sched: Consolidate select_task_rq() callers
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
b9bf3121 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
e9036b36
CG
312#ifdef CONFIG_FAIR_GROUP_SCHED
313
57310a98
PZ
314#ifdef CONFIG_SMP
315static int root_task_group_empty(void)
316{
317 return list_empty(&root_task_group.children);
318}
319#endif
320
052f1dc7
PZ
321#ifdef CONFIG_USER_SCHED
322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 323#else /* !CONFIG_USER_SCHED */
052f1dc7 324# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 325#endif /* CONFIG_USER_SCHED */
052f1dc7 326
cb4ad1ff 327/*
2e084786
LJ
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
cb4ad1ff
MX
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
18d95a28 335#define MIN_SHARES 2
2e084786 336#define MAX_SHARES (1UL << 18)
18d95a28 337
052f1dc7
PZ
338static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339#endif
340
29f59db3 341/* Default task group.
3a252015 342 * Every task in system belong to this group at bootup.
29f59db3 343 */
434d53b0 344struct task_group init_task_group;
29f59db3
SV
345
346/* return group to which a task belongs */
4cf86d77 347static inline struct task_group *task_group(struct task_struct *p)
29f59db3 348{
4cf86d77 349 struct task_group *tg;
9b5b7751 350
052f1dc7 351#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
052f1dc7 355#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
24e377a8 358#else
41a2d6cf 359 tg = &init_task_group;
24e377a8 360#endif
9b5b7751 361 return tg;
29f59db3
SV
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 366{
052f1dc7 367#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
052f1dc7 370#endif
6f505b16 371
052f1dc7 372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 375#endif
29f59db3
SV
376}
377
378#else
379
6f505b16 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
381static inline struct task_group *task_group(struct task_struct *p)
382{
383 return NULL;
384}
29f59db3 385
052f1dc7 386#endif /* CONFIG_GROUP_SCHED */
29f59db3 387
6aa645ea
IM
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
6aa645ea 393 u64 exec_clock;
e9acbff6 394 u64 min_vruntime;
6aa645ea
IM
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
4a55bd5e
PZ
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
4793241b 406 struct sched_entity *curr, *next, *last;
ddc97297 407
5ac5c4d6 408 unsigned int nr_spread_over;
ddc97297 409
62160e3f 410#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
41a2d6cf
IM
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
41a2d6cf
IM
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
423
424#ifdef CONFIG_SMP
c09595f6 425 /*
c8cba857 426 * the part of load.weight contributed by tasks
c09595f6 427 */
c8cba857 428 unsigned long task_weight;
c09595f6 429
c8cba857
PZ
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
c09595f6 437
c8cba857
PZ
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
f1d239f7
PZ
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
c09595f6 447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
456 struct {
457 int curr; /* highest queued rt task prio */
398a153b 458#ifdef CONFIG_SMP
e864c499 459 int next; /* next highest */
398a153b 460#endif
e864c499 461 } highest_prio;
6f505b16 462#endif
fa85ae24 463#ifdef CONFIG_SMP
73fe6aae 464 unsigned long rt_nr_migratory;
a1ba4d8b 465 unsigned long rt_nr_total;
a22d7fc1 466 int overloaded;
917b627d 467 struct plist_head pushable_tasks;
fa85ae24 468#endif
6f505b16 469 int rt_throttled;
fa85ae24 470 u64 rt_time;
ac086bc2 471 u64 rt_runtime;
ea736ed5 472 /* Nests inside the rq lock: */
ac086bc2 473 spinlock_t rt_runtime_lock;
6f505b16 474
052f1dc7 475#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
476 unsigned long rt_nr_boosted;
477
6f505b16
PZ
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482#endif
6aa645ea
IM
483};
484
57d885fe
GH
485#ifdef CONFIG_SMP
486
487/*
488 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
57d885fe
GH
494 */
495struct root_domain {
496 atomic_t refcount;
c6c4927b
RR
497 cpumask_var_t span;
498 cpumask_var_t online;
637f5085 499
0eab9146 500 /*
637f5085
GH
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
c6c4927b 504 cpumask_var_t rto_mask;
0eab9146 505 atomic_t rto_count;
6e0534f2
GH
506#ifdef CONFIG_SMP
507 struct cpupri cpupri;
508#endif
57d885fe
GH
509};
510
dc938520
GH
511/*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
57d885fe
GH
515static struct root_domain def_root_domain;
516
517#endif
518
1da177e4
LT
519/*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
70b97a7f 526struct rq {
d8016491
IM
527 /* runqueue lock: */
528 spinlock_t lock;
1da177e4
LT
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
6aa645ea
IM
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
537#ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
6f505b16 546 struct rt_rq rt;
6f505b16 547
6aa645ea 548#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
551#endif
552#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 553 struct list_head leaf_rt_rq_list;
1da177e4 554#endif
1da177e4
LT
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
36c8b586 564 struct task_struct *curr, *idle;
c9819f45 565 unsigned long next_balance;
1da177e4 566 struct mm_struct *prev_mm;
6aa645ea 567
3e51f33f 568 u64 clock;
6aa645ea 569
1da177e4
LT
570 atomic_t nr_iowait;
571
572#ifdef CONFIG_SMP
0eab9146 573 struct root_domain *rd;
1da177e4
LT
574 struct sched_domain *sd;
575
a0a522ce 576 unsigned char idle_at_tick;
1da177e4 577 /* For active balancing */
3f029d3c 578 int post_schedule;
1da177e4
LT
579 int active_balance;
580 int push_cpu;
d8016491
IM
581 /* cpu of this runqueue: */
582 int cpu;
1f11eb6a 583 int online;
1da177e4 584
a8a51d5e 585 unsigned long avg_load_per_task;
1da177e4 586
36c8b586 587 struct task_struct *migration_thread;
1da177e4 588 struct list_head migration_queue;
e9e9250b
PZ
589
590 u64 rt_avg;
591 u64 age_stamp;
1b9508f6
MG
592 u64 idle_stamp;
593 u64 avg_idle;
1da177e4
LT
594#endif
595
dce48a84
TG
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
8f4d37ec 600#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
601#ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604#endif
8f4d37ec
PZ
605 struct hrtimer hrtick_timer;
606#endif
607
1da177e4
LT
608#ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
9c2c4802
KC
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
613
614 /* sys_sched_yield() stats */
480b9434 615 unsigned int yld_count;
1da177e4
LT
616
617 /* schedule() stats */
480b9434
KC
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
1da177e4
LT
621
622 /* try_to_wake_up() stats */
480b9434
KC
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
b8efb561
IM
625
626 /* BKL stats */
480b9434 627 unsigned int bkl_count;
1da177e4
LT
628#endif
629};
630
f34e3b61 631static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 632
7d478721
PZ
633static inline
634void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 635{
7d478721 636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
637}
638
0a2966b4
CL
639static inline int cpu_of(struct rq *rq)
640{
641#ifdef CONFIG_SMP
642 return rq->cpu;
643#else
644 return 0;
645#endif
646}
647
674311d5
NP
648/*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 650 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
48f24c4d
IM
655#define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
657
658#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659#define this_rq() (&__get_cpu_var(runqueues))
660#define task_rq(p) cpu_rq(task_cpu(p))
661#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 662#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 663
aa9c4c0f 664inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
665{
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667}
668
bf5c91ba
IM
669/*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672#ifdef CONFIG_SCHED_DEBUG
673# define const_debug __read_mostly
674#else
675# define const_debug static const
676#endif
677
017730c1
IM
678/**
679 * runqueue_is_locked
e17b38bf 680 * @cpu: the processor in question.
017730c1
IM
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
89f19f04 686int runqueue_is_locked(int cpu)
017730c1 687{
89f19f04 688 return spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
689}
690
bf5c91ba
IM
691/*
692 * Debugging: various feature bits
693 */
f00b45c1
PZ
694
695#define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
bf5c91ba 698enum {
f00b45c1 699#include "sched_features.h"
bf5c91ba
IM
700};
701
f00b45c1
PZ
702#undef SCHED_FEAT
703
704#define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
bf5c91ba 707const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
708#include "sched_features.h"
709 0;
710
711#undef SCHED_FEAT
712
713#ifdef CONFIG_SCHED_DEBUG
714#define SCHED_FEAT(name, enabled) \
715 #name ,
716
983ed7a6 717static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
718#include "sched_features.h"
719 NULL
720};
721
722#undef SCHED_FEAT
723
34f3a814 724static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 725{
f00b45c1
PZ
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 732 }
34f3a814 733 seq_puts(m, "\n");
f00b45c1 734
34f3a814 735 return 0;
f00b45c1
PZ
736}
737
738static ssize_t
739sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741{
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
c24b7c52 755 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
42994724 775 *ppos += cnt;
f00b45c1
PZ
776
777 return cnt;
778}
779
34f3a814
LZ
780static int sched_feat_open(struct inode *inode, struct file *filp)
781{
782 return single_open(filp, sched_feat_show, NULL);
783}
784
828c0950 785static const struct file_operations sched_feat_fops = {
34f3a814
LZ
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
f00b45c1
PZ
791};
792
793static __init int sched_init_debug(void)
794{
f00b45c1
PZ
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799}
800late_initcall(sched_init_debug);
801
802#endif
803
804#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 805
b82d9fdd
PZ
806/*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
2398f2c6
PZ
812/*
813 * ratelimit for updating the group shares.
55cd5340 814 * default: 0.25ms
2398f2c6 815 */
55cd5340 816unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 817
ffda12a1
PZ
818/*
819 * Inject some fuzzyness into changing the per-cpu group shares
820 * this avoids remote rq-locks at the expense of fairness.
821 * default: 4
822 */
823unsigned int sysctl_sched_shares_thresh = 4;
824
e9e9250b
PZ
825/*
826 * period over which we average the RT time consumption, measured
827 * in ms.
828 *
829 * default: 1s
830 */
831const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
832
fa85ae24 833/*
9f0c1e56 834 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
835 * default: 1s
836 */
9f0c1e56 837unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 838
6892b75e
IM
839static __read_mostly int scheduler_running;
840
9f0c1e56
PZ
841/*
842 * part of the period that we allow rt tasks to run in us.
843 * default: 0.95s
844 */
845int sysctl_sched_rt_runtime = 950000;
fa85ae24 846
d0b27fa7
PZ
847static inline u64 global_rt_period(void)
848{
849 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
850}
851
852static inline u64 global_rt_runtime(void)
853{
e26873bb 854 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
855 return RUNTIME_INF;
856
857 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
858}
fa85ae24 859
1da177e4 860#ifndef prepare_arch_switch
4866cde0
NP
861# define prepare_arch_switch(next) do { } while (0)
862#endif
863#ifndef finish_arch_switch
864# define finish_arch_switch(prev) do { } while (0)
865#endif
866
051a1d1a
DA
867static inline int task_current(struct rq *rq, struct task_struct *p)
868{
869 return rq->curr == p;
870}
871
4866cde0 872#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 874{
051a1d1a 875 return task_current(rq, p);
4866cde0
NP
876}
877
70b97a7f 878static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
879{
880}
881
70b97a7f 882static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 883{
da04c035
IM
884#ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887#endif
8a25d5de
IM
888 /*
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
892 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894
4866cde0
NP
895 spin_unlock_irq(&rq->lock);
896}
897
898#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 899static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 return p->oncpu;
903#else
051a1d1a 904 return task_current(rq, p);
4866cde0
NP
905#endif
906}
907
70b97a7f 908static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
909{
910#ifdef CONFIG_SMP
911 /*
912 * We can optimise this out completely for !SMP, because the
913 * SMP rebalancing from interrupt is the only thing that cares
914 * here.
915 */
916 next->oncpu = 1;
917#endif
918#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 spin_unlock_irq(&rq->lock);
920#else
921 spin_unlock(&rq->lock);
922#endif
923}
924
70b97a7f 925static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
926{
927#ifdef CONFIG_SMP
928 /*
929 * After ->oncpu is cleared, the task can be moved to a different CPU.
930 * We must ensure this doesn't happen until the switch is completely
931 * finished.
932 */
933 smp_wmb();
934 prev->oncpu = 0;
935#endif
936#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
937 local_irq_enable();
1da177e4 938#endif
4866cde0
NP
939}
940#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 941
b29739f9
IM
942/*
943 * __task_rq_lock - lock the runqueue a given task resides on.
944 * Must be called interrupts disabled.
945 */
70b97a7f 946static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
947 __acquires(rq->lock)
948{
3a5c359a
AK
949 for (;;) {
950 struct rq *rq = task_rq(p);
951 spin_lock(&rq->lock);
952 if (likely(rq == task_rq(p)))
953 return rq;
b29739f9 954 spin_unlock(&rq->lock);
b29739f9 955 }
b29739f9
IM
956}
957
1da177e4
LT
958/*
959 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 960 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
961 * explicitly disabling preemption.
962 */
70b97a7f 963static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
964 __acquires(rq->lock)
965{
70b97a7f 966 struct rq *rq;
1da177e4 967
3a5c359a
AK
968 for (;;) {
969 local_irq_save(*flags);
970 rq = task_rq(p);
971 spin_lock(&rq->lock);
972 if (likely(rq == task_rq(p)))
973 return rq;
1da177e4 974 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 975 }
1da177e4
LT
976}
977
ad474cac
ON
978void task_rq_unlock_wait(struct task_struct *p)
979{
980 struct rq *rq = task_rq(p);
981
982 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
983 spin_unlock_wait(&rq->lock);
984}
985
a9957449 986static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
987 __releases(rq->lock)
988{
989 spin_unlock(&rq->lock);
990}
991
70b97a7f 992static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
993 __releases(rq->lock)
994{
995 spin_unlock_irqrestore(&rq->lock, *flags);
996}
997
1da177e4 998/*
cc2a73b5 999 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1000 */
a9957449 1001static struct rq *this_rq_lock(void)
1da177e4
LT
1002 __acquires(rq->lock)
1003{
70b97a7f 1004 struct rq *rq;
1da177e4
LT
1005
1006 local_irq_disable();
1007 rq = this_rq();
1008 spin_lock(&rq->lock);
1009
1010 return rq;
1011}
1012
8f4d37ec
PZ
1013#ifdef CONFIG_SCHED_HRTICK
1014/*
1015 * Use HR-timers to deliver accurate preemption points.
1016 *
1017 * Its all a bit involved since we cannot program an hrt while holding the
1018 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1019 * reschedule event.
1020 *
1021 * When we get rescheduled we reprogram the hrtick_timer outside of the
1022 * rq->lock.
1023 */
8f4d37ec
PZ
1024
1025/*
1026 * Use hrtick when:
1027 * - enabled by features
1028 * - hrtimer is actually high res
1029 */
1030static inline int hrtick_enabled(struct rq *rq)
1031{
1032 if (!sched_feat(HRTICK))
1033 return 0;
ba42059f 1034 if (!cpu_active(cpu_of(rq)))
b328ca18 1035 return 0;
8f4d37ec
PZ
1036 return hrtimer_is_hres_active(&rq->hrtick_timer);
1037}
1038
8f4d37ec
PZ
1039static void hrtick_clear(struct rq *rq)
1040{
1041 if (hrtimer_active(&rq->hrtick_timer))
1042 hrtimer_cancel(&rq->hrtick_timer);
1043}
1044
8f4d37ec
PZ
1045/*
1046 * High-resolution timer tick.
1047 * Runs from hardirq context with interrupts disabled.
1048 */
1049static enum hrtimer_restart hrtick(struct hrtimer *timer)
1050{
1051 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1052
1053 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1054
1055 spin_lock(&rq->lock);
3e51f33f 1056 update_rq_clock(rq);
8f4d37ec
PZ
1057 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1058 spin_unlock(&rq->lock);
1059
1060 return HRTIMER_NORESTART;
1061}
1062
95e904c7 1063#ifdef CONFIG_SMP
31656519
PZ
1064/*
1065 * called from hardirq (IPI) context
1066 */
1067static void __hrtick_start(void *arg)
b328ca18 1068{
31656519 1069 struct rq *rq = arg;
b328ca18 1070
31656519
PZ
1071 spin_lock(&rq->lock);
1072 hrtimer_restart(&rq->hrtick_timer);
1073 rq->hrtick_csd_pending = 0;
1074 spin_unlock(&rq->lock);
b328ca18
PZ
1075}
1076
31656519
PZ
1077/*
1078 * Called to set the hrtick timer state.
1079 *
1080 * called with rq->lock held and irqs disabled
1081 */
1082static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1083{
31656519
PZ
1084 struct hrtimer *timer = &rq->hrtick_timer;
1085 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1086
cc584b21 1087 hrtimer_set_expires(timer, time);
31656519
PZ
1088
1089 if (rq == this_rq()) {
1090 hrtimer_restart(timer);
1091 } else if (!rq->hrtick_csd_pending) {
6e275637 1092 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1093 rq->hrtick_csd_pending = 1;
1094 }
b328ca18
PZ
1095}
1096
1097static int
1098hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1099{
1100 int cpu = (int)(long)hcpu;
1101
1102 switch (action) {
1103 case CPU_UP_CANCELED:
1104 case CPU_UP_CANCELED_FROZEN:
1105 case CPU_DOWN_PREPARE:
1106 case CPU_DOWN_PREPARE_FROZEN:
1107 case CPU_DEAD:
1108 case CPU_DEAD_FROZEN:
31656519 1109 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1110 return NOTIFY_OK;
1111 }
1112
1113 return NOTIFY_DONE;
1114}
1115
fa748203 1116static __init void init_hrtick(void)
b328ca18
PZ
1117{
1118 hotcpu_notifier(hotplug_hrtick, 0);
1119}
31656519
PZ
1120#else
1121/*
1122 * Called to set the hrtick timer state.
1123 *
1124 * called with rq->lock held and irqs disabled
1125 */
1126static void hrtick_start(struct rq *rq, u64 delay)
1127{
7f1e2ca9 1128 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1129 HRTIMER_MODE_REL_PINNED, 0);
31656519 1130}
b328ca18 1131
006c75f1 1132static inline void init_hrtick(void)
8f4d37ec 1133{
8f4d37ec 1134}
31656519 1135#endif /* CONFIG_SMP */
8f4d37ec 1136
31656519 1137static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1138{
31656519
PZ
1139#ifdef CONFIG_SMP
1140 rq->hrtick_csd_pending = 0;
8f4d37ec 1141
31656519
PZ
1142 rq->hrtick_csd.flags = 0;
1143 rq->hrtick_csd.func = __hrtick_start;
1144 rq->hrtick_csd.info = rq;
1145#endif
8f4d37ec 1146
31656519
PZ
1147 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1148 rq->hrtick_timer.function = hrtick;
8f4d37ec 1149}
006c75f1 1150#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1151static inline void hrtick_clear(struct rq *rq)
1152{
1153}
1154
8f4d37ec
PZ
1155static inline void init_rq_hrtick(struct rq *rq)
1156{
1157}
1158
b328ca18
PZ
1159static inline void init_hrtick(void)
1160{
1161}
006c75f1 1162#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1163
c24d20db
IM
1164/*
1165 * resched_task - mark a task 'to be rescheduled now'.
1166 *
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1169 * the target CPU.
1170 */
1171#ifdef CONFIG_SMP
1172
1173#ifndef tsk_is_polling
1174#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1175#endif
1176
31656519 1177static void resched_task(struct task_struct *p)
c24d20db
IM
1178{
1179 int cpu;
1180
1181 assert_spin_locked(&task_rq(p)->lock);
1182
5ed0cec0 1183 if (test_tsk_need_resched(p))
c24d20db
IM
1184 return;
1185
5ed0cec0 1186 set_tsk_need_resched(p);
c24d20db
IM
1187
1188 cpu = task_cpu(p);
1189 if (cpu == smp_processor_id())
1190 return;
1191
1192 /* NEED_RESCHED must be visible before we test polling */
1193 smp_mb();
1194 if (!tsk_is_polling(p))
1195 smp_send_reschedule(cpu);
1196}
1197
1198static void resched_cpu(int cpu)
1199{
1200 struct rq *rq = cpu_rq(cpu);
1201 unsigned long flags;
1202
1203 if (!spin_trylock_irqsave(&rq->lock, flags))
1204 return;
1205 resched_task(cpu_curr(cpu));
1206 spin_unlock_irqrestore(&rq->lock, flags);
1207}
06d8308c
TG
1208
1209#ifdef CONFIG_NO_HZ
1210/*
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1219 */
1220void wake_up_idle_cpu(int cpu)
1221{
1222 struct rq *rq = cpu_rq(cpu);
1223
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /*
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1233 */
1234 if (rq->curr != rq->idle)
1235 return;
1236
1237 /*
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1241 */
5ed0cec0 1242 set_tsk_need_resched(rq->idle);
06d8308c
TG
1243
1244 /* NEED_RESCHED must be visible before we test polling */
1245 smp_mb();
1246 if (!tsk_is_polling(rq->idle))
1247 smp_send_reschedule(cpu);
1248}
6d6bc0ad 1249#endif /* CONFIG_NO_HZ */
06d8308c 1250
e9e9250b
PZ
1251static u64 sched_avg_period(void)
1252{
1253 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1254}
1255
1256static void sched_avg_update(struct rq *rq)
1257{
1258 s64 period = sched_avg_period();
1259
1260 while ((s64)(rq->clock - rq->age_stamp) > period) {
1261 rq->age_stamp += period;
1262 rq->rt_avg /= 2;
1263 }
1264}
1265
1266static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1267{
1268 rq->rt_avg += rt_delta;
1269 sched_avg_update(rq);
1270}
1271
6d6bc0ad 1272#else /* !CONFIG_SMP */
31656519 1273static void resched_task(struct task_struct *p)
c24d20db
IM
1274{
1275 assert_spin_locked(&task_rq(p)->lock);
31656519 1276 set_tsk_need_resched(p);
c24d20db 1277}
e9e9250b
PZ
1278
1279static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1280{
1281}
6d6bc0ad 1282#endif /* CONFIG_SMP */
c24d20db 1283
45bf76df
IM
1284#if BITS_PER_LONG == 32
1285# define WMULT_CONST (~0UL)
1286#else
1287# define WMULT_CONST (1UL << 32)
1288#endif
1289
1290#define WMULT_SHIFT 32
1291
194081eb
IM
1292/*
1293 * Shift right and round:
1294 */
cf2ab469 1295#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1296
a7be37ac
PZ
1297/*
1298 * delta *= weight / lw
1299 */
cb1c4fc9 1300static unsigned long
45bf76df
IM
1301calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1302 struct load_weight *lw)
1303{
1304 u64 tmp;
1305
7a232e03
LJ
1306 if (!lw->inv_weight) {
1307 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1308 lw->inv_weight = 1;
1309 else
1310 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1311 / (lw->weight+1);
1312 }
45bf76df
IM
1313
1314 tmp = (u64)delta_exec * weight;
1315 /*
1316 * Check whether we'd overflow the 64-bit multiplication:
1317 */
194081eb 1318 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1319 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1320 WMULT_SHIFT/2);
1321 else
cf2ab469 1322 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1323
ecf691da 1324 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1325}
1326
1091985b 1327static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1328{
1329 lw->weight += inc;
e89996ae 1330 lw->inv_weight = 0;
45bf76df
IM
1331}
1332
1091985b 1333static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1334{
1335 lw->weight -= dec;
e89996ae 1336 lw->inv_weight = 0;
45bf76df
IM
1337}
1338
2dd73a4f
PW
1339/*
1340 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1341 * of tasks with abnormal "nice" values across CPUs the contribution that
1342 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1343 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1344 * scaled version of the new time slice allocation that they receive on time
1345 * slice expiry etc.
1346 */
1347
cce7ade8
PZ
1348#define WEIGHT_IDLEPRIO 3
1349#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1350
1351/*
1352 * Nice levels are multiplicative, with a gentle 10% change for every
1353 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1354 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1355 * that remained on nice 0.
1356 *
1357 * The "10% effect" is relative and cumulative: from _any_ nice level,
1358 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1359 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1360 * If a task goes up by ~10% and another task goes down by ~10% then
1361 * the relative distance between them is ~25%.)
dd41f596
IM
1362 */
1363static const int prio_to_weight[40] = {
254753dc
IM
1364 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1365 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1366 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1367 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1368 /* 0 */ 1024, 820, 655, 526, 423,
1369 /* 5 */ 335, 272, 215, 172, 137,
1370 /* 10 */ 110, 87, 70, 56, 45,
1371 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1372};
1373
5714d2de
IM
1374/*
1375 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1376 *
1377 * In cases where the weight does not change often, we can use the
1378 * precalculated inverse to speed up arithmetics by turning divisions
1379 * into multiplications:
1380 */
dd41f596 1381static const u32 prio_to_wmult[40] = {
254753dc
IM
1382 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1383 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1384 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1385 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1386 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1387 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1388 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1389 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1390};
2dd73a4f 1391
dd41f596
IM
1392static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1393
1394/*
1395 * runqueue iterator, to support SMP load-balancing between different
1396 * scheduling classes, without having to expose their internal data
1397 * structures to the load-balancing proper:
1398 */
1399struct rq_iterator {
1400 void *arg;
1401 struct task_struct *(*start)(void *);
1402 struct task_struct *(*next)(void *);
1403};
1404
e1d1484f
PW
1405#ifdef CONFIG_SMP
1406static unsigned long
1407balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1408 unsigned long max_load_move, struct sched_domain *sd,
1409 enum cpu_idle_type idle, int *all_pinned,
1410 int *this_best_prio, struct rq_iterator *iterator);
1411
1412static int
1413iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1414 struct sched_domain *sd, enum cpu_idle_type idle,
1415 struct rq_iterator *iterator);
e1d1484f 1416#endif
dd41f596 1417
ef12fefa
BR
1418/* Time spent by the tasks of the cpu accounting group executing in ... */
1419enum cpuacct_stat_index {
1420 CPUACCT_STAT_USER, /* ... user mode */
1421 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1422
1423 CPUACCT_STAT_NSTATS,
1424};
1425
d842de87
SV
1426#ifdef CONFIG_CGROUP_CPUACCT
1427static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1428static void cpuacct_update_stats(struct task_struct *tsk,
1429 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1430#else
1431static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1432static inline void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1434#endif
1435
18d95a28
PZ
1436static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1437{
1438 update_load_add(&rq->load, load);
1439}
1440
1441static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1442{
1443 update_load_sub(&rq->load, load);
1444}
1445
7940ca36 1446#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1447typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1448
1449/*
1450 * Iterate the full tree, calling @down when first entering a node and @up when
1451 * leaving it for the final time.
