sched: make double-lock-balance fair
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b
ED
127#ifdef CONFIG_SMP
128/*
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 */
132static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133{
134 return reciprocal_divide(load, sg->reciprocal_cpu_power);
135}
136
137/*
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
140 */
141static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142{
143 sg->__cpu_power += val;
144 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145}
146#endif
147
e05606d3
IM
148static inline int rt_policy(int policy)
149{
3f33a7ce 150 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
151 return 1;
152 return 0;
153}
154
155static inline int task_has_rt_policy(struct task_struct *p)
156{
157 return rt_policy(p->policy);
158}
159
1da177e4 160/*
6aa645ea 161 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 162 */
6aa645ea
IM
163struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
166};
167
d0b27fa7 168struct rt_bandwidth {
ea736ed5
IM
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
d0b27fa7
PZ
174};
175
176static struct rt_bandwidth def_rt_bandwidth;
177
178static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179
180static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181{
182 struct rt_bandwidth *rt_b =
183 container_of(timer, struct rt_bandwidth, rt_period_timer);
184 ktime_t now;
185 int overrun;
186 int idle = 0;
187
188 for (;;) {
189 now = hrtimer_cb_get_time(timer);
190 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191
192 if (!overrun)
193 break;
194
195 idle = do_sched_rt_period_timer(rt_b, overrun);
196 }
197
198 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
199}
200
201static
202void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203{
204 rt_b->rt_period = ns_to_ktime(period);
205 rt_b->rt_runtime = runtime;
206
ac086bc2
PZ
207 spin_lock_init(&rt_b->rt_runtime_lock);
208
d0b27fa7
PZ
209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer;
ccc7dadf 212 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
d0b27fa7
PZ
213}
214
c8bfff6d
KH
215static inline int rt_bandwidth_enabled(void)
216{
217 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
218}
219
220static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
221{
222 ktime_t now;
223
0b148fa0 224 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
225 return;
226
227 if (hrtimer_active(&rt_b->rt_period_timer))
228 return;
229
230 spin_lock(&rt_b->rt_runtime_lock);
231 for (;;) {
232 if (hrtimer_active(&rt_b->rt_period_timer))
233 break;
234
235 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
236 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
237 hrtimer_start_expires(&rt_b->rt_period_timer,
238 HRTIMER_MODE_ABS);
d0b27fa7
PZ
239 }
240 spin_unlock(&rt_b->rt_runtime_lock);
241}
242
243#ifdef CONFIG_RT_GROUP_SCHED
244static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
245{
246 hrtimer_cancel(&rt_b->rt_period_timer);
247}
248#endif
249
712555ee
HC
250/*
251 * sched_domains_mutex serializes calls to arch_init_sched_domains,
252 * detach_destroy_domains and partition_sched_domains.
253 */
254static DEFINE_MUTEX(sched_domains_mutex);
255
052f1dc7 256#ifdef CONFIG_GROUP_SCHED
29f59db3 257
68318b8e
SV
258#include <linux/cgroup.h>
259
29f59db3
SV
260struct cfs_rq;
261
6f505b16
PZ
262static LIST_HEAD(task_groups);
263
29f59db3 264/* task group related information */
4cf86d77 265struct task_group {
052f1dc7 266#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
267 struct cgroup_subsys_state css;
268#endif
052f1dc7 269
6c415b92
AB
270#ifdef CONFIG_USER_SCHED
271 uid_t uid;
272#endif
273
052f1dc7 274#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
275 /* schedulable entities of this group on each cpu */
276 struct sched_entity **se;
277 /* runqueue "owned" by this group on each cpu */
278 struct cfs_rq **cfs_rq;
279 unsigned long shares;
052f1dc7
PZ
280#endif
281
282#ifdef CONFIG_RT_GROUP_SCHED
283 struct sched_rt_entity **rt_se;
284 struct rt_rq **rt_rq;
285
d0b27fa7 286 struct rt_bandwidth rt_bandwidth;
052f1dc7 287#endif
6b2d7700 288
ae8393e5 289 struct rcu_head rcu;
6f505b16 290 struct list_head list;
f473aa5e
PZ
291
292 struct task_group *parent;
293 struct list_head siblings;
294 struct list_head children;
29f59db3
SV
295};
296
354d60c2 297#ifdef CONFIG_USER_SCHED
eff766a6 298
6c415b92
AB
299/* Helper function to pass uid information to create_sched_user() */
300void set_tg_uid(struct user_struct *user)
301{
302 user->tg->uid = user->uid;
303}
304
eff766a6
PZ
305/*
306 * Root task group.
307 * Every UID task group (including init_task_group aka UID-0) will
308 * be a child to this group.
309 */
310struct task_group root_task_group;
311
052f1dc7 312#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
313/* Default task group's sched entity on each cpu */
314static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
315/* Default task group's cfs_rq on each cpu */
316static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 317#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
318
319#ifdef CONFIG_RT_GROUP_SCHED
320static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
321static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 322#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 323#else /* !CONFIG_USER_SCHED */
eff766a6 324#define root_task_group init_task_group
9a7e0b18 325#endif /* CONFIG_USER_SCHED */
6f505b16 326
8ed36996 327/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
328 * a task group's cpu shares.
329 */
8ed36996 330static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 331
052f1dc7 332#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
333#ifdef CONFIG_USER_SCHED
334# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 335#else /* !CONFIG_USER_SCHED */
052f1dc7 336# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 337#endif /* CONFIG_USER_SCHED */
052f1dc7 338
cb4ad1ff 339/*
2e084786
LJ
340 * A weight of 0 or 1 can cause arithmetics problems.
341 * A weight of a cfs_rq is the sum of weights of which entities
342 * are queued on this cfs_rq, so a weight of a entity should not be
343 * too large, so as the shares value of a task group.
cb4ad1ff
MX
344 * (The default weight is 1024 - so there's no practical
345 * limitation from this.)
346 */
18d95a28 347#define MIN_SHARES 2
2e084786 348#define MAX_SHARES (1UL << 18)
18d95a28 349
052f1dc7
PZ
350static int init_task_group_load = INIT_TASK_GROUP_LOAD;
351#endif
352
29f59db3 353/* Default task group.
3a252015 354 * Every task in system belong to this group at bootup.
29f59db3 355 */
434d53b0 356struct task_group init_task_group;
29f59db3
SV
357
358/* return group to which a task belongs */
4cf86d77 359static inline struct task_group *task_group(struct task_struct *p)
29f59db3 360{
4cf86d77 361 struct task_group *tg;
9b5b7751 362
052f1dc7 363#ifdef CONFIG_USER_SCHED
24e377a8 364 tg = p->user->tg;
052f1dc7 365#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
366 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
367 struct task_group, css);
24e377a8 368#else
41a2d6cf 369 tg = &init_task_group;
24e377a8 370#endif
9b5b7751 371 return tg;
29f59db3
SV
372}
373
374/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 375static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 376{
052f1dc7 377#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
378 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
379 p->se.parent = task_group(p)->se[cpu];
052f1dc7 380#endif
6f505b16 381
052f1dc7 382#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
383 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
384 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 385#endif
29f59db3
SV
386}
387
388#else
389
6f505b16 390static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
391static inline struct task_group *task_group(struct task_struct *p)
392{
393 return NULL;
394}
29f59db3 395
052f1dc7 396#endif /* CONFIG_GROUP_SCHED */
29f59db3 397
6aa645ea
IM
398/* CFS-related fields in a runqueue */
399struct cfs_rq {
400 struct load_weight load;
401 unsigned long nr_running;
402
6aa645ea 403 u64 exec_clock;
e9acbff6 404 u64 min_vruntime;
6aa645ea
IM
405
406 struct rb_root tasks_timeline;
407 struct rb_node *rb_leftmost;
4a55bd5e
PZ
408
409 struct list_head tasks;
410 struct list_head *balance_iterator;
411
412 /*
413 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
414 * It is set to NULL otherwise (i.e when none are currently running).
415 */
4793241b 416 struct sched_entity *curr, *next, *last;
ddc97297 417
5ac5c4d6 418 unsigned int nr_spread_over;
ddc97297 419
62160e3f 420#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
421 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
422
41a2d6cf
IM
423 /*
424 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
425 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
426 * (like users, containers etc.)
427 *
428 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
429 * list is used during load balance.
430 */
41a2d6cf
IM
431 struct list_head leaf_cfs_rq_list;
432 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
433
434#ifdef CONFIG_SMP
c09595f6 435 /*
c8cba857 436 * the part of load.weight contributed by tasks
c09595f6 437 */
c8cba857 438 unsigned long task_weight;
c09595f6 439
c8cba857
PZ
440 /*
441 * h_load = weight * f(tg)
442 *
443 * Where f(tg) is the recursive weight fraction assigned to
444 * this group.
445 */
446 unsigned long h_load;
c09595f6 447
c8cba857
PZ
448 /*
449 * this cpu's part of tg->shares
450 */
451 unsigned long shares;
f1d239f7
PZ
452
453 /*
454 * load.weight at the time we set shares
455 */
456 unsigned long rq_weight;
c09595f6 457#endif
6aa645ea
IM
458#endif
459};
1da177e4 460
6aa645ea
IM
461/* Real-Time classes' related field in a runqueue: */
462struct rt_rq {
463 struct rt_prio_array active;
63489e45 464 unsigned long rt_nr_running;
052f1dc7 465#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
466 struct {
467 int curr; /* highest queued rt task prio */
468 int next; /* next highest */
469 } highest_prio;
6f505b16 470#endif
fa85ae24 471#ifdef CONFIG_SMP
73fe6aae 472 unsigned long rt_nr_migratory;
a22d7fc1 473 int overloaded;
fa85ae24 474#endif
6f505b16 475 int rt_throttled;
fa85ae24 476 u64 rt_time;
ac086bc2 477 u64 rt_runtime;
ea736ed5 478 /* Nests inside the rq lock: */
ac086bc2 479 spinlock_t rt_runtime_lock;
6f505b16 480
052f1dc7 481#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
482 unsigned long rt_nr_boosted;
483
6f505b16
PZ
484 struct rq *rq;
485 struct list_head leaf_rt_rq_list;
486 struct task_group *tg;
487 struct sched_rt_entity *rt_se;
488#endif
6aa645ea
IM
489};
490
57d885fe
GH
491#ifdef CONFIG_SMP
492
493/*
494 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
495 * variables. Each exclusive cpuset essentially defines an island domain by
496 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
497 * exclusive cpuset is created, we also create and attach a new root-domain
498 * object.
499 *
57d885fe
GH
500 */
501struct root_domain {
502 atomic_t refcount;
c6c4927b
RR
503 cpumask_var_t span;
504 cpumask_var_t online;
637f5085 505
0eab9146 506 /*
637f5085
GH
507 * The "RT overload" flag: it gets set if a CPU has more than
508 * one runnable RT task.
509 */
c6c4927b 510 cpumask_var_t rto_mask;
0eab9146 511 atomic_t rto_count;
6e0534f2
GH
512#ifdef CONFIG_SMP
513 struct cpupri cpupri;
514#endif
7a09b1a2
VS
515#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
516 /*
517 * Preferred wake up cpu nominated by sched_mc balance that will be
518 * used when most cpus are idle in the system indicating overall very
519 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
520 */
521 unsigned int sched_mc_preferred_wakeup_cpu;
522#endif
57d885fe
GH
523};
524
dc938520
GH
525/*
526 * By default the system creates a single root-domain with all cpus as
527 * members (mimicking the global state we have today).
528 */
57d885fe
GH
529static struct root_domain def_root_domain;
530
531#endif
532
1da177e4
LT
533/*
534 * This is the main, per-CPU runqueue data structure.
535 *
536 * Locking rule: those places that want to lock multiple runqueues
537 * (such as the load balancing or the thread migration code), lock
538 * acquire operations must be ordered by ascending &runqueue.
539 */
70b97a7f 540struct rq {
d8016491
IM
541 /* runqueue lock: */
542 spinlock_t lock;
1da177e4
LT
543
544 /*
545 * nr_running and cpu_load should be in the same cacheline because
546 * remote CPUs use both these fields when doing load calculation.
547 */
548 unsigned long nr_running;
6aa645ea
IM
549 #define CPU_LOAD_IDX_MAX 5
550 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 551 unsigned char idle_at_tick;
46cb4b7c 552#ifdef CONFIG_NO_HZ
15934a37 553 unsigned long last_tick_seen;
46cb4b7c
SS
554 unsigned char in_nohz_recently;
555#endif
d8016491
IM
556 /* capture load from *all* tasks on this cpu: */
557 struct load_weight load;
6aa645ea
IM
558 unsigned long nr_load_updates;
559 u64 nr_switches;
560
561 struct cfs_rq cfs;
6f505b16 562 struct rt_rq rt;
6f505b16 563
6aa645ea 564#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
565 /* list of leaf cfs_rq on this cpu: */
566 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
567#endif
568#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 569 struct list_head leaf_rt_rq_list;
1da177e4 570#endif
1da177e4
LT
571
572 /*
573 * This is part of a global counter where only the total sum
574 * over all CPUs matters. A task can increase this counter on
575 * one CPU and if it got migrated afterwards it may decrease
576 * it on another CPU. Always updated under the runqueue lock:
577 */
578 unsigned long nr_uninterruptible;
579
36c8b586 580 struct task_struct *curr, *idle;
c9819f45 581 unsigned long next_balance;
1da177e4 582 struct mm_struct *prev_mm;
6aa645ea 583
3e51f33f 584 u64 clock;
6aa645ea 585
1da177e4
LT
586 atomic_t nr_iowait;
587
588#ifdef CONFIG_SMP
0eab9146 589 struct root_domain *rd;
1da177e4
LT
590 struct sched_domain *sd;
591
592 /* For active balancing */
593 int active_balance;
594 int push_cpu;
d8016491
IM
595 /* cpu of this runqueue: */
596 int cpu;
1f11eb6a 597 int online;
1da177e4 598
a8a51d5e 599 unsigned long avg_load_per_task;
1da177e4 600
36c8b586 601 struct task_struct *migration_thread;
1da177e4
LT
602 struct list_head migration_queue;
603#endif
604
8f4d37ec 605#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
606#ifdef CONFIG_SMP
607 int hrtick_csd_pending;
608 struct call_single_data hrtick_csd;
609#endif
8f4d37ec
PZ
610 struct hrtimer hrtick_timer;
611#endif
612
1da177e4
LT
613#ifdef CONFIG_SCHEDSTATS
614 /* latency stats */
615 struct sched_info rq_sched_info;
616
617 /* sys_sched_yield() stats */
480b9434
KC
618 unsigned int yld_exp_empty;
619 unsigned int yld_act_empty;
620 unsigned int yld_both_empty;
621 unsigned int yld_count;
1da177e4
LT
622
623 /* schedule() stats */
480b9434
KC
624 unsigned int sched_switch;
625 unsigned int sched_count;
626 unsigned int sched_goidle;
1da177e4
LT
627
628 /* try_to_wake_up() stats */
480b9434
KC
629 unsigned int ttwu_count;
630 unsigned int ttwu_local;
b8efb561
IM
631
632 /* BKL stats */
480b9434 633 unsigned int bkl_count;
1da177e4
LT
634#endif
635};
636
f34e3b61 637static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 638
15afe09b 639static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 640{
15afe09b 641 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
642}
643
0a2966b4
CL
644static inline int cpu_of(struct rq *rq)
645{
646#ifdef CONFIG_SMP
647 return rq->cpu;
648#else
649 return 0;
650#endif
651}
652
674311d5
NP
653/*
654 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 655 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
656 *
657 * The domain tree of any CPU may only be accessed from within
658 * preempt-disabled sections.
659 */
48f24c4d
IM
660#define for_each_domain(cpu, __sd) \
661 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
662
663#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
664#define this_rq() (&__get_cpu_var(runqueues))
665#define task_rq(p) cpu_rq(task_cpu(p))
666#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
667
3e51f33f
PZ
668static inline void update_rq_clock(struct rq *rq)
669{
670 rq->clock = sched_clock_cpu(cpu_of(rq));
671}
672
bf5c91ba
IM
673/*
674 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
675 */
676#ifdef CONFIG_SCHED_DEBUG
677# define const_debug __read_mostly
678#else
679# define const_debug static const
680#endif
681
017730c1
IM
682/**
683 * runqueue_is_locked
684 *
685 * Returns true if the current cpu runqueue is locked.
686 * This interface allows printk to be called with the runqueue lock
687 * held and know whether or not it is OK to wake up the klogd.
688 */
689int runqueue_is_locked(void)
690{
691 int cpu = get_cpu();
692 struct rq *rq = cpu_rq(cpu);
693 int ret;
694
695 ret = spin_is_locked(&rq->lock);
696 put_cpu();
697 return ret;
698}
699
bf5c91ba
IM
700/*
701 * Debugging: various feature bits
702 */
f00b45c1
PZ
703
704#define SCHED_FEAT(name, enabled) \
705 __SCHED_FEAT_##name ,
706
bf5c91ba 707enum {
f00b45c1 708#include "sched_features.h"
bf5c91ba
IM
709};
710
f00b45c1
PZ
711#undef SCHED_FEAT
712
713#define SCHED_FEAT(name, enabled) \
714 (1UL << __SCHED_FEAT_##name) * enabled |
715
bf5c91ba 716const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
717#include "sched_features.h"
718 0;
719
720#undef SCHED_FEAT
721
722#ifdef CONFIG_SCHED_DEBUG
723#define SCHED_FEAT(name, enabled) \
724 #name ,
725
983ed7a6 726static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
727#include "sched_features.h"
728 NULL
729};
730
731#undef SCHED_FEAT
732
34f3a814 733static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 734{
f00b45c1
PZ
735 int i;
736
737 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
738 if (!(sysctl_sched_features & (1UL << i)))
739 seq_puts(m, "NO_");
740 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 741 }
34f3a814 742 seq_puts(m, "\n");
f00b45c1 743
34f3a814 744 return 0;
f00b45c1
PZ
745}
746
747static ssize_t
748sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
750{
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
755
756 if (cnt > 63)
757 cnt = 63;
758
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
761
762 buf[cnt] = 0;
763
c24b7c52 764 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
765 neg = 1;
766 cmp += 3;
767 }
768
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
771
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
778 }
779 }
780
781 if (!sched_feat_names[i])
782 return -EINVAL;
783
784 filp->f_pos += cnt;
785
786 return cnt;
787}
788
34f3a814
LZ
789static int sched_feat_open(struct inode *inode, struct file *filp)
790{
791 return single_open(filp, sched_feat_show, NULL);
792}
793
f00b45c1 794static struct file_operations sched_feat_fops = {
34f3a814
LZ
795 .open = sched_feat_open,
796 .write = sched_feat_write,
797 .read = seq_read,
798 .llseek = seq_lseek,
799 .release = single_release,
f00b45c1
PZ
800};
801
802static __init int sched_init_debug(void)
803{
f00b45c1
PZ
804 debugfs_create_file("sched_features", 0644, NULL, NULL,
805 &sched_feat_fops);
806
807 return 0;
808}
809late_initcall(sched_init_debug);
810
811#endif
812
813#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 814
b82d9fdd
PZ
815/*
816 * Number of tasks to iterate in a single balance run.
817 * Limited because this is done with IRQs disabled.
818 */
819const_debug unsigned int sysctl_sched_nr_migrate = 32;
820
2398f2c6
PZ
821/*
822 * ratelimit for updating the group shares.
55cd5340 823 * default: 0.25ms
2398f2c6 824 */
55cd5340 825unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 826
ffda12a1
PZ
827/*
828 * Inject some fuzzyness into changing the per-cpu group shares
829 * this avoids remote rq-locks at the expense of fairness.
830 * default: 4
831 */
832unsigned int sysctl_sched_shares_thresh = 4;
833
fa85ae24 834/*
9f0c1e56 835 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
836 * default: 1s
837 */
9f0c1e56 838unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 839
6892b75e
IM
840static __read_mostly int scheduler_running;
841
9f0c1e56
PZ
842/*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846int sysctl_sched_rt_runtime = 950000;
fa85ae24 847
d0b27fa7
PZ
848static inline u64 global_rt_period(void)
849{
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851}
852
853static inline u64 global_rt_runtime(void)
854{
e26873bb 855 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859}
fa85ae24 860
1da177e4 861#ifndef prepare_arch_switch
4866cde0
NP
862# define prepare_arch_switch(next) do { } while (0)
863#endif
864#ifndef finish_arch_switch
865# define finish_arch_switch(prev) do { } while (0)
866#endif
867
051a1d1a
DA
868static inline int task_current(struct rq *rq, struct task_struct *p)
869{
870 return rq->curr == p;
871}
872
4866cde0 873#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 874static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 875{
051a1d1a 876 return task_current(rq, p);
4866cde0
NP
877}
878
70b97a7f 879static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
880{
881}
882
70b97a7f 883static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 884{
da04c035
IM
885#ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888#endif
8a25d5de
IM
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
4866cde0
NP
896 spin_unlock_irq(&rq->lock);
897}
898
899#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 900static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
901{
902#ifdef CONFIG_SMP
903 return p->oncpu;
904#else
051a1d1a 905 return task_current(rq, p);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918#endif
919#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 spin_unlock_irq(&rq->lock);
921#else
922 spin_unlock(&rq->lock);
923#endif
924}
925
70b97a7f 926static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
927{
928#ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936#endif
937#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
1da177e4 939#endif
4866cde0
NP
940}
941#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 942
b29739f9
IM
943/*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
70b97a7f 947static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
948 __acquires(rq->lock)
949{
3a5c359a
AK
950 for (;;) {
951 struct rq *rq = task_rq(p);
952 spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
b29739f9 955 spin_unlock(&rq->lock);
b29739f9 956 }
b29739f9
IM
957}
958
1da177e4
LT
959/*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 961 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
962 * explicitly disabling preemption.
963 */
70b97a7f 964static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
965 __acquires(rq->lock)
966{
70b97a7f 967 struct rq *rq;
1da177e4 968
3a5c359a
AK
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
1da177e4 975 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 976 }
1da177e4
LT
977}
978
ad474cac
ON
979void task_rq_unlock_wait(struct task_struct *p)
980{
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 spin_unlock_wait(&rq->lock);
985}
986
a9957449 987static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
988 __releases(rq->lock)
989{
990 spin_unlock(&rq->lock);
991}
992
70b97a7f 993static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
994 __releases(rq->lock)
995{
996 spin_unlock_irqrestore(&rq->lock, *flags);
997}
998
1da177e4 999/*
cc2a73b5 1000 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1001 */
a9957449 1002static struct rq *this_rq_lock(void)
1da177e4
LT
1003 __acquires(rq->lock)
1004{
70b97a7f 1005 struct rq *rq;
1da177e4
LT
1006
1007 local_irq_disable();
1008 rq = this_rq();
1009 spin_lock(&rq->lock);
1010
1011 return rq;
1012}
1013
8f4d37ec
PZ
1014#ifdef CONFIG_SCHED_HRTICK
1015/*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
8f4d37ec
PZ
1025
1026/*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031static inline int hrtick_enabled(struct rq *rq)
1032{
1033 if (!sched_feat(HRTICK))
1034 return 0;
ba42059f 1035 if (!cpu_active(cpu_of(rq)))
b328ca18 1036 return 0;
8f4d37ec
PZ
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038}
1039
8f4d37ec
PZ
1040static void hrtick_clear(struct rq *rq)
1041{
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044}
1045
8f4d37ec
PZ
1046/*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051{
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
1056 spin_lock(&rq->lock);
3e51f33f 1057 update_rq_clock(rq);
8f4d37ec
PZ
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 spin_unlock(&rq->lock);
1060
1061 return HRTIMER_NORESTART;
1062}
1063
95e904c7 1064#ifdef CONFIG_SMP
31656519
PZ
1065/*
1066 * called from hardirq (IPI) context
1067 */
1068static void __hrtick_start(void *arg)
b328ca18 1069{
31656519 1070 struct rq *rq = arg;
b328ca18 1071
31656519
PZ
1072 spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 spin_unlock(&rq->lock);
b328ca18
PZ
1076}
1077
31656519
PZ
1078/*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1084{
31656519
PZ
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1087
cc584b21 1088 hrtimer_set_expires(timer, time);
31656519
PZ
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1094 rq->hrtick_csd_pending = 1;
1095 }
b328ca18
PZ
1096}
1097
1098static int
1099hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100{
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
31656519 1110 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115}
1116
fa748203 1117static __init void init_hrtick(void)
b328ca18
PZ
1118{
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120}
31656519
PZ
1121#else
1122/*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127static void hrtick_start(struct rq *rq, u64 delay)
1128{
1129 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1130}
b328ca18 1131
006c75f1 1132static inline void init_hrtick(void)
8f4d37ec 1133{
8f4d37ec 1134}
31656519 1135#endif /* CONFIG_SMP */
8f4d37ec 1136
31656519 1137static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1138{
31656519
PZ
1139#ifdef CONFIG_SMP
1140 rq->hrtick_csd_pending = 0;
8f4d37ec 1141
31656519
PZ
1142 rq->hrtick_csd.flags = 0;
1143 rq->hrtick_csd.func = __hrtick_start;
1144 rq->hrtick_csd.info = rq;
1145#endif
8f4d37ec 1146
31656519
PZ
1147 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1148 rq->hrtick_timer.function = hrtick;
ccc7dadf 1149 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
8f4d37ec 1150}
006c75f1 1151#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1152static inline void hrtick_clear(struct rq *rq)
1153{
1154}
1155
8f4d37ec
PZ
1156static inline void init_rq_hrtick(struct rq *rq)
1157{
1158}
1159
b328ca18
PZ
1160static inline void init_hrtick(void)
1161{
1162}
006c75f1 1163#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1164
c24d20db
IM
1165/*
1166 * resched_task - mark a task 'to be rescheduled now'.
1167 *
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1171 */
1172#ifdef CONFIG_SMP
1173
1174#ifndef tsk_is_polling
1175#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176#endif
1177
31656519 1178static void resched_task(struct task_struct *p)
c24d20db
IM
1179{
1180 int cpu;
1181
1182 assert_spin_locked(&task_rq(p)->lock);
1183
31656519 1184 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1185 return;
1186
31656519 1187 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1188
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1197}
1198
1199static void resched_cpu(int cpu)
1200{
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1203
1204 if (!spin_trylock_irqsave(&rq->lock, flags))
1205 return;
1206 resched_task(cpu_curr(cpu));
1207 spin_unlock_irqrestore(&rq->lock, flags);
1208}
06d8308c
TG
1209
1210#ifdef CONFIG_NO_HZ
1211/*
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1220 */
1221void wake_up_idle_cpu(int cpu)
1222{
1223 struct rq *rq = cpu_rq(cpu);
1224
1225 if (cpu == smp_processor_id())
1226 return;
1227
1228 /*
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1234 */
1235 if (rq->curr != rq->idle)
1236 return;
1237
1238 /*
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1242 */
1243 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1244
1245 /* NEED_RESCHED must be visible before we test polling */
1246 smp_mb();
1247 if (!tsk_is_polling(rq->idle))
1248 smp_send_reschedule(cpu);
1249}
6d6bc0ad 1250#endif /* CONFIG_NO_HZ */
06d8308c 1251
6d6bc0ad 1252#else /* !CONFIG_SMP */
31656519 1253static void resched_task(struct task_struct *p)
c24d20db
IM
1254{
1255 assert_spin_locked(&task_rq(p)->lock);
31656519 1256 set_tsk_need_resched(p);
c24d20db 1257}
6d6bc0ad 1258#endif /* CONFIG_SMP */
c24d20db 1259
45bf76df
IM
1260#if BITS_PER_LONG == 32
1261# define WMULT_CONST (~0UL)
1262#else
1263# define WMULT_CONST (1UL << 32)
1264#endif
1265
1266#define WMULT_SHIFT 32
1267
194081eb
IM
1268/*
1269 * Shift right and round:
1270 */
cf2ab469 1271#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1272
a7be37ac
PZ
1273/*
1274 * delta *= weight / lw
1275 */
cb1c4fc9 1276static unsigned long
45bf76df
IM
1277calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1278 struct load_weight *lw)
1279{
1280 u64 tmp;
1281
7a232e03
LJ
1282 if (!lw->inv_weight) {
1283 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1284 lw->inv_weight = 1;
1285 else
1286 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1287 / (lw->weight+1);
1288 }
45bf76df
IM
1289
1290 tmp = (u64)delta_exec * weight;
1291 /*
1292 * Check whether we'd overflow the 64-bit multiplication:
1293 */
194081eb 1294 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1295 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1296 WMULT_SHIFT/2);
1297 else
cf2ab469 1298 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1299
ecf691da 1300 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1301}
1302
1091985b 1303static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1304{
1305 lw->weight += inc;
e89996ae 1306 lw->inv_weight = 0;
45bf76df
IM
1307}
1308
1091985b 1309static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1310{
1311 lw->weight -= dec;
e89996ae 1312 lw->inv_weight = 0;
45bf76df
IM
1313}
1314
2dd73a4f
PW
1315/*
1316 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1317 * of tasks with abnormal "nice" values across CPUs the contribution that
1318 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1319 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1320 * scaled version of the new time slice allocation that they receive on time
1321 * slice expiry etc.
1322 */
1323
dd41f596
IM
1324#define WEIGHT_IDLEPRIO 2
1325#define WMULT_IDLEPRIO (1 << 31)
1326
1327/*
1328 * Nice levels are multiplicative, with a gentle 10% change for every
1329 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1330 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1331 * that remained on nice 0.
1332 *
1333 * The "10% effect" is relative and cumulative: from _any_ nice level,
1334 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1335 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1336 * If a task goes up by ~10% and another task goes down by ~10% then
1337 * the relative distance between them is ~25%.)
dd41f596
IM
1338 */
1339static const int prio_to_weight[40] = {
254753dc
IM
1340 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1341 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1342 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1343 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1344 /* 0 */ 1024, 820, 655, 526, 423,
1345 /* 5 */ 335, 272, 215, 172, 137,
1346 /* 10 */ 110, 87, 70, 56, 45,
1347 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1348};
1349
5714d2de
IM
1350/*
1351 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1352 *
1353 * In cases where the weight does not change often, we can use the
1354 * precalculated inverse to speed up arithmetics by turning divisions
1355 * into multiplications:
1356 */
dd41f596 1357static const u32 prio_to_wmult[40] = {
254753dc
IM
1358 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1359 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1360 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1361 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1362 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1363 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1364 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1365 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1366};
2dd73a4f 1367
dd41f596
IM
1368static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1369
1370/*
1371 * runqueue iterator, to support SMP load-balancing between different
1372 * scheduling classes, without having to expose their internal data
1373 * structures to the load-balancing proper:
1374 */
1375struct rq_iterator {
1376 void *arg;
1377 struct task_struct *(*start)(void *);
1378 struct task_struct *(*next)(void *);
1379};
1380
e1d1484f
PW
1381#ifdef CONFIG_SMP
1382static unsigned long
1383balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1384 unsigned long max_load_move, struct sched_domain *sd,
1385 enum cpu_idle_type idle, int *all_pinned,
1386 int *this_best_prio, struct rq_iterator *iterator);
1387
1388static int
1389iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1390 struct sched_domain *sd, enum cpu_idle_type idle,
1391 struct rq_iterator *iterator);
e1d1484f 1392#endif
dd41f596 1393
d842de87
SV
1394#ifdef CONFIG_CGROUP_CPUACCT
1395static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1396#else
1397static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1398#endif
1399
18d95a28
PZ
1400static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1401{
1402 update_load_add(&rq->load, load);
1403}
1404
1405static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1406{
1407 update_load_sub(&rq->load, load);
1408}
1409
7940ca36 1410#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1411typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1412
1413/*
1414 * Iterate the full tree, calling @down when first entering a node and @up when
1415 * leaving it for the final time.
1416 */
eb755805 1417static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1418{
1419 struct task_group *parent, *child;
eb755805 1420 int ret;
c09595f6
PZ
1421
1422 rcu_read_lock();
1423 parent = &root_task_group;
1424down:
eb755805
PZ
1425 ret = (*down)(parent, data);
1426 if (ret)
1427 goto out_unlock;
c09595f6
PZ
1428 list_for_each_entry_rcu(child, &parent->children, siblings) {
1429 parent = child;
1430 goto down;
1431
1432up:
1433 continue;
1434 }
eb755805
PZ
1435 ret = (*up)(parent, data);
1436 if (ret)
1437 goto out_unlock;
c09595f6
PZ
1438
1439 child = parent;
1440 parent = parent->parent;
1441 if (parent)
1442 goto up;
eb755805 1443out_unlock:
c09595f6 1444 rcu_read_unlock();
eb755805
PZ
1445
1446 return ret;
c09595f6
PZ
1447}
1448
eb755805
PZ
1449static int tg_nop(struct task_group *tg, void *data)
1450{
1451 return 0;
c09595f6 1452}
eb755805
PZ
1453#endif
1454
1455#ifdef CONFIG_SMP
1456static unsigned long source_load(int cpu, int type);
1457static unsigned long target_load(int cpu, int type);
1458static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1459
1460static unsigned long cpu_avg_load_per_task(int cpu)
1461{
1462 struct rq *rq = cpu_rq(cpu);
af6d596f 1463 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1464
4cd42620
SR
1465 if (nr_running)
1466 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1467 else
1468 rq->avg_load_per_task = 0;
eb755805
PZ
1469
1470 return rq->avg_load_per_task;
1471}
1472
1473#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1474
c09595f6
PZ
1475static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1476
1477/*
1478 * Calculate and set the cpu's group shares.
1479 */
1480static void
ffda12a1
PZ
1481update_group_shares_cpu(struct task_group *tg, int cpu,
1482 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1483{
c09595f6
PZ
1484 unsigned long shares;
1485 unsigned long rq_weight;
1486
c8cba857 1487 if (!tg->se[cpu])
c09595f6
PZ
1488 return;
1489
ec4e0e2f 1490 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1491
c09595f6
PZ
1492 /*
1493 * \Sum shares * rq_weight
1494 * shares = -----------------------
1495 * \Sum rq_weight
1496 *
1497 */
ec4e0e2f 1498 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1499 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1500
ffda12a1
PZ
1501 if (abs(shares - tg->se[cpu]->load.weight) >
1502 sysctl_sched_shares_thresh) {
1503 struct rq *rq = cpu_rq(cpu);
1504 unsigned long flags;
c09595f6 1505
ffda12a1 1506 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1507 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1508
ffda12a1
PZ
1509 __set_se_shares(tg->se[cpu], shares);
1510 spin_unlock_irqrestore(&rq->lock, flags);
1511 }
18d95a28 1512}
c09595f6
PZ
1513
1514/*
c8cba857
PZ
1515 * Re-compute the task group their per cpu shares over the given domain.
1516 * This needs to be done in a bottom-up fashion because the rq weight of a
1517 * parent group depends on the shares of its child groups.
c09595f6 1518 */
eb755805 1519static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1520{
ec4e0e2f 1521 unsigned long weight, rq_weight = 0;
c8cba857 1522 unsigned long shares = 0;
eb755805 1523 struct sched_domain *sd = data;
c8cba857 1524 int i;
c09595f6 1525
758b2cdc 1526 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1527 /*
1528 * If there are currently no tasks on the cpu pretend there
1529 * is one of average load so that when a new task gets to
1530 * run here it will not get delayed by group starvation.
1531 */
1532 weight = tg->cfs_rq[i]->load.weight;
1533 if (!weight)
1534 weight = NICE_0_LOAD;
1535
1536 tg->cfs_rq[i]->rq_weight = weight;
1537 rq_weight += weight;
c8cba857 1538 shares += tg->cfs_rq[i]->shares;
c09595f6 1539 }
c09595f6 1540
c8cba857
PZ
1541 if ((!shares && rq_weight) || shares > tg->shares)
1542 shares = tg->shares;
1543
1544 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1545 shares = tg->shares;
c09595f6 1546
758b2cdc 1547 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1548 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1549
1550 return 0;
c09595f6
PZ
1551}
1552
1553/*
c8cba857
PZ
1554 * Compute the cpu's hierarchical load factor for each task group.
