg_load_per_task = sg_div_cpu_power(group,
3250 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3251
3252 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3253 __group_imb = 1;
3254
5517d86b 3255 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3256
1da177e4
LT
3257 if (local_group) {
3258 this_load = avg_load;
3259 this = group;
2dd73a4f
PW
3260 this_nr_running = sum_nr_running;
3261 this_load_per_task = sum_weighted_load;
3262 } else if (avg_load > max_load &&
908a7c1b 3263 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3264 max_load = avg_load;
3265 busiest = group;
2dd73a4f
PW
3266 busiest_nr_running = sum_nr_running;
3267 busiest_load_per_task = sum_weighted_load;
908a7c1b 3268 group_imb = __group_imb;
1da177e4 3269 }
5c45bf27
SS
3270
3271#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3272 /*
3273 * Busy processors will not participate in power savings
3274 * balance.
3275 */
dd41f596
IM
3276 if (idle == CPU_NOT_IDLE ||
3277 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3278 goto group_next;
5c45bf27
SS
3279
3280 /*
3281 * If the local group is idle or completely loaded
3282 * no need to do power savings balance at this domain
3283 */
3284 if (local_group && (this_nr_running >= group_capacity ||
3285 !this_nr_running))
3286 power_savings_balance = 0;
3287
dd41f596 3288 /*
5c45bf27
SS
3289 * If a group is already running at full capacity or idle,
3290 * don't include that group in power savings calculations
dd41f596
IM
3291 */
3292 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3293 || !sum_nr_running)
dd41f596 3294 goto group_next;
5c45bf27 3295
dd41f596 3296 /*
5c45bf27 3297 * Calculate the group which has the least non-idle load.
dd41f596
IM
3298 * This is the group from where we need to pick up the load
3299 * for saving power
3300 */
3301 if ((sum_nr_running < min_nr_running) ||
3302 (sum_nr_running == min_nr_running &&
d5679bd1 3303 cpumask_first(sched_group_cpus(group)) >
758b2cdc 3304 cpumask_first(sched_group_cpus(group_min)))) {
dd41f596
IM
3305 group_min = group;
3306 min_nr_running = sum_nr_running;
5c45bf27
SS
3307 min_load_per_task = sum_weighted_load /
3308 sum_nr_running;
dd41f596 3309 }
5c45bf27 3310
dd41f596 3311 /*
5c45bf27 3312 * Calculate the group which is almost near its
dd41f596
IM
3313 * capacity but still has some space to pick up some load
3314 * from other group and save more power
3315 */
3316 if (sum_nr_running <= group_capacity - 1) {
3317 if (sum_nr_running > leader_nr_running ||
3318 (sum_nr_running == leader_nr_running &&
d5679bd1 3319 cpumask_first(sched_group_cpus(group)) <
758b2cdc 3320 cpumask_first(sched_group_cpus(group_leader)))) {
dd41f596
IM
3321 group_leader = group;
3322 leader_nr_running = sum_nr_running;
3323 }
48f24c4d 3324 }
5c45bf27
SS
3325group_next:
3326#endif
1da177e4
LT
3327 group = group->next;
3328 } while (group != sd->groups);
3329
2dd73a4f 3330 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3331 goto out_balanced;
3332
3333 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3334
3335 if (this_load >= avg_load ||
3336 100*max_load <= sd->imbalance_pct*this_load)
3337 goto out_balanced;
3338
2dd73a4f 3339 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3340 if (group_imb)
3341 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3342
1da177e4
LT
3343 /*
3344 * We're trying to get all the cpus to the average_load, so we don't
3345 * want to push ourselves above the average load, nor do we wish to
3346 * reduce the max loaded cpu below the average load, as either of these
3347 * actions would just result in more rebalancing later, and ping-pong
3348 * tasks around. Thus we look for the minimum possible imbalance.
3349 * Negative imbalances (*we* are more loaded than anyone else) will
3350 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3351 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3352 * appear as very large values with unsigned longs.
3353 */
2dd73a4f
PW
3354 if (max_load <= busiest_load_per_task)
3355 goto out_balanced;
3356
3357 /*
3358 * In the presence of smp nice balancing, certain scenarios can have
3359 * max load less than avg load(as we skip the groups at or below
3360 * its cpu_power, while calculating max_load..)
3361 */
3362 if (max_load < avg_load) {
3363 *imbalance = 0;
3364 goto small_imbalance;
3365 }
0c117f1b
SS
3366
3367 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3368 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3369
1da177e4 3370 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3371 *imbalance = min(max_pull * busiest->__cpu_power,
3372 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3373 / SCHED_LOAD_SCALE;
3374
2dd73a4f
PW
3375 /*
3376 * if *imbalance is less than the average load per runnable task
3377 * there is no gaurantee that any tasks will be moved so we'll have
3378 * a think about bumping its value to force at least one task to be
3379 * moved
3380 */
7fd0d2dd 3381 if (*imbalance < busiest_load_per_task) {
48f24c4d 3382 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3383 unsigned int imbn;
3384
3385small_imbalance:
3386 pwr_move = pwr_now = 0;
3387 imbn = 2;
3388 if (this_nr_running) {
3389 this_load_per_task /= this_nr_running;
3390 if (busiest_load_per_task > this_load_per_task)
3391 imbn = 1;
3392 } else
408ed066 3393 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3394
01c8c57d 3395 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3396 busiest_load_per_task * imbn) {
2dd73a4f 3397 *imbalance = busiest_load_per_task;
1da177e4
LT
3398 return busiest;
3399 }
3400
3401 /*
3402 * OK, we don't have enough imbalance to justify moving tasks,
3403 * however we may be able to increase total CPU power used by
3404 * moving them.
3405 */
3406
5517d86b
ED
3407 pwr_now += busiest->__cpu_power *
3408 min(busiest_load_per_task, max_load);
3409 pwr_now += this->__cpu_power *
3410 min(this_load_per_task, this_load);
1da177e4
LT
3411 pwr_now /= SCHED_LOAD_SCALE;
3412
3413 /* Amount of load we'd subtract */
5517d86b
ED
3414 tmp = sg_div_cpu_power(busiest,
3415 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3416 if (max_load > tmp)
5517d86b 3417 pwr_move += busiest->__cpu_power *
2dd73a4f 3418 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3419
3420 /* Amount of load we'd add */
5517d86b 3421 if (max_load * busiest->__cpu_power <
33859f7f 3422 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3423 tmp = sg_div_cpu_power(this,
3424 max_load * busiest->__cpu_power);
1da177e4 3425 else
5517d86b
ED
3426 tmp = sg_div_cpu_power(this,
3427 busiest_load_per_task * SCHED_LOAD_SCALE);
3428 pwr_move += this->__cpu_power *
3429 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3430 pwr_move /= SCHED_LOAD_SCALE;
3431
3432 /* Move if we gain throughput */
7fd0d2dd
SS
3433 if (pwr_move > pwr_now)
3434 *imbalance = busiest_load_per_task;
1da177e4
LT
3435 }
3436
1da177e4
LT
3437 return busiest;
3438
3439out_balanced:
5c45bf27 3440#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3441 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3442 goto ret;
1da177e4 3443
5c45bf27
SS
3444 if (this == group_leader && group_leader != group_min) {
3445 *imbalance = min_load_per_task;
7a09b1a2
VS
3446 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3447 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
9924da43 3448 cpumask_first(sched_group_cpus(group_leader));
7a09b1a2 3449 }
5c45bf27
SS
3450 return group_min;
3451 }
5c45bf27 3452#endif
783609c6 3453ret:
1da177e4
LT
3454 *imbalance = 0;
3455 return NULL;
3456}
3457
3458/*
3459 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3460 */
70b97a7f 3461static struct rq *
d15bcfdb 3462find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3463 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3464{
70b97a7f 3465 struct rq *busiest = NULL, *rq;
2dd73a4f 3466 unsigned long max_load = 0;
1da177e4
LT
3467 int i;
3468
758b2cdc 3469 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3470 unsigned long wl;
0a2966b4 3471
96f874e2 3472 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3473 continue;
3474
48f24c4d 3475 rq = cpu_rq(i);
dd41f596 3476 wl = weighted_cpuload(i);
2dd73a4f 3477
dd41f596 3478 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3479 continue;
1da177e4 3480
dd41f596
IM
3481 if (wl > max_load) {
3482 max_load = wl;
48f24c4d 3483 busiest = rq;
1da177e4
LT
3484 }
3485 }
3486
3487 return busiest;
3488}
3489
77391d71
NP
3490/*
3491 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3492 * so long as it is large enough.
3493 */
3494#define MAX_PINNED_INTERVAL 512
3495
1da177e4
LT
3496/*
3497 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3498 * tasks if there is an imbalance.
1da177e4 3499 */
70b97a7f 3500static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3501 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3502 int *balance, struct cpumask *cpus)
1da177e4 3503{
43010659 3504 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3505 struct sched_group *group;
1da177e4 3506 unsigned long imbalance;
70b97a7f 3507 struct rq *busiest;
fe2eea3f 3508 unsigned long flags;
5969fe06 3509
96f874e2 3510 cpumask_setall(cpus);
7c16ec58 3511
89c4710e
SS
3512 /*
3513 * When power savings policy is enabled for the parent domain, idle
3514 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3515 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3516 * portraying it as CPU_NOT_IDLE.
89c4710e 3517 */
d15bcfdb 3518 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3519 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3520 sd_idle = 1;
1da177e4 3521
2d72376b 3522 schedstat_inc(sd, lb_count[idle]);
1da177e4 3523
0a2966b4 3524redo:
c8cba857 3525 update_shares(sd);
0a2966b4 3526 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3527 cpus, balance);
783609c6 3528
06066714 3529 if (*balance == 0)
783609c6 3530 goto out_balanced;
783609c6 3531
1da177e4
LT
3532 if (!group) {
3533 schedstat_inc(sd, lb_nobusyg[idle]);
3534 goto out_balanced;
3535 }
3536
7c16ec58 3537 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3538 if (!busiest) {
3539 schedstat_inc(sd, lb_nobusyq[idle]);
3540 goto out_balanced;
3541 }
3542
db935dbd 3543 BUG_ON(busiest == this_rq);
1da177e4
LT
3544
3545 schedstat_add(sd, lb_imbalance[idle], imbalance);
3546
43010659 3547 ld_moved = 0;
1da177e4
LT
3548 if (busiest->nr_running > 1) {
3549 /*
3550 * Attempt to move tasks. If find_busiest_group has found
3551 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3552 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3553 * correctly treated as an imbalance.
3554 */
fe2eea3f 3555 local_irq_save(flags);
e17224bf 3556 double_rq_lock(this_rq, busiest);
43010659 3557 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3558 imbalance, sd, idle, &all_pinned);
e17224bf 3559 double_rq_unlock(this_rq, busiest);
fe2eea3f 3560 local_irq_restore(flags);
81026794 3561
46cb4b7c
SS
3562 /*
3563 * some other cpu did the load balance for us.
3564 */
43010659 3565 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3566 resched_cpu(this_cpu);
3567
81026794 3568 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3569 if (unlikely(all_pinned)) {
96f874e2
RR
3570 cpumask_clear_cpu(cpu_of(busiest), cpus);
3571 if (!cpumask_empty(cpus))
0a2966b4 3572 goto redo;
81026794 3573 goto out_balanced;
0a2966b4 3574 }
1da177e4 3575 }
81026794 3576
43010659 3577 if (!ld_moved) {
1da177e4
LT
3578 schedstat_inc(sd, lb_failed[idle]);
3579 sd->nr_balance_failed++;
3580
3581 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3582
fe2eea3f 3583 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3584
3585 /* don't kick the migration_thread, if the curr
3586 * task on busiest cpu can't be moved to this_cpu
3587 */
96f874e2
RR
3588 if (!cpumask_test_cpu(this_cpu,
3589 &busiest->curr->cpus_allowed)) {
fe2eea3f 3590 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3591 all_pinned = 1;
3592 goto out_one_pinned;
3593 }
3594
1da177e4
LT
3595 if (!busiest->active_balance) {
3596 busiest->active_balance = 1;
3597 busiest->push_cpu = this_cpu;
81026794 3598 active_balance = 1;
1da177e4 3599 }
fe2eea3f 3600 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3601 if (active_balance)
1da177e4
LT
3602 wake_up_process(busiest->migration_thread);
3603
3604 /*
3605 * We've kicked active balancing, reset the failure
3606 * counter.
3607 */
39507451 3608 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3609 }
81026794 3610 } else
1da177e4
LT
3611 sd->nr_balance_failed = 0;
3612
81026794 3613 if (likely(!active_balance)) {
1da177e4
LT
3614 /* We were unbalanced, so reset the balancing interval */
3615 sd->balance_interval = sd->min_interval;
81026794
NP
3616 } else {
3617 /*
3618 * If we've begun active balancing, start to back off. This
3619 * case may not be covered by the all_pinned logic if there
3620 * is only 1 task on the busy runqueue (because we don't call
3621 * move_tasks).
3622 */
3623 if (sd->balance_interval < sd->max_interval)
3624 sd->balance_interval *= 2;
1da177e4
LT
3625 }
3626
43010659 3627 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3628 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3629 ld_moved = -1;
3630
3631 goto out;
1da177e4
LT
3632
3633out_balanced:
1da177e4
LT
3634 schedstat_inc(sd, lb_balanced[idle]);
3635
16cfb1c0 3636 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3637
3638out_one_pinned:
1da177e4 3639 /* tune up the balancing interval */
77391d71
NP
3640 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3641 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3642 sd->balance_interval *= 2;
3643
48f24c4d 3644 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3645 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3646 ld_moved = -1;
3647 else
3648 ld_moved = 0;
3649out:
c8cba857
PZ
3650 if (ld_moved)
3651 update_shares(sd);
c09595f6 3652 return ld_moved;
1da177e4
LT
3653}
3654
3655/*
3656 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3657 * tasks if there is an imbalance.
3658 *
d15bcfdb 3659 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3660 * this_rq is locked.
3661 */
48f24c4d 3662static int
7c16ec58 3663load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3664 struct cpumask *cpus)
1da177e4
LT
3665{
3666 struct sched_group *group;
70b97a7f 3667 struct rq *busiest = NULL;
1da177e4 3668 unsigned long imbalance;
43010659 3669 int ld_moved = 0;
5969fe06 3670 int sd_idle = 0;
969bb4e4 3671 int all_pinned = 0;
7c16ec58 3672
96f874e2 3673 cpumask_setall(cpus);
5969fe06 3674
89c4710e
SS
3675 /*
3676 * When power savings policy is enabled for the parent domain, idle
3677 * sibling can pick up load irrespective of busy siblings. In this case,
3678 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3679 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3680 */
3681 if (sd->flags & SD_SHARE_CPUPOWER &&
3682 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3683 sd_idle = 1;
1da177e4 3684
2d72376b 3685 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3686redo:
3e5459b4 3687 update_shares_locked(this_rq, sd);
d15bcfdb 3688 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3689 &sd_idle, cpus, NULL);
1da177e4 3690 if (!group) {
d15bcfdb 3691 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3692 goto out_balanced;
1da177e4
LT
3693 }
3694
7c16ec58 3695 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3696 if (!busiest) {
d15bcfdb 3697 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3698 goto out_balanced;
1da177e4
LT
3699 }
3700
db935dbd
NP
3701 BUG_ON(busiest == this_rq);
3702
d15bcfdb 3703 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3704
43010659 3705 ld_moved = 0;
d6d5cfaf
NP
3706 if (busiest->nr_running > 1) {
3707 /* Attempt to move tasks */
3708 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3709 /* this_rq->clock is already updated */
3710 update_rq_clock(busiest);
43010659 3711 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3712 imbalance, sd, CPU_NEWLY_IDLE,
3713 &all_pinned);
1b12bbc7 3714 double_unlock_balance(this_rq, busiest);
0a2966b4 3715
969bb4e4 3716 if (unlikely(all_pinned)) {
96f874e2
RR
3717 cpumask_clear_cpu(cpu_of(busiest), cpus);
3718 if (!cpumask_empty(cpus))
0a2966b4
CL
3719 goto redo;
3720 }
d6d5cfaf
NP
3721 }
3722
43010659 3723 if (!ld_moved) {
36dffab6 3724 int active_balance = 0;
ad273b32 3725
d15bcfdb 3726 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3727 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3728 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3729 return -1;
ad273b32
VS
3730
3731 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3732 return -1;
3733
3734 if (sd->nr_balance_failed++ < 2)
3735 return -1;
3736
3737 /*
3738 * The only task running in a non-idle cpu can be moved to this
3739 * cpu in an attempt to completely freeup the other CPU
3740 * package. The same method used to move task in load_balance()
3741 * have been extended for load_balance_newidle() to speedup
3742 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3743 *
3744 * The package power saving logic comes from
3745 * find_busiest_group(). If there are no imbalance, then
3746 * f_b_g() will return NULL. However when sched_mc={1,2} then
3747 * f_b_g() will select a group from which a running task may be
3748 * pulled to this cpu in order to make the other package idle.
3749 * If there is no opportunity to make a package idle and if
3750 * there are no imbalance, then f_b_g() will return NULL and no
3751 * action will be taken in load_balance_newidle().
3752 *
3753 * Under normal task pull operation due to imbalance, there
3754 * will be more than one task in the source run queue and
3755 * move_tasks() will succeed. ld_moved will be true and this
3756 * active balance code will not be triggered.
3757 */
3758
3759 /* Lock busiest in correct order while this_rq is held */
3760 double_lock_balance(this_rq, busiest);
3761
3762 /*
3763 * don't kick the migration_thread, if the curr
3764 * task on busiest cpu can't be moved to this_cpu
3765 */
6ca09dfc 3766 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
3767 double_unlock_balance(this_rq, busiest);
3768 all_pinned = 1;
3769 return ld_moved;
3770 }
3771
3772 if (!busiest->active_balance) {
3773 busiest->active_balance = 1;
3774 busiest->push_cpu = this_cpu;
3775 active_balance = 1;
3776 }
3777
3778 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
3779 /*
3780 * Should not call ttwu while holding a rq->lock
3781 */
3782 spin_unlock(&this_rq->lock);
ad273b32
VS
3783 if (active_balance)
3784 wake_up_process(busiest->migration_thread);
da8d5089 3785 spin_lock(&this_rq->lock);
ad273b32 3786
5969fe06 3787 } else
16cfb1c0 3788 sd->nr_balance_failed = 0;
1da177e4 3789
3e5459b4 3790 update_shares_locked(this_rq, sd);
43010659 3791 return ld_moved;
16cfb1c0
NP
3792
3793out_balanced:
d15bcfdb 3794 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3795 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3796 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3797 return -1;
16cfb1c0 3798 sd->nr_balance_failed = 0;
48f24c4d 3799
16cfb1c0 3800 return 0;
1da177e4
LT
3801}
3802
3803/*
3804 * idle_balance is called by schedule() if this_cpu is about to become
3805 * idle. Attempts to pull tasks from other CPUs.
3806 */
70b97a7f 3807static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3808{
3809 struct sched_domain *sd;
efbe027e 3810 int pulled_task = 0;
dd41f596 3811 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
3812 cpumask_var_t tmpmask;
3813
3814 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3815 return;
1da177e4
LT
3816
3817 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3818 unsigned long interval;
3819
3820 if (!(sd->flags & SD_LOAD_BALANCE))
3821 continue;
3822
3823 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3824 /* If we've pulled tasks over stop searching: */
7c16ec58 3825 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 3826 sd, tmpmask);
92c4ca5c
CL
3827
3828 interval = msecs_to_jiffies(sd->balance_interval);
3829 if (time_after(next_balance, sd->last_balance + interval))
3830 next_balance = sd->last_balance + interval;
3831 if (pulled_task)
3832 break;
1da177e4 3833 }
dd41f596 3834 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3835 /*
3836 * We are going idle. next_balance may be set based on
3837 * a busy processor. So reset next_balance.
3838 */
3839 this_rq->next_balance = next_balance;
dd41f596 3840 }
4d2732c6 3841 free_cpumask_var(tmpmask);
1da177e4
LT
3842}
3843
3844/*
3845 * active_load_balance is run by migration threads. It pushes running tasks
3846 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3847 * running on each physical CPU where possible, and avoids physical /
3848 * logical imbalances.
3849 *
3850 * Called with busiest_rq locked.
3851 */
70b97a7f 3852static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3853{
39507451 3854 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3855 struct sched_domain *sd;
3856 struct rq *target_rq;
39507451 3857
48f24c4d 3858 /* Is there any task to move? */
39507451 3859 if (busiest_rq->nr_running <= 1)
39507451
NP
3860 return;
3861
3862 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3863
3864 /*
39507451 3865 * This condition is "impossible", if it occurs
41a2d6cf 3866 * we need to fix it. Originally reported by
39507451 3867 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3868 */
39507451 3869 BUG_ON(busiest_rq == target_rq);
1da177e4 3870
39507451
NP
3871 /* move a task from busiest_rq to target_rq */
3872 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3873 update_rq_clock(busiest_rq);
3874 update_rq_clock(target_rq);
39507451
NP
3875
3876 /* Search for an sd spanning us and the target CPU. */
c96d145e 3877 for_each_domain(target_cpu, sd) {
39507451 3878 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 3879 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 3880 break;
c96d145e 3881 }
39507451 3882
48f24c4d 3883 if (likely(sd)) {
2d72376b 3884 schedstat_inc(sd, alb_count);
39507451 3885
43010659
PW
3886 if (move_one_task(target_rq, target_cpu, busiest_rq,
3887 sd, CPU_IDLE))
48f24c4d
IM
3888 schedstat_inc(sd, alb_pushed);
3889 else
3890 schedstat_inc(sd, alb_failed);
3891 }
1b12bbc7 3892 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3893}
3894
46cb4b7c
SS
3895#ifdef CONFIG_NO_HZ
3896static struct {
3897 atomic_t load_balancer;
7d1e6a9b 3898 cpumask_var_t cpu_mask;
46cb4b7c
SS
3899} nohz ____cacheline_aligned = {
3900 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
3901};
3902
7835b98b 3903/*
46cb4b7c
SS
3904 * This routine will try to nominate the ilb (idle load balancing)
3905 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3906 * load balancing on behalf of all those cpus. If all the cpus in the system
3907 * go into this tickless mode, then there will be no ilb owner (as there is
3908 * no need for one) and all the cpus will sleep till the next wakeup event
3909 * arrives...
3910 *
3911 * For the ilb owner, tick is not stopped. And this tick will be used
3912 * for idle load balancing. ilb owner will still be part of
3913 * nohz.cpu_mask..
7835b98b 3914 *
46cb4b7c
SS
3915 * While stopping the tick, this cpu will become the ilb owner if there
3916 * is no other owner. And will be the owner till that cpu becomes busy
3917 * or if all cpus in the system stop their ticks at which point
3918 * there is no need for ilb owner.
3919 *
3920 * When the ilb owner becomes busy, it nominates another owner, during the
3921 * next busy scheduler_tick()
3922 */
3923int select_nohz_load_balancer(int stop_tick)
3924{
3925 int cpu = smp_processor_id();
3926
3927 if (stop_tick) {
7d1e6a9b 3928 cpumask_set_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3929 cpu_rq(cpu)->in_nohz_recently = 1;
3930
3931 /*
3932 * If we are going offline and still the leader, give up!
3933 */
e761b772 3934 if (!cpu_active(cpu) &&
46cb4b7c
SS
3935 atomic_read(&nohz.load_balancer) == cpu) {
3936 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3937 BUG();
3938 return 0;
3939 }
3940
3941 /* time for ilb owner also to sleep */
7d1e6a9b 3942 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
3943 if (atomic_read(&nohz.load_balancer) == cpu)
3944 atomic_set(&nohz.load_balancer, -1);
3945 return 0;
3946 }
3947
3948 if (atomic_read(&nohz.load_balancer) == -1) {
3949 /* make me the ilb owner */
3950 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3951 return 1;
3952 } else if (atomic_read(&nohz.load_balancer) == cpu)
3953 return 1;
3954 } else {
7d1e6a9b 3955 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
3956 return 0;
3957
7d1e6a9b 3958 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3959
3960 if (atomic_read(&nohz.load_balancer) == cpu)
3961 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3962 BUG();
3963 }
3964 return 0;
3965}
3966#endif
3967
3968static DEFINE_SPINLOCK(balancing);
3969
3970/*
7835b98b
CL
3971 * It checks each scheduling domain to see if it is due to be balanced,
3972 * and initiates a balancing operation if so.
3973 *
3974 * Balancing parameters are set up in arch_init_sched_domains.