1452 */
eb755805 1453static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1454{
1455 struct task_group *parent, *child;
eb755805 1456 int ret;
c09595f6
PZ
1457
1458 rcu_read_lock();
1459 parent = &root_task_group;
1460down:
eb755805
PZ
1461 ret = (*down)(parent, data);
1462 if (ret)
1463 goto out_unlock;
c09595f6
PZ
1464 list_for_each_entry_rcu(child, &parent->children, siblings) {
1465 parent = child;
1466 goto down;
1467
1468up:
1469 continue;
1470 }
eb755805
PZ
1471 ret = (*up)(parent, data);
1472 if (ret)
1473 goto out_unlock;
c09595f6
PZ
1474
1475 child = parent;
1476 parent = parent->parent;
1477 if (parent)
1478 goto up;
eb755805 1479out_unlock:
c09595f6 1480 rcu_read_unlock();
eb755805
PZ
1481
1482 return ret;
c09595f6
PZ
1483}
1484
eb755805
PZ
1485static int tg_nop(struct task_group *tg, void *data)
1486{
1487 return 0;
c09595f6 1488}
eb755805
PZ
1489#endif
1490
1491#ifdef CONFIG_SMP
f5f08f39
PZ
1492/* Used instead of source_load when we know the type == 0 */
1493static unsigned long weighted_cpuload(const int cpu)
1494{
1495 return cpu_rq(cpu)->load.weight;
1496}
1497
1498/*
1499 * Return a low guess at the load of a migration-source cpu weighted
1500 * according to the scheduling class and "nice" value.
1501 *
1502 * We want to under-estimate the load of migration sources, to
1503 * balance conservatively.
1504 */
1505static unsigned long source_load(int cpu, int type)
1506{
1507 struct rq *rq = cpu_rq(cpu);
1508 unsigned long total = weighted_cpuload(cpu);
1509
1510 if (type == 0 || !sched_feat(LB_BIAS))
1511 return total;
1512
1513 return min(rq->cpu_load[type-1], total);
1514}
1515
1516/*
1517 * Return a high guess at the load of a migration-target cpu weighted
1518 * according to the scheduling class and "nice" value.
1519 */
1520static unsigned long target_load(int cpu, int type)
1521{
1522 struct rq *rq = cpu_rq(cpu);
1523 unsigned long total = weighted_cpuload(cpu);
1524
1525 if (type == 0 || !sched_feat(LB_BIAS))
1526 return total;
1527
1528 return max(rq->cpu_load[type-1], total);
1529}
1530
ae154be1
PZ
1531static struct sched_group *group_of(int cpu)
1532{
1533 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1534
1535 if (!sd)
1536 return NULL;
1537
1538 return sd->groups;
1539}
1540
1541static unsigned long power_of(int cpu)
1542{
1543 struct sched_group *group = group_of(cpu);
1544
1545 if (!group)
1546 return SCHED_LOAD_SCALE;
1547
1548 return group->cpu_power;
1549}
1550
eb755805
PZ
1551static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1552
1553static unsigned long cpu_avg_load_per_task(int cpu)
1554{
1555 struct rq *rq = cpu_rq(cpu);
af6d596f 1556 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1557
4cd42620
SR
1558 if (nr_running)
1559 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1560 else
1561 rq->avg_load_per_task = 0;
eb755805
PZ
1562
1563 return rq->avg_load_per_task;
1564}
1565
1566#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1567
4a6cc4bd 1568static __read_mostly unsigned long *update_shares_data;
34d76c41 1569
c09595f6
PZ
1570static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1571
1572/*
1573 * Calculate and set the cpu's group shares.
1574 */
34d76c41
PZ
1575static void update_group_shares_cpu(struct task_group *tg, int cpu,
1576 unsigned long sd_shares,
1577 unsigned long sd_rq_weight,
4a6cc4bd 1578 unsigned long *usd_rq_weight)
18d95a28 1579{
34d76c41 1580 unsigned long shares, rq_weight;
a5004278 1581 int boost = 0;
c09595f6 1582
4a6cc4bd 1583 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1584 if (!rq_weight) {
1585 boost = 1;
1586 rq_weight = NICE_0_LOAD;
1587 }
c8cba857 1588
c09595f6 1589 /*
a8af7246
PZ
1590 * \Sum_j shares_j * rq_weight_i
1591 * shares_i = -----------------------------
1592 * \Sum_j rq_weight_j
c09595f6 1593 */
ec4e0e2f 1594 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1595 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1596
ffda12a1
PZ
1597 if (abs(shares - tg->se[cpu]->load.weight) >
1598 sysctl_sched_shares_thresh) {
1599 struct rq *rq = cpu_rq(cpu);
1600 unsigned long flags;
c09595f6 1601
ffda12a1 1602 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1603 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1604 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1605 __set_se_shares(tg->se[cpu], shares);
1606 spin_unlock_irqrestore(&rq->lock, flags);
1607 }
18d95a28 1608}
c09595f6
PZ
1609
1610/*
c8cba857
PZ
1611 * Re-compute the task group their per cpu shares over the given domain.
1612 * This needs to be done in a bottom-up fashion because the rq weight of a
1613 * parent group depends on the shares of its child groups.
c09595f6 1614 */
eb755805 1615static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1616{
34d76c41 1617 unsigned long weight, rq_weight = 0, shares = 0;
4a6cc4bd 1618 unsigned long *usd_rq_weight;
eb755805 1619 struct sched_domain *sd = data;
34d76c41 1620 unsigned long flags;
c8cba857 1621 int i;
c09595f6 1622
34d76c41
PZ
1623 if (!tg->se[0])
1624 return 0;
1625
1626 local_irq_save(flags);
4a6cc4bd 1627 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1628
758b2cdc 1629 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1630 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1631 usd_rq_weight[i] = weight;
34d76c41 1632
ec4e0e2f
KC
1633 /*
1634 * If there are currently no tasks on the cpu pretend there
1635 * is one of average load so that when a new task gets to
1636 * run here it will not get delayed by group starvation.
1637 */
ec4e0e2f
KC
1638 if (!weight)
1639 weight = NICE_0_LOAD;
1640
ec4e0e2f 1641 rq_weight += weight;
c8cba857 1642 shares += tg->cfs_rq[i]->shares;
c09595f6 1643 }
c09595f6 1644
c8cba857
PZ
1645 if ((!shares && rq_weight) || shares > tg->shares)
1646 shares = tg->shares;
1647
1648 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1649 shares = tg->shares;
c09595f6 1650
758b2cdc 1651 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1652 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1653
1654 local_irq_restore(flags);
eb755805
PZ
1655
1656 return 0;
c09595f6
PZ
1657}
1658
1659/*
c8cba857
PZ
1660 * Compute the cpu's hierarchical load factor for each task group.
1661 * This needs to be done in a top-down fashion because the load of a child
1662 * group is a fraction of its parents load.
c09595f6 1663 */
eb755805 1664static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1665{
c8cba857 1666 unsigned long load;
eb755805 1667 long cpu = (long)data;
c09595f6 1668
c8cba857
PZ
1669 if (!tg->parent) {
1670 load = cpu_rq(cpu)->load.weight;
1671 } else {
1672 load = tg->parent->cfs_rq[cpu]->h_load;
1673 load *= tg->cfs_rq[cpu]->shares;
1674 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1675 }
c09595f6 1676
c8cba857 1677 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1678
eb755805 1679 return 0;
c09595f6
PZ
1680}
1681
c8cba857 1682static void update_shares(struct sched_domain *sd)
4d8d595d 1683{
e7097159
PZ
1684 s64 elapsed;
1685 u64 now;
1686
1687 if (root_task_group_empty())
1688 return;
1689
1690 now = cpu_clock(raw_smp_processor_id());
1691 elapsed = now - sd->last_update;
2398f2c6
PZ
1692
1693 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1694 sd->last_update = now;
eb755805 1695 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1696 }
4d8d595d
PZ
1697}
1698
3e5459b4
PZ
1699static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1700{
e7097159
PZ
1701 if (root_task_group_empty())
1702 return;
1703
3e5459b4
PZ
1704 spin_unlock(&rq->lock);
1705 update_shares(sd);
1706 spin_lock(&rq->lock);
1707}
1708
eb755805 1709static void update_h_load(long cpu)
c09595f6 1710{
e7097159
PZ
1711 if (root_task_group_empty())
1712 return;
1713
eb755805 1714 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1715}
1716
c09595f6
PZ
1717#else
1718
c8cba857 1719static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1720{
1721}
1722
3e5459b4
PZ
1723static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1724{
1725}
1726
18d95a28
PZ
1727#endif
1728
8f45e2b5
GH
1729#ifdef CONFIG_PREEMPT
1730
b78bb868
PZ
1731static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1732
70574a99 1733/*
8f45e2b5
GH
1734 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1735 * way at the expense of forcing extra atomic operations in all
1736 * invocations. This assures that the double_lock is acquired using the
1737 * same underlying policy as the spinlock_t on this architecture, which
1738 * reduces latency compared to the unfair variant below. However, it
1739 * also adds more overhead and therefore may reduce throughput.
70574a99 1740 */
8f45e2b5
GH
1741static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1742 __releases(this_rq->lock)
1743 __acquires(busiest->lock)
1744 __acquires(this_rq->lock)
1745{
1746 spin_unlock(&this_rq->lock);
1747 double_rq_lock(this_rq, busiest);
1748
1749 return 1;
1750}
1751
1752#else
1753/*
1754 * Unfair double_lock_balance: Optimizes throughput at the expense of
1755 * latency by eliminating extra atomic operations when the locks are
1756 * already in proper order on entry. This favors lower cpu-ids and will
1757 * grant the double lock to lower cpus over higher ids under contention,
1758 * regardless of entry order into the function.
1759 */
1760static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1761 __releases(this_rq->lock)
1762 __acquires(busiest->lock)
1763 __acquires(this_rq->lock)
1764{
1765 int ret = 0;
1766
70574a99
AD
1767 if (unlikely(!spin_trylock(&busiest->lock))) {
1768 if (busiest < this_rq) {
1769 spin_unlock(&this_rq->lock);
1770 spin_lock(&busiest->lock);
1771 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1772 ret = 1;
1773 } else
1774 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1775 }
1776 return ret;
1777}
1778
8f45e2b5
GH
1779#endif /* CONFIG_PREEMPT */
1780
1781/*
1782 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1783 */
1784static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1785{
1786 if (unlikely(!irqs_disabled())) {
1787 /* printk() doesn't work good under rq->lock */
1788 spin_unlock(&this_rq->lock);
1789 BUG_ON(1);
1790 }
1791
1792 return _double_lock_balance(this_rq, busiest);
1793}
1794
70574a99
AD
1795static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1796 __releases(busiest->lock)
1797{
1798 spin_unlock(&busiest->lock);
1799 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1800}
18d95a28
PZ
1801#endif
1802
30432094 1803#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1804static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1805{
30432094 1806#ifdef CONFIG_SMP
34e83e85
IM
1807 cfs_rq->shares = shares;
1808#endif
1809}
30432094 1810#endif
e7693a36 1811
dce48a84
TG
1812static void calc_load_account_active(struct rq *this_rq);
1813
dd41f596 1814#include "sched_stats.h"
dd41f596 1815#include "sched_idletask.c"
5522d5d5
IM
1816#include "sched_fair.c"
1817#include "sched_rt.c"
dd41f596
IM
1818#ifdef CONFIG_SCHED_DEBUG
1819# include "sched_debug.c"
1820#endif
1821
1822#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1823#define for_each_class(class) \
1824 for (class = sched_class_highest; class; class = class->next)
dd41f596 1825
c09595f6 1826static void inc_nr_running(struct rq *rq)
9c217245
IM
1827{
1828 rq->nr_running++;
9c217245
IM
1829}
1830
c09595f6 1831static void dec_nr_running(struct rq *rq)
9c217245
IM
1832{
1833 rq->nr_running--;
9c217245
IM
1834}
1835
45bf76df
IM
1836static void set_load_weight(struct task_struct *p)
1837{
1838 if (task_has_rt_policy(p)) {
dd41f596
IM
1839 p->se.load.weight = prio_to_weight[0] * 2;
1840 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1841 return;
1842 }
45bf76df 1843
dd41f596
IM
1844 /*
1845 * SCHED_IDLE tasks get minimal weight:
1846 */
1847 if (p->policy == SCHED_IDLE) {
1848 p->se.load.weight = WEIGHT_IDLEPRIO;
1849 p->se.load.inv_weight = WMULT_IDLEPRIO;
1850 return;
1851 }
71f8bd46 1852
dd41f596
IM
1853 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1854 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1855}
1856
2087a1ad
GH
1857static void update_avg(u64 *avg, u64 sample)
1858{
1859 s64 diff = sample - *avg;
1860 *avg += diff >> 3;
1861}
1862
8159f87e 1863static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1864{
831451ac
PZ
1865 if (wakeup)
1866 p->se.start_runtime = p->se.sum_exec_runtime;
1867
dd41f596 1868 sched_info_queued(p);
fd390f6a 1869 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1870 p->se.on_rq = 1;
71f8bd46
IM
1871}
1872
69be72c1 1873static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1874{
831451ac
PZ
1875 if (sleep) {
1876 if (p->se.last_wakeup) {
1877 update_avg(&p->se.avg_overlap,
1878 p->se.sum_exec_runtime - p->se.last_wakeup);
1879 p->se.last_wakeup = 0;
1880 } else {
1881 update_avg(&p->se.avg_wakeup,
1882 sysctl_sched_wakeup_granularity);
1883 }
2087a1ad
GH
1884 }
1885
46ac22ba 1886 sched_info_dequeued(p);
f02231e5 1887 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1888 p->se.on_rq = 0;
71f8bd46
IM
1889}
1890
14531189 1891/*
dd41f596 1892 * __normal_prio - return the priority that is based on the static prio
14531189 1893 */
14531189
IM
1894static inline int __normal_prio(struct task_struct *p)
1895{
dd41f596 1896 return p->static_prio;
14531189
IM
1897}
1898
b29739f9
IM
1899/*
1900 * Calculate the expected normal priority: i.e. priority
1901 * without taking RT-inheritance into account. Might be
1902 * boosted by interactivity modifiers. Changes upon fork,
1903 * setprio syscalls, and whenever the interactivity
1904 * estimator recalculates.
1905 */
36c8b586 1906static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1907{
1908 int prio;
1909
e05606d3 1910 if (task_has_rt_policy(p))
b29739f9
IM
1911 prio = MAX_RT_PRIO-1 - p->rt_priority;
1912 else
1913 prio = __normal_prio(p);
1914 return prio;
1915}
1916
1917/*
1918 * Calculate the current priority, i.e. the priority
1919 * taken into account by the scheduler. This value might
1920 * be boosted by RT tasks, or might be boosted by
1921 * interactivity modifiers. Will be RT if the task got
1922 * RT-boosted. If not then it returns p->normal_prio.
1923 */
36c8b586 1924static int effective_prio(struct task_struct *p)
b29739f9
IM
1925{
1926 p->normal_prio = normal_prio(p);
1927 /*
1928 * If we are RT tasks or we were boosted to RT priority,
1929 * keep the priority unchanged. Otherwise, update priority
1930 * to the normal priority:
1931 */
1932 if (!rt_prio(p->prio))
1933 return p->normal_prio;
1934 return p->prio;
1935}
1936
1da177e4 1937/*
dd41f596 1938 * activate_task - move a task to the runqueue.
1da177e4 1939 */
dd41f596 1940static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1941{
d9514f6c 1942 if (task_contributes_to_load(p))
dd41f596 1943 rq->nr_uninterruptible--;
1da177e4 1944
8159f87e 1945 enqueue_task(rq, p, wakeup);
c09595f6 1946 inc_nr_running(rq);
1da177e4
LT
1947}
1948
1da177e4
LT
1949/*
1950 * deactivate_task - remove a task from the runqueue.
1951 */
2e1cb74a 1952static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1953{
d9514f6c 1954 if (task_contributes_to_load(p))
dd41f596
IM
1955 rq->nr_uninterruptible++;
1956
69be72c1 1957 dequeue_task(rq, p, sleep);
c09595f6 1958 dec_nr_running(rq);
1da177e4
LT
1959}
1960
1da177e4
LT
1961/**
1962 * task_curr - is this task currently executing on a CPU?
1963 * @p: the task in question.
1964 */
36c8b586 1965inline int task_curr(const struct task_struct *p)
1da177e4
LT
1966{
1967 return cpu_curr(task_cpu(p)) == p;
1968}
1969
dd41f596
IM
1970static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1971{
6f505b16 1972 set_task_rq(p, cpu);
dd41f596 1973#ifdef CONFIG_SMP
ce96b5ac
DA
1974 /*
1975 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1976 * successfuly executed on another CPU. We must ensure that updates of
1977 * per-task data have been completed by this moment.
1978 */
1979 smp_wmb();
dd41f596 1980 task_thread_info(p)->cpu = cpu;
dd41f596 1981#endif
2dd73a4f
PW
1982}
1983
cb469845
SR
1984static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1985 const struct sched_class *prev_class,
1986 int oldprio, int running)
1987{
1988 if (prev_class != p->sched_class) {
1989 if (prev_class->switched_from)
1990 prev_class->switched_from(rq, p, running);
1991 p->sched_class->switched_to(rq, p, running);
1992 } else
1993 p->sched_class->prio_changed(rq, p, oldprio, running);
1994}
1995
b84ff7d6
MG
1996/**
1997 * kthread_bind - bind a just-created kthread to a cpu.
968c8645 1998 * @p: thread created by kthread_create().
b84ff7d6
MG
1999 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2000 *
2001 * Description: This function is equivalent to set_cpus_allowed(),
2002 * except that @cpu doesn't need to be online, and the thread must be
2003 * stopped (i.e., just returned from kthread_create()).
2004 *
2005 * Function lives here instead of kthread.c because it messes with
2006 * scheduler internals which require locking.
2007 */
2008void kthread_bind(struct task_struct *p, unsigned int cpu)
2009{
2010 struct rq *rq = cpu_rq(cpu);
2011 unsigned long flags;
2012
2013 /* Must have done schedule() in kthread() before we set_task_cpu */
2014 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2015 WARN_ON(1);
2016 return;
2017 }
2018
2019 spin_lock_irqsave(&rq->lock, flags);
055a0086 2020 update_rq_clock(rq);
b84ff7d6
MG
2021 set_task_cpu(p, cpu);
2022 p->cpus_allowed = cpumask_of_cpu(cpu);
2023 p->rt.nr_cpus_allowed = 1;
2024 p->flags |= PF_THREAD_BOUND;
2025 spin_unlock_irqrestore(&rq->lock, flags);
2026}
2027EXPORT_SYMBOL(kthread_bind);
2028
1da177e4 2029#ifdef CONFIG_SMP
cc367732
IM
2030/*
2031 * Is this task likely cache-hot:
2032 */
e7693a36 2033static int
cc367732
IM
2034task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2035{
2036 s64 delta;
2037
f540a608
IM
2038 /*
2039 * Buddy candidates are cache hot:
2040 */
f685ceac 2041 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2042 (&p->se == cfs_rq_of(&p->se)->next ||
2043 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2044 return 1;
2045
cc367732
IM
2046 if (p->sched_class != &fair_sched_class)
2047 return 0;
2048
6bc1665b
IM
2049 if (sysctl_sched_migration_cost == -1)
2050 return 1;
2051 if (sysctl_sched_migration_cost == 0)
2052 return 0;
2053
cc367732
IM
2054 delta = now - p->se.exec_start;
2055
2056 return delta < (s64)sysctl_sched_migration_cost;
2057}
2058
2059
dd41f596 2060void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2061{
dd41f596
IM
2062 int old_cpu = task_cpu(p);
2063 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2064 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2065 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2066 u64 clock_offset;
dd41f596
IM
2067
2068 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 2069
de1d7286 2070 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2071
6cfb0d5d
IM
2072#ifdef CONFIG_SCHEDSTATS
2073 if (p->se.wait_start)
2074 p->se.wait_start -= clock_offset;
dd41f596
IM
2075 if (p->se.sleep_start)
2076 p->se.sleep_start -= clock_offset;
2077 if (p->se.block_start)
2078 p->se.block_start -= clock_offset;
6c594c21 2079#endif
cc367732 2080 if (old_cpu != new_cpu) {
6c594c21
IM
2081 p->se.nr_migrations++;
2082#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2083 if (task_hot(p, old_rq->clock, NULL))
2084 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2085#endif
cdd6c482 2086 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2087 1, 1, NULL, 0);
6c594c21 2088 }
2830cf8c
SV
2089 p->se.vruntime -= old_cfsrq->min_vruntime -
2090 new_cfsrq->min_vruntime;
dd41f596
IM
2091
2092 __set_task_cpu(p, new_cpu);
c65cc870
IM
2093}
2094
70b97a7f 2095struct migration_req {
1da177e4 2096 struct list_head list;
1da177e4 2097
36c8b586 2098 struct task_struct *task;
1da177e4
LT
2099 int dest_cpu;
2100
1da177e4 2101 struct completion done;
70b97a7f 2102};
1da177e4
LT
2103
2104/*
2105 * The task's runqueue lock must be held.
2106 * Returns true if you have to wait for migration thread.
2107 */
36c8b586 2108static int
70b97a7f 2109migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2110{
70b97a7f 2111 struct rq *rq = task_rq(p);
1da177e4
LT
2112
2113 /*
2114 * If the task is not on a runqueue (and not running), then
2115 * it is sufficient to simply update the task's cpu field.
2116 */
dd41f596 2117 if (!p->se.on_rq && !task_running(rq, p)) {
055a0086 2118 update_rq_clock(rq);
1da177e4
LT
2119 set_task_cpu(p, dest_cpu);
2120 return 0;
2121 }
2122
2123 init_completion(&req->done);
1da177e4
LT
2124 req->task = p;
2125 req->dest_cpu = dest_cpu;
2126 list_add(&req->list, &rq->migration_queue);
48f24c4d 2127
1da177e4
LT
2128 return 1;
2129}
2130
a26b89f0
MM
2131/*
2132 * wait_task_context_switch - wait for a thread to complete at least one
2133 * context switch.
2134 *
2135 * @p must not be current.
2136 */
2137void wait_task_context_switch(struct task_struct *p)
2138{
2139 unsigned long nvcsw, nivcsw, flags;
2140 int running;
2141 struct rq *rq;
2142
2143 nvcsw = p->nvcsw;
2144 nivcsw = p->nivcsw;
2145 for (;;) {
2146 /*
2147 * The runqueue is assigned before the actual context
2148 * switch. We need to take the runqueue lock.
2149 *
2150 * We could check initially without the lock but it is
2151 * very likely that we need to take the lock in every
2152 * iteration.
2153 */
2154 rq = task_rq_lock(p, &flags);
2155 running = task_running(rq, p);
2156 task_rq_unlock(rq, &flags);
2157
2158 if (likely(!running))
2159 break;
2160 /*
2161 * The switch count is incremented before the actual
2162 * context switch. We thus wait for two switches to be
2163 * sure at least one completed.
2164 */
2165 if ((p->nvcsw - nvcsw) > 1)
2166 break;
2167 if ((p->nivcsw - nivcsw) > 1)
2168 break;
2169
2170 cpu_relax();
2171 }
2172}
2173
1da177e4
LT
2174/*
2175 * wait_task_inactive - wait for a thread to unschedule.
2176 *
85ba2d86
RM
2177 * If @match_state is nonzero, it's the @p->state value just checked and
2178 * not expected to change. If it changes, i.e. @p might have woken up,
2179 * then return zero. When we succeed in waiting for @p to be off its CPU,
2180 * we return a positive number (its total switch count). If a second call
2181 * a short while later returns the same number, the caller can be sure that
2182 * @p has remained unscheduled the whole time.
2183 *
1da177e4
LT
2184 * The caller must ensure that the task *will* unschedule sometime soon,
2185 * else this function might spin for a *long* time. This function can't
2186 * be called with interrupts off, or it may introduce deadlock with
2187 * smp_call_function() if an IPI is sent by the same process we are
2188 * waiting to become inactive.
2189 */
85ba2d86 2190unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2191{
2192 unsigned long flags;
dd41f596 2193 int running, on_rq;
85ba2d86 2194 unsigned long ncsw;
70b97a7f 2195 struct rq *rq;
1da177e4 2196
3a5c359a
AK
2197 for (;;) {
2198 /*
2199 * We do the initial early heuristics without holding
2200 * any task-queue locks at all. We'll only try to get
2201 * the runqueue lock when things look like they will
2202 * work out!