1555 * This needs to be done in a top-down fashion because the load of a child
1556 * group is a fraction of its parents load.
c09595f6 1557 */
eb755805 1558static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1559{
c8cba857 1560 unsigned long load;
eb755805 1561 long cpu = (long)data;
c09595f6 1562
c8cba857
PZ
1563 if (!tg->parent) {
1564 load = cpu_rq(cpu)->load.weight;
1565 } else {
1566 load = tg->parent->cfs_rq[cpu]->h_load;
1567 load *= tg->cfs_rq[cpu]->shares;
1568 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1569 }
c09595f6 1570
c8cba857 1571 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1572
eb755805 1573 return 0;
c09595f6
PZ
1574}
1575
c8cba857 1576static void update_shares(struct sched_domain *sd)
4d8d595d 1577{
2398f2c6
PZ
1578 u64 now = cpu_clock(raw_smp_processor_id());
1579 s64 elapsed = now - sd->last_update;
1580
1581 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1582 sd->last_update = now;
eb755805 1583 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1584 }
4d8d595d
PZ
1585}
1586
3e5459b4
PZ
1587static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1588{
1589 spin_unlock(&rq->lock);
1590 update_shares(sd);
1591 spin_lock(&rq->lock);
1592}
1593
eb755805 1594static void update_h_load(long cpu)
c09595f6 1595{
eb755805 1596 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1597}
1598
c09595f6
PZ
1599#else
1600
c8cba857 1601static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1602{
1603}
1604
3e5459b4
PZ
1605static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1606{
1607}
1608
18d95a28
PZ
1609#endif
1610
8f45e2b5
GH
1611#ifdef CONFIG_PREEMPT
1612
70574a99 1613/*
8f45e2b5
GH
1614 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1615 * way at the expense of forcing extra atomic operations in all
1616 * invocations. This assures that the double_lock is acquired using the
1617 * same underlying policy as the spinlock_t on this architecture, which
1618 * reduces latency compared to the unfair variant below. However, it
1619 * also adds more overhead and therefore may reduce throughput.
70574a99 1620 */
8f45e2b5
GH
1621static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1622 __releases(this_rq->lock)
1623 __acquires(busiest->lock)
1624 __acquires(this_rq->lock)
1625{
1626 spin_unlock(&this_rq->lock);
1627 double_rq_lock(this_rq, busiest);
1628
1629 return 1;
1630}
1631
1632#else
1633/*
1634 * Unfair double_lock_balance: Optimizes throughput at the expense of
1635 * latency by eliminating extra atomic operations when the locks are
1636 * already in proper order on entry. This favors lower cpu-ids and will
1637 * grant the double lock to lower cpus over higher ids under contention,
1638 * regardless of entry order into the function.
1639 */
1640static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1641 __releases(this_rq->lock)
1642 __acquires(busiest->lock)
1643 __acquires(this_rq->lock)
1644{
1645 int ret = 0;
1646
70574a99
AD
1647 if (unlikely(!spin_trylock(&busiest->lock))) {
1648 if (busiest < this_rq) {
1649 spin_unlock(&this_rq->lock);
1650 spin_lock(&busiest->lock);
1651 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1652 ret = 1;
1653 } else
1654 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1655 }
1656 return ret;
1657}
1658
8f45e2b5
GH
1659#endif /* CONFIG_PREEMPT */
1660
1661/*
1662 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1663 */
1664static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1665{
1666 if (unlikely(!irqs_disabled())) {
1667 /* printk() doesn't work good under rq->lock */
1668 spin_unlock(&this_rq->lock);
1669 BUG_ON(1);
1670 }
1671
1672 return _double_lock_balance(this_rq, busiest);
1673}
1674
70574a99
AD
1675static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1676 __releases(busiest->lock)
1677{
1678 spin_unlock(&busiest->lock);
1679 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1680}
18d95a28
PZ
1681#endif
1682
30432094 1683#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1684static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1685{
30432094 1686#ifdef CONFIG_SMP
34e83e85
IM
1687 cfs_rq->shares = shares;
1688#endif
1689}
30432094 1690#endif
e7693a36 1691
dd41f596 1692#include "sched_stats.h"
dd41f596 1693#include "sched_idletask.c"
5522d5d5
IM
1694#include "sched_fair.c"
1695#include "sched_rt.c"
dd41f596
IM
1696#ifdef CONFIG_SCHED_DEBUG
1697# include "sched_debug.c"
1698#endif
1699
1700#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1701#define for_each_class(class) \
1702 for (class = sched_class_highest; class; class = class->next)
dd41f596 1703
c09595f6 1704static void inc_nr_running(struct rq *rq)
9c217245
IM
1705{
1706 rq->nr_running++;
9c217245
IM
1707}
1708
c09595f6 1709static void dec_nr_running(struct rq *rq)
9c217245
IM
1710{
1711 rq->nr_running--;
9c217245
IM
1712}
1713
45bf76df
IM
1714static void set_load_weight(struct task_struct *p)
1715{
1716 if (task_has_rt_policy(p)) {
dd41f596
IM
1717 p->se.load.weight = prio_to_weight[0] * 2;
1718 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1719 return;
1720 }
45bf76df 1721
dd41f596
IM
1722 /*
1723 * SCHED_IDLE tasks get minimal weight:
1724 */
1725 if (p->policy == SCHED_IDLE) {
1726 p->se.load.weight = WEIGHT_IDLEPRIO;
1727 p->se.load.inv_weight = WMULT_IDLEPRIO;
1728 return;
1729 }
71f8bd46 1730
dd41f596
IM
1731 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1732 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1733}
1734
2087a1ad
GH
1735static void update_avg(u64 *avg, u64 sample)
1736{
1737 s64 diff = sample - *avg;
1738 *avg += diff >> 3;
1739}
1740
8159f87e 1741static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1742{
dd41f596 1743 sched_info_queued(p);
fd390f6a 1744 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1745 p->se.on_rq = 1;
71f8bd46
IM
1746}
1747
69be72c1 1748static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1749{
2087a1ad
GH
1750 if (sleep && p->se.last_wakeup) {
1751 update_avg(&p->se.avg_overlap,
1752 p->se.sum_exec_runtime - p->se.last_wakeup);
1753 p->se.last_wakeup = 0;
1754 }
1755
46ac22ba 1756 sched_info_dequeued(p);
f02231e5 1757 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1758 p->se.on_rq = 0;
71f8bd46
IM
1759}
1760
14531189 1761/*
dd41f596 1762 * __normal_prio - return the priority that is based on the static prio
14531189 1763 */
14531189
IM
1764static inline int __normal_prio(struct task_struct *p)
1765{
dd41f596 1766 return p->static_prio;
14531189
IM
1767}
1768
b29739f9
IM
1769/*
1770 * Calculate the expected normal priority: i.e. priority
1771 * without taking RT-inheritance into account. Might be
1772 * boosted by interactivity modifiers. Changes upon fork,
1773 * setprio syscalls, and whenever the interactivity
1774 * estimator recalculates.
1775 */
36c8b586 1776static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1777{
1778 int prio;
1779
e05606d3 1780 if (task_has_rt_policy(p))
b29739f9
IM
1781 prio = MAX_RT_PRIO-1 - p->rt_priority;
1782 else
1783 prio = __normal_prio(p);
1784 return prio;
1785}
1786
1787/*
1788 * Calculate the current priority, i.e. the priority
1789 * taken into account by the scheduler. This value might
1790 * be boosted by RT tasks, or might be boosted by
1791 * interactivity modifiers. Will be RT if the task got
1792 * RT-boosted. If not then it returns p->normal_prio.
1793 */
36c8b586 1794static int effective_prio(struct task_struct *p)
b29739f9
IM
1795{
1796 p->normal_prio = normal_prio(p);
1797 /*
1798 * If we are RT tasks or we were boosted to RT priority,
1799 * keep the priority unchanged. Otherwise, update priority
1800 * to the normal priority:
1801 */
1802 if (!rt_prio(p->prio))
1803 return p->normal_prio;
1804 return p->prio;
1805}
1806
1da177e4 1807/*
dd41f596 1808 * activate_task - move a task to the runqueue.
1da177e4 1809 */
dd41f596 1810static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1811{
d9514f6c 1812 if (task_contributes_to_load(p))
dd41f596 1813 rq->nr_uninterruptible--;
1da177e4 1814
8159f87e 1815 enqueue_task(rq, p, wakeup);
c09595f6 1816 inc_nr_running(rq);
1da177e4
LT
1817}
1818
1da177e4
LT
1819/*
1820 * deactivate_task - remove a task from the runqueue.
1821 */
2e1cb74a 1822static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1823{
d9514f6c 1824 if (task_contributes_to_load(p))
dd41f596
IM
1825 rq->nr_uninterruptible++;
1826
69be72c1 1827 dequeue_task(rq, p, sleep);
c09595f6 1828 dec_nr_running(rq);
1da177e4
LT
1829}
1830
1da177e4
LT
1831/**
1832 * task_curr - is this task currently executing on a CPU?
1833 * @p: the task in question.
1834 */
36c8b586 1835inline int task_curr(const struct task_struct *p)
1da177e4
LT
1836{
1837 return cpu_curr(task_cpu(p)) == p;
1838}
1839
dd41f596
IM
1840static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1841{
6f505b16 1842 set_task_rq(p, cpu);
dd41f596 1843#ifdef CONFIG_SMP
ce96b5ac
DA
1844 /*
1845 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1846 * successfuly executed on another CPU. We must ensure that updates of
1847 * per-task data have been completed by this moment.
1848 */
1849 smp_wmb();
dd41f596 1850 task_thread_info(p)->cpu = cpu;
dd41f596 1851#endif
2dd73a4f
PW
1852}
1853
cb469845
SR
1854static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1855 const struct sched_class *prev_class,
1856 int oldprio, int running)
1857{
1858 if (prev_class != p->sched_class) {
1859 if (prev_class->switched_from)
1860 prev_class->switched_from(rq, p, running);
1861 p->sched_class->switched_to(rq, p, running);
1862 } else
1863 p->sched_class->prio_changed(rq, p, oldprio, running);
1864}
1865
1da177e4 1866#ifdef CONFIG_SMP
c65cc870 1867
e958b360
TG
1868/* Used instead of source_load when we know the type == 0 */
1869static unsigned long weighted_cpuload(const int cpu)
1870{
1871 return cpu_rq(cpu)->load.weight;
1872}
1873
cc367732
IM
1874/*
1875 * Is this task likely cache-hot:
1876 */
e7693a36 1877static int
cc367732
IM
1878task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1879{
1880 s64 delta;
1881
f540a608
IM
1882 /*
1883 * Buddy candidates are cache hot:
1884 */
4793241b
PZ
1885 if (sched_feat(CACHE_HOT_BUDDY) &&
1886 (&p->se == cfs_rq_of(&p->se)->next ||
1887 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1888 return 1;
1889
cc367732
IM
1890 if (p->sched_class != &fair_sched_class)
1891 return 0;
1892
6bc1665b
IM
1893 if (sysctl_sched_migration_cost == -1)
1894 return 1;
1895 if (sysctl_sched_migration_cost == 0)
1896 return 0;
1897
cc367732
IM
1898 delta = now - p->se.exec_start;
1899
1900 return delta < (s64)sysctl_sched_migration_cost;
1901}
1902
1903
dd41f596 1904void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1905{
dd41f596
IM
1906 int old_cpu = task_cpu(p);
1907 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1908 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1909 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1910 u64 clock_offset;
dd41f596
IM
1911
1912 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1913
1914#ifdef CONFIG_SCHEDSTATS
1915 if (p->se.wait_start)
1916 p->se.wait_start -= clock_offset;
dd41f596
IM
1917 if (p->se.sleep_start)
1918 p->se.sleep_start -= clock_offset;
1919 if (p->se.block_start)
1920 p->se.block_start -= clock_offset;
cc367732
IM
1921 if (old_cpu != new_cpu) {
1922 schedstat_inc(p, se.nr_migrations);
1923 if (task_hot(p, old_rq->clock, NULL))
1924 schedstat_inc(p, se.nr_forced2_migrations);
1925 }
6cfb0d5d 1926#endif
2830cf8c
SV
1927 p->se.vruntime -= old_cfsrq->min_vruntime -
1928 new_cfsrq->min_vruntime;
dd41f596
IM
1929
1930 __set_task_cpu(p, new_cpu);
c65cc870
IM
1931}
1932
70b97a7f 1933struct migration_req {
1da177e4 1934 struct list_head list;
1da177e4 1935
36c8b586 1936 struct task_struct *task;
1da177e4
LT
1937 int dest_cpu;
1938
1da177e4 1939 struct completion done;
70b97a7f 1940};
1da177e4
LT
1941
1942/*
1943 * The task's runqueue lock must be held.
1944 * Returns true if you have to wait for migration thread.
1945 */
36c8b586 1946static int
70b97a7f 1947migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1948{
70b97a7f 1949 struct rq *rq = task_rq(p);
1da177e4
LT
1950
1951 /*
1952 * If the task is not on a runqueue (and not running), then
1953 * it is sufficient to simply update the task's cpu field.
1954 */
dd41f596 1955 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1956 set_task_cpu(p, dest_cpu);
1957 return 0;
1958 }
1959
1960 init_completion(&req->done);
1da177e4
LT
1961 req->task = p;
1962 req->dest_cpu = dest_cpu;
1963 list_add(&req->list, &rq->migration_queue);
48f24c4d 1964
1da177e4
LT
1965 return 1;
1966}
1967
1968/*
1969 * wait_task_inactive - wait for a thread to unschedule.
1970 *
85ba2d86
RM
1971 * If @match_state is nonzero, it's the @p->state value just checked and
1972 * not expected to change. If it changes, i.e. @p might have woken up,
1973 * then return zero. When we succeed in waiting for @p to be off its CPU,
1974 * we return a positive number (its total switch count). If a second call
1975 * a short while later returns the same number, the caller can be sure that
1976 * @p has remained unscheduled the whole time.
1977 *
1da177e4
LT
1978 * The caller must ensure that the task *will* unschedule sometime soon,
1979 * else this function might spin for a *long* time. This function can't
1980 * be called with interrupts off, or it may introduce deadlock with
1981 * smp_call_function() if an IPI is sent by the same process we are
1982 * waiting to become inactive.
1983 */
85ba2d86 1984unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1985{
1986 unsigned long flags;
dd41f596 1987 int running, on_rq;
85ba2d86 1988 unsigned long ncsw;
70b97a7f 1989 struct rq *rq;
1da177e4 1990
3a5c359a
AK
1991 for (;;) {
1992 /*
1993 * We do the initial early heuristics without holding
1994 * any task-queue locks at all. We'll only try to get
1995 * the runqueue lock when things look like they will
1996 * work out!
1997 */
1998 rq = task_rq(p);
fa490cfd 1999
3a5c359a
AK
2000 /*
2001 * If the task is actively running on another CPU
2002 * still, just relax and busy-wait without holding
2003 * any locks.
2004 *
2005 * NOTE! Since we don't hold any locks, it's not
2006 * even sure that "rq" stays as the right runqueue!
2007 * But we don't care, since "task_running()" will
2008 * return false if the runqueue has changed and p
2009 * is actually now running somewhere else!
2010 */
85ba2d86
RM
2011 while (task_running(rq, p)) {
2012 if (match_state && unlikely(p->state != match_state))
2013 return 0;
3a5c359a 2014 cpu_relax();
85ba2d86 2015 }
fa490cfd 2016
3a5c359a
AK
2017 /*
2018 * Ok, time to look more closely! We need the rq
2019 * lock now, to be *sure*. If we're wrong, we'll
2020 * just go back and repeat.
2021 */
2022 rq = task_rq_lock(p, &flags);
0a16b607 2023 trace_sched_wait_task(rq, p);
3a5c359a
AK
2024 running = task_running(rq, p);
2025 on_rq = p->se.on_rq;
85ba2d86 2026 ncsw = 0;
f31e11d8 2027 if (!match_state || p->state == match_state)
93dcf55f 2028 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2029 task_rq_unlock(rq, &flags);
fa490cfd 2030
85ba2d86
RM
2031 /*
2032 * If it changed from the expected state, bail out now.
2033 */
2034 if (unlikely(!ncsw))
2035 break;
2036
3a5c359a
AK
2037 /*
2038 * Was it really running after all now that we
2039 * checked with the proper locks actually held?
2040 *
2041 * Oops. Go back and try again..
2042 */
2043 if (unlikely(running)) {
2044 cpu_relax();
2045 continue;
2046 }
fa490cfd 2047
3a5c359a
AK
2048 /*
2049 * It's not enough that it's not actively running,
2050 * it must be off the runqueue _entirely_, and not
2051 * preempted!
2052 *
2053 * So if it wa still runnable (but just not actively
2054 * running right now), it's preempted, and we should
2055 * yield - it could be a while.
2056 */
2057 if (unlikely(on_rq)) {
2058 schedule_timeout_uninterruptible(1);
2059 continue;
2060 }
fa490cfd 2061
3a5c359a
AK
2062 /*
2063 * Ahh, all good. It wasn't running, and it wasn't
2064 * runnable, which means that it will never become
2065 * running in the future either. We're all done!
2066 */
2067 break;
2068 }
85ba2d86
RM
2069
2070 return ncsw;
1da177e4
LT
2071}
2072
2073/***
2074 * kick_process - kick a running thread to enter/exit the kernel
2075 * @p: the to-be-kicked thread
2076 *
2077 * Cause a process which is running on another CPU to enter
2078 * kernel-mode, without any delay. (to get signals handled.)
2079 *
2080 * NOTE: this function doesnt have to take the runqueue lock,
2081 * because all it wants to ensure is that the remote task enters
2082 * the kernel. If the IPI races and the task has been migrated
2083 * to another CPU then no harm is done and the purpose has been
2084 * achieved as well.
2085 */
36c8b586 2086void kick_process(struct task_struct *p)
1da177e4
LT
2087{
2088 int cpu;
2089
2090 preempt_disable();
2091 cpu = task_cpu(p);
2092 if ((cpu != smp_processor_id()) && task_curr(p))
2093 smp_send_reschedule(cpu);
2094 preempt_enable();
2095}
2096
2097/*
2dd73a4f
PW
2098 * Return a low guess at the load of a migration-source cpu weighted
2099 * according to the scheduling class and "nice" value.
1da177e4
LT
2100 *
2101 * We want to under-estimate the load of migration sources, to
2102 * balance conservatively.
2103 */
a9957449 2104static unsigned long source_load(int cpu, int type)
1da177e4 2105{
70b97a7f 2106 struct rq *rq = cpu_rq(cpu);
dd41f596 2107 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2108
93b75217 2109 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2110 return total;
b910472d 2111
dd41f596 2112 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2113}
2114
2115/*
2dd73a4f
PW
2116 * Return a high guess at the load of a migration-target cpu weighted
2117 * according to the scheduling class and "nice" value.
1da177e4 2118 */
a9957449 2119static unsigned long target_load(int cpu, int type)
1da177e4 2120{
70b97a7f 2121 struct rq *rq = cpu_rq(cpu);
dd41f596 2122 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2123
93b75217 2124 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2125 return total;
3b0bd9bc 2126
dd41f596 2127 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2128}
2129
147cbb4b
NP
2130/*
2131 * find_idlest_group finds and returns the least busy CPU group within the
2132 * domain.
2133 */
2134static struct sched_group *
2135find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2136{
2137 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2138 unsigned long min_load = ULONG_MAX, this_load = 0;
2139 int load_idx = sd->forkexec_idx;
2140 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2141
2142 do {
2143 unsigned long load, avg_load;
2144 int local_group;
2145 int i;
2146
da5a5522 2147 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2148 if (!cpumask_intersects(sched_group_cpus(group),
2149 &p->cpus_allowed))
3a5c359a 2150 continue;
da5a5522 2151
758b2cdc
RR
2152 local_group = cpumask_test_cpu(this_cpu,
2153 sched_group_cpus(group));
147cbb4b
NP
2154
2155 /* Tally up the load of all CPUs in the group */
2156 avg_load = 0;
2157
758b2cdc 2158 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2159 /* Bias balancing toward cpus of our domain */
2160 if (local_group)
2161 load = source_load(i, load_idx);
2162 else
2163 load = target_load(i, load_idx);
2164
2165 avg_load += load;
2166 }
2167
2168 /* Adjust by relative CPU power of the group */
5517d86b
ED
2169 avg_load = sg_div_cpu_power(group,
2170 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2171
2172 if (local_group) {
2173 this_load = avg_load;
2174 this = group;
2175 } else if (avg_load < min_load) {
2176 min_load = avg_load;
2177 idlest = group;
2178 }
3a5c359a 2179 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2180
2181 if (!idlest || 100*this_load < imbalance*min_load)
2182 return NULL;
2183 return idlest;
2184}
2185
2186/*
0feaece9 2187 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2188 */
95cdf3b7 2189static int
758b2cdc 2190find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2191{
2192 unsigned long load, min_load = ULONG_MAX;
2193 int idlest = -1;
2194 int i;
2195
da5a5522 2196 /* Traverse only the allowed CPUs */
758b2cdc 2197 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2198 load = weighted_cpuload(i);
147cbb4b
NP
2199
2200 if (load < min_load || (load == min_load && i == this_cpu)) {
2201 min_load = load;
2202 idlest = i;
2203 }
2204 }
2205
2206 return idlest;
2207}
2208
476d139c
NP
2209/*
2210 * sched_balance_self: balance the current task (running on cpu) in domains
2211 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2212 * SD_BALANCE_EXEC.
2213 *
2214 * Balance, ie. select the least loaded group.
2215 *
2216 * Returns the target CPU number, or the same CPU if no balancing is needed.
2217 *
2218 * preempt must be disabled.
2219 */
2220static int sched_balance_self(int cpu, int flag)
2221{
2222 struct task_struct *t = current;
2223 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2224
c96d145e 2225 for_each_domain(cpu, tmp) {
9761eea8
IM
2226 /*
2227 * If power savings logic is enabled for a domain, stop there.
2228 */
5c45bf27
SS
2229 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2230 break;
476d139c
NP
2231 if (tmp->flags & flag)
2232 sd = tmp;
c96d145e 2233 }
476d139c 2234
039a1c41
PZ
2235 if (sd)
2236 update_shares(sd);
2237
476d139c 2238 while (sd) {
476d139c 2239 struct sched_group *group;
1a848870
SS
2240 int new_cpu, weight;
2241
2242 if (!(sd->flags & flag)) {
2243 sd = sd->child;
2244 continue;
2245 }
476d139c 2246
476d139c 2247 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2248 if (!group) {
2249 sd = sd->child;
2250 continue;
2251 }
476d139c 2252
758b2cdc 2253 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2254 if (new_cpu == -1 || new_cpu == cpu) {
2255 /* Now try balancing at a lower domain level of cpu */
2256 sd = sd->child;
2257 continue;
2258 }
476d139c 2259
1a848870 2260 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2261 cpu = new_cpu;
758b2cdc 2262 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2263 sd = NULL;
476d139c 2264 for_each_domain(cpu, tmp) {
758b2cdc 2265 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2266 break;
2267 if (tmp->flags & flag)
2268 sd = tmp;
2269 }
2270 /* while loop will break here if sd == NULL */
2271 }
2272
2273 return cpu;
2274}
2275
2276#endif /* CONFIG_SMP */
1da177e4 2277
1da177e4
LT
2278/***
2279 * try_to_wake_up - wake up a thread
2280 * @p: the to-be-woken-up thread
2281 * @state: the mask of task states that can be woken
2282 * @sync: do a synchronous wakeup?
2283 *
2284 * Put it on the run-queue if it's not already there. The "current"
2285 * thread is always on the run-queue (except when the actual
2286 * re-schedule is in progress), and as such you're allowed to do
2287 * the simpler "current->state = TASK_RUNNING" to mark yourself
2288 * runnable without the overhead of this.
2289 *
2290 * returns failure only if the task is already active.
2291 */
36c8b586 2292static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2293{
cc367732 2294 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2295 unsigned long flags;
2296 long old_state;
70b97a7f 2297 struct rq *rq;
1da177e4 2298
b85d0667
IM
2299 if (!sched_feat(SYNC_WAKEUPS))
2300 sync = 0;
2301
2398f2c6
PZ
2302#ifdef CONFIG_SMP
2303 if (sched_feat(LB_WAKEUP_UPDATE)) {
2304 struct sched_domain *sd;
2305
2306 this_cpu = raw_smp_processor_id();
2307 cpu = task_cpu(p);
2308
2309 for_each_domain(this_cpu, sd) {
758b2cdc 2310 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2311 update_shares(sd);
2312 break;
2313 }
2314 }
2315 }
2316#endif
2317
04e2f174 2318 smp_wmb();
1da177e4
LT
2319 rq = task_rq_lock(p, &flags);
2320 old_state = p->state;
2321 if (!(old_state & state))
2322 goto out;
2323
dd41f596 2324 if (p->se.on_rq)
1da177e4
LT
2325 goto out_running;
2326
2327 cpu = task_cpu(p);
cc367732 2328 orig_cpu = cpu;
1da177e4
LT
2329 this_cpu = smp_processor_id();
2330
2331#ifdef CONFIG_SMP
2332 if (unlikely(task_running(rq, p)))
2333 goto out_activate;
2334
5d2f5a61
DA
2335 cpu = p->sched_class->select_task_rq(p, sync);
2336 if (cpu != orig_cpu) {
2337 set_task_cpu(p, cpu);
1da177e4
LT
2338 task_rq_unlock(rq, &flags);
2339 /* might preempt at this point */
2340 rq = task_rq_lock(p, &flags);
2341 old_state = p->state;
2342 if (!(old_state & state))
2343 goto out;
dd41f596 2344 if (p->se.on_rq)
1da177e4
LT
2345 goto out_running;
2346
2347 this_cpu = smp_processor_id();
2348 cpu = task_cpu(p);
2349 }
2350
e7693a36
GH
2351#ifdef CONFIG_SCHEDSTATS
2352 schedstat_inc(rq, ttwu_count);
2353 if (cpu == this_cpu)
2354 schedstat_inc(rq, ttwu_local);
2355 else {
2356 struct sched_domain *sd;
2357 for_each_domain(this_cpu, sd) {
758b2cdc 2358 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2359 schedstat_inc(sd, ttwu_wake_remote);
2360 break;
2361 }
2362 }
2363 }
6d6bc0ad 2364#endif /* CONFIG_SCHEDSTATS */
e7693a36 2365
1da177e4
LT
2366out_activate:
2367#endif /* CONFIG_SMP */
cc367732
IM
2368 schedstat_inc(p, se.nr_wakeups);
2369 if (sync)
2370 schedstat_inc(p, se.nr_wakeups_sync);
2371 if (orig_cpu != cpu)
2372 schedstat_inc(p, se.nr_wakeups_migrate);
2373 if (cpu == this_cpu)
2374 schedstat_inc(p, se.nr_wakeups_local);
2375 else
2376 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2377 update_rq_clock(rq);
dd41f596 2378 activate_task(rq, p, 1);
1da177e4
LT
2379 success = 1;
2380
2381out_running:
0a16b607 2382 trace_sched_wakeup(rq, p);
15afe09b 2383 check_preempt_curr(rq, p, sync);
4ae7d5ce 2384
1da177e4 2385 p->state = TASK_RUNNING;
9a897c5a
SR
2386#ifdef CONFIG_SMP
2387 if (p->sched_class->task_wake_up)
2388 p->sched_class->task_wake_up(rq, p);
2389#endif
1da177e4 2390out:
2087a1ad
GH
2391 current->se.last_wakeup = current->se.sum_exec_runtime;
2392
1da177e4
LT
2393 task_rq_unlock(rq, &flags);
2394
2395 return success;
2396}
2397
7ad5b3a5 2398int wake_up_process(struct task_struct *p)
1da177e4 2399{
d9514f6c 2400 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2401}
1da177e4
LT
2402EXPORT_SYMBOL(wake_up_process);
2403
7ad5b3a5 2404int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2405{
2406 return try_to_wake_up(p, state, 0);
2407}
2408
1da177e4
LT
2409/*
2410 * Perform scheduler related setup for a newly forked process p.
2411 * p is forked by current.
dd41f596
IM
2412 *
2413 * __sched_fork() is basic setup used by init_idle() too:
2414 */
2415static void __sched_fork(struct task_struct *p)
2416{
dd41f596
IM
2417 p->se.exec_start = 0;
2418 p->se.sum_exec_runtime = 0;
f6cf891c 2419 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2420 p->se.last_wakeup = 0;
2421 p->se.avg_overlap = 0;
6cfb0d5d
IM
2422
2423#ifdef CONFIG_SCHEDSTATS
2424 p->se.wait_start = 0;
dd41f596
IM
2425 p->se.sum_sleep_runtime = 0;
2426 p->se.sleep_start = 0;
dd41f596
IM
2427 p->se.block_start = 0;
2428 p->se.sleep_max = 0;
2429 p->se.block_max = 0;
2430 p->se.exec_max = 0;
eba1ed4b 2431 p->se.slice_max = 0;
dd41f596 2432 p->se.wait_max = 0;
6cfb0d5d 2433#endif
476d139c 2434
fa717060 2435 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2436 p->se.on_rq = 0;
4a55bd5e 2437 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2438
e107be36
AK
2439#ifdef CONFIG_PREEMPT_NOTIFIERS
2440 INIT_HLIST_HEAD(&p->preempt_notifiers);
2441#endif
2442
1da177e4
LT
2443 /*
2444 * We mark the process as running here, but have not actually
2445 * inserted it onto the runqueue yet. This guarantees that
2446 * nobody will actually run it, and a signal or other external
2447 * event cannot wake it up and insert it on the runqueue either.
2448 */
2449 p->state = TASK_RUNNING;
dd41f596
IM
2450}
2451
2452/*
2453 * fork()/clone()-time setup:
2454 */
2455void sched_fork(struct task_struct *p, int clone_flags)
2456{
2457 int cpu = get_cpu();
2458
2459 __sched_fork(p);
2460
2461#ifdef CONFIG_SMP
2462 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2463#endif
02e4bac2 2464 set_task_cpu(p, cpu);
b29739f9
IM
2465
2466 /*
2467 * Make sure we do not leak PI boosting priority to the child:
2468 */
2469 p->prio = current->normal_prio;
2ddbf952
HS
2470 if (!rt_prio(p->prio))
2471 p->sched_class = &fair_sched_class;
b29739f9 2472
52f17b6c 2473#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2474 if (likely(sched_info_on()))
52f17b6c 2475 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2476#endif
d6077cb8 2477#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2478 p->oncpu = 0;
2479#endif
1da177e4 2480#ifdef CONFIG_PREEMPT
4866cde0 2481 /* Want to start with kernel preemption disabled. */
a1261f54 2482 task_thread_info(p)->preempt_count = 1;
1da177e4 2483#endif
476d139c 2484 put_cpu();
1da177e4
LT
2485}
2486
2487/*
2488 * wake_up_new_task - wake up a newly created task for the first time.
2489 *
2490 * This function will do some initial scheduler statistics housekeeping
2491 * that must be done for every newly created context, then puts the task
2492 * on the runqueue and wakes it.
2493 */
7ad5b3a5 2494void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2495{
2496 unsigned long flags;
dd41f596 2497 struct rq *rq;
1da177e4
LT
2498
2499 rq = task_rq_lock(p, &flags);
147cbb4b 2500 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2501 update_rq_clock(rq);
1da177e4
LT
2502
2503 p->prio = effective_prio(p);
2504
b9dca1e0 2505 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2506 activate_task(rq, p, 0);
1da177e4 2507 } else {
1da177e4 2508 /*
dd41f596
IM
2509 * Let the scheduling class do new task startup
2510 * management (if any):
1da177e4 2511 */
ee0827d8 2512 p->sched_class->task_new(rq, p);
c09595f6 2513 inc_nr_running(rq);
1da177e4 2514 }
0a16b607 2515 trace_sched_wakeup_new(rq, p);
15afe09b 2516 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2517#ifdef CONFIG_SMP
2518 if (p->sched_class->task_wake_up)
2519 p->sched_class->task_wake_up(rq, p);
2520#endif
dd41f596 2521 task_rq_unlock(rq, &flags);
1da177e4
LT
2522}
2523
e107be36
AK
2524#ifdef CONFIG_PREEMPT_NOTIFIERS
2525
2526/**
421cee29
RD
2527 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2528 * @notifier: notifier struct to register
e107be36
AK
2529 */
2530void preempt_notifier_register(struct preempt_notifier *notifier)
2531{
2532 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2533}
2534EXPORT_SYMBOL_GPL(preempt_notifier_register);
2535
2536/**
2537 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2538 * @notifier: notifier struct to unregister
e107be36
AK
2539 *
2540 * This is safe to call from within a preemption notifier.
2541 */
2542void preempt_notifier_unregister(struct preempt_notifier *notifier)
2543{
2544 hlist_del(&notifier->link);
2545}
2546EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2547
2548static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2549{
2550 struct preempt_notifier *notifier;
2551 struct hlist_node *node;
2552
2553 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2554 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2555}
2556
2557static void
2558fire_sched_out_preempt_notifiers(struct task_struct *curr,
2559 struct task_struct *next)
2560{
2561 struct preempt_notifier *notifier;
2562 struct hlist_node *node;
2563
2564 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2565 notifier->ops->sched_out(notifier, next);
2566}
2567
6d6bc0ad 2568#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2569
2570static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2571{
2572}
2573
2574static void
2575fire_sched_out_preempt_notifiers(struct task_struct *curr,
2576 struct task_struct *next)
2577{
2578}
2579
6d6bc0ad 2580#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2581
4866cde0
NP
2582/**
2583 * prepare_task_switch - prepare to switch tasks
2584 * @rq: the runqueue preparing to switch
421cee29 2585 * @prev: the current task that is being switched out
4866cde0
NP
2586 * @next: the task we are going to switch to.
2587 *
2588 * This is called with the rq lock held and interrupts off. It must
2589 * be paired with a subsequent finish_task_switch after the context
2590 * switch.
2591 *
2592 * prepare_task_switch sets up locking and calls architecture specific
2593 * hooks.
2594 */
e107be36
AK
2595static inline void
2596prepare_task_switch(struct rq *rq, struct task_struct *prev,
2597 struct task_struct *next)
4866cde0 2598{
e107be36 2599 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2600 prepare_lock_switch(rq, next);
2601 prepare_arch_switch(next);
2602}
2603
1da177e4
LT
2604/**
2605 * finish_task_switch - clean up after a task-switch
344babaa 2606 * @rq: runqueue associated with task-switch
1da177e4
LT
2607 * @prev: the thread we just switched away from.
2608 *
4866cde0
NP
2609 * finish_task_switch must be called after the context switch, paired
2610 * with a prepare_task_switch call before the context switch.
2611 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2612 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2613 *
2614 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2615 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2616 * with the lock held can cause deadlocks; see schedule() for
2617 * details.)
2618 */
a9957449 2619static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2620 __releases(rq->lock)
2621{
1da177e4 2622 struct mm_struct *mm = rq->prev_mm;
55a101f8 2623 long prev_state;
1da177e4
LT
2624
2625 rq->prev_mm = NULL;
2626
2627 /*
2628 * A task struct has one reference for the use as "current".
c394cc9f 2629 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2630 * schedule one last time. The schedule call will never return, and
2631 * the scheduled task must drop that reference.
c394cc9f 2632 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2633 * still held, otherwise prev could be scheduled on another cpu, die
2634 * there before we look at prev->state, and then the reference would
2635 * be dropped twice.
2636 * Manfred Spraul <manfred@colorfullife.com>
2637 */
55a101f8 2638 prev_state = prev->state;
4866cde0
NP
2639 finish_arch_switch(prev);
2640 finish_lock_switch(rq, prev);
9a897c5a
SR
2641#ifdef CONFIG_SMP
2642 if (current->sched_class->post_schedule)
2643 current->sched_class->post_schedule(rq);
2644#endif
e8fa1362 2645
e107be36 2646 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2647 if (mm)
2648 mmdrop(mm);
c394cc9f 2649 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2650 /*
2651 * Remove function-return probe instances associated with this
2652 * task and put them back on the free list.
9761eea8 2653 */
c6fd91f0 2654 kprobe_flush_task(prev);
1da177e4 2655 put_task_struct(prev);
c6fd91f0 2656 }
1da177e4
LT
2657}
2658
2659/**
2660 * schedule_tail - first thing a freshly forked thread must call.
2661 * @prev: the thread we just switched away from.
2662 */
36c8b586 2663asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2664 __releases(rq->lock)
2665{
70b97a7f
IM
2666 struct rq *rq = this_rq();
2667
4866cde0
NP
2668 finish_task_switch(rq, prev);
2669#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2670 /* In this case, finish_task_switch does not reenable preemption */
2671 preempt_enable();
2672#endif
1da177e4 2673 if (current->set_child_tid)
b488893a 2674 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2675}
2676
2677/*
2678 * context_switch - switch to the new MM and the new
2679 * thread's register state.