3975 */
a9957449 3976static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3977{
46cb4b7c
SS
3978 int balance = 1;
3979 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3980 unsigned long interval;
3981 struct sched_domain *sd;
46cb4b7c 3982 /* Earliest time when we have to do rebalance again */
c9819f45 3983 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3984 int update_next_balance = 0;
d07355f5 3985 int need_serialize;
a0e90245
RR
3986 cpumask_var_t tmp;
3987
3988 /* Fails alloc? Rebalancing probably not a priority right now. */
3989 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3990 return;
1da177e4 3991
46cb4b7c 3992 for_each_domain(cpu, sd) {
1da177e4
LT
3993 if (!(sd->flags & SD_LOAD_BALANCE))
3994 continue;
3995
3996 interval = sd->balance_interval;
d15bcfdb 3997 if (idle != CPU_IDLE)
1da177e4
LT
3998 interval *= sd->busy_factor;
3999
4000 /* scale ms to jiffies */
4001 interval = msecs_to_jiffies(interval);
4002 if (unlikely(!interval))
4003 interval = 1;
dd41f596
IM
4004 if (interval > HZ*NR_CPUS/10)
4005 interval = HZ*NR_CPUS/10;
4006
d07355f5 4007 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4008
d07355f5 4009 if (need_serialize) {
08c183f3
CL
4010 if (!spin_trylock(&balancing))
4011 goto out;
4012 }
4013
c9819f45 4014 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 4015 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
4016 /*
4017 * We've pulled tasks over so either we're no
5969fe06
NP
4018 * longer idle, or one of our SMT siblings is
4019 * not idle.
4020 */
d15bcfdb 4021 idle = CPU_NOT_IDLE;
1da177e4 4022 }
1bd77f2d 4023 sd->last_balance = jiffies;
1da177e4 4024 }
d07355f5 4025 if (need_serialize)
08c183f3
CL
4026 spin_unlock(&balancing);
4027out:
f549da84 4028 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4029 next_balance = sd->last_balance + interval;
f549da84
SS
4030 update_next_balance = 1;
4031 }
783609c6
SS
4032
4033 /*
4034 * Stop the load balance at this level. There is another
4035 * CPU in our sched group which is doing load balancing more
4036 * actively.
4037 */
4038 if (!balance)
4039 break;
1da177e4 4040 }
f549da84
SS
4041
4042 /*
4043 * next_balance will be updated only when there is a need.
4044 * When the cpu is attached to null domain for ex, it will not be
4045 * updated.
4046 */
4047 if (likely(update_next_balance))
4048 rq->next_balance = next_balance;
a0e90245
RR
4049
4050 free_cpumask_var(tmp);
46cb4b7c
SS
4051}
4052
4053/*
4054 * run_rebalance_domains is triggered when needed from the scheduler tick.
4055 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4056 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4057 */
4058static void run_rebalance_domains(struct softirq_action *h)
4059{
dd41f596
IM
4060 int this_cpu = smp_processor_id();
4061 struct rq *this_rq = cpu_rq(this_cpu);
4062 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4063 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4064
dd41f596 4065 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4066
4067#ifdef CONFIG_NO_HZ
4068 /*
4069 * If this cpu is the owner for idle load balancing, then do the
4070 * balancing on behalf of the other idle cpus whose ticks are
4071 * stopped.
4072 */
dd41f596
IM
4073 if (this_rq->idle_at_tick &&
4074 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4075 struct rq *rq;
4076 int balance_cpu;
4077
7d1e6a9b
RR
4078 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4079 if (balance_cpu == this_cpu)
4080 continue;
4081
46cb4b7c
SS
4082 /*
4083 * If this cpu gets work to do, stop the load balancing
4084 * work being done for other cpus. Next load
4085 * balancing owner will pick it up.
4086 */
4087 if (need_resched())
4088 break;
4089
de0cf899 4090 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4091
4092 rq = cpu_rq(balance_cpu);
dd41f596
IM
4093 if (time_after(this_rq->next_balance, rq->next_balance))
4094 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4095 }
4096 }
4097#endif
4098}
4099
4100/*
4101 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4102 *
4103 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4104 * idle load balancing owner or decide to stop the periodic load balancing,
4105 * if the whole system is idle.
4106 */
dd41f596 4107static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4108{
46cb4b7c
SS
4109#ifdef CONFIG_NO_HZ
4110 /*
4111 * If we were in the nohz mode recently and busy at the current
4112 * scheduler tick, then check if we need to nominate new idle
4113 * load balancer.
4114 */
4115 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4116 rq->in_nohz_recently = 0;
4117
4118 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4119 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4120 atomic_set(&nohz.load_balancer, -1);
4121 }
4122
4123 if (atomic_read(&nohz.load_balancer) == -1) {
4124 /*
4125 * simple selection for now: Nominate the
4126 * first cpu in the nohz list to be the next
4127 * ilb owner.
4128 *
4129 * TBD: Traverse the sched domains and nominate
4130 * the nearest cpu in the nohz.cpu_mask.
4131 */
7d1e6a9b 4132 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4133
434d53b0 4134 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4135 resched_cpu(ilb);
4136 }
4137 }
4138
4139 /*
4140 * If this cpu is idle and doing idle load balancing for all the
4141 * cpus with ticks stopped, is it time for that to stop?
4142 */
4143 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4144 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4145 resched_cpu(cpu);
4146 return;
4147 }
4148
4149 /*
4150 * If this cpu is idle and the idle load balancing is done by
4151 * someone else, then no need raise the SCHED_SOFTIRQ
4152 */
4153 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4154 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4155 return;
4156#endif
4157 if (time_after_eq(jiffies, rq->next_balance))
4158 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4159}
dd41f596
IM
4160
4161#else /* CONFIG_SMP */
4162
1da177e4
LT
4163/*
4164 * on UP we do not need to balance between CPUs:
4165 */
70b97a7f 4166static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4167{
4168}
dd41f596 4169
1da177e4
LT
4170#endif
4171
1da177e4
LT
4172DEFINE_PER_CPU(struct kernel_stat, kstat);
4173
4174EXPORT_PER_CPU_SYMBOL(kstat);
4175
aa9c4c0f
IM
4176/*
4177 * Return any ns on the sched_clock that have not yet been banked in
4178 * @p in case that task is currently running.
4179 */
4180unsigned long long __task_delta_exec(struct task_struct *p, int update)
4181{
4182 s64 delta_exec;
4183 struct rq *rq;
4184
4185 rq = task_rq(p);
4186 WARN_ON_ONCE(!runqueue_is_locked());
4187 WARN_ON_ONCE(!task_current(rq, p));
4188
4189 if (update)
4190 update_rq_clock(rq);
4191
4192 delta_exec = rq->clock - p->se.exec_start;
4193
4194 WARN_ON_ONCE(delta_exec < 0);
4195
4196 return delta_exec;
4197}
4198
1da177e4 4199/*
f06febc9
FM
4200 * Return any ns on the sched_clock that have not yet been banked in
4201 * @p in case that task is currently running.
1da177e4 4202 */
bb34d92f 4203unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4204{
1da177e4 4205 unsigned long flags;
41b86e9c 4206 struct rq *rq;
bb34d92f 4207 u64 ns = 0;
48f24c4d 4208
41b86e9c 4209 rq = task_rq_lock(p, &flags);
1508487e 4210
051a1d1a 4211 if (task_current(rq, p)) {
f06febc9
FM
4212 u64 delta_exec;
4213
a8e504d2
IM
4214 update_rq_clock(rq);
4215 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4216 if ((s64)delta_exec > 0)
bb34d92f 4217 ns = delta_exec;
41b86e9c 4218 }
48f24c4d 4219
41b86e9c 4220 task_rq_unlock(rq, &flags);
48f24c4d 4221
1da177e4
LT
4222 return ns;
4223}
4224
1da177e4
LT
4225/*
4226 * Account user cpu time to a process.
4227 * @p: the process that the cpu time gets accounted to
1da177e4 4228 * @cputime: the cpu time spent in user space since the last update
457533a7 4229 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4230 */
457533a7
MS
4231void account_user_time(struct task_struct *p, cputime_t cputime,
4232 cputime_t cputime_scaled)
1da177e4
LT
4233{
4234 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4235 cputime64_t tmp;
4236
457533a7 4237 /* Add user time to process. */
1da177e4 4238 p->utime = cputime_add(p->utime, cputime);
457533a7 4239 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4240 account_group_user_time(p, cputime);
1da177e4
LT
4241
4242 /* Add user time to cpustat. */
4243 tmp = cputime_to_cputime64(cputime);
4244 if (TASK_NICE(p) > 0)
4245 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4246 else
4247 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4248 /* Account for user time used */
4249 acct_update_integrals(p);
1da177e4
LT
4250}
4251
94886b84
LV
4252/*
4253 * Account guest cpu time to a process.
4254 * @p: the process that the cpu time gets accounted to
4255 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4256 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4257 */
457533a7
MS
4258static void account_guest_time(struct task_struct *p, cputime_t cputime,
4259 cputime_t cputime_scaled)
94886b84
LV
4260{
4261 cputime64_t tmp;
4262 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4263
4264 tmp = cputime_to_cputime64(cputime);
4265
457533a7 4266 /* Add guest time to process. */
94886b84 4267 p->utime = cputime_add(p->utime, cputime);
457533a7 4268 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4269 account_group_user_time(p, cputime);
94886b84
LV
4270 p->gtime = cputime_add(p->gtime, cputime);
4271
457533a7 4272 /* Add guest time to cpustat. */
94886b84
LV
4273 cpustat->user = cputime64_add(cpustat->user, tmp);
4274 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4275}
4276
1da177e4
LT
4277/*
4278 * Account system cpu time to a process.
4279 * @p: the process that the cpu time gets accounted to
4280 * @hardirq_offset: the offset to subtract from hardirq_count()
4281 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4282 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4283 */
4284void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4285 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4286{
4287 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4288 cputime64_t tmp;
4289
983ed7a6 4290 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4291 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4292 return;
4293 }
94886b84 4294
457533a7 4295 /* Add system time to process. */
1da177e4 4296 p->stime = cputime_add(p->stime, cputime);
457533a7 4297 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4298 account_group_system_time(p, cputime);
1da177e4
LT
4299
4300 /* Add system time to cpustat. */
4301 tmp = cputime_to_cputime64(cputime);
4302 if (hardirq_count() - hardirq_offset)
4303 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4304 else if (softirq_count())
4305 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4306 else
79741dd3
MS
4307 cpustat->system = cputime64_add(cpustat->system, tmp);
4308
1da177e4
LT
4309 /* Account for system time used */
4310 acct_update_integrals(p);
1da177e4
LT
4311}
4312
c66f08be 4313/*
1da177e4 4314 * Account for involuntary wait time.
1da177e4 4315 * @steal: the cpu time spent in involuntary wait
c66f08be 4316 */
79741dd3 4317void account_steal_time(cputime_t cputime)
c66f08be 4318{
79741dd3
MS
4319 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4320 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4321
4322 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4323}
4324
1da177e4 4325/*
79741dd3
MS
4326 * Account for idle time.
4327 * @cputime: the cpu time spent in idle wait
1da177e4 4328 */
79741dd3 4329void account_idle_time(cputime_t cputime)
1da177e4
LT
4330{
4331 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4332 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4333 struct rq *rq = this_rq();
1da177e4 4334
79741dd3
MS
4335 if (atomic_read(&rq->nr_iowait) > 0)
4336 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4337 else
4338 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4339}
4340
79741dd3
MS
4341#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4342
4343/*
4344 * Account a single tick of cpu time.
4345 * @p: the process that the cpu time gets accounted to
4346 * @user_tick: indicates if the tick is a user or a system tick
4347 */
4348void account_process_tick(struct task_struct *p, int user_tick)
4349{
4350 cputime_t one_jiffy = jiffies_to_cputime(1);
4351 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4352 struct rq *rq = this_rq();
4353
4354 if (user_tick)
4355 account_user_time(p, one_jiffy, one_jiffy_scaled);
4356 else if (p != rq->idle)
4357 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4358 one_jiffy_scaled);
4359 else
4360 account_idle_time(one_jiffy);
4361}
4362
4363/*
4364 * Account multiple ticks of steal time.
4365 * @p: the process from which the cpu time has been stolen
4366 * @ticks: number of stolen ticks
4367 */
4368void account_steal_ticks(unsigned long ticks)
4369{
4370 account_steal_time(jiffies_to_cputime(ticks));
4371}
4372
4373/*
4374 * Account multiple ticks of idle time.
4375 * @ticks: number of stolen ticks
4376 */
4377void account_idle_ticks(unsigned long ticks)
4378{
4379 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4380}
4381
79741dd3
MS
4382#endif
4383
49048622
BS
4384/*
4385 * Use precise platform statistics if available:
4386 */
4387#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4388cputime_t task_utime(struct task_struct *p)
4389{
4390 return p->utime;
4391}
4392
4393cputime_t task_stime(struct task_struct *p)
4394{
4395 return p->stime;
4396}
4397#else
4398cputime_t task_utime(struct task_struct *p)
4399{
4400 clock_t utime = cputime_to_clock_t(p->utime),
4401 total = utime + cputime_to_clock_t(p->stime);
4402 u64 temp;
4403
4404 /*
4405 * Use CFS's precise accounting:
4406 */
4407 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4408
4409 if (total) {
4410 temp *= utime;
4411 do_div(temp, total);
4412 }
4413 utime = (clock_t)temp;
4414
4415 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4416 return p->prev_utime;
4417}
4418
4419cputime_t task_stime(struct task_struct *p)
4420{
4421 clock_t stime;
4422
4423 /*
4424 * Use CFS's precise accounting. (we subtract utime from
4425 * the total, to make sure the total observed by userspace
4426 * grows monotonically - apps rely on that):
4427 */
4428 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4429 cputime_to_clock_t(task_utime(p));
4430
4431 if (stime >= 0)
4432 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4433
4434 return p->prev_stime;
4435}
4436#endif
4437
4438inline cputime_t task_gtime(struct task_struct *p)
4439{
4440 return p->gtime;
4441}
4442
7835b98b
CL
4443/*
4444 * This function gets called by the timer code, with HZ frequency.
4445 * We call it with interrupts disabled.
4446 *
4447 * It also gets called by the fork code, when changing the parent's
4448 * timeslices.
4449 */
4450void scheduler_tick(void)
4451{
7835b98b
CL
4452 int cpu = smp_processor_id();
4453 struct rq *rq = cpu_rq(cpu);
dd41f596 4454 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4455
4456 sched_clock_tick();
dd41f596
IM
4457
4458 spin_lock(&rq->lock);
3e51f33f 4459 update_rq_clock(rq);
f1a438d8 4460 update_cpu_load(rq);
fa85ae24 4461 curr->sched_class->task_tick(rq, curr, 0);
aa9c4c0f 4462 perf_counter_task_tick(curr, cpu);
dd41f596 4463 spin_unlock(&rq->lock);
7835b98b 4464
e418e1c2 4465#ifdef CONFIG_SMP
dd41f596
IM
4466 rq->idle_at_tick = idle_cpu(cpu);
4467 trigger_load_balance(rq, cpu);
e418e1c2 4468#endif
1da177e4
LT
4469}
4470
6cd8a4bb
SR
4471#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4472 defined(CONFIG_PREEMPT_TRACER))
4473
4474static inline unsigned long get_parent_ip(unsigned long addr)
4475{
4476 if (in_lock_functions(addr)) {
4477 addr = CALLER_ADDR2;
4478 if (in_lock_functions(addr))
4479 addr = CALLER_ADDR3;
4480 }
4481 return addr;
4482}
1da177e4 4483
43627582 4484void __kprobes add_preempt_count(int val)
1da177e4 4485{
6cd8a4bb 4486#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4487 /*
4488 * Underflow?
4489 */
9a11b49a
IM
4490 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4491 return;
6cd8a4bb 4492#endif
1da177e4 4493 preempt_count() += val;
6cd8a4bb 4494#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4495 /*
4496 * Spinlock count overflowing soon?
4497 */
33859f7f
MOS
4498 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4499 PREEMPT_MASK - 10);
6cd8a4bb
SR
4500#endif
4501 if (preempt_count() == val)
4502 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4503}
4504EXPORT_SYMBOL(add_preempt_count);
4505
43627582 4506void __kprobes sub_preempt_count(int val)
1da177e4 4507{
6cd8a4bb 4508#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4509 /*
4510 * Underflow?
4511 */
01e3eb82 4512 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4513 return;
1da177e4
LT
4514 /*
4515 * Is the spinlock portion underflowing?
4516 */
9a11b49a
IM
4517 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4518 !(preempt_count() & PREEMPT_MASK)))
4519 return;
6cd8a4bb 4520#endif
9a11b49a 4521
6cd8a4bb
SR
4522 if (preempt_count() == val)
4523 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4524 preempt_count() -= val;
4525}
4526EXPORT_SYMBOL(sub_preempt_count);
4527
4528#endif
4529
4530/*
dd41f596 4531 * Print scheduling while atomic bug:
1da177e4 4532 */
dd41f596 4533static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4534{
838225b4
SS
4535 struct pt_regs *regs = get_irq_regs();
4536
4537 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4538 prev->comm, prev->pid, preempt_count());
4539
dd41f596 4540 debug_show_held_locks(prev);
e21f5b15 4541 print_modules();
dd41f596
IM
4542 if (irqs_disabled())
4543 print_irqtrace_events(prev);
838225b4
SS
4544
4545 if (regs)
4546 show_regs(regs);
4547 else
4548 dump_stack();
dd41f596 4549}
1da177e4 4550
dd41f596
IM
4551/*
4552 * Various schedule()-time debugging checks and statistics:
4553 */
4554static inline void schedule_debug(struct task_struct *prev)
4555{
1da177e4 4556 /*
41a2d6cf 4557 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4558 * schedule() atomically, we ignore that path for now.
4559 * Otherwise, whine if we are scheduling when we should not be.
4560 */
3f33a7ce 4561 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4562 __schedule_bug(prev);
4563
1da177e4
LT
4564 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4565
2d72376b 4566 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4567#ifdef CONFIG_SCHEDSTATS
4568 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4569 schedstat_inc(this_rq(), bkl_count);
4570 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4571 }
4572#endif
dd41f596
IM
4573}
4574
4575/*
4576 * Pick up the highest-prio task:
4577 */
4578static inline struct task_struct *
ff95f3df 4579pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4580{
5522d5d5 4581 const struct sched_class *class;
dd41f596 4582 struct task_struct *p;
1da177e4
LT
4583
4584 /*
dd41f596
IM
4585 * Optimization: we know that if all tasks are in
4586 * the fair class we can call that function directly:
1da177e4 4587 */
dd41f596 4588 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4589 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4590 if (likely(p))
4591 return p;
1da177e4
LT
4592 }
4593
dd41f596
IM
4594 class = sched_class_highest;
4595 for ( ; ; ) {
fb8d4724 4596 p = class->pick_next_task(rq);
dd41f596
IM
4597 if (p)
4598 return p;
4599 /*
4600 * Will never be NULL as the idle class always
4601 * returns a non-NULL p:
4602 */
4603 class = class->next;
4604 }
4605}
1da177e4 4606
dd41f596
IM
4607/*
4608 * schedule() is the main scheduler function.
4609 */
4610asmlinkage void __sched schedule(void)
4611{
4612 struct task_struct *prev, *next;
67ca7bde 4613 unsigned long *switch_count;
dd41f596 4614 struct rq *rq;
31656519 4615 int cpu;
dd41f596
IM
4616
4617need_resched:
4618 preempt_disable();
4619 cpu = smp_processor_id();
4620 rq = cpu_rq(cpu);
4621 rcu_qsctr_inc(cpu);
4622 prev = rq->curr;
4623 switch_count = &prev->nivcsw;
4624
4625 release_kernel_lock(prev);
4626need_resched_nonpreemptible:
4627
4628 schedule_debug(prev);
1da177e4 4629
31656519 4630 if (sched_feat(HRTICK))
f333fdc9 4631 hrtick_clear(rq);
8f4d37ec 4632
8cd162ce 4633 spin_lock_irq(&rq->lock);
3e51f33f 4634 update_rq_clock(rq);
1e819950 4635 clear_tsk_need_resched(prev);
1da177e4 4636
1da177e4 4637 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4638 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4639 prev->state = TASK_RUNNING;
16882c1e 4640 else
2e1cb74a 4641 deactivate_task(rq, prev, 1);
dd41f596 4642 switch_count = &prev->nvcsw;
1da177e4
LT
4643 }
4644
9a897c5a
SR
4645#ifdef CONFIG_SMP
4646 if (prev->sched_class->pre_schedule)
4647 prev->sched_class->pre_schedule(rq, prev);
4648#endif
f65eda4f 4649
dd41f596 4650 if (unlikely(!rq->nr_running))
1da177e4 4651 idle_balance(cpu, rq);
1da177e4 4652
31ee529c 4653 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4654 next = pick_next_task(rq, prev);
1da177e4 4655
1da177e4 4656 if (likely(prev != next)) {
673a90a1 4657 sched_info_switch(prev, next);
aa9c4c0f 4658 perf_counter_task_sched_out(prev, cpu);
673a90a1 4659
1da177e4
LT
4660 rq->nr_switches++;
4661 rq->curr = next;
4662 ++*switch_count;
4663
dd41f596 4664 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4665 /*
4666 * the context switch might have flipped the stack from under
4667 * us, hence refresh the local variables.
4668 */
4669 cpu = smp_processor_id();
4670 rq = cpu_rq(cpu);
1da177e4
LT
4671 } else
4672 spin_unlock_irq(&rq->lock);
4673
8f4d37ec 4674 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4675 goto need_resched_nonpreemptible;
8f4d37ec 4676
1da177e4
LT
4677 preempt_enable_no_resched();
4678 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4679 goto need_resched;
4680}
1da177e4
LT
4681EXPORT_SYMBOL(schedule);
4682
4683#ifdef CONFIG_PREEMPT
4684/*
2ed6e34f 4685 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4686 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4687 * occur there and call schedule directly.
4688 */
4689asmlinkage void __sched preempt_schedule(void)
4690{
4691 struct thread_info *ti = current_thread_info();
6478d880 4692
1da177e4
LT
4693 /*
4694 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4695 * we do not want to preempt the current task. Just return..
1da177e4 4696 */
beed33a8 4697 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4698 return;
4699
3a5c359a
AK
4700 do {
4701 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4702 schedule();
3a5c359a 4703 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4704
3a5c359a
AK
4705 /*
4706 * Check again in case we missed a preemption opportunity
4707 * between schedule and now.
4708 */
4709 barrier();
4710 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4711}
1da177e4
LT
4712EXPORT_SYMBOL(preempt_schedule);
4713
4714/*
2ed6e34f 4715 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4716 * off of irq context.
4717 * Note, that this is called and return with irqs disabled. This will
4718 * protect us against recursive calling from irq.
4719 */
4720asmlinkage void __sched preempt_schedule_irq(void)
4721{
4722 struct thread_info *ti = current_thread_info();
6478d880 4723
2ed6e34f 4724 /* Catch callers which need to be fixed */
1da177e4
LT
4725 BUG_ON(ti->preempt_count || !irqs_disabled());
4726
3a5c359a
AK
4727 do {
4728 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4729 local_irq_enable();
4730 schedule();
4731 local_irq_disable();
3a5c359a 4732 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4733
3a5c359a
AK
4734 /*
4735 * Check again in case we missed a preemption opportunity
4736 * between schedule and now.
4737 */
4738 barrier();
4739 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4740}
4741
4742#endif /* CONFIG_PREEMPT */
4743
95cdf3b7
IM
4744int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4745 void *key)
1da177e4 4746{
48f24c4d 4747 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4748}
1da177e4
LT
4749EXPORT_SYMBOL(default_wake_function);
4750
4751/*
41a2d6cf
IM
4752 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4753 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4754 * number) then we wake all the non-exclusive tasks and one exclusive task.
4755 *
4756 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4757 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4758 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4759 */
4760static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4761 int nr_exclusive, int sync, void *key)
4762{
2e45874c 4763 wait_queue_t *curr, *next;
1da177e4 4764
2e45874c 4765 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4766 unsigned flags = curr->flags;
4767
1da177e4 4768 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4769 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4770 break;
4771 }
4772}
4773
4774/**
4775 * __wake_up - wake up threads blocked on a waitqueue.
4776 * @q: the waitqueue
4777 * @mode: which threads
4778 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4779 * @key: is directly passed to the wakeup function
1da177e4 4780 */
7ad5b3a5 4781void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4782 int nr_exclusive, void *key)
1da177e4
LT
4783{
4784 unsigned long flags;
4785
4786 spin_lock_irqsave(&q->lock, flags);
4787 __wake_up_common(q, mode, nr_exclusive, 0, key);
4788 spin_unlock_irqrestore(&q->lock, flags);
4789}
1da177e4
LT
4790EXPORT_SYMBOL(__wake_up);
4791
4792/*
4793 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4794 */
7ad5b3a5 4795void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4796{
4797 __wake_up_common(q, mode, 1, 0, NULL);
4798}
4799
4800/**
67be2dd1 4801 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4802 * @q: the waitqueue
4803 * @mode: which threads
4804 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4805 *
4806 * The sync wakeup differs that the waker knows that it will schedule
4807 * away soon, so while the target thread will be woken up, it will not
4808 * be migrated to another CPU - ie. the two threads are 'synchronized'
4809 * with each other. This can prevent needless bouncing between CPUs.
4810 *
4811 * On UP it can prevent extra preemption.
4812 */
7ad5b3a5 4813void
95cdf3b7 4814__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4815{
4816 unsigned long flags;
4817 int sync = 1;
4818
4819 if (unlikely(!q))
4820 return;
4821
4822 if (unlikely(!nr_exclusive))
4823 sync = 0;
4824
4825 spin_lock_irqsave(&q->lock, flags);
4826 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4827 spin_unlock_irqrestore(&q->lock, flags);
4828}
4829EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4830
65eb3dc6
KD
4831/**
4832 * complete: - signals a single thread waiting on this completion
4833 * @x: holds the state of this particular completion
4834 *
4835 * This will wake up a single thread waiting on this completion. Threads will be
4836 * awakened in the same order in which they were queued.