2203 */
2204 rq = task_rq(p);
fa490cfd 2205
3a5c359a
AK
2206 /*
2207 * If the task is actively running on another CPU
2208 * still, just relax and busy-wait without holding
2209 * any locks.
2210 *
2211 * NOTE! Since we don't hold any locks, it's not
2212 * even sure that "rq" stays as the right runqueue!
2213 * But we don't care, since "task_running()" will
2214 * return false if the runqueue has changed and p
2215 * is actually now running somewhere else!
2216 */
85ba2d86
RM
2217 while (task_running(rq, p)) {
2218 if (match_state && unlikely(p->state != match_state))
2219 return 0;
3a5c359a 2220 cpu_relax();
85ba2d86 2221 }
fa490cfd 2222
3a5c359a
AK
2223 /*
2224 * Ok, time to look more closely! We need the rq
2225 * lock now, to be *sure*. If we're wrong, we'll
2226 * just go back and repeat.
2227 */
2228 rq = task_rq_lock(p, &flags);
0a16b607 2229 trace_sched_wait_task(rq, p);
3a5c359a
AK
2230 running = task_running(rq, p);
2231 on_rq = p->se.on_rq;
85ba2d86 2232 ncsw = 0;
f31e11d8 2233 if (!match_state || p->state == match_state)
93dcf55f 2234 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2235 task_rq_unlock(rq, &flags);
fa490cfd 2236
85ba2d86
RM
2237 /*
2238 * If it changed from the expected state, bail out now.
2239 */
2240 if (unlikely(!ncsw))
2241 break;
2242
3a5c359a
AK
2243 /*
2244 * Was it really running after all now that we
2245 * checked with the proper locks actually held?
2246 *
2247 * Oops. Go back and try again..
2248 */
2249 if (unlikely(running)) {
2250 cpu_relax();
2251 continue;
2252 }
fa490cfd 2253
3a5c359a
AK
2254 /*
2255 * It's not enough that it's not actively running,
2256 * it must be off the runqueue _entirely_, and not
2257 * preempted!
2258 *
80dd99b3 2259 * So if it was still runnable (but just not actively
3a5c359a
AK
2260 * running right now), it's preempted, and we should
2261 * yield - it could be a while.
2262 */
2263 if (unlikely(on_rq)) {
2264 schedule_timeout_uninterruptible(1);
2265 continue;
2266 }
fa490cfd 2267
3a5c359a
AK
2268 /*
2269 * Ahh, all good. It wasn't running, and it wasn't
2270 * runnable, which means that it will never become
2271 * running in the future either. We're all done!
2272 */
2273 break;
2274 }
85ba2d86
RM
2275
2276 return ncsw;
1da177e4
LT
2277}
2278
2279/***
2280 * kick_process - kick a running thread to enter/exit the kernel
2281 * @p: the to-be-kicked thread
2282 *
2283 * Cause a process which is running on another CPU to enter
2284 * kernel-mode, without any delay. (to get signals handled.)
2285 *
2286 * NOTE: this function doesnt have to take the runqueue lock,
2287 * because all it wants to ensure is that the remote task enters
2288 * the kernel. If the IPI races and the task has been migrated
2289 * to another CPU then no harm is done and the purpose has been
2290 * achieved as well.
2291 */
36c8b586 2292void kick_process(struct task_struct *p)
1da177e4
LT
2293{
2294 int cpu;
2295
2296 preempt_disable();
2297 cpu = task_cpu(p);
2298 if ((cpu != smp_processor_id()) && task_curr(p))
2299 smp_send_reschedule(cpu);
2300 preempt_enable();
2301}
b43e3521 2302EXPORT_SYMBOL_GPL(kick_process);
476d139c 2303#endif /* CONFIG_SMP */
1da177e4 2304
0793a61d
TG
2305/**
2306 * task_oncpu_function_call - call a function on the cpu on which a task runs
2307 * @p: the task to evaluate
2308 * @func: the function to be called
2309 * @info: the function call argument
2310 *
2311 * Calls the function @func when the task is currently running. This might
2312 * be on the current CPU, which just calls the function directly
2313 */
2314void task_oncpu_function_call(struct task_struct *p,
2315 void (*func) (void *info), void *info)
2316{
2317 int cpu;
2318
2319 preempt_disable();
2320 cpu = task_cpu(p);
2321 if (task_curr(p))
2322 smp_call_function_single(cpu, func, info, 1);
2323 preempt_enable();
2324}
2325
970b13ba
PZ
2326#ifdef CONFIG_SMP
2327static inline
2328int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2329{
2330 return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2331}
2332#endif
2333
1da177e4
LT
2334/***
2335 * try_to_wake_up - wake up a thread
2336 * @p: the to-be-woken-up thread
2337 * @state: the mask of task states that can be woken
2338 * @sync: do a synchronous wakeup?
2339 *
2340 * Put it on the run-queue if it's not already there. The "current"
2341 * thread is always on the run-queue (except when the actual
2342 * re-schedule is in progress), and as such you're allowed to do
2343 * the simpler "current->state = TASK_RUNNING" to mark yourself
2344 * runnable without the overhead of this.
2345 *
2346 * returns failure only if the task is already active.
2347 */
7d478721
PZ
2348static int try_to_wake_up(struct task_struct *p, unsigned int state,
2349 int wake_flags)
1da177e4 2350{
cc367732 2351 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2352 unsigned long flags;
f5dc3753 2353 struct rq *rq, *orig_rq;
1da177e4 2354
b85d0667 2355 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2356 wake_flags &= ~WF_SYNC;
2398f2c6 2357
e9c84311 2358 this_cpu = get_cpu();
2398f2c6 2359
04e2f174 2360 smp_wmb();
f5dc3753 2361 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2362 update_rq_clock(rq);
e9c84311 2363 if (!(p->state & state))
1da177e4
LT
2364 goto out;
2365
dd41f596 2366 if (p->se.on_rq)
1da177e4
LT
2367 goto out_running;
2368
2369 cpu = task_cpu(p);
cc367732 2370 orig_cpu = cpu;
1da177e4
LT
2371
2372#ifdef CONFIG_SMP
2373 if (unlikely(task_running(rq, p)))
2374 goto out_activate;
2375
e9c84311
PZ
2376 /*
2377 * In order to handle concurrent wakeups and release the rq->lock
2378 * we put the task in TASK_WAKING state.
eb24073b
IM
2379 *
2380 * First fix up the nr_uninterruptible count:
e9c84311 2381 */
eb24073b
IM
2382 if (task_contributes_to_load(p))
2383 rq->nr_uninterruptible--;
e9c84311
PZ
2384 p->state = TASK_WAKING;
2385 task_rq_unlock(rq, &flags);
2386
970b13ba 2387 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
055a0086
MG
2388 if (cpu != orig_cpu) {
2389 local_irq_save(flags);
2390 rq = cpu_rq(cpu);
2391 update_rq_clock(rq);
5d2f5a61 2392 set_task_cpu(p, cpu);
055a0086
MG
2393 local_irq_restore(flags);
2394 }
e9c84311 2395 rq = task_rq_lock(p, &flags);
f5dc3753 2396
e9c84311
PZ
2397 WARN_ON(p->state != TASK_WAKING);
2398 cpu = task_cpu(p);
1da177e4 2399
e7693a36
GH
2400#ifdef CONFIG_SCHEDSTATS
2401 schedstat_inc(rq, ttwu_count);
2402 if (cpu == this_cpu)
2403 schedstat_inc(rq, ttwu_local);
2404 else {
2405 struct sched_domain *sd;
2406 for_each_domain(this_cpu, sd) {
758b2cdc 2407 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2408 schedstat_inc(sd, ttwu_wake_remote);
2409 break;
2410 }
2411 }
2412 }
6d6bc0ad 2413#endif /* CONFIG_SCHEDSTATS */
e7693a36 2414
1da177e4
LT
2415out_activate:
2416#endif /* CONFIG_SMP */
cc367732 2417 schedstat_inc(p, se.nr_wakeups);
7d478721 2418 if (wake_flags & WF_SYNC)
cc367732
IM
2419 schedstat_inc(p, se.nr_wakeups_sync);
2420 if (orig_cpu != cpu)
2421 schedstat_inc(p, se.nr_wakeups_migrate);
2422 if (cpu == this_cpu)
2423 schedstat_inc(p, se.nr_wakeups_local);
2424 else
2425 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2426 activate_task(rq, p, 1);
1da177e4
LT
2427 success = 1;
2428
831451ac
PZ
2429 /*
2430 * Only attribute actual wakeups done by this task.
2431 */
2432 if (!in_interrupt()) {
2433 struct sched_entity *se = &current->se;
2434 u64 sample = se->sum_exec_runtime;
2435
2436 if (se->last_wakeup)
2437 sample -= se->last_wakeup;
2438 else
2439 sample -= se->start_runtime;
2440 update_avg(&se->avg_wakeup, sample);
2441
2442 se->last_wakeup = se->sum_exec_runtime;
2443 }
2444
1da177e4 2445out_running:
468a15bb 2446 trace_sched_wakeup(rq, p, success);
7d478721 2447 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2448
1da177e4 2449 p->state = TASK_RUNNING;
9a897c5a
SR
2450#ifdef CONFIG_SMP
2451 if (p->sched_class->task_wake_up)
2452 p->sched_class->task_wake_up(rq, p);
eae0c9df
MG
2453
2454 if (unlikely(rq->idle_stamp)) {
2455 u64 delta = rq->clock - rq->idle_stamp;
2456 u64 max = 2*sysctl_sched_migration_cost;
2457
2458 if (delta > max)
2459 rq->avg_idle = max;
2460 else
2461 update_avg(&rq->avg_idle, delta);
2462 rq->idle_stamp = 0;
2463 }
9a897c5a 2464#endif
1da177e4
LT
2465out:
2466 task_rq_unlock(rq, &flags);
e9c84311 2467 put_cpu();
1da177e4
LT
2468
2469 return success;
2470}
2471
50fa610a
DH
2472/**
2473 * wake_up_process - Wake up a specific process
2474 * @p: The process to be woken up.
2475 *
2476 * Attempt to wake up the nominated process and move it to the set of runnable
2477 * processes. Returns 1 if the process was woken up, 0 if it was already
2478 * running.
2479 *
2480 * It may be assumed that this function implies a write memory barrier before
2481 * changing the task state if and only if any tasks are woken up.
2482 */
7ad5b3a5 2483int wake_up_process(struct task_struct *p)
1da177e4 2484{
d9514f6c 2485 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2486}
1da177e4
LT
2487EXPORT_SYMBOL(wake_up_process);
2488
7ad5b3a5 2489int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2490{
2491 return try_to_wake_up(p, state, 0);
2492}
2493
1da177e4
LT
2494/*
2495 * Perform scheduler related setup for a newly forked process p.
2496 * p is forked by current.
dd41f596
IM
2497 *
2498 * __sched_fork() is basic setup used by init_idle() too:
2499 */
2500static void __sched_fork(struct task_struct *p)
2501{
dd41f596
IM
2502 p->se.exec_start = 0;
2503 p->se.sum_exec_runtime = 0;
f6cf891c 2504 p->se.prev_sum_exec_runtime = 0;
6c594c21 2505 p->se.nr_migrations = 0;
4ae7d5ce
IM
2506 p->se.last_wakeup = 0;
2507 p->se.avg_overlap = 0;
831451ac
PZ
2508 p->se.start_runtime = 0;
2509 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
ad4b78bb 2510 p->se.avg_running = 0;
6cfb0d5d
IM
2511
2512#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2513 p->se.wait_start = 0;
2514 p->se.wait_max = 0;
2515 p->se.wait_count = 0;
2516 p->se.wait_sum = 0;
2517
2518 p->se.sleep_start = 0;
2519 p->se.sleep_max = 0;
2520 p->se.sum_sleep_runtime = 0;
2521
2522 p->se.block_start = 0;
2523 p->se.block_max = 0;
2524 p->se.exec_max = 0;
2525 p->se.slice_max = 0;
2526
2527 p->se.nr_migrations_cold = 0;
2528 p->se.nr_failed_migrations_affine = 0;
2529 p->se.nr_failed_migrations_running = 0;
2530 p->se.nr_failed_migrations_hot = 0;
2531 p->se.nr_forced_migrations = 0;
2532 p->se.nr_forced2_migrations = 0;
2533
2534 p->se.nr_wakeups = 0;
2535 p->se.nr_wakeups_sync = 0;
2536 p->se.nr_wakeups_migrate = 0;
2537 p->se.nr_wakeups_local = 0;
2538 p->se.nr_wakeups_remote = 0;
2539 p->se.nr_wakeups_affine = 0;
2540 p->se.nr_wakeups_affine_attempts = 0;
2541 p->se.nr_wakeups_passive = 0;
2542 p->se.nr_wakeups_idle = 0;
2543
6cfb0d5d 2544#endif
476d139c 2545
fa717060 2546 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2547 p->se.on_rq = 0;
4a55bd5e 2548 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2549
e107be36
AK
2550#ifdef CONFIG_PREEMPT_NOTIFIERS
2551 INIT_HLIST_HEAD(&p->preempt_notifiers);
2552#endif
2553
1da177e4
LT
2554 /*
2555 * We mark the process as running here, but have not actually
2556 * inserted it onto the runqueue yet. This guarantees that
2557 * nobody will actually run it, and a signal or other external
2558 * event cannot wake it up and insert it on the runqueue either.
2559 */
2560 p->state = TASK_RUNNING;
dd41f596
IM
2561}
2562
2563/*
2564 * fork()/clone()-time setup:
2565 */
2566void sched_fork(struct task_struct *p, int clone_flags)
2567{
2568 int cpu = get_cpu();
055a0086 2569 unsigned long flags;
dd41f596
IM
2570
2571 __sched_fork(p);
2572
b9dc29e7
MG
2573 /*
2574 * Revert to default priority/policy on fork if requested.
2575 */
2576 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2577 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2578 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2579 p->normal_prio = p->static_prio;
2580 }
b9dc29e7 2581
6c697bdf
MG
2582 if (PRIO_TO_NICE(p->static_prio) < 0) {
2583 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2584 p->normal_prio = p->static_prio;
6c697bdf
MG
2585 set_load_weight(p);
2586 }
2587
b9dc29e7
MG
2588 /*
2589 * We don't need the reset flag anymore after the fork. It has
2590 * fulfilled its duty:
2591 */
2592 p->sched_reset_on_fork = 0;
2593 }
ca94c442 2594
f83f9ac2
PW
2595 /*
2596 * Make sure we do not leak PI boosting priority to the child.
2597 */
2598 p->prio = current->normal_prio;
2599
2ddbf952
HS
2600 if (!rt_prio(p->prio))
2601 p->sched_class = &fair_sched_class;
b29739f9 2602
5f3edc1b 2603#ifdef CONFIG_SMP
970b13ba 2604 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b 2605#endif
055a0086
MG
2606 local_irq_save(flags);
2607 update_rq_clock(cpu_rq(cpu));
5f3edc1b 2608 set_task_cpu(p, cpu);
055a0086 2609 local_irq_restore(flags);
5f3edc1b 2610
52f17b6c 2611#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2612 if (likely(sched_info_on()))
52f17b6c 2613 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2614#endif
d6077cb8 2615#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2616 p->oncpu = 0;
2617#endif
1da177e4 2618#ifdef CONFIG_PREEMPT
4866cde0 2619 /* Want to start with kernel preemption disabled. */
a1261f54 2620 task_thread_info(p)->preempt_count = 1;
1da177e4 2621#endif
917b627d
GH
2622 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2623
476d139c 2624 put_cpu();
1da177e4
LT
2625}
2626
2627/*
2628 * wake_up_new_task - wake up a newly created task for the first time.
2629 *
2630 * This function will do some initial scheduler statistics housekeeping
2631 * that must be done for every newly created context, then puts the task
2632 * on the runqueue and wakes it.
2633 */
7ad5b3a5 2634void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2635{
2636 unsigned long flags;
dd41f596 2637 struct rq *rq;
1da177e4
LT
2638
2639 rq = task_rq_lock(p, &flags);
147cbb4b 2640 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2641 update_rq_clock(rq);
1da177e4 2642
b9dca1e0 2643 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2644 activate_task(rq, p, 0);
1da177e4 2645 } else {
1da177e4 2646 /*
dd41f596
IM
2647 * Let the scheduling class do new task startup
2648 * management (if any):
1da177e4 2649 */
ee0827d8 2650 p->sched_class->task_new(rq, p);
c09595f6 2651 inc_nr_running(rq);
1da177e4 2652 }
c71dd42d 2653 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2654 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2655#ifdef CONFIG_SMP
2656 if (p->sched_class->task_wake_up)
2657 p->sched_class->task_wake_up(rq, p);
2658#endif
dd41f596 2659 task_rq_unlock(rq, &flags);
1da177e4
LT
2660}
2661
e107be36
AK
2662#ifdef CONFIG_PREEMPT_NOTIFIERS
2663
2664/**
80dd99b3 2665 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2666 * @notifier: notifier struct to register
e107be36
AK
2667 */
2668void preempt_notifier_register(struct preempt_notifier *notifier)
2669{
2670 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2671}
2672EXPORT_SYMBOL_GPL(preempt_notifier_register);
2673
2674/**
2675 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2676 * @notifier: notifier struct to unregister
e107be36
AK
2677 *
2678 * This is safe to call from within a preemption notifier.
2679 */
2680void preempt_notifier_unregister(struct preempt_notifier *notifier)
2681{
2682 hlist_del(&notifier->link);
2683}
2684EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2685
2686static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2687{
2688 struct preempt_notifier *notifier;
2689 struct hlist_node *node;
2690
2691 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2692 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2693}
2694
2695static void
2696fire_sched_out_preempt_notifiers(struct task_struct *curr,
2697 struct task_struct *next)
2698{
2699 struct preempt_notifier *notifier;
2700 struct hlist_node *node;
2701
2702 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2703 notifier->ops->sched_out(notifier, next);
2704}
2705
6d6bc0ad 2706#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2707
2708static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2709{
2710}
2711
2712static void
2713fire_sched_out_preempt_notifiers(struct task_struct *curr,
2714 struct task_struct *next)
2715{
2716}
2717
6d6bc0ad 2718#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2719
4866cde0
NP
2720/**
2721 * prepare_task_switch - prepare to switch tasks
2722 * @rq: the runqueue preparing to switch
421cee29 2723 * @prev: the current task that is being switched out
4866cde0
NP
2724 * @next: the task we are going to switch to.
2725 *
2726 * This is called with the rq lock held and interrupts off. It must
2727 * be paired with a subsequent finish_task_switch after the context
2728 * switch.
2729 *
2730 * prepare_task_switch sets up locking and calls architecture specific
2731 * hooks.
2732 */
e107be36
AK
2733static inline void
2734prepare_task_switch(struct rq *rq, struct task_struct *prev,
2735 struct task_struct *next)
4866cde0 2736{
e107be36 2737 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2738 prepare_lock_switch(rq, next);
2739 prepare_arch_switch(next);
2740}
2741
1da177e4
LT
2742/**
2743 * finish_task_switch - clean up after a task-switch
344babaa 2744 * @rq: runqueue associated with task-switch
1da177e4
LT
2745 * @prev: the thread we just switched away from.
2746 *
4866cde0
NP
2747 * finish_task_switch must be called after the context switch, paired
2748 * with a prepare_task_switch call before the context switch.
2749 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2750 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2751 *
2752 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2753 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2754 * with the lock held can cause deadlocks; see schedule() for
2755 * details.)
2756 */
a9957449 2757static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2758 __releases(rq->lock)
2759{
1da177e4 2760 struct mm_struct *mm = rq->prev_mm;
55a101f8 2761 long prev_state;
1da177e4
LT
2762
2763 rq->prev_mm = NULL;
2764
2765 /*
2766 * A task struct has one reference for the use as "current".
c394cc9f 2767 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2768 * schedule one last time. The schedule call will never return, and
2769 * the scheduled task must drop that reference.
c394cc9f 2770 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2771 * still held, otherwise prev could be scheduled on another cpu, die
2772 * there before we look at prev->state, and then the reference would
2773 * be dropped twice.
2774 * Manfred Spraul <manfred@colorfullife.com>
2775 */
55a101f8 2776 prev_state = prev->state;
4866cde0 2777 finish_arch_switch(prev);
cdd6c482 2778 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2779 finish_lock_switch(rq, prev);
e8fa1362 2780
e107be36 2781 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2782 if (mm)
2783 mmdrop(mm);
c394cc9f 2784 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2785 /*
2786 * Remove function-return probe instances associated with this
2787 * task and put them back on the free list.
9761eea8 2788 */
c6fd91f0 2789 kprobe_flush_task(prev);
1da177e4 2790 put_task_struct(prev);
c6fd91f0 2791 }
1da177e4
LT
2792}
2793
3f029d3c
GH
2794#ifdef CONFIG_SMP
2795
2796/* assumes rq->lock is held */
2797static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2798{
2799 if (prev->sched_class->pre_schedule)
2800 prev->sched_class->pre_schedule(rq, prev);
2801}
2802
2803/* rq->lock is NOT held, but preemption is disabled */
2804static inline void post_schedule(struct rq *rq)
2805{
2806 if (rq->post_schedule) {
2807 unsigned long flags;
2808
2809 spin_lock_irqsave(&rq->lock, flags);
2810 if (rq->curr->sched_class->post_schedule)
2811 rq->curr->sched_class->post_schedule(rq);
2812 spin_unlock_irqrestore(&rq->lock, flags);
2813
2814 rq->post_schedule = 0;
2815 }
2816}
2817
2818#else
da19ab51 2819
3f029d3c
GH
2820static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2821{
2822}
2823
2824static inline void post_schedule(struct rq *rq)
2825{
1da177e4
LT
2826}
2827
3f029d3c
GH
2828#endif
2829
1da177e4
LT
2830/**
2831 * schedule_tail - first thing a freshly forked thread must call.
2832 * @prev: the thread we just switched away from.
2833 */
36c8b586 2834asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2835 __releases(rq->lock)
2836{
70b97a7f
IM
2837 struct rq *rq = this_rq();
2838
4866cde0 2839 finish_task_switch(rq, prev);
da19ab51 2840
3f029d3c
GH
2841 /*
2842 * FIXME: do we need to worry about rq being invalidated by the
2843 * task_switch?
2844 */
2845 post_schedule(rq);
70b97a7f 2846
4866cde0
NP
2847#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2848 /* In this case, finish_task_switch does not reenable preemption */
2849 preempt_enable();
2850#endif
1da177e4 2851 if (current->set_child_tid)
b488893a 2852 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2853}
2854
2855/*
2856 * context_switch - switch to the new MM and the new
2857 * thread's register state.
2858 */
dd41f596 2859static inline void
70b97a7f 2860context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2861 struct task_struct *next)
1da177e4 2862{
dd41f596 2863 struct mm_struct *mm, *oldmm;
1da177e4 2864
e107be36 2865 prepare_task_switch(rq, prev, next);
0a16b607 2866 trace_sched_switch(rq, prev, next);
dd41f596
IM
2867 mm = next->mm;
2868 oldmm = prev->active_mm;
9226d125
ZA
2869 /*
2870 * For paravirt, this is coupled with an exit in switch_to to
2871 * combine the page table reload and the switch backend into
2872 * one hypercall.
2873 */
224101ed 2874 arch_start_context_switch(prev);
9226d125 2875
710390d9 2876 if (likely(!mm)) {
1da177e4
LT
2877 next->active_mm = oldmm;
2878 atomic_inc(&oldmm->mm_count);
2879 enter_lazy_tlb(oldmm, next);
2880 } else
2881 switch_mm(oldmm, mm, next);
2882
710390d9 2883 if (likely(!prev->mm)) {
1da177e4 2884 prev->active_mm = NULL;
1da177e4
LT
2885 rq->prev_mm = oldmm;
2886 }
3a5f5e48
IM
2887 /*
2888 * Since the runqueue lock will be released by the next
2889 * task (which is an invalid locking op but in the case
2890 * of the scheduler it's an obvious special-case), so we
2891 * do an early lockdep release here:
2892 */
2893#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2894 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2895#endif
1da177e4
LT
2896
2897 /* Here we just switch the register state and the stack. */
2898 switch_to(prev, next, prev);
2899
dd41f596
IM
2900 barrier();
2901 /*
2902 * this_rq must be evaluated again because prev may have moved
2903 * CPUs since it called schedule(), thus the 'rq' on its stack
2904 * frame will be invalid.
2905 */
2906 finish_task_switch(this_rq(), prev);
1da177e4
LT
2907}
2908
2909/*
2910 * nr_running, nr_uninterruptible and nr_context_switches:
2911 *
2912 * externally visible scheduler statistics: current number of runnable
2913 * threads, current number of uninterruptible-sleeping threads, total
2914 * number of context switches performed since bootup.