2680 */
dd41f596 2681static inline void
70b97a7f 2682context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2683 struct task_struct *next)
1da177e4 2684{
dd41f596 2685 struct mm_struct *mm, *oldmm;
1da177e4 2686
e107be36 2687 prepare_task_switch(rq, prev, next);
0a16b607 2688 trace_sched_switch(rq, prev, next);
dd41f596
IM
2689 mm = next->mm;
2690 oldmm = prev->active_mm;
9226d125
ZA
2691 /*
2692 * For paravirt, this is coupled with an exit in switch_to to
2693 * combine the page table reload and the switch backend into
2694 * one hypercall.
2695 */
2696 arch_enter_lazy_cpu_mode();
2697
dd41f596 2698 if (unlikely(!mm)) {
1da177e4
LT
2699 next->active_mm = oldmm;
2700 atomic_inc(&oldmm->mm_count);
2701 enter_lazy_tlb(oldmm, next);
2702 } else
2703 switch_mm(oldmm, mm, next);
2704
dd41f596 2705 if (unlikely(!prev->mm)) {
1da177e4 2706 prev->active_mm = NULL;
1da177e4
LT
2707 rq->prev_mm = oldmm;
2708 }
3a5f5e48
IM
2709 /*
2710 * Since the runqueue lock will be released by the next
2711 * task (which is an invalid locking op but in the case
2712 * of the scheduler it's an obvious special-case), so we
2713 * do an early lockdep release here:
2714 */
2715#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2716 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2717#endif
1da177e4
LT
2718
2719 /* Here we just switch the register state and the stack. */
2720 switch_to(prev, next, prev);
2721
dd41f596
IM
2722 barrier();
2723 /*
2724 * this_rq must be evaluated again because prev may have moved
2725 * CPUs since it called schedule(), thus the 'rq' on its stack
2726 * frame will be invalid.
2727 */
2728 finish_task_switch(this_rq(), prev);
1da177e4
LT
2729}
2730
2731/*
2732 * nr_running, nr_uninterruptible and nr_context_switches:
2733 *
2734 * externally visible scheduler statistics: current number of runnable
2735 * threads, current number of uninterruptible-sleeping threads, total
2736 * number of context switches performed since bootup.
2737 */
2738unsigned long nr_running(void)
2739{
2740 unsigned long i, sum = 0;
2741
2742 for_each_online_cpu(i)
2743 sum += cpu_rq(i)->nr_running;
2744
2745 return sum;
2746}
2747
2748unsigned long nr_uninterruptible(void)
2749{
2750 unsigned long i, sum = 0;
2751
0a945022 2752 for_each_possible_cpu(i)
1da177e4
LT
2753 sum += cpu_rq(i)->nr_uninterruptible;
2754
2755 /*
2756 * Since we read the counters lockless, it might be slightly
2757 * inaccurate. Do not allow it to go below zero though:
2758 */
2759 if (unlikely((long)sum < 0))
2760 sum = 0;
2761
2762 return sum;
2763}
2764
2765unsigned long long nr_context_switches(void)
2766{
cc94abfc
SR
2767 int i;
2768 unsigned long long sum = 0;
1da177e4 2769
0a945022 2770 for_each_possible_cpu(i)
1da177e4
LT
2771 sum += cpu_rq(i)->nr_switches;
2772
2773 return sum;
2774}
2775
2776unsigned long nr_iowait(void)
2777{
2778 unsigned long i, sum = 0;
2779
0a945022 2780 for_each_possible_cpu(i)
1da177e4
LT
2781 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2782
2783 return sum;
2784}
2785
db1b1fef
JS
2786unsigned long nr_active(void)
2787{
2788 unsigned long i, running = 0, uninterruptible = 0;
2789
2790 for_each_online_cpu(i) {
2791 running += cpu_rq(i)->nr_running;
2792 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2793 }
2794
2795 if (unlikely((long)uninterruptible < 0))
2796 uninterruptible = 0;
2797
2798 return running + uninterruptible;
2799}
2800
48f24c4d 2801/*
dd41f596
IM
2802 * Update rq->cpu_load[] statistics. This function is usually called every
2803 * scheduler tick (TICK_NSEC).
48f24c4d 2804 */
dd41f596 2805static void update_cpu_load(struct rq *this_rq)
48f24c4d 2806{
495eca49 2807 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2808 int i, scale;
2809
2810 this_rq->nr_load_updates++;
dd41f596
IM
2811
2812 /* Update our load: */
2813 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2814 unsigned long old_load, new_load;
2815
2816 /* scale is effectively 1 << i now, and >> i divides by scale */
2817
2818 old_load = this_rq->cpu_load[i];
2819 new_load = this_load;
a25707f3
IM
2820 /*
2821 * Round up the averaging division if load is increasing. This
2822 * prevents us from getting stuck on 9 if the load is 10, for
2823 * example.
2824 */
2825 if (new_load > old_load)
2826 new_load += scale-1;
dd41f596
IM
2827 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2828 }
48f24c4d
IM
2829}
2830
dd41f596
IM
2831#ifdef CONFIG_SMP
2832
1da177e4
LT
2833/*
2834 * double_rq_lock - safely lock two runqueues
2835 *
2836 * Note this does not disable interrupts like task_rq_lock,
2837 * you need to do so manually before calling.
2838 */
70b97a7f 2839static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2840 __acquires(rq1->lock)
2841 __acquires(rq2->lock)
2842{
054b9108 2843 BUG_ON(!irqs_disabled());
1da177e4
LT
2844 if (rq1 == rq2) {
2845 spin_lock(&rq1->lock);
2846 __acquire(rq2->lock); /* Fake it out ;) */
2847 } else {
c96d145e 2848 if (rq1 < rq2) {
1da177e4 2849 spin_lock(&rq1->lock);
5e710e37 2850 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2851 } else {
2852 spin_lock(&rq2->lock);
5e710e37 2853 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2854 }
2855 }
6e82a3be
IM
2856 update_rq_clock(rq1);
2857 update_rq_clock(rq2);
1da177e4
LT
2858}
2859
2860/*
2861 * double_rq_unlock - safely unlock two runqueues
2862 *
2863 * Note this does not restore interrupts like task_rq_unlock,
2864 * you need to do so manually after calling.
2865 */
70b97a7f 2866static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2867 __releases(rq1->lock)
2868 __releases(rq2->lock)
2869{
2870 spin_unlock(&rq1->lock);
2871 if (rq1 != rq2)
2872 spin_unlock(&rq2->lock);
2873 else
2874 __release(rq2->lock);
2875}
2876
1da177e4
LT
2877/*
2878 * If dest_cpu is allowed for this process, migrate the task to it.
2879 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2880 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2881 * the cpu_allowed mask is restored.
2882 */
36c8b586 2883static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2884{
70b97a7f 2885 struct migration_req req;
1da177e4 2886 unsigned long flags;
70b97a7f 2887 struct rq *rq;
1da177e4
LT
2888
2889 rq = task_rq_lock(p, &flags);
96f874e2 2890 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2891 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2892 goto out;
2893
0a16b607 2894 trace_sched_migrate_task(rq, p, dest_cpu);
1da177e4
LT
2895 /* force the process onto the specified CPU */
2896 if (migrate_task(p, dest_cpu, &req)) {
2897 /* Need to wait for migration thread (might exit: take ref). */
2898 struct task_struct *mt = rq->migration_thread;
36c8b586 2899
1da177e4
LT
2900 get_task_struct(mt);
2901 task_rq_unlock(rq, &flags);
2902 wake_up_process(mt);
2903 put_task_struct(mt);
2904 wait_for_completion(&req.done);
36c8b586 2905
1da177e4
LT
2906 return;
2907 }
2908out:
2909 task_rq_unlock(rq, &flags);
2910}
2911
2912/*
476d139c
NP
2913 * sched_exec - execve() is a valuable balancing opportunity, because at
2914 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2915 */
2916void sched_exec(void)
2917{
1da177e4 2918 int new_cpu, this_cpu = get_cpu();
476d139c 2919 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2920 put_cpu();
476d139c
NP
2921 if (new_cpu != this_cpu)
2922 sched_migrate_task(current, new_cpu);
1da177e4
LT
2923}
2924
2925/*
2926 * pull_task - move a task from a remote runqueue to the local runqueue.
2927 * Both runqueues must be locked.
2928 */
dd41f596
IM
2929static void pull_task(struct rq *src_rq, struct task_struct *p,
2930 struct rq *this_rq, int this_cpu)
1da177e4 2931{
2e1cb74a 2932 deactivate_task(src_rq, p, 0);
1da177e4 2933 set_task_cpu(p, this_cpu);
dd41f596 2934 activate_task(this_rq, p, 0);
1da177e4
LT
2935 /*
2936 * Note that idle threads have a prio of MAX_PRIO, for this test
2937 * to be always true for them.
2938 */
15afe09b 2939 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2940}
2941
2942/*
2943 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2944 */
858119e1 2945static
70b97a7f 2946int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2947 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2948 int *all_pinned)
1da177e4
LT
2949{
2950 /*
2951 * We do not migrate tasks that are:
2952 * 1) running (obviously), or
2953 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2954 * 3) are cache-hot on their current CPU.
2955 */
96f874e2 2956 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 2957 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2958 return 0;
cc367732 2959 }
81026794
NP
2960 *all_pinned = 0;
2961
cc367732
IM
2962 if (task_running(rq, p)) {
2963 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2964 return 0;
cc367732 2965 }
1da177e4 2966
da84d961
IM
2967 /*
2968 * Aggressive migration if:
2969 * 1) task is cache cold, or
2970 * 2) too many balance attempts have failed.
2971 */
2972
6bc1665b
IM
2973 if (!task_hot(p, rq->clock, sd) ||
2974 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2975#ifdef CONFIG_SCHEDSTATS
cc367732 2976 if (task_hot(p, rq->clock, sd)) {
da84d961 2977 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2978 schedstat_inc(p, se.nr_forced_migrations);
2979 }
da84d961
IM
2980#endif
2981 return 1;
2982 }
2983
cc367732
IM
2984 if (task_hot(p, rq->clock, sd)) {
2985 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2986 return 0;
cc367732 2987 }
1da177e4
LT
2988 return 1;
2989}
2990
e1d1484f
PW
2991static unsigned long
2992balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2993 unsigned long max_load_move, struct sched_domain *sd,
2994 enum cpu_idle_type idle, int *all_pinned,
2995 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2996{
051c6764 2997 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2998 struct task_struct *p;
2999 long rem_load_move = max_load_move;
1da177e4 3000
e1d1484f 3001 if (max_load_move == 0)
1da177e4
LT
3002 goto out;
3003
81026794
NP
3004 pinned = 1;
3005
1da177e4 3006 /*
dd41f596 3007 * Start the load-balancing iterator:
1da177e4 3008 */
dd41f596
IM
3009 p = iterator->start(iterator->arg);
3010next:
b82d9fdd 3011 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3012 goto out;
051c6764
PZ
3013
3014 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3015 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3016 p = iterator->next(iterator->arg);
3017 goto next;
1da177e4
LT
3018 }
3019
dd41f596 3020 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3021 pulled++;
dd41f596 3022 rem_load_move -= p->se.load.weight;
1da177e4 3023
7e96fa58
GH
3024#ifdef CONFIG_PREEMPT
3025 /*
3026 * NEWIDLE balancing is a source of latency, so preemptible kernels
3027 * will stop after the first task is pulled to minimize the critical
3028 * section.
3029 */
3030 if (idle == CPU_NEWLY_IDLE)
3031 goto out;
3032#endif
3033
2dd73a4f 3034 /*
b82d9fdd 3035 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3036 */
e1d1484f 3037 if (rem_load_move > 0) {
a4ac01c3
PW
3038 if (p->prio < *this_best_prio)
3039 *this_best_prio = p->prio;
dd41f596
IM
3040 p = iterator->next(iterator->arg);
3041 goto next;
1da177e4
LT
3042 }
3043out:
3044 /*
e1d1484f 3045 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3046 * so we can safely collect pull_task() stats here rather than
3047 * inside pull_task().
3048 */
3049 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3050
3051 if (all_pinned)
3052 *all_pinned = pinned;
e1d1484f
PW
3053
3054 return max_load_move - rem_load_move;
1da177e4
LT
3055}
3056
dd41f596 3057/*
43010659
PW
3058 * move_tasks tries to move up to max_load_move weighted load from busiest to
3059 * this_rq, as part of a balancing operation within domain "sd".
3060 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3061 *
3062 * Called with both runqueues locked.
3063 */
3064static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3065 unsigned long max_load_move,
dd41f596
IM
3066 struct sched_domain *sd, enum cpu_idle_type idle,
3067 int *all_pinned)
3068{
5522d5d5 3069 const struct sched_class *class = sched_class_highest;
43010659 3070 unsigned long total_load_moved = 0;
a4ac01c3 3071 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3072
3073 do {
43010659
PW
3074 total_load_moved +=
3075 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3076 max_load_move - total_load_moved,
a4ac01c3 3077 sd, idle, all_pinned, &this_best_prio);
dd41f596 3078 class = class->next;
c4acb2c0 3079
7e96fa58
GH
3080#ifdef CONFIG_PREEMPT
3081 /*
3082 * NEWIDLE balancing is a source of latency, so preemptible
3083 * kernels will stop after the first task is pulled to minimize
3084 * the critical section.
3085 */
c4acb2c0
GH
3086 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3087 break;
7e96fa58 3088#endif
43010659 3089 } while (class && max_load_move > total_load_moved);
dd41f596 3090
43010659
PW
3091 return total_load_moved > 0;
3092}
3093
e1d1484f
PW
3094static int
3095iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3096 struct sched_domain *sd, enum cpu_idle_type idle,
3097 struct rq_iterator *iterator)
3098{
3099 struct task_struct *p = iterator->start(iterator->arg);
3100 int pinned = 0;
3101
3102 while (p) {
3103 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3104 pull_task(busiest, p, this_rq, this_cpu);
3105 /*
3106 * Right now, this is only the second place pull_task()
3107 * is called, so we can safely collect pull_task()
3108 * stats here rather than inside pull_task().
3109 */
3110 schedstat_inc(sd, lb_gained[idle]);
3111
3112 return 1;
3113 }
3114 p = iterator->next(iterator->arg);
3115 }
3116
3117 return 0;
3118}
3119
43010659
PW
3120/*
3121 * move_one_task tries to move exactly one task from busiest to this_rq, as
3122 * part of active balancing operations within "domain".
3123 * Returns 1 if successful and 0 otherwise.
3124 *
3125 * Called with both runqueues locked.
3126 */
3127static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3128 struct sched_domain *sd, enum cpu_idle_type idle)
3129{
5522d5d5 3130 const struct sched_class *class;
43010659
PW
3131
3132 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3133 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3134 return 1;
3135
3136 return 0;
dd41f596
IM
3137}
3138
1da177e4
LT
3139/*
3140 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3141 * domain. It calculates and returns the amount of weighted load which
3142 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3143 */
3144static struct sched_group *
3145find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3146 unsigned long *imbalance, enum cpu_idle_type idle,
96f874e2 3147 int *sd_idle, const struct cpumask *cpus, int *balance)
1da177e4
LT
3148{
3149 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3150 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3151 unsigned long max_pull;
2dd73a4f
PW
3152 unsigned long busiest_load_per_task, busiest_nr_running;
3153 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3154 int load_idx, group_imb = 0;
5c45bf27
SS
3155#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3156 int power_savings_balance = 1;
3157 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3158 unsigned long min_nr_running = ULONG_MAX;
3159 struct sched_group *group_min = NULL, *group_leader = NULL;
3160#endif
1da177e4
LT
3161
3162 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3163 busiest_load_per_task = busiest_nr_running = 0;
3164 this_load_per_task = this_nr_running = 0;
408ed066 3165
d15bcfdb 3166 if (idle == CPU_NOT_IDLE)
7897986b 3167 load_idx = sd->busy_idx;
d15bcfdb 3168 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3169 load_idx = sd->newidle_idx;
3170 else
3171 load_idx = sd->idle_idx;
1da177e4
LT
3172
3173 do {
908a7c1b 3174 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3175 int local_group;
3176 int i;
908a7c1b 3177 int __group_imb = 0;
783609c6 3178 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3179 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3180 unsigned long sum_avg_load_per_task;
3181 unsigned long avg_load_per_task;
1da177e4 3182
758b2cdc
RR
3183 local_group = cpumask_test_cpu(this_cpu,
3184 sched_group_cpus(group));
1da177e4 3185
783609c6 3186 if (local_group)
758b2cdc 3187 balance_cpu = cpumask_first(sched_group_cpus(group));
783609c6 3188
1da177e4 3189 /* Tally up the load of all CPUs in the group */
2dd73a4f 3190 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3191 sum_avg_load_per_task = avg_load_per_task = 0;
3192
908a7c1b
KC
3193 max_cpu_load = 0;
3194 min_cpu_load = ~0UL;
1da177e4 3195
758b2cdc
RR
3196 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3197 struct rq *rq = cpu_rq(i);
2dd73a4f 3198
9439aab8 3199 if (*sd_idle && rq->nr_running)
5969fe06
NP
3200 *sd_idle = 0;
3201
1da177e4 3202 /* Bias balancing toward cpus of our domain */
783609c6
SS
3203 if (local_group) {
3204 if (idle_cpu(i) && !first_idle_cpu) {
3205 first_idle_cpu = 1;
3206 balance_cpu = i;
3207 }
3208
a2000572 3209 load = target_load(i, load_idx);
908a7c1b 3210 } else {
a2000572 3211 load = source_load(i, load_idx);
908a7c1b
KC
3212 if (load > max_cpu_load)
3213 max_cpu_load = load;
3214 if (min_cpu_load > load)
3215 min_cpu_load = load;
3216 }
1da177e4
LT
3217
3218 avg_load += load;
2dd73a4f 3219 sum_nr_running += rq->nr_running;
dd41f596 3220 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3221
3222 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3223 }
3224
783609c6
SS
3225 /*
3226 * First idle cpu or the first cpu(busiest) in this sched group
3227 * is eligible for doing load balancing at this and above
9439aab8
SS
3228 * domains. In the newly idle case, we will allow all the cpu's
3229 * to do the newly idle load balance.
783609c6 3230 */
9439aab8
SS
3231 if (idle != CPU_NEWLY_IDLE && local_group &&
3232 balance_cpu != this_cpu && balance) {
783609c6
SS
3233 *balance = 0;
3234 goto ret;
3235 }
3236
1da177e4 3237 total_load += avg_load;
5517d86b 3238 total_pwr += group->__cpu_power;
1da177e4
LT
3239
3240 /* Adjust by relative CPU power of the group */
5517d86b
ED
3241 avg_load = sg_div_cpu_power(group,
3242 avg_load * SCHED_LOAD_SCALE);
1da177e4 3243
408ed066
PZ
3244
3245 /*
3246 * Consider the group unbalanced when the imbalance is larger
3247 * than the average weight of two tasks.
3248 *
3249 * APZ: with cgroup the avg task weight can vary wildly and
3250 * might not be a suitable number - should we keep a
3251 * normalized nr_running number somewhere that negates
3252 * the hierarchy?
3253 */
3254 avg_load_per_task = sg_div_cpu_power(group,
3255 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3256
3257 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3258 __group_imb = 1;
3259
5517d86b 3260 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3261
1da177e4
LT
3262 if (local_group) {
3263 this_load = avg_load;
3264 this = group;
2dd73a4f
PW
3265 this_nr_running = sum_nr_running;
3266 this_load_per_task = sum_weighted_load;
3267 } else if (avg_load > max_load &&
908a7c1b 3268 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3269 max_load = avg_load;
3270 busiest = group;
2dd73a4f
PW
3271 busiest_nr_running = sum_nr_running;
3272 busiest_load_per_task = sum_weighted_load;
908a7c1b 3273 group_imb = __group_imb;
1da177e4 3274 }
5c45bf27
SS
3275
3276#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3277 /*
3278 * Busy processors will not participate in power savings
3279 * balance.
3280 */
dd41f596
IM
3281 if (idle == CPU_NOT_IDLE ||
3282 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3283 goto group_next;
5c45bf27
SS
3284
3285 /*
3286 * If the local group is idle or completely loaded
3287 * no need to do power savings balance at this domain
3288 */
3289 if (local_group && (this_nr_running >= group_capacity ||
3290 !this_nr_running))
3291 power_savings_balance = 0;
3292
dd41f596 3293 /*
5c45bf27
SS
3294 * If a group is already running at full capacity or idle,
3295 * don't include that group in power savings calculations
dd41f596
IM
3296 */
3297 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3298 || !sum_nr_running)
dd41f596 3299 goto group_next;
5c45bf27 3300
dd41f596 3301 /*
5c45bf27 3302 * Calculate the group which has the least non-idle load.
dd41f596
IM
3303 * This is the group from where we need to pick up the load
3304 * for saving power
3305 */
3306 if ((sum_nr_running < min_nr_running) ||
3307 (sum_nr_running == min_nr_running &&
d5679bd1 3308 cpumask_first(sched_group_cpus(group)) >
758b2cdc 3309 cpumask_first(sched_group_cpus(group_min)))) {
dd41f596
IM
3310 group_min = group;
3311 min_nr_running = sum_nr_running;
5c45bf27
SS
3312 min_load_per_task = sum_weighted_load /
3313 sum_nr_running;
dd41f596 3314 }
5c45bf27 3315
dd41f596 3316 /*
5c45bf27 3317 * Calculate the group which is almost near its
dd41f596
IM
3318 * capacity but still has some space to pick up some load
3319 * from other group and save more power
3320 */
3321 if (sum_nr_running <= group_capacity - 1) {
3322 if (sum_nr_running > leader_nr_running ||
3323 (sum_nr_running == leader_nr_running &&
d5679bd1 3324 cpumask_first(sched_group_cpus(group)) <
758b2cdc 3325 cpumask_first(sched_group_cpus(group_leader)))) {
dd41f596
IM
3326 group_leader = group;
3327 leader_nr_running = sum_nr_running;
3328 }
48f24c4d 3329 }
5c45bf27
SS
3330group_next:
3331#endif
1da177e4
LT
3332 group = group->next;
3333 } while (group != sd->groups);
3334
2dd73a4f 3335 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3336 goto out_balanced;
3337
3338 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3339
3340 if (this_load >= avg_load ||
3341 100*max_load <= sd->imbalance_pct*this_load)
3342 goto out_balanced;
3343
2dd73a4f 3344 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3345 if (group_imb)
3346 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3347
1da177e4
LT
3348 /*
3349 * We're trying to get all the cpus to the average_load, so we don't
3350 * want to push ourselves above the average load, nor do we wish to
3351 * reduce the max loaded cpu below the average load, as either of these
3352 * actions would just result in more rebalancing later, and ping-pong
3353 * tasks around. Thus we look for the minimum possible imbalance.
3354 * Negative imbalances (*we* are more loaded than anyone else) will
3355 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3356 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3357 * appear as very large values with unsigned longs.
3358 */
2dd73a4f
PW
3359 if (max_load <= busiest_load_per_task)
3360 goto out_balanced;
3361
3362 /*
3363 * In the presence of smp nice balancing, certain scenarios can have
3364 * max load less than avg load(as we skip the groups at or below
3365 * its cpu_power, while calculating max_load..)
3366 */
3367 if (max_load < avg_load) {
3368 *imbalance = 0;
3369 goto small_imbalance;
3370 }
0c117f1b
SS
3371
3372 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3373 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3374
1da177e4 3375 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3376 *imbalance = min(max_pull * busiest->__cpu_power,
3377 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3378 / SCHED_LOAD_SCALE;
3379
2dd73a4f
PW
3380 /*
3381 * if *imbalance is less than the average load per runnable task
3382 * there is no gaurantee that any tasks will be moved so we'll have
3383 * a think about bumping its value to force at least one task to be
3384 * moved
3385 */
7fd0d2dd 3386 if (*imbalance < busiest_load_per_task) {
48f24c4d 3387 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3388 unsigned int imbn;
3389
3390small_imbalance:
3391 pwr_move = pwr_now = 0;
3392 imbn = 2;
3393 if (this_nr_running) {
3394 this_load_per_task /= this_nr_running;
3395 if (busiest_load_per_task > this_load_per_task)
3396 imbn = 1;
3397 } else
408ed066 3398 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3399
01c8c57d 3400 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3401 busiest_load_per_task * imbn) {
2dd73a4f 3402 *imbalance = busiest_load_per_task;
1da177e4
LT
3403 return busiest;
3404 }
3405
3406 /*
3407 * OK, we don't have enough imbalance to justify moving tasks,
3408 * however we may be able to increase total CPU power used by
3409 * moving them.
3410 */
3411
5517d86b
ED
3412 pwr_now += busiest->__cpu_power *
3413 min(busiest_load_per_task, max_load);
3414 pwr_now += this->__cpu_power *
3415 min(this_load_per_task, this_load);
1da177e4
LT
3416 pwr_now /= SCHED_LOAD_SCALE;
3417
3418 /* Amount of load we'd subtract */
5517d86b
ED
3419 tmp = sg_div_cpu_power(busiest,
3420 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3421 if (max_load > tmp)
5517d86b 3422 pwr_move += busiest->__cpu_power *
2dd73a4f 3423 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3424
3425 /* Amount of load we'd add */
5517d86b 3426 if (max_load * busiest->__cpu_power <
33859f7f 3427 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3428 tmp = sg_div_cpu_power(this,
3429 max_load * busiest->__cpu_power);
1da177e4 3430 else
5517d86b
ED
3431 tmp = sg_div_cpu_power(this,
3432 busiest_load_per_task * SCHED_LOAD_SCALE);
3433 pwr_move += this->__cpu_power *
3434 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3435 pwr_move /= SCHED_LOAD_SCALE;
3436
3437 /* Move if we gain throughput */
7fd0d2dd
SS
3438 if (pwr_move > pwr_now)
3439 *imbalance = busiest_load_per_task;
1da177e4
LT
3440 }
3441
1da177e4
LT
3442 return busiest;
3443
3444out_balanced:
5c45bf27 3445#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3446 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3447 goto ret;
1da177e4 3448
5c45bf27
SS
3449 if (this == group_leader && group_leader != group_min) {
3450 *imbalance = min_load_per_task;
7a09b1a2
VS
3451 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3452 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
9924da43 3453 cpumask_first(sched_group_cpus(group_leader));
7a09b1a2 3454 }
5c45bf27
SS
3455 return group_min;
3456 }
5c45bf27 3457#endif
783609c6 3458ret:
1da177e4
LT
3459 *imbalance = 0;
3460 return NULL;
3461}
3462
3463/*
3464 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3465 */
70b97a7f 3466static struct rq *
d15bcfdb 3467find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3468 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3469{
70b97a7f 3470 struct rq *busiest = NULL, *rq;
2dd73a4f 3471 unsigned long max_load = 0;
1da177e4
LT
3472 int i;
3473
758b2cdc 3474 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3475 unsigned long wl;
0a2966b4 3476
96f874e2 3477 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3478 continue;
3479
48f24c4d 3480 rq = cpu_rq(i);
dd41f596 3481 wl = weighted_cpuload(i);
2dd73a4f 3482
dd41f596 3483 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3484 continue;
1da177e4 3485
dd41f596
IM
3486 if (wl > max_load) {
3487 max_load = wl;
48f24c4d 3488 busiest = rq;
1da177e4
LT
3489 }
3490 }
3491
3492 return busiest;
3493}
3494
77391d71
NP
3495/*
3496 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3497 * so long as it is large enough.
3498 */
3499#define MAX_PINNED_INTERVAL 512
3500
1da177e4
LT
3501/*
3502 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3503 * tasks if there is an imbalance.
1da177e4 3504 */
70b97a7f 3505static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3506 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3507 int *balance, struct cpumask *cpus)
1da177e4 3508{
43010659 3509 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3510 struct sched_group *group;
1da177e4 3511 unsigned long imbalance;
70b97a7f 3512 struct rq *busiest;
fe2eea3f 3513 unsigned long flags;
5969fe06 3514
96f874e2 3515 cpumask_setall(cpus);
7c16ec58 3516
89c4710e
SS
3517 /*
3518 * When power savings policy is enabled for the parent domain, idle
3519 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3520 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3521 * portraying it as CPU_NOT_IDLE.
89c4710e 3522 */
d15bcfdb 3523 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3524 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3525 sd_idle = 1;
1da177e4 3526
2d72376b 3527 schedstat_inc(sd, lb_count[idle]);
1da177e4 3528
0a2966b4 3529redo:
c8cba857 3530 update_shares(sd);
0a2966b4 3531 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3532 cpus, balance);
783609c6 3533
06066714 3534 if (*balance == 0)
783609c6 3535 goto out_balanced;
783609c6 3536
1da177e4
LT
3537 if (!group) {
3538 schedstat_inc(sd, lb_nobusyg[idle]);
3539 goto out_balanced;
3540 }
3541
7c16ec58 3542 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3543 if (!busiest) {
3544 schedstat_inc(sd, lb_nobusyq[idle]);
3545 goto out_balanced;
3546 }
3547
db935dbd 3548 BUG_ON(busiest == this_rq);
1da177e4
LT
3549
3550 schedstat_add(sd, lb_imbalance[idle], imbalance);
3551
43010659 3552 ld_moved = 0;
1da177e4
LT
3553 if (busiest->nr_running > 1) {
3554 /*
3555 * Attempt to move tasks. If find_busiest_group has found
3556 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3557 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3558 * correctly treated as an imbalance.
3559 */
fe2eea3f 3560 local_irq_save(flags);
e17224bf 3561 double_rq_lock(this_rq, busiest);
43010659 3562 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3563 imbalance, sd, idle, &all_pinned);
e17224bf 3564 double_rq_unlock(this_rq, busiest);
fe2eea3f 3565 local_irq_restore(flags);
81026794 3566
46cb4b7c
SS
3567 /*
3568 * some other cpu did the load balance for us.
3569 */
43010659 3570 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3571 resched_cpu(this_cpu);
3572
81026794 3573 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3574 if (unlikely(all_pinned)) {
96f874e2
RR
3575 cpumask_clear_cpu(cpu_of(busiest), cpus);
3576 if (!cpumask_empty(cpus))
0a2966b4 3577 goto redo;
81026794 3578 goto out_balanced;
0a2966b4 3579 }
1da177e4 3580 }
81026794 3581
43010659 3582 if (!ld_moved) {
1da177e4
LT
3583 schedstat_inc(sd, lb_failed[idle]);
3584 sd->nr_balance_failed++;
3585
3586 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3587
fe2eea3f 3588 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3589
3590 /* don't kick the migration_thread, if the curr
3591 * task on busiest cpu can't be moved to this_cpu
3592 */
96f874e2
RR
3593 if (!cpumask_test_cpu(this_cpu,
3594 &busiest->curr->cpus_allowed)) {
fe2eea3f 3595 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3596 all_pinned = 1;
3597 goto out_one_pinned;
3598 }
3599
1da177e4
LT
3600 if (!busiest->active_balance) {
3601 busiest->active_balance = 1;
3602 busiest->push_cpu = this_cpu;
81026794 3603 active_balance = 1;
1da177e4 3604 }
fe2eea3f 3605 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3606 if (active_balance)
1da177e4
LT
3607 wake_up_process(busiest->migration_thread);
3608
3609 /*
3610 * We've kicked active balancing, reset the failure
3611 * counter.
3612 */
39507451 3613 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3614 }
81026794 3615 } else
1da177e4
LT
3616 sd->nr_balance_failed = 0;
3617
81026794 3618 if (likely(!active_balance)) {
1da177e4
LT
3619 /* We were unbalanced, so reset the balancing interval */
3620 sd->balance_interval = sd->min_interval;
81026794
NP
3621 } else {
3622 /*
3623 * If we've begun active balancing, start to back off. This
3624 * case may not be covered by the all_pinned logic if there
3625 * is only 1 task on the busy runqueue (because we don't call
3626 * move_tasks).
3627 */
3628 if (sd->balance_interval < sd->max_interval)
3629 sd->balance_interval *= 2;
1da177e4
LT
3630 }
3631
43010659 3632 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3633 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3634 ld_moved = -1;
3635
3636 goto out;
1da177e4
LT
3637
3638out_balanced:
1da177e4
LT
3639 schedstat_inc(sd, lb_balanced[idle]);
3640
16cfb1c0 3641 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3642
3643out_one_pinned:
1da177e4 3644 /* tune up the balancing interval */
77391d71
NP
3645 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3646 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3647 sd->balance_interval *= 2;
3648
48f24c4d 3649 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3650 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3651 ld_moved = -1;
3652 else
3653 ld_moved = 0;
3654out:
c8cba857
PZ
3655 if (ld_moved)
3656 update_shares(sd);
c09595f6 3657 return ld_moved;
1da177e4
LT
3658}
3659
3660/*
3661 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3662 * tasks if there is an imbalance.
3663 *
d15bcfdb 3664 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3665 * this_rq is locked.
3666 */
48f24c4d 3667static int
7c16ec58 3668load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3669 struct cpumask *cpus)
1da177e4
LT
3670{
3671 struct sched_group *group;
70b97a7f 3672 struct rq *busiest = NULL;
1da177e4 3673 unsigned long imbalance;
43010659 3674 int ld_moved = 0;
5969fe06 3675 int sd_idle = 0;
969bb4e4 3676 int all_pinned = 0;
7c16ec58 3677
96f874e2 3678 cpumask_setall(cpus);
5969fe06 3679
89c4710e
SS
3680 /*
3681 * When power savings policy is enabled for the parent domain, idle
3682 * sibling can pick up load irrespective of busy siblings. In this case,
3683 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3684 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3685 */
3686 if (sd->flags & SD_SHARE_CPUPOWER &&
3687 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3688 sd_idle = 1;
1da177e4 3689
2d72376b 3690 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3691redo:
3e5459b4 3692 update_shares_locked(this_rq, sd);
d15bcfdb 3693 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3694 &sd_idle, cpus, NULL);
1da177e4 3695 if (!group) {
d15bcfdb 3696 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3697 goto out_balanced;
1da177e4
LT
3698 }
3699
7c16ec58 3700 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3701 if (!busiest) {
d15bcfdb 3702 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3703 goto out_balanced;
1da177e4
LT
3704 }
3705
db935dbd
NP
3706 BUG_ON(busiest == this_rq);
3707
d15bcfdb 3708 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3709
43010659 3710 ld_moved = 0;
d6d5cfaf
NP
3711 if (busiest->nr_running > 1) {
3712 /* Attempt to move tasks */
3713 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3714 /* this_rq->clock is already updated */
3715 update_rq_clock(busiest);
43010659 3716 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3717 imbalance, sd, CPU_NEWLY_IDLE,
3718 &all_pinned);
1b12bbc7 3719 double_unlock_balance(this_rq, busiest);
0a2966b4 3720
969bb4e4 3721 if (unlikely(all_pinned)) {
96f874e2
RR
3722 cpumask_clear_cpu(cpu_of(busiest), cpus);
3723 if (!cpumask_empty(cpus))
0a2966b4
CL
3724 goto redo;
3725 }
d6d5cfaf
NP
3726 }
3727
43010659 3728 if (!ld_moved) {
36dffab6 3729 int active_balance = 0;
ad273b32 3730
d15bcfdb 3731 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3732 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3733 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3734 return -1;
ad273b32
VS
3735
3736 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3737 return -1;
3738
3739 if (sd->nr_balance_failed++ < 2)
3740 return -1;
3741
3742 /*
3743 * The only task running in a non-idle cpu can be moved to this
3744 * cpu in an attempt to completely freeup the other CPU
3745 * package. The same method used to move task in load_balance()
3746 * have been extended for load_balance_newidle() to speedup
3747 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3748 *
3749 * The package power saving logic comes from
3750 * find_busiest_group(). If there are no imbalance, then
3751 * f_b_g() will return NULL. However when sched_mc={1,2} then
3752 * f_b_g() will select a group from which a running task may be
3753 * pulled to this cpu in order to make the other package idle.
3754 * If there is no opportunity to make a package idle and if
3755 * there are no imbalance, then f_b_g() will return NULL and no
3756 * action will be taken in load_balance_newidle().
3757 *
3758 * Under normal task pull operation due to imbalance, there
3759 * will be more than one task in the source run queue and
3760 * move_tasks() will succeed. ld_moved will be true and this
3761 * active balance code will not be triggered.