4837 *
4838 * See also complete_all(), wait_for_completion() and related routines.
4839 */
b15136e9 4840void complete(struct completion *x)
1da177e4
LT
4841{
4842 unsigned long flags;
4843
4844 spin_lock_irqsave(&x->wait.lock, flags);
4845 x->done++;
d9514f6c 4846 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4847 spin_unlock_irqrestore(&x->wait.lock, flags);
4848}
4849EXPORT_SYMBOL(complete);
4850
65eb3dc6
KD
4851/**
4852 * complete_all: - signals all threads waiting on this completion
4853 * @x: holds the state of this particular completion
4854 *
4855 * This will wake up all threads waiting on this particular completion event.
4856 */
b15136e9 4857void complete_all(struct completion *x)
1da177e4
LT
4858{
4859 unsigned long flags;
4860
4861 spin_lock_irqsave(&x->wait.lock, flags);
4862 x->done += UINT_MAX/2;
d9514f6c 4863 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4864 spin_unlock_irqrestore(&x->wait.lock, flags);
4865}
4866EXPORT_SYMBOL(complete_all);
4867
8cbbe86d
AK
4868static inline long __sched
4869do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4870{
1da177e4
LT
4871 if (!x->done) {
4872 DECLARE_WAITQUEUE(wait, current);
4873
4874 wait.flags |= WQ_FLAG_EXCLUSIVE;
4875 __add_wait_queue_tail(&x->wait, &wait);
4876 do {
94d3d824 4877 if (signal_pending_state(state, current)) {
ea71a546
ON
4878 timeout = -ERESTARTSYS;
4879 break;
8cbbe86d
AK
4880 }
4881 __set_current_state(state);
1da177e4
LT
4882 spin_unlock_irq(&x->wait.lock);
4883 timeout = schedule_timeout(timeout);
4884 spin_lock_irq(&x->wait.lock);
ea71a546 4885 } while (!x->done && timeout);
1da177e4 4886 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4887 if (!x->done)
4888 return timeout;
1da177e4
LT
4889 }
4890 x->done--;
ea71a546 4891 return timeout ?: 1;
1da177e4 4892}
1da177e4 4893
8cbbe86d
AK
4894static long __sched
4895wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4896{
1da177e4
LT
4897 might_sleep();
4898
4899 spin_lock_irq(&x->wait.lock);
8cbbe86d 4900 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4901 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4902 return timeout;
4903}
1da177e4 4904
65eb3dc6
KD
4905/**
4906 * wait_for_completion: - waits for completion of a task
4907 * @x: holds the state of this particular completion
4908 *
4909 * This waits to be signaled for completion of a specific task. It is NOT
4910 * interruptible and there is no timeout.
4911 *
4912 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4913 * and interrupt capability. Also see complete().
4914 */
b15136e9 4915void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4916{
4917 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4918}
8cbbe86d 4919EXPORT_SYMBOL(wait_for_completion);
1da177e4 4920
65eb3dc6
KD
4921/**
4922 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4923 * @x: holds the state of this particular completion
4924 * @timeout: timeout value in jiffies
4925 *
4926 * This waits for either a completion of a specific task to be signaled or for a
4927 * specified timeout to expire. The timeout is in jiffies. It is not
4928 * interruptible.
4929 */
b15136e9 4930unsigned long __sched
8cbbe86d 4931wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4932{
8cbbe86d 4933 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4934}
8cbbe86d 4935EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4936
65eb3dc6
KD
4937/**
4938 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4939 * @x: holds the state of this particular completion
4940 *
4941 * This waits for completion of a specific task to be signaled. It is
4942 * interruptible.
4943 */
8cbbe86d 4944int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4945{
51e97990
AK
4946 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4947 if (t == -ERESTARTSYS)
4948 return t;
4949 return 0;
0fec171c 4950}
8cbbe86d 4951EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4952
65eb3dc6
KD
4953/**
4954 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4955 * @x: holds the state of this particular completion
4956 * @timeout: timeout value in jiffies
4957 *
4958 * This waits for either a completion of a specific task to be signaled or for a
4959 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4960 */
b15136e9 4961unsigned long __sched
8cbbe86d
AK
4962wait_for_completion_interruptible_timeout(struct completion *x,
4963 unsigned long timeout)
0fec171c 4964{
8cbbe86d 4965 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4966}
8cbbe86d 4967EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4968
65eb3dc6
KD
4969/**
4970 * wait_for_completion_killable: - waits for completion of a task (killable)
4971 * @x: holds the state of this particular completion
4972 *
4973 * This waits to be signaled for completion of a specific task. It can be
4974 * interrupted by a kill signal.
4975 */
009e577e
MW
4976int __sched wait_for_completion_killable(struct completion *x)
4977{
4978 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4979 if (t == -ERESTARTSYS)
4980 return t;
4981 return 0;
4982}
4983EXPORT_SYMBOL(wait_for_completion_killable);
4984
be4de352
DC
4985/**
4986 * try_wait_for_completion - try to decrement a completion without blocking
4987 * @x: completion structure
4988 *
4989 * Returns: 0 if a decrement cannot be done without blocking
4990 * 1 if a decrement succeeded.
4991 *
4992 * If a completion is being used as a counting completion,
4993 * attempt to decrement the counter without blocking. This
4994 * enables us to avoid waiting if the resource the completion
4995 * is protecting is not available.
4996 */
4997bool try_wait_for_completion(struct completion *x)
4998{
4999 int ret = 1;
5000
5001 spin_lock_irq(&x->wait.lock);
5002 if (!x->done)
5003 ret = 0;
5004 else
5005 x->done--;
5006 spin_unlock_irq(&x->wait.lock);
5007 return ret;
5008}
5009EXPORT_SYMBOL(try_wait_for_completion);
5010
5011/**
5012 * completion_done - Test to see if a completion has any waiters
5013 * @x: completion structure
5014 *
5015 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5016 * 1 if there are no waiters.
5017 *
5018 */
5019bool completion_done(struct completion *x)
5020{
5021 int ret = 1;
5022
5023 spin_lock_irq(&x->wait.lock);
5024 if (!x->done)
5025 ret = 0;
5026 spin_unlock_irq(&x->wait.lock);
5027 return ret;
5028}
5029EXPORT_SYMBOL(completion_done);
5030
8cbbe86d
AK
5031static long __sched
5032sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5033{
0fec171c
IM
5034 unsigned long flags;
5035 wait_queue_t wait;
5036
5037 init_waitqueue_entry(&wait, current);
1da177e4 5038
8cbbe86d 5039 __set_current_state(state);
1da177e4 5040
8cbbe86d
AK
5041 spin_lock_irqsave(&q->lock, flags);
5042 __add_wait_queue(q, &wait);
5043 spin_unlock(&q->lock);
5044 timeout = schedule_timeout(timeout);
5045 spin_lock_irq(&q->lock);
5046 __remove_wait_queue(q, &wait);
5047 spin_unlock_irqrestore(&q->lock, flags);
5048
5049 return timeout;
5050}
5051
5052void __sched interruptible_sleep_on(wait_queue_head_t *q)
5053{
5054 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5055}
1da177e4
LT
5056EXPORT_SYMBOL(interruptible_sleep_on);
5057
0fec171c 5058long __sched
95cdf3b7 5059interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5060{
8cbbe86d 5061 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5062}
1da177e4
LT
5063EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5064
0fec171c 5065void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5066{
8cbbe86d 5067 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5068}
1da177e4
LT
5069EXPORT_SYMBOL(sleep_on);
5070
0fec171c 5071long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5072{
8cbbe86d 5073 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5074}
1da177e4
LT
5075EXPORT_SYMBOL(sleep_on_timeout);
5076
b29739f9
IM
5077#ifdef CONFIG_RT_MUTEXES
5078
5079/*
5080 * rt_mutex_setprio - set the current priority of a task
5081 * @p: task
5082 * @prio: prio value (kernel-internal form)
5083 *
5084 * This function changes the 'effective' priority of a task. It does
5085 * not touch ->normal_prio like __setscheduler().
5086 *
5087 * Used by the rt_mutex code to implement priority inheritance logic.
5088 */
36c8b586 5089void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5090{
5091 unsigned long flags;
83b699ed 5092 int oldprio, on_rq, running;
70b97a7f 5093 struct rq *rq;
cb469845 5094 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5095
5096 BUG_ON(prio < 0 || prio > MAX_PRIO);
5097
5098 rq = task_rq_lock(p, &flags);
a8e504d2 5099 update_rq_clock(rq);
b29739f9 5100
d5f9f942 5101 oldprio = p->prio;
dd41f596 5102 on_rq = p->se.on_rq;
051a1d1a 5103 running = task_current(rq, p);
0e1f3483 5104 if (on_rq)
69be72c1 5105 dequeue_task(rq, p, 0);
0e1f3483
HS
5106 if (running)
5107 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5108
5109 if (rt_prio(prio))
5110 p->sched_class = &rt_sched_class;
5111 else
5112 p->sched_class = &fair_sched_class;
5113
b29739f9
IM
5114 p->prio = prio;
5115
0e1f3483
HS
5116 if (running)
5117 p->sched_class->set_curr_task(rq);
dd41f596 5118 if (on_rq) {
8159f87e 5119 enqueue_task(rq, p, 0);
cb469845
SR
5120
5121 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5122 }
5123 task_rq_unlock(rq, &flags);
5124}
5125
5126#endif
5127
36c8b586 5128void set_user_nice(struct task_struct *p, long nice)
1da177e4 5129{
dd41f596 5130 int old_prio, delta, on_rq;
1da177e4 5131 unsigned long flags;
70b97a7f 5132 struct rq *rq;
1da177e4
LT
5133
5134 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5135 return;
5136 /*
5137 * We have to be careful, if called from sys_setpriority(),
5138 * the task might be in the middle of scheduling on another CPU.
5139 */
5140 rq = task_rq_lock(p, &flags);
a8e504d2 5141 update_rq_clock(rq);
1da177e4
LT
5142 /*
5143 * The RT priorities are set via sched_setscheduler(), but we still
5144 * allow the 'normal' nice value to be set - but as expected
5145 * it wont have any effect on scheduling until the task is
dd41f596 5146 * SCHED_FIFO/SCHED_RR:
1da177e4 5147 */
e05606d3 5148 if (task_has_rt_policy(p)) {
1da177e4
LT
5149 p->static_prio = NICE_TO_PRIO(nice);
5150 goto out_unlock;
5151 }
dd41f596 5152 on_rq = p->se.on_rq;
c09595f6 5153 if (on_rq)
69be72c1 5154 dequeue_task(rq, p, 0);
1da177e4 5155
1da177e4 5156 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5157 set_load_weight(p);
b29739f9
IM
5158 old_prio = p->prio;
5159 p->prio = effective_prio(p);
5160 delta = p->prio - old_prio;
1da177e4 5161
dd41f596 5162 if (on_rq) {
8159f87e 5163 enqueue_task(rq, p, 0);
1da177e4 5164 /*
d5f9f942
AM
5165 * If the task increased its priority or is running and
5166 * lowered its priority, then reschedule its CPU:
1da177e4 5167 */
d5f9f942 5168 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5169 resched_task(rq->curr);
5170 }
5171out_unlock:
5172 task_rq_unlock(rq, &flags);
5173}
1da177e4
LT
5174EXPORT_SYMBOL(set_user_nice);
5175
e43379f1
MM
5176/*
5177 * can_nice - check if a task can reduce its nice value
5178 * @p: task
5179 * @nice: nice value
5180 */
36c8b586 5181int can_nice(const struct task_struct *p, const int nice)
e43379f1 5182{
024f4747
MM
5183 /* convert nice value [19,-20] to rlimit style value [1,40] */
5184 int nice_rlim = 20 - nice;
48f24c4d 5185
e43379f1
MM
5186 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5187 capable(CAP_SYS_NICE));
5188}
5189
1da177e4
LT
5190#ifdef __ARCH_WANT_SYS_NICE
5191
5192/*
5193 * sys_nice - change the priority of the current process.
5194 * @increment: priority increment
5195 *
5196 * sys_setpriority is a more generic, but much slower function that
5197 * does similar things.
5198 */
5add95d4 5199SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5200{
48f24c4d 5201 long nice, retval;
1da177e4
LT
5202
5203 /*
5204 * Setpriority might change our priority at the same moment.
5205 * We don't have to worry. Conceptually one call occurs first
5206 * and we have a single winner.
5207 */
e43379f1
MM
5208 if (increment < -40)
5209 increment = -40;
1da177e4
LT
5210 if (increment > 40)
5211 increment = 40;
5212
5213 nice = PRIO_TO_NICE(current->static_prio) + increment;
5214 if (nice < -20)
5215 nice = -20;
5216 if (nice > 19)
5217 nice = 19;
5218
e43379f1
MM
5219 if (increment < 0 && !can_nice(current, nice))
5220 return -EPERM;
5221
1da177e4
LT
5222 retval = security_task_setnice(current, nice);
5223 if (retval)
5224 return retval;
5225
5226 set_user_nice(current, nice);
5227 return 0;
5228}
5229
5230#endif
5231
5232/**
5233 * task_prio - return the priority value of a given task.
5234 * @p: the task in question.
5235 *
5236 * This is the priority value as seen by users in /proc.
5237 * RT tasks are offset by -200. Normal tasks are centered
5238 * around 0, value goes from -16 to +15.
5239 */
36c8b586 5240int task_prio(const struct task_struct *p)
1da177e4
LT
5241{
5242 return p->prio - MAX_RT_PRIO;
5243}
5244
5245/**
5246 * task_nice - return the nice value of a given task.
5247 * @p: the task in question.
5248 */
36c8b586 5249int task_nice(const struct task_struct *p)
1da177e4
LT
5250{
5251 return TASK_NICE(p);
5252}
150d8bed 5253EXPORT_SYMBOL(task_nice);
1da177e4
LT
5254
5255/**
5256 * idle_cpu - is a given cpu idle currently?
5257 * @cpu: the processor in question.
5258 */
5259int idle_cpu(int cpu)
5260{
5261 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5262}
5263
1da177e4
LT
5264/**
5265 * idle_task - return the idle task for a given cpu.
5266 * @cpu: the processor in question.
5267 */
36c8b586 5268struct task_struct *idle_task(int cpu)
1da177e4
LT
5269{
5270 return cpu_rq(cpu)->idle;
5271}
5272
5273/**
5274 * find_process_by_pid - find a process with a matching PID value.
5275 * @pid: the pid in question.
5276 */
a9957449 5277static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5278{
228ebcbe 5279 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5280}
5281
5282/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5283static void
5284__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5285{
dd41f596 5286 BUG_ON(p->se.on_rq);
48f24c4d 5287
1da177e4 5288 p->policy = policy;
dd41f596
IM
5289 switch (p->policy) {
5290 case SCHED_NORMAL:
5291 case SCHED_BATCH:
5292 case SCHED_IDLE:
5293 p->sched_class = &fair_sched_class;
5294 break;
5295 case SCHED_FIFO:
5296 case SCHED_RR:
5297 p->sched_class = &rt_sched_class;
5298 break;
5299 }
5300
1da177e4 5301 p->rt_priority = prio;
b29739f9
IM
5302 p->normal_prio = normal_prio(p);
5303 /* we are holding p->pi_lock already */
5304 p->prio = rt_mutex_getprio(p);
2dd73a4f 5305 set_load_weight(p);
1da177e4
LT
5306}
5307
c69e8d9c
DH
5308/*
5309 * check the target process has a UID that matches the current process's
5310 */
5311static bool check_same_owner(struct task_struct *p)
5312{
5313 const struct cred *cred = current_cred(), *pcred;
5314 bool match;
5315
5316 rcu_read_lock();
5317 pcred = __task_cred(p);
5318 match = (cred->euid == pcred->euid ||
5319 cred->euid == pcred->uid);
5320 rcu_read_unlock();
5321 return match;
5322}
5323
961ccddd
RR
5324static int __sched_setscheduler(struct task_struct *p, int policy,
5325 struct sched_param *param, bool user)
1da177e4 5326{
83b699ed 5327 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5328 unsigned long flags;
cb469845 5329 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5330 struct rq *rq;
1da177e4 5331
66e5393a
SR
5332 /* may grab non-irq protected spin_locks */
5333 BUG_ON(in_interrupt());
1da177e4
LT
5334recheck:
5335 /* double check policy once rq lock held */
5336 if (policy < 0)
5337 policy = oldpolicy = p->policy;
5338 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5339 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5340 policy != SCHED_IDLE)
b0a9499c 5341 return -EINVAL;
1da177e4
LT
5342 /*
5343 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5344 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5345 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5346 */
5347 if (param->sched_priority < 0 ||
95cdf3b7 5348 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5349 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5350 return -EINVAL;
e05606d3 5351 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5352 return -EINVAL;
5353
37e4ab3f
OC
5354 /*
5355 * Allow unprivileged RT tasks to decrease priority:
5356 */
961ccddd 5357 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5358 if (rt_policy(policy)) {
8dc3e909 5359 unsigned long rlim_rtprio;
8dc3e909
ON
5360
5361 if (!lock_task_sighand(p, &flags))
5362 return -ESRCH;
5363 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5364 unlock_task_sighand(p, &flags);
5365
5366 /* can't set/change the rt policy */
5367 if (policy != p->policy && !rlim_rtprio)
5368 return -EPERM;
5369
5370 /* can't increase priority */
5371 if (param->sched_priority > p->rt_priority &&
5372 param->sched_priority > rlim_rtprio)
5373 return -EPERM;
5374 }
dd41f596
IM
5375 /*
5376 * Like positive nice levels, dont allow tasks to
5377 * move out of SCHED_IDLE either:
5378 */
5379 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5380 return -EPERM;
5fe1d75f 5381
37e4ab3f 5382 /* can't change other user's priorities */
c69e8d9c 5383 if (!check_same_owner(p))
37e4ab3f
OC
5384 return -EPERM;
5385 }
1da177e4 5386
725aad24 5387 if (user) {
b68aa230 5388#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5389 /*
5390 * Do not allow realtime tasks into groups that have no runtime
5391 * assigned.
5392 */
9a7e0b18
PZ
5393 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5394 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5395 return -EPERM;
b68aa230
PZ
5396#endif
5397
725aad24
JF
5398 retval = security_task_setscheduler(p, policy, param);
5399 if (retval)
5400 return retval;
5401 }
5402
b29739f9
IM
5403 /*
5404 * make sure no PI-waiters arrive (or leave) while we are
5405 * changing the priority of the task:
5406 */
5407 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5408 /*
5409 * To be able to change p->policy safely, the apropriate
5410 * runqueue lock must be held.
5411 */
b29739f9 5412 rq = __task_rq_lock(p);
1da177e4
LT
5413 /* recheck policy now with rq lock held */
5414 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5415 policy = oldpolicy = -1;
b29739f9
IM
5416 __task_rq_unlock(rq);
5417 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5418 goto recheck;
5419 }
2daa3577 5420 update_rq_clock(rq);
dd41f596 5421 on_rq = p->se.on_rq;
051a1d1a 5422 running = task_current(rq, p);
0e1f3483 5423 if (on_rq)
2e1cb74a 5424 deactivate_task(rq, p, 0);
0e1f3483
HS
5425 if (running)
5426 p->sched_class->put_prev_task(rq, p);
f6b53205 5427
1da177e4 5428 oldprio = p->prio;
dd41f596 5429 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5430
0e1f3483
HS
5431 if (running)
5432 p->sched_class->set_curr_task(rq);
dd41f596
IM
5433 if (on_rq) {
5434 activate_task(rq, p, 0);
cb469845
SR
5435
5436 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5437 }
b29739f9
IM
5438 __task_rq_unlock(rq);
5439 spin_unlock_irqrestore(&p->pi_lock, flags);
5440
95e02ca9
TG
5441 rt_mutex_adjust_pi(p);
5442
1da177e4
LT
5443 return 0;
5444}
961ccddd
RR
5445
5446/**
5447 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5448 * @p: the task in question.
5449 * @policy: new policy.
5450 * @param: structure containing the new RT priority.
5451 *
5452 * NOTE that the task may be already dead.
5453 */
5454int sched_setscheduler(struct task_struct *p, int policy,
5455 struct sched_param *param)
5456{
5457 return __sched_setscheduler(p, policy, param, true);
5458}
1da177e4
LT
5459EXPORT_SYMBOL_GPL(sched_setscheduler);
5460
961ccddd
RR
5461/**
5462 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5463 * @p: the task in question.
5464 * @policy: new policy.
5465 * @param: structure containing the new RT priority.
5466 *
5467 * Just like sched_setscheduler, only don't bother checking if the
5468 * current context has permission. For example, this is needed in
5469 * stop_machine(): we create temporary high priority worker threads,
5470 * but our caller might not have that capability.
5471 */
5472int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5473 struct sched_param *param)
5474{
5475 return __sched_setscheduler(p, policy, param, false);
5476}
5477
95cdf3b7
IM
5478static int
5479do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5480{
1da177e4
LT
5481 struct sched_param lparam;
5482 struct task_struct *p;
36c8b586 5483 int retval;
1da177e4
LT
5484
5485 if (!param || pid < 0)
5486 return -EINVAL;
5487 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5488 return -EFAULT;
5fe1d75f
ON
5489
5490 rcu_read_lock();
5491 retval = -ESRCH;
1da177e4 5492 p = find_process_by_pid(pid);
5fe1d75f
ON
5493 if (p != NULL)
5494 retval = sched_setscheduler(p, policy, &lparam);
5495 rcu_read_unlock();
36c8b586 5496
1da177e4
LT
5497 return retval;
5498}
5499
5500/**
5501 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5502 * @pid: the pid in question.
5503 * @policy: new policy.
5504 * @param: structure containing the new RT priority.
5505 */
5add95d4
HC
5506SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5507 struct sched_param __user *, param)
1da177e4 5508{
c21761f1
JB
5509 /* negative values for policy are not valid */
5510 if (policy < 0)
5511 return -EINVAL;
5512
1da177e4
LT
5513 return do_sched_setscheduler(pid, policy, param);
5514}
5515
5516/**
5517 * sys_sched_setparam - set/change the RT priority of a thread
5518 * @pid: the pid in question.
5519 * @param: structure containing the new RT priority.
5520 */
5add95d4 5521SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5522{
5523 return do_sched_setscheduler(pid, -1, param);
5524}
5525
5526/**
5527 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5528 * @pid: the pid in question.
5529 */
5add95d4 5530SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5531{
36c8b586 5532 struct task_struct *p;
3a5c359a 5533 int retval;
1da177e4
LT
5534
5535 if (pid < 0)
3a5c359a 5536 return -EINVAL;
1da177e4
LT
5537
5538 retval = -ESRCH;
5539 read_lock(&tasklist_lock);
5540 p = find_process_by_pid(pid);
5541 if (p) {
5542 retval = security_task_getscheduler(p);
5543 if (!retval)
5544 retval = p->policy;
5545 }
5546 read_unlock(&tasklist_lock);
1da177e4
LT
5547 return retval;
5548}
5549
5550/**
5551 * sys_sched_getscheduler - get the RT priority of a thread
5552 * @pid: the pid in question.
5553 * @param: structure containing the RT priority.
5554 */
5add95d4 5555SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5556{
5557 struct sched_param lp;
36c8b586 5558 struct task_struct *p;
3a5c359a 5559 int retval;
1da177e4
LT
5560
5561 if (!param || pid < 0)
3a5c359a 5562 return -EINVAL;
1da177e4
LT
5563
5564 read_lock(&tasklist_lock);
5565 p = find_process_by_pid(pid);
5566 retval = -ESRCH;
5567 if (!p)
5568 goto out_unlock;
5569
5570 retval = security_task_getscheduler(p);
5571 if (retval)
5572 goto out_unlock;
5573
5574 lp.sched_priority = p->rt_priority;
5575 read_unlock(&tasklist_lock);
5576
5577 /*
5578 * This one might sleep, we cannot do it with a spinlock held ...
5579 */
5580 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5581
1da177e4
LT
5582 return retval;
5583
5584out_unlock:
5585 read_unlock(&tasklist_lock);
5586 return retval;
5587}
5588
96f874e2 5589long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5590{
5a16f3d3 5591 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5592 struct task_struct *p;
5593 int retval;
1da177e4 5594
95402b38 5595 get_online_cpus();
1da177e4
LT
5596 read_lock(&tasklist_lock);
5597
5598 p = find_process_by_pid(pid);
5599 if (!p) {
5600 read_unlock(&tasklist_lock);
95402b38 5601 put_online_cpus();
1da177e4
LT
5602 return -ESRCH;
5603 }
5604
5605 /*
5606 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5607 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5608 * usage count and then drop tasklist_lock.