2915 */
2916unsigned long nr_running(void)
2917{
2918 unsigned long i, sum = 0;
2919
2920 for_each_online_cpu(i)
2921 sum += cpu_rq(i)->nr_running;
2922
2923 return sum;
2924}
2925
2926unsigned long nr_uninterruptible(void)
2927{
2928 unsigned long i, sum = 0;
2929
0a945022 2930 for_each_possible_cpu(i)
1da177e4
LT
2931 sum += cpu_rq(i)->nr_uninterruptible;
2932
2933 /*
2934 * Since we read the counters lockless, it might be slightly
2935 * inaccurate. Do not allow it to go below zero though:
2936 */
2937 if (unlikely((long)sum < 0))
2938 sum = 0;
2939
2940 return sum;
2941}
2942
2943unsigned long long nr_context_switches(void)
2944{
cc94abfc
SR
2945 int i;
2946 unsigned long long sum = 0;
1da177e4 2947
0a945022 2948 for_each_possible_cpu(i)
1da177e4
LT
2949 sum += cpu_rq(i)->nr_switches;
2950
2951 return sum;
2952}
2953
2954unsigned long nr_iowait(void)
2955{
2956 unsigned long i, sum = 0;
2957
0a945022 2958 for_each_possible_cpu(i)
1da177e4
LT
2959 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2960
2961 return sum;
2962}
2963
69d25870
AV
2964unsigned long nr_iowait_cpu(void)
2965{
2966 struct rq *this = this_rq();
2967 return atomic_read(&this->nr_iowait);
2968}
2969
2970unsigned long this_cpu_load(void)
2971{
2972 struct rq *this = this_rq();
2973 return this->cpu_load[0];
2974}
2975
2976
dce48a84
TG
2977/* Variables and functions for calc_load */
2978static atomic_long_t calc_load_tasks;
2979static unsigned long calc_load_update;
2980unsigned long avenrun[3];
2981EXPORT_SYMBOL(avenrun);
2982
2d02494f
TG
2983/**
2984 * get_avenrun - get the load average array
2985 * @loads: pointer to dest load array
2986 * @offset: offset to add
2987 * @shift: shift count to shift the result left
2988 *
2989 * These values are estimates at best, so no need for locking.
2990 */
2991void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2992{
2993 loads[0] = (avenrun[0] + offset) << shift;
2994 loads[1] = (avenrun[1] + offset) << shift;
2995 loads[2] = (avenrun[2] + offset) << shift;
2996}
2997
dce48a84
TG
2998static unsigned long
2999calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3000{
dce48a84
TG
3001 load *= exp;
3002 load += active * (FIXED_1 - exp);
3003 return load >> FSHIFT;
3004}
db1b1fef 3005
dce48a84
TG
3006/*
3007 * calc_load - update the avenrun load estimates 10 ticks after the
3008 * CPUs have updated calc_load_tasks.
3009 */
3010void calc_global_load(void)
3011{
3012 unsigned long upd = calc_load_update + 10;
3013 long active;
3014
3015 if (time_before(jiffies, upd))
3016 return;
db1b1fef 3017
dce48a84
TG
3018 active = atomic_long_read(&calc_load_tasks);
3019 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3020
dce48a84
TG
3021 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3022 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3023 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3024
3025 calc_load_update += LOAD_FREQ;
3026}
3027
3028/*
3029 * Either called from update_cpu_load() or from a cpu going idle
3030 */
3031static void calc_load_account_active(struct rq *this_rq)
3032{
3033 long nr_active, delta;
3034
3035 nr_active = this_rq->nr_running;
3036 nr_active += (long) this_rq->nr_uninterruptible;
3037
3038 if (nr_active != this_rq->calc_load_active) {
3039 delta = nr_active - this_rq->calc_load_active;
3040 this_rq->calc_load_active = nr_active;
3041 atomic_long_add(delta, &calc_load_tasks);
3042 }
db1b1fef
JS
3043}
3044
48f24c4d 3045/*
dd41f596
IM
3046 * Update rq->cpu_load[] statistics. This function is usually called every
3047 * scheduler tick (TICK_NSEC).
48f24c4d 3048 */
dd41f596 3049static void update_cpu_load(struct rq *this_rq)
48f24c4d 3050{
495eca49 3051 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3052 int i, scale;
3053
3054 this_rq->nr_load_updates++;
dd41f596
IM
3055
3056 /* Update our load: */
3057 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3058 unsigned long old_load, new_load;
3059
3060 /* scale is effectively 1 << i now, and >> i divides by scale */
3061
3062 old_load = this_rq->cpu_load[i];
3063 new_load = this_load;
a25707f3
IM
3064 /*
3065 * Round up the averaging division if load is increasing. This
3066 * prevents us from getting stuck on 9 if the load is 10, for
3067 * example.
3068 */
3069 if (new_load > old_load)
3070 new_load += scale-1;
dd41f596
IM
3071 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3072 }
dce48a84
TG
3073
3074 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3075 this_rq->calc_load_update += LOAD_FREQ;
3076 calc_load_account_active(this_rq);
3077 }
48f24c4d
IM
3078}
3079
dd41f596
IM
3080#ifdef CONFIG_SMP
3081
1da177e4
LT
3082/*
3083 * double_rq_lock - safely lock two runqueues
3084 *
3085 * Note this does not disable interrupts like task_rq_lock,
3086 * you need to do so manually before calling.
3087 */
70b97a7f 3088static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3089 __acquires(rq1->lock)
3090 __acquires(rq2->lock)
3091{
054b9108 3092 BUG_ON(!irqs_disabled());
1da177e4
LT
3093 if (rq1 == rq2) {
3094 spin_lock(&rq1->lock);
3095 __acquire(rq2->lock); /* Fake it out ;) */
3096 } else {
c96d145e 3097 if (rq1 < rq2) {
1da177e4 3098 spin_lock(&rq1->lock);
5e710e37 3099 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3100 } else {
3101 spin_lock(&rq2->lock);
5e710e37 3102 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3103 }
3104 }
6e82a3be
IM
3105 update_rq_clock(rq1);
3106 update_rq_clock(rq2);
1da177e4
LT
3107}
3108
3109/*
3110 * double_rq_unlock - safely unlock two runqueues
3111 *
3112 * Note this does not restore interrupts like task_rq_unlock,
3113 * you need to do so manually after calling.
3114 */
70b97a7f 3115static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3116 __releases(rq1->lock)
3117 __releases(rq2->lock)
3118{
3119 spin_unlock(&rq1->lock);
3120 if (rq1 != rq2)
3121 spin_unlock(&rq2->lock);
3122 else
3123 __release(rq2->lock);
3124}
3125
1da177e4
LT
3126/*
3127 * If dest_cpu is allowed for this process, migrate the task to it.
3128 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3129 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3130 * the cpu_allowed mask is restored.
3131 */
36c8b586 3132static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3133{
70b97a7f 3134 struct migration_req req;
1da177e4 3135 unsigned long flags;
70b97a7f 3136 struct rq *rq;
1da177e4
LT
3137
3138 rq = task_rq_lock(p, &flags);
96f874e2 3139 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3140 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3141 goto out;
3142
3143 /* force the process onto the specified CPU */
3144 if (migrate_task(p, dest_cpu, &req)) {
3145 /* Need to wait for migration thread (might exit: take ref). */
3146 struct task_struct *mt = rq->migration_thread;
36c8b586 3147
1da177e4
LT
3148 get_task_struct(mt);
3149 task_rq_unlock(rq, &flags);
3150 wake_up_process(mt);
3151 put_task_struct(mt);
3152 wait_for_completion(&req.done);
36c8b586 3153
1da177e4
LT
3154 return;
3155 }
3156out:
3157 task_rq_unlock(rq, &flags);
3158}
3159
3160/*
476d139c
NP
3161 * sched_exec - execve() is a valuable balancing opportunity, because at
3162 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3163 */
3164void sched_exec(void)
3165{
1da177e4 3166 int new_cpu, this_cpu = get_cpu();
970b13ba 3167 new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3168 put_cpu();
476d139c
NP
3169 if (new_cpu != this_cpu)
3170 sched_migrate_task(current, new_cpu);
1da177e4
LT
3171}
3172
3173/*
3174 * pull_task - move a task from a remote runqueue to the local runqueue.
3175 * Both runqueues must be locked.
3176 */
dd41f596
IM
3177static void pull_task(struct rq *src_rq, struct task_struct *p,
3178 struct rq *this_rq, int this_cpu)
1da177e4 3179{
2e1cb74a 3180 deactivate_task(src_rq, p, 0);
1da177e4 3181 set_task_cpu(p, this_cpu);
dd41f596 3182 activate_task(this_rq, p, 0);
1da177e4
LT
3183 /*
3184 * Note that idle threads have a prio of MAX_PRIO, for this test
3185 * to be always true for them.
3186 */
15afe09b 3187 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3188}
3189
3190/*
3191 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3192 */
858119e1 3193static
70b97a7f 3194int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3195 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3196 int *all_pinned)
1da177e4 3197{
708dc512 3198 int tsk_cache_hot = 0;
1da177e4
LT
3199 /*
3200 * We do not migrate tasks that are:
3201 * 1) running (obviously), or
3202 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3203 * 3) are cache-hot on their current CPU.
3204 */
96f874e2 3205 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3206 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3207 return 0;
cc367732 3208 }
81026794
NP
3209 *all_pinned = 0;
3210
cc367732
IM
3211 if (task_running(rq, p)) {
3212 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3213 return 0;
cc367732 3214 }
1da177e4 3215
da84d961
IM
3216 /*
3217 * Aggressive migration if:
3218 * 1) task is cache cold, or
3219 * 2) too many balance attempts have failed.
3220 */
3221
708dc512
LH
3222 tsk_cache_hot = task_hot(p, rq->clock, sd);
3223 if (!tsk_cache_hot ||
3224 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3225#ifdef CONFIG_SCHEDSTATS
708dc512 3226 if (tsk_cache_hot) {
da84d961 3227 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3228 schedstat_inc(p, se.nr_forced_migrations);
3229 }
da84d961
IM
3230#endif
3231 return 1;
3232 }
3233
708dc512 3234 if (tsk_cache_hot) {
cc367732 3235 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3236 return 0;
cc367732 3237 }
1da177e4
LT
3238 return 1;
3239}
3240
e1d1484f
PW
3241static unsigned long
3242balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3243 unsigned long max_load_move, struct sched_domain *sd,
3244 enum cpu_idle_type idle, int *all_pinned,
3245 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3246{
051c6764 3247 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3248 struct task_struct *p;
3249 long rem_load_move = max_load_move;
1da177e4 3250
e1d1484f 3251 if (max_load_move == 0)
1da177e4
LT
3252 goto out;
3253
81026794
NP
3254 pinned = 1;
3255
1da177e4 3256 /*
dd41f596 3257 * Start the load-balancing iterator:
1da177e4 3258 */
dd41f596
IM
3259 p = iterator->start(iterator->arg);
3260next:
b82d9fdd 3261 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3262 goto out;
051c6764
PZ
3263
3264 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3265 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3266 p = iterator->next(iterator->arg);
3267 goto next;
1da177e4
LT
3268 }
3269
dd41f596 3270 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3271 pulled++;
dd41f596 3272 rem_load_move -= p->se.load.weight;
1da177e4 3273
7e96fa58
GH
3274#ifdef CONFIG_PREEMPT
3275 /*
3276 * NEWIDLE balancing is a source of latency, so preemptible kernels
3277 * will stop after the first task is pulled to minimize the critical
3278 * section.
3279 */
3280 if (idle == CPU_NEWLY_IDLE)
3281 goto out;
3282#endif
3283
2dd73a4f 3284 /*
b82d9fdd 3285 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3286 */
e1d1484f 3287 if (rem_load_move > 0) {
a4ac01c3
PW
3288 if (p->prio < *this_best_prio)
3289 *this_best_prio = p->prio;
dd41f596
IM
3290 p = iterator->next(iterator->arg);
3291 goto next;
1da177e4
LT
3292 }
3293out:
3294 /*
e1d1484f 3295 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3296 * so we can safely collect pull_task() stats here rather than
3297 * inside pull_task().
3298 */
3299 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3300
3301 if (all_pinned)
3302 *all_pinned = pinned;
e1d1484f
PW
3303
3304 return max_load_move - rem_load_move;
1da177e4
LT
3305}
3306
dd41f596 3307/*
43010659
PW
3308 * move_tasks tries to move up to max_load_move weighted load from busiest to
3309 * this_rq, as part of a balancing operation within domain "sd".
3310 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3311 *
3312 * Called with both runqueues locked.
3313 */
3314static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3315 unsigned long max_load_move,
dd41f596
IM
3316 struct sched_domain *sd, enum cpu_idle_type idle,
3317 int *all_pinned)
3318{
5522d5d5 3319 const struct sched_class *class = sched_class_highest;
43010659 3320 unsigned long total_load_moved = 0;
a4ac01c3 3321 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3322
3323 do {
43010659
PW
3324 total_load_moved +=
3325 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3326 max_load_move - total_load_moved,
a4ac01c3 3327 sd, idle, all_pinned, &this_best_prio);
dd41f596 3328 class = class->next;
c4acb2c0 3329
7e96fa58
GH
3330#ifdef CONFIG_PREEMPT
3331 /*
3332 * NEWIDLE balancing is a source of latency, so preemptible
3333 * kernels will stop after the first task is pulled to minimize
3334 * the critical section.
3335 */
c4acb2c0
GH
3336 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3337 break;
7e96fa58 3338#endif
43010659 3339 } while (class && max_load_move > total_load_moved);
dd41f596 3340
43010659
PW
3341 return total_load_moved > 0;
3342}
3343
e1d1484f
PW
3344static int
3345iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3346 struct sched_domain *sd, enum cpu_idle_type idle,
3347 struct rq_iterator *iterator)
3348{
3349 struct task_struct *p = iterator->start(iterator->arg);
3350 int pinned = 0;
3351
3352 while (p) {
3353 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3354 pull_task(busiest, p, this_rq, this_cpu);
3355 /*
3356 * Right now, this is only the second place pull_task()
3357 * is called, so we can safely collect pull_task()
3358 * stats here rather than inside pull_task().
3359 */
3360 schedstat_inc(sd, lb_gained[idle]);
3361
3362 return 1;
3363 }
3364 p = iterator->next(iterator->arg);
3365 }
3366
3367 return 0;
3368}
3369
43010659
PW
3370/*
3371 * move_one_task tries to move exactly one task from busiest to this_rq, as
3372 * part of active balancing operations within "domain".
3373 * Returns 1 if successful and 0 otherwise.
3374 *
3375 * Called with both runqueues locked.
3376 */
3377static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3378 struct sched_domain *sd, enum cpu_idle_type idle)
3379{
5522d5d5 3380 const struct sched_class *class;
43010659 3381
cde7e5ca 3382 for_each_class(class) {
e1d1484f 3383 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3384 return 1;
cde7e5ca 3385 }
43010659
PW
3386
3387 return 0;
dd41f596 3388}
67bb6c03 3389/********** Helpers for find_busiest_group ************************/
1da177e4 3390/*
222d656d
GS
3391 * sd_lb_stats - Structure to store the statistics of a sched_domain
3392 * during load balancing.
1da177e4 3393 */
222d656d
GS
3394struct sd_lb_stats {
3395 struct sched_group *busiest; /* Busiest group in this sd */
3396 struct sched_group *this; /* Local group in this sd */
3397 unsigned long total_load; /* Total load of all groups in sd */
3398 unsigned long total_pwr; /* Total power of all groups in sd */
3399 unsigned long avg_load; /* Average load across all groups in sd */
3400
3401 /** Statistics of this group */
3402 unsigned long this_load;
3403 unsigned long this_load_per_task;
3404 unsigned long this_nr_running;
3405
3406 /* Statistics of the busiest group */
3407 unsigned long max_load;
3408 unsigned long busiest_load_per_task;
3409 unsigned long busiest_nr_running;
3410
3411 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3412#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3413 int power_savings_balance; /* Is powersave balance needed for this sd */
3414 struct sched_group *group_min; /* Least loaded group in sd */
3415 struct sched_group *group_leader; /* Group which relieves group_min */
3416 unsigned long min_load_per_task; /* load_per_task in group_min */
3417 unsigned long leader_nr_running; /* Nr running of group_leader */
3418 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3419#endif
222d656d 3420};
1da177e4 3421
d5ac537e 3422/*
381be78f
GS
3423 * sg_lb_stats - stats of a sched_group required for load_balancing
3424 */
3425struct sg_lb_stats {
3426 unsigned long avg_load; /*Avg load across the CPUs of the group */
3427 unsigned long group_load; /* Total load over the CPUs of the group */
3428 unsigned long sum_nr_running; /* Nr tasks running in the group */
3429 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3430 unsigned long group_capacity;
3431 int group_imb; /* Is there an imbalance in the group ? */
3432};
408ed066 3433
67bb6c03
GS
3434/**
3435 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3436 * @group: The group whose first cpu is to be returned.
3437 */
3438static inline unsigned int group_first_cpu(struct sched_group *group)
3439{
3440 return cpumask_first(sched_group_cpus(group));
3441}
3442
3443/**
3444 * get_sd_load_idx - Obtain the load index for a given sched domain.
3445 * @sd: The sched_domain whose load_idx is to be obtained.
3446 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3447 */
3448static inline int get_sd_load_idx(struct sched_domain *sd,
3449 enum cpu_idle_type idle)
3450{
3451 int load_idx;
3452
3453 switch (idle) {
3454 case CPU_NOT_IDLE:
7897986b 3455 load_idx = sd->busy_idx;
67bb6c03
GS
3456 break;
3457
3458 case CPU_NEWLY_IDLE:
7897986b 3459 load_idx = sd->newidle_idx;
67bb6c03
GS
3460 break;
3461 default:
7897986b 3462 load_idx = sd->idle_idx;
67bb6c03
GS
3463 break;
3464 }
1da177e4 3465
67bb6c03
GS
3466 return load_idx;
3467}
1da177e4 3468
1da177e4 3469
c071df18
GS
3470#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3471/**
3472 * init_sd_power_savings_stats - Initialize power savings statistics for
3473 * the given sched_domain, during load balancing.
3474 *
3475 * @sd: Sched domain whose power-savings statistics are to be initialized.
3476 * @sds: Variable containing the statistics for sd.
3477 * @idle: Idle status of the CPU at which we're performing load-balancing.
3478 */
3479static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3480 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3481{
3482 /*
3483 * Busy processors will not participate in power savings
3484 * balance.
3485 */
3486 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3487 sds->power_savings_balance = 0;
3488 else {
3489 sds->power_savings_balance = 1;
3490 sds->min_nr_running = ULONG_MAX;
3491 sds->leader_nr_running = 0;
3492 }
3493}
783609c6 3494
c071df18
GS
3495/**
3496 * update_sd_power_savings_stats - Update the power saving stats for a
3497 * sched_domain while performing load balancing.
3498 *
3499 * @group: sched_group belonging to the sched_domain under consideration.
3500 * @sds: Variable containing the statistics of the sched_domain
3501 * @local_group: Does group contain the CPU for which we're performing
3502 * load balancing ?
3503 * @sgs: Variable containing the statistics of the group.
3504 */
3505static inline void update_sd_power_savings_stats(struct sched_group *group,
3506 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3507{
408ed066 3508
c071df18
GS
3509 if (!sds->power_savings_balance)
3510 return;
1da177e4 3511
c071df18
GS
3512 /*
3513 * If the local group is idle or completely loaded
3514 * no need to do power savings balance at this domain
3515 */
3516 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3517 !sds->this_nr_running))
3518 sds->power_savings_balance = 0;
2dd73a4f 3519
c071df18
GS
3520 /*
3521 * If a group is already running at full capacity or idle,
3522 * don't include that group in power savings calculations
3523 */
3524 if (!sds->power_savings_balance ||
3525 sgs->sum_nr_running >= sgs->group_capacity ||
3526 !sgs->sum_nr_running)
3527 return;
5969fe06 3528
c071df18
GS
3529 /*
3530 * Calculate the group which has the least non-idle load.
3531 * This is the group from where we need to pick up the load
3532 * for saving power
3533 */
3534 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3535 (sgs->sum_nr_running == sds->min_nr_running &&
3536 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3537 sds->group_min = group;
3538 sds->min_nr_running = sgs->sum_nr_running;
3539 sds->min_load_per_task = sgs->sum_weighted_load /
3540 sgs->sum_nr_running;
3541 }
783609c6 3542
c071df18
GS
3543 /*
3544 * Calculate the group which is almost near its
3545 * capacity but still has some space to pick up some load
3546 * from other group and save more power
3547 */
d899a789 3548 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3549 return;
1da177e4 3550
c071df18
GS
3551 if (sgs->sum_nr_running > sds->leader_nr_running ||
3552 (sgs->sum_nr_running == sds->leader_nr_running &&
3553 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3554 sds->group_leader = group;
3555 sds->leader_nr_running = sgs->sum_nr_running;
3556 }
3557}
408ed066 3558
c071df18 3559/**
d5ac537e 3560 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3561 * @sds: Variable containing the statistics of the sched_domain
3562 * under consideration.
3563 * @this_cpu: Cpu at which we're currently performing load-balancing.
3564 * @imbalance: Variable to store the imbalance.
3565 *
d5ac537e
RD
3566 * Description:
3567 * Check if we have potential to perform some power-savings balance.
3568 * If yes, set the busiest group to be the least loaded group in the
3569 * sched_domain, so that it's CPUs can be put to idle.
3570 *
c071df18
GS
3571 * Returns 1 if there is potential to perform power-savings balance.
3572 * Else returns 0.
3573 */
3574static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3575 int this_cpu, unsigned long *imbalance)
3576{
3577 if (!sds->power_savings_balance)
3578 return 0;
1da177e4 3579
c071df18
GS
3580 if (sds->this != sds->group_leader ||
3581 sds->group_leader == sds->group_min)
3582 return 0;
783609c6 3583
c071df18
GS
3584 *imbalance = sds->min_load_per_task;
3585 sds->busiest = sds->group_min;
1da177e4 3586
c071df18 3587 return 1;
1da177e4 3588
c071df18
GS
3589}
3590#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3591static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3592 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3593{
3594 return;
3595}
408ed066 3596
c071df18
GS
3597static inline void update_sd_power_savings_stats(struct sched_group *group,
3598 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3599{
3600 return;
3601}
3602
3603static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3604 int this_cpu, unsigned long *imbalance)
3605{
3606 return 0;
3607}
3608#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3609
d6a59aa3
PZ
3610
3611unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3612{
3613 return SCHED_LOAD_SCALE;
3614}
3615
3616unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3617{
3618 return default_scale_freq_power(sd, cpu);
3619}
3620
3621unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3622{
3623 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3624 unsigned long smt_gain = sd->smt_gain;
3625
3626 smt_gain /= weight;
3627
3628 return smt_gain;
3629}
3630
d6a59aa3
PZ
3631unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3632{
3633 return default_scale_smt_power(sd, cpu);
3634}
3635
e9e9250b
PZ
3636unsigned long scale_rt_power(int cpu)
3637{
3638 struct rq *rq = cpu_rq(cpu);
3639 u64 total, available;
3640
3641 sched_avg_update(rq);
3642
3643 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3644 available = total - rq->rt_avg;
3645
3646 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3647 total = SCHED_LOAD_SCALE;
3648
3649 total >>= SCHED_LOAD_SHIFT;
3650
3651 return div_u64(available, total);
3652}
3653
ab29230e
PZ
3654static void update_cpu_power(struct sched_domain *sd, int cpu)
3655{
3656 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3657 unsigned long power = SCHED_LOAD_SCALE;
3658 struct sched_group *sdg = sd->groups;
ab29230e 3659
8e6598af
PZ
3660 if (sched_feat(ARCH_POWER))
3661 power *= arch_scale_freq_power(sd, cpu);
3662 else
3663 power *= default_scale_freq_power(sd, cpu);
3664
d6a59aa3 3665 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3666
3667 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3668 if (sched_feat(ARCH_POWER))
3669 power *= arch_scale_smt_power(sd, cpu);
3670 else
3671 power *= default_scale_smt_power(sd, cpu);
3672
ab29230e
PZ
3673 power >>= SCHED_LOAD_SHIFT;
3674 }
3675
e9e9250b
PZ
3676 power *= scale_rt_power(cpu);
3677 power >>= SCHED_LOAD_SHIFT;
3678
3679 if (!power)
3680 power = 1;
ab29230e 3681
18a3885f 3682 sdg->cpu_power = power;
ab29230e
PZ
3683}
3684
3685static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3686{
3687 struct sched_domain *child = sd->child;
3688 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3689 unsigned long power;
cc9fba7d
PZ
3690
3691 if (!child) {
ab29230e 3692 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3693 return;
3694 }
3695
d7ea17a7 3696 power = 0;
cc9fba7d
PZ
3697
3698 group = child->groups;
3699 do {
d7ea17a7 3700 power += group->cpu_power;
cc9fba7d
PZ
3701 group = group->next;
3702 } while (group != child->groups);
d7ea17a7
IM
3703
3704 sdg->cpu_power = power;
cc9fba7d 3705}
c071df18 3706
1f8c553d
GS
3707/**
3708 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3709 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3710 * @group: sched_group whose statistics are to be updated.
3711 * @this_cpu: Cpu for which load balance is currently performed.
3712 * @idle: Idle status of this_cpu
3713 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3714 * @sd_idle: Idle status of the sched_domain containing group.
3715 * @local_group: Does group contain this_cpu.
3716 * @cpus: Set of cpus considered for load balancing.
3717 * @balance: Should we balance.
3718 * @sgs: variable to hold the statistics for this group.