3762 */
3763
3764 /* Lock busiest in correct order while this_rq is held */
3765 double_lock_balance(this_rq, busiest);
3766
3767 /*
3768 * don't kick the migration_thread, if the curr
3769 * task on busiest cpu can't be moved to this_cpu
3770 */
3771 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3772 double_unlock_balance(this_rq, busiest);
3773 all_pinned = 1;
3774 return ld_moved;
3775 }
3776
3777 if (!busiest->active_balance) {
3778 busiest->active_balance = 1;
3779 busiest->push_cpu = this_cpu;
3780 active_balance = 1;
3781 }
3782
3783 double_unlock_balance(this_rq, busiest);
3784 if (active_balance)
3785 wake_up_process(busiest->migration_thread);
3786
5969fe06 3787 } else
16cfb1c0 3788 sd->nr_balance_failed = 0;
1da177e4 3789
3e5459b4 3790 update_shares_locked(this_rq, sd);
43010659 3791 return ld_moved;
16cfb1c0
NP
3792
3793out_balanced:
d15bcfdb 3794 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3795 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3796 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3797 return -1;
16cfb1c0 3798 sd->nr_balance_failed = 0;
48f24c4d 3799
16cfb1c0 3800 return 0;
1da177e4
LT
3801}
3802
3803/*
3804 * idle_balance is called by schedule() if this_cpu is about to become
3805 * idle. Attempts to pull tasks from other CPUs.
3806 */
70b97a7f 3807static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3808{
3809 struct sched_domain *sd;
efbe027e 3810 int pulled_task = 0;
dd41f596 3811 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
3812 cpumask_var_t tmpmask;
3813
3814 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3815 return;
1da177e4
LT
3816
3817 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3818 unsigned long interval;
3819
3820 if (!(sd->flags & SD_LOAD_BALANCE))
3821 continue;
3822
3823 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3824 /* If we've pulled tasks over stop searching: */
7c16ec58 3825 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 3826 sd, tmpmask);
92c4ca5c
CL
3827
3828 interval = msecs_to_jiffies(sd->balance_interval);
3829 if (time_after(next_balance, sd->last_balance + interval))
3830 next_balance = sd->last_balance + interval;
3831 if (pulled_task)
3832 break;
1da177e4 3833 }
dd41f596 3834 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3835 /*
3836 * We are going idle. next_balance may be set based on
3837 * a busy processor. So reset next_balance.
3838 */
3839 this_rq->next_balance = next_balance;
dd41f596 3840 }
4d2732c6 3841 free_cpumask_var(tmpmask);
1da177e4
LT
3842}
3843
3844/*
3845 * active_load_balance is run by migration threads. It pushes running tasks
3846 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3847 * running on each physical CPU where possible, and avoids physical /
3848 * logical imbalances.
3849 *
3850 * Called with busiest_rq locked.
3851 */
70b97a7f 3852static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3853{
39507451 3854 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3855 struct sched_domain *sd;
3856 struct rq *target_rq;
39507451 3857
48f24c4d 3858 /* Is there any task to move? */
39507451 3859 if (busiest_rq->nr_running <= 1)
39507451
NP
3860 return;
3861
3862 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3863
3864 /*
39507451 3865 * This condition is "impossible", if it occurs
41a2d6cf 3866 * we need to fix it. Originally reported by
39507451 3867 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3868 */
39507451 3869 BUG_ON(busiest_rq == target_rq);
1da177e4 3870
39507451
NP
3871 /* move a task from busiest_rq to target_rq */
3872 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3873 update_rq_clock(busiest_rq);
3874 update_rq_clock(target_rq);
39507451
NP
3875
3876 /* Search for an sd spanning us and the target CPU. */
c96d145e 3877 for_each_domain(target_cpu, sd) {
39507451 3878 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 3879 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 3880 break;
c96d145e 3881 }
39507451 3882
48f24c4d 3883 if (likely(sd)) {
2d72376b 3884 schedstat_inc(sd, alb_count);
39507451 3885
43010659
PW
3886 if (move_one_task(target_rq, target_cpu, busiest_rq,
3887 sd, CPU_IDLE))
48f24c4d
IM
3888 schedstat_inc(sd, alb_pushed);
3889 else
3890 schedstat_inc(sd, alb_failed);
3891 }
1b12bbc7 3892 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3893}
3894
46cb4b7c
SS
3895#ifdef CONFIG_NO_HZ
3896static struct {
3897 atomic_t load_balancer;
7d1e6a9b 3898 cpumask_var_t cpu_mask;
46cb4b7c
SS
3899} nohz ____cacheline_aligned = {
3900 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
3901};
3902
7835b98b 3903/*
46cb4b7c
SS
3904 * This routine will try to nominate the ilb (idle load balancing)
3905 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3906 * load balancing on behalf of all those cpus. If all the cpus in the system
3907 * go into this tickless mode, then there will be no ilb owner (as there is
3908 * no need for one) and all the cpus will sleep till the next wakeup event
3909 * arrives...
3910 *
3911 * For the ilb owner, tick is not stopped. And this tick will be used
3912 * for idle load balancing. ilb owner will still be part of
3913 * nohz.cpu_mask..
7835b98b 3914 *
46cb4b7c
SS
3915 * While stopping the tick, this cpu will become the ilb owner if there
3916 * is no other owner. And will be the owner till that cpu becomes busy
3917 * or if all cpus in the system stop their ticks at which point
3918 * there is no need for ilb owner.
3919 *
3920 * When the ilb owner becomes busy, it nominates another owner, during the
3921 * next busy scheduler_tick()
3922 */
3923int select_nohz_load_balancer(int stop_tick)
3924{
3925 int cpu = smp_processor_id();
3926
3927 if (stop_tick) {
7d1e6a9b 3928 cpumask_set_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3929 cpu_rq(cpu)->in_nohz_recently = 1;
3930
3931 /*
3932 * If we are going offline and still the leader, give up!
3933 */
e761b772 3934 if (!cpu_active(cpu) &&
46cb4b7c
SS
3935 atomic_read(&nohz.load_balancer) == cpu) {
3936 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3937 BUG();
3938 return 0;
3939 }
3940
3941 /* time for ilb owner also to sleep */
7d1e6a9b 3942 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
3943 if (atomic_read(&nohz.load_balancer) == cpu)
3944 atomic_set(&nohz.load_balancer, -1);
3945 return 0;
3946 }
3947
3948 if (atomic_read(&nohz.load_balancer) == -1) {
3949 /* make me the ilb owner */
3950 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3951 return 1;
3952 } else if (atomic_read(&nohz.load_balancer) == cpu)
3953 return 1;
3954 } else {
7d1e6a9b 3955 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
3956 return 0;
3957
7d1e6a9b 3958 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3959
3960 if (atomic_read(&nohz.load_balancer) == cpu)
3961 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3962 BUG();
3963 }
3964 return 0;
3965}
3966#endif
3967
3968static DEFINE_SPINLOCK(balancing);
3969
3970/*
7835b98b
CL
3971 * It checks each scheduling domain to see if it is due to be balanced,
3972 * and initiates a balancing operation if so.
3973 *
3974 * Balancing parameters are set up in arch_init_sched_domains.
3975 */
a9957449 3976static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3977{
46cb4b7c
SS
3978 int balance = 1;
3979 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3980 unsigned long interval;
3981 struct sched_domain *sd;
46cb4b7c 3982 /* Earliest time when we have to do rebalance again */
c9819f45 3983 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3984 int update_next_balance = 0;
d07355f5 3985 int need_serialize;
a0e90245
RR
3986 cpumask_var_t tmp;
3987
3988 /* Fails alloc? Rebalancing probably not a priority right now. */
3989 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3990 return;
1da177e4 3991
46cb4b7c 3992 for_each_domain(cpu, sd) {
1da177e4
LT
3993 if (!(sd->flags & SD_LOAD_BALANCE))
3994 continue;
3995
3996 interval = sd->balance_interval;
d15bcfdb 3997 if (idle != CPU_IDLE)
1da177e4
LT
3998 interval *= sd->busy_factor;
3999
4000 /* scale ms to jiffies */
4001 interval = msecs_to_jiffies(interval);
4002 if (unlikely(!interval))
4003 interval = 1;
dd41f596
IM
4004 if (interval > HZ*NR_CPUS/10)
4005 interval = HZ*NR_CPUS/10;
4006
d07355f5 4007 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4008
d07355f5 4009 if (need_serialize) {
08c183f3
CL
4010 if (!spin_trylock(&balancing))
4011 goto out;
4012 }
4013
c9819f45 4014 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 4015 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
4016 /*
4017 * We've pulled tasks over so either we're no
5969fe06
NP
4018 * longer idle, or one of our SMT siblings is
4019 * not idle.
4020 */
d15bcfdb 4021 idle = CPU_NOT_IDLE;
1da177e4 4022 }
1bd77f2d 4023 sd->last_balance = jiffies;
1da177e4 4024 }
d07355f5 4025 if (need_serialize)
08c183f3
CL
4026 spin_unlock(&balancing);
4027out:
f549da84 4028 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4029 next_balance = sd->last_balance + interval;
f549da84
SS
4030 update_next_balance = 1;
4031 }
783609c6
SS
4032
4033 /*
4034 * Stop the load balance at this level. There is another
4035 * CPU in our sched group which is doing load balancing more
4036 * actively.
4037 */
4038 if (!balance)
4039 break;
1da177e4 4040 }
f549da84
SS
4041
4042 /*
4043 * next_balance will be updated only when there is a need.
4044 * When the cpu is attached to null domain for ex, it will not be
4045 * updated.
4046 */
4047 if (likely(update_next_balance))
4048 rq->next_balance = next_balance;
a0e90245
RR
4049
4050 free_cpumask_var(tmp);
46cb4b7c
SS
4051}
4052
4053/*
4054 * run_rebalance_domains is triggered when needed from the scheduler tick.
4055 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4056 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4057 */
4058static void run_rebalance_domains(struct softirq_action *h)
4059{
dd41f596
IM
4060 int this_cpu = smp_processor_id();
4061 struct rq *this_rq = cpu_rq(this_cpu);
4062 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4063 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4064
dd41f596 4065 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4066
4067#ifdef CONFIG_NO_HZ
4068 /*
4069 * If this cpu is the owner for idle load balancing, then do the
4070 * balancing on behalf of the other idle cpus whose ticks are
4071 * stopped.
4072 */
dd41f596
IM
4073 if (this_rq->idle_at_tick &&
4074 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4075 struct rq *rq;
4076 int balance_cpu;
4077
7d1e6a9b
RR
4078 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4079 if (balance_cpu == this_cpu)
4080 continue;
4081
46cb4b7c
SS
4082 /*
4083 * If this cpu gets work to do, stop the load balancing
4084 * work being done for other cpus. Next load
4085 * balancing owner will pick it up.
4086 */
4087 if (need_resched())
4088 break;
4089
de0cf899 4090 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4091
4092 rq = cpu_rq(balance_cpu);
dd41f596
IM
4093 if (time_after(this_rq->next_balance, rq->next_balance))
4094 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4095 }
4096 }
4097#endif
4098}
4099
4100/*
4101 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4102 *
4103 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4104 * idle load balancing owner or decide to stop the periodic load balancing,
4105 * if the whole system is idle.
4106 */
dd41f596 4107static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4108{
46cb4b7c
SS
4109#ifdef CONFIG_NO_HZ
4110 /*
4111 * If we were in the nohz mode recently and busy at the current
4112 * scheduler tick, then check if we need to nominate new idle
4113 * load balancer.
4114 */
4115 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4116 rq->in_nohz_recently = 0;
4117
4118 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4119 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4120 atomic_set(&nohz.load_balancer, -1);
4121 }
4122
4123 if (atomic_read(&nohz.load_balancer) == -1) {
4124 /*
4125 * simple selection for now: Nominate the
4126 * first cpu in the nohz list to be the next
4127 * ilb owner.
4128 *
4129 * TBD: Traverse the sched domains and nominate
4130 * the nearest cpu in the nohz.cpu_mask.
4131 */
7d1e6a9b 4132 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4133
434d53b0 4134 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4135 resched_cpu(ilb);
4136 }
4137 }
4138
4139 /*
4140 * If this cpu is idle and doing idle load balancing for all the
4141 * cpus with ticks stopped, is it time for that to stop?
4142 */
4143 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4144 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4145 resched_cpu(cpu);
4146 return;
4147 }
4148
4149 /*
4150 * If this cpu is idle and the idle load balancing is done by
4151 * someone else, then no need raise the SCHED_SOFTIRQ
4152 */
4153 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4154 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4155 return;
4156#endif
4157 if (time_after_eq(jiffies, rq->next_balance))
4158 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4159}
dd41f596
IM
4160
4161#else /* CONFIG_SMP */
4162
1da177e4
LT
4163/*
4164 * on UP we do not need to balance between CPUs:
4165 */
70b97a7f 4166static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4167{
4168}
dd41f596 4169
1da177e4
LT
4170#endif
4171
1da177e4
LT
4172DEFINE_PER_CPU(struct kernel_stat, kstat);
4173
4174EXPORT_PER_CPU_SYMBOL(kstat);
4175
4176/*
f06febc9
FM
4177 * Return any ns on the sched_clock that have not yet been banked in
4178 * @p in case that task is currently running.
1da177e4 4179 */
bb34d92f 4180unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4181{
1da177e4 4182 unsigned long flags;
41b86e9c 4183 struct rq *rq;
bb34d92f 4184 u64 ns = 0;
48f24c4d 4185
41b86e9c 4186 rq = task_rq_lock(p, &flags);
1508487e 4187
051a1d1a 4188 if (task_current(rq, p)) {
f06febc9
FM
4189 u64 delta_exec;
4190
a8e504d2
IM
4191 update_rq_clock(rq);
4192 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4193 if ((s64)delta_exec > 0)
bb34d92f 4194 ns = delta_exec;
41b86e9c 4195 }
48f24c4d 4196
41b86e9c 4197 task_rq_unlock(rq, &flags);
48f24c4d 4198
1da177e4
LT
4199 return ns;
4200}
4201
1da177e4
LT
4202/*
4203 * Account user cpu time to a process.
4204 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4205 * @cputime: the cpu time spent in user space since the last update
4206 */
4207void account_user_time(struct task_struct *p, cputime_t cputime)
4208{
4209 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4210 cputime64_t tmp;
4211
4212 p->utime = cputime_add(p->utime, cputime);
f06febc9 4213 account_group_user_time(p, cputime);
1da177e4
LT
4214
4215 /* Add user time to cpustat. */
4216 tmp = cputime_to_cputime64(cputime);
4217 if (TASK_NICE(p) > 0)
4218 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4219 else
4220 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4221 /* Account for user time used */
4222 acct_update_integrals(p);
1da177e4
LT
4223}
4224
94886b84
LV
4225/*
4226 * Account guest cpu time to a process.
4227 * @p: the process that the cpu time gets accounted to
4228 * @cputime: the cpu time spent in virtual machine since the last update
4229 */
f7402e03 4230static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4231{
4232 cputime64_t tmp;
4233 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4234
4235 tmp = cputime_to_cputime64(cputime);
4236
4237 p->utime = cputime_add(p->utime, cputime);
f06febc9 4238 account_group_user_time(p, cputime);
94886b84
LV
4239 p->gtime = cputime_add(p->gtime, cputime);
4240
4241 cpustat->user = cputime64_add(cpustat->user, tmp);
4242 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4243}
4244
c66f08be
MN
4245/*
4246 * Account scaled user cpu time to a process.
4247 * @p: the process that the cpu time gets accounted to
4248 * @cputime: the cpu time spent in user space since the last update
4249 */
4250void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4251{
4252 p->utimescaled = cputime_add(p->utimescaled, cputime);
4253}
4254
1da177e4
LT
4255/*
4256 * Account system cpu time to a process.
4257 * @p: the process that the cpu time gets accounted to
4258 * @hardirq_offset: the offset to subtract from hardirq_count()
4259 * @cputime: the cpu time spent in kernel space since the last update
4260 */
4261void account_system_time(struct task_struct *p, int hardirq_offset,
4262 cputime_t cputime)
4263{
4264 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4265 struct rq *rq = this_rq();
1da177e4
LT
4266 cputime64_t tmp;
4267
983ed7a6
HH
4268 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4269 account_guest_time(p, cputime);
4270 return;
4271 }
94886b84 4272
1da177e4 4273 p->stime = cputime_add(p->stime, cputime);
f06febc9 4274 account_group_system_time(p, cputime);
1da177e4
LT
4275
4276 /* Add system time to cpustat. */
4277 tmp = cputime_to_cputime64(cputime);
4278 if (hardirq_count() - hardirq_offset)
4279 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4280 else if (softirq_count())
4281 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4282 else if (p != rq->idle)
1da177e4 4283 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4284 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4285 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4286 else
4287 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4288 /* Account for system time used */
4289 acct_update_integrals(p);
1da177e4
LT
4290}
4291
c66f08be
MN
4292/*
4293 * Account scaled system cpu time to a process.
4294 * @p: the process that the cpu time gets accounted to
4295 * @hardirq_offset: the offset to subtract from hardirq_count()
4296 * @cputime: the cpu time spent in kernel space since the last update
4297 */
4298void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4299{
4300 p->stimescaled = cputime_add(p->stimescaled, cputime);
4301}
4302
1da177e4
LT
4303/*
4304 * Account for involuntary wait time.
4305 * @p: the process from which the cpu time has been stolen
4306 * @steal: the cpu time spent in involuntary wait
4307 */
4308void account_steal_time(struct task_struct *p, cputime_t steal)
4309{
4310 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4311 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4312 struct rq *rq = this_rq();
1da177e4
LT
4313
4314 if (p == rq->idle) {
4315 p->stime = cputime_add(p->stime, steal);
4316 if (atomic_read(&rq->nr_iowait) > 0)
4317 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4318 else
4319 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4320 } else
1da177e4
LT
4321 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4322}
4323
49048622
BS
4324/*
4325 * Use precise platform statistics if available:
4326 */
4327#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4328cputime_t task_utime(struct task_struct *p)
4329{
4330 return p->utime;
4331}
4332
4333cputime_t task_stime(struct task_struct *p)
4334{
4335 return p->stime;
4336}
4337#else
4338cputime_t task_utime(struct task_struct *p)
4339{
4340 clock_t utime = cputime_to_clock_t(p->utime),
4341 total = utime + cputime_to_clock_t(p->stime);
4342 u64 temp;
4343
4344 /*
4345 * Use CFS's precise accounting:
4346 */
4347 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4348
4349 if (total) {
4350 temp *= utime;
4351 do_div(temp, total);
4352 }
4353 utime = (clock_t)temp;
4354
4355 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4356 return p->prev_utime;
4357}
4358
4359cputime_t task_stime(struct task_struct *p)
4360{
4361 clock_t stime;
4362
4363 /*
4364 * Use CFS's precise accounting. (we subtract utime from
4365 * the total, to make sure the total observed by userspace
4366 * grows monotonically - apps rely on that):
4367 */
4368 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4369 cputime_to_clock_t(task_utime(p));
4370
4371 if (stime >= 0)
4372 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4373
4374 return p->prev_stime;
4375}
4376#endif
4377
4378inline cputime_t task_gtime(struct task_struct *p)
4379{
4380 return p->gtime;
4381}
4382
7835b98b
CL
4383/*
4384 * This function gets called by the timer code, with HZ frequency.
4385 * We call it with interrupts disabled.
4386 *
4387 * It also gets called by the fork code, when changing the parent's
4388 * timeslices.
4389 */
4390void scheduler_tick(void)
4391{
7835b98b
CL
4392 int cpu = smp_processor_id();
4393 struct rq *rq = cpu_rq(cpu);
dd41f596 4394 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4395
4396 sched_clock_tick();
dd41f596
IM
4397
4398 spin_lock(&rq->lock);
3e51f33f 4399 update_rq_clock(rq);
f1a438d8 4400 update_cpu_load(rq);
fa85ae24 4401 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4402 spin_unlock(&rq->lock);
7835b98b 4403
e418e1c2 4404#ifdef CONFIG_SMP
dd41f596
IM
4405 rq->idle_at_tick = idle_cpu(cpu);
4406 trigger_load_balance(rq, cpu);
e418e1c2 4407#endif
1da177e4
LT
4408}
4409
6cd8a4bb
SR
4410#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4411 defined(CONFIG_PREEMPT_TRACER))
4412
4413static inline unsigned long get_parent_ip(unsigned long addr)
4414{
4415 if (in_lock_functions(addr)) {
4416 addr = CALLER_ADDR2;
4417 if (in_lock_functions(addr))
4418 addr = CALLER_ADDR3;
4419 }
4420 return addr;
4421}
1da177e4 4422
43627582 4423void __kprobes add_preempt_count(int val)
1da177e4 4424{
6cd8a4bb 4425#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4426 /*
4427 * Underflow?
4428 */
9a11b49a
IM
4429 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4430 return;
6cd8a4bb 4431#endif
1da177e4 4432 preempt_count() += val;
6cd8a4bb 4433#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4434 /*
4435 * Spinlock count overflowing soon?
4436 */
33859f7f
MOS
4437 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4438 PREEMPT_MASK - 10);
6cd8a4bb
SR
4439#endif
4440 if (preempt_count() == val)
4441 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4442}
4443EXPORT_SYMBOL(add_preempt_count);
4444
43627582 4445void __kprobes sub_preempt_count(int val)
1da177e4 4446{
6cd8a4bb 4447#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4448 /*
4449 * Underflow?
4450 */
7317d7b8 4451 if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
9a11b49a 4452 return;
1da177e4
LT
4453 /*
4454 * Is the spinlock portion underflowing?
4455 */
9a11b49a
IM
4456 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4457 !(preempt_count() & PREEMPT_MASK)))
4458 return;
6cd8a4bb 4459#endif
9a11b49a 4460
6cd8a4bb
SR
4461 if (preempt_count() == val)
4462 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4463 preempt_count() -= val;
4464}
4465EXPORT_SYMBOL(sub_preempt_count);
4466
4467#endif
4468
4469/*
dd41f596 4470 * Print scheduling while atomic bug:
1da177e4 4471 */
dd41f596 4472static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4473{
838225b4
SS
4474 struct pt_regs *regs = get_irq_regs();
4475
4476 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4477 prev->comm, prev->pid, preempt_count());
4478
dd41f596 4479 debug_show_held_locks(prev);
e21f5b15 4480 print_modules();
dd41f596
IM
4481 if (irqs_disabled())
4482 print_irqtrace_events(prev);
838225b4
SS
4483
4484 if (regs)
4485 show_regs(regs);
4486 else
4487 dump_stack();
dd41f596 4488}
1da177e4 4489
dd41f596
IM
4490/*
4491 * Various schedule()-time debugging checks and statistics:
4492 */
4493static inline void schedule_debug(struct task_struct *prev)
4494{
1da177e4 4495 /*
41a2d6cf 4496 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4497 * schedule() atomically, we ignore that path for now.
4498 * Otherwise, whine if we are scheduling when we should not be.
4499 */
3f33a7ce 4500 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4501 __schedule_bug(prev);
4502
1da177e4
LT
4503 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4504
2d72376b 4505 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4506#ifdef CONFIG_SCHEDSTATS
4507 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4508 schedstat_inc(this_rq(), bkl_count);
4509 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4510 }
4511#endif
dd41f596
IM
4512}
4513
4514/*
4515 * Pick up the highest-prio task:
4516 */
4517static inline struct task_struct *
ff95f3df 4518pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4519{
5522d5d5 4520 const struct sched_class *class;
dd41f596 4521 struct task_struct *p;
1da177e4
LT
4522
4523 /*
dd41f596
IM
4524 * Optimization: we know that if all tasks are in
4525 * the fair class we can call that function directly:
1da177e4 4526 */
dd41f596 4527 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4528 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4529 if (likely(p))
4530 return p;
1da177e4
LT
4531 }
4532
dd41f596
IM
4533 class = sched_class_highest;
4534 for ( ; ; ) {
fb8d4724 4535 p = class->pick_next_task(rq);
dd41f596
IM
4536 if (p)
4537 return p;
4538 /*
4539 * Will never be NULL as the idle class always
4540 * returns a non-NULL p:
4541 */
4542 class = class->next;
4543 }
4544}
1da177e4 4545
dd41f596
IM
4546/*
4547 * schedule() is the main scheduler function.
4548 */
4549asmlinkage void __sched schedule(void)
4550{
4551 struct task_struct *prev, *next;
67ca7bde 4552 unsigned long *switch_count;
dd41f596 4553 struct rq *rq;
31656519 4554 int cpu;
dd41f596
IM
4555
4556need_resched:
4557 preempt_disable();
4558 cpu = smp_processor_id();
4559 rq = cpu_rq(cpu);
4560 rcu_qsctr_inc(cpu);
4561 prev = rq->curr;
4562 switch_count = &prev->nivcsw;
4563
4564 release_kernel_lock(prev);
4565need_resched_nonpreemptible:
4566
4567 schedule_debug(prev);
1da177e4 4568
31656519 4569 if (sched_feat(HRTICK))
f333fdc9 4570 hrtick_clear(rq);
8f4d37ec 4571
8cd162ce 4572 spin_lock_irq(&rq->lock);
3e51f33f 4573 update_rq_clock(rq);
1e819950 4574 clear_tsk_need_resched(prev);
1da177e4 4575
1da177e4 4576 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4577 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4578 prev->state = TASK_RUNNING;
16882c1e 4579 else
2e1cb74a 4580 deactivate_task(rq, prev, 1);
dd41f596 4581 switch_count = &prev->nvcsw;
1da177e4
LT
4582 }
4583
9a897c5a
SR
4584#ifdef CONFIG_SMP
4585 if (prev->sched_class->pre_schedule)
4586 prev->sched_class->pre_schedule(rq, prev);
4587#endif
f65eda4f 4588
dd41f596 4589 if (unlikely(!rq->nr_running))
1da177e4 4590 idle_balance(cpu, rq);
1da177e4 4591
31ee529c 4592 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4593 next = pick_next_task(rq, prev);
1da177e4 4594
1da177e4 4595 if (likely(prev != next)) {
673a90a1
DS
4596 sched_info_switch(prev, next);
4597
1da177e4
LT
4598 rq->nr_switches++;
4599 rq->curr = next;
4600 ++*switch_count;
4601
dd41f596 4602 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4603 /*
4604 * the context switch might have flipped the stack from under
4605 * us, hence refresh the local variables.
4606 */
4607 cpu = smp_processor_id();
4608 rq = cpu_rq(cpu);
1da177e4
LT
4609 } else
4610 spin_unlock_irq(&rq->lock);
4611
8f4d37ec 4612 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4613 goto need_resched_nonpreemptible;
8f4d37ec 4614
1da177e4
LT
4615 preempt_enable_no_resched();
4616 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4617 goto need_resched;
4618}
1da177e4
LT
4619EXPORT_SYMBOL(schedule);
4620
4621#ifdef CONFIG_PREEMPT
4622/*
2ed6e34f 4623 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4624 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4625 * occur there and call schedule directly.
4626 */
4627asmlinkage void __sched preempt_schedule(void)
4628{
4629 struct thread_info *ti = current_thread_info();
6478d880 4630
1da177e4
LT
4631 /*
4632 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4633 * we do not want to preempt the current task. Just return..
1da177e4 4634 */
beed33a8 4635 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4636 return;
4637
3a5c359a
AK
4638 do {
4639 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4640 schedule();
3a5c359a 4641 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4642
3a5c359a
AK
4643 /*
4644 * Check again in case we missed a preemption opportunity
4645 * between schedule and now.
4646 */
4647 barrier();
4648 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4649}
1da177e4
LT
4650EXPORT_SYMBOL(preempt_schedule);
4651
4652/*
2ed6e34f 4653 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4654 * off of irq context.
4655 * Note, that this is called and return with irqs disabled. This will
4656 * protect us against recursive calling from irq.
4657 */
4658asmlinkage void __sched preempt_schedule_irq(void)
4659{
4660 struct thread_info *ti = current_thread_info();
6478d880 4661
2ed6e34f 4662 /* Catch callers which need to be fixed */
1da177e4
LT
4663 BUG_ON(ti->preempt_count || !irqs_disabled());
4664
3a5c359a
AK
4665 do {
4666 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4667 local_irq_enable();
4668 schedule();
4669 local_irq_disable();
3a5c359a 4670 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4671
3a5c359a
AK
4672 /*
4673 * Check again in case we missed a preemption opportunity
4674 * between schedule and now.
4675 */
4676 barrier();
4677 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4678}
4679
4680#endif /* CONFIG_PREEMPT */
4681
95cdf3b7
IM
4682int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4683 void *key)
1da177e4 4684{
48f24c4d 4685 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4686}
1da177e4
LT
4687EXPORT_SYMBOL(default_wake_function);
4688
4689/*
41a2d6cf
IM
4690 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4691 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4692 * number) then we wake all the non-exclusive tasks and one exclusive task.
4693 *
4694 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4695 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4696 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4697 */
4698static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4699 int nr_exclusive, int sync, void *key)
4700{
2e45874c 4701 wait_queue_t *curr, *next;
1da177e4 4702
2e45874c 4703 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4704 unsigned flags = curr->flags;
4705
1da177e4 4706 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4707 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4708 break;
4709 }
4710}
4711
4712/**
4713 * __wake_up - wake up threads blocked on a waitqueue.
4714 * @q: the waitqueue
4715 * @mode: which threads
4716 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4717 * @key: is directly passed to the wakeup function
1da177e4 4718 */
7ad5b3a5 4719void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4720 int nr_exclusive, void *key)
1da177e4
LT
4721{
4722 unsigned long flags;
4723
4724 spin_lock_irqsave(&q->lock, flags);
4725 __wake_up_common(q, mode, nr_exclusive, 0, key);
4726 spin_unlock_irqrestore(&q->lock, flags);
4727}
1da177e4
LT
4728EXPORT_SYMBOL(__wake_up);
4729
4730/*
4731 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4732 */
7ad5b3a5 4733void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4734{
4735 __wake_up_common(q, mode, 1, 0, NULL);
4736}
4737
4738/**
67be2dd1 4739 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4740 * @q: the waitqueue
4741 * @mode: which threads
4742 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4743 *
4744 * The sync wakeup differs that the waker knows that it will schedule
4745 * away soon, so while the target thread will be woken up, it will not
4746 * be migrated to another CPU - ie. the two threads are 'synchronized'
4747 * with each other. This can prevent needless bouncing between CPUs.
4748 *
4749 * On UP it can prevent extra preemption.
4750 */
7ad5b3a5 4751void
95cdf3b7 4752__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4753{
4754 unsigned long flags;
4755 int sync = 1;
4756
4757 if (unlikely(!q))
4758 return;
4759
4760 if (unlikely(!nr_exclusive))
4761 sync = 0;
4762
4763 spin_lock_irqsave(&q->lock, flags);
4764 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4765 spin_unlock_irqrestore(&q->lock, flags);
4766}
4767EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4768
65eb3dc6
KD
4769/**
4770 * complete: - signals a single thread waiting on this completion
4771 * @x: holds the state of this particular completion
4772 *
4773 * This will wake up a single thread waiting on this completion. Threads will be
4774 * awakened in the same order in which they were queued.
4775 *
4776 * See also complete_all(), wait_for_completion() and related routines.
4777 */
b15136e9 4778void complete(struct completion *x)
1da177e4
LT
4779{
4780 unsigned long flags;
4781
4782 spin_lock_irqsave(&x->wait.lock, flags);
4783 x->done++;
d9514f6c 4784 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4785 spin_unlock_irqrestore(&x->wait.lock, flags);
4786}
4787EXPORT_SYMBOL(complete);
4788
65eb3dc6
KD
4789/**
4790 * complete_all: - signals all threads waiting on this completion
4791 * @x: holds the state of this particular completion
4792 *
4793 * This will wake up all threads waiting on this particular completion event.
4794 */
b15136e9 4795void complete_all(struct completion *x)
1da177e4
LT
4796{
4797 unsigned long flags;
4798
4799 spin_lock_irqsave(&x->wait.lock, flags);
4800 x->done += UINT_MAX/2;
d9514f6c 4801 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4802 spin_unlock_irqrestore(&x->wait.lock, flags);
4803}
4804EXPORT_SYMBOL(complete_all);
4805
8cbbe86d
AK
4806static inline long __sched
4807do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4808{
1da177e4
LT
4809 if (!x->done) {
4810 DECLARE_WAITQUEUE(wait, current);
4811
4812 wait.flags |= WQ_FLAG_EXCLUSIVE;
4813 __add_wait_queue_tail(&x->wait, &wait);
4814 do {
94d3d824 4815 if (signal_pending_state(state, current)) {
ea71a546
ON
4816 timeout = -ERESTARTSYS;
4817 break;
8cbbe86d
AK
4818 }
4819 __set_current_state(state);
1da177e4
LT
4820 spin_unlock_irq(&x->wait.lock);
4821 timeout = schedule_timeout(timeout);
4822 spin_lock_irq(&x->wait.lock);
ea71a546 4823 } while (!x->done && timeout);
1da177e4 4824 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4825 if (!x->done)
4826 return timeout;
1da177e4
LT
4827 }
4828 x->done--;
ea71a546 4829 return timeout ?: 1;
1da177e4 4830}
1da177e4 4831
8cbbe86d
AK
4832static long __sched
4833wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4834{
1da177e4
LT
4835 might_sleep();
4836
4837 spin_lock_irq(&x->wait.lock);
8cbbe86d 4838 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4839 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4840 return timeout;
4841}
1da177e4 4842
65eb3dc6
KD
4843/**
4844 * wait_for_completion: - waits for completion of a task
4845 * @x: holds the state of this particular completion
4846 *
4847 * This waits to be signaled for completion of a specific task. It is NOT
4848 * interruptible and there is no timeout.
4849 *
4850 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4851 * and interrupt capability. Also see complete().
4852 */
b15136e9 4853void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4854{
4855 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4856}
8cbbe86d 4857EXPORT_SYMBOL(wait_for_completion);
1da177e4 4858
65eb3dc6
KD
4859/**
4860 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4861 * @x: holds the state of this particular completion
4862 * @timeout: timeout value in jiffies
4863 *
4864 * This waits for either a completion of a specific task to be signaled or for a
4865 * specified timeout to expire. The timeout is in jiffies. It is not
4866 * interruptible.
4867 */
b15136e9 4868unsigned long __sched
8cbbe86d 4869wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4870{
8cbbe86d 4871 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4872}
8cbbe86d 4873EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4874
65eb3dc6
KD
4875/**
4876 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4877 * @x: holds the state of this particular completion
4878 *
4879 * This waits for completion of a specific task to be signaled. It is
4880 * interruptible.
4881 */
8cbbe86d 4882int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4883{
51e97990
AK
4884 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4885 if (t == -ERESTARTSYS)
4886 return t;
4887 return 0;
0fec171c 4888}
8cbbe86d 4889EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4890
65eb3dc6
KD
4891/**
4892 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4893 * @x: holds the state of this particular completion
4894 * @timeout: timeout value in jiffies
4895 *
4896 * This waits for either a completion of a specific task to be signaled or for a
4897 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4898 */
b15136e9 4899unsigned long __sched
8cbbe86d
AK
4900wait_for_completion_interruptible_timeout(struct completion *x,
4901 unsigned long timeout)
0fec171c 4902{
8cbbe86d 4903 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4904}
8cbbe86d 4905EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4906
65eb3dc6
KD
4907/**
4908 * wait_for_completion_killable: - waits for completion of a task (killable)
4909 * @x: holds the state of this particular completion
4910 *
4911 * This waits to be signaled for completion of a specific task. It can be
4912 * interrupted by a kill signal.
4913 */
009e577e
MW
4914int __sched wait_for_completion_killable(struct completion *x)
4915{
4916 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4917 if (t == -ERESTARTSYS)
4918 return t;
4919 return 0;
4920}
4921EXPORT_SYMBOL(wait_for_completion_killable);
4922
be4de352
DC
4923/**
4924 * try_wait_for_completion - try to decrement a completion without blocking
4925 * @x: completion structure
4926 *
4927 * Returns: 0 if a decrement cannot be done without blocking
4928 * 1 if a decrement succeeded.
4929 *
4930 * If a completion is being used as a counting completion,
4931 * attempt to decrement the counter without blocking. This
4932 * enables us to avoid waiting if the resource the completion
4933 * is protecting is not available.
4934 */
4935bool try_wait_for_completion(struct completion *x)
4936{
4937 int ret = 1;
4938
4939 spin_lock_irq(&x->wait.lock);
4940 if (!x->done)
4941 ret = 0;
4942 else
4943 x->done--;
4944 spin_unlock_irq(&x->wait.lock);
4945 return ret;
4946}
4947EXPORT_SYMBOL(try_wait_for_completion);
4948
4949/**
4950 * completion_done - Test to see if a completion has any waiters
4951 * @x: completion structure
4952 *
4953 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4954 * 1 if there are no waiters.