5609 */
5610 get_task_struct(p);
5611 read_unlock(&tasklist_lock);
5612
5a16f3d3
RR
5613 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5614 retval = -ENOMEM;
5615 goto out_put_task;
5616 }
5617 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5618 retval = -ENOMEM;
5619 goto out_free_cpus_allowed;
5620 }
1da177e4 5621 retval = -EPERM;
c69e8d9c 5622 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5623 goto out_unlock;
5624
e7834f8f
DQ
5625 retval = security_task_setscheduler(p, 0, NULL);
5626 if (retval)
5627 goto out_unlock;
5628
5a16f3d3
RR
5629 cpuset_cpus_allowed(p, cpus_allowed);
5630 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5631 again:
5a16f3d3 5632 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5633
8707d8b8 5634 if (!retval) {
5a16f3d3
RR
5635 cpuset_cpus_allowed(p, cpus_allowed);
5636 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5637 /*
5638 * We must have raced with a concurrent cpuset
5639 * update. Just reset the cpus_allowed to the
5640 * cpuset's cpus_allowed
5641 */
5a16f3d3 5642 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5643 goto again;
5644 }
5645 }
1da177e4 5646out_unlock:
5a16f3d3
RR
5647 free_cpumask_var(new_mask);
5648out_free_cpus_allowed:
5649 free_cpumask_var(cpus_allowed);
5650out_put_task:
1da177e4 5651 put_task_struct(p);
95402b38 5652 put_online_cpus();
1da177e4
LT
5653 return retval;
5654}
5655
5656static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5657 struct cpumask *new_mask)
1da177e4 5658{
96f874e2
RR
5659 if (len < cpumask_size())
5660 cpumask_clear(new_mask);
5661 else if (len > cpumask_size())
5662 len = cpumask_size();
5663
1da177e4
LT
5664 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5665}
5666
5667/**
5668 * sys_sched_setaffinity - set the cpu affinity of a process
5669 * @pid: pid of the process
5670 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5671 * @user_mask_ptr: user-space pointer to the new cpu mask
5672 */
5add95d4
HC
5673SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5674 unsigned long __user *, user_mask_ptr)
1da177e4 5675{
5a16f3d3 5676 cpumask_var_t new_mask;
1da177e4
LT
5677 int retval;
5678
5a16f3d3
RR
5679 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5680 return -ENOMEM;
1da177e4 5681
5a16f3d3
RR
5682 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5683 if (retval == 0)
5684 retval = sched_setaffinity(pid, new_mask);
5685 free_cpumask_var(new_mask);
5686 return retval;
1da177e4
LT
5687}
5688
96f874e2 5689long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5690{
36c8b586 5691 struct task_struct *p;
1da177e4 5692 int retval;
1da177e4 5693
95402b38 5694 get_online_cpus();
1da177e4
LT
5695 read_lock(&tasklist_lock);
5696
5697 retval = -ESRCH;
5698 p = find_process_by_pid(pid);
5699 if (!p)
5700 goto out_unlock;
5701
e7834f8f
DQ
5702 retval = security_task_getscheduler(p);
5703 if (retval)
5704 goto out_unlock;
5705
96f874e2 5706 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
5707
5708out_unlock:
5709 read_unlock(&tasklist_lock);
95402b38 5710 put_online_cpus();
1da177e4 5711
9531b62f 5712 return retval;
1da177e4
LT
5713}
5714
5715/**
5716 * sys_sched_getaffinity - get the cpu affinity of a process
5717 * @pid: pid of the process
5718 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5719 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5720 */
5add95d4
HC
5721SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5722 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5723{
5724 int ret;
f17c8607 5725 cpumask_var_t mask;
1da177e4 5726
f17c8607 5727 if (len < cpumask_size())
1da177e4
LT
5728 return -EINVAL;
5729
f17c8607
RR
5730 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5731 return -ENOMEM;
1da177e4 5732
f17c8607
RR
5733 ret = sched_getaffinity(pid, mask);
5734 if (ret == 0) {
5735 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5736 ret = -EFAULT;
5737 else
5738 ret = cpumask_size();
5739 }
5740 free_cpumask_var(mask);
1da177e4 5741
f17c8607 5742 return ret;
1da177e4
LT
5743}
5744
5745/**
5746 * sys_sched_yield - yield the current processor to other threads.
5747 *
dd41f596
IM
5748 * This function yields the current CPU to other tasks. If there are no
5749 * other threads running on this CPU then this function will return.
1da177e4 5750 */
5add95d4 5751SYSCALL_DEFINE0(sched_yield)
1da177e4 5752{
70b97a7f 5753 struct rq *rq = this_rq_lock();
1da177e4 5754
2d72376b 5755 schedstat_inc(rq, yld_count);
4530d7ab 5756 current->sched_class->yield_task(rq);
1da177e4
LT
5757
5758 /*
5759 * Since we are going to call schedule() anyway, there's
5760 * no need to preempt or enable interrupts:
5761 */
5762 __release(rq->lock);
8a25d5de 5763 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5764 _raw_spin_unlock(&rq->lock);
5765 preempt_enable_no_resched();
5766
5767 schedule();
5768
5769 return 0;
5770}
5771
e7b38404 5772static void __cond_resched(void)
1da177e4 5773{
8e0a43d8
IM
5774#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5775 __might_sleep(__FILE__, __LINE__);
5776#endif
5bbcfd90
IM
5777 /*
5778 * The BKS might be reacquired before we have dropped
5779 * PREEMPT_ACTIVE, which could trigger a second
5780 * cond_resched() call.
5781 */
1da177e4
LT
5782 do {
5783 add_preempt_count(PREEMPT_ACTIVE);
5784 schedule();
5785 sub_preempt_count(PREEMPT_ACTIVE);
5786 } while (need_resched());
5787}
5788
02b67cc3 5789int __sched _cond_resched(void)
1da177e4 5790{
9414232f
IM
5791 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5792 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5793 __cond_resched();
5794 return 1;
5795 }
5796 return 0;
5797}
02b67cc3 5798EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5799
5800/*
5801 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5802 * call schedule, and on return reacquire the lock.
5803 *
41a2d6cf 5804 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5805 * operations here to prevent schedule() from being called twice (once via
5806 * spin_unlock(), once by hand).
5807 */
95cdf3b7 5808int cond_resched_lock(spinlock_t *lock)
1da177e4 5809{
95c354fe 5810 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5811 int ret = 0;
5812
95c354fe 5813 if (spin_needbreak(lock) || resched) {
1da177e4 5814 spin_unlock(lock);
95c354fe
NP
5815 if (resched && need_resched())
5816 __cond_resched();
5817 else
5818 cpu_relax();
6df3cecb 5819 ret = 1;
1da177e4 5820 spin_lock(lock);
1da177e4 5821 }
6df3cecb 5822 return ret;
1da177e4 5823}
1da177e4
LT
5824EXPORT_SYMBOL(cond_resched_lock);
5825
5826int __sched cond_resched_softirq(void)
5827{
5828 BUG_ON(!in_softirq());
5829
9414232f 5830 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5831 local_bh_enable();
1da177e4
LT
5832 __cond_resched();
5833 local_bh_disable();
5834 return 1;
5835 }
5836 return 0;
5837}
1da177e4
LT
5838EXPORT_SYMBOL(cond_resched_softirq);
5839
1da177e4
LT
5840/**
5841 * yield - yield the current processor to other threads.
5842 *
72fd4a35 5843 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5844 * thread runnable and calls sys_sched_yield().
5845 */
5846void __sched yield(void)
5847{
5848 set_current_state(TASK_RUNNING);
5849 sys_sched_yield();
5850}
1da177e4
LT
5851EXPORT_SYMBOL(yield);
5852
5853/*
41a2d6cf 5854 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5855 * that process accounting knows that this is a task in IO wait state.
5856 *
5857 * But don't do that if it is a deliberate, throttling IO wait (this task
5858 * has set its backing_dev_info: the queue against which it should throttle)
5859 */
5860void __sched io_schedule(void)
5861{
70b97a7f 5862 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5863
0ff92245 5864 delayacct_blkio_start();
1da177e4
LT
5865 atomic_inc(&rq->nr_iowait);
5866 schedule();
5867 atomic_dec(&rq->nr_iowait);
0ff92245 5868 delayacct_blkio_end();
1da177e4 5869}
1da177e4
LT
5870EXPORT_SYMBOL(io_schedule);
5871
5872long __sched io_schedule_timeout(long timeout)
5873{
70b97a7f 5874 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5875 long ret;
5876
0ff92245 5877 delayacct_blkio_start();
1da177e4
LT
5878 atomic_inc(&rq->nr_iowait);
5879 ret = schedule_timeout(timeout);
5880 atomic_dec(&rq->nr_iowait);
0ff92245 5881 delayacct_blkio_end();
1da177e4
LT
5882 return ret;
5883}
5884
5885/**
5886 * sys_sched_get_priority_max - return maximum RT priority.
5887 * @policy: scheduling class.
5888 *
5889 * this syscall returns the maximum rt_priority that can be used
5890 * by a given scheduling class.
5891 */
5add95d4 5892SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5893{
5894 int ret = -EINVAL;
5895
5896 switch (policy) {
5897 case SCHED_FIFO:
5898 case SCHED_RR:
5899 ret = MAX_USER_RT_PRIO-1;
5900 break;
5901 case SCHED_NORMAL:
b0a9499c 5902 case SCHED_BATCH:
dd41f596 5903 case SCHED_IDLE:
1da177e4
LT
5904 ret = 0;
5905 break;
5906 }
5907 return ret;
5908}
5909
5910/**
5911 * sys_sched_get_priority_min - return minimum RT priority.
5912 * @policy: scheduling class.
5913 *
5914 * this syscall returns the minimum rt_priority that can be used
5915 * by a given scheduling class.
5916 */
5add95d4 5917SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5918{
5919 int ret = -EINVAL;
5920
5921 switch (policy) {
5922 case SCHED_FIFO:
5923 case SCHED_RR:
5924 ret = 1;
5925 break;
5926 case SCHED_NORMAL:
b0a9499c 5927 case SCHED_BATCH:
dd41f596 5928 case SCHED_IDLE:
1da177e4
LT
5929 ret = 0;
5930 }
5931 return ret;
5932}
5933
5934/**
5935 * sys_sched_rr_get_interval - return the default timeslice of a process.
5936 * @pid: pid of the process.
5937 * @interval: userspace pointer to the timeslice value.
5938 *
5939 * this syscall writes the default timeslice value of a given process
5940 * into the user-space timespec buffer. A value of '0' means infinity.
5941 */
17da2bd9 5942SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5943 struct timespec __user *, interval)
1da177e4 5944{
36c8b586 5945 struct task_struct *p;
a4ec24b4 5946 unsigned int time_slice;
3a5c359a 5947 int retval;
1da177e4 5948 struct timespec t;
1da177e4
LT
5949
5950 if (pid < 0)
3a5c359a 5951 return -EINVAL;
1da177e4
LT
5952
5953 retval = -ESRCH;
5954 read_lock(&tasklist_lock);
5955 p = find_process_by_pid(pid);
5956 if (!p)
5957 goto out_unlock;
5958
5959 retval = security_task_getscheduler(p);
5960 if (retval)
5961 goto out_unlock;
5962
77034937
IM
5963 /*
5964 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5965 * tasks that are on an otherwise idle runqueue:
5966 */
5967 time_slice = 0;
5968 if (p->policy == SCHED_RR) {
a4ec24b4 5969 time_slice = DEF_TIMESLICE;
1868f958 5970 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5971 struct sched_entity *se = &p->se;
5972 unsigned long flags;
5973 struct rq *rq;
5974
5975 rq = task_rq_lock(p, &flags);
77034937
IM
5976 if (rq->cfs.load.weight)
5977 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5978 task_rq_unlock(rq, &flags);
5979 }
1da177e4 5980 read_unlock(&tasklist_lock);
a4ec24b4 5981 jiffies_to_timespec(time_slice, &t);
1da177e4 5982 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5983 return retval;
3a5c359a 5984
1da177e4
LT
5985out_unlock:
5986 read_unlock(&tasklist_lock);
5987 return retval;
5988}
5989
7c731e0a 5990static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5991
82a1fcb9 5992void sched_show_task(struct task_struct *p)
1da177e4 5993{
1da177e4 5994 unsigned long free = 0;
36c8b586 5995 unsigned state;
1da177e4 5996
1da177e4 5997 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5998 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5999 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6000#if BITS_PER_LONG == 32
1da177e4 6001 if (state == TASK_RUNNING)
cc4ea795 6002 printk(KERN_CONT " running ");
1da177e4 6003 else
cc4ea795 6004 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6005#else
6006 if (state == TASK_RUNNING)
cc4ea795 6007 printk(KERN_CONT " running task ");
1da177e4 6008 else
cc4ea795 6009 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6010#endif
6011#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6012 free = stack_not_used(p);
1da177e4 6013#endif
ba25f9dc 6014 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 6015 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 6016
5fb5e6de 6017 show_stack(p, NULL);
1da177e4
LT
6018}
6019
e59e2ae2 6020void show_state_filter(unsigned long state_filter)
1da177e4 6021{
36c8b586 6022 struct task_struct *g, *p;
1da177e4 6023
4bd77321
IM
6024#if BITS_PER_LONG == 32
6025 printk(KERN_INFO
6026 " task PC stack pid father\n");
1da177e4 6027#else
4bd77321
IM
6028 printk(KERN_INFO
6029 " task PC stack pid father\n");
1da177e4
LT
6030#endif
6031 read_lock(&tasklist_lock);
6032 do_each_thread(g, p) {
6033 /*
6034 * reset the NMI-timeout, listing all files on a slow
6035 * console might take alot of time:
6036 */
6037 touch_nmi_watchdog();
39bc89fd 6038 if (!state_filter || (p->state & state_filter))
82a1fcb9 6039 sched_show_task(p);
1da177e4
LT
6040 } while_each_thread(g, p);
6041
04c9167f
JF
6042 touch_all_softlockup_watchdogs();
6043
dd41f596
IM
6044#ifdef CONFIG_SCHED_DEBUG
6045 sysrq_sched_debug_show();
6046#endif
1da177e4 6047 read_unlock(&tasklist_lock);
e59e2ae2
IM
6048 /*
6049 * Only show locks if all tasks are dumped:
6050 */
6051 if (state_filter == -1)
6052 debug_show_all_locks();
1da177e4
LT
6053}
6054
1df21055
IM
6055void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6056{
dd41f596 6057 idle->sched_class = &idle_sched_class;
1df21055
IM
6058}
6059
f340c0d1
IM
6060/**
6061 * init_idle - set up an idle thread for a given CPU
6062 * @idle: task in question
6063 * @cpu: cpu the idle task belongs to
6064 *
6065 * NOTE: this function does not set the idle thread's NEED_RESCHED
6066 * flag, to make booting more robust.
6067 */
5c1e1767 6068void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6069{
70b97a7f 6070 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6071 unsigned long flags;
6072
5cbd54ef
IM
6073 spin_lock_irqsave(&rq->lock, flags);
6074
dd41f596
IM
6075 __sched_fork(idle);
6076 idle->se.exec_start = sched_clock();
6077
b29739f9 6078 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6079 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6080 __set_task_cpu(idle, cpu);
1da177e4 6081
1da177e4 6082 rq->curr = rq->idle = idle;
4866cde0
NP
6083#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6084 idle->oncpu = 1;
6085#endif
1da177e4
LT
6086 spin_unlock_irqrestore(&rq->lock, flags);
6087
6088 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6089#if defined(CONFIG_PREEMPT)
6090 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6091#else
a1261f54 6092 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6093#endif
dd41f596
IM
6094 /*
6095 * The idle tasks have their own, simple scheduling class:
6096 */
6097 idle->sched_class = &idle_sched_class;
fb52607a 6098 ftrace_graph_init_task(idle);
1da177e4
LT
6099}
6100
6101/*
6102 * In a system that switches off the HZ timer nohz_cpu_mask
6103 * indicates which cpus entered this state. This is used
6104 * in the rcu update to wait only for active cpus. For system
6105 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6106 * always be CPU_BITS_NONE.
1da177e4 6107 */
6a7b3dc3 6108cpumask_var_t nohz_cpu_mask;
1da177e4 6109
19978ca6
IM
6110/*
6111 * Increase the granularity value when there are more CPUs,
6112 * because with more CPUs the 'effective latency' as visible
6113 * to users decreases. But the relationship is not linear,
6114 * so pick a second-best guess by going with the log2 of the
6115 * number of CPUs.
6116 *
6117 * This idea comes from the SD scheduler of Con Kolivas:
6118 */
6119static inline void sched_init_granularity(void)
6120{
6121 unsigned int factor = 1 + ilog2(num_online_cpus());
6122 const unsigned long limit = 200000000;
6123
6124 sysctl_sched_min_granularity *= factor;
6125 if (sysctl_sched_min_granularity > limit)
6126 sysctl_sched_min_granularity = limit;
6127
6128 sysctl_sched_latency *= factor;
6129 if (sysctl_sched_latency > limit)
6130 sysctl_sched_latency = limit;
6131
6132 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6133
6134 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6135}
6136
1da177e4
LT
6137#ifdef CONFIG_SMP
6138/*
6139 * This is how migration works:
6140 *
70b97a7f 6141 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6142 * runqueue and wake up that CPU's migration thread.
6143 * 2) we down() the locked semaphore => thread blocks.
6144 * 3) migration thread wakes up (implicitly it forces the migrated
6145 * thread off the CPU)
6146 * 4) it gets the migration request and checks whether the migrated
6147 * task is still in the wrong runqueue.
6148 * 5) if it's in the wrong runqueue then the migration thread removes
6149 * it and puts it into the right queue.
6150 * 6) migration thread up()s the semaphore.
6151 * 7) we wake up and the migration is done.
6152 */
6153
6154/*
6155 * Change a given task's CPU affinity. Migrate the thread to a
6156 * proper CPU and schedule it away if the CPU it's executing on
6157 * is removed from the allowed bitmask.
6158 *
6159 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6160 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6161 * call is not atomic; no spinlocks may be held.
6162 */
96f874e2 6163int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6164{
70b97a7f 6165 struct migration_req req;
1da177e4 6166 unsigned long flags;
70b97a7f 6167 struct rq *rq;
48f24c4d 6168 int ret = 0;
1da177e4
LT
6169
6170 rq = task_rq_lock(p, &flags);
96f874e2 6171 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6172 ret = -EINVAL;
6173 goto out;
6174 }
6175
9985b0ba 6176 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6177 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6178 ret = -EINVAL;
6179 goto out;
6180 }
6181
73fe6aae 6182 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6183 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6184 else {
96f874e2
RR
6185 cpumask_copy(&p->cpus_allowed, new_mask);
6186 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6187 }
6188
1da177e4 6189 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6190 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6191 goto out;
6192
1e5ce4f4 6193 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6194 /* Need help from migration thread: drop lock and wait. */
6195 task_rq_unlock(rq, &flags);
6196 wake_up_process(rq->migration_thread);
6197 wait_for_completion(&req.done);
6198 tlb_migrate_finish(p->mm);
6199 return 0;
6200 }
6201out:
6202 task_rq_unlock(rq, &flags);
48f24c4d 6203
1da177e4
LT
6204 return ret;
6205}
cd8ba7cd 6206EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6207
6208/*
41a2d6cf 6209 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6210 * this because either it can't run here any more (set_cpus_allowed()
6211 * away from this CPU, or CPU going down), or because we're
6212 * attempting to rebalance this task on exec (sched_exec).
6213 *
6214 * So we race with normal scheduler movements, but that's OK, as long
6215 * as the task is no longer on this CPU.
efc30814
KK
6216 *
6217 * Returns non-zero if task was successfully migrated.
1da177e4 6218 */
efc30814 6219static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6220{
70b97a7f 6221 struct rq *rq_dest, *rq_src;
dd41f596 6222 int ret = 0, on_rq;
1da177e4 6223
e761b772 6224 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6225 return ret;
1da177e4
LT
6226
6227 rq_src = cpu_rq(src_cpu);
6228 rq_dest = cpu_rq(dest_cpu);
6229
6230 double_rq_lock(rq_src, rq_dest);
6231 /* Already moved. */
6232 if (task_cpu(p) != src_cpu)
b1e38734 6233 goto done;
1da177e4 6234 /* Affinity changed (again). */
96f874e2 6235 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6236 goto fail;
1da177e4 6237
dd41f596 6238 on_rq = p->se.on_rq;
6e82a3be 6239 if (on_rq)
2e1cb74a 6240 deactivate_task(rq_src, p, 0);
6e82a3be 6241
1da177e4 6242 set_task_cpu(p, dest_cpu);
dd41f596
IM
6243 if (on_rq) {
6244 activate_task(rq_dest, p, 0);
15afe09b 6245 check_preempt_curr(rq_dest, p, 0);
1da177e4 6246 }
b1e38734 6247done:
efc30814 6248 ret = 1;
b1e38734 6249fail:
1da177e4 6250 double_rq_unlock(rq_src, rq_dest);
efc30814 6251 return ret;
1da177e4
LT
6252}
6253
6254/*
6255 * migration_thread - this is a highprio system thread that performs
6256 * thread migration by bumping thread off CPU then 'pushing' onto
6257 * another runqueue.
6258 */
95cdf3b7 6259static int migration_thread(void *data)
1da177e4 6260{
1da177e4 6261 int cpu = (long)data;
70b97a7f 6262 struct rq *rq;
1da177e4
LT
6263
6264 rq = cpu_rq(cpu);
6265 BUG_ON(rq->migration_thread != current);
6266
6267 set_current_state(TASK_INTERRUPTIBLE);
6268 while (!kthread_should_stop()) {
70b97a7f 6269 struct migration_req *req;
1da177e4 6270 struct list_head *head;
1da177e4 6271
1da177e4
LT
6272 spin_lock_irq(&rq->lock);
6273
6274 if (cpu_is_offline(cpu)) {
6275 spin_unlock_irq(&rq->lock);
6276 goto wait_to_die;
6277 }
6278
6279 if (rq->active_balance) {
6280 active_load_balance(rq, cpu);
6281 rq->active_balance = 0;
6282 }
6283
6284 head = &rq->migration_queue;
6285
6286 if (list_empty(head)) {
6287 spin_unlock_irq(&rq->lock);
6288 schedule();
6289 set_current_state(TASK_INTERRUPTIBLE);
6290 continue;
6291 }
70b97a7f 6292 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6293 list_del_init(head->next);
6294
674311d5
NP
6295 spin_unlock(&rq->lock);
6296 __migrate_task(req->task, cpu, req->dest_cpu);
6297 local_irq_enable();
1da177e4
LT
6298
6299 complete(&req->done);
6300 }
6301 __set_current_state(TASK_RUNNING);
6302 return 0;
6303
6304wait_to_die:
6305 /* Wait for kthread_stop */
6306 set_current_state(TASK_INTERRUPTIBLE);
6307 while (!kthread_should_stop()) {
6308 schedule();
6309 set_current_state(TASK_INTERRUPTIBLE);
6310 }
6311 __set_current_state(TASK_RUNNING);
6312 return 0;
6313}
6314
6315#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6316
6317static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6318{
6319 int ret;
6320
6321 local_irq_disable();
6322 ret = __migrate_task(p, src_cpu, dest_cpu);
6323 local_irq_enable();
6324 return ret;
6325}
6326
054b9108 6327/*
3a4fa0a2 6328 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6329 */
48f24c4d 6330static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6331{
70b97a7f 6332 int dest_cpu;
6ca09dfc 6333 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
1da177e4 6334
e76bd8d9
RR
6335again:
6336 /* Look for allowed, online CPU in same node. */
6337 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6338 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6339 goto move;
3a5c359a 6340
e76bd8d9
RR
6341 /* Any allowed, online CPU? */
6342 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6343 if (dest_cpu < nr_cpu_ids)
6344 goto move;
3a5c359a 6345
e76bd8d9
RR
6346 /* No more Mr. Nice Guy. */
6347 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6348 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6349 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6350
e76bd8d9
RR
6351 /*
6352 * Don't tell them about moving exiting tasks or
6353 * kernel threads (both mm NULL), since they never
6354 * leave kernel.
6355 */
6356 if (p->mm && printk_ratelimit()) {
6357 printk(KERN_INFO "process %d (%s) no "
6358 "longer affine to cpu%d\n",
6359 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6360 }
e76bd8d9
RR
6361 }
6362
6363move:
6364 /* It can have affinity changed while we were choosing. */
6365 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6366 goto again;
1da177e4
LT
6367}
6368
6369/*
6370 * While a dead CPU has no uninterruptible tasks queued at this point,
6371 * it might still have a nonzero ->nr_uninterruptible counter, because
6372 * for performance reasons the counter is not stricly tracking tasks to
6373 * their home CPUs. So we just add the counter to another CPU's counter,
6374 * to keep the global sum constant after CPU-down:
6375 */
70b97a7f 6376static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6377{
1e5ce4f4 6378 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6379 unsigned long flags;
6380
6381 local_irq_save(flags);
6382 double_rq_lock(rq_src, rq_dest);
6383 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6384 rq_src->nr_uninterruptible = 0;
6385 double_rq_unlock(rq_src, rq_dest);
6386 local_irq_restore(flags);
6387}
6388
6389/* Run through task list and migrate tasks from the dead cpu. */
6390static void migrate_live_tasks(int src_cpu)
6391{
48f24c4d 6392 struct task_struct *p, *t;
1da177e4 6393
f7b4cddc 6394 read_lock(&tasklist_lock);
1da177e4 6395
48f24c4d
IM
6396 do_each_thread(t, p) {
6397 if (p == current)
1da177e4
LT
6398 continue;
6399
48f24c4d
IM
6400 if (task_cpu(p) == src_cpu)
6401 move_task_off_dead_cpu(src_cpu, p);
6402 } while_each_thread(t, p);
1da177e4 6403
f7b4cddc 6404 read_unlock(&tasklist_lock);
1da177e4
LT
6405}
6406
dd41f596
IM
6407/*
6408 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6409 * It does so by boosting its priority to highest possible.