3719 */
cc9fba7d
PZ
3720static inline void update_sg_lb_stats(struct sched_domain *sd,
3721 struct sched_group *group, int this_cpu,
1f8c553d
GS
3722 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3723 int local_group, const struct cpumask *cpus,
3724 int *balance, struct sg_lb_stats *sgs)
3725{
3726 unsigned long load, max_cpu_load, min_cpu_load;
3727 int i;
3728 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3729 unsigned long sum_avg_load_per_task;
3730 unsigned long avg_load_per_task;
3731
cc9fba7d 3732 if (local_group) {
1f8c553d 3733 balance_cpu = group_first_cpu(group);
cc9fba7d 3734 if (balance_cpu == this_cpu)
ab29230e 3735 update_group_power(sd, this_cpu);
cc9fba7d 3736 }
1f8c553d
GS
3737
3738 /* Tally up the load of all CPUs in the group */
3739 sum_avg_load_per_task = avg_load_per_task = 0;
3740 max_cpu_load = 0;
3741 min_cpu_load = ~0UL;
408ed066 3742
1f8c553d
GS
3743 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3744 struct rq *rq = cpu_rq(i);
908a7c1b 3745
1f8c553d
GS
3746 if (*sd_idle && rq->nr_running)
3747 *sd_idle = 0;
5c45bf27 3748
1f8c553d 3749 /* Bias balancing toward cpus of our domain */
1da177e4 3750 if (local_group) {
1f8c553d
GS
3751 if (idle_cpu(i) && !first_idle_cpu) {
3752 first_idle_cpu = 1;
3753 balance_cpu = i;
3754 }
3755
3756 load = target_load(i, load_idx);
3757 } else {
3758 load = source_load(i, load_idx);
3759 if (load > max_cpu_load)
3760 max_cpu_load = load;
3761 if (min_cpu_load > load)
3762 min_cpu_load = load;
1da177e4 3763 }
5c45bf27 3764
1f8c553d
GS
3765 sgs->group_load += load;
3766 sgs->sum_nr_running += rq->nr_running;
3767 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3768
1f8c553d
GS
3769 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3770 }
5c45bf27 3771
1f8c553d
GS
3772 /*
3773 * First idle cpu or the first cpu(busiest) in this sched group
3774 * is eligible for doing load balancing at this and above
3775 * domains. In the newly idle case, we will allow all the cpu's
3776 * to do the newly idle load balance.
3777 */
3778 if (idle != CPU_NEWLY_IDLE && local_group &&
3779 balance_cpu != this_cpu && balance) {
3780 *balance = 0;
3781 return;
3782 }
5c45bf27 3783
1f8c553d 3784 /* Adjust by relative CPU power of the group */
18a3885f 3785 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3786
1f8c553d
GS
3787
3788 /*
3789 * Consider the group unbalanced when the imbalance is larger
3790 * than the average weight of two tasks.
3791 *
3792 * APZ: with cgroup the avg task weight can vary wildly and
3793 * might not be a suitable number - should we keep a
3794 * normalized nr_running number somewhere that negates
3795 * the hierarchy?
3796 */
18a3885f
PZ
3797 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3798 group->cpu_power;
1f8c553d
GS
3799
3800 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3801 sgs->group_imb = 1;
3802
bdb94aa5 3803 sgs->group_capacity =
18a3885f 3804 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3805}
dd41f596 3806
37abe198
GS
3807/**
3808 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3809 * @sd: sched_domain whose statistics are to be updated.
3810 * @this_cpu: Cpu for which load balance is currently performed.
3811 * @idle: Idle status of this_cpu
3812 * @sd_idle: Idle status of the sched_domain containing group.
3813 * @cpus: Set of cpus considered for load balancing.
3814 * @balance: Should we balance.
3815 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3816 */
37abe198
GS
3817static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3818 enum cpu_idle_type idle, int *sd_idle,
3819 const struct cpumask *cpus, int *balance,
3820 struct sd_lb_stats *sds)
1da177e4 3821{
b5d978e0 3822 struct sched_domain *child = sd->child;
222d656d 3823 struct sched_group *group = sd->groups;
37abe198 3824 struct sg_lb_stats sgs;
b5d978e0
PZ
3825 int load_idx, prefer_sibling = 0;
3826
3827 if (child && child->flags & SD_PREFER_SIBLING)
3828 prefer_sibling = 1;
222d656d 3829
c071df18 3830 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3831 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3832
3833 do {
1da177e4 3834 int local_group;
1da177e4 3835
758b2cdc
RR
3836 local_group = cpumask_test_cpu(this_cpu,
3837 sched_group_cpus(group));
381be78f 3838 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3839 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3840 local_group, cpus, balance, &sgs);
1da177e4 3841
37abe198
GS
3842 if (local_group && balance && !(*balance))
3843 return;
783609c6 3844
37abe198 3845 sds->total_load += sgs.group_load;
18a3885f 3846 sds->total_pwr += group->cpu_power;
1da177e4 3847
b5d978e0
PZ
3848 /*
3849 * In case the child domain prefers tasks go to siblings
3850 * first, lower the group capacity to one so that we'll try
3851 * and move all the excess tasks away.
3852 */
3853 if (prefer_sibling)
bdb94aa5 3854 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3855
1da177e4 3856 if (local_group) {
37abe198
GS
3857 sds->this_load = sgs.avg_load;
3858 sds->this = group;
3859 sds->this_nr_running = sgs.sum_nr_running;
3860 sds->this_load_per_task = sgs.sum_weighted_load;
3861 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3862 (sgs.sum_nr_running > sgs.group_capacity ||
3863 sgs.group_imb)) {
37abe198
GS
3864 sds->max_load = sgs.avg_load;
3865 sds->busiest = group;
3866 sds->busiest_nr_running = sgs.sum_nr_running;
3867 sds->busiest_load_per_task = sgs.sum_weighted_load;
3868 sds->group_imb = sgs.group_imb;
48f24c4d 3869 }
5c45bf27 3870
c071df18 3871 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3872 group = group->next;
3873 } while (group != sd->groups);
37abe198 3874}
1da177e4 3875
2e6f44ae
GS
3876/**
3877 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3878 * amongst the groups of a sched_domain, during
3879 * load balancing.
2e6f44ae
GS
3880 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3881 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3882 * @imbalance: Variable to store the imbalance.
3883 */
3884static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3885 int this_cpu, unsigned long *imbalance)
3886{
3887 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3888 unsigned int imbn = 2;
3889
3890 if (sds->this_nr_running) {
3891 sds->this_load_per_task /= sds->this_nr_running;
3892 if (sds->busiest_load_per_task >
3893 sds->this_load_per_task)
3894 imbn = 1;
3895 } else
3896 sds->this_load_per_task =
3897 cpu_avg_load_per_task(this_cpu);
1da177e4 3898
2e6f44ae
GS
3899 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3900 sds->busiest_load_per_task * imbn) {
3901 *imbalance = sds->busiest_load_per_task;
3902 return;
3903 }
908a7c1b 3904
1da177e4 3905 /*
2e6f44ae
GS
3906 * OK, we don't have enough imbalance to justify moving tasks,
3907 * however we may be able to increase total CPU power used by
3908 * moving them.
1da177e4 3909 */
2dd73a4f 3910
18a3885f 3911 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3912 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3913 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3914 min(sds->this_load_per_task, sds->this_load);
3915 pwr_now /= SCHED_LOAD_SCALE;
3916
3917 /* Amount of load we'd subtract */
18a3885f
PZ
3918 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3919 sds->busiest->cpu_power;
2e6f44ae 3920 if (sds->max_load > tmp)
18a3885f 3921 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3922 min(sds->busiest_load_per_task, sds->max_load - tmp);
3923
3924 /* Amount of load we'd add */
18a3885f 3925 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3926 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3927 tmp = (sds->max_load * sds->busiest->cpu_power) /
3928 sds->this->cpu_power;
2e6f44ae 3929 else
18a3885f
PZ
3930 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3931 sds->this->cpu_power;
3932 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3933 min(sds->this_load_per_task, sds->this_load + tmp);
3934 pwr_move /= SCHED_LOAD_SCALE;
3935
3936 /* Move if we gain throughput */
3937 if (pwr_move > pwr_now)
3938 *imbalance = sds->busiest_load_per_task;
3939}
dbc523a3
GS
3940
3941/**
3942 * calculate_imbalance - Calculate the amount of imbalance present within the
3943 * groups of a given sched_domain during load balance.
3944 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3945 * @this_cpu: Cpu for which currently load balance is being performed.
3946 * @imbalance: The variable to store the imbalance.
3947 */
3948static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3949 unsigned long *imbalance)
3950{
3951 unsigned long max_pull;
2dd73a4f
PW
3952 /*
3953 * In the presence of smp nice balancing, certain scenarios can have
3954 * max load less than avg load(as we skip the groups at or below
3955 * its cpu_power, while calculating max_load..)
3956 */
dbc523a3 3957 if (sds->max_load < sds->avg_load) {
2dd73a4f 3958 *imbalance = 0;
dbc523a3 3959 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3960 }
0c117f1b
SS
3961
3962 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3963 max_pull = min(sds->max_load - sds->avg_load,
3964 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3965
1da177e4 3966 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3967 *imbalance = min(max_pull * sds->busiest->cpu_power,
3968 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3969 / SCHED_LOAD_SCALE;
3970
2dd73a4f
PW
3971 /*
3972 * if *imbalance is less than the average load per runnable task
3973 * there is no gaurantee that any tasks will be moved so we'll have
3974 * a think about bumping its value to force at least one task to be
3975 * moved
3976 */
dbc523a3
GS
3977 if (*imbalance < sds->busiest_load_per_task)
3978 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3979
dbc523a3 3980}
37abe198 3981/******* find_busiest_group() helpers end here *********************/
1da177e4 3982
b7bb4c9b
GS
3983/**
3984 * find_busiest_group - Returns the busiest group within the sched_domain
3985 * if there is an imbalance. If there isn't an imbalance, and
3986 * the user has opted for power-savings, it returns a group whose
3987 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3988 * such a group exists.
3989 *
3990 * Also calculates the amount of weighted load which should be moved
3991 * to restore balance.
3992 *
3993 * @sd: The sched_domain whose busiest group is to be returned.
3994 * @this_cpu: The cpu for which load balancing is currently being performed.
3995 * @imbalance: Variable which stores amount of weighted load which should
3996 * be moved to restore balance/put a group to idle.
3997 * @idle: The idle status of this_cpu.
3998 * @sd_idle: The idleness of sd
3999 * @cpus: The set of CPUs under consideration for load-balancing.
4000 * @balance: Pointer to a variable indicating if this_cpu
4001 * is the appropriate cpu to perform load balancing at this_level.
4002 *
4003 * Returns: - the busiest group if imbalance exists.
4004 * - If no imbalance and user has opted for power-savings balance,
4005 * return the least loaded group whose CPUs can be
4006 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
4007 */
4008static struct sched_group *
4009find_busiest_group(struct sched_domain *sd, int this_cpu,
4010 unsigned long *imbalance, enum cpu_idle_type idle,
4011 int *sd_idle, const struct cpumask *cpus, int *balance)
4012{
4013 struct sd_lb_stats sds;
1da177e4 4014
37abe198 4015 memset(&sds, 0, sizeof(sds));
1da177e4 4016
37abe198
GS
4017 /*
4018 * Compute the various statistics relavent for load balancing at
4019 * this level.
4020 */
4021 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4022 balance, &sds);
4023
b7bb4c9b
GS
4024 /* Cases where imbalance does not exist from POV of this_cpu */
4025 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4026 * at this level.
4027 * 2) There is no busy sibling group to pull from.
4028 * 3) This group is the busiest group.
4029 * 4) This group is more busy than the avg busieness at this
4030 * sched_domain.
4031 * 5) The imbalance is within the specified limit.
4032 * 6) Any rebalance would lead to ping-pong
4033 */
37abe198
GS
4034 if (balance && !(*balance))
4035 goto ret;
1da177e4 4036
b7bb4c9b
GS
4037 if (!sds.busiest || sds.busiest_nr_running == 0)
4038 goto out_balanced;
1da177e4 4039
b7bb4c9b 4040 if (sds.this_load >= sds.max_load)
1da177e4 4041 goto out_balanced;
1da177e4 4042
222d656d 4043 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4044
b7bb4c9b
GS
4045 if (sds.this_load >= sds.avg_load)
4046 goto out_balanced;
4047
4048 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4049 goto out_balanced;
4050
222d656d
GS
4051 sds.busiest_load_per_task /= sds.busiest_nr_running;
4052 if (sds.group_imb)
4053 sds.busiest_load_per_task =
4054 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4055
1da177e4
LT
4056 /*
4057 * We're trying to get all the cpus to the average_load, so we don't
4058 * want to push ourselves above the average load, nor do we wish to
4059 * reduce the max loaded cpu below the average load, as either of these
4060 * actions would just result in more rebalancing later, and ping-pong
4061 * tasks around. Thus we look for the minimum possible imbalance.
4062 * Negative imbalances (*we* are more loaded than anyone else) will
4063 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4064 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4065 * appear as very large values with unsigned longs.
4066 */
222d656d 4067 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4068 goto out_balanced;
4069
dbc523a3
GS
4070 /* Looks like there is an imbalance. Compute it */
4071 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4072 return sds.busiest;
1da177e4
LT
4073
4074out_balanced:
c071df18
GS
4075 /*
4076 * There is no obvious imbalance. But check if we can do some balancing
4077 * to save power.
4078 */
4079 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4080 return sds.busiest;
783609c6 4081ret:
1da177e4
LT
4082 *imbalance = 0;
4083 return NULL;
4084}
4085
4086/*
4087 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4088 */
70b97a7f 4089static struct rq *
d15bcfdb 4090find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4091 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4092{
70b97a7f 4093 struct rq *busiest = NULL, *rq;
2dd73a4f 4094 unsigned long max_load = 0;
1da177e4
LT
4095 int i;
4096
758b2cdc 4097 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4098 unsigned long power = power_of(i);
4099 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4100 unsigned long wl;
0a2966b4 4101
96f874e2 4102 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4103 continue;
4104
48f24c4d 4105 rq = cpu_rq(i);
bdb94aa5
PZ
4106 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4107 wl /= power;
2dd73a4f 4108
bdb94aa5 4109 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4110 continue;
1da177e4 4111
dd41f596
IM
4112 if (wl > max_load) {
4113 max_load = wl;
48f24c4d 4114 busiest = rq;
1da177e4
LT
4115 }
4116 }
4117
4118 return busiest;
4119}
4120
77391d71
NP
4121/*
4122 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4123 * so long as it is large enough.
4124 */
4125#define MAX_PINNED_INTERVAL 512
4126
df7c8e84
RR
4127/* Working cpumask for load_balance and load_balance_newidle. */
4128static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4129
1da177e4
LT
4130/*
4131 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4132 * tasks if there is an imbalance.
1da177e4 4133 */
70b97a7f 4134static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4135 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4136 int *balance)
1da177e4 4137{
43010659 4138 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4139 struct sched_group *group;
1da177e4 4140 unsigned long imbalance;
70b97a7f 4141 struct rq *busiest;
fe2eea3f 4142 unsigned long flags;
df7c8e84 4143 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4144
6ad4c188 4145 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4146
89c4710e
SS
4147 /*
4148 * When power savings policy is enabled for the parent domain, idle
4149 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4150 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4151 * portraying it as CPU_NOT_IDLE.
89c4710e 4152 */
d15bcfdb 4153 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4154 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4155 sd_idle = 1;
1da177e4 4156
2d72376b 4157 schedstat_inc(sd, lb_count[idle]);
1da177e4 4158
0a2966b4 4159redo:
c8cba857 4160 update_shares(sd);
0a2966b4 4161 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4162 cpus, balance);
783609c6 4163
06066714 4164 if (*balance == 0)
783609c6 4165 goto out_balanced;
783609c6 4166
1da177e4
LT
4167 if (!group) {
4168 schedstat_inc(sd, lb_nobusyg[idle]);
4169 goto out_balanced;
4170 }
4171
7c16ec58 4172 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4173 if (!busiest) {
4174 schedstat_inc(sd, lb_nobusyq[idle]);
4175 goto out_balanced;
4176 }
4177
db935dbd 4178 BUG_ON(busiest == this_rq);
1da177e4
LT
4179
4180 schedstat_add(sd, lb_imbalance[idle], imbalance);
4181
43010659 4182 ld_moved = 0;
1da177e4
LT
4183 if (busiest->nr_running > 1) {
4184 /*
4185 * Attempt to move tasks. If find_busiest_group has found
4186 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4187 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4188 * correctly treated as an imbalance.
4189 */
fe2eea3f 4190 local_irq_save(flags);
e17224bf 4191 double_rq_lock(this_rq, busiest);
43010659 4192 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4193 imbalance, sd, idle, &all_pinned);
e17224bf 4194 double_rq_unlock(this_rq, busiest);
fe2eea3f 4195 local_irq_restore(flags);
81026794 4196
46cb4b7c
SS
4197 /*
4198 * some other cpu did the load balance for us.
4199 */
43010659 4200 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4201 resched_cpu(this_cpu);
4202
81026794 4203 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4204 if (unlikely(all_pinned)) {
96f874e2
RR
4205 cpumask_clear_cpu(cpu_of(busiest), cpus);
4206 if (!cpumask_empty(cpus))
0a2966b4 4207 goto redo;
81026794 4208 goto out_balanced;
0a2966b4 4209 }
1da177e4 4210 }
81026794 4211
43010659 4212 if (!ld_moved) {
1da177e4
LT
4213 schedstat_inc(sd, lb_failed[idle]);
4214 sd->nr_balance_failed++;
4215
4216 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4217
fe2eea3f 4218 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4219
4220 /* don't kick the migration_thread, if the curr
4221 * task on busiest cpu can't be moved to this_cpu
4222 */
96f874e2
RR
4223 if (!cpumask_test_cpu(this_cpu,
4224 &busiest->curr->cpus_allowed)) {
fe2eea3f 4225 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4226 all_pinned = 1;
4227 goto out_one_pinned;
4228 }
4229
1da177e4
LT
4230 if (!busiest->active_balance) {
4231 busiest->active_balance = 1;
4232 busiest->push_cpu = this_cpu;
81026794 4233 active_balance = 1;
1da177e4 4234 }
fe2eea3f 4235 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4236 if (active_balance)
1da177e4
LT
4237 wake_up_process(busiest->migration_thread);
4238
4239 /*
4240 * We've kicked active balancing, reset the failure
4241 * counter.
4242 */
39507451 4243 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4244 }
81026794 4245 } else
1da177e4
LT
4246 sd->nr_balance_failed = 0;
4247
81026794 4248 if (likely(!active_balance)) {
1da177e4
LT
4249 /* We were unbalanced, so reset the balancing interval */
4250 sd->balance_interval = sd->min_interval;
81026794
NP
4251 } else {
4252 /*
4253 * If we've begun active balancing, start to back off. This
4254 * case may not be covered by the all_pinned logic if there
4255 * is only 1 task on the busy runqueue (because we don't call
4256 * move_tasks).
4257 */
4258 if (sd->balance_interval < sd->max_interval)
4259 sd->balance_interval *= 2;
1da177e4
LT
4260 }
4261
43010659 4262 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4263 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4264 ld_moved = -1;
4265
4266 goto out;
1da177e4
LT
4267
4268out_balanced:
1da177e4
LT
4269 schedstat_inc(sd, lb_balanced[idle]);
4270
16cfb1c0 4271 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4272
4273out_one_pinned:
1da177e4 4274 /* tune up the balancing interval */
77391d71
NP
4275 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4276 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4277 sd->balance_interval *= 2;
4278
48f24c4d 4279 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4280 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4281 ld_moved = -1;
4282 else
4283 ld_moved = 0;
4284out:
c8cba857
PZ
4285 if (ld_moved)
4286 update_shares(sd);
c09595f6 4287 return ld_moved;
1da177e4
LT
4288}
4289
4290/*
4291 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4292 * tasks if there is an imbalance.
4293 *
d15bcfdb 4294 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4295 * this_rq is locked.
4296 */
48f24c4d 4297static int
df7c8e84 4298load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4299{
4300 struct sched_group *group;
70b97a7f 4301 struct rq *busiest = NULL;
1da177e4 4302 unsigned long imbalance;
43010659 4303 int ld_moved = 0;
5969fe06 4304 int sd_idle = 0;
969bb4e4 4305 int all_pinned = 0;
df7c8e84 4306 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4307
6ad4c188 4308 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4309
89c4710e
SS
4310 /*
4311 * When power savings policy is enabled for the parent domain, idle
4312 * sibling can pick up load irrespective of busy siblings. In this case,
4313 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4314 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4315 */
4316 if (sd->flags & SD_SHARE_CPUPOWER &&
4317 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4318 sd_idle = 1;
1da177e4 4319
2d72376b 4320 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4321redo:
3e5459b4 4322 update_shares_locked(this_rq, sd);
d15bcfdb 4323 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4324 &sd_idle, cpus, NULL);
1da177e4 4325 if (!group) {
d15bcfdb 4326 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4327 goto out_balanced;
1da177e4
LT
4328 }
4329
7c16ec58 4330 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4331 if (!busiest) {
d15bcfdb 4332 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4333 goto out_balanced;
1da177e4
LT
4334 }
4335
db935dbd
NP
4336 BUG_ON(busiest == this_rq);
4337
d15bcfdb 4338 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4339
43010659 4340 ld_moved = 0;
d6d5cfaf
NP
4341 if (busiest->nr_running > 1) {
4342 /* Attempt to move tasks */
4343 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4344 /* this_rq->clock is already updated */
4345 update_rq_clock(busiest);
43010659 4346 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4347 imbalance, sd, CPU_NEWLY_IDLE,
4348 &all_pinned);
1b12bbc7 4349 double_unlock_balance(this_rq, busiest);
0a2966b4 4350
969bb4e4 4351 if (unlikely(all_pinned)) {
96f874e2
RR
4352 cpumask_clear_cpu(cpu_of(busiest), cpus);
4353 if (!cpumask_empty(cpus))
0a2966b4
CL
4354 goto redo;
4355 }
d6d5cfaf
NP
4356 }
4357
43010659 4358 if (!ld_moved) {
36dffab6 4359 int active_balance = 0;
ad273b32 4360
d15bcfdb 4361 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4362 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4363 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4364 return -1;
ad273b32
VS
4365
4366 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4367 return -1;
4368
4369 if (sd->nr_balance_failed++ < 2)
4370 return -1;
4371
4372 /*
4373 * The only task running in a non-idle cpu can be moved to this
4374 * cpu in an attempt to completely freeup the other CPU
4375 * package. The same method used to move task in load_balance()
4376 * have been extended for load_balance_newidle() to speedup
4377 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4378 *
4379 * The package power saving logic comes from
4380 * find_busiest_group(). If there are no imbalance, then
4381 * f_b_g() will return NULL. However when sched_mc={1,2} then
4382 * f_b_g() will select a group from which a running task may be
4383 * pulled to this cpu in order to make the other package idle.
4384 * If there is no opportunity to make a package idle and if
4385 * there are no imbalance, then f_b_g() will return NULL and no
4386 * action will be taken in load_balance_newidle().
4387 *
4388 * Under normal task pull operation due to imbalance, there
4389 * will be more than one task in the source run queue and
4390 * move_tasks() will succeed. ld_moved will be true and this
4391 * active balance code will not be triggered.
4392 */
4393
4394 /* Lock busiest in correct order while this_rq is held */
4395 double_lock_balance(this_rq, busiest);
4396
4397 /*
4398 * don't kick the migration_thread, if the curr
4399 * task on busiest cpu can't be moved to this_cpu
4400 */
6ca09dfc 4401 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4402 double_unlock_balance(this_rq, busiest);
4403 all_pinned = 1;
4404 return ld_moved;
4405 }
4406
4407 if (!busiest->active_balance) {
4408 busiest->active_balance = 1;
4409 busiest->push_cpu = this_cpu;
4410 active_balance = 1;
4411 }
4412
4413 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4414 /*
4415 * Should not call ttwu while holding a rq->lock
4416 */
4417 spin_unlock(&this_rq->lock);
ad273b32
VS
4418 if (active_balance)
4419 wake_up_process(busiest->migration_thread);
da8d5089 4420 spin_lock(&this_rq->lock);
ad273b32 4421
5969fe06 4422 } else
16cfb1c0 4423 sd->nr_balance_failed = 0;
1da177e4 4424
3e5459b4 4425 update_shares_locked(this_rq, sd);
43010659 4426 return ld_moved;
16cfb1c0
NP
4427
4428out_balanced:
d15bcfdb 4429 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4430 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4431 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4432 return -1;
16cfb1c0 4433 sd->nr_balance_failed = 0;
48f24c4d 4434
16cfb1c0 4435 return 0;
1da177e4
LT
4436}
4437
4438/*
4439 * idle_balance is called by schedule() if this_cpu is about to become
4440 * idle. Attempts to pull tasks from other CPUs.
4441 */
70b97a7f 4442static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4443{
4444 struct sched_domain *sd;
efbe027e 4445 int pulled_task = 0;
dd41f596 4446 unsigned long next_balance = jiffies + HZ;
1da177e4 4447
1b9508f6
MG
4448 this_rq->idle_stamp = this_rq->clock;
4449
4450 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4451 return;
4452
1da177e4 4453 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4454 unsigned long interval;
4455
4456 if (!(sd->flags & SD_LOAD_BALANCE))
4457 continue;
4458
4459 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4460 /* If we've pulled tasks over stop searching: */
7c16ec58 4461 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4462 sd);
92c4ca5c
CL
4463
4464 interval = msecs_to_jiffies(sd->balance_interval);
4465 if (time_after(next_balance, sd->last_balance + interval))
4466 next_balance = sd->last_balance + interval;
1b9508f6
MG
4467 if (pulled_task) {
4468 this_rq->idle_stamp = 0;
92c4ca5c 4469 break;
1b9508f6 4470 }
1da177e4 4471 }
dd41f596 4472 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4473 /*
4474 * We are going idle. next_balance may be set based on
4475 * a busy processor. So reset next_balance.