4955 *
4956 */
4957bool completion_done(struct completion *x)
4958{
4959 int ret = 1;
4960
4961 spin_lock_irq(&x->wait.lock);
4962 if (!x->done)
4963 ret = 0;
4964 spin_unlock_irq(&x->wait.lock);
4965 return ret;
4966}
4967EXPORT_SYMBOL(completion_done);
4968
8cbbe86d
AK
4969static long __sched
4970sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4971{
0fec171c
IM
4972 unsigned long flags;
4973 wait_queue_t wait;
4974
4975 init_waitqueue_entry(&wait, current);
1da177e4 4976
8cbbe86d 4977 __set_current_state(state);
1da177e4 4978
8cbbe86d
AK
4979 spin_lock_irqsave(&q->lock, flags);
4980 __add_wait_queue(q, &wait);
4981 spin_unlock(&q->lock);
4982 timeout = schedule_timeout(timeout);
4983 spin_lock_irq(&q->lock);
4984 __remove_wait_queue(q, &wait);
4985 spin_unlock_irqrestore(&q->lock, flags);
4986
4987 return timeout;
4988}
4989
4990void __sched interruptible_sleep_on(wait_queue_head_t *q)
4991{
4992 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4993}
1da177e4
LT
4994EXPORT_SYMBOL(interruptible_sleep_on);
4995
0fec171c 4996long __sched
95cdf3b7 4997interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4998{
8cbbe86d 4999 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5000}
1da177e4
LT
5001EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5002
0fec171c 5003void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5004{
8cbbe86d 5005 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5006}
1da177e4
LT
5007EXPORT_SYMBOL(sleep_on);
5008
0fec171c 5009long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5010{
8cbbe86d 5011 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5012}
1da177e4
LT
5013EXPORT_SYMBOL(sleep_on_timeout);
5014
b29739f9
IM
5015#ifdef CONFIG_RT_MUTEXES
5016
5017/*
5018 * rt_mutex_setprio - set the current priority of a task
5019 * @p: task
5020 * @prio: prio value (kernel-internal form)
5021 *
5022 * This function changes the 'effective' priority of a task. It does
5023 * not touch ->normal_prio like __setscheduler().
5024 *
5025 * Used by the rt_mutex code to implement priority inheritance logic.
5026 */
36c8b586 5027void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5028{
5029 unsigned long flags;
83b699ed 5030 int oldprio, on_rq, running;
70b97a7f 5031 struct rq *rq;
cb469845 5032 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5033
5034 BUG_ON(prio < 0 || prio > MAX_PRIO);
5035
5036 rq = task_rq_lock(p, &flags);
a8e504d2 5037 update_rq_clock(rq);
b29739f9 5038
d5f9f942 5039 oldprio = p->prio;
dd41f596 5040 on_rq = p->se.on_rq;
051a1d1a 5041 running = task_current(rq, p);
0e1f3483 5042 if (on_rq)
69be72c1 5043 dequeue_task(rq, p, 0);
0e1f3483
HS
5044 if (running)
5045 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5046
5047 if (rt_prio(prio))
5048 p->sched_class = &rt_sched_class;
5049 else
5050 p->sched_class = &fair_sched_class;
5051
b29739f9
IM
5052 p->prio = prio;
5053
0e1f3483
HS
5054 if (running)
5055 p->sched_class->set_curr_task(rq);
dd41f596 5056 if (on_rq) {
8159f87e 5057 enqueue_task(rq, p, 0);
cb469845
SR
5058
5059 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5060 }
5061 task_rq_unlock(rq, &flags);
5062}
5063
5064#endif
5065
36c8b586 5066void set_user_nice(struct task_struct *p, long nice)
1da177e4 5067{
dd41f596 5068 int old_prio, delta, on_rq;
1da177e4 5069 unsigned long flags;
70b97a7f 5070 struct rq *rq;
1da177e4
LT
5071
5072 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5073 return;
5074 /*
5075 * We have to be careful, if called from sys_setpriority(),
5076 * the task might be in the middle of scheduling on another CPU.
5077 */
5078 rq = task_rq_lock(p, &flags);
a8e504d2 5079 update_rq_clock(rq);
1da177e4
LT
5080 /*
5081 * The RT priorities are set via sched_setscheduler(), but we still
5082 * allow the 'normal' nice value to be set - but as expected
5083 * it wont have any effect on scheduling until the task is
dd41f596 5084 * SCHED_FIFO/SCHED_RR:
1da177e4 5085 */
e05606d3 5086 if (task_has_rt_policy(p)) {
1da177e4
LT
5087 p->static_prio = NICE_TO_PRIO(nice);
5088 goto out_unlock;
5089 }
dd41f596 5090 on_rq = p->se.on_rq;
c09595f6 5091 if (on_rq)
69be72c1 5092 dequeue_task(rq, p, 0);
1da177e4 5093
1da177e4 5094 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5095 set_load_weight(p);
b29739f9
IM
5096 old_prio = p->prio;
5097 p->prio = effective_prio(p);
5098 delta = p->prio - old_prio;
1da177e4 5099
dd41f596 5100 if (on_rq) {
8159f87e 5101 enqueue_task(rq, p, 0);
1da177e4 5102 /*
d5f9f942
AM
5103 * If the task increased its priority or is running and
5104 * lowered its priority, then reschedule its CPU:
1da177e4 5105 */
d5f9f942 5106 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5107 resched_task(rq->curr);
5108 }
5109out_unlock:
5110 task_rq_unlock(rq, &flags);
5111}
1da177e4
LT
5112EXPORT_SYMBOL(set_user_nice);
5113
e43379f1
MM
5114/*
5115 * can_nice - check if a task can reduce its nice value
5116 * @p: task
5117 * @nice: nice value
5118 */
36c8b586 5119int can_nice(const struct task_struct *p, const int nice)
e43379f1 5120{
024f4747
MM
5121 /* convert nice value [19,-20] to rlimit style value [1,40] */
5122 int nice_rlim = 20 - nice;
48f24c4d 5123
e43379f1
MM
5124 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5125 capable(CAP_SYS_NICE));
5126}
5127
1da177e4
LT
5128#ifdef __ARCH_WANT_SYS_NICE
5129
5130/*
5131 * sys_nice - change the priority of the current process.
5132 * @increment: priority increment
5133 *
5134 * sys_setpriority is a more generic, but much slower function that
5135 * does similar things.
5136 */
5137asmlinkage long sys_nice(int increment)
5138{
48f24c4d 5139 long nice, retval;
1da177e4
LT
5140
5141 /*
5142 * Setpriority might change our priority at the same moment.
5143 * We don't have to worry. Conceptually one call occurs first
5144 * and we have a single winner.
5145 */
e43379f1
MM
5146 if (increment < -40)
5147 increment = -40;
1da177e4
LT
5148 if (increment > 40)
5149 increment = 40;
5150
5151 nice = PRIO_TO_NICE(current->static_prio) + increment;
5152 if (nice < -20)
5153 nice = -20;
5154 if (nice > 19)
5155 nice = 19;
5156
e43379f1
MM
5157 if (increment < 0 && !can_nice(current, nice))
5158 return -EPERM;
5159
1da177e4
LT
5160 retval = security_task_setnice(current, nice);
5161 if (retval)
5162 return retval;
5163
5164 set_user_nice(current, nice);
5165 return 0;
5166}
5167
5168#endif
5169
5170/**
5171 * task_prio - return the priority value of a given task.
5172 * @p: the task in question.
5173 *
5174 * This is the priority value as seen by users in /proc.
5175 * RT tasks are offset by -200. Normal tasks are centered
5176 * around 0, value goes from -16 to +15.
5177 */
36c8b586 5178int task_prio(const struct task_struct *p)
1da177e4
LT
5179{
5180 return p->prio - MAX_RT_PRIO;
5181}
5182
5183/**
5184 * task_nice - return the nice value of a given task.
5185 * @p: the task in question.
5186 */
36c8b586 5187int task_nice(const struct task_struct *p)
1da177e4
LT
5188{
5189 return TASK_NICE(p);
5190}
150d8bed 5191EXPORT_SYMBOL(task_nice);
1da177e4
LT
5192
5193/**
5194 * idle_cpu - is a given cpu idle currently?
5195 * @cpu: the processor in question.
5196 */
5197int idle_cpu(int cpu)
5198{
5199 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5200}
5201
1da177e4
LT
5202/**
5203 * idle_task - return the idle task for a given cpu.
5204 * @cpu: the processor in question.
5205 */
36c8b586 5206struct task_struct *idle_task(int cpu)
1da177e4
LT
5207{
5208 return cpu_rq(cpu)->idle;
5209}
5210
5211/**
5212 * find_process_by_pid - find a process with a matching PID value.
5213 * @pid: the pid in question.
5214 */
a9957449 5215static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5216{
228ebcbe 5217 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5218}
5219
5220/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5221static void
5222__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5223{
dd41f596 5224 BUG_ON(p->se.on_rq);
48f24c4d 5225
1da177e4 5226 p->policy = policy;
dd41f596
IM
5227 switch (p->policy) {
5228 case SCHED_NORMAL:
5229 case SCHED_BATCH:
5230 case SCHED_IDLE:
5231 p->sched_class = &fair_sched_class;
5232 break;
5233 case SCHED_FIFO:
5234 case SCHED_RR:
5235 p->sched_class = &rt_sched_class;
5236 break;
5237 }
5238
1da177e4 5239 p->rt_priority = prio;
b29739f9
IM
5240 p->normal_prio = normal_prio(p);
5241 /* we are holding p->pi_lock already */
5242 p->prio = rt_mutex_getprio(p);
2dd73a4f 5243 set_load_weight(p);
1da177e4
LT
5244}
5245
961ccddd
RR
5246static int __sched_setscheduler(struct task_struct *p, int policy,
5247 struct sched_param *param, bool user)
1da177e4 5248{
83b699ed 5249 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5250 unsigned long flags;
cb469845 5251 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5252 struct rq *rq;
1da177e4 5253
66e5393a
SR
5254 /* may grab non-irq protected spin_locks */
5255 BUG_ON(in_interrupt());
1da177e4
LT
5256recheck:
5257 /* double check policy once rq lock held */
5258 if (policy < 0)
5259 policy = oldpolicy = p->policy;
5260 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5261 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5262 policy != SCHED_IDLE)
b0a9499c 5263 return -EINVAL;
1da177e4
LT
5264 /*
5265 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5266 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5267 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5268 */
5269 if (param->sched_priority < 0 ||
95cdf3b7 5270 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5271 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5272 return -EINVAL;
e05606d3 5273 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5274 return -EINVAL;
5275
37e4ab3f
OC
5276 /*
5277 * Allow unprivileged RT tasks to decrease priority:
5278 */
961ccddd 5279 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5280 if (rt_policy(policy)) {
8dc3e909 5281 unsigned long rlim_rtprio;
8dc3e909
ON
5282
5283 if (!lock_task_sighand(p, &flags))
5284 return -ESRCH;
5285 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5286 unlock_task_sighand(p, &flags);
5287
5288 /* can't set/change the rt policy */
5289 if (policy != p->policy && !rlim_rtprio)
5290 return -EPERM;
5291
5292 /* can't increase priority */
5293 if (param->sched_priority > p->rt_priority &&
5294 param->sched_priority > rlim_rtprio)
5295 return -EPERM;
5296 }
dd41f596
IM
5297 /*
5298 * Like positive nice levels, dont allow tasks to
5299 * move out of SCHED_IDLE either:
5300 */
5301 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5302 return -EPERM;
5fe1d75f 5303
37e4ab3f
OC
5304 /* can't change other user's priorities */
5305 if ((current->euid != p->euid) &&
5306 (current->euid != p->uid))
5307 return -EPERM;
5308 }
1da177e4 5309
725aad24 5310 if (user) {
b68aa230 5311#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5312 /*
5313 * Do not allow realtime tasks into groups that have no runtime
5314 * assigned.
5315 */
9a7e0b18
PZ
5316 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5317 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5318 return -EPERM;
b68aa230
PZ
5319#endif
5320
725aad24
JF
5321 retval = security_task_setscheduler(p, policy, param);
5322 if (retval)
5323 return retval;
5324 }
5325
b29739f9
IM
5326 /*
5327 * make sure no PI-waiters arrive (or leave) while we are
5328 * changing the priority of the task:
5329 */
5330 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5331 /*
5332 * To be able to change p->policy safely, the apropriate
5333 * runqueue lock must be held.
5334 */
b29739f9 5335 rq = __task_rq_lock(p);
1da177e4
LT
5336 /* recheck policy now with rq lock held */
5337 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5338 policy = oldpolicy = -1;
b29739f9
IM
5339 __task_rq_unlock(rq);
5340 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5341 goto recheck;
5342 }
2daa3577 5343 update_rq_clock(rq);
dd41f596 5344 on_rq = p->se.on_rq;
051a1d1a 5345 running = task_current(rq, p);
0e1f3483 5346 if (on_rq)
2e1cb74a 5347 deactivate_task(rq, p, 0);
0e1f3483
HS
5348 if (running)
5349 p->sched_class->put_prev_task(rq, p);
f6b53205 5350
1da177e4 5351 oldprio = p->prio;
dd41f596 5352 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5353
0e1f3483
HS
5354 if (running)
5355 p->sched_class->set_curr_task(rq);
dd41f596
IM
5356 if (on_rq) {
5357 activate_task(rq, p, 0);
cb469845
SR
5358
5359 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5360 }
b29739f9
IM
5361 __task_rq_unlock(rq);
5362 spin_unlock_irqrestore(&p->pi_lock, flags);
5363
95e02ca9
TG
5364 rt_mutex_adjust_pi(p);
5365
1da177e4
LT
5366 return 0;
5367}
961ccddd
RR
5368
5369/**
5370 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5371 * @p: the task in question.
5372 * @policy: new policy.
5373 * @param: structure containing the new RT priority.
5374 *
5375 * NOTE that the task may be already dead.
5376 */
5377int sched_setscheduler(struct task_struct *p, int policy,
5378 struct sched_param *param)
5379{
5380 return __sched_setscheduler(p, policy, param, true);
5381}
1da177e4
LT
5382EXPORT_SYMBOL_GPL(sched_setscheduler);
5383
961ccddd
RR
5384/**
5385 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5386 * @p: the task in question.
5387 * @policy: new policy.
5388 * @param: structure containing the new RT priority.
5389 *
5390 * Just like sched_setscheduler, only don't bother checking if the
5391 * current context has permission. For example, this is needed in
5392 * stop_machine(): we create temporary high priority worker threads,
5393 * but our caller might not have that capability.
5394 */
5395int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5396 struct sched_param *param)
5397{
5398 return __sched_setscheduler(p, policy, param, false);
5399}
5400
95cdf3b7
IM
5401static int
5402do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5403{
1da177e4
LT
5404 struct sched_param lparam;
5405 struct task_struct *p;
36c8b586 5406 int retval;
1da177e4
LT
5407
5408 if (!param || pid < 0)
5409 return -EINVAL;
5410 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5411 return -EFAULT;
5fe1d75f
ON
5412
5413 rcu_read_lock();
5414 retval = -ESRCH;
1da177e4 5415 p = find_process_by_pid(pid);
5fe1d75f
ON
5416 if (p != NULL)
5417 retval = sched_setscheduler(p, policy, &lparam);
5418 rcu_read_unlock();
36c8b586 5419
1da177e4
LT
5420 return retval;
5421}
5422
5423/**
5424 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5425 * @pid: the pid in question.
5426 * @policy: new policy.
5427 * @param: structure containing the new RT priority.
5428 */
41a2d6cf
IM
5429asmlinkage long
5430sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5431{
c21761f1
JB
5432 /* negative values for policy are not valid */
5433 if (policy < 0)
5434 return -EINVAL;
5435
1da177e4
LT
5436 return do_sched_setscheduler(pid, policy, param);
5437}
5438
5439/**
5440 * sys_sched_setparam - set/change the RT priority of a thread
5441 * @pid: the pid in question.
5442 * @param: structure containing the new RT priority.
5443 */
5444asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5445{
5446 return do_sched_setscheduler(pid, -1, param);
5447}
5448
5449/**
5450 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5451 * @pid: the pid in question.
5452 */
5453asmlinkage long sys_sched_getscheduler(pid_t pid)
5454{
36c8b586 5455 struct task_struct *p;
3a5c359a 5456 int retval;
1da177e4
LT
5457
5458 if (pid < 0)
3a5c359a 5459 return -EINVAL;
1da177e4
LT
5460
5461 retval = -ESRCH;
5462 read_lock(&tasklist_lock);
5463 p = find_process_by_pid(pid);
5464 if (p) {
5465 retval = security_task_getscheduler(p);
5466 if (!retval)
5467 retval = p->policy;
5468 }
5469 read_unlock(&tasklist_lock);
1da177e4
LT
5470 return retval;
5471}
5472
5473/**
5474 * sys_sched_getscheduler - get the RT priority of a thread
5475 * @pid: the pid in question.
5476 * @param: structure containing the RT priority.
5477 */
5478asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5479{
5480 struct sched_param lp;
36c8b586 5481 struct task_struct *p;
3a5c359a 5482 int retval;
1da177e4
LT
5483
5484 if (!param || pid < 0)
3a5c359a 5485 return -EINVAL;
1da177e4
LT
5486
5487 read_lock(&tasklist_lock);
5488 p = find_process_by_pid(pid);
5489 retval = -ESRCH;
5490 if (!p)
5491 goto out_unlock;
5492
5493 retval = security_task_getscheduler(p);
5494 if (retval)
5495 goto out_unlock;
5496
5497 lp.sched_priority = p->rt_priority;
5498 read_unlock(&tasklist_lock);
5499
5500 /*
5501 * This one might sleep, we cannot do it with a spinlock held ...
5502 */
5503 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5504
1da177e4
LT
5505 return retval;
5506
5507out_unlock:
5508 read_unlock(&tasklist_lock);
5509 return retval;
5510}
5511
96f874e2 5512long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5513{
5a16f3d3 5514 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5515 struct task_struct *p;
5516 int retval;
1da177e4 5517
95402b38 5518 get_online_cpus();
1da177e4
LT
5519 read_lock(&tasklist_lock);
5520
5521 p = find_process_by_pid(pid);
5522 if (!p) {
5523 read_unlock(&tasklist_lock);
95402b38 5524 put_online_cpus();
1da177e4
LT
5525 return -ESRCH;
5526 }
5527
5528 /*
5529 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5530 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5531 * usage count and then drop tasklist_lock.
5532 */
5533 get_task_struct(p);
5534 read_unlock(&tasklist_lock);
5535
5a16f3d3
RR
5536 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5537 retval = -ENOMEM;
5538 goto out_put_task;
5539 }
5540 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5541 retval = -ENOMEM;
5542 goto out_free_cpus_allowed;
5543 }
1da177e4
LT
5544 retval = -EPERM;
5545 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5546 !capable(CAP_SYS_NICE))
5547 goto out_unlock;
5548
e7834f8f
DQ
5549 retval = security_task_setscheduler(p, 0, NULL);
5550 if (retval)
5551 goto out_unlock;
5552
5a16f3d3
RR
5553 cpuset_cpus_allowed(p, cpus_allowed);
5554 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5555 again:
5a16f3d3 5556 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5557
8707d8b8 5558 if (!retval) {
5a16f3d3
RR
5559 cpuset_cpus_allowed(p, cpus_allowed);
5560 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5561 /*
5562 * We must have raced with a concurrent cpuset
5563 * update. Just reset the cpus_allowed to the
5564 * cpuset's cpus_allowed
5565 */
5a16f3d3 5566 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5567 goto again;
5568 }
5569 }
1da177e4 5570out_unlock:
5a16f3d3
RR
5571 free_cpumask_var(new_mask);
5572out_free_cpus_allowed:
5573 free_cpumask_var(cpus_allowed);
5574out_put_task:
1da177e4 5575 put_task_struct(p);
95402b38 5576 put_online_cpus();
1da177e4
LT
5577 return retval;
5578}
5579
5580static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5581 struct cpumask *new_mask)
1da177e4 5582{
96f874e2
RR
5583 if (len < cpumask_size())
5584 cpumask_clear(new_mask);
5585 else if (len > cpumask_size())
5586 len = cpumask_size();
5587
1da177e4
LT
5588 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5589}
5590
5591/**
5592 * sys_sched_setaffinity - set the cpu affinity of a process
5593 * @pid: pid of the process
5594 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5595 * @user_mask_ptr: user-space pointer to the new cpu mask
5596 */
5597asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5598 unsigned long __user *user_mask_ptr)
5599{
5a16f3d3 5600 cpumask_var_t new_mask;
1da177e4
LT
5601 int retval;
5602
5a16f3d3
RR
5603 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5604 return -ENOMEM;
1da177e4 5605
5a16f3d3
RR
5606 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5607 if (retval == 0)
5608 retval = sched_setaffinity(pid, new_mask);
5609 free_cpumask_var(new_mask);
5610 return retval;
1da177e4
LT
5611}
5612
96f874e2 5613long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5614{
36c8b586 5615 struct task_struct *p;
1da177e4 5616 int retval;
1da177e4 5617
95402b38 5618 get_online_cpus();
1da177e4
LT
5619 read_lock(&tasklist_lock);
5620
5621 retval = -ESRCH;
5622 p = find_process_by_pid(pid);
5623 if (!p)
5624 goto out_unlock;
5625
e7834f8f
DQ
5626 retval = security_task_getscheduler(p);
5627 if (retval)
5628 goto out_unlock;
5629
96f874e2 5630 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
5631
5632out_unlock:
5633 read_unlock(&tasklist_lock);
95402b38 5634 put_online_cpus();
1da177e4 5635
9531b62f 5636 return retval;
1da177e4
LT
5637}
5638
5639/**
5640 * sys_sched_getaffinity - get the cpu affinity of a process
5641 * @pid: pid of the process
5642 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5643 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5644 */
5645asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5646 unsigned long __user *user_mask_ptr)
5647{
5648 int ret;
f17c8607 5649 cpumask_var_t mask;
1da177e4 5650
f17c8607 5651 if (len < cpumask_size())
1da177e4
LT
5652 return -EINVAL;
5653
f17c8607
RR
5654 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5655 return -ENOMEM;
1da177e4 5656
f17c8607
RR
5657 ret = sched_getaffinity(pid, mask);
5658 if (ret == 0) {
5659 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5660 ret = -EFAULT;
5661 else
5662 ret = cpumask_size();
5663 }
5664 free_cpumask_var(mask);
1da177e4 5665
f17c8607 5666 return ret;
1da177e4
LT
5667}
5668
5669/**
5670 * sys_sched_yield - yield the current processor to other threads.
5671 *
dd41f596
IM
5672 * This function yields the current CPU to other tasks. If there are no
5673 * other threads running on this CPU then this function will return.
1da177e4
LT
5674 */
5675asmlinkage long sys_sched_yield(void)
5676{
70b97a7f 5677 struct rq *rq = this_rq_lock();
1da177e4 5678
2d72376b 5679 schedstat_inc(rq, yld_count);
4530d7ab 5680 current->sched_class->yield_task(rq);
1da177e4
LT
5681
5682 /*
5683 * Since we are going to call schedule() anyway, there's
5684 * no need to preempt or enable interrupts:
5685 */
5686 __release(rq->lock);
8a25d5de 5687 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5688 _raw_spin_unlock(&rq->lock);
5689 preempt_enable_no_resched();
5690
5691 schedule();
5692
5693 return 0;
5694}
5695
e7b38404 5696static void __cond_resched(void)
1da177e4 5697{
8e0a43d8
IM
5698#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5699 __might_sleep(__FILE__, __LINE__);
5700#endif
5bbcfd90
IM
5701 /*
5702 * The BKS might be reacquired before we have dropped
5703 * PREEMPT_ACTIVE, which could trigger a second
5704 * cond_resched() call.
5705 */
1da177e4
LT
5706 do {
5707 add_preempt_count(PREEMPT_ACTIVE);
5708 schedule();
5709 sub_preempt_count(PREEMPT_ACTIVE);
5710 } while (need_resched());
5711}
5712
02b67cc3 5713int __sched _cond_resched(void)
1da177e4 5714{
9414232f
IM
5715 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5716 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5717 __cond_resched();
5718 return 1;
5719 }
5720 return 0;
5721}
02b67cc3 5722EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5723
5724/*
5725 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5726 * call schedule, and on return reacquire the lock.
5727 *
41a2d6cf 5728 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5729 * operations here to prevent schedule() from being called twice (once via
5730 * spin_unlock(), once by hand).
5731 */
95cdf3b7 5732int cond_resched_lock(spinlock_t *lock)
1da177e4 5733{
95c354fe 5734 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5735 int ret = 0;
5736
95c354fe 5737 if (spin_needbreak(lock) || resched) {
1da177e4 5738 spin_unlock(lock);
95c354fe
NP
5739 if (resched && need_resched())
5740 __cond_resched();
5741 else
5742 cpu_relax();
6df3cecb 5743 ret = 1;
1da177e4 5744 spin_lock(lock);
1da177e4 5745 }
6df3cecb 5746 return ret;
1da177e4 5747}
1da177e4
LT
5748EXPORT_SYMBOL(cond_resched_lock);
5749
5750int __sched cond_resched_softirq(void)
5751{
5752 BUG_ON(!in_softirq());
5753
9414232f 5754 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5755 local_bh_enable();
1da177e4
LT
5756 __cond_resched();
5757 local_bh_disable();
5758 return 1;
5759 }
5760 return 0;
5761}
1da177e4
LT
5762EXPORT_SYMBOL(cond_resched_softirq);
5763
1da177e4
LT
5764/**
5765 * yield - yield the current processor to other threads.
5766 *
72fd4a35 5767 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5768 * thread runnable and calls sys_sched_yield().
5769 */
5770void __sched yield(void)
5771{
5772 set_current_state(TASK_RUNNING);
5773 sys_sched_yield();
5774}
1da177e4
LT
5775EXPORT_SYMBOL(yield);
5776
5777/*
41a2d6cf 5778 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5779 * that process accounting knows that this is a task in IO wait state.
5780 *
5781 * But don't do that if it is a deliberate, throttling IO wait (this task
5782 * has set its backing_dev_info: the queue against which it should throttle)
5783 */
5784void __sched io_schedule(void)
5785{
70b97a7f 5786 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5787
0ff92245 5788 delayacct_blkio_start();
1da177e4
LT
5789 atomic_inc(&rq->nr_iowait);
5790 schedule();
5791 atomic_dec(&rq->nr_iowait);
0ff92245 5792 delayacct_blkio_end();
1da177e4 5793}
1da177e4
LT
5794EXPORT_SYMBOL(io_schedule);
5795
5796long __sched io_schedule_timeout(long timeout)
5797{
70b97a7f 5798 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5799 long ret;
5800
0ff92245 5801 delayacct_blkio_start();
1da177e4
LT
5802 atomic_inc(&rq->nr_iowait);
5803 ret = schedule_timeout(timeout);
5804 atomic_dec(&rq->nr_iowait);
0ff92245 5805 delayacct_blkio_end();
1da177e4
LT
5806 return ret;
5807}
5808
5809/**
5810 * sys_sched_get_priority_max - return maximum RT priority.
5811 * @policy: scheduling class.
5812 *
5813 * this syscall returns the maximum rt_priority that can be used
5814 * by a given scheduling class.
5815 */
5816asmlinkage long sys_sched_get_priority_max(int policy)
5817{
5818 int ret = -EINVAL;
5819
5820 switch (policy) {
5821 case SCHED_FIFO:
5822 case SCHED_RR:
5823 ret = MAX_USER_RT_PRIO-1;
5824 break;
5825 case SCHED_NORMAL:
b0a9499c 5826 case SCHED_BATCH:
dd41f596 5827 case SCHED_IDLE:
1da177e4
LT
5828 ret = 0;
5829 break;
5830 }
5831 return ret;
5832}
5833
5834/**
5835 * sys_sched_get_priority_min - return minimum RT priority.
5836 * @policy: scheduling class.
5837 *
5838 * this syscall returns the minimum rt_priority that can be used
5839 * by a given scheduling class.
5840 */
5841asmlinkage long sys_sched_get_priority_min(int policy)
5842{
5843 int ret = -EINVAL;
5844
5845 switch (policy) {
5846 case SCHED_FIFO:
5847 case SCHED_RR:
5848 ret = 1;
5849 break;
5850 case SCHED_NORMAL:
b0a9499c 5851 case SCHED_BATCH:
dd41f596 5852 case SCHED_IDLE:
1da177e4
LT
5853 ret = 0;
5854 }
5855 return ret;
5856}
5857
5858/**
5859 * sys_sched_rr_get_interval - return the default timeslice of a process.
5860 * @pid: pid of the process.
5861 * @interval: userspace pointer to the timeslice value.
5862 *
5863 * this syscall writes the default timeslice value of a given process
5864 * into the user-space timespec buffer. A value of '0' means infinity.
5865 */
5866asmlinkage
5867long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5868{
36c8b586 5869 struct task_struct *p;
a4ec24b4 5870 unsigned int time_slice;
3a5c359a 5871 int retval;
1da177e4 5872 struct timespec t;
1da177e4
LT
5873
5874 if (pid < 0)
3a5c359a 5875 return -EINVAL;
1da177e4
LT
5876
5877 retval = -ESRCH;
5878 read_lock(&tasklist_lock);
5879 p = find_process_by_pid(pid);
5880 if (!p)
5881 goto out_unlock;
5882
5883 retval = security_task_getscheduler(p);
5884 if (retval)
5885 goto out_unlock;
5886
77034937
IM
5887 /*
5888 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5889 * tasks that are on an otherwise idle runqueue:
5890 */
5891 time_slice = 0;
5892 if (p->policy == SCHED_RR) {
a4ec24b4 5893 time_slice = DEF_TIMESLICE;
1868f958 5894 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5895 struct sched_entity *se = &p->se;
5896 unsigned long flags;
5897 struct rq *rq;
5898
5899 rq = task_rq_lock(p, &flags);
77034937
IM
5900 if (rq->cfs.load.weight)
5901 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5902 task_rq_unlock(rq, &flags);
5903 }
1da177e4 5904 read_unlock(&tasklist_lock);
a4ec24b4 5905 jiffies_to_timespec(time_slice, &t);
1da177e4 5906 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5907 return retval;
3a5c359a 5908
1da177e4
LT
5909out_unlock:
5910 read_unlock(&tasklist_lock);
5911 return retval;
5912}
5913
7c731e0a 5914static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5915
82a1fcb9 5916void sched_show_task(struct task_struct *p)
1da177e4 5917{
1da177e4 5918 unsigned long free = 0;
36c8b586 5919 unsigned state;
1da177e4 5920
1da177e4 5921 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5922 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5923 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5924#if BITS_PER_LONG == 32
1da177e4 5925 if (state == TASK_RUNNING)
cc4ea795 5926 printk(KERN_CONT " running ");
1da177e4 5927 else
cc4ea795 5928 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5929#else
5930 if (state == TASK_RUNNING)
cc4ea795 5931 printk(KERN_CONT " running task ");
1da177e4 5932 else
cc4ea795 5933 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5934#endif
5935#ifdef CONFIG_DEBUG_STACK_USAGE
5936 {
10ebffde 5937 unsigned long *n = end_of_stack(p);
1da177e4
LT
5938 while (!*n)
5939 n++;
10ebffde 5940 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5941 }
5942#endif
ba25f9dc 5943 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5944 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5945
5fb5e6de 5946 show_stack(p, NULL);
1da177e4
LT
5947}
5948
e59e2ae2 5949void show_state_filter(unsigned long state_filter)
1da177e4 5950{
36c8b586 5951 struct task_struct *g, *p;
1da177e4 5952
4bd77321
IM
5953#if BITS_PER_LONG == 32
5954 printk(KERN_INFO
5955 " task PC stack pid father\n");
1da177e4 5956#else
4bd77321
IM
5957 printk(KERN_INFO
5958 " task PC stack pid father\n");
1da177e4
LT
5959#endif
5960 read_lock(&tasklist_lock);
5961 do_each_thread(g, p) {
5962 /*
5963 * reset the NMI-timeout, listing all files on a slow
5964 * console might take alot of time:
5965 */
5966 touch_nmi_watchdog();
39bc89fd 5967 if (!state_filter || (p->state & state_filter))
82a1fcb9 5968 sched_show_task(p);
1da177e4
LT
5969 } while_each_thread(g, p);
5970
04c9167f
JF
5971 touch_all_softlockup_watchdogs();
5972
dd41f596
IM
5973#ifdef CONFIG_SCHED_DEBUG
5974 sysrq_sched_debug_show();
5975#endif
1da177e4 5976 read_unlock(&tasklist_lock);
e59e2ae2
IM
5977 /*
5978 * Only show locks if all tasks are dumped:
5979 */
5980 if (state_filter == -1)
5981 debug_show_all_locks();
1da177e4
LT
5982}
5983
1df21055
IM
5984void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5985{
dd41f596 5986 idle->sched_class = &idle_sched_class;
1df21055
IM
5987}
5988
f340c0d1
IM
5989/**
5990 * init_idle - set up an idle thread for a given CPU
5991 * @idle: task in question
5992 * @cpu: cpu the idle task belongs to
5993 *
5994 * NOTE: this function does not set the idle thread's NEED_RESCHED
5995 * flag, to make booting more robust.
5996 */
5c1e1767 5997void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5998{
70b97a7f 5999 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6000 unsigned long flags;
6001
5cbd54ef
IM
6002 spin_lock_irqsave(&rq->lock, flags);
6003
dd41f596
IM
6004 __sched_fork(idle);
6005 idle->se.exec_start = sched_clock();
6006
b29739f9 6007 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6008 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6009 __set_task_cpu(idle, cpu);
1da177e4 6010
1da177e4 6011 rq->curr = rq->idle = idle;
4866cde0
NP
6012#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6013 idle->oncpu = 1;
6014#endif
1da177e4
LT
6015 spin_unlock_irqrestore(&rq->lock, flags);
6016
6017 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6018#if defined(CONFIG_PREEMPT)
6019 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6020#else
a1261f54 6021 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6022#endif
dd41f596
IM
6023 /*
6024 * The idle tasks have their own, simple scheduling class:
6025 */
6026 idle->sched_class = &idle_sched_class;
fb52607a 6027 ftrace_graph_init_task(idle);
1da177e4
LT
6028}
6029
6030/*
6031 * In a system that switches off the HZ timer nohz_cpu_mask
6032 * indicates which cpus entered this state. This is used
6033 * in the rcu update to wait only for active cpus. For system
6034 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6035 * always be CPU_BITS_NONE.
1da177e4 6036 */
6a7b3dc3 6037cpumask_var_t nohz_cpu_mask;
1da177e4 6038
19978ca6
IM
6039/*
6040 * Increase the granularity value when there are more CPUs,
6041 * because with more CPUs the 'effective latency' as visible
6042 * to users decreases. But the relationship is not linear,
6043 * so pick a second-best guess by going with the log2 of the
6044 * number of CPUs.
6045 *
6046 * This idea comes from the SD scheduler of Con Kolivas:
6047 */
6048static inline void sched_init_granularity(void)
6049{
6050 unsigned int factor = 1 + ilog2(num_online_cpus());
6051 const unsigned long limit = 200000000;
6052
6053 sysctl_sched_min_granularity *= factor;
6054 if (sysctl_sched_min_granularity > limit)
6055 sysctl_sched_min_granularity = limit;
6056
6057 sysctl_sched_latency *= factor;
6058 if (sysctl_sched_latency > limit)
6059 sysctl_sched_latency = limit;
6060
6061 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6062
6063 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6064}
6065
1da177e4
LT
6066#ifdef CONFIG_SMP
6067/*
6068 * This is how migration works:
6069 *
70b97a7f 6070 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6071 * runqueue and wake up that CPU's migration thread.
6072 * 2) we down() the locked semaphore => thread blocks.
6073 * 3) migration thread wakes up (implicitly it forces the migrated
6074 * thread off the CPU)
6075 * 4) it gets the migration request and checks whether the migrated
6076 * task is still in the wrong runqueue.
6077 * 5) if it's in the wrong runqueue then the migration thread removes
6078 * it and puts it into the right queue.
6079 * 6) migration thread up()s the semaphore.
6080 * 7) we wake up and the migration is done.
6081 */
6082
6083/*
6084 * Change a given task's CPU affinity. Migrate the thread to a
6085 * proper CPU and schedule it away if the CPU it's executing on
6086 * is removed from the allowed bitmask.