6410 * Used by CPU offline code.
1da177e4
LT
6411 */
6412void sched_idle_next(void)
6413{
48f24c4d 6414 int this_cpu = smp_processor_id();
70b97a7f 6415 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6416 struct task_struct *p = rq->idle;
6417 unsigned long flags;
6418
6419 /* cpu has to be offline */
48f24c4d 6420 BUG_ON(cpu_online(this_cpu));
1da177e4 6421
48f24c4d
IM
6422 /*
6423 * Strictly not necessary since rest of the CPUs are stopped by now
6424 * and interrupts disabled on the current cpu.
1da177e4
LT
6425 */
6426 spin_lock_irqsave(&rq->lock, flags);
6427
dd41f596 6428 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6429
94bc9a7b
DA
6430 update_rq_clock(rq);
6431 activate_task(rq, p, 0);
1da177e4
LT
6432
6433 spin_unlock_irqrestore(&rq->lock, flags);
6434}
6435
48f24c4d
IM
6436/*
6437 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6438 * offline.
6439 */
6440void idle_task_exit(void)
6441{
6442 struct mm_struct *mm = current->active_mm;
6443
6444 BUG_ON(cpu_online(smp_processor_id()));
6445
6446 if (mm != &init_mm)
6447 switch_mm(mm, &init_mm, current);
6448 mmdrop(mm);
6449}
6450
054b9108 6451/* called under rq->lock with disabled interrupts */
36c8b586 6452static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6453{
70b97a7f 6454 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6455
6456 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6457 BUG_ON(!p->exit_state);
1da177e4
LT
6458
6459 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6460 BUG_ON(p->state == TASK_DEAD);
1da177e4 6461
48f24c4d 6462 get_task_struct(p);
1da177e4
LT
6463
6464 /*
6465 * Drop lock around migration; if someone else moves it,
41a2d6cf 6466 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6467 * fine.
6468 */
f7b4cddc 6469 spin_unlock_irq(&rq->lock);
48f24c4d 6470 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6471 spin_lock_irq(&rq->lock);
1da177e4 6472
48f24c4d 6473 put_task_struct(p);
1da177e4
LT
6474}
6475
6476/* release_task() removes task from tasklist, so we won't find dead tasks. */
6477static void migrate_dead_tasks(unsigned int dead_cpu)
6478{
70b97a7f 6479 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6480 struct task_struct *next;
48f24c4d 6481
dd41f596
IM
6482 for ( ; ; ) {
6483 if (!rq->nr_running)
6484 break;
a8e504d2 6485 update_rq_clock(rq);
ff95f3df 6486 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6487 if (!next)
6488 break;
79c53799 6489 next->sched_class->put_prev_task(rq, next);
dd41f596 6490 migrate_dead(dead_cpu, next);
e692ab53 6491
1da177e4
LT
6492 }
6493}
6494#endif /* CONFIG_HOTPLUG_CPU */
6495
e692ab53
NP
6496#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6497
6498static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6499 {
6500 .procname = "sched_domain",
c57baf1e 6501 .mode = 0555,
e0361851 6502 },
38605cae 6503 {0, },
e692ab53
NP
6504};
6505
6506static struct ctl_table sd_ctl_root[] = {
e0361851 6507 {
c57baf1e 6508 .ctl_name = CTL_KERN,
e0361851 6509 .procname = "kernel",
c57baf1e 6510 .mode = 0555,
e0361851
AD
6511 .child = sd_ctl_dir,
6512 },
38605cae 6513 {0, },
e692ab53
NP
6514};
6515
6516static struct ctl_table *sd_alloc_ctl_entry(int n)
6517{
6518 struct ctl_table *entry =
5cf9f062 6519 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6520
e692ab53
NP
6521 return entry;
6522}
6523
6382bc90
MM
6524static void sd_free_ctl_entry(struct ctl_table **tablep)
6525{
cd790076 6526 struct ctl_table *entry;
6382bc90 6527
cd790076
MM
6528 /*
6529 * In the intermediate directories, both the child directory and
6530 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6531 * will always be set. In the lowest directory the names are
cd790076
MM
6532 * static strings and all have proc handlers.
6533 */
6534 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6535 if (entry->child)
6536 sd_free_ctl_entry(&entry->child);
cd790076
MM
6537 if (entry->proc_handler == NULL)
6538 kfree(entry->procname);
6539 }
6382bc90
MM
6540
6541 kfree(*tablep);
6542 *tablep = NULL;
6543}
6544
e692ab53 6545static void
e0361851 6546set_table_entry(struct ctl_table *entry,
e692ab53
NP
6547 const char *procname, void *data, int maxlen,
6548 mode_t mode, proc_handler *proc_handler)
6549{
e692ab53
NP
6550 entry->procname = procname;
6551 entry->data = data;
6552 entry->maxlen = maxlen;
6553 entry->mode = mode;
6554 entry->proc_handler = proc_handler;
6555}
6556
6557static struct ctl_table *
6558sd_alloc_ctl_domain_table(struct sched_domain *sd)
6559{
a5d8c348 6560 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6561
ad1cdc1d
MM
6562 if (table == NULL)
6563 return NULL;
6564
e0361851 6565 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6566 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6567 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6568 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6569 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6570 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6571 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6572 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6573 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6574 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6575 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6576 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6577 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6578 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6579 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6580 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6581 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6582 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6583 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6584 &sd->cache_nice_tries,
6585 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6586 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6587 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6588 set_table_entry(&table[11], "name", sd->name,
6589 CORENAME_MAX_SIZE, 0444, proc_dostring);
6590 /* &table[12] is terminator */
e692ab53
NP
6591
6592 return table;
6593}
6594
9a4e7159 6595static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6596{
6597 struct ctl_table *entry, *table;
6598 struct sched_domain *sd;
6599 int domain_num = 0, i;
6600 char buf[32];
6601
6602 for_each_domain(cpu, sd)
6603 domain_num++;
6604 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6605 if (table == NULL)
6606 return NULL;
e692ab53
NP
6607
6608 i = 0;
6609 for_each_domain(cpu, sd) {
6610 snprintf(buf, 32, "domain%d", i);
e692ab53 6611 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6612 entry->mode = 0555;
e692ab53
NP
6613 entry->child = sd_alloc_ctl_domain_table(sd);
6614 entry++;
6615 i++;
6616 }
6617 return table;
6618}
6619
6620static struct ctl_table_header *sd_sysctl_header;
6382bc90 6621static void register_sched_domain_sysctl(void)
e692ab53
NP
6622{
6623 int i, cpu_num = num_online_cpus();
6624 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6625 char buf[32];
6626
7378547f
MM
6627 WARN_ON(sd_ctl_dir[0].child);
6628 sd_ctl_dir[0].child = entry;
6629
ad1cdc1d
MM
6630 if (entry == NULL)
6631 return;
6632
97b6ea7b 6633 for_each_online_cpu(i) {
e692ab53 6634 snprintf(buf, 32, "cpu%d", i);
e692ab53 6635 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6636 entry->mode = 0555;
e692ab53 6637 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6638 entry++;
e692ab53 6639 }
7378547f
MM
6640
6641 WARN_ON(sd_sysctl_header);
e692ab53
NP
6642 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6643}
6382bc90 6644
7378547f 6645/* may be called multiple times per register */
6382bc90
MM
6646static void unregister_sched_domain_sysctl(void)
6647{
7378547f
MM
6648 if (sd_sysctl_header)
6649 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6650 sd_sysctl_header = NULL;
7378547f
MM
6651 if (sd_ctl_dir[0].child)
6652 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6653}
e692ab53 6654#else
6382bc90
MM
6655static void register_sched_domain_sysctl(void)
6656{
6657}
6658static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6659{
6660}
6661#endif
6662
1f11eb6a
GH
6663static void set_rq_online(struct rq *rq)
6664{
6665 if (!rq->online) {
6666 const struct sched_class *class;
6667
c6c4927b 6668 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6669 rq->online = 1;
6670
6671 for_each_class(class) {
6672 if (class->rq_online)
6673 class->rq_online(rq);
6674 }
6675 }
6676}
6677
6678static void set_rq_offline(struct rq *rq)
6679{
6680 if (rq->online) {
6681 const struct sched_class *class;
6682
6683 for_each_class(class) {
6684 if (class->rq_offline)
6685 class->rq_offline(rq);
6686 }
6687
c6c4927b 6688 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6689 rq->online = 0;
6690 }
6691}
6692
1da177e4
LT
6693/*
6694 * migration_call - callback that gets triggered when a CPU is added.
6695 * Here we can start up the necessary migration thread for the new CPU.
6696 */
48f24c4d
IM
6697static int __cpuinit
6698migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6699{
1da177e4 6700 struct task_struct *p;
48f24c4d 6701 int cpu = (long)hcpu;
1da177e4 6702 unsigned long flags;
70b97a7f 6703 struct rq *rq;
1da177e4
LT
6704
6705 switch (action) {
5be9361c 6706
1da177e4 6707 case CPU_UP_PREPARE:
8bb78442 6708 case CPU_UP_PREPARE_FROZEN:
dd41f596 6709 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6710 if (IS_ERR(p))
6711 return NOTIFY_BAD;
1da177e4
LT
6712 kthread_bind(p, cpu);
6713 /* Must be high prio: stop_machine expects to yield to it. */
6714 rq = task_rq_lock(p, &flags);
dd41f596 6715 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6716 task_rq_unlock(rq, &flags);
6717 cpu_rq(cpu)->migration_thread = p;
6718 break;
48f24c4d 6719
1da177e4 6720 case CPU_ONLINE:
8bb78442 6721 case CPU_ONLINE_FROZEN:
3a4fa0a2 6722 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6723 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6724
6725 /* Update our root-domain */
6726 rq = cpu_rq(cpu);
6727 spin_lock_irqsave(&rq->lock, flags);
6728 if (rq->rd) {
c6c4927b 6729 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6730
6731 set_rq_online(rq);
1f94ef59
GH
6732 }
6733 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6734 break;
48f24c4d 6735
1da177e4
LT
6736#ifdef CONFIG_HOTPLUG_CPU
6737 case CPU_UP_CANCELED:
8bb78442 6738 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6739 if (!cpu_rq(cpu)->migration_thread)
6740 break;
41a2d6cf 6741 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6742 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6743 cpumask_any(cpu_online_mask));
1da177e4
LT
6744 kthread_stop(cpu_rq(cpu)->migration_thread);
6745 cpu_rq(cpu)->migration_thread = NULL;
6746 break;
48f24c4d 6747
1da177e4 6748 case CPU_DEAD:
8bb78442 6749 case CPU_DEAD_FROZEN:
470fd646 6750 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6751 migrate_live_tasks(cpu);
6752 rq = cpu_rq(cpu);
6753 kthread_stop(rq->migration_thread);
6754 rq->migration_thread = NULL;
6755 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6756 spin_lock_irq(&rq->lock);
a8e504d2 6757 update_rq_clock(rq);
2e1cb74a 6758 deactivate_task(rq, rq->idle, 0);
1da177e4 6759 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6760 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6761 rq->idle->sched_class = &idle_sched_class;
1da177e4 6762 migrate_dead_tasks(cpu);
d2da272a 6763 spin_unlock_irq(&rq->lock);
470fd646 6764 cpuset_unlock();
1da177e4
LT
6765 migrate_nr_uninterruptible(rq);
6766 BUG_ON(rq->nr_running != 0);
6767
41a2d6cf
IM
6768 /*
6769 * No need to migrate the tasks: it was best-effort if
6770 * they didn't take sched_hotcpu_mutex. Just wake up
6771 * the requestors.
6772 */
1da177e4
LT
6773 spin_lock_irq(&rq->lock);
6774 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6775 struct migration_req *req;
6776
1da177e4 6777 req = list_entry(rq->migration_queue.next,
70b97a7f 6778 struct migration_req, list);
1da177e4 6779 list_del_init(&req->list);
9a2bd244 6780 spin_unlock_irq(&rq->lock);
1da177e4 6781 complete(&req->done);
9a2bd244 6782 spin_lock_irq(&rq->lock);
1da177e4
LT
6783 }
6784 spin_unlock_irq(&rq->lock);
6785 break;
57d885fe 6786
08f503b0
GH
6787 case CPU_DYING:
6788 case CPU_DYING_FROZEN:
57d885fe
GH
6789 /* Update our root-domain */
6790 rq = cpu_rq(cpu);
6791 spin_lock_irqsave(&rq->lock, flags);
6792 if (rq->rd) {
c6c4927b 6793 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6794 set_rq_offline(rq);
57d885fe
GH
6795 }
6796 spin_unlock_irqrestore(&rq->lock, flags);
6797 break;
1da177e4
LT
6798#endif
6799 }
6800 return NOTIFY_OK;
6801}
6802
6803/* Register at highest priority so that task migration (migrate_all_tasks)
6804 * happens before everything else.
6805 */
26c2143b 6806static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6807 .notifier_call = migration_call,
6808 .priority = 10
6809};
6810
7babe8db 6811static int __init migration_init(void)
1da177e4
LT
6812{
6813 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6814 int err;
48f24c4d
IM
6815
6816 /* Start one for the boot CPU: */
07dccf33
AM
6817 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6818 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6819 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6820 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6821
6822 return err;
1da177e4 6823}
7babe8db 6824early_initcall(migration_init);
1da177e4
LT
6825#endif
6826
6827#ifdef CONFIG_SMP
476f3534 6828
3e9830dc 6829#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6830
7c16ec58 6831static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6832 struct cpumask *groupmask)
1da177e4 6833{
4dcf6aff 6834 struct sched_group *group = sd->groups;
434d53b0 6835 char str[256];
1da177e4 6836
968ea6d8 6837 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6838 cpumask_clear(groupmask);
4dcf6aff
IM
6839
6840 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6841
6842 if (!(sd->flags & SD_LOAD_BALANCE)) {
6843 printk("does not load-balance\n");
6844 if (sd->parent)
6845 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6846 " has parent");
6847 return -1;
41c7ce9a
NP
6848 }
6849
eefd796a 6850 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6851
758b2cdc 6852 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
6853 printk(KERN_ERR "ERROR: domain->span does not contain "
6854 "CPU%d\n", cpu);
6855 }
758b2cdc 6856 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
6857 printk(KERN_ERR "ERROR: domain->groups does not contain"
6858 " CPU%d\n", cpu);
6859 }
1da177e4 6860
4dcf6aff 6861 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6862 do {
4dcf6aff
IM
6863 if (!group) {
6864 printk("\n");
6865 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6866 break;
6867 }
6868
4dcf6aff
IM
6869 if (!group->__cpu_power) {
6870 printk(KERN_CONT "\n");
6871 printk(KERN_ERR "ERROR: domain->cpu_power not "
6872 "set\n");
6873 break;
6874 }
1da177e4 6875
758b2cdc 6876 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
6877 printk(KERN_CONT "\n");
6878 printk(KERN_ERR "ERROR: empty group\n");
6879 break;
6880 }
1da177e4 6881
758b2cdc 6882 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
6883 printk(KERN_CONT "\n");
6884 printk(KERN_ERR "ERROR: repeated CPUs\n");
6885 break;
6886 }
1da177e4 6887
758b2cdc 6888 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6889
968ea6d8 6890 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 6891 printk(KERN_CONT " %s", str);
1da177e4 6892
4dcf6aff
IM
6893 group = group->next;
6894 } while (group != sd->groups);
6895 printk(KERN_CONT "\n");
1da177e4 6896
758b2cdc 6897 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 6898 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6899
758b2cdc
RR
6900 if (sd->parent &&
6901 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
6902 printk(KERN_ERR "ERROR: parent span is not a superset "
6903 "of domain->span\n");
6904 return 0;
6905}
1da177e4 6906
4dcf6aff
IM
6907static void sched_domain_debug(struct sched_domain *sd, int cpu)
6908{
d5dd3db1 6909 cpumask_var_t groupmask;
4dcf6aff 6910 int level = 0;
1da177e4 6911
4dcf6aff
IM
6912 if (!sd) {
6913 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6914 return;
6915 }
1da177e4 6916
4dcf6aff
IM
6917 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6918
d5dd3db1 6919 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6920 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6921 return;
6922 }
6923
4dcf6aff 6924 for (;;) {
7c16ec58 6925 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6926 break;
1da177e4
LT
6927 level++;
6928 sd = sd->parent;
33859f7f 6929 if (!sd)
4dcf6aff
IM
6930 break;
6931 }
d5dd3db1 6932 free_cpumask_var(groupmask);
1da177e4 6933}
6d6bc0ad 6934#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6935# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6936#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6937
1a20ff27 6938static int sd_degenerate(struct sched_domain *sd)
245af2c7 6939{
758b2cdc 6940 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6941 return 1;
6942
6943 /* Following flags need at least 2 groups */
6944 if (sd->flags & (SD_LOAD_BALANCE |
6945 SD_BALANCE_NEWIDLE |
6946 SD_BALANCE_FORK |
89c4710e
SS
6947 SD_BALANCE_EXEC |
6948 SD_SHARE_CPUPOWER |
6949 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6950 if (sd->groups != sd->groups->next)
6951 return 0;
6952 }
6953
6954 /* Following flags don't use groups */
6955 if (sd->flags & (SD_WAKE_IDLE |
6956 SD_WAKE_AFFINE |
6957 SD_WAKE_BALANCE))
6958 return 0;
6959
6960 return 1;
6961}
6962
48f24c4d
IM
6963static int
6964sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6965{
6966 unsigned long cflags = sd->flags, pflags = parent->flags;
6967
6968 if (sd_degenerate(parent))
6969 return 1;
6970
758b2cdc 6971 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6972 return 0;
6973
6974 /* Does parent contain flags not in child? */
6975 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6976 if (cflags & SD_WAKE_AFFINE)
6977 pflags &= ~SD_WAKE_BALANCE;
6978 /* Flags needing groups don't count if only 1 group in parent */
6979 if (parent->groups == parent->groups->next) {
6980 pflags &= ~(SD_LOAD_BALANCE |
6981 SD_BALANCE_NEWIDLE |
6982 SD_BALANCE_FORK |
89c4710e
SS
6983 SD_BALANCE_EXEC |
6984 SD_SHARE_CPUPOWER |
6985 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6986 if (nr_node_ids == 1)
6987 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6988 }
6989 if (~cflags & pflags)
6990 return 0;
6991
6992 return 1;
6993}
6994
c6c4927b
RR
6995static void free_rootdomain(struct root_domain *rd)
6996{
68e74568
RR
6997 cpupri_cleanup(&rd->cpupri);
6998
c6c4927b
RR
6999 free_cpumask_var(rd->rto_mask);
7000 free_cpumask_var(rd->online);
7001 free_cpumask_var(rd->span);
7002 kfree(rd);
7003}
7004
57d885fe
GH
7005static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7006{
7007 unsigned long flags;
57d885fe
GH
7008
7009 spin_lock_irqsave(&rq->lock, flags);
7010
7011 if (rq->rd) {
7012 struct root_domain *old_rd = rq->rd;
7013
c6c4927b 7014 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7015 set_rq_offline(rq);
57d885fe 7016
c6c4927b 7017 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7018
57d885fe 7019 if (atomic_dec_and_test(&old_rd->refcount))
c6c4927b 7020 free_rootdomain(old_rd);
57d885fe
GH
7021 }
7022
7023 atomic_inc(&rd->refcount);
7024 rq->rd = rd;
7025
c6c4927b
RR
7026 cpumask_set_cpu(rq->cpu, rd->span);
7027 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7028 set_rq_online(rq);
57d885fe
GH
7029
7030 spin_unlock_irqrestore(&rq->lock, flags);
7031}
7032
db2f59c8 7033static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7034{
7035 memset(rd, 0, sizeof(*rd));
7036
c6c4927b
RR
7037 if (bootmem) {
7038 alloc_bootmem_cpumask_var(&def_root_domain.span);
7039 alloc_bootmem_cpumask_var(&def_root_domain.online);
7040 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7041 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7042 return 0;
7043 }
7044
7045 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7046 goto out;
c6c4927b
RR
7047 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7048 goto free_span;
7049 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7050 goto free_online;
6e0534f2 7051
68e74568
RR
7052 if (cpupri_init(&rd->cpupri, false) != 0)
7053 goto free_rto_mask;
c6c4927b 7054 return 0;
6e0534f2 7055
68e74568
RR
7056free_rto_mask:
7057 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7058free_online:
7059 free_cpumask_var(rd->online);
7060free_span:
7061 free_cpumask_var(rd->span);
0c910d28 7062out:
c6c4927b 7063 return -ENOMEM;
57d885fe
GH
7064}
7065
7066static void init_defrootdomain(void)
7067{
c6c4927b
RR
7068 init_rootdomain(&def_root_domain, true);
7069
57d885fe
GH
7070 atomic_set(&def_root_domain.refcount, 1);
7071}
7072
dc938520 7073static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7074{
7075 struct root_domain *rd;
7076
7077 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7078 if (!rd)
7079 return NULL;
7080
c6c4927b
RR
7081 if (init_rootdomain(rd, false) != 0) {
7082 kfree(rd);
7083 return NULL;
7084 }
57d885fe
GH
7085
7086 return rd;
7087}
7088
1da177e4 7089/*
0eab9146 7090 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7091 * hold the hotplug lock.
7092 */
0eab9146
IM
7093static void
7094cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7095{
70b97a7f 7096 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7097 struct sched_domain *tmp;
7098
7099 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7100 for (tmp = sd; tmp; ) {
245af2c7
SS
7101 struct sched_domain *parent = tmp->parent;
7102 if (!parent)
7103 break;
f29c9b1c 7104
1a848870 7105 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7106 tmp->parent = parent->parent;
1a848870
SS
7107 if (parent->parent)
7108 parent->parent->child = tmp;
f29c9b1c
LZ
7109 } else
7110 tmp = tmp->parent;
245af2c7
SS
7111 }
7112
1a848870 7113 if (sd && sd_degenerate(sd)) {
245af2c7 7114 sd = sd->parent;
1a848870
SS
7115 if (sd)
7116 sd->child = NULL;
7117 }
1da177e4
LT
7118
7119 sched_domain_debug(sd, cpu);
7120
57d885fe 7121 rq_attach_root(rq, rd);
674311d5 7122 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7123}
7124
7125/* cpus with isolated domains */
dcc30a35 7126static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7127
7128/* Setup the mask of cpus configured for isolated domains */
7129static int __init isolated_cpu_setup(char *str)
7130{
968ea6d8 7131 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7132 return 1;
7133}
7134
8927f494 7135__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7136
7137/*
6711cab4
SS
7138 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7139 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7140 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7141 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7142 *
7143 * init_sched_build_groups will build a circular linked list of the groups
7144 * covered by the given span, and will set each group's ->cpumask correctly,
7145 * and ->cpu_power to 0.
7146 */
a616058b 7147static void
96f874e2
RR
7148init_sched_build_groups(const struct cpumask *span,
7149 const struct cpumask *cpu_map,
7150 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7151 struct sched_group **sg,
96f874e2
RR
7152 struct cpumask *tmpmask),
7153 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7154{
7155 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7156 int i;
7157
96f874e2 7158 cpumask_clear(covered);
7c16ec58 7159
abcd083a 7160 for_each_cpu(i, span) {
6711cab4 7161 struct sched_group *sg;
7c16ec58 7162 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7163 int j;
7164
758b2cdc 7165 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7166 continue;
7167
758b2cdc 7168 cpumask_clear(sched_group_cpus(sg));
5517d86b 7169 sg->__cpu_power = 0;
1da177e4 7170
abcd083a 7171 for_each_cpu(j, span) {
7c16ec58 7172 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7173 continue;
7174
96f874e2 7175 cpumask_set_cpu(j, covered);
758b2cdc 7176 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7177 }
7178 if (!first)
7179 first = sg;
7180 if (last)
7181 last->next = sg;
7182 last = sg;
7183 }
7184 last->next = first;
7185}
7186
9c1cfda2 7187#define SD_NODES_PER_DOMAIN 16
1da177e4 7188
9c1cfda2 7189#ifdef CONFIG_NUMA
198e2f18 7190
9c1cfda2
JH
7191/**
7192 * find_next_best_node - find the next node to include in a sched_domain
7193 * @node: node whose sched_domain we're building
7194 * @used_nodes: nodes already in the sched_domain
7195 *
41a2d6cf 7196 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7197 * finds the closest node not already in the @used_nodes map.
7198 *
7199 * Should use nodemask_t.