4476 */
4477 this_rq->next_balance = next_balance;
dd41f596 4478 }
1da177e4
LT
4479}
4480
4481/*
4482 * active_load_balance is run by migration threads. It pushes running tasks
4483 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4484 * running on each physical CPU where possible, and avoids physical /
4485 * logical imbalances.
4486 *
4487 * Called with busiest_rq locked.
4488 */
70b97a7f 4489static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4490{
39507451 4491 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4492 struct sched_domain *sd;
4493 struct rq *target_rq;
39507451 4494
48f24c4d 4495 /* Is there any task to move? */
39507451 4496 if (busiest_rq->nr_running <= 1)
39507451
NP
4497 return;
4498
4499 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4500
4501 /*
39507451 4502 * This condition is "impossible", if it occurs
41a2d6cf 4503 * we need to fix it. Originally reported by
39507451 4504 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4505 */
39507451 4506 BUG_ON(busiest_rq == target_rq);
1da177e4 4507
39507451
NP
4508 /* move a task from busiest_rq to target_rq */
4509 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4510 update_rq_clock(busiest_rq);
4511 update_rq_clock(target_rq);
39507451
NP
4512
4513 /* Search for an sd spanning us and the target CPU. */
c96d145e 4514 for_each_domain(target_cpu, sd) {
39507451 4515 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4516 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4517 break;
c96d145e 4518 }
39507451 4519
48f24c4d 4520 if (likely(sd)) {
2d72376b 4521 schedstat_inc(sd, alb_count);
39507451 4522
43010659
PW
4523 if (move_one_task(target_rq, target_cpu, busiest_rq,
4524 sd, CPU_IDLE))
48f24c4d
IM
4525 schedstat_inc(sd, alb_pushed);
4526 else
4527 schedstat_inc(sd, alb_failed);
4528 }
1b12bbc7 4529 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4530}
4531
46cb4b7c
SS
4532#ifdef CONFIG_NO_HZ
4533static struct {
4534 atomic_t load_balancer;
7d1e6a9b 4535 cpumask_var_t cpu_mask;
f711f609 4536 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4537} nohz ____cacheline_aligned = {
4538 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4539};
4540
eea08f32
AB
4541int get_nohz_load_balancer(void)
4542{
4543 return atomic_read(&nohz.load_balancer);
4544}
4545
f711f609
GS
4546#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4547/**
4548 * lowest_flag_domain - Return lowest sched_domain containing flag.
4549 * @cpu: The cpu whose lowest level of sched domain is to
4550 * be returned.
4551 * @flag: The flag to check for the lowest sched_domain
4552 * for the given cpu.
4553 *
4554 * Returns the lowest sched_domain of a cpu which contains the given flag.
4555 */
4556static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4557{
4558 struct sched_domain *sd;
4559
4560 for_each_domain(cpu, sd)
4561 if (sd && (sd->flags & flag))
4562 break;
4563
4564 return sd;
4565}
4566
4567/**
4568 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4569 * @cpu: The cpu whose domains we're iterating over.
4570 * @sd: variable holding the value of the power_savings_sd
4571 * for cpu.
4572 * @flag: The flag to filter the sched_domains to be iterated.
4573 *
4574 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4575 * set, starting from the lowest sched_domain to the highest.
4576 */
4577#define for_each_flag_domain(cpu, sd, flag) \
4578 for (sd = lowest_flag_domain(cpu, flag); \
4579 (sd && (sd->flags & flag)); sd = sd->parent)
4580
4581/**
4582 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4583 * @ilb_group: group to be checked for semi-idleness
4584 *
4585 * Returns: 1 if the group is semi-idle. 0 otherwise.
4586 *
4587 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4588 * and atleast one non-idle CPU. This helper function checks if the given
4589 * sched_group is semi-idle or not.
4590 */
4591static inline int is_semi_idle_group(struct sched_group *ilb_group)
4592{
4593 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4594 sched_group_cpus(ilb_group));
4595
4596 /*
4597 * A sched_group is semi-idle when it has atleast one busy cpu
4598 * and atleast one idle cpu.
4599 */
4600 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4601 return 0;
4602
4603 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4604 return 0;
4605
4606 return 1;
4607}
4608/**
4609 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4610 * @cpu: The cpu which is nominating a new idle_load_balancer.
4611 *
4612 * Returns: Returns the id of the idle load balancer if it exists,
4613 * Else, returns >= nr_cpu_ids.
4614 *
4615 * This algorithm picks the idle load balancer such that it belongs to a
4616 * semi-idle powersavings sched_domain. The idea is to try and avoid
4617 * completely idle packages/cores just for the purpose of idle load balancing
4618 * when there are other idle cpu's which are better suited for that job.
4619 */
4620static int find_new_ilb(int cpu)
4621{
4622 struct sched_domain *sd;
4623 struct sched_group *ilb_group;
4624
4625 /*
4626 * Have idle load balancer selection from semi-idle packages only
4627 * when power-aware load balancing is enabled
4628 */
4629 if (!(sched_smt_power_savings || sched_mc_power_savings))
4630 goto out_done;
4631
4632 /*
4633 * Optimize for the case when we have no idle CPUs or only one
4634 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4635 */
4636 if (cpumask_weight(nohz.cpu_mask) < 2)
4637 goto out_done;
4638
4639 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4640 ilb_group = sd->groups;
4641
4642 do {
4643 if (is_semi_idle_group(ilb_group))
4644 return cpumask_first(nohz.ilb_grp_nohz_mask);
4645
4646 ilb_group = ilb_group->next;
4647
4648 } while (ilb_group != sd->groups);
4649 }
4650
4651out_done:
4652 return cpumask_first(nohz.cpu_mask);
4653}
4654#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4655static inline int find_new_ilb(int call_cpu)
4656{
6e29ec57 4657 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4658}
4659#endif
4660
7835b98b 4661/*
46cb4b7c
SS
4662 * This routine will try to nominate the ilb (idle load balancing)
4663 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4664 * load balancing on behalf of all those cpus. If all the cpus in the system
4665 * go into this tickless mode, then there will be no ilb owner (as there is
4666 * no need for one) and all the cpus will sleep till the next wakeup event
4667 * arrives...
4668 *
4669 * For the ilb owner, tick is not stopped. And this tick will be used
4670 * for idle load balancing. ilb owner will still be part of
4671 * nohz.cpu_mask..
7835b98b 4672 *
46cb4b7c
SS
4673 * While stopping the tick, this cpu will become the ilb owner if there
4674 * is no other owner. And will be the owner till that cpu becomes busy
4675 * or if all cpus in the system stop their ticks at which point
4676 * there is no need for ilb owner.
4677 *
4678 * When the ilb owner becomes busy, it nominates another owner, during the
4679 * next busy scheduler_tick()
4680 */
4681int select_nohz_load_balancer(int stop_tick)
4682{
4683 int cpu = smp_processor_id();
4684
4685 if (stop_tick) {
46cb4b7c
SS
4686 cpu_rq(cpu)->in_nohz_recently = 1;
4687
483b4ee6
SS
4688 if (!cpu_active(cpu)) {
4689 if (atomic_read(&nohz.load_balancer) != cpu)
4690 return 0;
4691
4692 /*
4693 * If we are going offline and still the leader,
4694 * give up!
4695 */
46cb4b7c
SS
4696 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4697 BUG();
483b4ee6 4698
46cb4b7c
SS
4699 return 0;
4700 }
4701
483b4ee6
SS
4702 cpumask_set_cpu(cpu, nohz.cpu_mask);
4703
46cb4b7c 4704 /* time for ilb owner also to sleep */
6ad4c188 4705 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4706 if (atomic_read(&nohz.load_balancer) == cpu)
4707 atomic_set(&nohz.load_balancer, -1);
4708 return 0;
4709 }
4710
4711 if (atomic_read(&nohz.load_balancer) == -1) {
4712 /* make me the ilb owner */
4713 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4714 return 1;
e790fb0b
GS
4715 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4716 int new_ilb;
4717
4718 if (!(sched_smt_power_savings ||
4719 sched_mc_power_savings))
4720 return 1;
4721 /*
4722 * Check to see if there is a more power-efficient
4723 * ilb.
4724 */
4725 new_ilb = find_new_ilb(cpu);
4726 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4727 atomic_set(&nohz.load_balancer, -1);
4728 resched_cpu(new_ilb);
4729 return 0;
4730 }
46cb4b7c 4731 return 1;
e790fb0b 4732 }
46cb4b7c 4733 } else {
7d1e6a9b 4734 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4735 return 0;
4736
7d1e6a9b 4737 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4738
4739 if (atomic_read(&nohz.load_balancer) == cpu)
4740 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4741 BUG();
4742 }
4743 return 0;
4744}
4745#endif
4746
4747static DEFINE_SPINLOCK(balancing);
4748
4749/*
7835b98b
CL
4750 * It checks each scheduling domain to see if it is due to be balanced,
4751 * and initiates a balancing operation if so.
4752 *
4753 * Balancing parameters are set up in arch_init_sched_domains.
4754 */
a9957449 4755static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4756{
46cb4b7c
SS
4757 int balance = 1;
4758 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4759 unsigned long interval;
4760 struct sched_domain *sd;
46cb4b7c 4761 /* Earliest time when we have to do rebalance again */
c9819f45 4762 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4763 int update_next_balance = 0;
d07355f5 4764 int need_serialize;
1da177e4 4765
46cb4b7c 4766 for_each_domain(cpu, sd) {
1da177e4
LT
4767 if (!(sd->flags & SD_LOAD_BALANCE))
4768 continue;
4769
4770 interval = sd->balance_interval;
d15bcfdb 4771 if (idle != CPU_IDLE)
1da177e4
LT
4772 interval *= sd->busy_factor;
4773
4774 /* scale ms to jiffies */
4775 interval = msecs_to_jiffies(interval);
4776 if (unlikely(!interval))
4777 interval = 1;
dd41f596
IM
4778 if (interval > HZ*NR_CPUS/10)
4779 interval = HZ*NR_CPUS/10;
4780
d07355f5 4781 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4782
d07355f5 4783 if (need_serialize) {
08c183f3
CL
4784 if (!spin_trylock(&balancing))
4785 goto out;
4786 }
4787
c9819f45 4788 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4789 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4790 /*
4791 * We've pulled tasks over so either we're no
5969fe06
NP
4792 * longer idle, or one of our SMT siblings is
4793 * not idle.
4794 */
d15bcfdb 4795 idle = CPU_NOT_IDLE;
1da177e4 4796 }
1bd77f2d 4797 sd->last_balance = jiffies;
1da177e4 4798 }
d07355f5 4799 if (need_serialize)
08c183f3
CL
4800 spin_unlock(&balancing);
4801out:
f549da84 4802 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4803 next_balance = sd->last_balance + interval;
f549da84
SS
4804 update_next_balance = 1;
4805 }
783609c6
SS
4806
4807 /*
4808 * Stop the load balance at this level. There is another
4809 * CPU in our sched group which is doing load balancing more
4810 * actively.
4811 */
4812 if (!balance)
4813 break;
1da177e4 4814 }
f549da84
SS
4815
4816 /*
4817 * next_balance will be updated only when there is a need.
4818 * When the cpu is attached to null domain for ex, it will not be
4819 * updated.
4820 */
4821 if (likely(update_next_balance))
4822 rq->next_balance = next_balance;
46cb4b7c
SS
4823}
4824
4825/*
4826 * run_rebalance_domains is triggered when needed from the scheduler tick.
4827 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4828 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4829 */
4830static void run_rebalance_domains(struct softirq_action *h)
4831{
dd41f596
IM
4832 int this_cpu = smp_processor_id();
4833 struct rq *this_rq = cpu_rq(this_cpu);
4834 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4835 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4836
dd41f596 4837 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4838
4839#ifdef CONFIG_NO_HZ
4840 /*
4841 * If this cpu is the owner for idle load balancing, then do the
4842 * balancing on behalf of the other idle cpus whose ticks are
4843 * stopped.
4844 */
dd41f596
IM
4845 if (this_rq->idle_at_tick &&
4846 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4847 struct rq *rq;
4848 int balance_cpu;
4849
7d1e6a9b
RR
4850 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4851 if (balance_cpu == this_cpu)
4852 continue;
4853
46cb4b7c
SS
4854 /*
4855 * If this cpu gets work to do, stop the load balancing
4856 * work being done for other cpus. Next load
4857 * balancing owner will pick it up.
4858 */
4859 if (need_resched())
4860 break;
4861
de0cf899 4862 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4863
4864 rq = cpu_rq(balance_cpu);
dd41f596
IM
4865 if (time_after(this_rq->next_balance, rq->next_balance))
4866 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4867 }
4868 }
4869#endif
4870}
4871
8a0be9ef
FW
4872static inline int on_null_domain(int cpu)
4873{
4874 return !rcu_dereference(cpu_rq(cpu)->sd);
4875}
4876
46cb4b7c
SS
4877/*
4878 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4879 *
4880 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4881 * idle load balancing owner or decide to stop the periodic load balancing,
4882 * if the whole system is idle.
4883 */
dd41f596 4884static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4885{
46cb4b7c
SS
4886#ifdef CONFIG_NO_HZ
4887 /*
4888 * If we were in the nohz mode recently and busy at the current
4889 * scheduler tick, then check if we need to nominate new idle
4890 * load balancer.
4891 */
4892 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4893 rq->in_nohz_recently = 0;
4894
4895 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4896 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4897 atomic_set(&nohz.load_balancer, -1);
4898 }
4899
4900 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4901 int ilb = find_new_ilb(cpu);
46cb4b7c 4902
434d53b0 4903 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4904 resched_cpu(ilb);
4905 }
4906 }
4907
4908 /*
4909 * If this cpu is idle and doing idle load balancing for all the
4910 * cpus with ticks stopped, is it time for that to stop?
4911 */
4912 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4913 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4914 resched_cpu(cpu);
4915 return;
4916 }
4917
4918 /*
4919 * If this cpu is idle and the idle load balancing is done by
4920 * someone else, then no need raise the SCHED_SOFTIRQ
4921 */
4922 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4923 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4924 return;
4925#endif
8a0be9ef
FW
4926 /* Don't need to rebalance while attached to NULL domain */
4927 if (time_after_eq(jiffies, rq->next_balance) &&
4928 likely(!on_null_domain(cpu)))
46cb4b7c 4929 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4930}
dd41f596
IM
4931
4932#else /* CONFIG_SMP */
4933
1da177e4
LT
4934/*
4935 * on UP we do not need to balance between CPUs:
4936 */
70b97a7f 4937static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4938{
4939}
dd41f596 4940
1da177e4
LT
4941#endif
4942
1da177e4
LT
4943DEFINE_PER_CPU(struct kernel_stat, kstat);
4944
4945EXPORT_PER_CPU_SYMBOL(kstat);
4946
4947/*
c5f8d995 4948 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4949 * @p in case that task is currently running.
c5f8d995
HS
4950 *
4951 * Called with task_rq_lock() held on @rq.
1da177e4 4952 */
c5f8d995
HS
4953static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4954{
4955 u64 ns = 0;
4956
4957 if (task_current(rq, p)) {
4958 update_rq_clock(rq);
4959 ns = rq->clock - p->se.exec_start;
4960 if ((s64)ns < 0)
4961 ns = 0;
4962 }
4963
4964 return ns;
4965}
4966
bb34d92f 4967unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4968{
1da177e4 4969 unsigned long flags;
41b86e9c 4970 struct rq *rq;
bb34d92f 4971 u64 ns = 0;
48f24c4d 4972
41b86e9c 4973 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4974 ns = do_task_delta_exec(p, rq);
4975 task_rq_unlock(rq, &flags);
1508487e 4976
c5f8d995
HS
4977 return ns;
4978}
f06febc9 4979
c5f8d995
HS
4980/*
4981 * Return accounted runtime for the task.
4982 * In case the task is currently running, return the runtime plus current's
4983 * pending runtime that have not been accounted yet.
4984 */
4985unsigned long long task_sched_runtime(struct task_struct *p)
4986{
4987 unsigned long flags;
4988 struct rq *rq;
4989 u64 ns = 0;
4990
4991 rq = task_rq_lock(p, &flags);
4992 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4993 task_rq_unlock(rq, &flags);
4994
4995 return ns;
4996}
48f24c4d 4997
c5f8d995
HS
4998/*
4999 * Return sum_exec_runtime for the thread group.
5000 * In case the task is currently running, return the sum plus current's
5001 * pending runtime that have not been accounted yet.
5002 *
5003 * Note that the thread group might have other running tasks as well,
5004 * so the return value not includes other pending runtime that other
5005 * running tasks might have.
5006 */
5007unsigned long long thread_group_sched_runtime(struct task_struct *p)
5008{
5009 struct task_cputime totals;
5010 unsigned long flags;
5011 struct rq *rq;
5012 u64 ns;
5013
5014 rq = task_rq_lock(p, &flags);
5015 thread_group_cputime(p, &totals);
5016 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 5017 task_rq_unlock(rq, &flags);
48f24c4d 5018
1da177e4
LT
5019 return ns;
5020}
5021
1da177e4
LT
5022/*
5023 * Account user cpu time to a process.
5024 * @p: the process that the cpu time gets accounted to
1da177e4 5025 * @cputime: the cpu time spent in user space since the last update
457533a7 5026 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5027 */
457533a7
MS
5028void account_user_time(struct task_struct *p, cputime_t cputime,
5029 cputime_t cputime_scaled)
1da177e4
LT
5030{
5031 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5032 cputime64_t tmp;
5033
457533a7 5034 /* Add user time to process. */
1da177e4 5035 p->utime = cputime_add(p->utime, cputime);
457533a7 5036 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5037 account_group_user_time(p, cputime);
1da177e4
LT
5038
5039 /* Add user time to cpustat. */
5040 tmp = cputime_to_cputime64(cputime);
5041 if (TASK_NICE(p) > 0)
5042 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5043 else
5044 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5045
5046 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5047 /* Account for user time used */
5048 acct_update_integrals(p);
1da177e4
LT
5049}
5050
94886b84
LV
5051/*
5052 * Account guest cpu time to a process.
5053 * @p: the process that the cpu time gets accounted to
5054 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5055 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5056 */
457533a7
MS
5057static void account_guest_time(struct task_struct *p, cputime_t cputime,
5058 cputime_t cputime_scaled)
94886b84
LV
5059{
5060 cputime64_t tmp;
5061 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5062
5063 tmp = cputime_to_cputime64(cputime);
5064
457533a7 5065 /* Add guest time to process. */
94886b84 5066 p->utime = cputime_add(p->utime, cputime);
457533a7 5067 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5068 account_group_user_time(p, cputime);
94886b84
LV
5069 p->gtime = cputime_add(p->gtime, cputime);
5070
457533a7 5071 /* Add guest time to cpustat. */
ce0e7b28
RO
5072 if (TASK_NICE(p) > 0) {
5073 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5074 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5075 } else {
5076 cpustat->user = cputime64_add(cpustat->user, tmp);
5077 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5078 }
94886b84
LV
5079}
5080
1da177e4
LT
5081/*
5082 * Account system cpu time to a process.
5083 * @p: the process that the cpu time gets accounted to
5084 * @hardirq_offset: the offset to subtract from hardirq_count()
5085 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5086 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5087 */
5088void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5089 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5090{
5091 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5092 cputime64_t tmp;
5093
983ed7a6 5094 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5095 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5096 return;
5097 }
94886b84 5098
457533a7 5099 /* Add system time to process. */
1da177e4 5100 p->stime = cputime_add(p->stime, cputime);
457533a7 5101 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5102 account_group_system_time(p, cputime);
1da177e4
LT
5103
5104 /* Add system time to cpustat. */
5105 tmp = cputime_to_cputime64(cputime);
5106 if (hardirq_count() - hardirq_offset)
5107 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5108 else if (softirq_count())
5109 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5110 else
79741dd3
MS
5111 cpustat->system = cputime64_add(cpustat->system, tmp);
5112
ef12fefa
BR
5113 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5114
1da177e4
LT
5115 /* Account for system time used */
5116 acct_update_integrals(p);
1da177e4
LT
5117}
5118
c66f08be 5119/*
1da177e4 5120 * Account for involuntary wait time.
1da177e4 5121 * @steal: the cpu time spent in involuntary wait
c66f08be 5122 */
79741dd3 5123void account_steal_time(cputime_t cputime)
c66f08be 5124{
79741dd3
MS
5125 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5126 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5127
5128 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5129}
5130
1da177e4 5131/*
79741dd3
MS
5132 * Account for idle time.
5133 * @cputime: the cpu time spent in idle wait
1da177e4 5134 */
79741dd3 5135void account_idle_time(cputime_t cputime)
1da177e4
LT
5136{
5137 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5138 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5139 struct rq *rq = this_rq();
1da177e4 5140
79741dd3
MS
5141 if (atomic_read(&rq->nr_iowait) > 0)
5142 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5143 else
5144 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5145}
5146
79741dd3
MS
5147#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5148
5149/*
5150 * Account a single tick of cpu time.
5151 * @p: the process that the cpu time gets accounted to
5152 * @user_tick: indicates if the tick is a user or a system tick
5153 */
5154void account_process_tick(struct task_struct *p, int user_tick)
5155{
a42548a1 5156 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5157 struct rq *rq = this_rq();
5158
5159 if (user_tick)
a42548a1 5160 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5161 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5162 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5163 one_jiffy_scaled);
5164 else
a42548a1 5165 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5166}
5167
5168/*
5169 * Account multiple ticks of steal time.
5170 * @p: the process from which the cpu time has been stolen
5171 * @ticks: number of stolen ticks
5172 */
5173void account_steal_ticks(unsigned long ticks)
5174{
5175 account_steal_time(jiffies_to_cputime(ticks));
5176}
5177
5178/*
5179 * Account multiple ticks of idle time.
5180 * @ticks: number of stolen ticks
5181 */
5182void account_idle_ticks(unsigned long ticks)
5183{
5184 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5185}
5186
79741dd3
MS
5187#endif
5188
49048622
BS
5189/*
5190 * Use precise platform statistics if available:
5191 */
5192#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5193void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5194{
d99ca3b9
HS
5195 *ut = p->utime;
5196 *st = p->stime;
49048622
BS
5197}
5198
0cf55e1e 5199void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5200{
0cf55e1e
HS
5201 struct task_cputime cputime;
5202
5203 thread_group_cputime(p, &cputime);
5204
5205 *ut = cputime.utime;
5206 *st = cputime.stime;
49048622
BS
5207}
5208#else
761b1d26
HS
5209
5210#ifndef nsecs_to_cputime
b7b20df9 5211# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5212#endif
5213
d180c5bc 5214void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5215{
d99ca3b9 5216 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5217
5218 /*
5219 * Use CFS's precise accounting:
5220 */
d180c5bc 5221 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5222
5223 if (total) {
d180c5bc
HS
5224 u64 temp;
5225
5226 temp = (u64)(rtime * utime);
49048622 5227 do_div(temp, total);
d180c5bc
HS
5228 utime = (cputime_t)temp;
5229 } else
5230 utime = rtime;
49048622 5231
d180c5bc
HS
5232 /*
5233 * Compare with previous values, to keep monotonicity:
5234 */
761b1d26 5235 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5236 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5237
d99ca3b9
HS
5238 *ut = p->prev_utime;
5239 *st = p->prev_stime;
49048622
BS
5240}
5241
0cf55e1e
HS
5242/*
5243 * Must be called with siglock held.
5244 */
5245void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5246{
0cf55e1e
HS
5247 struct signal_struct *sig = p->signal;
5248 struct task_cputime cputime;
5249 cputime_t rtime, utime, total;
49048622 5250
0cf55e1e 5251 thread_group_cputime(p, &cputime);
49048622 5252
0cf55e1e
HS
5253 total = cputime_add(cputime.utime, cputime.stime);
5254 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5255
0cf55e1e
HS
5256 if (total) {
5257 u64 temp;
49048622 5258
0cf55e1e
HS
5259 temp = (u64)(rtime * cputime.utime);
5260 do_div(temp, total);
5261 utime = (cputime_t)temp;
5262 } else
5263 utime = rtime;
5264
5265 sig->prev_utime = max(sig->prev_utime, utime);
5266 sig->prev_stime = max(sig->prev_stime,
5267 cputime_sub(rtime, sig->prev_utime));
5268
5269 *ut = sig->prev_utime;
5270 *st = sig->prev_stime;
49048622 5271}
49048622 5272#endif
49048622 5273
7835b98b
CL
5274/*
5275 * This function gets called by the timer code, with HZ frequency.
5276 * We call it with interrupts disabled.
5277 *
5278 * It also gets called by the fork code, when changing the parent's
5279 * timeslices.
5280 */
5281void scheduler_tick(void)
5282{
7835b98b
CL
5283 int cpu = smp_processor_id();
5284 struct rq *rq = cpu_rq(cpu);
dd41f596 5285 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5286
5287 sched_clock_tick();
dd41f596
IM
5288
5289 spin_lock(&rq->lock);
3e51f33f 5290 update_rq_clock(rq);
f1a438d8 5291 update_cpu_load(rq);
fa85ae24 5292 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5293 spin_unlock(&rq->lock);
7835b98b 5294
cdd6c482 5295 perf_event_task_tick(curr, cpu);
e220d2dc 5296
e418e1c2 5297#ifdef CONFIG_SMP
dd41f596
IM
5298 rq->idle_at_tick = idle_cpu(cpu);
5299 trigger_load_balance(rq, cpu);
e418e1c2 5300#endif
1da177e4
LT
5301}
5302
132380a0 5303notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5304{
5305 if (in_lock_functions(addr)) {
5306 addr = CALLER_ADDR2;
5307 if (in_lock_functions(addr))
5308 addr = CALLER_ADDR3;
5309 }
5310 return addr;
5311}
1da177e4 5312
7e49fcce
SR
5313#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5314 defined(CONFIG_PREEMPT_TRACER))
5315
43627582 5316void __kprobes add_preempt_count(int val)
1da177e4 5317{
6cd8a4bb 5318#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5319 /*
5320 * Underflow?