6087 *
6088 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6089 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6090 * call is not atomic; no spinlocks may be held.
6091 */
96f874e2 6092int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6093{
70b97a7f 6094 struct migration_req req;
1da177e4 6095 unsigned long flags;
70b97a7f 6096 struct rq *rq;
48f24c4d 6097 int ret = 0;
1da177e4
LT
6098
6099 rq = task_rq_lock(p, &flags);
96f874e2 6100 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6101 ret = -EINVAL;
6102 goto out;
6103 }
6104
9985b0ba 6105 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6106 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6107 ret = -EINVAL;
6108 goto out;
6109 }
6110
73fe6aae 6111 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6112 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6113 else {
96f874e2
RR
6114 cpumask_copy(&p->cpus_allowed, new_mask);
6115 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6116 }
6117
1da177e4 6118 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6119 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6120 goto out;
6121
1e5ce4f4 6122 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6123 /* Need help from migration thread: drop lock and wait. */
6124 task_rq_unlock(rq, &flags);
6125 wake_up_process(rq->migration_thread);
6126 wait_for_completion(&req.done);
6127 tlb_migrate_finish(p->mm);
6128 return 0;
6129 }
6130out:
6131 task_rq_unlock(rq, &flags);
48f24c4d 6132
1da177e4
LT
6133 return ret;
6134}
cd8ba7cd 6135EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6136
6137/*
41a2d6cf 6138 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6139 * this because either it can't run here any more (set_cpus_allowed()
6140 * away from this CPU, or CPU going down), or because we're
6141 * attempting to rebalance this task on exec (sched_exec).
6142 *
6143 * So we race with normal scheduler movements, but that's OK, as long
6144 * as the task is no longer on this CPU.
efc30814
KK
6145 *
6146 * Returns non-zero if task was successfully migrated.
1da177e4 6147 */
efc30814 6148static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6149{
70b97a7f 6150 struct rq *rq_dest, *rq_src;
dd41f596 6151 int ret = 0, on_rq;
1da177e4 6152
e761b772 6153 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6154 return ret;
1da177e4
LT
6155
6156 rq_src = cpu_rq(src_cpu);
6157 rq_dest = cpu_rq(dest_cpu);
6158
6159 double_rq_lock(rq_src, rq_dest);
6160 /* Already moved. */
6161 if (task_cpu(p) != src_cpu)
b1e38734 6162 goto done;
1da177e4 6163 /* Affinity changed (again). */
96f874e2 6164 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6165 goto fail;
1da177e4 6166
dd41f596 6167 on_rq = p->se.on_rq;
6e82a3be 6168 if (on_rq)
2e1cb74a 6169 deactivate_task(rq_src, p, 0);
6e82a3be 6170
1da177e4 6171 set_task_cpu(p, dest_cpu);
dd41f596
IM
6172 if (on_rq) {
6173 activate_task(rq_dest, p, 0);
15afe09b 6174 check_preempt_curr(rq_dest, p, 0);
1da177e4 6175 }
b1e38734 6176done:
efc30814 6177 ret = 1;
b1e38734 6178fail:
1da177e4 6179 double_rq_unlock(rq_src, rq_dest);
efc30814 6180 return ret;
1da177e4
LT
6181}
6182
6183/*
6184 * migration_thread - this is a highprio system thread that performs
6185 * thread migration by bumping thread off CPU then 'pushing' onto
6186 * another runqueue.
6187 */
95cdf3b7 6188static int migration_thread(void *data)
1da177e4 6189{
1da177e4 6190 int cpu = (long)data;
70b97a7f 6191 struct rq *rq;
1da177e4
LT
6192
6193 rq = cpu_rq(cpu);
6194 BUG_ON(rq->migration_thread != current);
6195
6196 set_current_state(TASK_INTERRUPTIBLE);
6197 while (!kthread_should_stop()) {
70b97a7f 6198 struct migration_req *req;
1da177e4 6199 struct list_head *head;
1da177e4 6200
1da177e4
LT
6201 spin_lock_irq(&rq->lock);
6202
6203 if (cpu_is_offline(cpu)) {
6204 spin_unlock_irq(&rq->lock);
6205 goto wait_to_die;
6206 }
6207
6208 if (rq->active_balance) {
6209 active_load_balance(rq, cpu);
6210 rq->active_balance = 0;
6211 }
6212
6213 head = &rq->migration_queue;
6214
6215 if (list_empty(head)) {
6216 spin_unlock_irq(&rq->lock);
6217 schedule();
6218 set_current_state(TASK_INTERRUPTIBLE);
6219 continue;
6220 }
70b97a7f 6221 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6222 list_del_init(head->next);
6223
674311d5
NP
6224 spin_unlock(&rq->lock);
6225 __migrate_task(req->task, cpu, req->dest_cpu);
6226 local_irq_enable();
1da177e4
LT
6227
6228 complete(&req->done);
6229 }
6230 __set_current_state(TASK_RUNNING);
6231 return 0;
6232
6233wait_to_die:
6234 /* Wait for kthread_stop */
6235 set_current_state(TASK_INTERRUPTIBLE);
6236 while (!kthread_should_stop()) {
6237 schedule();
6238 set_current_state(TASK_INTERRUPTIBLE);
6239 }
6240 __set_current_state(TASK_RUNNING);
6241 return 0;
6242}
6243
6244#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6245
6246static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6247{
6248 int ret;
6249
6250 local_irq_disable();
6251 ret = __migrate_task(p, src_cpu, dest_cpu);
6252 local_irq_enable();
6253 return ret;
6254}
6255
054b9108 6256/*
3a4fa0a2 6257 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6258 */
48f24c4d 6259static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6260{
70b97a7f 6261 int dest_cpu;
e76bd8d9
RR
6262 /* FIXME: Use cpumask_of_node here. */
6263 cpumask_t _nodemask = node_to_cpumask(cpu_to_node(dead_cpu));
6264 const struct cpumask *nodemask = &_nodemask;
6265
6266again:
6267 /* Look for allowed, online CPU in same node. */
6268 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6269 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6270 goto move;
6271
6272 /* Any allowed, online CPU? */
6273 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6274 if (dest_cpu < nr_cpu_ids)
6275 goto move;
6276
6277 /* No more Mr. Nice Guy. */
6278 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6279 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6280 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6281
e76bd8d9
RR
6282 /*
6283 * Don't tell them about moving exiting tasks or
6284 * kernel threads (both mm NULL), since they never
6285 * leave kernel.
6286 */
6287 if (p->mm && printk_ratelimit()) {
6288 printk(KERN_INFO "process %d (%s) no "
6289 "longer affine to cpu%d\n",
6290 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6291 }
e76bd8d9
RR
6292 }
6293
6294move:
6295 /* It can have affinity changed while we were choosing. */
6296 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6297 goto again;
1da177e4
LT
6298}
6299
6300/*
6301 * While a dead CPU has no uninterruptible tasks queued at this point,
6302 * it might still have a nonzero ->nr_uninterruptible counter, because
6303 * for performance reasons the counter is not stricly tracking tasks to
6304 * their home CPUs. So we just add the counter to another CPU's counter,
6305 * to keep the global sum constant after CPU-down:
6306 */
70b97a7f 6307static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6308{
1e5ce4f4 6309 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6310 unsigned long flags;
6311
6312 local_irq_save(flags);
6313 double_rq_lock(rq_src, rq_dest);
6314 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6315 rq_src->nr_uninterruptible = 0;
6316 double_rq_unlock(rq_src, rq_dest);
6317 local_irq_restore(flags);
6318}
6319
6320/* Run through task list and migrate tasks from the dead cpu. */
6321static void migrate_live_tasks(int src_cpu)
6322{
48f24c4d 6323 struct task_struct *p, *t;
1da177e4 6324
f7b4cddc 6325 read_lock(&tasklist_lock);
1da177e4 6326
48f24c4d
IM
6327 do_each_thread(t, p) {
6328 if (p == current)
1da177e4
LT
6329 continue;
6330
48f24c4d
IM
6331 if (task_cpu(p) == src_cpu)
6332 move_task_off_dead_cpu(src_cpu, p);
6333 } while_each_thread(t, p);
1da177e4 6334
f7b4cddc 6335 read_unlock(&tasklist_lock);
1da177e4
LT
6336}
6337
dd41f596
IM
6338/*
6339 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6340 * It does so by boosting its priority to highest possible.
6341 * Used by CPU offline code.
1da177e4
LT
6342 */
6343void sched_idle_next(void)
6344{
48f24c4d 6345 int this_cpu = smp_processor_id();
70b97a7f 6346 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6347 struct task_struct *p = rq->idle;
6348 unsigned long flags;
6349
6350 /* cpu has to be offline */
48f24c4d 6351 BUG_ON(cpu_online(this_cpu));
1da177e4 6352
48f24c4d
IM
6353 /*
6354 * Strictly not necessary since rest of the CPUs are stopped by now
6355 * and interrupts disabled on the current cpu.
1da177e4
LT
6356 */
6357 spin_lock_irqsave(&rq->lock, flags);
6358
dd41f596 6359 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6360
94bc9a7b
DA
6361 update_rq_clock(rq);
6362 activate_task(rq, p, 0);
1da177e4
LT
6363
6364 spin_unlock_irqrestore(&rq->lock, flags);
6365}
6366
48f24c4d
IM
6367/*
6368 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6369 * offline.
6370 */
6371void idle_task_exit(void)
6372{
6373 struct mm_struct *mm = current->active_mm;
6374
6375 BUG_ON(cpu_online(smp_processor_id()));
6376
6377 if (mm != &init_mm)
6378 switch_mm(mm, &init_mm, current);
6379 mmdrop(mm);
6380}
6381
054b9108 6382/* called under rq->lock with disabled interrupts */
36c8b586 6383static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6384{
70b97a7f 6385 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6386
6387 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6388 BUG_ON(!p->exit_state);
1da177e4
LT
6389
6390 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6391 BUG_ON(p->state == TASK_DEAD);
1da177e4 6392
48f24c4d 6393 get_task_struct(p);
1da177e4
LT
6394
6395 /*
6396 * Drop lock around migration; if someone else moves it,
41a2d6cf 6397 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6398 * fine.
6399 */
f7b4cddc 6400 spin_unlock_irq(&rq->lock);
48f24c4d 6401 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6402 spin_lock_irq(&rq->lock);
1da177e4 6403
48f24c4d 6404 put_task_struct(p);
1da177e4
LT
6405}
6406
6407/* release_task() removes task from tasklist, so we won't find dead tasks. */
6408static void migrate_dead_tasks(unsigned int dead_cpu)
6409{
70b97a7f 6410 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6411 struct task_struct *next;
48f24c4d 6412
dd41f596
IM
6413 for ( ; ; ) {
6414 if (!rq->nr_running)
6415 break;
a8e504d2 6416 update_rq_clock(rq);
ff95f3df 6417 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6418 if (!next)
6419 break;
79c53799 6420 next->sched_class->put_prev_task(rq, next);
dd41f596 6421 migrate_dead(dead_cpu, next);
e692ab53 6422
1da177e4
LT
6423 }
6424}
6425#endif /* CONFIG_HOTPLUG_CPU */
6426
e692ab53
NP
6427#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6428
6429static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6430 {
6431 .procname = "sched_domain",
c57baf1e 6432 .mode = 0555,
e0361851 6433 },
38605cae 6434 {0, },
e692ab53
NP
6435};
6436
6437static struct ctl_table sd_ctl_root[] = {
e0361851 6438 {
c57baf1e 6439 .ctl_name = CTL_KERN,
e0361851 6440 .procname = "kernel",
c57baf1e 6441 .mode = 0555,
e0361851
AD
6442 .child = sd_ctl_dir,
6443 },
38605cae 6444 {0, },
e692ab53
NP
6445};
6446
6447static struct ctl_table *sd_alloc_ctl_entry(int n)
6448{
6449 struct ctl_table *entry =
5cf9f062 6450 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6451
e692ab53
NP
6452 return entry;
6453}
6454
6382bc90
MM
6455static void sd_free_ctl_entry(struct ctl_table **tablep)
6456{
cd790076 6457 struct ctl_table *entry;
6382bc90 6458
cd790076
MM
6459 /*
6460 * In the intermediate directories, both the child directory and
6461 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6462 * will always be set. In the lowest directory the names are
cd790076
MM
6463 * static strings and all have proc handlers.
6464 */
6465 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6466 if (entry->child)
6467 sd_free_ctl_entry(&entry->child);
cd790076
MM
6468 if (entry->proc_handler == NULL)
6469 kfree(entry->procname);
6470 }
6382bc90
MM
6471
6472 kfree(*tablep);
6473 *tablep = NULL;
6474}
6475
e692ab53 6476static void
e0361851 6477set_table_entry(struct ctl_table *entry,
e692ab53
NP
6478 const char *procname, void *data, int maxlen,
6479 mode_t mode, proc_handler *proc_handler)
6480{
e692ab53
NP
6481 entry->procname = procname;
6482 entry->data = data;
6483 entry->maxlen = maxlen;
6484 entry->mode = mode;
6485 entry->proc_handler = proc_handler;
6486}
6487
6488static struct ctl_table *
6489sd_alloc_ctl_domain_table(struct sched_domain *sd)
6490{
a5d8c348 6491 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6492
ad1cdc1d
MM
6493 if (table == NULL)
6494 return NULL;
6495
e0361851 6496 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6497 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6498 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6499 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6500 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6501 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6502 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6503 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6504 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6505 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6506 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6507 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6508 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6509 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6510 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6511 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6512 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6513 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6514 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6515 &sd->cache_nice_tries,
6516 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6517 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6518 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6519 set_table_entry(&table[11], "name", sd->name,
6520 CORENAME_MAX_SIZE, 0444, proc_dostring);
6521 /* &table[12] is terminator */
e692ab53
NP
6522
6523 return table;
6524}
6525
9a4e7159 6526static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6527{
6528 struct ctl_table *entry, *table;
6529 struct sched_domain *sd;
6530 int domain_num = 0, i;
6531 char buf[32];
6532
6533 for_each_domain(cpu, sd)
6534 domain_num++;
6535 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6536 if (table == NULL)
6537 return NULL;
e692ab53
NP
6538
6539 i = 0;
6540 for_each_domain(cpu, sd) {
6541 snprintf(buf, 32, "domain%d", i);
e692ab53 6542 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6543 entry->mode = 0555;
e692ab53
NP
6544 entry->child = sd_alloc_ctl_domain_table(sd);
6545 entry++;
6546 i++;
6547 }
6548 return table;
6549}
6550
6551static struct ctl_table_header *sd_sysctl_header;
6382bc90 6552static void register_sched_domain_sysctl(void)
e692ab53
NP
6553{
6554 int i, cpu_num = num_online_cpus();
6555 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6556 char buf[32];
6557
7378547f
MM
6558 WARN_ON(sd_ctl_dir[0].child);
6559 sd_ctl_dir[0].child = entry;
6560
ad1cdc1d
MM
6561 if (entry == NULL)
6562 return;
6563
97b6ea7b 6564 for_each_online_cpu(i) {
e692ab53 6565 snprintf(buf, 32, "cpu%d", i);
e692ab53 6566 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6567 entry->mode = 0555;
e692ab53 6568 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6569 entry++;
e692ab53 6570 }
7378547f
MM
6571
6572 WARN_ON(sd_sysctl_header);
e692ab53
NP
6573 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6574}
6382bc90 6575
7378547f 6576/* may be called multiple times per register */
6382bc90
MM
6577static void unregister_sched_domain_sysctl(void)
6578{
7378547f
MM
6579 if (sd_sysctl_header)
6580 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6581 sd_sysctl_header = NULL;
7378547f
MM
6582 if (sd_ctl_dir[0].child)
6583 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6584}
e692ab53 6585#else
6382bc90
MM
6586static void register_sched_domain_sysctl(void)
6587{
6588}
6589static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6590{
6591}
6592#endif
6593
1f11eb6a
GH
6594static void set_rq_online(struct rq *rq)
6595{
6596 if (!rq->online) {
6597 const struct sched_class *class;
6598
c6c4927b 6599 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6600 rq->online = 1;
6601
6602 for_each_class(class) {
6603 if (class->rq_online)
6604 class->rq_online(rq);
6605 }
6606 }
6607}
6608
6609static void set_rq_offline(struct rq *rq)
6610{
6611 if (rq->online) {
6612 const struct sched_class *class;
6613
6614 for_each_class(class) {
6615 if (class->rq_offline)
6616 class->rq_offline(rq);
6617 }
6618
c6c4927b 6619 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6620 rq->online = 0;
6621 }
6622}
6623
1da177e4
LT
6624/*
6625 * migration_call - callback that gets triggered when a CPU is added.
6626 * Here we can start up the necessary migration thread for the new CPU.
6627 */
48f24c4d
IM
6628static int __cpuinit
6629migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6630{
1da177e4 6631 struct task_struct *p;
48f24c4d 6632 int cpu = (long)hcpu;
1da177e4 6633 unsigned long flags;
70b97a7f 6634 struct rq *rq;
1da177e4
LT
6635
6636 switch (action) {
5be9361c 6637
1da177e4 6638 case CPU_UP_PREPARE:
8bb78442 6639 case CPU_UP_PREPARE_FROZEN:
dd41f596 6640 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6641 if (IS_ERR(p))
6642 return NOTIFY_BAD;
1da177e4
LT
6643 kthread_bind(p, cpu);
6644 /* Must be high prio: stop_machine expects to yield to it. */
6645 rq = task_rq_lock(p, &flags);
dd41f596 6646 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6647 task_rq_unlock(rq, &flags);
6648 cpu_rq(cpu)->migration_thread = p;
6649 break;
48f24c4d 6650
1da177e4 6651 case CPU_ONLINE:
8bb78442 6652 case CPU_ONLINE_FROZEN:
3a4fa0a2 6653 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6654 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6655
6656 /* Update our root-domain */
6657 rq = cpu_rq(cpu);
6658 spin_lock_irqsave(&rq->lock, flags);
6659 if (rq->rd) {
c6c4927b 6660 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6661
6662 set_rq_online(rq);
1f94ef59
GH
6663 }
6664 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6665 break;
48f24c4d 6666
1da177e4
LT
6667#ifdef CONFIG_HOTPLUG_CPU
6668 case CPU_UP_CANCELED:
8bb78442 6669 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6670 if (!cpu_rq(cpu)->migration_thread)
6671 break;
41a2d6cf 6672 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6673 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6674 cpumask_any(cpu_online_mask));
1da177e4
LT
6675 kthread_stop(cpu_rq(cpu)->migration_thread);
6676 cpu_rq(cpu)->migration_thread = NULL;
6677 break;
48f24c4d 6678
1da177e4 6679 case CPU_DEAD:
8bb78442 6680 case CPU_DEAD_FROZEN:
470fd646 6681 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6682 migrate_live_tasks(cpu);
6683 rq = cpu_rq(cpu);
6684 kthread_stop(rq->migration_thread);
6685 rq->migration_thread = NULL;
6686 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6687 spin_lock_irq(&rq->lock);
a8e504d2 6688 update_rq_clock(rq);
2e1cb74a 6689 deactivate_task(rq, rq->idle, 0);
1da177e4 6690 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6691 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6692 rq->idle->sched_class = &idle_sched_class;
1da177e4 6693 migrate_dead_tasks(cpu);
d2da272a 6694 spin_unlock_irq(&rq->lock);
470fd646 6695 cpuset_unlock();
1da177e4
LT
6696 migrate_nr_uninterruptible(rq);
6697 BUG_ON(rq->nr_running != 0);
6698
41a2d6cf
IM
6699 /*
6700 * No need to migrate the tasks: it was best-effort if
6701 * they didn't take sched_hotcpu_mutex. Just wake up
6702 * the requestors.
6703 */
1da177e4
LT
6704 spin_lock_irq(&rq->lock);
6705 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6706 struct migration_req *req;
6707
1da177e4 6708 req = list_entry(rq->migration_queue.next,
70b97a7f 6709 struct migration_req, list);
1da177e4 6710 list_del_init(&req->list);
9a2bd244 6711 spin_unlock_irq(&rq->lock);
1da177e4 6712 complete(&req->done);
9a2bd244 6713 spin_lock_irq(&rq->lock);
1da177e4
LT
6714 }
6715 spin_unlock_irq(&rq->lock);
6716 break;
57d885fe 6717
08f503b0
GH
6718 case CPU_DYING:
6719 case CPU_DYING_FROZEN:
57d885fe
GH
6720 /* Update our root-domain */
6721 rq = cpu_rq(cpu);
6722 spin_lock_irqsave(&rq->lock, flags);
6723 if (rq->rd) {
c6c4927b 6724 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6725 set_rq_offline(rq);
57d885fe
GH
6726 }
6727 spin_unlock_irqrestore(&rq->lock, flags);
6728 break;
1da177e4
LT
6729#endif
6730 }
6731 return NOTIFY_OK;
6732}
6733
6734/* Register at highest priority so that task migration (migrate_all_tasks)
6735 * happens before everything else.
6736 */
26c2143b 6737static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6738 .notifier_call = migration_call,
6739 .priority = 10
6740};
6741
7babe8db 6742static int __init migration_init(void)
1da177e4
LT
6743{
6744 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6745 int err;
48f24c4d
IM
6746
6747 /* Start one for the boot CPU: */
07dccf33
AM
6748 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6749 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6750 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6751 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6752
6753 return err;
1da177e4 6754}
7babe8db 6755early_initcall(migration_init);
1da177e4
LT
6756#endif
6757
6758#ifdef CONFIG_SMP
476f3534 6759
3e9830dc 6760#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6761
7c16ec58 6762static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6763 struct cpumask *groupmask)
1da177e4 6764{
4dcf6aff 6765 struct sched_group *group = sd->groups;
434d53b0 6766 char str[256];
1da177e4 6767
968ea6d8 6768 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6769 cpumask_clear(groupmask);
4dcf6aff
IM
6770
6771 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6772
6773 if (!(sd->flags & SD_LOAD_BALANCE)) {
6774 printk("does not load-balance\n");
6775 if (sd->parent)
6776 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6777 " has parent");
6778 return -1;
41c7ce9a
NP
6779 }
6780
eefd796a 6781 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6782
758b2cdc 6783 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
6784 printk(KERN_ERR "ERROR: domain->span does not contain "
6785 "CPU%d\n", cpu);
6786 }
758b2cdc 6787 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
6788 printk(KERN_ERR "ERROR: domain->groups does not contain"
6789 " CPU%d\n", cpu);
6790 }
1da177e4 6791
4dcf6aff 6792 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6793 do {
4dcf6aff
IM
6794 if (!group) {
6795 printk("\n");
6796 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6797 break;
6798 }
6799
4dcf6aff
IM
6800 if (!group->__cpu_power) {
6801 printk(KERN_CONT "\n");
6802 printk(KERN_ERR "ERROR: domain->cpu_power not "
6803 "set\n");
6804 break;
6805 }
1da177e4 6806
758b2cdc 6807 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
6808 printk(KERN_CONT "\n");
6809 printk(KERN_ERR "ERROR: empty group\n");
6810 break;
6811 }
1da177e4 6812
758b2cdc 6813 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
6814 printk(KERN_CONT "\n");
6815 printk(KERN_ERR "ERROR: repeated CPUs\n");
6816 break;
6817 }
1da177e4 6818
758b2cdc 6819 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6820
968ea6d8 6821 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 6822 printk(KERN_CONT " %s", str);
1da177e4 6823
4dcf6aff
IM
6824 group = group->next;
6825 } while (group != sd->groups);
6826 printk(KERN_CONT "\n");
1da177e4 6827
758b2cdc 6828 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 6829 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6830
758b2cdc
RR
6831 if (sd->parent &&
6832 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
6833 printk(KERN_ERR "ERROR: parent span is not a superset "
6834 "of domain->span\n");
6835 return 0;
6836}
1da177e4 6837
4dcf6aff
IM
6838static void sched_domain_debug(struct sched_domain *sd, int cpu)
6839{
d5dd3db1 6840 cpumask_var_t groupmask;
4dcf6aff 6841 int level = 0;
1da177e4 6842
4dcf6aff
IM
6843 if (!sd) {
6844 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6845 return;
6846 }
1da177e4 6847
4dcf6aff
IM
6848 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6849
d5dd3db1 6850 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6851 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6852 return;
6853 }
6854
4dcf6aff 6855 for (;;) {
7c16ec58 6856 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6857 break;
1da177e4
LT
6858 level++;
6859 sd = sd->parent;
33859f7f 6860 if (!sd)
4dcf6aff
IM
6861 break;
6862 }
d5dd3db1 6863 free_cpumask_var(groupmask);
1da177e4 6864}
6d6bc0ad 6865#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6866# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6867#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6868
1a20ff27 6869static int sd_degenerate(struct sched_domain *sd)
245af2c7 6870{
758b2cdc 6871 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6872 return 1;
6873
6874 /* Following flags need at least 2 groups */
6875 if (sd->flags & (SD_LOAD_BALANCE |
6876 SD_BALANCE_NEWIDLE |
6877 SD_BALANCE_FORK |
89c4710e
SS
6878 SD_BALANCE_EXEC |
6879 SD_SHARE_CPUPOWER |
6880 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6881 if (sd->groups != sd->groups->next)
6882 return 0;
6883 }
6884
6885 /* Following flags don't use groups */
6886 if (sd->flags & (SD_WAKE_IDLE |
6887 SD_WAKE_AFFINE |
6888 SD_WAKE_BALANCE))
6889 return 0;
6890
6891 return 1;
6892}
6893
48f24c4d
IM
6894static int
6895sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6896{
6897 unsigned long cflags = sd->flags, pflags = parent->flags;
6898
6899 if (sd_degenerate(parent))
6900 return 1;
6901
758b2cdc 6902 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6903 return 0;
6904
6905 /* Does parent contain flags not in child? */
6906 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6907 if (cflags & SD_WAKE_AFFINE)
6908 pflags &= ~SD_WAKE_BALANCE;
6909 /* Flags needing groups don't count if only 1 group in parent */
6910 if (parent->groups == parent->groups->next) {
6911 pflags &= ~(SD_LOAD_BALANCE |
6912 SD_BALANCE_NEWIDLE |
6913 SD_BALANCE_FORK |
89c4710e
SS
6914 SD_BALANCE_EXEC |
6915 SD_SHARE_CPUPOWER |
6916 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6917 if (nr_node_ids == 1)
6918 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6919 }
6920 if (~cflags & pflags)
6921 return 0;
6922
6923 return 1;
6924}
6925
c6c4927b
RR
6926static void free_rootdomain(struct root_domain *rd)
6927{
68e74568
RR
6928 cpupri_cleanup(&rd->cpupri);
6929
c6c4927b
RR
6930 free_cpumask_var(rd->rto_mask);
6931 free_cpumask_var(rd->online);
6932 free_cpumask_var(rd->span);
6933 kfree(rd);
6934}
6935
57d885fe
GH
6936static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6937{
6938 unsigned long flags;
57d885fe
GH
6939
6940 spin_lock_irqsave(&rq->lock, flags);
6941
6942 if (rq->rd) {
6943 struct root_domain *old_rd = rq->rd;
6944
c6c4927b 6945 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6946 set_rq_offline(rq);
57d885fe 6947
c6c4927b 6948 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6949
57d885fe 6950 if (atomic_dec_and_test(&old_rd->refcount))
c6c4927b 6951 free_rootdomain(old_rd);
57d885fe
GH
6952 }
6953
6954 atomic_inc(&rd->refcount);
6955 rq->rd = rd;
6956
c6c4927b
RR
6957 cpumask_set_cpu(rq->cpu, rd->span);
6958 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 6959 set_rq_online(rq);
57d885fe
GH
6960
6961 spin_unlock_irqrestore(&rq->lock, flags);
6962}
6963
c6c4927b 6964static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
6965{
6966 memset(rd, 0, sizeof(*rd));
6967
c6c4927b
RR
6968 if (bootmem) {
6969 alloc_bootmem_cpumask_var(&def_root_domain.span);
6970 alloc_bootmem_cpumask_var(&def_root_domain.online);
6971 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 6972 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
6973 return 0;
6974 }
6975
6976 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6977 goto free_rd;
6978 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6979 goto free_span;
6980 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6981 goto free_online;
6e0534f2 6982
68e74568
RR
6983 if (cpupri_init(&rd->cpupri, false) != 0)
6984 goto free_rto_mask;
c6c4927b 6985 return 0;
6e0534f2 6986
68e74568
RR
6987free_rto_mask:
6988 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6989free_online:
6990 free_cpumask_var(rd->online);
6991free_span:
6992 free_cpumask_var(rd->span);
6993free_rd:
6994 kfree(rd);
6995 return -ENOMEM;
57d885fe
GH
6996}
6997
6998static void init_defrootdomain(void)
6999{
c6c4927b
RR
7000 init_rootdomain(&def_root_domain, true);
7001
57d885fe
GH
7002 atomic_set(&def_root_domain.refcount, 1);
7003}
7004
dc938520 7005static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7006{
7007 struct root_domain *rd;
7008
7009 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7010 if (!rd)
7011 return NULL;
7012
c6c4927b
RR
7013 if (init_rootdomain(rd, false) != 0) {
7014 kfree(rd);
7015 return NULL;
7016 }
57d885fe
GH
7017
7018 return rd;
7019}
7020
1da177e4 7021/*
0eab9146 7022 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7023 * hold the hotplug lock.
7024 */
0eab9146
IM
7025static void
7026cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7027{
70b97a7f 7028 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7029 struct sched_domain *tmp;
7030
7031 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7032 for (tmp = sd; tmp; ) {
245af2c7
SS
7033 struct sched_domain *parent = tmp->parent;
7034 if (!parent)
7035 break;
f29c9b1c 7036
1a848870 7037 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7038 tmp->parent = parent->parent;
1a848870
SS
7039 if (parent->parent)
7040 parent->parent->child = tmp;
f29c9b1c
LZ
7041 } else
7042 tmp = tmp->parent;
245af2c7
SS
7043 }
7044
1a848870 7045 if (sd && sd_degenerate(sd)) {
245af2c7 7046 sd = sd->parent;
1a848870
SS
7047 if (sd)
7048 sd->child = NULL;
7049 }
1da177e4
LT
7050
7051 sched_domain_debug(sd, cpu);
7052
57d885fe 7053 rq_attach_root(rq, rd);
674311d5 7054 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7055}
7056
7057/* cpus with isolated domains */
dcc30a35 7058static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7059
7060/* Setup the mask of cpus configured for isolated domains */
7061static int __init isolated_cpu_setup(char *str)
7062{
968ea6d8 7063 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7064 return 1;
7065}
7066
8927f494 7067__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7068
7069/*
6711cab4
SS
7070 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7071 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7072 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7073 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7074 *
7075 * init_sched_build_groups will build a circular linked list of the groups
7076 * covered by the given span, and will set each group's ->cpumask correctly,
7077 * and ->cpu_power to 0.
7078 */
a616058b 7079static void
96f874e2
RR
7080init_sched_build_groups(const struct cpumask *span,
7081 const struct cpumask *cpu_map,
7082 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7083 struct sched_group **sg,
96f874e2
RR
7084 struct cpumask *tmpmask),
7085 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7086{
7087 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7088 int i;
7089
96f874e2 7090 cpumask_clear(covered);
7c16ec58 7091
abcd083a 7092 for_each_cpu(i, span) {
6711cab4 7093 struct sched_group *sg;
7c16ec58 7094 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7095 int j;
7096
758b2cdc 7097 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7098 continue;
7099
758b2cdc 7100 cpumask_clear(sched_group_cpus(sg));
5517d86b 7101 sg->__cpu_power = 0;
1da177e4 7102
abcd083a 7103 for_each_cpu(j, span) {
7c16ec58 7104 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7105 continue;
7106
96f874e2 7107 cpumask_set_cpu(j, covered);
758b2cdc 7108 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7109 }
7110 if (!first)
7111 first = sg;
7112 if (last)
7113 last->next = sg;
7114 last = sg;
7115 }
7116 last->next = first;
7117}
7118
9c1cfda2 7119#define SD_NODES_PER_DOMAIN 16
1da177e4 7120
9c1cfda2 7121#ifdef CONFIG_NUMA
198e2f18 7122
9c1cfda2
JH
7123/**
7124 * find_next_best_node - find the next node to include in a sched_domain
7125 * @node: node whose sched_domain we're building
7126 * @used_nodes: nodes already in the sched_domain
7127 *
41a2d6cf 7128 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7129 * finds the closest node not already in the @used_nodes map.
7130 *
7131 * Should use nodemask_t.
7132 */
c5f59f08 7133static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7134{
7135 int i, n, val, min_val, best_node = 0;
7136
7137 min_val = INT_MAX;
7138
076ac2af 7139 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7140 /* Start at @node */
076ac2af 7141 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7142
7143 if (!nr_cpus_node(n))
7144 continue;
7145
7146 /* Skip already used nodes */
c5f59f08 7147 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7148 continue;
7149
7150 /* Simple min distance search */
7151 val = node_distance(node, n);
7152
7153 if (val < min_val) {
7154 min_val = val;
7155 best_node = n;
7156 }
7157 }
7158
c5f59f08 7159 node_set(best_node, *used_nodes);
9c1cfda2
JH
7160 return best_node;
7161}
7162
7163/**
7164 * sched_domain_node_span - get a cpumask for a node's sched_domain
7165 * @node: node whose cpumask we're constructing
73486722 7166 * @span: resulting cpumask
9c1cfda2 7167 *
41a2d6cf 7168 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7169 * should be one that prevents unnecessary balancing, but also spreads tasks
7170 * out optimally.
7171 */
96f874e2 7172static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7173{
c5f59f08 7174 nodemask_t used_nodes;
96f874e2 7175 /* FIXME: use cpumask_of_node() */
c5f59f08 7176 node_to_cpumask_ptr(nodemask, node);
48f24c4d 7177 int i;
9c1cfda2 7178
4bdbaad3 7179 cpus_clear(*span);
c5f59f08 7180 nodes_clear(used_nodes);
9c1cfda2 7181
4bdbaad3 7182 cpus_or(*span, *span, *nodemask);
c5f59f08 7183 node_set(node, used_nodes);
9c1cfda2
JH
7184
7185 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7186 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7187
c5f59f08 7188 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 7189 cpus_or(*span, *span, *nodemask);
9c1cfda2 7190 }
9c1cfda2 7191}
6d6bc0ad 7192#endif /* CONFIG_NUMA */
9c1cfda2 7193
5c45bf27 7194int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7195
6c99e9ad
RR
7196/*
7197 * The cpus mask in sched_group and sched_domain hangs off the end.
7198 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7199 * for nr_cpu_ids < CONFIG_NR_CPUS.
7200 */
7201struct static_sched_group {
7202 struct sched_group sg;
7203 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7204};
7205
7206struct static_sched_domain {
7207 struct sched_domain sd;
7208 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7209};
7210
9c1cfda2 7211/*
48f24c4d 7212 * SMT sched-domains:
9c1cfda2 7213 */
1da177e4 7214#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7215static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7216static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7217
41a2d6cf 7218static int
96f874e2
RR
7219cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7220 struct sched_group **sg, struct cpumask *unused)
1da177e4 7221{
6711cab4 7222 if (sg)
6c99e9ad 7223 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7224 return cpu;
7225}
6d6bc0ad 7226#endif /* CONFIG_SCHED_SMT */
1da177e4 7227
48f24c4d
IM
7228/*
7229 * multi-core sched-domains:
7230 */
1e9f28fa 7231#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7232static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7233static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7234#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7235
7236#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7237static int
96f874e2
RR
7238cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7239 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7240{
6711cab4 7241 int group;
7c16ec58 7242
96f874e2
RR
7243 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7244 group = cpumask_first(mask);
6711cab4 7245 if (sg)
6c99e9ad 7246 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7247 return group;
1e9f28fa
SS
7248}
7249#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7250static int
96f874e2
RR
7251cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7252 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7253{
6711cab4 7254 if (sg)
6c99e9ad 7255 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7256 return cpu;
7257}
7258#endif
7259
6c99e9ad
RR
7260static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7261static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7262
41a2d6cf 7263static int
96f874e2
RR
7264cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7265 struct sched_group **sg, struct cpumask *mask)
1da177e4 7266{
6711cab4 7267 int group;
48f24c4d 7268#ifdef CONFIG_SCHED_MC
96f874e2 7269 /* FIXME: Use cpu_coregroup_mask. */
7c16ec58
MT
7270 *mask = cpu_coregroup_map(cpu);
7271 cpus_and(*mask, *mask, *cpu_map);
96f874e2 7272 group = cpumask_first(mask);
1e9f28fa 7273#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7274 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7275 group = cpumask_first(mask);
1da177e4 7276#else
6711cab4 7277 group = cpu;
1da177e4 7278#endif
6711cab4 7279 if (sg)
6c99e9ad 7280 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7281 return group;
1da177e4
LT
7282}
7283
7284#ifdef CONFIG_NUMA
1da177e4 7285/*
9c1cfda2
JH
7286 * The init_sched_build_groups can't handle what we want to do with node
7287 * groups, so roll our own. Now each node has its own list of groups which
7288 * gets dynamically allocated.