7200 */
c5f59f08 7201static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7202{
7203 int i, n, val, min_val, best_node = 0;
7204
7205 min_val = INT_MAX;
7206
076ac2af 7207 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7208 /* Start at @node */
076ac2af 7209 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7210
7211 if (!nr_cpus_node(n))
7212 continue;
7213
7214 /* Skip already used nodes */
c5f59f08 7215 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7216 continue;
7217
7218 /* Simple min distance search */
7219 val = node_distance(node, n);
7220
7221 if (val < min_val) {
7222 min_val = val;
7223 best_node = n;
7224 }
7225 }
7226
c5f59f08 7227 node_set(best_node, *used_nodes);
9c1cfda2
JH
7228 return best_node;
7229}
7230
7231/**
7232 * sched_domain_node_span - get a cpumask for a node's sched_domain
7233 * @node: node whose cpumask we're constructing
73486722 7234 * @span: resulting cpumask
9c1cfda2 7235 *
41a2d6cf 7236 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7237 * should be one that prevents unnecessary balancing, but also spreads tasks
7238 * out optimally.
7239 */
96f874e2 7240static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7241{
c5f59f08 7242 nodemask_t used_nodes;
48f24c4d 7243 int i;
9c1cfda2 7244
6ca09dfc 7245 cpumask_clear(span);
c5f59f08 7246 nodes_clear(used_nodes);
9c1cfda2 7247
6ca09dfc 7248 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7249 node_set(node, used_nodes);
9c1cfda2
JH
7250
7251 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7252 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7253
6ca09dfc 7254 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7255 }
9c1cfda2 7256}
6d6bc0ad 7257#endif /* CONFIG_NUMA */
9c1cfda2 7258
5c45bf27 7259int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7260
6c99e9ad
RR
7261/*
7262 * The cpus mask in sched_group and sched_domain hangs off the end.
7263 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7264 * for nr_cpu_ids < CONFIG_NR_CPUS.
7265 */
7266struct static_sched_group {
7267 struct sched_group sg;
7268 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7269};
7270
7271struct static_sched_domain {
7272 struct sched_domain sd;
7273 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7274};
7275
9c1cfda2 7276/*
48f24c4d 7277 * SMT sched-domains:
9c1cfda2 7278 */
1da177e4 7279#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7280static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7281static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7282
41a2d6cf 7283static int
96f874e2
RR
7284cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7285 struct sched_group **sg, struct cpumask *unused)
1da177e4 7286{
6711cab4 7287 if (sg)
6c99e9ad 7288 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7289 return cpu;
7290}
6d6bc0ad 7291#endif /* CONFIG_SCHED_SMT */
1da177e4 7292
48f24c4d
IM
7293/*
7294 * multi-core sched-domains:
7295 */
1e9f28fa 7296#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7297static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7298static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7299#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7300
7301#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7302static int
96f874e2
RR
7303cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7304 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7305{
6711cab4 7306 int group;
7c16ec58 7307
96f874e2
RR
7308 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7309 group = cpumask_first(mask);
6711cab4 7310 if (sg)
6c99e9ad 7311 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7312 return group;
1e9f28fa
SS
7313}
7314#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7315static int
96f874e2
RR
7316cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7317 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7318{
6711cab4 7319 if (sg)
6c99e9ad 7320 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7321 return cpu;
7322}
7323#endif
7324
6c99e9ad
RR
7325static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7326static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7327
41a2d6cf 7328static int
96f874e2
RR
7329cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7330 struct sched_group **sg, struct cpumask *mask)
1da177e4 7331{
6711cab4 7332 int group;
48f24c4d 7333#ifdef CONFIG_SCHED_MC
6ca09dfc 7334 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7335 group = cpumask_first(mask);
1e9f28fa 7336#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7337 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7338 group = cpumask_first(mask);
1da177e4 7339#else
6711cab4 7340 group = cpu;
1da177e4 7341#endif
6711cab4 7342 if (sg)
6c99e9ad 7343 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7344 return group;
1da177e4
LT
7345}
7346
7347#ifdef CONFIG_NUMA
1da177e4 7348/*
9c1cfda2
JH
7349 * The init_sched_build_groups can't handle what we want to do with node
7350 * groups, so roll our own. Now each node has its own list of groups which
7351 * gets dynamically allocated.
1da177e4 7352 */
62ea9ceb 7353static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7354static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7355
62ea9ceb 7356static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7357static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7358
96f874e2
RR
7359static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7360 struct sched_group **sg,
7361 struct cpumask *nodemask)
9c1cfda2 7362{
6711cab4
SS
7363 int group;
7364
6ca09dfc 7365 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7366 group = cpumask_first(nodemask);
6711cab4
SS
7367
7368 if (sg)
6c99e9ad 7369 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7370 return group;
1da177e4 7371}
6711cab4 7372
08069033
SS
7373static void init_numa_sched_groups_power(struct sched_group *group_head)
7374{
7375 struct sched_group *sg = group_head;
7376 int j;
7377
7378 if (!sg)
7379 return;
3a5c359a 7380 do {
758b2cdc 7381 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7382 struct sched_domain *sd;
08069033 7383
6c99e9ad 7384 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7385 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7386 /*
7387 * Only add "power" once for each
7388 * physical package.
7389 */
7390 continue;
7391 }
08069033 7392
3a5c359a
AK
7393 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7394 }
7395 sg = sg->next;
7396 } while (sg != group_head);
08069033 7397}
6d6bc0ad 7398#endif /* CONFIG_NUMA */
1da177e4 7399
a616058b 7400#ifdef CONFIG_NUMA
51888ca2 7401/* Free memory allocated for various sched_group structures */
96f874e2
RR
7402static void free_sched_groups(const struct cpumask *cpu_map,
7403 struct cpumask *nodemask)
51888ca2 7404{
a616058b 7405 int cpu, i;
51888ca2 7406
abcd083a 7407 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7408 struct sched_group **sched_group_nodes
7409 = sched_group_nodes_bycpu[cpu];
7410
51888ca2
SV
7411 if (!sched_group_nodes)
7412 continue;
7413
076ac2af 7414 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7415 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7416
6ca09dfc 7417 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7418 if (cpumask_empty(nodemask))
51888ca2
SV
7419 continue;
7420
7421 if (sg == NULL)
7422 continue;
7423 sg = sg->next;
7424next_sg:
7425 oldsg = sg;
7426 sg = sg->next;
7427 kfree(oldsg);
7428 if (oldsg != sched_group_nodes[i])
7429 goto next_sg;
7430 }
7431 kfree(sched_group_nodes);
7432 sched_group_nodes_bycpu[cpu] = NULL;
7433 }
51888ca2 7434}
6d6bc0ad 7435#else /* !CONFIG_NUMA */
96f874e2
RR
7436static void free_sched_groups(const struct cpumask *cpu_map,
7437 struct cpumask *nodemask)
a616058b
SS
7438{
7439}
6d6bc0ad 7440#endif /* CONFIG_NUMA */
51888ca2 7441
89c4710e
SS
7442/*
7443 * Initialize sched groups cpu_power.
7444 *
7445 * cpu_power indicates the capacity of sched group, which is used while
7446 * distributing the load between different sched groups in a sched domain.
7447 * Typically cpu_power for all the groups in a sched domain will be same unless
7448 * there are asymmetries in the topology. If there are asymmetries, group
7449 * having more cpu_power will pickup more load compared to the group having
7450 * less cpu_power.
7451 *
7452 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7453 * the maximum number of tasks a group can handle in the presence of other idle
7454 * or lightly loaded groups in the same sched domain.
7455 */
7456static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7457{
7458 struct sched_domain *child;
7459 struct sched_group *group;
7460
7461 WARN_ON(!sd || !sd->groups);
7462
758b2cdc 7463 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7464 return;
7465
7466 child = sd->child;
7467
5517d86b
ED
7468 sd->groups->__cpu_power = 0;
7469
89c4710e
SS
7470 /*
7471 * For perf policy, if the groups in child domain share resources
7472 * (for example cores sharing some portions of the cache hierarchy
7473 * or SMT), then set this domain groups cpu_power such that each group
7474 * can handle only one task, when there are other idle groups in the
7475 * same sched domain.
7476 */
7477 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7478 (child->flags &
7479 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7480 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7481 return;
7482 }
7483
89c4710e
SS
7484 /*
7485 * add cpu_power of each child group to this groups cpu_power
7486 */
7487 group = child->groups;
7488 do {
5517d86b 7489 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7490 group = group->next;
7491 } while (group != child->groups);
7492}
7493
7c16ec58
MT
7494/*
7495 * Initializers for schedule domains
7496 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7497 */
7498
a5d8c348
IM
7499#ifdef CONFIG_SCHED_DEBUG
7500# define SD_INIT_NAME(sd, type) sd->name = #type
7501#else
7502# define SD_INIT_NAME(sd, type) do { } while (0)
7503#endif
7504
7c16ec58 7505#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7506
7c16ec58
MT
7507#define SD_INIT_FUNC(type) \
7508static noinline void sd_init_##type(struct sched_domain *sd) \
7509{ \
7510 memset(sd, 0, sizeof(*sd)); \
7511 *sd = SD_##type##_INIT; \
1d3504fc 7512 sd->level = SD_LV_##type; \
a5d8c348 7513 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7514}
7515
7516SD_INIT_FUNC(CPU)
7517#ifdef CONFIG_NUMA
7518 SD_INIT_FUNC(ALLNODES)
7519 SD_INIT_FUNC(NODE)
7520#endif
7521#ifdef CONFIG_SCHED_SMT
7522 SD_INIT_FUNC(SIBLING)
7523#endif
7524#ifdef CONFIG_SCHED_MC
7525 SD_INIT_FUNC(MC)
7526#endif
7527
1d3504fc
HS
7528static int default_relax_domain_level = -1;
7529
7530static int __init setup_relax_domain_level(char *str)
7531{
30e0e178
LZ
7532 unsigned long val;
7533
7534 val = simple_strtoul(str, NULL, 0);
7535 if (val < SD_LV_MAX)
7536 default_relax_domain_level = val;
7537
1d3504fc
HS
7538 return 1;
7539}
7540__setup("relax_domain_level=", setup_relax_domain_level);
7541
7542static void set_domain_attribute(struct sched_domain *sd,
7543 struct sched_domain_attr *attr)
7544{
7545 int request;
7546
7547 if (!attr || attr->relax_domain_level < 0) {
7548 if (default_relax_domain_level < 0)
7549 return;
7550 else
7551 request = default_relax_domain_level;
7552 } else
7553 request = attr->relax_domain_level;
7554 if (request < sd->level) {
7555 /* turn off idle balance on this domain */
7556 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7557 } else {
7558 /* turn on idle balance on this domain */
7559 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7560 }
7561}
7562
1da177e4 7563/*
1a20ff27
DG
7564 * Build sched domains for a given set of cpus and attach the sched domains
7565 * to the individual cpus
1da177e4 7566 */
96f874e2 7567static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7568 struct sched_domain_attr *attr)
1da177e4 7569{
3404c8d9 7570 int i, err = -ENOMEM;
57d885fe 7571 struct root_domain *rd;
3404c8d9
RR
7572 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7573 tmpmask;
d1b55138 7574#ifdef CONFIG_NUMA
3404c8d9 7575 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7576 struct sched_group **sched_group_nodes = NULL;
6711cab4 7577 int sd_allnodes = 0;
d1b55138 7578
3404c8d9
RR
7579 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7580 goto out;
7581 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7582 goto free_domainspan;
7583 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7584 goto free_covered;
7585#endif
7586
7587 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7588 goto free_notcovered;
7589 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7590 goto free_nodemask;
7591 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7592 goto free_this_sibling_map;
7593 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7594 goto free_this_core_map;
7595 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7596 goto free_send_covered;
7597
7598#ifdef CONFIG_NUMA
d1b55138
JH
7599 /*
7600 * Allocate the per-node list of sched groups
7601 */
076ac2af 7602 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7603 GFP_KERNEL);
d1b55138
JH
7604 if (!sched_group_nodes) {
7605 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7606 goto free_tmpmask;
d1b55138 7607 }
d1b55138 7608#endif
1da177e4 7609
dc938520 7610 rd = alloc_rootdomain();
57d885fe
GH
7611 if (!rd) {
7612 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7613 goto free_sched_groups;
7c16ec58 7614 }
6d21cd62 7615
7c16ec58 7616#ifdef CONFIG_NUMA
96f874e2 7617 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7618#endif
7619
1da177e4 7620 /*
1a20ff27 7621 * Set up domains for cpus specified by the cpu_map.
1da177e4 7622 */
abcd083a 7623 for_each_cpu(i, cpu_map) {
1da177e4 7624 struct sched_domain *sd = NULL, *p;
1da177e4 7625
6ca09dfc 7626 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
7627
7628#ifdef CONFIG_NUMA
96f874e2
RR
7629 if (cpumask_weight(cpu_map) >
7630 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 7631 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 7632 SD_INIT(sd, ALLNODES);
1d3504fc 7633 set_domain_attribute(sd, attr);
758b2cdc 7634 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7635 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7636 p = sd;
6711cab4 7637 sd_allnodes = 1;
9c1cfda2
JH
7638 } else
7639 p = NULL;
7640
62ea9ceb 7641 sd = &per_cpu(node_domains, i).sd;
7c16ec58 7642 SD_INIT(sd, NODE);
1d3504fc 7643 set_domain_attribute(sd, attr);
758b2cdc 7644 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7645 sd->parent = p;
1a848870
SS
7646 if (p)
7647 p->child = sd;
758b2cdc
RR
7648 cpumask_and(sched_domain_span(sd),
7649 sched_domain_span(sd), cpu_map);
1da177e4
LT
7650#endif
7651
7652 p = sd;
6c99e9ad 7653 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7654 SD_INIT(sd, CPU);
1d3504fc 7655 set_domain_attribute(sd, attr);
758b2cdc 7656 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7657 sd->parent = p;
1a848870
SS
7658 if (p)
7659 p->child = sd;
7c16ec58 7660 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7661
1e9f28fa
SS
7662#ifdef CONFIG_SCHED_MC
7663 p = sd;
6c99e9ad 7664 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7665 SD_INIT(sd, MC);
1d3504fc 7666 set_domain_attribute(sd, attr);
6ca09dfc
MT
7667 cpumask_and(sched_domain_span(sd), cpu_map,
7668 cpu_coregroup_mask(i));
1e9f28fa 7669 sd->parent = p;
1a848870 7670 p->child = sd;
7c16ec58 7671 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7672#endif
7673
1da177e4
LT
7674#ifdef CONFIG_SCHED_SMT
7675 p = sd;
6c99e9ad 7676 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7677 SD_INIT(sd, SIBLING);
1d3504fc 7678 set_domain_attribute(sd, attr);
758b2cdc
RR
7679 cpumask_and(sched_domain_span(sd),
7680 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 7681 sd->parent = p;
1a848870 7682 p->child = sd;
7c16ec58 7683 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7684#endif
7685 }
7686
7687#ifdef CONFIG_SCHED_SMT
7688 /* Set up CPU (sibling) groups */
abcd083a 7689 for_each_cpu(i, cpu_map) {
96f874e2
RR
7690 cpumask_and(this_sibling_map,
7691 &per_cpu(cpu_sibling_map, i), cpu_map);
7692 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
7693 continue;
7694
dd41f596 7695 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7696 &cpu_to_cpu_group,
7697 send_covered, tmpmask);
1da177e4
LT
7698 }
7699#endif
7700
1e9f28fa
SS
7701#ifdef CONFIG_SCHED_MC
7702 /* Set up multi-core groups */
abcd083a 7703 for_each_cpu(i, cpu_map) {
6ca09dfc 7704 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 7705 if (i != cpumask_first(this_core_map))
1e9f28fa 7706 continue;
7c16ec58 7707
dd41f596 7708 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7709 &cpu_to_core_group,
7710 send_covered, tmpmask);
1e9f28fa
SS
7711 }
7712#endif
7713
1da177e4 7714 /* Set up physical groups */
076ac2af 7715 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 7716 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7717 if (cpumask_empty(nodemask))
1da177e4
LT
7718 continue;
7719
7c16ec58
MT
7720 init_sched_build_groups(nodemask, cpu_map,
7721 &cpu_to_phys_group,
7722 send_covered, tmpmask);
1da177e4
LT
7723 }
7724
7725#ifdef CONFIG_NUMA
7726 /* Set up node groups */
7c16ec58 7727 if (sd_allnodes) {
7c16ec58
MT
7728 init_sched_build_groups(cpu_map, cpu_map,
7729 &cpu_to_allnodes_group,
7730 send_covered, tmpmask);
7731 }
9c1cfda2 7732
076ac2af 7733 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7734 /* Set up node groups */
7735 struct sched_group *sg, *prev;
9c1cfda2
JH
7736 int j;
7737
96f874e2 7738 cpumask_clear(covered);
6ca09dfc 7739 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7740 if (cpumask_empty(nodemask)) {
d1b55138 7741 sched_group_nodes[i] = NULL;
9c1cfda2 7742 continue;
d1b55138 7743 }
9c1cfda2 7744
4bdbaad3 7745 sched_domain_node_span(i, domainspan);
96f874e2 7746 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 7747
6c99e9ad
RR
7748 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7749 GFP_KERNEL, i);
51888ca2
SV
7750 if (!sg) {
7751 printk(KERN_WARNING "Can not alloc domain group for "
7752 "node %d\n", i);
7753 goto error;
7754 }
9c1cfda2 7755 sched_group_nodes[i] = sg;
abcd083a 7756 for_each_cpu(j, nodemask) {
9c1cfda2 7757 struct sched_domain *sd;
9761eea8 7758
62ea9ceb 7759 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 7760 sd->groups = sg;
9c1cfda2 7761 }
5517d86b 7762 sg->__cpu_power = 0;
758b2cdc 7763 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 7764 sg->next = sg;
96f874e2 7765 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
7766 prev = sg;
7767
076ac2af 7768 for (j = 0; j < nr_node_ids; j++) {
076ac2af 7769 int n = (i + j) % nr_node_ids;
9c1cfda2 7770
96f874e2
RR
7771 cpumask_complement(notcovered, covered);
7772 cpumask_and(tmpmask, notcovered, cpu_map);
7773 cpumask_and(tmpmask, tmpmask, domainspan);
7774 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7775 break;
7776
6ca09dfc 7777 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 7778 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7779 continue;
7780
6c99e9ad
RR
7781 sg = kmalloc_node(sizeof(struct sched_group) +
7782 cpumask_size(),
15f0b676 7783 GFP_KERNEL, i);
9c1cfda2
JH
7784 if (!sg) {
7785 printk(KERN_WARNING
7786 "Can not alloc domain group for node %d\n", j);
51888ca2 7787 goto error;
9c1cfda2 7788 }
5517d86b 7789 sg->__cpu_power = 0;
758b2cdc 7790 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 7791 sg->next = prev->next;
96f874e2 7792 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
7793 prev->next = sg;
7794 prev = sg;
7795 }
9c1cfda2 7796 }
1da177e4
LT
7797#endif
7798
7799 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7800#ifdef CONFIG_SCHED_SMT
abcd083a 7801 for_each_cpu(i, cpu_map) {
6c99e9ad 7802 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 7803
89c4710e 7804 init_sched_groups_power(i, sd);
5c45bf27 7805 }
1da177e4 7806#endif
1e9f28fa 7807#ifdef CONFIG_SCHED_MC
abcd083a 7808 for_each_cpu(i, cpu_map) {
6c99e9ad 7809 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 7810
89c4710e 7811 init_sched_groups_power(i, sd);
5c45bf27
SS
7812 }
7813#endif
1e9f28fa 7814
abcd083a 7815 for_each_cpu(i, cpu_map) {
6c99e9ad 7816 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 7817
89c4710e 7818 init_sched_groups_power(i, sd);
1da177e4
LT
7819 }
7820
9c1cfda2 7821#ifdef CONFIG_NUMA
076ac2af 7822 for (i = 0; i < nr_node_ids; i++)
08069033 7823 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7824
6711cab4
SS
7825 if (sd_allnodes) {
7826 struct sched_group *sg;
f712c0c7 7827
96f874e2 7828 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 7829 tmpmask);
f712c0c7
SS
7830 init_numa_sched_groups_power(sg);
7831 }
9c1cfda2
JH
7832#endif
7833
1da177e4 7834 /* Attach the domains */
abcd083a 7835 for_each_cpu(i, cpu_map) {
1da177e4
LT
7836 struct sched_domain *sd;
7837#ifdef CONFIG_SCHED_SMT
6c99e9ad 7838 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7839#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7840 sd = &per_cpu(core_domains, i).sd;
1da177e4 7841#else
6c99e9ad 7842 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7843#endif
57d885fe 7844 cpu_attach_domain(sd, rd, i);
1da177e4 7845 }
51888ca2 7846
3404c8d9
RR
7847 err = 0;
7848
7849free_tmpmask:
7850 free_cpumask_var(tmpmask);
7851free_send_covered:
7852 free_cpumask_var(send_covered);
7853free_this_core_map:
7854 free_cpumask_var(this_core_map);
7855free_this_sibling_map:
7856 free_cpumask_var(this_sibling_map);
7857free_nodemask:
7858 free_cpumask_var(nodemask);
7859free_notcovered:
7860#ifdef CONFIG_NUMA
7861 free_cpumask_var(notcovered);
7862free_covered:
7863 free_cpumask_var(covered);
7864free_domainspan:
7865 free_cpumask_var(domainspan);
7866out:
7867#endif
7868 return err;
7869
7870free_sched_groups:
7871#ifdef CONFIG_NUMA
7872 kfree(sched_group_nodes);
7873#endif
7874 goto free_tmpmask;
51888ca2 7875
a616058b 7876#ifdef CONFIG_NUMA
51888ca2 7877error:
7c16ec58 7878 free_sched_groups(cpu_map, tmpmask);
c6c4927b 7879 free_rootdomain(rd);
3404c8d9 7880 goto free_tmpmask;
a616058b 7881#endif
1da177e4 7882}
029190c5 7883
96f874e2 7884static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7885{
7886 return __build_sched_domains(cpu_map, NULL);
7887}
7888
96f874e2 7889static struct cpumask *doms_cur; /* current sched domains */
029190c5 7890static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7891static struct sched_domain_attr *dattr_cur;
7892 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7893
7894/*
7895 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7896 * cpumask) fails, then fallback to a single sched domain,
7897 * as determined by the single cpumask fallback_doms.
029190c5 7898 */
4212823f 7899static cpumask_var_t fallback_doms;
029190c5 7900
ee79d1bd
HC
7901/*
7902 * arch_update_cpu_topology lets virtualized architectures update the
7903 * cpu core maps. It is supposed to return 1 if the topology changed
7904 * or 0 if it stayed the same.
7905 */
7906int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7907{
ee79d1bd 7908 return 0;
22e52b07
HC
7909}
7910
1a20ff27 7911/*
41a2d6cf 7912 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7913 * For now this just excludes isolated cpus, but could be used to
7914 * exclude other special cases in the future.
1a20ff27 7915 */
96f874e2 7916static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7917{
7378547f
MM
7918 int err;
7919
22e52b07 7920 arch_update_cpu_topology();
029190c5 7921 ndoms_cur = 1;
96f874e2 7922 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 7923 if (!doms_cur)
4212823f 7924 doms_cur = fallback_doms;
dcc30a35 7925 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 7926 dattr_cur = NULL;
7378547f 7927 err = build_sched_domains(doms_cur);
6382bc90 7928 register_sched_domain_sysctl();
7378547f
MM
7929
7930 return err;
1a20ff27
DG
7931}
7932
96f874e2
RR
7933static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7934 struct cpumask *tmpmask)
1da177e4 7935{
7c16ec58 7936 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7937}
1da177e4 7938
1a20ff27
DG
7939/*
7940 * Detach sched domains from a group of cpus specified in cpu_map
7941 * These cpus will now be attached to the NULL domain
7942 */
96f874e2 7943static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7944{
96f874e2
RR
7945 /* Save because hotplug lock held. */
7946 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7947 int i;
7948
abcd083a 7949 for_each_cpu(i, cpu_map)
57d885fe 7950 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7951 synchronize_sched();
96f874e2 7952 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7953}
7954
1d3504fc
HS
7955/* handle null as "default" */
7956static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7957 struct sched_domain_attr *new, int idx_new)
7958{
7959 struct sched_domain_attr tmp;
7960
7961 /* fast path */
7962 if (!new && !cur)
7963 return 1;
7964
7965 tmp = SD_ATTR_INIT;
7966 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7967 new ? (new + idx_new) : &tmp,
7968 sizeof(struct sched_domain_attr));
7969}
7970
029190c5
PJ
7971/*
7972 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7973 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7974 * doms_new[] to the current sched domain partitioning, doms_cur[].
7975 * It destroys each deleted domain and builds each new domain.
7976 *
96f874e2 7977 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
7978 * The masks don't intersect (don't overlap.) We should setup one
7979 * sched domain for each mask. CPUs not in any of the cpumasks will
7980 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7981 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7982 * it as it is.
7983 *
41a2d6cf
IM
7984 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7985 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
7986 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7987 * ndoms_new == 1, and partition_sched_domains() will fallback to
7988 * the single partition 'fallback_doms', it also forces the domains
7989 * to be rebuilt.