5321 */
9a11b49a
IM
5322 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5323 return;
6cd8a4bb 5324#endif
1da177e4 5325 preempt_count() += val;
6cd8a4bb 5326#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5327 /*
5328 * Spinlock count overflowing soon?
5329 */
33859f7f
MOS
5330 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5331 PREEMPT_MASK - 10);
6cd8a4bb
SR
5332#endif
5333 if (preempt_count() == val)
5334 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5335}
5336EXPORT_SYMBOL(add_preempt_count);
5337
43627582 5338void __kprobes sub_preempt_count(int val)
1da177e4 5339{
6cd8a4bb 5340#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5341 /*
5342 * Underflow?
5343 */
01e3eb82 5344 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5345 return;
1da177e4
LT
5346 /*
5347 * Is the spinlock portion underflowing?
5348 */
9a11b49a
IM
5349 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5350 !(preempt_count() & PREEMPT_MASK)))
5351 return;
6cd8a4bb 5352#endif
9a11b49a 5353
6cd8a4bb
SR
5354 if (preempt_count() == val)
5355 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5356 preempt_count() -= val;
5357}
5358EXPORT_SYMBOL(sub_preempt_count);
5359
5360#endif
5361
5362/*
dd41f596 5363 * Print scheduling while atomic bug:
1da177e4 5364 */
dd41f596 5365static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5366{
838225b4
SS
5367 struct pt_regs *regs = get_irq_regs();
5368
5369 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5370 prev->comm, prev->pid, preempt_count());
5371
dd41f596 5372 debug_show_held_locks(prev);
e21f5b15 5373 print_modules();
dd41f596
IM
5374 if (irqs_disabled())
5375 print_irqtrace_events(prev);
838225b4
SS
5376
5377 if (regs)
5378 show_regs(regs);
5379 else
5380 dump_stack();
dd41f596 5381}
1da177e4 5382
dd41f596
IM
5383/*
5384 * Various schedule()-time debugging checks and statistics:
5385 */
5386static inline void schedule_debug(struct task_struct *prev)
5387{
1da177e4 5388 /*
41a2d6cf 5389 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5390 * schedule() atomically, we ignore that path for now.
5391 * Otherwise, whine if we are scheduling when we should not be.
5392 */
3f33a7ce 5393 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5394 __schedule_bug(prev);
5395
1da177e4
LT
5396 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5397
2d72376b 5398 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5399#ifdef CONFIG_SCHEDSTATS
5400 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5401 schedstat_inc(this_rq(), bkl_count);
5402 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5403 }
5404#endif
dd41f596
IM
5405}
5406
ad4b78bb 5407static void put_prev_task(struct rq *rq, struct task_struct *p)
df1c99d4 5408{
ad4b78bb 5409 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
df1c99d4 5410
ad4b78bb 5411 update_avg(&p->se.avg_running, runtime);
df1c99d4 5412
ad4b78bb 5413 if (p->state == TASK_RUNNING) {
df1c99d4
MG
5414 /*
5415 * In order to avoid avg_overlap growing stale when we are
5416 * indeed overlapping and hence not getting put to sleep, grow
5417 * the avg_overlap on preemption.
5418 *
5419 * We use the average preemption runtime because that
5420 * correlates to the amount of cache footprint a task can
5421 * build up.
5422 */
ad4b78bb
PZ
5423 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5424 update_avg(&p->se.avg_overlap, runtime);
5425 } else {
5426 update_avg(&p->se.avg_running, 0);
df1c99d4 5427 }
ad4b78bb 5428 p->sched_class->put_prev_task(rq, p);
df1c99d4
MG
5429}
5430
dd41f596
IM
5431/*
5432 * Pick up the highest-prio task:
5433 */
5434static inline struct task_struct *
b67802ea 5435pick_next_task(struct rq *rq)
dd41f596 5436{
5522d5d5 5437 const struct sched_class *class;
dd41f596 5438 struct task_struct *p;
1da177e4
LT
5439
5440 /*
dd41f596
IM
5441 * Optimization: we know that if all tasks are in
5442 * the fair class we can call that function directly:
1da177e4 5443 */
dd41f596 5444 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5445 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5446 if (likely(p))
5447 return p;
1da177e4
LT
5448 }
5449
dd41f596
IM
5450 class = sched_class_highest;
5451 for ( ; ; ) {
fb8d4724 5452 p = class->pick_next_task(rq);
dd41f596
IM
5453 if (p)
5454 return p;
5455 /*
5456 * Will never be NULL as the idle class always
5457 * returns a non-NULL p:
5458 */
5459 class = class->next;
5460 }
5461}
1da177e4 5462
dd41f596
IM
5463/*
5464 * schedule() is the main scheduler function.
5465 */
ff743345 5466asmlinkage void __sched schedule(void)
dd41f596
IM
5467{
5468 struct task_struct *prev, *next;
67ca7bde 5469 unsigned long *switch_count;
dd41f596 5470 struct rq *rq;
31656519 5471 int cpu;
dd41f596 5472
ff743345
PZ
5473need_resched:
5474 preempt_disable();
dd41f596
IM
5475 cpu = smp_processor_id();
5476 rq = cpu_rq(cpu);
d6714c22 5477 rcu_sched_qs(cpu);
dd41f596
IM
5478 prev = rq->curr;
5479 switch_count = &prev->nivcsw;
5480
5481 release_kernel_lock(prev);
5482need_resched_nonpreemptible:
5483
5484 schedule_debug(prev);
1da177e4 5485
31656519 5486 if (sched_feat(HRTICK))
f333fdc9 5487 hrtick_clear(rq);
8f4d37ec 5488
8cd162ce 5489 spin_lock_irq(&rq->lock);
3e51f33f 5490 update_rq_clock(rq);
1e819950 5491 clear_tsk_need_resched(prev);
1da177e4 5492
1da177e4 5493 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5494 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5495 prev->state = TASK_RUNNING;
16882c1e 5496 else
2e1cb74a 5497 deactivate_task(rq, prev, 1);
dd41f596 5498 switch_count = &prev->nvcsw;
1da177e4
LT
5499 }
5500
3f029d3c 5501 pre_schedule(rq, prev);
f65eda4f 5502
dd41f596 5503 if (unlikely(!rq->nr_running))
1da177e4 5504 idle_balance(cpu, rq);
1da177e4 5505
df1c99d4 5506 put_prev_task(rq, prev);
b67802ea 5507 next = pick_next_task(rq);
1da177e4 5508
1da177e4 5509 if (likely(prev != next)) {
673a90a1 5510 sched_info_switch(prev, next);
cdd6c482 5511 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5512
1da177e4
LT
5513 rq->nr_switches++;
5514 rq->curr = next;
5515 ++*switch_count;
5516
dd41f596 5517 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5518 /*
5519 * the context switch might have flipped the stack from under
5520 * us, hence refresh the local variables.
5521 */
5522 cpu = smp_processor_id();
5523 rq = cpu_rq(cpu);
1da177e4
LT
5524 } else
5525 spin_unlock_irq(&rq->lock);
5526
3f029d3c 5527 post_schedule(rq);
1da177e4 5528
8f4d37ec 5529 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5530 goto need_resched_nonpreemptible;
8f4d37ec 5531
1da177e4 5532 preempt_enable_no_resched();
ff743345 5533 if (need_resched())
1da177e4
LT
5534 goto need_resched;
5535}
1da177e4
LT
5536EXPORT_SYMBOL(schedule);
5537
c08f7829 5538#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5539/*
5540 * Look out! "owner" is an entirely speculative pointer
5541 * access and not reliable.
5542 */
5543int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5544{
5545 unsigned int cpu;
5546 struct rq *rq;
5547
5548 if (!sched_feat(OWNER_SPIN))
5549 return 0;
5550
5551#ifdef CONFIG_DEBUG_PAGEALLOC
5552 /*
5553 * Need to access the cpu field knowing that
5554 * DEBUG_PAGEALLOC could have unmapped it if
5555 * the mutex owner just released it and exited.
5556 */
5557 if (probe_kernel_address(&owner->cpu, cpu))
5558 goto out;
5559#else
5560 cpu = owner->cpu;
5561#endif
5562
5563 /*
5564 * Even if the access succeeded (likely case),
5565 * the cpu field may no longer be valid.
5566 */
5567 if (cpu >= nr_cpumask_bits)
5568 goto out;
5569
5570 /*
5571 * We need to validate that we can do a
5572 * get_cpu() and that we have the percpu area.
5573 */
5574 if (!cpu_online(cpu))
5575 goto out;
5576
5577 rq = cpu_rq(cpu);
5578
5579 for (;;) {
5580 /*
5581 * Owner changed, break to re-assess state.
5582 */
5583 if (lock->owner != owner)
5584 break;
5585
5586 /*
5587 * Is that owner really running on that cpu?
5588 */
5589 if (task_thread_info(rq->curr) != owner || need_resched())
5590 return 0;
5591
5592 cpu_relax();
5593 }
5594out:
5595 return 1;
5596}
5597#endif
5598
1da177e4
LT
5599#ifdef CONFIG_PREEMPT
5600/*
2ed6e34f 5601 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5602 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5603 * occur there and call schedule directly.
5604 */
5605asmlinkage void __sched preempt_schedule(void)
5606{
5607 struct thread_info *ti = current_thread_info();
6478d880 5608
1da177e4
LT
5609 /*
5610 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5611 * we do not want to preempt the current task. Just return..
1da177e4 5612 */
beed33a8 5613 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5614 return;
5615
3a5c359a
AK
5616 do {
5617 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5618 schedule();
3a5c359a 5619 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5620
3a5c359a
AK
5621 /*
5622 * Check again in case we missed a preemption opportunity
5623 * between schedule and now.
5624 */
5625 barrier();
5ed0cec0 5626 } while (need_resched());
1da177e4 5627}
1da177e4
LT
5628EXPORT_SYMBOL(preempt_schedule);
5629
5630/*
2ed6e34f 5631 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5632 * off of irq context.
5633 * Note, that this is called and return with irqs disabled. This will
5634 * protect us against recursive calling from irq.
5635 */
5636asmlinkage void __sched preempt_schedule_irq(void)
5637{
5638 struct thread_info *ti = current_thread_info();
6478d880 5639
2ed6e34f 5640 /* Catch callers which need to be fixed */
1da177e4
LT
5641 BUG_ON(ti->preempt_count || !irqs_disabled());
5642
3a5c359a
AK
5643 do {
5644 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5645 local_irq_enable();
5646 schedule();
5647 local_irq_disable();
3a5c359a 5648 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5649
3a5c359a
AK
5650 /*
5651 * Check again in case we missed a preemption opportunity
5652 * between schedule and now.
5653 */
5654 barrier();
5ed0cec0 5655 } while (need_resched());
1da177e4
LT
5656}
5657
5658#endif /* CONFIG_PREEMPT */
5659
63859d4f 5660int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5661 void *key)
1da177e4 5662{
63859d4f 5663 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5664}
1da177e4
LT
5665EXPORT_SYMBOL(default_wake_function);
5666
5667/*
41a2d6cf
IM
5668 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5669 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5670 * number) then we wake all the non-exclusive tasks and one exclusive task.
5671 *
5672 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5673 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5674 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5675 */
78ddb08f 5676static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5677 int nr_exclusive, int wake_flags, void *key)
1da177e4 5678{
2e45874c 5679 wait_queue_t *curr, *next;
1da177e4 5680
2e45874c 5681 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5682 unsigned flags = curr->flags;
5683
63859d4f 5684 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5685 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5686 break;
5687 }
5688}
5689
5690/**
5691 * __wake_up - wake up threads blocked on a waitqueue.
5692 * @q: the waitqueue
5693 * @mode: which threads
5694 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5695 * @key: is directly passed to the wakeup function
50fa610a
DH
5696 *
5697 * It may be assumed that this function implies a write memory barrier before
5698 * changing the task state if and only if any tasks are woken up.
1da177e4 5699 */
7ad5b3a5 5700void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5701 int nr_exclusive, void *key)
1da177e4
LT
5702{
5703 unsigned long flags;
5704
5705 spin_lock_irqsave(&q->lock, flags);
5706 __wake_up_common(q, mode, nr_exclusive, 0, key);
5707 spin_unlock_irqrestore(&q->lock, flags);
5708}
1da177e4
LT
5709EXPORT_SYMBOL(__wake_up);
5710
5711/*
5712 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5713 */
7ad5b3a5 5714void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5715{
5716 __wake_up_common(q, mode, 1, 0, NULL);
5717}
5718
4ede816a
DL
5719void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5720{
5721 __wake_up_common(q, mode, 1, 0, key);
5722}
5723
1da177e4 5724/**
4ede816a 5725 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5726 * @q: the waitqueue
5727 * @mode: which threads
5728 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5729 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5730 *
5731 * The sync wakeup differs that the waker knows that it will schedule
5732 * away soon, so while the target thread will be woken up, it will not
5733 * be migrated to another CPU - ie. the two threads are 'synchronized'
5734 * with each other. This can prevent needless bouncing between CPUs.
5735 *
5736 * On UP it can prevent extra preemption.
50fa610a
DH
5737 *
5738 * It may be assumed that this function implies a write memory barrier before
5739 * changing the task state if and only if any tasks are woken up.
1da177e4 5740 */
4ede816a
DL
5741void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5742 int nr_exclusive, void *key)
1da177e4
LT
5743{
5744 unsigned long flags;
7d478721 5745 int wake_flags = WF_SYNC;
1da177e4
LT
5746
5747 if (unlikely(!q))
5748 return;
5749
5750 if (unlikely(!nr_exclusive))
7d478721 5751 wake_flags = 0;
1da177e4
LT
5752
5753 spin_lock_irqsave(&q->lock, flags);
7d478721 5754 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5755 spin_unlock_irqrestore(&q->lock, flags);
5756}
4ede816a
DL
5757EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5758
5759/*
5760 * __wake_up_sync - see __wake_up_sync_key()
5761 */
5762void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5763{
5764 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5765}
1da177e4
LT
5766EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5767
65eb3dc6
KD
5768/**
5769 * complete: - signals a single thread waiting on this completion
5770 * @x: holds the state of this particular completion
5771 *
5772 * This will wake up a single thread waiting on this completion. Threads will be
5773 * awakened in the same order in which they were queued.
5774 *
5775 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5776 *
5777 * It may be assumed that this function implies a write memory barrier before
5778 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5779 */
b15136e9 5780void complete(struct completion *x)
1da177e4
LT
5781{
5782 unsigned long flags;
5783
5784 spin_lock_irqsave(&x->wait.lock, flags);
5785 x->done++;
d9514f6c 5786 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5787 spin_unlock_irqrestore(&x->wait.lock, flags);
5788}
5789EXPORT_SYMBOL(complete);
5790
65eb3dc6
KD
5791/**
5792 * complete_all: - signals all threads waiting on this completion
5793 * @x: holds the state of this particular completion
5794 *
5795 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5796 *
5797 * It may be assumed that this function implies a write memory barrier before
5798 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5799 */
b15136e9 5800void complete_all(struct completion *x)
1da177e4
LT
5801{
5802 unsigned long flags;
5803
5804 spin_lock_irqsave(&x->wait.lock, flags);
5805 x->done += UINT_MAX/2;
d9514f6c 5806 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5807 spin_unlock_irqrestore(&x->wait.lock, flags);
5808}
5809EXPORT_SYMBOL(complete_all);
5810
8cbbe86d
AK
5811static inline long __sched
5812do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5813{
1da177e4
LT
5814 if (!x->done) {
5815 DECLARE_WAITQUEUE(wait, current);
5816
5817 wait.flags |= WQ_FLAG_EXCLUSIVE;
5818 __add_wait_queue_tail(&x->wait, &wait);
5819 do {
94d3d824 5820 if (signal_pending_state(state, current)) {
ea71a546
ON
5821 timeout = -ERESTARTSYS;
5822 break;
8cbbe86d
AK
5823 }
5824 __set_current_state(state);
1da177e4
LT
5825 spin_unlock_irq(&x->wait.lock);
5826 timeout = schedule_timeout(timeout);
5827 spin_lock_irq(&x->wait.lock);
ea71a546 5828 } while (!x->done && timeout);
1da177e4 5829 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5830 if (!x->done)
5831 return timeout;
1da177e4
LT
5832 }
5833 x->done--;
ea71a546 5834 return timeout ?: 1;
1da177e4 5835}
1da177e4 5836
8cbbe86d
AK
5837static long __sched
5838wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5839{
1da177e4
LT
5840 might_sleep();
5841
5842 spin_lock_irq(&x->wait.lock);
8cbbe86d 5843 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5844 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5845 return timeout;
5846}
1da177e4 5847
65eb3dc6
KD
5848/**
5849 * wait_for_completion: - waits for completion of a task
5850 * @x: holds the state of this particular completion
5851 *
5852 * This waits to be signaled for completion of a specific task. It is NOT
5853 * interruptible and there is no timeout.
5854 *
5855 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5856 * and interrupt capability. Also see complete().
5857 */
b15136e9 5858void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5859{
5860 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5861}
8cbbe86d 5862EXPORT_SYMBOL(wait_for_completion);
1da177e4 5863
65eb3dc6
KD
5864/**
5865 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5866 * @x: holds the state of this particular completion
5867 * @timeout: timeout value in jiffies
5868 *
5869 * This waits for either a completion of a specific task to be signaled or for a
5870 * specified timeout to expire. The timeout is in jiffies. It is not
5871 * interruptible.
5872 */
b15136e9 5873unsigned long __sched
8cbbe86d 5874wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5875{
8cbbe86d 5876 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5877}
8cbbe86d 5878EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5879
65eb3dc6
KD
5880/**
5881 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5882 * @x: holds the state of this particular completion
5883 *
5884 * This waits for completion of a specific task to be signaled. It is
5885 * interruptible.
5886 */
8cbbe86d 5887int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5888{
51e97990
AK
5889 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5890 if (t == -ERESTARTSYS)
5891 return t;
5892 return 0;
0fec171c 5893}
8cbbe86d 5894EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5895
65eb3dc6
KD
5896/**
5897 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5898 * @x: holds the state of this particular completion
5899 * @timeout: timeout value in jiffies
5900 *
5901 * This waits for either a completion of a specific task to be signaled or for a
5902 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5903 */
b15136e9 5904unsigned long __sched
8cbbe86d
AK
5905wait_for_completion_interruptible_timeout(struct completion *x,
5906 unsigned long timeout)
0fec171c 5907{
8cbbe86d 5908 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5909}
8cbbe86d 5910EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5911
65eb3dc6
KD
5912/**
5913 * wait_for_completion_killable: - waits for completion of a task (killable)
5914 * @x: holds the state of this particular completion
5915 *
5916 * This waits to be signaled for completion of a specific task. It can be
5917 * interrupted by a kill signal.
5918 */
009e577e
MW
5919int __sched wait_for_completion_killable(struct completion *x)
5920{
5921 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5922 if (t == -ERESTARTSYS)
5923 return t;
5924 return 0;
5925}
5926EXPORT_SYMBOL(wait_for_completion_killable);
5927
be4de352
DC
5928/**
5929 * try_wait_for_completion - try to decrement a completion without blocking
5930 * @x: completion structure
5931 *
5932 * Returns: 0 if a decrement cannot be done without blocking
5933 * 1 if a decrement succeeded.
5934 *
5935 * If a completion is being used as a counting completion,
5936 * attempt to decrement the counter without blocking. This
5937 * enables us to avoid waiting if the resource the completion
5938 * is protecting is not available.
5939 */
5940bool try_wait_for_completion(struct completion *x)
5941{
5942 int ret = 1;
5943
5944 spin_lock_irq(&x->wait.lock);
5945 if (!x->done)
5946 ret = 0;
5947 else
5948 x->done--;
5949 spin_unlock_irq(&x->wait.lock);
5950 return ret;
5951}
5952EXPORT_SYMBOL(try_wait_for_completion);
5953
5954/**
5955 * completion_done - Test to see if a completion has any waiters
5956 * @x: completion structure
5957 *
5958 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5959 * 1 if there are no waiters.
5960 *
5961 */
5962bool completion_done(struct completion *x)
5963{
5964 int ret = 1;
5965
5966 spin_lock_irq(&x->wait.lock);
5967 if (!x->done)
5968 ret = 0;
5969 spin_unlock_irq(&x->wait.lock);
5970 return ret;
5971}
5972EXPORT_SYMBOL(completion_done);
5973
8cbbe86d
AK
5974static long __sched
5975sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5976{
0fec171c
IM
5977 unsigned long flags;
5978 wait_queue_t wait;
5979
5980 init_waitqueue_entry(&wait, current);
1da177e4 5981
8cbbe86d 5982 __set_current_state(state);
1da177e4 5983
8cbbe86d
AK
5984 spin_lock_irqsave(&q->lock, flags);
5985 __add_wait_queue(q, &wait);
5986 spin_unlock(&q->lock);
5987 timeout = schedule_timeout(timeout);
5988 spin_lock_irq(&q->lock);
5989 __remove_wait_queue(q, &wait);
5990 spin_unlock_irqrestore(&q->lock, flags);
5991
5992 return timeout;
5993}
5994
5995void __sched interruptible_sleep_on(wait_queue_head_t *q)
5996{
5997 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5998}
1da177e4
LT
5999EXPORT_SYMBOL(interruptible_sleep_on);
6000
0fec171c 6001long __sched
95cdf3b7 6002interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6003{
8cbbe86d 6004 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 6005}
1da177e4
LT
6006EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6007
0fec171c 6008void __sched sleep_on(wait_queue_head_t *q)
1da177e4 6009{
8cbbe86d 6010 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6011}
1da177e4
LT
6012EXPORT_SYMBOL(sleep_on);
6013
0fec171c 6014long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6015{
8cbbe86d 6016 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 6017}
1da177e4
LT
6018EXPORT_SYMBOL(sleep_on_timeout);
6019
b29739f9
IM
6020#ifdef CONFIG_RT_MUTEXES
6021
6022/*
6023 * rt_mutex_setprio - set the current priority of a task
6024 * @p: task
6025 * @prio: prio value (kernel-internal form)
6026 *
6027 * This function changes the 'effective' priority of a task. It does
6028 * not touch ->normal_prio like __setscheduler().
6029 *
6030 * Used by the rt_mutex code to implement priority inheritance logic.
6031 */
36c8b586 6032void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6033{
6034 unsigned long flags;
83b699ed 6035 int oldprio, on_rq, running;
70b97a7f 6036 struct rq *rq;
cb469845 6037 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6038
6039 BUG_ON(prio < 0 || prio > MAX_PRIO);
6040
6041 rq = task_rq_lock(p, &flags);
a8e504d2 6042 update_rq_clock(rq);
b29739f9 6043
d5f9f942 6044 oldprio = p->prio;
dd41f596 6045 on_rq = p->se.on_rq;
051a1d1a 6046 running = task_current(rq, p);
0e1f3483 6047 if (on_rq)
69be72c1 6048 dequeue_task(rq, p, 0);
0e1f3483
HS
6049 if (running)
6050 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6051
6052 if (rt_prio(prio))
6053 p->sched_class = &rt_sched_class;
6054 else
6055 p->sched_class = &fair_sched_class;
6056
b29739f9
IM
6057 p->prio = prio;
6058
0e1f3483
HS
6059 if (running)
6060 p->sched_class->set_curr_task(rq);
dd41f596 6061 if (on_rq) {
8159f87e 6062 enqueue_task(rq, p, 0);
cb469845
SR
6063
6064 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6065 }
6066 task_rq_unlock(rq, &flags);
6067}
6068
6069#endif
6070
36c8b586 6071void set_user_nice(struct task_struct *p, long nice)
1da177e4 6072{
dd41f596 6073 int old_prio, delta, on_rq;
1da177e4 6074 unsigned long flags;
70b97a7f 6075 struct rq *rq;
1da177e4
LT
6076
6077 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6078 return;
6079 /*
6080 * We have to be careful, if called from sys_setpriority(),
6081 * the task might be in the middle of scheduling on another CPU.
6082 */
6083 rq = task_rq_lock(p, &flags);
a8e504d2 6084 update_rq_clock(rq);
1da177e4
LT
6085 /*
6086 * The RT priorities are set via sched_setscheduler(), but we still
6087 * allow the 'normal' nice value to be set - but as expected
6088 * it wont have any effect on scheduling until the task is
dd41f596 6089 * SCHED_FIFO/SCHED_RR:
1da177e4 6090 */
e05606d3 6091 if (task_has_rt_policy(p)) {
1da177e4
LT
6092 p->static_prio = NICE_TO_PRIO(nice);
6093 goto out_unlock;
6094 }
dd41f596 6095 on_rq = p->se.on_rq;
c09595f6 6096 if (on_rq)
69be72c1 6097 dequeue_task(rq, p, 0);
1da177e4 6098
1da177e4 6099 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6100 set_load_weight(p);
b29739f9
IM
6101 old_prio = p->prio;
6102 p->prio = effective_prio(p);
6103 delta = p->prio - old_prio;
1da177e4 6104
dd41f596 6105 if (on_rq) {
8159f87e 6106 enqueue_task(rq, p, 0);
1da177e4 6107 /*
d5f9f942
AM
6108 * If the task increased its priority or is running and
6109 * lowered its priority, then reschedule its CPU:
1da177e4 6110 */
d5f9f942 6111 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6112 resched_task(rq->curr);
6113 }
6114out_unlock:
6115 task_rq_unlock(rq, &flags);
6116}
1da177e4
LT
6117EXPORT_SYMBOL(set_user_nice);
6118
e43379f1
MM
6119/*
6120 * can_nice - check if a task can reduce its nice value
6121 * @p: task
6122 * @nice: nice value
6123 */
36c8b586 6124int can_nice(const struct task_struct *p, const int nice)
e43379f1 6125{
024f4747
MM
6126 /* convert nice value [19,-20] to rlimit style value [1,40] */
6127 int nice_rlim = 20 - nice;
48f24c4d 6128
e43379f1
MM
6129 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6130 capable(CAP_SYS_NICE));
6131}
6132
1da177e4
LT
6133#ifdef __ARCH_WANT_SYS_NICE
6134
6135/*
6136 * sys_nice - change the priority of the current process.