1da177e4 7289 */
9c1cfda2 7290static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7291static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7292
9c1cfda2 7293static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6c99e9ad 7294static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7295
96f874e2
RR
7296static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7297 struct sched_group **sg,
7298 struct cpumask *nodemask)
9c1cfda2 7299{
6711cab4 7300 int group;
96f874e2 7301 /* FIXME: use cpumask_of_node */
ea6f18ed 7302 node_to_cpumask_ptr(pnodemask, cpu_to_node(cpu));
6711cab4 7303
96f874e2
RR
7304 cpumask_and(nodemask, pnodemask, cpu_map);
7305 group = cpumask_first(nodemask);
6711cab4
SS
7306
7307 if (sg)
6c99e9ad 7308 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7309 return group;
1da177e4 7310}
6711cab4 7311
08069033
SS
7312static void init_numa_sched_groups_power(struct sched_group *group_head)
7313{
7314 struct sched_group *sg = group_head;
7315 int j;
7316
7317 if (!sg)
7318 return;
3a5c359a 7319 do {
758b2cdc 7320 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7321 struct sched_domain *sd;
08069033 7322
6c99e9ad 7323 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7324 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7325 /*
7326 * Only add "power" once for each
7327 * physical package.
7328 */
7329 continue;
7330 }
08069033 7331
3a5c359a
AK
7332 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7333 }
7334 sg = sg->next;
7335 } while (sg != group_head);
08069033 7336}
6d6bc0ad 7337#endif /* CONFIG_NUMA */
1da177e4 7338
a616058b 7339#ifdef CONFIG_NUMA
51888ca2 7340/* Free memory allocated for various sched_group structures */
96f874e2
RR
7341static void free_sched_groups(const struct cpumask *cpu_map,
7342 struct cpumask *nodemask)
51888ca2 7343{
a616058b 7344 int cpu, i;
51888ca2 7345
abcd083a 7346 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7347 struct sched_group **sched_group_nodes
7348 = sched_group_nodes_bycpu[cpu];
7349
51888ca2
SV
7350 if (!sched_group_nodes)
7351 continue;
7352
076ac2af 7353 for (i = 0; i < nr_node_ids; i++) {
51888ca2 7354 struct sched_group *oldsg, *sg = sched_group_nodes[i];
96f874e2 7355 /* FIXME: Use cpumask_of_node */
ea6f18ed 7356 node_to_cpumask_ptr(pnodemask, i);
51888ca2 7357
ea6f18ed 7358 cpus_and(*nodemask, *pnodemask, *cpu_map);
96f874e2 7359 if (cpumask_empty(nodemask))
51888ca2
SV
7360 continue;
7361
7362 if (sg == NULL)
7363 continue;
7364 sg = sg->next;
7365next_sg:
7366 oldsg = sg;
7367 sg = sg->next;
7368 kfree(oldsg);
7369 if (oldsg != sched_group_nodes[i])
7370 goto next_sg;
7371 }
7372 kfree(sched_group_nodes);
7373 sched_group_nodes_bycpu[cpu] = NULL;
7374 }
51888ca2 7375}
6d6bc0ad 7376#else /* !CONFIG_NUMA */
96f874e2
RR
7377static void free_sched_groups(const struct cpumask *cpu_map,
7378 struct cpumask *nodemask)
a616058b
SS
7379{
7380}
6d6bc0ad 7381#endif /* CONFIG_NUMA */
51888ca2 7382
89c4710e
SS
7383/*
7384 * Initialize sched groups cpu_power.
7385 *
7386 * cpu_power indicates the capacity of sched group, which is used while
7387 * distributing the load between different sched groups in a sched domain.
7388 * Typically cpu_power for all the groups in a sched domain will be same unless
7389 * there are asymmetries in the topology. If there are asymmetries, group
7390 * having more cpu_power will pickup more load compared to the group having
7391 * less cpu_power.
7392 *
7393 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7394 * the maximum number of tasks a group can handle in the presence of other idle
7395 * or lightly loaded groups in the same sched domain.
7396 */
7397static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7398{
7399 struct sched_domain *child;
7400 struct sched_group *group;
7401
7402 WARN_ON(!sd || !sd->groups);
7403
758b2cdc 7404 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7405 return;
7406
7407 child = sd->child;
7408
5517d86b
ED
7409 sd->groups->__cpu_power = 0;
7410
89c4710e
SS
7411 /*
7412 * For perf policy, if the groups in child domain share resources
7413 * (for example cores sharing some portions of the cache hierarchy
7414 * or SMT), then set this domain groups cpu_power such that each group
7415 * can handle only one task, when there are other idle groups in the
7416 * same sched domain.
7417 */
7418 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7419 (child->flags &
7420 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7421 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7422 return;
7423 }
7424
89c4710e
SS
7425 /*
7426 * add cpu_power of each child group to this groups cpu_power
7427 */
7428 group = child->groups;
7429 do {
5517d86b 7430 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7431 group = group->next;
7432 } while (group != child->groups);
7433}
7434
7c16ec58
MT
7435/*
7436 * Initializers for schedule domains
7437 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7438 */
7439
a5d8c348
IM
7440#ifdef CONFIG_SCHED_DEBUG
7441# define SD_INIT_NAME(sd, type) sd->name = #type
7442#else
7443# define SD_INIT_NAME(sd, type) do { } while (0)
7444#endif
7445
7c16ec58 7446#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7447
7c16ec58
MT
7448#define SD_INIT_FUNC(type) \
7449static noinline void sd_init_##type(struct sched_domain *sd) \
7450{ \
7451 memset(sd, 0, sizeof(*sd)); \
7452 *sd = SD_##type##_INIT; \
1d3504fc 7453 sd->level = SD_LV_##type; \
a5d8c348 7454 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7455}
7456
7457SD_INIT_FUNC(CPU)
7458#ifdef CONFIG_NUMA
7459 SD_INIT_FUNC(ALLNODES)
7460 SD_INIT_FUNC(NODE)
7461#endif
7462#ifdef CONFIG_SCHED_SMT
7463 SD_INIT_FUNC(SIBLING)
7464#endif
7465#ifdef CONFIG_SCHED_MC
7466 SD_INIT_FUNC(MC)
7467#endif
7468
1d3504fc
HS
7469static int default_relax_domain_level = -1;
7470
7471static int __init setup_relax_domain_level(char *str)
7472{
30e0e178
LZ
7473 unsigned long val;
7474
7475 val = simple_strtoul(str, NULL, 0);
7476 if (val < SD_LV_MAX)
7477 default_relax_domain_level = val;
7478
1d3504fc
HS
7479 return 1;
7480}
7481__setup("relax_domain_level=", setup_relax_domain_level);
7482
7483static void set_domain_attribute(struct sched_domain *sd,
7484 struct sched_domain_attr *attr)
7485{
7486 int request;
7487
7488 if (!attr || attr->relax_domain_level < 0) {
7489 if (default_relax_domain_level < 0)
7490 return;
7491 else
7492 request = default_relax_domain_level;
7493 } else
7494 request = attr->relax_domain_level;
7495 if (request < sd->level) {
7496 /* turn off idle balance on this domain */
7497 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7498 } else {
7499 /* turn on idle balance on this domain */
7500 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7501 }
7502}
7503
1da177e4 7504/*
1a20ff27
DG
7505 * Build sched domains for a given set of cpus and attach the sched domains
7506 * to the individual cpus
1da177e4 7507 */
96f874e2 7508static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7509 struct sched_domain_attr *attr)
1da177e4 7510{
3404c8d9 7511 int i, err = -ENOMEM;
57d885fe 7512 struct root_domain *rd;
3404c8d9
RR
7513 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7514 tmpmask;
d1b55138 7515#ifdef CONFIG_NUMA
3404c8d9 7516 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7517 struct sched_group **sched_group_nodes = NULL;
6711cab4 7518 int sd_allnodes = 0;
d1b55138 7519
3404c8d9
RR
7520 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7521 goto out;
7522 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7523 goto free_domainspan;
7524 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7525 goto free_covered;
7526#endif
7527
7528 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7529 goto free_notcovered;
7530 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7531 goto free_nodemask;
7532 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7533 goto free_this_sibling_map;
7534 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7535 goto free_this_core_map;
7536 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7537 goto free_send_covered;
7538
7539#ifdef CONFIG_NUMA
d1b55138
JH
7540 /*
7541 * Allocate the per-node list of sched groups
7542 */
076ac2af 7543 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7544 GFP_KERNEL);
d1b55138
JH
7545 if (!sched_group_nodes) {
7546 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7547 goto free_tmpmask;
d1b55138 7548 }
d1b55138 7549#endif
1da177e4 7550
dc938520 7551 rd = alloc_rootdomain();
57d885fe
GH
7552 if (!rd) {
7553 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7554 goto free_sched_groups;
57d885fe
GH
7555 }
7556
7c16ec58 7557#ifdef CONFIG_NUMA
96f874e2 7558 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7559#endif
7560
1da177e4 7561 /*
1a20ff27 7562 * Set up domains for cpus specified by the cpu_map.
1da177e4 7563 */
abcd083a 7564 for_each_cpu(i, cpu_map) {
1da177e4 7565 struct sched_domain *sd = NULL, *p;
1da177e4 7566
96f874e2 7567 /* FIXME: use cpumask_of_node */
7c16ec58
MT
7568 *nodemask = node_to_cpumask(cpu_to_node(i));
7569 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7570
7571#ifdef CONFIG_NUMA
96f874e2
RR
7572 if (cpumask_weight(cpu_map) >
7573 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
9c1cfda2 7574 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7575 SD_INIT(sd, ALLNODES);
1d3504fc 7576 set_domain_attribute(sd, attr);
758b2cdc 7577 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7578 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7579 p = sd;
6711cab4 7580 sd_allnodes = 1;
9c1cfda2
JH
7581 } else
7582 p = NULL;
7583
1da177e4 7584 sd = &per_cpu(node_domains, i);
7c16ec58 7585 SD_INIT(sd, NODE);
1d3504fc 7586 set_domain_attribute(sd, attr);
758b2cdc 7587 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7588 sd->parent = p;
1a848870
SS
7589 if (p)
7590 p->child = sd;
758b2cdc
RR
7591 cpumask_and(sched_domain_span(sd),
7592 sched_domain_span(sd), cpu_map);
1da177e4
LT
7593#endif
7594
7595 p = sd;
6c99e9ad 7596 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7597 SD_INIT(sd, CPU);
1d3504fc 7598 set_domain_attribute(sd, attr);
758b2cdc 7599 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7600 sd->parent = p;
1a848870
SS
7601 if (p)
7602 p->child = sd;
7c16ec58 7603 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7604
1e9f28fa
SS
7605#ifdef CONFIG_SCHED_MC
7606 p = sd;
6c99e9ad 7607 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7608 SD_INIT(sd, MC);
1d3504fc 7609 set_domain_attribute(sd, attr);
758b2cdc
RR
7610 *sched_domain_span(sd) = cpu_coregroup_map(i);
7611 cpumask_and(sched_domain_span(sd),
7612 sched_domain_span(sd), cpu_map);
1e9f28fa 7613 sd->parent = p;
1a848870 7614 p->child = sd;
7c16ec58 7615 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7616#endif
7617
1da177e4
LT
7618#ifdef CONFIG_SCHED_SMT
7619 p = sd;
6c99e9ad 7620 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7621 SD_INIT(sd, SIBLING);
1d3504fc 7622 set_domain_attribute(sd, attr);
758b2cdc
RR
7623 cpumask_and(sched_domain_span(sd),
7624 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 7625 sd->parent = p;
1a848870 7626 p->child = sd;
7c16ec58 7627 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7628#endif
7629 }
7630
7631#ifdef CONFIG_SCHED_SMT
7632 /* Set up CPU (sibling) groups */
abcd083a 7633 for_each_cpu(i, cpu_map) {
96f874e2
RR
7634 cpumask_and(this_sibling_map,
7635 &per_cpu(cpu_sibling_map, i), cpu_map);
7636 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
7637 continue;
7638
dd41f596 7639 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7640 &cpu_to_cpu_group,
7641 send_covered, tmpmask);
1da177e4
LT
7642 }
7643#endif
7644
1e9f28fa
SS
7645#ifdef CONFIG_SCHED_MC
7646 /* Set up multi-core groups */
abcd083a 7647 for_each_cpu(i, cpu_map) {
96f874e2 7648 /* FIXME: Use cpu_coregroup_mask */
7c16ec58
MT
7649 *this_core_map = cpu_coregroup_map(i);
7650 cpus_and(*this_core_map, *this_core_map, *cpu_map);
96f874e2 7651 if (i != cpumask_first(this_core_map))
1e9f28fa 7652 continue;
7c16ec58 7653
dd41f596 7654 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7655 &cpu_to_core_group,
7656 send_covered, tmpmask);
1e9f28fa
SS
7657 }
7658#endif
7659
1da177e4 7660 /* Set up physical groups */
076ac2af 7661 for (i = 0; i < nr_node_ids; i++) {
96f874e2 7662 /* FIXME: Use cpumask_of_node */
7c16ec58
MT
7663 *nodemask = node_to_cpumask(i);
7664 cpus_and(*nodemask, *nodemask, *cpu_map);
96f874e2 7665 if (cpumask_empty(nodemask))
1da177e4
LT
7666 continue;
7667
7c16ec58
MT
7668 init_sched_build_groups(nodemask, cpu_map,
7669 &cpu_to_phys_group,
7670 send_covered, tmpmask);
1da177e4
LT
7671 }
7672
7673#ifdef CONFIG_NUMA
7674 /* Set up node groups */
7c16ec58 7675 if (sd_allnodes) {
7c16ec58
MT
7676 init_sched_build_groups(cpu_map, cpu_map,
7677 &cpu_to_allnodes_group,
7678 send_covered, tmpmask);
7679 }
9c1cfda2 7680
076ac2af 7681 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7682 /* Set up node groups */
7683 struct sched_group *sg, *prev;
9c1cfda2
JH
7684 int j;
7685
96f874e2 7686 /* FIXME: Use cpumask_of_node */
7c16ec58 7687 *nodemask = node_to_cpumask(i);
96f874e2 7688 cpumask_clear(covered);
7c16ec58
MT
7689
7690 cpus_and(*nodemask, *nodemask, *cpu_map);
96f874e2 7691 if (cpumask_empty(nodemask)) {
d1b55138 7692 sched_group_nodes[i] = NULL;
9c1cfda2 7693 continue;
d1b55138 7694 }
9c1cfda2 7695
4bdbaad3 7696 sched_domain_node_span(i, domainspan);
96f874e2 7697 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 7698
6c99e9ad
RR
7699 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7700 GFP_KERNEL, i);
51888ca2
SV
7701 if (!sg) {
7702 printk(KERN_WARNING "Can not alloc domain group for "
7703 "node %d\n", i);
7704 goto error;
7705 }
9c1cfda2 7706 sched_group_nodes[i] = sg;
abcd083a 7707 for_each_cpu(j, nodemask) {
9c1cfda2 7708 struct sched_domain *sd;
9761eea8 7709
9c1cfda2
JH
7710 sd = &per_cpu(node_domains, j);
7711 sd->groups = sg;
9c1cfda2 7712 }
5517d86b 7713 sg->__cpu_power = 0;
758b2cdc 7714 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 7715 sg->next = sg;
96f874e2 7716 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
7717 prev = sg;
7718
076ac2af 7719 for (j = 0; j < nr_node_ids; j++) {
076ac2af 7720 int n = (i + j) % nr_node_ids;
96f874e2 7721 /* FIXME: Use cpumask_of_node */
c5f59f08 7722 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7723
96f874e2
RR
7724 cpumask_complement(notcovered, covered);
7725 cpumask_and(tmpmask, notcovered, cpu_map);
7726 cpumask_and(tmpmask, tmpmask, domainspan);
7727 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7728 break;
7729
96f874e2
RR
7730 cpumask_and(tmpmask, tmpmask, pnodemask);
7731 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7732 continue;
7733
6c99e9ad
RR
7734 sg = kmalloc_node(sizeof(struct sched_group) +
7735 cpumask_size(),
15f0b676 7736 GFP_KERNEL, i);
9c1cfda2
JH
7737 if (!sg) {
7738 printk(KERN_WARNING
7739 "Can not alloc domain group for node %d\n", j);
51888ca2 7740 goto error;
9c1cfda2 7741 }
5517d86b 7742 sg->__cpu_power = 0;
758b2cdc 7743 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 7744 sg->next = prev->next;
96f874e2 7745 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
7746 prev->next = sg;
7747 prev = sg;
7748 }
9c1cfda2 7749 }
1da177e4
LT
7750#endif
7751
7752 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7753#ifdef CONFIG_SCHED_SMT
abcd083a 7754 for_each_cpu(i, cpu_map) {
6c99e9ad 7755 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 7756
89c4710e 7757 init_sched_groups_power(i, sd);
5c45bf27 7758 }
1da177e4 7759#endif
1e9f28fa 7760#ifdef CONFIG_SCHED_MC
abcd083a 7761 for_each_cpu(i, cpu_map) {
6c99e9ad 7762 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 7763
89c4710e 7764 init_sched_groups_power(i, sd);
5c45bf27
SS
7765 }
7766#endif
1e9f28fa 7767
abcd083a 7768 for_each_cpu(i, cpu_map) {
6c99e9ad 7769 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 7770
89c4710e 7771 init_sched_groups_power(i, sd);
1da177e4
LT
7772 }
7773
9c1cfda2 7774#ifdef CONFIG_NUMA
076ac2af 7775 for (i = 0; i < nr_node_ids; i++)
08069033 7776 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7777
6711cab4
SS
7778 if (sd_allnodes) {
7779 struct sched_group *sg;
f712c0c7 7780
96f874e2 7781 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 7782 tmpmask);
f712c0c7
SS
7783 init_numa_sched_groups_power(sg);
7784 }
9c1cfda2
JH
7785#endif
7786
1da177e4 7787 /* Attach the domains */
abcd083a 7788 for_each_cpu(i, cpu_map) {
1da177e4
LT
7789 struct sched_domain *sd;
7790#ifdef CONFIG_SCHED_SMT
6c99e9ad 7791 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7792#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7793 sd = &per_cpu(core_domains, i).sd;
1da177e4 7794#else
6c99e9ad 7795 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7796#endif
57d885fe 7797 cpu_attach_domain(sd, rd, i);
1da177e4 7798 }
51888ca2 7799
3404c8d9
RR
7800 err = 0;
7801
7802free_tmpmask:
7803 free_cpumask_var(tmpmask);
7804free_send_covered:
7805 free_cpumask_var(send_covered);
7806free_this_core_map:
7807 free_cpumask_var(this_core_map);
7808free_this_sibling_map:
7809 free_cpumask_var(this_sibling_map);
7810free_nodemask:
7811 free_cpumask_var(nodemask);
7812free_notcovered:
7813#ifdef CONFIG_NUMA
7814 free_cpumask_var(notcovered);
7815free_covered:
7816 free_cpumask_var(covered);
7817free_domainspan:
7818 free_cpumask_var(domainspan);
7819out:
7820#endif
7821 return err;
7822
7823free_sched_groups:
7824#ifdef CONFIG_NUMA
7825 kfree(sched_group_nodes);
7826#endif
7827 goto free_tmpmask;
51888ca2 7828
a616058b 7829#ifdef CONFIG_NUMA
51888ca2 7830error:
7c16ec58 7831 free_sched_groups(cpu_map, tmpmask);
c6c4927b 7832 free_rootdomain(rd);
3404c8d9 7833 goto free_tmpmask;
a616058b 7834#endif
1da177e4 7835}
029190c5 7836
96f874e2 7837static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7838{
7839 return __build_sched_domains(cpu_map, NULL);
7840}
7841
96f874e2 7842static struct cpumask *doms_cur; /* current sched domains */
029190c5 7843static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7844static struct sched_domain_attr *dattr_cur;
7845 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7846
7847/*
7848 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7849 * cpumask) fails, then fallback to a single sched domain,
7850 * as determined by the single cpumask fallback_doms.
029190c5 7851 */
4212823f 7852static cpumask_var_t fallback_doms;
029190c5 7853
ee79d1bd
HC
7854/*
7855 * arch_update_cpu_topology lets virtualized architectures update the
7856 * cpu core maps. It is supposed to return 1 if the topology changed
7857 * or 0 if it stayed the same.
7858 */
7859int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7860{
ee79d1bd 7861 return 0;
22e52b07
HC
7862}
7863
1a20ff27 7864/*
41a2d6cf 7865 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7866 * For now this just excludes isolated cpus, but could be used to
7867 * exclude other special cases in the future.
1a20ff27 7868 */
96f874e2 7869static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7870{
7378547f
MM
7871 int err;
7872
22e52b07 7873 arch_update_cpu_topology();
029190c5 7874 ndoms_cur = 1;
96f874e2 7875 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 7876 if (!doms_cur)
4212823f 7877 doms_cur = fallback_doms;
dcc30a35 7878 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 7879 dattr_cur = NULL;
7378547f 7880 err = build_sched_domains(doms_cur);
6382bc90 7881 register_sched_domain_sysctl();
7378547f
MM
7882
7883 return err;
1a20ff27
DG
7884}
7885
96f874e2
RR
7886static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7887 struct cpumask *tmpmask)
1da177e4 7888{
7c16ec58 7889 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7890}
1da177e4 7891
1a20ff27
DG
7892/*
7893 * Detach sched domains from a group of cpus specified in cpu_map
7894 * These cpus will now be attached to the NULL domain
7895 */
96f874e2 7896static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7897{
96f874e2
RR
7898 /* Save because hotplug lock held. */
7899 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7900 int i;
7901
abcd083a 7902 for_each_cpu(i, cpu_map)
57d885fe 7903 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7904 synchronize_sched();
96f874e2 7905 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7906}
7907
1d3504fc
HS
7908/* handle null as "default" */
7909static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7910 struct sched_domain_attr *new, int idx_new)
7911{
7912 struct sched_domain_attr tmp;
7913
7914 /* fast path */
7915 if (!new && !cur)
7916 return 1;
7917
7918 tmp = SD_ATTR_INIT;
7919 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7920 new ? (new + idx_new) : &tmp,
7921 sizeof(struct sched_domain_attr));
7922}
7923
029190c5
PJ
7924/*
7925 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7926 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7927 * doms_new[] to the current sched domain partitioning, doms_cur[].
7928 * It destroys each deleted domain and builds each new domain.
7929 *
96f874e2 7930 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
7931 * The masks don't intersect (don't overlap.) We should setup one
7932 * sched domain for each mask. CPUs not in any of the cpumasks will
7933 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7934 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7935 * it as it is.
7936 *
41a2d6cf
IM
7937 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7938 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
7939 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7940 * ndoms_new == 1, and partition_sched_domains() will fallback to
7941 * the single partition 'fallback_doms', it also forces the domains
7942 * to be rebuilt.
029190c5 7943 *
96f874e2 7944 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7945 * ndoms_new == 0 is a special case for destroying existing domains,
7946 * and it will not create the default domain.
dfb512ec 7947 *
029190c5
PJ
7948 * Call with hotplug lock held
7949 */
96f874e2
RR
7950/* FIXME: Change to struct cpumask *doms_new[] */
7951void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 7952 struct sched_domain_attr *dattr_new)
029190c5 7953{
dfb512ec 7954 int i, j, n;
d65bd5ec 7955 int new_topology;
029190c5 7956
712555ee 7957 mutex_lock(&sched_domains_mutex);
a1835615 7958
7378547f
MM
7959 /* always unregister in case we don't destroy any domains */
7960 unregister_sched_domain_sysctl();
7961
d65bd5ec
HC
7962 /* Let architecture update cpu core mappings. */
7963 new_topology = arch_update_cpu_topology();
7964
dfb512ec 7965 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7966
7967 /* Destroy deleted domains */
7968 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7969 for (j = 0; j < n && !new_topology; j++) {
96f874e2 7970 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 7971 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7972 goto match1;
7973 }
7974 /* no match - a current sched domain not in new doms_new[] */
7975 detach_destroy_domains(doms_cur + i);
7976match1:
7977 ;
7978 }
7979
e761b772
MK
7980 if (doms_new == NULL) {
7981 ndoms_cur = 0;
4212823f 7982 doms_new = fallback_doms;
dcc30a35 7983 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 7984 WARN_ON_ONCE(dattr_new);
e761b772
MK
7985 }
7986
029190c5
PJ
7987 /* Build new domains */
7988 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7989 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 7990 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 7991 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7992 goto match2;
7993 }
7994 /* no match - add a new doms_new */
1d3504fc
HS
7995 __build_sched_domains(doms_new + i,
7996 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7997match2:
7998 ;
7999 }
8000
8001 /* Remember the new sched domains */
4212823f 8002 if (doms_cur != fallback_doms)
029190c5 8003 kfree(doms_cur);
1d3504fc 8004 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8005 doms_cur = doms_new;
1d3504fc 8006 dattr_cur = dattr_new;
029190c5 8007 ndoms_cur = ndoms_new;
7378547f
MM
8008
8009 register_sched_domain_sysctl();
a1835615 8010
712555ee 8011 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8012}
8013
5c45bf27 8014#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 8015int arch_reinit_sched_domains(void)
5c45bf27 8016{
95402b38 8017 get_online_cpus();
dfb512ec
MK
8018
8019 /* Destroy domains first to force the rebuild */
8020 partition_sched_domains(0, NULL, NULL);
8021
e761b772 8022 rebuild_sched_domains();
95402b38 8023 put_online_cpus();
dfb512ec 8024
e761b772 8025 return 0;
5c45bf27
SS
8026}
8027
8028static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8029{
8030 int ret;
afb8a9b7 8031 unsigned int level = 0;
5c45bf27 8032
afb8a9b7
GS
8033 if (sscanf(buf, "%u", &level) != 1)
8034 return -EINVAL;
8035
8036 /*
8037 * level is always be positive so don't check for
8038 * level < POWERSAVINGS_BALANCE_NONE which is 0
8039 * What happens on 0 or 1 byte write,
8040 * need to check for count as well?
8041 */
8042
8043 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8044 return -EINVAL;
8045
8046 if (smt)
afb8a9b7 8047 sched_smt_power_savings = level;
5c45bf27 8048 else
afb8a9b7 8049 sched_mc_power_savings = level;
5c45bf27
SS
8050
8051 ret = arch_reinit_sched_domains();
8052
8053 return ret ? ret : count;
8054}
8055
5c45bf27 8056#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8057static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8058 char *page)
5c45bf27
SS
8059{
8060 return sprintf(page, "%u\n", sched_mc_power_savings);
8061}
f718cd4a 8062static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8063 const char *buf, size_t count)
5c45bf27
SS
8064{
8065 return sched_power_savings_store(buf, count, 0);
8066}
f718cd4a
AK
8067static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8068 sched_mc_power_savings_show,
8069 sched_mc_power_savings_store);
5c45bf27
SS
8070#endif
8071
8072#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8073static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8074 char *page)
5c45bf27
SS
8075{
8076 return sprintf(page, "%u\n", sched_smt_power_savings);
8077}
f718cd4a 8078static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8079 const char *buf, size_t count)
5c45bf27
SS
8080{
8081 return sched_power_savings_store(buf, count, 1);
8082}
f718cd4a
AK
8083static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8084 sched_smt_power_savings_show,
6707de00
AB
8085 sched_smt_power_savings_store);
8086#endif
8087
8088int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8089{
8090 int err = 0;
8091
8092#ifdef CONFIG_SCHED_SMT
8093 if (smt_capable())
8094 err = sysfs_create_file(&cls->kset.kobj,
8095 &attr_sched_smt_power_savings.attr);
8096#endif
8097#ifdef CONFIG_SCHED_MC
8098 if (!err && mc_capable())
8099 err = sysfs_create_file(&cls->kset.kobj,
8100 &attr_sched_mc_power_savings.attr);
8101#endif
8102 return err;
8103}
6d6bc0ad 8104#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8105
e761b772 8106#ifndef CONFIG_CPUSETS
1da177e4 8107/*
e761b772
MK
8108 * Add online and remove offline CPUs from the scheduler domains.
8109 * When cpusets are enabled they take over this function.
1da177e4
LT
8110 */
8111static int update_sched_domains(struct notifier_block *nfb,
8112 unsigned long action, void *hcpu)
e761b772
MK
8113{
8114 switch (action) {
8115 case CPU_ONLINE:
8116 case CPU_ONLINE_FROZEN:
8117 case CPU_DEAD:
8118 case CPU_DEAD_FROZEN:
dfb512ec 8119 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8120 return NOTIFY_OK;
8121
8122 default:
8123 return NOTIFY_DONE;
8124 }
8125}
8126#endif
8127
8128static int update_runtime(struct notifier_block *nfb,
8129 unsigned long action, void *hcpu)
1da177e4 8130{
7def2be1
PZ
8131 int cpu = (int)(long)hcpu;
8132
1da177e4 8133 switch (action) {
1da177e4 8134 case CPU_DOWN_PREPARE:
8bb78442 8135 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8136 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8137 return NOTIFY_OK;
8138
1da177e4 8139 case CPU_DOWN_FAILED:
8bb78442 8140 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8141 case CPU_ONLINE:
8bb78442 8142 case CPU_ONLINE_FROZEN:
7def2be1 8143 enable_runtime(cpu_rq(cpu));
e761b772
MK
8144 return NOTIFY_OK;
8145
1da177e4
LT
8146 default:
8147 return NOTIFY_DONE;
8148 }
1da177e4 8149}
1da177e4
LT
8150
8151void __init sched_init_smp(void)
8152{
dcc30a35
RR
8153 cpumask_var_t non_isolated_cpus;
8154
8155 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8156
434d53b0
MT
8157#if defined(CONFIG_NUMA)
8158 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8159 GFP_KERNEL);
8160 BUG_ON(sched_group_nodes_bycpu == NULL);
8161#endif
95402b38 8162 get_online_cpus();
712555ee 8163 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8164 arch_init_sched_domains(cpu_online_mask);
8165 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8166 if (cpumask_empty(non_isolated_cpus))
8167 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8168 mutex_unlock(&sched_domains_mutex);
95402b38 8169 put_online_cpus();
e761b772
MK
8170
8171#ifndef CONFIG_CPUSETS
1da177e4
LT
8172 /* XXX: Theoretical race here - CPU may be hotplugged now */
8173 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8174#endif
8175
8176 /* RT runtime code needs to handle some hotplug events */
8177 hotcpu_notifier(update_runtime, 0);
8178
b328ca18 8179 init_hrtick();
5c1e1767
NP
8180
8181 /* Move init over to a non-isolated CPU */
dcc30a35 8182 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8183 BUG();
19978ca6 8184 sched_init_granularity();
dcc30a35 8185 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8186
8187 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8188 init_sched_rt_class();
1da177e4
LT
8189}
8190#else
8191void __init sched_init_smp(void)
8192{
19978ca6 8193 sched_init_granularity();
1da177e4
LT
8194}
8195#endif /* CONFIG_SMP */
8196
8197int in_sched_functions(unsigned long addr)
8198{
1da177e4
LT
8199 return in_lock_functions(addr) ||
8200 (addr >= (unsigned long)__sched_text_start
8201 && addr < (unsigned long)__sched_text_end);
8202}
8203
a9957449 8204static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8205{
8206 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8207 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8208#ifdef CONFIG_FAIR_GROUP_SCHED
8209 cfs_rq->rq = rq;
8210#endif
67e9fb2a 8211 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8212}
8213
fa85ae24
PZ
8214static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8215{
8216 struct rt_prio_array *array;
8217 int i;
8218
8219 array = &rt_rq->active;
8220 for (i = 0; i < MAX_RT_PRIO; i++) {
8221 INIT_LIST_HEAD(array->queue + i);
8222 __clear_bit(i, array->bitmap);
8223 }
8224 /* delimiter for bitsearch: */
8225 __set_bit(MAX_RT_PRIO, array->bitmap);
8226
052f1dc7 8227#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
8228 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8229 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8230#endif
fa85ae24
PZ
8231#ifdef CONFIG_SMP
8232 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8233 rt_rq->overloaded = 0;
8234#endif
8235
8236 rt_rq->rt_time = 0;
8237 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8238 rt_rq->rt_runtime = 0;
8239 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8240
052f1dc7 8241#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8242 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8243 rt_rq->rq = rq;
8244#endif
fa85ae24
PZ
8245}
8246
6f505b16 8247#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8248static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8249 struct sched_entity *se, int cpu, int add,
8250 struct sched_entity *parent)
6f505b16 8251{
ec7dc8ac 8252 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8253 tg->cfs_rq[cpu] = cfs_rq;
8254 init_cfs_rq(cfs_rq, rq);
8255 cfs_rq->tg = tg;
8256 if (add)
8257 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8258
8259 tg->se[cpu] = se;
354d60c2
DG
8260 /* se could be NULL for init_task_group */
8261 if (!se)
8262 return;
8263
ec7dc8ac
DG
8264 if (!parent)
8265 se->cfs_rq = &rq->cfs;
8266 else
8267 se->cfs_rq = parent->my_q;
8268
6f505b16
PZ
8269 se->my_q = cfs_rq;
8270 se->load.weight = tg->shares;
e05510d0 8271 se->load.inv_weight = 0;
ec7dc8ac 8272 se->parent = parent;
6f505b16 8273}
052f1dc7 8274#endif
6f505b16 8275
052f1dc7 8276#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8277static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8278 struct sched_rt_entity *rt_se, int cpu, int add,
8279 struct sched_rt_entity *parent)
6f505b16 8280{
ec7dc8ac
DG
8281 struct rq *rq = cpu_rq(cpu);
8282
6f505b16
PZ
8283 tg->rt_rq[cpu] = rt_rq;
8284 init_rt_rq(rt_rq, rq);
8285 rt_rq->tg = tg;
8286 rt_rq->rt_se = rt_se;
ac086bc2 8287 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8288 if (add)
8289 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8290
8291 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8292 if (!rt_se)
8293 return;
8294
ec7dc8ac
DG
8295 if (!parent)
8296 rt_se->rt_rq = &rq->rt;
8297 else
8298 rt_se->rt_rq = parent->my_q;
8299
6f505b16 8300 rt_se->my_q = rt_rq;
ec7dc8ac 8301 rt_se->parent = parent;
6f505b16
PZ
8302 INIT_LIST_HEAD(&rt_se->run_list);
8303}
8304#endif
8305
1da177e4
LT
8306void __init sched_init(void)
8307{
dd41f596 8308 int i, j;
434d53b0
MT
8309 unsigned long alloc_size = 0, ptr;
8310
8311#ifdef CONFIG_FAIR_GROUP_SCHED
8312 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8313#endif
8314#ifdef CONFIG_RT_GROUP_SCHED
8315 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8316#endif
8317#ifdef CONFIG_USER_SCHED
8318 alloc_size *= 2;
434d53b0
MT
8319#endif
8320 /*
8321 * As sched_init() is called before page_alloc is setup,
8322 * we use alloc_bootmem().