029190c5 7990 *
96f874e2 7991 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7992 * ndoms_new == 0 is a special case for destroying existing domains,
7993 * and it will not create the default domain.
dfb512ec 7994 *
029190c5
PJ
7995 * Call with hotplug lock held
7996 */
96f874e2
RR
7997/* FIXME: Change to struct cpumask *doms_new[] */
7998void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 7999 struct sched_domain_attr *dattr_new)
029190c5 8000{
dfb512ec 8001 int i, j, n;
d65bd5ec 8002 int new_topology;
029190c5 8003
712555ee 8004 mutex_lock(&sched_domains_mutex);
a1835615 8005
7378547f
MM
8006 /* always unregister in case we don't destroy any domains */
8007 unregister_sched_domain_sysctl();
8008
d65bd5ec
HC
8009 /* Let architecture update cpu core mappings. */
8010 new_topology = arch_update_cpu_topology();
8011
dfb512ec 8012 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8013
8014 /* Destroy deleted domains */
8015 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8016 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8017 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8018 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8019 goto match1;
8020 }
8021 /* no match - a current sched domain not in new doms_new[] */
8022 detach_destroy_domains(doms_cur + i);
8023match1:
8024 ;
8025 }
8026
e761b772
MK
8027 if (doms_new == NULL) {
8028 ndoms_cur = 0;
4212823f 8029 doms_new = fallback_doms;
dcc30a35 8030 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8031 WARN_ON_ONCE(dattr_new);
e761b772
MK
8032 }
8033
029190c5
PJ
8034 /* Build new domains */
8035 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8036 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8037 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8038 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8039 goto match2;
8040 }
8041 /* no match - add a new doms_new */
1d3504fc
HS
8042 __build_sched_domains(doms_new + i,
8043 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8044match2:
8045 ;
8046 }
8047
8048 /* Remember the new sched domains */
4212823f 8049 if (doms_cur != fallback_doms)
029190c5 8050 kfree(doms_cur);
1d3504fc 8051 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8052 doms_cur = doms_new;
1d3504fc 8053 dattr_cur = dattr_new;
029190c5 8054 ndoms_cur = ndoms_new;
7378547f
MM
8055
8056 register_sched_domain_sysctl();
a1835615 8057
712555ee 8058 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8059}
8060
5c45bf27 8061#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8062static void arch_reinit_sched_domains(void)
5c45bf27 8063{
95402b38 8064 get_online_cpus();
dfb512ec
MK
8065
8066 /* Destroy domains first to force the rebuild */
8067 partition_sched_domains(0, NULL, NULL);
8068
e761b772 8069 rebuild_sched_domains();
95402b38 8070 put_online_cpus();
5c45bf27
SS
8071}
8072
8073static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8074{
afb8a9b7 8075 unsigned int level = 0;
5c45bf27 8076
afb8a9b7
GS
8077 if (sscanf(buf, "%u", &level) != 1)
8078 return -EINVAL;
8079
8080 /*
8081 * level is always be positive so don't check for
8082 * level < POWERSAVINGS_BALANCE_NONE which is 0
8083 * What happens on 0 or 1 byte write,
8084 * need to check for count as well?
8085 */
5c45bf27 8086
afb8a9b7 8087 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8088 return -EINVAL;
8089
8090 if (smt)
afb8a9b7 8091 sched_smt_power_savings = level;
5c45bf27 8092 else
afb8a9b7 8093 sched_mc_power_savings = level;
5c45bf27 8094
c70f22d2 8095 arch_reinit_sched_domains();
5c45bf27 8096
c70f22d2 8097 return count;
5c45bf27
SS
8098}
8099
5c45bf27 8100#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8101static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8102 char *page)
5c45bf27
SS
8103{
8104 return sprintf(page, "%u\n", sched_mc_power_savings);
8105}
f718cd4a 8106static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8107 const char *buf, size_t count)
5c45bf27
SS
8108{
8109 return sched_power_savings_store(buf, count, 0);
8110}
f718cd4a
AK
8111static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8112 sched_mc_power_savings_show,
8113 sched_mc_power_savings_store);
5c45bf27
SS
8114#endif
8115
8116#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8117static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8118 char *page)
5c45bf27
SS
8119{
8120 return sprintf(page, "%u\n", sched_smt_power_savings);
8121}
f718cd4a 8122static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8123 const char *buf, size_t count)
5c45bf27
SS
8124{
8125 return sched_power_savings_store(buf, count, 1);
8126}
f718cd4a
AK
8127static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8128 sched_smt_power_savings_show,
6707de00
AB
8129 sched_smt_power_savings_store);
8130#endif
8131
39aac648 8132int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8133{
8134 int err = 0;
8135
8136#ifdef CONFIG_SCHED_SMT
8137 if (smt_capable())
8138 err = sysfs_create_file(&cls->kset.kobj,
8139 &attr_sched_smt_power_savings.attr);
8140#endif
8141#ifdef CONFIG_SCHED_MC
8142 if (!err && mc_capable())
8143 err = sysfs_create_file(&cls->kset.kobj,
8144 &attr_sched_mc_power_savings.attr);
8145#endif
8146 return err;
8147}
6d6bc0ad 8148#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8149
e761b772 8150#ifndef CONFIG_CPUSETS
1da177e4 8151/*
e761b772
MK
8152 * Add online and remove offline CPUs from the scheduler domains.
8153 * When cpusets are enabled they take over this function.
1da177e4
LT
8154 */
8155static int update_sched_domains(struct notifier_block *nfb,
8156 unsigned long action, void *hcpu)
e761b772
MK
8157{
8158 switch (action) {
8159 case CPU_ONLINE:
8160 case CPU_ONLINE_FROZEN:
8161 case CPU_DEAD:
8162 case CPU_DEAD_FROZEN:
dfb512ec 8163 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8164 return NOTIFY_OK;
8165
8166 default:
8167 return NOTIFY_DONE;
8168 }
8169}
8170#endif
8171
8172static int update_runtime(struct notifier_block *nfb,
8173 unsigned long action, void *hcpu)
1da177e4 8174{
7def2be1
PZ
8175 int cpu = (int)(long)hcpu;
8176
1da177e4 8177 switch (action) {
1da177e4 8178 case CPU_DOWN_PREPARE:
8bb78442 8179 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8180 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8181 return NOTIFY_OK;
8182
1da177e4 8183 case CPU_DOWN_FAILED:
8bb78442 8184 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8185 case CPU_ONLINE:
8bb78442 8186 case CPU_ONLINE_FROZEN:
7def2be1 8187 enable_runtime(cpu_rq(cpu));
e761b772
MK
8188 return NOTIFY_OK;
8189
1da177e4
LT
8190 default:
8191 return NOTIFY_DONE;
8192 }
1da177e4 8193}
1da177e4
LT
8194
8195void __init sched_init_smp(void)
8196{
dcc30a35
RR
8197 cpumask_var_t non_isolated_cpus;
8198
8199 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8200
434d53b0
MT
8201#if defined(CONFIG_NUMA)
8202 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8203 GFP_KERNEL);
8204 BUG_ON(sched_group_nodes_bycpu == NULL);
8205#endif
95402b38 8206 get_online_cpus();
712555ee 8207 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8208 arch_init_sched_domains(cpu_online_mask);
8209 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8210 if (cpumask_empty(non_isolated_cpus))
8211 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8212 mutex_unlock(&sched_domains_mutex);
95402b38 8213 put_online_cpus();
e761b772
MK
8214
8215#ifndef CONFIG_CPUSETS
1da177e4
LT
8216 /* XXX: Theoretical race here - CPU may be hotplugged now */
8217 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8218#endif
8219
8220 /* RT runtime code needs to handle some hotplug events */
8221 hotcpu_notifier(update_runtime, 0);
8222
b328ca18 8223 init_hrtick();
5c1e1767
NP
8224
8225 /* Move init over to a non-isolated CPU */
dcc30a35 8226 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8227 BUG();
19978ca6 8228 sched_init_granularity();
dcc30a35 8229 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8230
8231 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8232 init_sched_rt_class();
1da177e4
LT
8233}
8234#else
8235void __init sched_init_smp(void)
8236{
19978ca6 8237 sched_init_granularity();
1da177e4
LT
8238}
8239#endif /* CONFIG_SMP */
8240
8241int in_sched_functions(unsigned long addr)
8242{
1da177e4
LT
8243 return in_lock_functions(addr) ||
8244 (addr >= (unsigned long)__sched_text_start
8245 && addr < (unsigned long)__sched_text_end);
8246}
8247
a9957449 8248static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8249{
8250 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8251 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8252#ifdef CONFIG_FAIR_GROUP_SCHED
8253 cfs_rq->rq = rq;
8254#endif
67e9fb2a 8255 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8256}
8257
fa85ae24
PZ
8258static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8259{
8260 struct rt_prio_array *array;
8261 int i;
8262
8263 array = &rt_rq->active;
8264 for (i = 0; i < MAX_RT_PRIO; i++) {
8265 INIT_LIST_HEAD(array->queue + i);
8266 __clear_bit(i, array->bitmap);
8267 }
8268 /* delimiter for bitsearch: */
8269 __set_bit(MAX_RT_PRIO, array->bitmap);
8270
052f1dc7 8271#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8272 rt_rq->highest_prio = MAX_RT_PRIO;
8273#endif
fa85ae24
PZ
8274#ifdef CONFIG_SMP
8275 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8276 rt_rq->overloaded = 0;
8277#endif
8278
8279 rt_rq->rt_time = 0;
8280 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8281 rt_rq->rt_runtime = 0;
8282 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8283
052f1dc7 8284#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8285 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8286 rt_rq->rq = rq;
8287#endif
fa85ae24
PZ
8288}
8289
6f505b16 8290#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8291static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8292 struct sched_entity *se, int cpu, int add,
8293 struct sched_entity *parent)
6f505b16 8294{
ec7dc8ac 8295 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8296 tg->cfs_rq[cpu] = cfs_rq;
8297 init_cfs_rq(cfs_rq, rq);
8298 cfs_rq->tg = tg;
8299 if (add)
8300 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8301
8302 tg->se[cpu] = se;
354d60c2
DG
8303 /* se could be NULL for init_task_group */
8304 if (!se)
8305 return;
8306
ec7dc8ac
DG
8307 if (!parent)
8308 se->cfs_rq = &rq->cfs;
8309 else
8310 se->cfs_rq = parent->my_q;
8311
6f505b16
PZ
8312 se->my_q = cfs_rq;
8313 se->load.weight = tg->shares;
e05510d0 8314 se->load.inv_weight = 0;
ec7dc8ac 8315 se->parent = parent;
6f505b16 8316}
052f1dc7 8317#endif
6f505b16 8318
052f1dc7 8319#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8320static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8321 struct sched_rt_entity *rt_se, int cpu, int add,
8322 struct sched_rt_entity *parent)
6f505b16 8323{
ec7dc8ac
DG
8324 struct rq *rq = cpu_rq(cpu);
8325
6f505b16
PZ
8326 tg->rt_rq[cpu] = rt_rq;
8327 init_rt_rq(rt_rq, rq);
8328 rt_rq->tg = tg;
8329 rt_rq->rt_se = rt_se;
ac086bc2 8330 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8331 if (add)
8332 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8333
8334 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8335 if (!rt_se)
8336 return;
8337
ec7dc8ac
DG
8338 if (!parent)
8339 rt_se->rt_rq = &rq->rt;
8340 else
8341 rt_se->rt_rq = parent->my_q;
8342
6f505b16 8343 rt_se->my_q = rt_rq;
ec7dc8ac 8344 rt_se->parent = parent;
6f505b16
PZ
8345 INIT_LIST_HEAD(&rt_se->run_list);
8346}
8347#endif
8348
1da177e4
LT
8349void __init sched_init(void)
8350{
dd41f596 8351 int i, j;
434d53b0
MT
8352 unsigned long alloc_size = 0, ptr;
8353
8354#ifdef CONFIG_FAIR_GROUP_SCHED
8355 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8356#endif
8357#ifdef CONFIG_RT_GROUP_SCHED
8358 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8359#endif
8360#ifdef CONFIG_USER_SCHED
8361 alloc_size *= 2;
434d53b0
MT
8362#endif
8363 /*
8364 * As sched_init() is called before page_alloc is setup,
8365 * we use alloc_bootmem().
8366 */
8367 if (alloc_size) {
5a9d3225 8368 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8369
8370#ifdef CONFIG_FAIR_GROUP_SCHED
8371 init_task_group.se = (struct sched_entity **)ptr;
8372 ptr += nr_cpu_ids * sizeof(void **);
8373
8374 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8375 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8376
8377#ifdef CONFIG_USER_SCHED
8378 root_task_group.se = (struct sched_entity **)ptr;
8379 ptr += nr_cpu_ids * sizeof(void **);
8380
8381 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8382 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8383#endif /* CONFIG_USER_SCHED */
8384#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8385#ifdef CONFIG_RT_GROUP_SCHED
8386 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8387 ptr += nr_cpu_ids * sizeof(void **);
8388
8389 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8390 ptr += nr_cpu_ids * sizeof(void **);
8391
8392#ifdef CONFIG_USER_SCHED
8393 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8394 ptr += nr_cpu_ids * sizeof(void **);
8395
8396 root_task_group.rt_rq = (struct rt_rq **)ptr;
8397 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8398#endif /* CONFIG_USER_SCHED */
8399#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8400 }
dd41f596 8401
57d885fe
GH
8402#ifdef CONFIG_SMP
8403 init_defrootdomain();
8404#endif
8405
d0b27fa7
PZ
8406 init_rt_bandwidth(&def_rt_bandwidth,
8407 global_rt_period(), global_rt_runtime());
8408
8409#ifdef CONFIG_RT_GROUP_SCHED
8410 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8411 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8412#ifdef CONFIG_USER_SCHED
8413 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8414 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8415#endif /* CONFIG_USER_SCHED */
8416#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8417
052f1dc7 8418#ifdef CONFIG_GROUP_SCHED
6f505b16 8419 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8420 INIT_LIST_HEAD(&init_task_group.children);
8421
8422#ifdef CONFIG_USER_SCHED
8423 INIT_LIST_HEAD(&root_task_group.children);
8424 init_task_group.parent = &root_task_group;
8425 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8426#endif /* CONFIG_USER_SCHED */
8427#endif /* CONFIG_GROUP_SCHED */
6f505b16 8428
0a945022 8429 for_each_possible_cpu(i) {
70b97a7f 8430 struct rq *rq;
1da177e4
LT
8431
8432 rq = cpu_rq(i);
8433 spin_lock_init(&rq->lock);
7897986b 8434 rq->nr_running = 0;
dd41f596 8435 init_cfs_rq(&rq->cfs, rq);
6f505b16 8436 init_rt_rq(&rq->rt, rq);
dd41f596 8437#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8438 init_task_group.shares = init_task_group_load;
6f505b16 8439 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8440#ifdef CONFIG_CGROUP_SCHED
8441 /*
8442 * How much cpu bandwidth does init_task_group get?
8443 *
8444 * In case of task-groups formed thr' the cgroup filesystem, it
8445 * gets 100% of the cpu resources in the system. This overall
8446 * system cpu resource is divided among the tasks of
8447 * init_task_group and its child task-groups in a fair manner,
8448 * based on each entity's (task or task-group's) weight
8449 * (se->load.weight).
8450 *
8451 * In other words, if init_task_group has 10 tasks of weight
8452 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8453 * then A0's share of the cpu resource is:
8454 *
8455 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8456 *
8457 * We achieve this by letting init_task_group's tasks sit
8458 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8459 */
ec7dc8ac 8460 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8461#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8462 root_task_group.shares = NICE_0_LOAD;
8463 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8464 /*
8465 * In case of task-groups formed thr' the user id of tasks,
8466 * init_task_group represents tasks belonging to root user.
8467 * Hence it forms a sibling of all subsequent groups formed.
8468 * In this case, init_task_group gets only a fraction of overall
8469 * system cpu resource, based on the weight assigned to root
8470 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8471 * by letting tasks of init_task_group sit in a separate cfs_rq
8472 * (init_cfs_rq) and having one entity represent this group of
8473 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8474 */
ec7dc8ac 8475 init_tg_cfs_entry(&init_task_group,
6f505b16 8476 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8477 &per_cpu(init_sched_entity, i), i, 1,
8478 root_task_group.se[i]);
6f505b16 8479
052f1dc7 8480#endif
354d60c2
DG
8481#endif /* CONFIG_FAIR_GROUP_SCHED */
8482
8483 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8484#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8485 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8486#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8487 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8488#elif defined CONFIG_USER_SCHED
eff766a6 8489 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8490 init_tg_rt_entry(&init_task_group,
6f505b16 8491 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8492 &per_cpu(init_sched_rt_entity, i), i, 1,
8493 root_task_group.rt_se[i]);
354d60c2 8494#endif
dd41f596 8495#endif
1da177e4 8496
dd41f596
IM
8497 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8498 rq->cpu_load[j] = 0;
1da177e4 8499#ifdef CONFIG_SMP
41c7ce9a 8500 rq->sd = NULL;
57d885fe 8501 rq->rd = NULL;
1da177e4 8502 rq->active_balance = 0;
dd41f596 8503 rq->next_balance = jiffies;
1da177e4 8504 rq->push_cpu = 0;
0a2966b4 8505 rq->cpu = i;
1f11eb6a 8506 rq->online = 0;
1da177e4
LT
8507 rq->migration_thread = NULL;
8508 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8509 rq_attach_root(rq, &def_root_domain);
1da177e4 8510#endif
8f4d37ec 8511 init_rq_hrtick(rq);
1da177e4 8512 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8513 }
8514
2dd73a4f 8515 set_load_weight(&init_task);
b50f60ce 8516
e107be36
AK
8517#ifdef CONFIG_PREEMPT_NOTIFIERS
8518 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8519#endif
8520
c9819f45 8521#ifdef CONFIG_SMP
962cf36c 8522 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8523#endif
8524
b50f60ce
HC
8525#ifdef CONFIG_RT_MUTEXES
8526 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8527#endif
8528
1da177e4
LT
8529 /*
8530 * The boot idle thread does lazy MMU switching as well:
8531 */
8532 atomic_inc(&init_mm.mm_count);
8533 enter_lazy_tlb(&init_mm, current);
8534
8535 /*
8536 * Make us the idle thread. Technically, schedule() should not be
8537 * called from this thread, however somewhere below it might be,
8538 * but because we are the idle thread, we just pick up running again
8539 * when this runqueue becomes "idle".
8540 */
8541 init_idle(current, smp_processor_id());
dd41f596
IM
8542 /*
8543 * During early bootup we pretend to be a normal task:
8544 */
8545 current->sched_class = &fair_sched_class;
6892b75e 8546
6a7b3dc3
RR
8547 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8548 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8549#ifdef CONFIG_SMP
7d1e6a9b
RR
8550#ifdef CONFIG_NO_HZ
8551 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8552#endif
dcc30a35 8553 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8554#endif /* SMP */
6a7b3dc3 8555
6892b75e 8556 scheduler_running = 1;
1da177e4
LT
8557}
8558
8559#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8560void __might_sleep(char *file, int line)
8561{
48f24c4d 8562#ifdef in_atomic
1da177e4
LT
8563 static unsigned long prev_jiffy; /* ratelimiting */
8564
aef745fc
IM
8565 if ((!in_atomic() && !irqs_disabled()) ||
8566 system_state != SYSTEM_RUNNING || oops_in_progress)
8567 return;
8568 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8569 return;
8570 prev_jiffy = jiffies;
8571
8572 printk(KERN_ERR
8573 "BUG: sleeping function called from invalid context at %s:%d\n",
8574 file, line);
8575 printk(KERN_ERR
8576 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8577 in_atomic(), irqs_disabled(),
8578 current->pid, current->comm);
8579
8580 debug_show_held_locks(current);
8581 if (irqs_disabled())
8582 print_irqtrace_events(current);
8583 dump_stack();
1da177e4
LT
8584#endif
8585}
8586EXPORT_SYMBOL(__might_sleep);
8587#endif
8588
8589#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8590static void normalize_task(struct rq *rq, struct task_struct *p)
8591{
8592 int on_rq;
3e51f33f 8593
3a5e4dc1
AK
8594 update_rq_clock(rq);
8595 on_rq = p->se.on_rq;
8596 if (on_rq)
8597 deactivate_task(rq, p, 0);
8598 __setscheduler(rq, p, SCHED_NORMAL, 0);
8599 if (on_rq) {
8600 activate_task(rq, p, 0);
8601 resched_task(rq->curr);
8602 }
8603}
8604
1da177e4
LT
8605void normalize_rt_tasks(void)
8606{
a0f98a1c 8607 struct task_struct *g, *p;
1da177e4 8608 unsigned long flags;
70b97a7f 8609 struct rq *rq;
1da177e4 8610
4cf5d77a 8611 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8612 do_each_thread(g, p) {
178be793
IM
8613 /*
8614 * Only normalize user tasks:
8615 */
8616 if (!p->mm)
8617 continue;
8618
6cfb0d5d 8619 p->se.exec_start = 0;
6cfb0d5d 8620#ifdef CONFIG_SCHEDSTATS
dd41f596 8621 p->se.wait_start = 0;
dd41f596 8622 p->se.sleep_start = 0;
dd41f596 8623 p->se.block_start = 0;
6cfb0d5d 8624#endif
dd41f596
IM
8625
8626 if (!rt_task(p)) {
8627 /*
8628 * Renice negative nice level userspace
8629 * tasks back to 0:
8630 */
8631 if (TASK_NICE(p) < 0 && p->mm)
8632 set_user_nice(p, 0);
1da177e4 8633 continue;
dd41f596 8634 }
1da177e4 8635
4cf5d77a 8636 spin_lock(&p->pi_lock);
b29739f9 8637 rq = __task_rq_lock(p);
1da177e4 8638
178be793 8639 normalize_task(rq, p);
3a5e4dc1 8640
b29739f9 8641 __task_rq_unlock(rq);
4cf5d77a 8642 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8643 } while_each_thread(g, p);
8644
4cf5d77a 8645 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8646}
8647
8648#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8649
8650#ifdef CONFIG_IA64
8651/*
8652 * These functions are only useful for the IA64 MCA handling.
8653 *
8654 * They can only be called when the whole system has been
8655 * stopped - every CPU needs to be quiescent, and no scheduling
8656 * activity can take place. Using them for anything else would
8657 * be a serious bug, and as a result, they aren't even visible
8658 * under any other configuration.
8659 */
8660
8661/**
8662 * curr_task - return the current task for a given cpu.
8663 * @cpu: the processor in question.
8664 *
8665 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8666 */
36c8b586 8667struct task_struct *curr_task(int cpu)
1df5c10a
LT
8668{
8669 return cpu_curr(cpu);
8670}
8671
8672/**
8673 * set_curr_task - set the current task for a given cpu.
8674 * @cpu: the processor in question.
8675 * @p: the task pointer to set.
8676 *
8677 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8678 * are serviced on a separate stack. It allows the architecture to switch the
8679 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8680 * must be called with all CPU's synchronized, and interrupts disabled, the
8681 * and caller must save the original value of the current task (see
8682 * curr_task() above) and restore that value before reenabling interrupts and
8683 * re-starting the system.
8684 *
8685 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8686 */
36c8b586 8687void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8688{
8689 cpu_curr(cpu) = p;
8690}
8691
8692#endif
29f59db3 8693
bccbe08a
PZ
8694#ifdef CONFIG_FAIR_GROUP_SCHED
8695static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8696{
8697 int i;
8698
8699 for_each_possible_cpu(i) {
8700 if (tg->cfs_rq)
8701 kfree(tg->cfs_rq[i]);
8702 if (tg->se)
8703 kfree(tg->se[i]);
6f505b16
PZ
8704 }
8705
8706 kfree(tg->cfs_rq);
8707 kfree(tg->se);
6f505b16
PZ
8708}
8709
ec7dc8ac
DG
8710static
8711int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8712{
29f59db3 8713 struct cfs_rq *cfs_rq;
eab17229 8714 struct sched_entity *se;
9b5b7751 8715 struct rq *rq;
29f59db3
SV
8716 int i;
8717
434d53b0 8718 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8719 if (!tg->cfs_rq)
8720 goto err;
434d53b0 8721 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8722 if (!tg->se)
8723 goto err;
052f1dc7
PZ
8724
8725 tg->shares = NICE_0_LOAD;
29f59db3
SV
8726
8727 for_each_possible_cpu(i) {
9b5b7751 8728 rq = cpu_rq(i);
29f59db3 8729
eab17229
LZ
8730 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8731 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8732 if (!cfs_rq)
8733 goto err;
8734
eab17229
LZ
8735 se = kzalloc_node(sizeof(struct sched_entity),
8736 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8737 if (!se)
8738 goto err;
8739
eab17229 8740 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8741 }
8742
8743 return 1;
8744
8745 err:
8746 return 0;
8747}
8748
8749static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8750{
8751 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8752 &cpu_rq(cpu)->leaf_cfs_rq_list);
8753}
8754
8755static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8756{
8757 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8758}
6d6bc0ad 8759#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8760static inline void free_fair_sched_group(struct task_group *tg)
8761{
8762}
8763
ec7dc8ac
DG
8764static inline
8765int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8766{
8767 return 1;
8768}
8769
8770static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8771{
8772}
8773
8774static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8775{
8776}
6d6bc0ad 8777#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8778
8779#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8780static void free_rt_sched_group(struct task_group *tg)
8781{
8782 int i;
8783
d0b27fa7
PZ
8784 destroy_rt_bandwidth(&tg->rt_bandwidth);
8785
bccbe08a
PZ
8786 for_each_possible_cpu(i) {
8787 if (tg->rt_rq)
8788 kfree(tg->rt_rq[i]);
8789 if (tg->rt_se)
8790 kfree(tg->rt_se[i]);
8791 }
8792
8793 kfree(tg->rt_rq);
8794 kfree(tg->rt_se);
8795}
8796
ec7dc8ac
DG
8797static
8798int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8799{
8800 struct rt_rq *rt_rq;
eab17229 8801 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8802 struct rq *rq;
8803 int i;
8804
434d53b0 8805 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8806 if (!tg->rt_rq)
8807 goto err;
434d53b0 8808 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8809 if (!tg->rt_se)
8810 goto err;
8811
d0b27fa7
PZ
8812 init_rt_bandwidth(&tg->rt_bandwidth,
8813 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8814
8815 for_each_possible_cpu(i) {
8816 rq = cpu_rq(i);
8817
eab17229
LZ
8818 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8819 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8820 if (!rt_rq)
8821 goto err;
29f59db3 8822
eab17229
LZ
8823 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8824 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8825 if (!rt_se)
8826 goto err;
29f59db3 8827
eab17229 8828 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8829 }
8830
bccbe08a
PZ
8831 return 1;
8832
8833 err:
8834 return 0;
8835}
8836
8837static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8838{
8839 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8840 &cpu_rq(cpu)->leaf_rt_rq_list);
8841}
8842
8843static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8844{
8845 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8846}
6d6bc0ad 8847#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8848static inline void free_rt_sched_group(struct task_group *tg)
8849{
8850}
8851
ec7dc8ac
DG
8852static inline
8853int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8854{
8855 return 1;
8856}
8857
8858static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8859{
8860}
8861
8862static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8863{
8864}
6d6bc0ad 8865#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8866
d0b27fa7 8867#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8868static void free_sched_group(struct task_group *tg)
8869{
8870 free_fair_sched_group(tg);
8871 free_rt_sched_group(tg);
8872 kfree(tg);
8873}
8874
8875/* allocate runqueue etc for a new task group */
ec7dc8ac 8876struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8877{
8878 struct task_group *tg;
8879 unsigned long flags;
8880 int i;
8881
8882 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8883 if (!tg)
8884 return ERR_PTR(-ENOMEM);
8885
ec7dc8ac 8886 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8887 goto err;
8888
ec7dc8ac 8889 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8890 goto err;
8891
8ed36996 8892 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8893 for_each_possible_cpu(i) {
bccbe08a
PZ
8894 register_fair_sched_group(tg, i);
8895 register_rt_sched_group(tg, i);
9b5b7751 8896 }
6f505b16 8897 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8898
8899 WARN_ON(!parent); /* root should already exist */
8900
8901 tg->parent = parent;
f473aa5e 8902 INIT_LIST_HEAD(&tg->children);
09f2724a 8903 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8904 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8905
9b5b7751 8906 return tg;
29f59db3
SV
8907
8908err:
6f505b16 8909 free_sched_group(tg);
29f59db3
SV
8910 return ERR_PTR(-ENOMEM);
8911}
8912
9b5b7751 8913/* rcu callback to free various structures associated with a task group */
6f505b16 8914static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8915{
29f59db3 8916 /* now it should be safe to free those cfs_rqs */
6f505b16 8917 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8918}
8919
9b5b7751 8920/* Destroy runqueue etc associated with a task group */
4cf86d77 8921void sched_destroy_group(struct task_group *tg)
29f59db3 8922{
8ed36996 8923 unsigned long flags;
9b5b7751 8924 int i;
29f59db3 8925
8ed36996 8926 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8927 for_each_possible_cpu(i) {
bccbe08a
PZ
8928 unregister_fair_sched_group(tg, i);
8929 unregister_rt_sched_group(tg, i);
9b5b7751 8930 }
6f505b16 8931 list_del_rcu(&tg->list);
f473aa5e 8932 list_del_rcu(&tg->siblings);
8ed36996 8933 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8934
9b5b7751 8935 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8936 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8937}
8938
9b5b7751 8939/* change task's runqueue when it moves between groups.
3a252015
IM
8940 * The caller of this function should have put the task in its new group
8941 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8942 * reflect its new group.
9b5b7751
SV
8943 */
8944void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8945{
8946 int on_rq, running;
8947 unsigned long flags;
8948 struct rq *rq;
8949
8950 rq = task_rq_lock(tsk, &flags);
8951
29f59db3
SV
8952 update_rq_clock(rq);
8953
051a1d1a 8954 running = task_current(rq, tsk);
29f59db3
SV
8955 on_rq = tsk->se.on_rq;
8956
0e1f3483 8957 if (on_rq)
29f59db3 8958 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8959 if (unlikely(running))
8960 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8961
6f505b16 8962 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8963
810b3817
PZ
8964#ifdef CONFIG_FAIR_GROUP_SCHED
8965 if (tsk->sched_class->moved_group)
8966 tsk->sched_class->moved_group(tsk);
8967#endif
8968
0e1f3483
HS
8969 if (unlikely(running))
8970 tsk->sched_class->set_curr_task(rq);
8971 if (on_rq)
7074badb 8972 enqueue_task(rq, tsk, 0);
29f59db3 8973
29f59db3
SV
8974 task_rq_unlock(rq, &flags);
8975}
6d6bc0ad 8976#endif /* CONFIG_GROUP_SCHED */
29f59db3 8977
052f1dc7 8978#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8979static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8980{
8981 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8982 int on_rq;
8983
29f59db3 8984 on_rq = se->on_rq;
62fb1851 8985 if (on_rq)
29f59db3
SV
8986 dequeue_entity(cfs_rq, se, 0);
8987
8988 se->load.weight = shares;
e05510d0 8989 se->load.inv_weight = 0;
29f59db3 8990
62fb1851 8991 if (on_rq)
29f59db3 8992 enqueue_entity(cfs_rq, se, 0);
c09595f6 8993}
62fb1851 8994
c09595f6
PZ
8995static void set_se_shares(struct sched_entity *se, unsigned long shares)
8996{
8997 struct cfs_rq *cfs_rq = se->cfs_rq;
8998 struct rq *rq = cfs_rq->rq;
8999 unsigned long flags;
9000
9001 spin_lock_irqsave(&rq->lock, flags);
9002 __set_se_shares(se, shares);
9003 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9004}
9005
8ed36996
PZ
9006static DEFINE_MUTEX(shares_mutex);
9007
4cf86d77 9008int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9009{
9010 int i;
8ed36996 9011 unsigned long flags;
c61935fd 9012
ec7dc8ac
DG
9013 /*
9014 * We can't change the weight of the root cgroup.
9015 */
9016 if (!tg->se[0])
9017 return -EINVAL;
9018
18d95a28
PZ
9019 if (shares < MIN_SHARES)
9020 shares = MIN_SHARES;
cb4ad1ff
MX
9021 else if (shares > MAX_SHARES)
9022 shares = MAX_SHARES;
62fb1851 9023
8ed36996 9024 mutex_lock(&shares_mutex);
9b5b7751 9025 if (tg->shares == shares)
5cb350ba 9026 goto done;
29f59db3 9027
8ed36996 9028 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9029 for_each_possible_cpu(i)
9030 unregister_fair_sched_group(tg, i);
f473aa5e 9031 list_del_rcu(&tg->siblings);
8ed36996 9032 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9033
9034 /* wait for any ongoing reference to this group to finish */
9035 synchronize_sched();
9036
9037 /*
9038 * Now we are free to modify the group's share on each cpu
9039 * w/o tripping rebalance_share or load_balance_fair.
9040 */
9b5b7751 9041 tg->shares = shares;
c09595f6
PZ
9042 for_each_possible_cpu(i) {
9043 /*
9044 * force a rebalance
9045 */
9046 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9047 set_se_shares(tg->se[i], shares);
c09595f6 9048 }
29f59db3 9049
6b2d7700
SV
9050 /*
9051 * Enable load balance activity on this group, by inserting it back on
9052 * each cpu's rq->leaf_cfs_rq_list.
9053 */
8ed36996 9054 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9055 for_each_possible_cpu(i)
9056 register_fair_sched_group(tg, i);
f473aa5e 9057 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9058 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9059done:
8ed36996 9060 mutex_unlock(&shares_mutex);
9b5b7751 9061 return 0;
29f59db3
SV
9062}
9063
5cb350ba
DG
9064unsigned long sched_group_shares(struct task_group *tg)
9065{
9066 return tg->shares;
9067}
052f1dc7 9068#endif
5cb350ba 9069
052f1dc7 9070#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9071/*
9f0c1e56 9072 * Ensure that the real time constraints are schedulable.
6f505b16 9073 */
9f0c1e56
PZ
9074static DEFINE_MUTEX(rt_constraints_mutex);
9075
9076static unsigned long to_ratio(u64 period, u64 runtime)
9077{
9078 if (runtime == RUNTIME_INF)
9a7e0b18 9079 return 1ULL << 20;
9f0c1e56 9080
9a7e0b18 9081 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9082}
9083
9a7e0b18
PZ
9084/* Must be called with tasklist_lock held */
9085static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9086{
9a7e0b18 9087 struct task_struct *g, *p;
b40b2e8e 9088
9a7e0b18
PZ
9089 do_each_thread(g, p) {
9090 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9091 return 1;
9092 } while_each_thread(g, p);
b40b2e8e 9093
9a7e0b18
PZ
9094 return 0;
9095}
b40b2e8e 9096
9a7e0b18
PZ
9097struct rt_schedulable_data {
9098 struct task_group *tg;
9099 u64 rt_period;
9100 u64 rt_runtime;
9101};
b40b2e8e 9102
9a7e0b18
PZ
9103static int tg_schedulable(struct task_group *tg, void *data)
9104{
9105 struct rt_schedulable_data *d = data;
9106 struct task_group *child;
9107 unsigned long total, sum = 0;
9108 u64 period, runtime;
b40b2e8e 9109
9a7e0b18
PZ
9110 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9111 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9112
9a7e0b18
PZ
9113 if (tg == d->tg) {
9114 period = d->rt_period;
9115 runtime = d->rt_runtime;
b40b2e8e 9116 }
b40b2e8e 9117
98a4826b
PZ
9118#ifdef CONFIG_USER_SCHED
9119 if (tg == &root_task_group) {
9120 period = global_rt_period();
9121 runtime = global_rt_runtime();
9122 }
9123#endif
9124
4653f803
PZ
9125 /*
9126 * Cannot have more runtime than the period.
9127 */
9128 if (runtime > period && runtime != RUNTIME_INF)
9129 return -EINVAL;
6f505b16 9130
4653f803
PZ
9131 /*
9132 * Ensure we don't starve existing RT tasks.
9133 */
9a7e0b18
PZ
9134 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9135 return -EBUSY;
6f505b16 9136
9a7e0b18 9137 total = to_ratio(period, runtime);
6f505b16 9138
4653f803
PZ
9139 /*
9140 * Nobody can have more than the global setting allows.
9141 */
9142 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9143 return -EINVAL;
6f505b16 9144
4653f803
PZ
9145 /*
9146 * The sum of our children's runtime should not exceed our own.
9147 */
9a7e0b18
PZ
9148 list_for_each_entry_rcu(child, &tg->children, siblings) {
9149 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9150 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9151
9a7e0b18
PZ
9152 if (child == d->tg) {
9153 period = d->rt_period;
9154 runtime = d->rt_runtime;
9155 }
6f505b16 9156
9a7e0b18 9157 sum += to_ratio(period, runtime);
9f0c1e56 9158 }
6f505b16 9159
9a7e0b18
PZ
9160 if (sum > total)
9161 return -EINVAL;
9162
9163 return 0;
6f505b16
PZ
9164}
9165
9a7e0b18 9166static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9167{
9a7e0b18
PZ
9168 struct rt_schedulable_data data = {
9169 .tg = tg,
9170 .rt_period = period,
9171 .rt_runtime = runtime,
9172 };
9173
9174 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9175}
9176
d0b27fa7
PZ
9177static int tg_set_bandwidth(struct task_group *tg,
9178 u64 rt_period, u64 rt_runtime)
6f505b16 9179{
ac086bc2 9180 int i, err = 0;
9f0c1e56 9181
9f0c1e56 9182 mutex_lock(&rt_constraints_mutex);
521f1a24 9183 read_lock(&tasklist_lock);
9a7e0b18
PZ
9184 err = __rt_schedulable(tg, rt_period, rt_runtime);
9185 if (err)
9f0c1e56 9186 goto unlock;
ac086bc2
PZ
9187
9188 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9189 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9190 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9191
9192 for_each_possible_cpu(i) {
9193 struct rt_rq *rt_rq = tg->rt_rq[i];
9194
9195 spin_lock(&rt_rq->rt_runtime_lock);
9196 rt_rq->rt_runtime = rt_runtime;
9197 spin_unlock(&rt_rq->rt_runtime_lock);
9198 }
9199 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9200 unlock:
521f1a24 9201 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9202 mutex_unlock(&rt_constraints_mutex);
9203
9204 return err;
6f505b16
PZ
9205}
9206
d0b27fa7
PZ
9207int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9208{
9209 u64 rt_runtime, rt_period;
9210
9211 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9212 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9213 if (rt_runtime_us < 0)
9214 rt_runtime = RUNTIME_INF;
9215
9216 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9217}
9218
9f0c1e56
PZ
9219long sched_group_rt_runtime(struct task_group *tg)
9220{
9221 u64 rt_runtime_us;
9222
d0b27fa7 9223 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9224 return -1;
9225
d0b27fa7 9226 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9227 do_div(rt_runtime_us, NSEC_PER_USEC);
9228 return rt_runtime_us;
9229}
d0b27fa7
PZ
9230
9231int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9232{
9233 u64 rt_runtime, rt_period;
9234
9235 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9236 rt_runtime = tg->rt_bandwidth.rt_runtime;
9237
619b0488
R
9238 if (rt_period == 0)
9239 return -EINVAL;
9240
d0b27fa7
PZ
9241 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9242}
9243
9244long sched_group_rt_period(struct task_group *tg)
9245{
9246 u64 rt_period_us;
9247
9248 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9249 do_div(rt_period_us, NSEC_PER_USEC);
9250 return rt_period_us;
9251}
9252
9253static int sched_rt_global_constraints(void)
9254{
4653f803 9255 u64 runtime, period;
d0b27fa7
PZ
9256 int ret = 0;
9257
ec5d4989
HS
9258 if (sysctl_sched_rt_period <= 0)
9259 return -EINVAL;
9260
4653f803
PZ
9261 runtime = global_rt_runtime();
9262 period = global_rt_period();
9263
9264 /*
9265 * Sanity check on the sysctl variables.
9266 */
9267 if (runtime > period && runtime != RUNTIME_INF)
9268 return -EINVAL;
10b612f4 9269
d0b27fa7 9270 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9271 read_lock(&tasklist_lock);
4653f803 9272 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9273 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9274 mutex_unlock(&rt_constraints_mutex);
9275
9276 return ret;
9277}
6d6bc0ad 9278#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9279static int sched_rt_global_constraints(void)
9280{
ac086bc2
PZ
9281 unsigned long flags;
9282 int i;
9283
ec5d4989
HS
9284 if (sysctl_sched_rt_period <= 0)
9285 return -EINVAL;
9286
ac086bc2
PZ
9287 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9288 for_each_possible_cpu(i) {
9289 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9290
9291 spin_lock(&rt_rq->rt_runtime_lock);
9292 rt_rq->rt_runtime = global_rt_runtime();
9293 spin_unlock(&rt_rq->rt_runtime_lock);
9294 }
9295 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9296
d0b27fa7
PZ
9297 return 0;
9298}
6d6bc0ad 9299#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9300
9301int sched_rt_handler(struct ctl_table *table, int write,
9302 struct file *filp, void __user *buffer, size_t *lenp,
9303 loff_t *ppos)
9304{
9305 int ret;
9306 int old_period, old_runtime;
9307 static DEFINE_MUTEX(mutex);
9308
9309 mutex_lock(&mutex);
9310 old_period = sysctl_sched_rt_period;
9311 old_runtime = sysctl_sched_rt_runtime;
9312
9313 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9314
9315 if (!ret && write) {
9316 ret = sched_rt_global_constraints();
9317 if (ret) {
9318 sysctl_sched_rt_period = old_period;
9319 sysctl_sched_rt_runtime = old_runtime;
9320 } else {
9321 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9322 def_rt_bandwidth.rt_period =
9323 ns_to_ktime(global_rt_period());
9324 }
9325 }
9326 mutex_unlock(&mutex);
9327
9328 return ret;
9329}
68318b8e 9330
052f1dc7 9331#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9332
9333/* return corresponding task_group object of a cgroup */
2b01dfe3 9334static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9335{
2b01dfe3
PM
9336 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9337 struct task_group, css);
68318b8e
SV
9338}
9339
9340static struct cgroup_subsys_state *
2b01dfe3 9341cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9342{
ec7dc8ac 9343 struct task_group *tg, *parent;
68318b8e 9344
2b01dfe3 9345 if (!cgrp->parent) {
68318b8e 9346 /* This is early initialization for the top cgroup */
68318b8e
SV
9347 return &init_task_group.css;
9348 }
9349
ec7dc8ac
DG
9350 parent = cgroup_tg(cgrp->parent);
9351 tg = sched_create_group(parent);
68318b8e
SV
9352 if (IS_ERR(tg))
9353 return ERR_PTR(-ENOMEM);
9354
68318b8e
SV
9355 return &tg->css;
9356}
9357
41a2d6cf
IM
9358static void
9359cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9360{
2b01dfe3 9361 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9362
9363 sched_destroy_group(tg);
9364}
9365
41a2d6cf
IM
9366static int
9367cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9368 struct task_struct *tsk)
68318b8e 9369{
b68aa230
PZ
9370#ifdef CONFIG_RT_GROUP_SCHED
9371 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9372 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9373 return -EINVAL;
9374#else
68318b8e
SV
9375 /* We don't support RT-tasks being in separate groups */
9376 if (tsk->sched_class != &fair_sched_class)
9377 return -EINVAL;
b68aa230 9378#endif
68318b8e
SV
9379
9380 return 0;
9381}
9382
9383static void
2b01dfe3 9384cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9385 struct cgroup *old_cont, struct task_struct *tsk)
9386{
9387 sched_move_task(tsk);
9388}
9389
052f1dc7 9390#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9391static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9392 u64 shareval)
68318b8e 9393{
2b01dfe3 9394 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9395}
9396
f4c753b7 9397static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9398{
2b01dfe3 9399 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9400
9401 return (u64) tg->shares;
9402}
6d6bc0ad 9403#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9404
052f1dc7 9405#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9406static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9407 s64 val)
6f505b16 9408{
06ecb27c 9409 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9410}
9411
06ecb27c 9412static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9413{
06ecb27c 9414 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9415}
d0b27fa7
PZ
9416
9417static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9418 u64 rt_period_us)
9419{
9420 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9421}
9422
9423static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9424{
9425 return sched_group_rt_period(cgroup_tg(cgrp));
9426}
6d6bc0ad 9427#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9428
fe5c7cc2 9429static struct cftype cpu_files[] = {
052f1dc7 9430#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9431 {
9432 .name = "shares",
f4c753b7
PM
9433 .read_u64 = cpu_shares_read_u64,
9434 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9435 },
052f1dc7
PZ
9436#endif
9437#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9438 {
9f0c1e56 9439 .name = "rt_runtime_us",
06ecb27c
PM
9440 .read_s64 = cpu_rt_runtime_read,
9441 .write_s64 = cpu_rt_runtime_write,
6f505b16 9442 },
d0b27fa7
PZ
9443 {
9444 .name = "rt_period_us",
f4c753b7
PM
9445 .read_u64 = cpu_rt_period_read_uint,
9446 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9447 },
052f1dc7 9448#endif
68318b8e
SV
9449};
9450
9451static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9452{
fe5c7cc2 9453 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9454}
9455
9456struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9457 .name = "cpu",
9458 .create = cpu_cgroup_create,
9459 .destroy = cpu_cgroup_destroy,
9460 .can_attach = cpu_cgroup_can_attach,
9461 .attach = cpu_cgroup_attach,
9462 .populate = cpu_cgroup_populate,
9463 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9464 .early_init = 1,
9465};
9466
052f1dc7 9467#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9468
9469#ifdef CONFIG_CGROUP_CPUACCT
9470
9471/*
9472 * CPU accounting code for task groups.
9473 *
9474 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9475 * (balbir@in.ibm.com).
9476 */
9477
934352f2 9478/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9479struct cpuacct {
9480 struct cgroup_subsys_state css;
9481 /* cpuusage holds pointer to a u64-type object on every cpu */
9482 u64 *cpuusage;
934352f2 9483 struct cpuacct *parent;
d842de87
SV
9484};
9485
9486struct cgroup_subsys cpuacct_subsys;
9487
9488/* return cpu accounting group corresponding to this container */
32cd756a 9489static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9490{
32cd756a 9491 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9492 struct cpuacct, css);
9493}
9494
9495/* return cpu accounting group to which this task belongs */
9496static inline struct cpuacct *task_ca(struct task_struct *tsk)
9497{
9498 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9499 struct cpuacct, css);
9500}
9501
9502/* create a new cpu accounting group */
9503static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9504 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9505{
9506 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9507
9508 if (!ca)
9509 return ERR_PTR(-ENOMEM);
9510
9511 ca->cpuusage = alloc_percpu(u64);
9512 if (!ca->cpuusage) {
9513 kfree(ca);
9514 return ERR_PTR(-ENOMEM);
9515 }
9516
934352f2
BR
9517 if (cgrp->parent)
9518 ca->parent = cgroup_ca(cgrp->parent);
9519
d842de87
SV
9520 return &ca->css;
9521}
9522
9523/* destroy an existing cpu accounting group */
41a2d6cf 9524static void
32cd756a 9525cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9526{
32cd756a 9527 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9528
9529 free_percpu(ca->cpuusage);
9530 kfree(ca);
9531}
9532
720f5498
KC
9533static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9534{
9535 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9536 u64 data;
9537
9538#ifndef CONFIG_64BIT
9539 /*
9540 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9541 */
9542 spin_lock_irq(&cpu_rq(cpu)->lock);
9543 data = *cpuusage;
9544 spin_unlock_irq(&cpu_rq(cpu)->lock);
9545#else
9546 data = *cpuusage;
9547#endif
9548
9549 return data;
9550}
9551
9552static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9553{
9554 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9555
9556#ifndef CONFIG_64BIT
9557 /*
9558 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9559 */
9560 spin_lock_irq(&cpu_rq(cpu)->lock);
9561 *cpuusage = val;
9562 spin_unlock_irq(&cpu_rq(cpu)->lock);
9563#else
9564 *cpuusage = val;
9565#endif
9566}
9567
d842de87 9568/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9569static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9570{
32cd756a 9571 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9572 u64 totalcpuusage = 0;
9573 int i;
9574
720f5498
KC
9575 for_each_present_cpu(i)
9576 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9577
9578 return totalcpuusage;
9579}
9580
0297b803
DG
9581static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9582 u64 reset)
9583{
9584 struct cpuacct *ca = cgroup_ca(cgrp);
9585 int err = 0;
9586 int i;
9587
9588 if (reset) {
9589 err = -EINVAL;
9590 goto out;
9591 }
9592
720f5498
KC
9593 for_each_present_cpu(i)
9594 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9595
0297b803
DG
9596out:
9597 return err;
9598}
9599
e9515c3c
KC
9600static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9601 struct seq_file *m)
9602{
9603 struct cpuacct *ca = cgroup_ca(cgroup);
9604 u64 percpu;
9605 int i;
9606
9607 for_each_present_cpu(i) {
9608 percpu = cpuacct_cpuusage_read(ca, i);
9609 seq_printf(m, "%llu ", (unsigned long long) percpu);
9610 }
9611 seq_printf(m, "\n");
9612 return 0;
9613}
9614
d842de87
SV
9615static struct cftype files[] = {
9616 {
9617 .name = "usage",
f4c753b7
PM
9618 .read_u64 = cpuusage_read,
9619 .write_u64 = cpuusage_write,
d842de87 9620 },
e9515c3c
KC
9621 {
9622 .name = "usage_percpu",
9623 .read_seq_string = cpuacct_percpu_seq_read,
9624 },
9625
d842de87
SV
9626};
9627
32cd756a 9628static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9629{
32cd756a 9630 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9631}
9632
9633/*
9634 * charge this task's execution time to its accounting group.
9635 *
9636 * called with rq->lock held.
9637 */
9638static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9639{
9640 struct cpuacct *ca;
934352f2 9641 int cpu;
d842de87
SV
9642
9643 if (!cpuacct_subsys.active)
9644 return;
9645
934352f2 9646 cpu = task_cpu(tsk);
d842de87 9647 ca = task_ca(tsk);
d842de87 9648
934352f2
BR
9649 for (; ca; ca = ca->parent) {
9650 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9651 *cpuusage += cputime;
9652 }
9653}
9654
9655struct cgroup_subsys cpuacct_subsys = {
9656 .name = "cpuacct",
9657 .create = cpuacct_create,
9658 .destroy = cpuacct_destroy,
9659 .populate = cpuacct_populate,
9660 .subsys_id = cpuacct_subsys_id,
9661};
9662#endif /* CONFIG_CGROUP_CPUACCT */
This page took 2.332622 seconds and 5 git commands to generate.