8323 */
8324 if (alloc_size) {
5a9d3225 8325 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8326
8327#ifdef CONFIG_FAIR_GROUP_SCHED
8328 init_task_group.se = (struct sched_entity **)ptr;
8329 ptr += nr_cpu_ids * sizeof(void **);
8330
8331 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8332 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8333
8334#ifdef CONFIG_USER_SCHED
8335 root_task_group.se = (struct sched_entity **)ptr;
8336 ptr += nr_cpu_ids * sizeof(void **);
8337
8338 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8339 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8340#endif /* CONFIG_USER_SCHED */
8341#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8342#ifdef CONFIG_RT_GROUP_SCHED
8343 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8344 ptr += nr_cpu_ids * sizeof(void **);
8345
8346 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8347 ptr += nr_cpu_ids * sizeof(void **);
8348
8349#ifdef CONFIG_USER_SCHED
8350 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8351 ptr += nr_cpu_ids * sizeof(void **);
8352
8353 root_task_group.rt_rq = (struct rt_rq **)ptr;
8354 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8355#endif /* CONFIG_USER_SCHED */
8356#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8357 }
dd41f596 8358
57d885fe
GH
8359#ifdef CONFIG_SMP
8360 init_defrootdomain();
8361#endif
8362
d0b27fa7
PZ
8363 init_rt_bandwidth(&def_rt_bandwidth,
8364 global_rt_period(), global_rt_runtime());
8365
8366#ifdef CONFIG_RT_GROUP_SCHED
8367 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8368 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8369#ifdef CONFIG_USER_SCHED
8370 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8371 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8372#endif /* CONFIG_USER_SCHED */
8373#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8374
052f1dc7 8375#ifdef CONFIG_GROUP_SCHED
6f505b16 8376 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8377 INIT_LIST_HEAD(&init_task_group.children);
8378
8379#ifdef CONFIG_USER_SCHED
8380 INIT_LIST_HEAD(&root_task_group.children);
8381 init_task_group.parent = &root_task_group;
8382 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8383#endif /* CONFIG_USER_SCHED */
8384#endif /* CONFIG_GROUP_SCHED */
6f505b16 8385
0a945022 8386 for_each_possible_cpu(i) {
70b97a7f 8387 struct rq *rq;
1da177e4
LT
8388
8389 rq = cpu_rq(i);
8390 spin_lock_init(&rq->lock);
7897986b 8391 rq->nr_running = 0;
dd41f596 8392 init_cfs_rq(&rq->cfs, rq);
6f505b16 8393 init_rt_rq(&rq->rt, rq);
dd41f596 8394#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8395 init_task_group.shares = init_task_group_load;
6f505b16 8396 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8397#ifdef CONFIG_CGROUP_SCHED
8398 /*
8399 * How much cpu bandwidth does init_task_group get?
8400 *
8401 * In case of task-groups formed thr' the cgroup filesystem, it
8402 * gets 100% of the cpu resources in the system. This overall
8403 * system cpu resource is divided among the tasks of
8404 * init_task_group and its child task-groups in a fair manner,
8405 * based on each entity's (task or task-group's) weight
8406 * (se->load.weight).
8407 *
8408 * In other words, if init_task_group has 10 tasks of weight
8409 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8410 * then A0's share of the cpu resource is:
8411 *
8412 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8413 *
8414 * We achieve this by letting init_task_group's tasks sit
8415 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8416 */
ec7dc8ac 8417 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8418#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8419 root_task_group.shares = NICE_0_LOAD;
8420 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8421 /*
8422 * In case of task-groups formed thr' the user id of tasks,
8423 * init_task_group represents tasks belonging to root user.
8424 * Hence it forms a sibling of all subsequent groups formed.
8425 * In this case, init_task_group gets only a fraction of overall
8426 * system cpu resource, based on the weight assigned to root
8427 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8428 * by letting tasks of init_task_group sit in a separate cfs_rq
8429 * (init_cfs_rq) and having one entity represent this group of
8430 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8431 */
ec7dc8ac 8432 init_tg_cfs_entry(&init_task_group,
6f505b16 8433 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8434 &per_cpu(init_sched_entity, i), i, 1,
8435 root_task_group.se[i]);
6f505b16 8436
052f1dc7 8437#endif
354d60c2
DG
8438#endif /* CONFIG_FAIR_GROUP_SCHED */
8439
8440 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8441#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8442 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8443#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8444 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8445#elif defined CONFIG_USER_SCHED
eff766a6 8446 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8447 init_tg_rt_entry(&init_task_group,
6f505b16 8448 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8449 &per_cpu(init_sched_rt_entity, i), i, 1,
8450 root_task_group.rt_se[i]);
354d60c2 8451#endif
dd41f596 8452#endif
1da177e4 8453
dd41f596
IM
8454 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8455 rq->cpu_load[j] = 0;
1da177e4 8456#ifdef CONFIG_SMP
41c7ce9a 8457 rq->sd = NULL;
57d885fe 8458 rq->rd = NULL;
1da177e4 8459 rq->active_balance = 0;
dd41f596 8460 rq->next_balance = jiffies;
1da177e4 8461 rq->push_cpu = 0;
0a2966b4 8462 rq->cpu = i;
1f11eb6a 8463 rq->online = 0;
1da177e4
LT
8464 rq->migration_thread = NULL;
8465 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8466 rq_attach_root(rq, &def_root_domain);
1da177e4 8467#endif
8f4d37ec 8468 init_rq_hrtick(rq);
1da177e4 8469 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8470 }
8471
2dd73a4f 8472 set_load_weight(&init_task);
b50f60ce 8473
e107be36
AK
8474#ifdef CONFIG_PREEMPT_NOTIFIERS
8475 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8476#endif
8477
c9819f45 8478#ifdef CONFIG_SMP
962cf36c 8479 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8480#endif
8481
b50f60ce
HC
8482#ifdef CONFIG_RT_MUTEXES
8483 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8484#endif
8485
1da177e4
LT
8486 /*
8487 * The boot idle thread does lazy MMU switching as well:
8488 */
8489 atomic_inc(&init_mm.mm_count);
8490 enter_lazy_tlb(&init_mm, current);
8491
8492 /*
8493 * Make us the idle thread. Technically, schedule() should not be
8494 * called from this thread, however somewhere below it might be,
8495 * but because we are the idle thread, we just pick up running again
8496 * when this runqueue becomes "idle".
8497 */
8498 init_idle(current, smp_processor_id());
dd41f596
IM
8499 /*
8500 * During early bootup we pretend to be a normal task:
8501 */
8502 current->sched_class = &fair_sched_class;
6892b75e 8503
6a7b3dc3
RR
8504 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8505 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8506#ifdef CONFIG_SMP
7d1e6a9b
RR
8507#ifdef CONFIG_NO_HZ
8508 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8509#endif
dcc30a35 8510 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8511#endif /* SMP */
6a7b3dc3 8512
6892b75e 8513 scheduler_running = 1;
1da177e4
LT
8514}
8515
8516#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8517void __might_sleep(char *file, int line)
8518{
48f24c4d 8519#ifdef in_atomic
1da177e4
LT
8520 static unsigned long prev_jiffy; /* ratelimiting */
8521
aef745fc
IM
8522 if ((!in_atomic() && !irqs_disabled()) ||
8523 system_state != SYSTEM_RUNNING || oops_in_progress)
8524 return;
8525 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8526 return;
8527 prev_jiffy = jiffies;
8528
8529 printk(KERN_ERR
8530 "BUG: sleeping function called from invalid context at %s:%d\n",
8531 file, line);
8532 printk(KERN_ERR
8533 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8534 in_atomic(), irqs_disabled(),
8535 current->pid, current->comm);
8536
8537 debug_show_held_locks(current);
8538 if (irqs_disabled())
8539 print_irqtrace_events(current);
8540 dump_stack();
1da177e4
LT
8541#endif
8542}
8543EXPORT_SYMBOL(__might_sleep);
8544#endif
8545
8546#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8547static void normalize_task(struct rq *rq, struct task_struct *p)
8548{
8549 int on_rq;
3e51f33f 8550
3a5e4dc1
AK
8551 update_rq_clock(rq);
8552 on_rq = p->se.on_rq;
8553 if (on_rq)
8554 deactivate_task(rq, p, 0);
8555 __setscheduler(rq, p, SCHED_NORMAL, 0);
8556 if (on_rq) {
8557 activate_task(rq, p, 0);
8558 resched_task(rq->curr);
8559 }
8560}
8561
1da177e4
LT
8562void normalize_rt_tasks(void)
8563{
a0f98a1c 8564 struct task_struct *g, *p;
1da177e4 8565 unsigned long flags;
70b97a7f 8566 struct rq *rq;
1da177e4 8567
4cf5d77a 8568 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8569 do_each_thread(g, p) {
178be793
IM
8570 /*
8571 * Only normalize user tasks:
8572 */
8573 if (!p->mm)
8574 continue;
8575
6cfb0d5d 8576 p->se.exec_start = 0;
6cfb0d5d 8577#ifdef CONFIG_SCHEDSTATS
dd41f596 8578 p->se.wait_start = 0;
dd41f596 8579 p->se.sleep_start = 0;
dd41f596 8580 p->se.block_start = 0;
6cfb0d5d 8581#endif
dd41f596
IM
8582
8583 if (!rt_task(p)) {
8584 /*
8585 * Renice negative nice level userspace
8586 * tasks back to 0:
8587 */
8588 if (TASK_NICE(p) < 0 && p->mm)
8589 set_user_nice(p, 0);
1da177e4 8590 continue;
dd41f596 8591 }
1da177e4 8592
4cf5d77a 8593 spin_lock(&p->pi_lock);
b29739f9 8594 rq = __task_rq_lock(p);
1da177e4 8595
178be793 8596 normalize_task(rq, p);
3a5e4dc1 8597
b29739f9 8598 __task_rq_unlock(rq);
4cf5d77a 8599 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8600 } while_each_thread(g, p);
8601
4cf5d77a 8602 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8603}
8604
8605#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8606
8607#ifdef CONFIG_IA64
8608/*
8609 * These functions are only useful for the IA64 MCA handling.
8610 *
8611 * They can only be called when the whole system has been
8612 * stopped - every CPU needs to be quiescent, and no scheduling
8613 * activity can take place. Using them for anything else would
8614 * be a serious bug, and as a result, they aren't even visible
8615 * under any other configuration.
8616 */
8617
8618/**
8619 * curr_task - return the current task for a given cpu.
8620 * @cpu: the processor in question.
8621 *
8622 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8623 */
36c8b586 8624struct task_struct *curr_task(int cpu)
1df5c10a
LT
8625{
8626 return cpu_curr(cpu);
8627}
8628
8629/**
8630 * set_curr_task - set the current task for a given cpu.
8631 * @cpu: the processor in question.
8632 * @p: the task pointer to set.
8633 *
8634 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8635 * are serviced on a separate stack. It allows the architecture to switch the
8636 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8637 * must be called with all CPU's synchronized, and interrupts disabled, the
8638 * and caller must save the original value of the current task (see
8639 * curr_task() above) and restore that value before reenabling interrupts and
8640 * re-starting the system.
8641 *
8642 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8643 */
36c8b586 8644void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8645{
8646 cpu_curr(cpu) = p;
8647}
8648
8649#endif
29f59db3 8650
bccbe08a
PZ
8651#ifdef CONFIG_FAIR_GROUP_SCHED
8652static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8653{
8654 int i;
8655
8656 for_each_possible_cpu(i) {
8657 if (tg->cfs_rq)
8658 kfree(tg->cfs_rq[i]);
8659 if (tg->se)
8660 kfree(tg->se[i]);
6f505b16
PZ
8661 }
8662
8663 kfree(tg->cfs_rq);
8664 kfree(tg->se);
6f505b16
PZ
8665}
8666
ec7dc8ac
DG
8667static
8668int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8669{
29f59db3 8670 struct cfs_rq *cfs_rq;
eab17229 8671 struct sched_entity *se;
9b5b7751 8672 struct rq *rq;
29f59db3
SV
8673 int i;
8674
434d53b0 8675 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8676 if (!tg->cfs_rq)
8677 goto err;
434d53b0 8678 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8679 if (!tg->se)
8680 goto err;
052f1dc7
PZ
8681
8682 tg->shares = NICE_0_LOAD;
29f59db3
SV
8683
8684 for_each_possible_cpu(i) {
9b5b7751 8685 rq = cpu_rq(i);
29f59db3 8686
eab17229
LZ
8687 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8688 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8689 if (!cfs_rq)
8690 goto err;
8691
eab17229
LZ
8692 se = kzalloc_node(sizeof(struct sched_entity),
8693 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8694 if (!se)
8695 goto err;
8696
eab17229 8697 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8698 }
8699
8700 return 1;
8701
8702 err:
8703 return 0;
8704}
8705
8706static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8707{
8708 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8709 &cpu_rq(cpu)->leaf_cfs_rq_list);
8710}
8711
8712static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8713{
8714 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8715}
6d6bc0ad 8716#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8717static inline void free_fair_sched_group(struct task_group *tg)
8718{
8719}
8720
ec7dc8ac
DG
8721static inline
8722int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8723{
8724 return 1;
8725}
8726
8727static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8728{
8729}
8730
8731static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8732{
8733}
6d6bc0ad 8734#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8735
8736#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8737static void free_rt_sched_group(struct task_group *tg)
8738{
8739 int i;
8740
d0b27fa7
PZ
8741 destroy_rt_bandwidth(&tg->rt_bandwidth);
8742
bccbe08a
PZ
8743 for_each_possible_cpu(i) {
8744 if (tg->rt_rq)
8745 kfree(tg->rt_rq[i]);
8746 if (tg->rt_se)
8747 kfree(tg->rt_se[i]);
8748 }
8749
8750 kfree(tg->rt_rq);
8751 kfree(tg->rt_se);
8752}
8753
ec7dc8ac
DG
8754static
8755int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8756{
8757 struct rt_rq *rt_rq;
eab17229 8758 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8759 struct rq *rq;
8760 int i;
8761
434d53b0 8762 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8763 if (!tg->rt_rq)
8764 goto err;
434d53b0 8765 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8766 if (!tg->rt_se)
8767 goto err;
8768
d0b27fa7
PZ
8769 init_rt_bandwidth(&tg->rt_bandwidth,
8770 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8771
8772 for_each_possible_cpu(i) {
8773 rq = cpu_rq(i);
8774
eab17229
LZ
8775 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8776 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8777 if (!rt_rq)
8778 goto err;
29f59db3 8779
eab17229
LZ
8780 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8781 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8782 if (!rt_se)
8783 goto err;
29f59db3 8784
eab17229 8785 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8786 }
8787
bccbe08a
PZ
8788 return 1;
8789
8790 err:
8791 return 0;
8792}
8793
8794static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8795{
8796 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8797 &cpu_rq(cpu)->leaf_rt_rq_list);
8798}
8799
8800static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8801{
8802 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8803}
6d6bc0ad 8804#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8805static inline void free_rt_sched_group(struct task_group *tg)
8806{
8807}
8808
ec7dc8ac
DG
8809static inline
8810int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8811{
8812 return 1;
8813}
8814
8815static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8816{
8817}
8818
8819static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8820{
8821}
6d6bc0ad 8822#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8823
d0b27fa7 8824#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8825static void free_sched_group(struct task_group *tg)
8826{
8827 free_fair_sched_group(tg);
8828 free_rt_sched_group(tg);
8829 kfree(tg);
8830}
8831
8832/* allocate runqueue etc for a new task group */
ec7dc8ac 8833struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8834{
8835 struct task_group *tg;
8836 unsigned long flags;
8837 int i;
8838
8839 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8840 if (!tg)
8841 return ERR_PTR(-ENOMEM);
8842
ec7dc8ac 8843 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8844 goto err;
8845
ec7dc8ac 8846 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8847 goto err;
8848
8ed36996 8849 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8850 for_each_possible_cpu(i) {
bccbe08a
PZ
8851 register_fair_sched_group(tg, i);
8852 register_rt_sched_group(tg, i);
9b5b7751 8853 }
6f505b16 8854 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8855
8856 WARN_ON(!parent); /* root should already exist */
8857
8858 tg->parent = parent;
f473aa5e 8859 INIT_LIST_HEAD(&tg->children);
09f2724a 8860 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8861 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8862
9b5b7751 8863 return tg;
29f59db3
SV
8864
8865err:
6f505b16 8866 free_sched_group(tg);
29f59db3
SV
8867 return ERR_PTR(-ENOMEM);
8868}
8869
9b5b7751 8870/* rcu callback to free various structures associated with a task group */
6f505b16 8871static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8872{
29f59db3 8873 /* now it should be safe to free those cfs_rqs */
6f505b16 8874 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8875}
8876
9b5b7751 8877/* Destroy runqueue etc associated with a task group */
4cf86d77 8878void sched_destroy_group(struct task_group *tg)
29f59db3 8879{
8ed36996 8880 unsigned long flags;
9b5b7751 8881 int i;
29f59db3 8882
8ed36996 8883 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8884 for_each_possible_cpu(i) {
bccbe08a
PZ
8885 unregister_fair_sched_group(tg, i);
8886 unregister_rt_sched_group(tg, i);
9b5b7751 8887 }
6f505b16 8888 list_del_rcu(&tg->list);
f473aa5e 8889 list_del_rcu(&tg->siblings);
8ed36996 8890 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8891
9b5b7751 8892 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8893 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8894}
8895
9b5b7751 8896/* change task's runqueue when it moves between groups.
3a252015
IM
8897 * The caller of this function should have put the task in its new group
8898 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8899 * reflect its new group.
9b5b7751
SV
8900 */
8901void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8902{
8903 int on_rq, running;
8904 unsigned long flags;
8905 struct rq *rq;
8906
8907 rq = task_rq_lock(tsk, &flags);
8908
29f59db3
SV
8909 update_rq_clock(rq);
8910
051a1d1a 8911 running = task_current(rq, tsk);
29f59db3
SV
8912 on_rq = tsk->se.on_rq;
8913
0e1f3483 8914 if (on_rq)
29f59db3 8915 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8916 if (unlikely(running))
8917 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8918
6f505b16 8919 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8920
810b3817
PZ
8921#ifdef CONFIG_FAIR_GROUP_SCHED
8922 if (tsk->sched_class->moved_group)
8923 tsk->sched_class->moved_group(tsk);
8924#endif
8925
0e1f3483
HS
8926 if (unlikely(running))
8927 tsk->sched_class->set_curr_task(rq);
8928 if (on_rq)
7074badb 8929 enqueue_task(rq, tsk, 0);
29f59db3 8930
29f59db3
SV
8931 task_rq_unlock(rq, &flags);
8932}
6d6bc0ad 8933#endif /* CONFIG_GROUP_SCHED */
29f59db3 8934
052f1dc7 8935#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8936static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8937{
8938 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8939 int on_rq;
8940
29f59db3 8941 on_rq = se->on_rq;
62fb1851 8942 if (on_rq)
29f59db3
SV
8943 dequeue_entity(cfs_rq, se, 0);
8944
8945 se->load.weight = shares;
e05510d0 8946 se->load.inv_weight = 0;
29f59db3 8947
62fb1851 8948 if (on_rq)
29f59db3 8949 enqueue_entity(cfs_rq, se, 0);
c09595f6 8950}
62fb1851 8951
c09595f6
PZ
8952static void set_se_shares(struct sched_entity *se, unsigned long shares)
8953{
8954 struct cfs_rq *cfs_rq = se->cfs_rq;
8955 struct rq *rq = cfs_rq->rq;
8956 unsigned long flags;
8957
8958 spin_lock_irqsave(&rq->lock, flags);
8959 __set_se_shares(se, shares);
8960 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8961}
8962
8ed36996
PZ
8963static DEFINE_MUTEX(shares_mutex);
8964
4cf86d77 8965int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8966{
8967 int i;
8ed36996 8968 unsigned long flags;
c61935fd 8969
ec7dc8ac
DG
8970 /*
8971 * We can't change the weight of the root cgroup.
8972 */
8973 if (!tg->se[0])
8974 return -EINVAL;
8975
18d95a28
PZ
8976 if (shares < MIN_SHARES)
8977 shares = MIN_SHARES;
cb4ad1ff
MX
8978 else if (shares > MAX_SHARES)
8979 shares = MAX_SHARES;
62fb1851 8980
8ed36996 8981 mutex_lock(&shares_mutex);
9b5b7751 8982 if (tg->shares == shares)
5cb350ba 8983 goto done;
29f59db3 8984
8ed36996 8985 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8986 for_each_possible_cpu(i)
8987 unregister_fair_sched_group(tg, i);
f473aa5e 8988 list_del_rcu(&tg->siblings);
8ed36996 8989 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8990
8991 /* wait for any ongoing reference to this group to finish */
8992 synchronize_sched();
8993
8994 /*
8995 * Now we are free to modify the group's share on each cpu
8996 * w/o tripping rebalance_share or load_balance_fair.
8997 */
9b5b7751 8998 tg->shares = shares;
c09595f6
PZ
8999 for_each_possible_cpu(i) {
9000 /*
9001 * force a rebalance
9002 */
9003 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9004 set_se_shares(tg->se[i], shares);
c09595f6 9005 }
29f59db3 9006
6b2d7700
SV
9007 /*
9008 * Enable load balance activity on this group, by inserting it back on
9009 * each cpu's rq->leaf_cfs_rq_list.
9010 */
8ed36996 9011 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9012 for_each_possible_cpu(i)
9013 register_fair_sched_group(tg, i);
f473aa5e 9014 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9015 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9016done:
8ed36996 9017 mutex_unlock(&shares_mutex);
9b5b7751 9018 return 0;
29f59db3
SV
9019}
9020
5cb350ba
DG
9021unsigned long sched_group_shares(struct task_group *tg)
9022{
9023 return tg->shares;
9024}
052f1dc7 9025#endif
5cb350ba 9026
052f1dc7 9027#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9028/*
9f0c1e56 9029 * Ensure that the real time constraints are schedulable.
6f505b16 9030 */
9f0c1e56
PZ
9031static DEFINE_MUTEX(rt_constraints_mutex);
9032
9033static unsigned long to_ratio(u64 period, u64 runtime)
9034{
9035 if (runtime == RUNTIME_INF)
9a7e0b18 9036 return 1ULL << 20;
9f0c1e56 9037
9a7e0b18 9038 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9039}
9040
9a7e0b18
PZ
9041/* Must be called with tasklist_lock held */
9042static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9043{
9a7e0b18 9044 struct task_struct *g, *p;
b40b2e8e 9045
9a7e0b18
PZ
9046 do_each_thread(g, p) {
9047 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9048 return 1;
9049 } while_each_thread(g, p);
b40b2e8e 9050
9a7e0b18
PZ
9051 return 0;
9052}
b40b2e8e 9053
9a7e0b18
PZ
9054struct rt_schedulable_data {
9055 struct task_group *tg;
9056 u64 rt_period;
9057 u64 rt_runtime;
9058};
b40b2e8e 9059
9a7e0b18
PZ
9060static int tg_schedulable(struct task_group *tg, void *data)
9061{
9062 struct rt_schedulable_data *d = data;
9063 struct task_group *child;
9064 unsigned long total, sum = 0;
9065 u64 period, runtime;
b40b2e8e 9066
9a7e0b18
PZ
9067 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9068 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9069
9a7e0b18
PZ
9070 if (tg == d->tg) {
9071 period = d->rt_period;
9072 runtime = d->rt_runtime;
b40b2e8e 9073 }
b40b2e8e 9074
4653f803
PZ
9075 /*
9076 * Cannot have more runtime than the period.
9077 */
9078 if (runtime > period && runtime != RUNTIME_INF)
9079 return -EINVAL;
6f505b16 9080
4653f803
PZ
9081 /*
9082 * Ensure we don't starve existing RT tasks.
9083 */
9a7e0b18
PZ
9084 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9085 return -EBUSY;
6f505b16 9086
9a7e0b18 9087 total = to_ratio(period, runtime);
6f505b16 9088
4653f803
PZ
9089 /*
9090 * Nobody can have more than the global setting allows.
9091 */
9092 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9093 return -EINVAL;
6f505b16 9094
4653f803
PZ
9095 /*
9096 * The sum of our children's runtime should not exceed our own.
9097 */
9a7e0b18
PZ
9098 list_for_each_entry_rcu(child, &tg->children, siblings) {
9099 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9100 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9101
9a7e0b18
PZ
9102 if (child == d->tg) {
9103 period = d->rt_period;
9104 runtime = d->rt_runtime;
9105 }
6f505b16 9106
9a7e0b18 9107 sum += to_ratio(period, runtime);
9f0c1e56 9108 }
6f505b16 9109
9a7e0b18
PZ
9110 if (sum > total)
9111 return -EINVAL;
9112
9113 return 0;
6f505b16
PZ
9114}
9115
9a7e0b18 9116static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9117{
9a7e0b18
PZ
9118 struct rt_schedulable_data data = {
9119 .tg = tg,
9120 .rt_period = period,
9121 .rt_runtime = runtime,
9122 };
9123
9124 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9125}
9126
d0b27fa7
PZ
9127static int tg_set_bandwidth(struct task_group *tg,
9128 u64 rt_period, u64 rt_runtime)
6f505b16 9129{
ac086bc2 9130 int i, err = 0;
9f0c1e56 9131
9f0c1e56 9132 mutex_lock(&rt_constraints_mutex);
521f1a24 9133 read_lock(&tasklist_lock);
9a7e0b18
PZ
9134 err = __rt_schedulable(tg, rt_period, rt_runtime);
9135 if (err)
9f0c1e56 9136 goto unlock;
ac086bc2
PZ
9137
9138 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9139 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9140 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9141
9142 for_each_possible_cpu(i) {
9143 struct rt_rq *rt_rq = tg->rt_rq[i];
9144
9145 spin_lock(&rt_rq->rt_runtime_lock);
9146 rt_rq->rt_runtime = rt_runtime;
9147 spin_unlock(&rt_rq->rt_runtime_lock);
9148 }
9149 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9150 unlock:
521f1a24 9151 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9152 mutex_unlock(&rt_constraints_mutex);
9153
9154 return err;
6f505b16
PZ
9155}
9156
d0b27fa7
PZ
9157int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9158{
9159 u64 rt_runtime, rt_period;
9160
9161 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9162 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9163 if (rt_runtime_us < 0)
9164 rt_runtime = RUNTIME_INF;
9165
9166 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9167}
9168
9f0c1e56
PZ
9169long sched_group_rt_runtime(struct task_group *tg)
9170{
9171 u64 rt_runtime_us;
9172
d0b27fa7 9173 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9174 return -1;
9175
d0b27fa7 9176 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9177 do_div(rt_runtime_us, NSEC_PER_USEC);
9178 return rt_runtime_us;
9179}
d0b27fa7
PZ
9180
9181int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9182{
9183 u64 rt_runtime, rt_period;
9184
9185 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9186 rt_runtime = tg->rt_bandwidth.rt_runtime;
9187
619b0488
R
9188 if (rt_period == 0)
9189 return -EINVAL;
9190
d0b27fa7
PZ
9191 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9192}
9193
9194long sched_group_rt_period(struct task_group *tg)
9195{
9196 u64 rt_period_us;
9197
9198 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9199 do_div(rt_period_us, NSEC_PER_USEC);
9200 return rt_period_us;
9201}
9202
9203static int sched_rt_global_constraints(void)
9204{
4653f803 9205 u64 runtime, period;
d0b27fa7
PZ
9206 int ret = 0;
9207
ec5d4989
HS
9208 if (sysctl_sched_rt_period <= 0)
9209 return -EINVAL;
9210
4653f803
PZ
9211 runtime = global_rt_runtime();
9212 period = global_rt_period();
9213
9214 /*
9215 * Sanity check on the sysctl variables.
9216 */
9217 if (runtime > period && runtime != RUNTIME_INF)
9218 return -EINVAL;
10b612f4 9219
d0b27fa7 9220 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9221 read_lock(&tasklist_lock);
4653f803 9222 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9223 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9224 mutex_unlock(&rt_constraints_mutex);
9225
9226 return ret;
9227}
6d6bc0ad 9228#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9229static int sched_rt_global_constraints(void)
9230{
ac086bc2
PZ
9231 unsigned long flags;
9232 int i;
9233
ec5d4989
HS
9234 if (sysctl_sched_rt_period <= 0)
9235 return -EINVAL;
9236
ac086bc2
PZ
9237 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9238 for_each_possible_cpu(i) {
9239 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9240
9241 spin_lock(&rt_rq->rt_runtime_lock);
9242 rt_rq->rt_runtime = global_rt_runtime();
9243 spin_unlock(&rt_rq->rt_runtime_lock);
9244 }
9245 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9246
d0b27fa7
PZ
9247 return 0;
9248}
6d6bc0ad 9249#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9250
9251int sched_rt_handler(struct ctl_table *table, int write,
9252 struct file *filp, void __user *buffer, size_t *lenp,
9253 loff_t *ppos)
9254{
9255 int ret;
9256 int old_period, old_runtime;
9257 static DEFINE_MUTEX(mutex);
9258
9259 mutex_lock(&mutex);
9260 old_period = sysctl_sched_rt_period;
9261 old_runtime = sysctl_sched_rt_runtime;
9262
9263 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9264
9265 if (!ret && write) {
9266 ret = sched_rt_global_constraints();
9267 if (ret) {
9268 sysctl_sched_rt_period = old_period;
9269 sysctl_sched_rt_runtime = old_runtime;
9270 } else {
9271 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9272 def_rt_bandwidth.rt_period =
9273 ns_to_ktime(global_rt_period());
9274 }
9275 }
9276 mutex_unlock(&mutex);
9277
9278 return ret;
9279}
68318b8e 9280
052f1dc7 9281#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9282
9283/* return corresponding task_group object of a cgroup */
2b01dfe3 9284static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9285{
2b01dfe3
PM
9286 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9287 struct task_group, css);
68318b8e
SV
9288}
9289
9290static struct cgroup_subsys_state *
2b01dfe3 9291cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9292{
ec7dc8ac 9293 struct task_group *tg, *parent;
68318b8e 9294
2b01dfe3 9295 if (!cgrp->parent) {
68318b8e 9296 /* This is early initialization for the top cgroup */
68318b8e
SV
9297 return &init_task_group.css;
9298 }
9299
ec7dc8ac
DG
9300 parent = cgroup_tg(cgrp->parent);
9301 tg = sched_create_group(parent);
68318b8e
SV
9302 if (IS_ERR(tg))
9303 return ERR_PTR(-ENOMEM);
9304
68318b8e
SV
9305 return &tg->css;
9306}
9307
41a2d6cf
IM
9308static void
9309cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9310{
2b01dfe3 9311 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9312
9313 sched_destroy_group(tg);
9314}
9315
41a2d6cf
IM
9316static int
9317cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9318 struct task_struct *tsk)
68318b8e 9319{
b68aa230
PZ
9320#ifdef CONFIG_RT_GROUP_SCHED
9321 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9322 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9323 return -EINVAL;
9324#else
68318b8e
SV
9325 /* We don't support RT-tasks being in separate groups */
9326 if (tsk->sched_class != &fair_sched_class)
9327 return -EINVAL;
b68aa230 9328#endif
68318b8e
SV
9329
9330 return 0;
9331}
9332
9333static void
2b01dfe3 9334cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9335 struct cgroup *old_cont, struct task_struct *tsk)
9336{
9337 sched_move_task(tsk);
9338}
9339
052f1dc7 9340#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9341static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9342 u64 shareval)
68318b8e 9343{
2b01dfe3 9344 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9345}
9346
f4c753b7 9347static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9348{
2b01dfe3 9349 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9350
9351 return (u64) tg->shares;
9352}
6d6bc0ad 9353#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9354
052f1dc7 9355#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9356static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9357 s64 val)
6f505b16 9358{
06ecb27c 9359 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9360}
9361
06ecb27c 9362static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9363{
06ecb27c 9364 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9365}
d0b27fa7
PZ
9366
9367static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9368 u64 rt_period_us)
9369{
9370 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9371}
9372
9373static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9374{
9375 return sched_group_rt_period(cgroup_tg(cgrp));
9376}
6d6bc0ad 9377#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9378
fe5c7cc2 9379static struct cftype cpu_files[] = {
052f1dc7 9380#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9381 {
9382 .name = "shares",
f4c753b7
PM
9383 .read_u64 = cpu_shares_read_u64,
9384 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9385 },
052f1dc7
PZ
9386#endif
9387#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9388 {
9f0c1e56 9389 .name = "rt_runtime_us",
06ecb27c
PM
9390 .read_s64 = cpu_rt_runtime_read,
9391 .write_s64 = cpu_rt_runtime_write,
6f505b16 9392 },
d0b27fa7
PZ
9393 {
9394 .name = "rt_period_us",
f4c753b7
PM
9395 .read_u64 = cpu_rt_period_read_uint,
9396 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9397 },
052f1dc7 9398#endif
68318b8e
SV
9399};
9400
9401static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9402{
fe5c7cc2 9403 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9404}
9405
9406struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9407 .name = "cpu",
9408 .create = cpu_cgroup_create,
9409 .destroy = cpu_cgroup_destroy,
9410 .can_attach = cpu_cgroup_can_attach,
9411 .attach = cpu_cgroup_attach,
9412 .populate = cpu_cgroup_populate,
9413 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9414 .early_init = 1,
9415};
9416
052f1dc7 9417#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9418
9419#ifdef CONFIG_CGROUP_CPUACCT
9420
9421/*
9422 * CPU accounting code for task groups.
9423 *
9424 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9425 * (balbir@in.ibm.com).
9426 */
9427
934352f2 9428/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9429struct cpuacct {
9430 struct cgroup_subsys_state css;
9431 /* cpuusage holds pointer to a u64-type object on every cpu */
9432 u64 *cpuusage;
934352f2 9433 struct cpuacct *parent;
d842de87
SV
9434};
9435
9436struct cgroup_subsys cpuacct_subsys;
9437
9438/* return cpu accounting group corresponding to this container */
32cd756a 9439static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9440{
32cd756a 9441 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9442 struct cpuacct, css);
9443}
9444
9445/* return cpu accounting group to which this task belongs */
9446static inline struct cpuacct *task_ca(struct task_struct *tsk)
9447{
9448 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9449 struct cpuacct, css);
9450}
9451
9452/* create a new cpu accounting group */
9453static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9454 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9455{
9456 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9457
9458 if (!ca)
9459 return ERR_PTR(-ENOMEM);
9460
9461 ca->cpuusage = alloc_percpu(u64);
9462 if (!ca->cpuusage) {
9463 kfree(ca);
9464 return ERR_PTR(-ENOMEM);
9465 }
9466
934352f2
BR
9467 if (cgrp->parent)
9468 ca->parent = cgroup_ca(cgrp->parent);
9469
d842de87
SV
9470 return &ca->css;
9471}
9472
9473/* destroy an existing cpu accounting group */
41a2d6cf 9474static void
32cd756a 9475cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9476{
32cd756a 9477 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9478
9479 free_percpu(ca->cpuusage);
9480 kfree(ca);
9481}
9482
9483/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9484static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9485{
32cd756a 9486 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9487 u64 totalcpuusage = 0;
9488 int i;
9489
9490 for_each_possible_cpu(i) {
9491 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9492
9493 /*
9494 * Take rq->lock to make 64-bit addition safe on 32-bit
9495 * platforms.
9496 */
9497 spin_lock_irq(&cpu_rq(i)->lock);
9498 totalcpuusage += *cpuusage;
9499 spin_unlock_irq(&cpu_rq(i)->lock);
9500 }
9501
9502 return totalcpuusage;
9503}
9504
0297b803
DG
9505static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9506 u64 reset)
9507{
9508 struct cpuacct *ca = cgroup_ca(cgrp);
9509 int err = 0;
9510 int i;
9511
9512 if (reset) {
9513 err = -EINVAL;
9514 goto out;
9515 }
9516
9517 for_each_possible_cpu(i) {
9518 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9519
9520 spin_lock_irq(&cpu_rq(i)->lock);
9521 *cpuusage = 0;
9522 spin_unlock_irq(&cpu_rq(i)->lock);
9523 }
9524out:
9525 return err;
9526}
9527
d842de87
SV
9528static struct cftype files[] = {
9529 {
9530 .name = "usage",
f4c753b7
PM
9531 .read_u64 = cpuusage_read,
9532 .write_u64 = cpuusage_write,
d842de87
SV
9533 },
9534};
9535
32cd756a 9536static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9537{
32cd756a 9538 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9539}
9540
9541/*
9542 * charge this task's execution time to its accounting group.
9543 *
9544 * called with rq->lock held.
9545 */
9546static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9547{
9548 struct cpuacct *ca;
934352f2 9549 int cpu;
d842de87
SV
9550
9551 if (!cpuacct_subsys.active)
9552 return;
9553
934352f2 9554 cpu = task_cpu(tsk);
d842de87 9555 ca = task_ca(tsk);
d842de87 9556
934352f2
BR
9557 for (; ca; ca = ca->parent) {
9558 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9559 *cpuusage += cputime;
9560 }
9561}
9562
9563struct cgroup_subsys cpuacct_subsys = {
9564 .name = "cpuacct",
9565 .create = cpuacct_create,
9566 .destroy = cpuacct_destroy,
9567 .populate = cpuacct_populate,
9568 .subsys_id = cpuacct_subsys_id,
9569};
9570#endif /* CONFIG_CGROUP_CPUACCT */
This page took 1.577558 seconds and 5 git commands to generate.