6137 * @increment: priority increment
6138 *
6139 * sys_setpriority is a more generic, but much slower function that
6140 * does similar things.
6141 */
5add95d4 6142SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6143{
48f24c4d 6144 long nice, retval;
1da177e4
LT
6145
6146 /*
6147 * Setpriority might change our priority at the same moment.
6148 * We don't have to worry. Conceptually one call occurs first
6149 * and we have a single winner.
6150 */
e43379f1
MM
6151 if (increment < -40)
6152 increment = -40;
1da177e4
LT
6153 if (increment > 40)
6154 increment = 40;
6155
2b8f836f 6156 nice = TASK_NICE(current) + increment;
1da177e4
LT
6157 if (nice < -20)
6158 nice = -20;
6159 if (nice > 19)
6160 nice = 19;
6161
e43379f1
MM
6162 if (increment < 0 && !can_nice(current, nice))
6163 return -EPERM;
6164
1da177e4
LT
6165 retval = security_task_setnice(current, nice);
6166 if (retval)
6167 return retval;
6168
6169 set_user_nice(current, nice);
6170 return 0;
6171}
6172
6173#endif
6174
6175/**
6176 * task_prio - return the priority value of a given task.
6177 * @p: the task in question.
6178 *
6179 * This is the priority value as seen by users in /proc.
6180 * RT tasks are offset by -200. Normal tasks are centered
6181 * around 0, value goes from -16 to +15.
6182 */
36c8b586 6183int task_prio(const struct task_struct *p)
1da177e4
LT
6184{
6185 return p->prio - MAX_RT_PRIO;
6186}
6187
6188/**
6189 * task_nice - return the nice value of a given task.
6190 * @p: the task in question.
6191 */
36c8b586 6192int task_nice(const struct task_struct *p)
1da177e4
LT
6193{
6194 return TASK_NICE(p);
6195}
150d8bed 6196EXPORT_SYMBOL(task_nice);
1da177e4
LT
6197
6198/**
6199 * idle_cpu - is a given cpu idle currently?
6200 * @cpu: the processor in question.
6201 */
6202int idle_cpu(int cpu)
6203{
6204 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6205}
6206
1da177e4
LT
6207/**
6208 * idle_task - return the idle task for a given cpu.
6209 * @cpu: the processor in question.
6210 */
36c8b586 6211struct task_struct *idle_task(int cpu)
1da177e4
LT
6212{
6213 return cpu_rq(cpu)->idle;
6214}
6215
6216/**
6217 * find_process_by_pid - find a process with a matching PID value.
6218 * @pid: the pid in question.
6219 */
a9957449 6220static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6221{
228ebcbe 6222 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6223}
6224
6225/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6226static void
6227__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6228{
dd41f596 6229 BUG_ON(p->se.on_rq);
48f24c4d 6230
1da177e4
LT
6231 p->policy = policy;
6232 p->rt_priority = prio;
b29739f9
IM
6233 p->normal_prio = normal_prio(p);
6234 /* we are holding p->pi_lock already */
6235 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6236 if (rt_prio(p->prio))
6237 p->sched_class = &rt_sched_class;
6238 else
6239 p->sched_class = &fair_sched_class;
2dd73a4f 6240 set_load_weight(p);
1da177e4
LT
6241}
6242
c69e8d9c
DH
6243/*
6244 * check the target process has a UID that matches the current process's
6245 */
6246static bool check_same_owner(struct task_struct *p)
6247{
6248 const struct cred *cred = current_cred(), *pcred;
6249 bool match;
6250
6251 rcu_read_lock();
6252 pcred = __task_cred(p);
6253 match = (cred->euid == pcred->euid ||
6254 cred->euid == pcred->uid);
6255 rcu_read_unlock();
6256 return match;
6257}
6258
961ccddd
RR
6259static int __sched_setscheduler(struct task_struct *p, int policy,
6260 struct sched_param *param, bool user)
1da177e4 6261{
83b699ed 6262 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6263 unsigned long flags;
cb469845 6264 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6265 struct rq *rq;
ca94c442 6266 int reset_on_fork;
1da177e4 6267
66e5393a
SR
6268 /* may grab non-irq protected spin_locks */
6269 BUG_ON(in_interrupt());
1da177e4
LT
6270recheck:
6271 /* double check policy once rq lock held */
ca94c442
LP
6272 if (policy < 0) {
6273 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6274 policy = oldpolicy = p->policy;
ca94c442
LP
6275 } else {
6276 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6277 policy &= ~SCHED_RESET_ON_FORK;
6278
6279 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6280 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6281 policy != SCHED_IDLE)
6282 return -EINVAL;
6283 }
6284
1da177e4
LT
6285 /*
6286 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6287 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6288 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6289 */
6290 if (param->sched_priority < 0 ||
95cdf3b7 6291 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6292 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6293 return -EINVAL;
e05606d3 6294 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6295 return -EINVAL;
6296
37e4ab3f
OC
6297 /*
6298 * Allow unprivileged RT tasks to decrease priority:
6299 */
961ccddd 6300 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6301 if (rt_policy(policy)) {
8dc3e909 6302 unsigned long rlim_rtprio;
8dc3e909
ON
6303
6304 if (!lock_task_sighand(p, &flags))
6305 return -ESRCH;
6306 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6307 unlock_task_sighand(p, &flags);
6308
6309 /* can't set/change the rt policy */
6310 if (policy != p->policy && !rlim_rtprio)
6311 return -EPERM;
6312
6313 /* can't increase priority */
6314 if (param->sched_priority > p->rt_priority &&
6315 param->sched_priority > rlim_rtprio)
6316 return -EPERM;
6317 }
dd41f596
IM
6318 /*
6319 * Like positive nice levels, dont allow tasks to
6320 * move out of SCHED_IDLE either:
6321 */
6322 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6323 return -EPERM;
5fe1d75f 6324
37e4ab3f 6325 /* can't change other user's priorities */
c69e8d9c 6326 if (!check_same_owner(p))
37e4ab3f 6327 return -EPERM;
ca94c442
LP
6328
6329 /* Normal users shall not reset the sched_reset_on_fork flag */
6330 if (p->sched_reset_on_fork && !reset_on_fork)
6331 return -EPERM;
37e4ab3f 6332 }
1da177e4 6333
725aad24 6334 if (user) {
b68aa230 6335#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6336 /*
6337 * Do not allow realtime tasks into groups that have no runtime
6338 * assigned.
6339 */
9a7e0b18
PZ
6340 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6341 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6342 return -EPERM;
b68aa230
PZ
6343#endif
6344
725aad24
JF
6345 retval = security_task_setscheduler(p, policy, param);
6346 if (retval)
6347 return retval;
6348 }
6349
b29739f9
IM
6350 /*
6351 * make sure no PI-waiters arrive (or leave) while we are
6352 * changing the priority of the task:
6353 */
6354 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6355 /*
6356 * To be able to change p->policy safely, the apropriate
6357 * runqueue lock must be held.
6358 */
b29739f9 6359 rq = __task_rq_lock(p);
1da177e4
LT
6360 /* recheck policy now with rq lock held */
6361 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6362 policy = oldpolicy = -1;
b29739f9
IM
6363 __task_rq_unlock(rq);
6364 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6365 goto recheck;
6366 }
2daa3577 6367 update_rq_clock(rq);
dd41f596 6368 on_rq = p->se.on_rq;
051a1d1a 6369 running = task_current(rq, p);
0e1f3483 6370 if (on_rq)
2e1cb74a 6371 deactivate_task(rq, p, 0);
0e1f3483
HS
6372 if (running)
6373 p->sched_class->put_prev_task(rq, p);
f6b53205 6374
ca94c442
LP
6375 p->sched_reset_on_fork = reset_on_fork;
6376
1da177e4 6377 oldprio = p->prio;
dd41f596 6378 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6379
0e1f3483
HS
6380 if (running)
6381 p->sched_class->set_curr_task(rq);
dd41f596
IM
6382 if (on_rq) {
6383 activate_task(rq, p, 0);
cb469845
SR
6384
6385 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6386 }
b29739f9
IM
6387 __task_rq_unlock(rq);
6388 spin_unlock_irqrestore(&p->pi_lock, flags);
6389
95e02ca9
TG
6390 rt_mutex_adjust_pi(p);
6391
1da177e4
LT
6392 return 0;
6393}
961ccddd
RR
6394
6395/**
6396 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6397 * @p: the task in question.
6398 * @policy: new policy.
6399 * @param: structure containing the new RT priority.
6400 *
6401 * NOTE that the task may be already dead.
6402 */
6403int sched_setscheduler(struct task_struct *p, int policy,
6404 struct sched_param *param)
6405{
6406 return __sched_setscheduler(p, policy, param, true);
6407}
1da177e4
LT
6408EXPORT_SYMBOL_GPL(sched_setscheduler);
6409
961ccddd
RR
6410/**
6411 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6412 * @p: the task in question.
6413 * @policy: new policy.
6414 * @param: structure containing the new RT priority.
6415 *
6416 * Just like sched_setscheduler, only don't bother checking if the
6417 * current context has permission. For example, this is needed in
6418 * stop_machine(): we create temporary high priority worker threads,
6419 * but our caller might not have that capability.
6420 */
6421int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6422 struct sched_param *param)
6423{
6424 return __sched_setscheduler(p, policy, param, false);
6425}
6426
95cdf3b7
IM
6427static int
6428do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6429{
1da177e4
LT
6430 struct sched_param lparam;
6431 struct task_struct *p;
36c8b586 6432 int retval;
1da177e4
LT
6433
6434 if (!param || pid < 0)
6435 return -EINVAL;
6436 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6437 return -EFAULT;
5fe1d75f
ON
6438
6439 rcu_read_lock();
6440 retval = -ESRCH;
1da177e4 6441 p = find_process_by_pid(pid);
5fe1d75f
ON
6442 if (p != NULL)
6443 retval = sched_setscheduler(p, policy, &lparam);
6444 rcu_read_unlock();
36c8b586 6445
1da177e4
LT
6446 return retval;
6447}
6448
6449/**
6450 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6451 * @pid: the pid in question.
6452 * @policy: new policy.
6453 * @param: structure containing the new RT priority.
6454 */
5add95d4
HC
6455SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6456 struct sched_param __user *, param)
1da177e4 6457{
c21761f1
JB
6458 /* negative values for policy are not valid */
6459 if (policy < 0)
6460 return -EINVAL;
6461
1da177e4
LT
6462 return do_sched_setscheduler(pid, policy, param);
6463}
6464
6465/**
6466 * sys_sched_setparam - set/change the RT priority of a thread
6467 * @pid: the pid in question.
6468 * @param: structure containing the new RT priority.
6469 */
5add95d4 6470SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6471{
6472 return do_sched_setscheduler(pid, -1, param);
6473}
6474
6475/**
6476 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6477 * @pid: the pid in question.
6478 */
5add95d4 6479SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6480{
36c8b586 6481 struct task_struct *p;
3a5c359a 6482 int retval;
1da177e4
LT
6483
6484 if (pid < 0)
3a5c359a 6485 return -EINVAL;
1da177e4
LT
6486
6487 retval = -ESRCH;
6488 read_lock(&tasklist_lock);
6489 p = find_process_by_pid(pid);
6490 if (p) {
6491 retval = security_task_getscheduler(p);
6492 if (!retval)
ca94c442
LP
6493 retval = p->policy
6494 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6495 }
6496 read_unlock(&tasklist_lock);
1da177e4
LT
6497 return retval;
6498}
6499
6500/**
ca94c442 6501 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6502 * @pid: the pid in question.
6503 * @param: structure containing the RT priority.
6504 */
5add95d4 6505SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6506{
6507 struct sched_param lp;
36c8b586 6508 struct task_struct *p;
3a5c359a 6509 int retval;
1da177e4
LT
6510
6511 if (!param || pid < 0)
3a5c359a 6512 return -EINVAL;
1da177e4
LT
6513
6514 read_lock(&tasklist_lock);
6515 p = find_process_by_pid(pid);
6516 retval = -ESRCH;
6517 if (!p)
6518 goto out_unlock;
6519
6520 retval = security_task_getscheduler(p);
6521 if (retval)
6522 goto out_unlock;
6523
6524 lp.sched_priority = p->rt_priority;
6525 read_unlock(&tasklist_lock);
6526
6527 /*
6528 * This one might sleep, we cannot do it with a spinlock held ...
6529 */
6530 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6531
1da177e4
LT
6532 return retval;
6533
6534out_unlock:
6535 read_unlock(&tasklist_lock);
6536 return retval;
6537}
6538
96f874e2 6539long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6540{
5a16f3d3 6541 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6542 struct task_struct *p;
6543 int retval;
1da177e4 6544
95402b38 6545 get_online_cpus();
1da177e4
LT
6546 read_lock(&tasklist_lock);
6547
6548 p = find_process_by_pid(pid);
6549 if (!p) {
6550 read_unlock(&tasklist_lock);
95402b38 6551 put_online_cpus();
1da177e4
LT
6552 return -ESRCH;
6553 }
6554
6555 /*
6556 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6557 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6558 * usage count and then drop tasklist_lock.
6559 */
6560 get_task_struct(p);
6561 read_unlock(&tasklist_lock);
6562
5a16f3d3
RR
6563 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6564 retval = -ENOMEM;
6565 goto out_put_task;
6566 }
6567 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6568 retval = -ENOMEM;
6569 goto out_free_cpus_allowed;
6570 }
1da177e4 6571 retval = -EPERM;
c69e8d9c 6572 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6573 goto out_unlock;
6574
e7834f8f
DQ
6575 retval = security_task_setscheduler(p, 0, NULL);
6576 if (retval)
6577 goto out_unlock;
6578
5a16f3d3
RR
6579 cpuset_cpus_allowed(p, cpus_allowed);
6580 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6581 again:
5a16f3d3 6582 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6583
8707d8b8 6584 if (!retval) {
5a16f3d3
RR
6585 cpuset_cpus_allowed(p, cpus_allowed);
6586 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6587 /*
6588 * We must have raced with a concurrent cpuset
6589 * update. Just reset the cpus_allowed to the
6590 * cpuset's cpus_allowed
6591 */
5a16f3d3 6592 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6593 goto again;
6594 }
6595 }
1da177e4 6596out_unlock:
5a16f3d3
RR
6597 free_cpumask_var(new_mask);
6598out_free_cpus_allowed:
6599 free_cpumask_var(cpus_allowed);
6600out_put_task:
1da177e4 6601 put_task_struct(p);
95402b38 6602 put_online_cpus();
1da177e4
LT
6603 return retval;
6604}
6605
6606static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6607 struct cpumask *new_mask)
1da177e4 6608{
96f874e2
RR
6609 if (len < cpumask_size())
6610 cpumask_clear(new_mask);
6611 else if (len > cpumask_size())
6612 len = cpumask_size();
6613
1da177e4
LT
6614 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6615}
6616
6617/**
6618 * sys_sched_setaffinity - set the cpu affinity of a process
6619 * @pid: pid of the process
6620 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6621 * @user_mask_ptr: user-space pointer to the new cpu mask
6622 */
5add95d4
HC
6623SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6624 unsigned long __user *, user_mask_ptr)
1da177e4 6625{
5a16f3d3 6626 cpumask_var_t new_mask;
1da177e4
LT
6627 int retval;
6628
5a16f3d3
RR
6629 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6630 return -ENOMEM;
1da177e4 6631
5a16f3d3
RR
6632 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6633 if (retval == 0)
6634 retval = sched_setaffinity(pid, new_mask);
6635 free_cpumask_var(new_mask);
6636 return retval;
1da177e4
LT
6637}
6638
96f874e2 6639long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6640{
36c8b586 6641 struct task_struct *p;
31605683
TG
6642 unsigned long flags;
6643 struct rq *rq;
1da177e4 6644 int retval;
1da177e4 6645
95402b38 6646 get_online_cpus();
1da177e4
LT
6647 read_lock(&tasklist_lock);
6648
6649 retval = -ESRCH;
6650 p = find_process_by_pid(pid);
6651 if (!p)
6652 goto out_unlock;
6653
e7834f8f
DQ
6654 retval = security_task_getscheduler(p);
6655 if (retval)
6656 goto out_unlock;
6657
31605683 6658 rq = task_rq_lock(p, &flags);
96f874e2 6659 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6660 task_rq_unlock(rq, &flags);
1da177e4
LT
6661
6662out_unlock:
6663 read_unlock(&tasklist_lock);
95402b38 6664 put_online_cpus();
1da177e4 6665
9531b62f 6666 return retval;
1da177e4
LT
6667}
6668
6669/**
6670 * sys_sched_getaffinity - get the cpu affinity of a process
6671 * @pid: pid of the process
6672 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6673 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6674 */
5add95d4
HC
6675SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6676 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6677{
6678 int ret;
f17c8607 6679 cpumask_var_t mask;
1da177e4 6680
f17c8607 6681 if (len < cpumask_size())
1da177e4
LT
6682 return -EINVAL;
6683
f17c8607
RR
6684 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6685 return -ENOMEM;
1da177e4 6686
f17c8607
RR
6687 ret = sched_getaffinity(pid, mask);
6688 if (ret == 0) {
6689 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6690 ret = -EFAULT;
6691 else
6692 ret = cpumask_size();
6693 }
6694 free_cpumask_var(mask);
1da177e4 6695
f17c8607 6696 return ret;
1da177e4
LT
6697}
6698
6699/**
6700 * sys_sched_yield - yield the current processor to other threads.
6701 *
dd41f596
IM
6702 * This function yields the current CPU to other tasks. If there are no
6703 * other threads running on this CPU then this function will return.
1da177e4 6704 */
5add95d4 6705SYSCALL_DEFINE0(sched_yield)
1da177e4 6706{
70b97a7f 6707 struct rq *rq = this_rq_lock();
1da177e4 6708
2d72376b 6709 schedstat_inc(rq, yld_count);
4530d7ab 6710 current->sched_class->yield_task(rq);
1da177e4
LT
6711
6712 /*
6713 * Since we are going to call schedule() anyway, there's
6714 * no need to preempt or enable interrupts:
6715 */
6716 __release(rq->lock);
8a25d5de 6717 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6718 _raw_spin_unlock(&rq->lock);
6719 preempt_enable_no_resched();
6720
6721 schedule();
6722
6723 return 0;
6724}
6725
d86ee480
PZ
6726static inline int should_resched(void)
6727{
6728 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6729}
6730
e7b38404 6731static void __cond_resched(void)
1da177e4 6732{
e7aaaa69
FW
6733 add_preempt_count(PREEMPT_ACTIVE);
6734 schedule();
6735 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6736}
6737
02b67cc3 6738int __sched _cond_resched(void)
1da177e4 6739{
d86ee480 6740 if (should_resched()) {
1da177e4
LT
6741 __cond_resched();
6742 return 1;
6743 }
6744 return 0;
6745}
02b67cc3 6746EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6747
6748/*
613afbf8 6749 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6750 * call schedule, and on return reacquire the lock.
6751 *
41a2d6cf 6752 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6753 * operations here to prevent schedule() from being called twice (once via
6754 * spin_unlock(), once by hand).
6755 */
613afbf8 6756int __cond_resched_lock(spinlock_t *lock)
1da177e4 6757{
d86ee480 6758 int resched = should_resched();
6df3cecb
JK
6759 int ret = 0;
6760
f607c668
PZ
6761 lockdep_assert_held(lock);
6762
95c354fe 6763 if (spin_needbreak(lock) || resched) {
1da177e4 6764 spin_unlock(lock);
d86ee480 6765 if (resched)
95c354fe
NP
6766 __cond_resched();
6767 else
6768 cpu_relax();
6df3cecb 6769 ret = 1;
1da177e4 6770 spin_lock(lock);
1da177e4 6771 }
6df3cecb 6772 return ret;
1da177e4 6773}
613afbf8 6774EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6775
613afbf8 6776int __sched __cond_resched_softirq(void)
1da177e4
LT
6777{
6778 BUG_ON(!in_softirq());
6779
d86ee480 6780 if (should_resched()) {
98d82567 6781 local_bh_enable();
1da177e4
LT
6782 __cond_resched();
6783 local_bh_disable();
6784 return 1;
6785 }
6786 return 0;
6787}
613afbf8 6788EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6789
1da177e4
LT
6790/**
6791 * yield - yield the current processor to other threads.
6792 *
72fd4a35 6793 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6794 * thread runnable and calls sys_sched_yield().
6795 */
6796void __sched yield(void)
6797{
6798 set_current_state(TASK_RUNNING);
6799 sys_sched_yield();
6800}
1da177e4
LT
6801EXPORT_SYMBOL(yield);
6802
6803/*
41a2d6cf 6804 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6805 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6806 */
6807void __sched io_schedule(void)
6808{
54d35f29 6809 struct rq *rq = raw_rq();
1da177e4 6810
0ff92245 6811 delayacct_blkio_start();
1da177e4 6812 atomic_inc(&rq->nr_iowait);
8f0dfc34 6813 current->in_iowait = 1;
1da177e4 6814 schedule();
8f0dfc34 6815 current->in_iowait = 0;
1da177e4 6816 atomic_dec(&rq->nr_iowait);
0ff92245 6817 delayacct_blkio_end();
1da177e4 6818}
1da177e4
LT
6819EXPORT_SYMBOL(io_schedule);
6820
6821long __sched io_schedule_timeout(long timeout)
6822{
54d35f29 6823 struct rq *rq = raw_rq();
1da177e4
LT
6824 long ret;
6825
0ff92245 6826 delayacct_blkio_start();
1da177e4 6827 atomic_inc(&rq->nr_iowait);
8f0dfc34 6828 current->in_iowait = 1;
1da177e4 6829 ret = schedule_timeout(timeout);
8f0dfc34 6830 current->in_iowait = 0;
1da177e4 6831 atomic_dec(&rq->nr_iowait);
0ff92245 6832 delayacct_blkio_end();
1da177e4
LT
6833 return ret;
6834}
6835
6836/**
6837 * sys_sched_get_priority_max - return maximum RT priority.
6838 * @policy: scheduling class.
6839 *
6840 * this syscall returns the maximum rt_priority that can be used
6841 * by a given scheduling class.
6842 */
5add95d4 6843SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6844{
6845 int ret = -EINVAL;
6846
6847 switch (policy) {
6848 case SCHED_FIFO:
6849 case SCHED_RR:
6850 ret = MAX_USER_RT_PRIO-1;
6851 break;
6852 case SCHED_NORMAL:
b0a9499c 6853 case SCHED_BATCH:
dd41f596 6854 case SCHED_IDLE:
1da177e4
LT
6855 ret = 0;
6856 break;
6857 }
6858 return ret;
6859}
6860
6861/**
6862 * sys_sched_get_priority_min - return minimum RT priority.
6863 * @policy: scheduling class.
6864 *
6865 * this syscall returns the minimum rt_priority that can be used
6866 * by a given scheduling class.
6867 */
5add95d4 6868SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6869{
6870 int ret = -EINVAL;
6871
6872 switch (policy) {
6873 case SCHED_FIFO:
6874 case SCHED_RR:
6875 ret = 1;
6876 break;
6877 case SCHED_NORMAL:
b0a9499c 6878 case SCHED_BATCH:
dd41f596 6879 case SCHED_IDLE:
1da177e4
LT
6880 ret = 0;
6881 }
6882 return ret;
6883}
6884
6885/**
6886 * sys_sched_rr_get_interval - return the default timeslice of a process.
6887 * @pid: pid of the process.
6888 * @interval: userspace pointer to the timeslice value.
6889 *
6890 * this syscall writes the default timeslice value of a given process
6891 * into the user-space timespec buffer. A value of '0' means infinity.
6892 */
17da2bd9 6893SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6894 struct timespec __user *, interval)
1da177e4 6895{
36c8b586 6896 struct task_struct *p;
a4ec24b4 6897 unsigned int time_slice;
dba091b9
TG
6898 unsigned long flags;
6899 struct rq *rq;
3a5c359a 6900 int retval;
1da177e4 6901 struct timespec t;
1da177e4
LT
6902
6903 if (pid < 0)
3a5c359a 6904 return -EINVAL;
1da177e4
LT
6905
6906 retval = -ESRCH;
6907 read_lock(&tasklist_lock);
6908 p = find_process_by_pid(pid);
6909 if (!p)
6910 goto out_unlock;
6911
6912 retval = security_task_getscheduler(p);
6913 if (retval)
6914 goto out_unlock;
6915
dba091b9
TG
6916 rq = task_rq_lock(p, &flags);
6917 time_slice = p->sched_class->get_rr_interval(rq, p);
6918 task_rq_unlock(rq, &flags);
a4ec24b4 6919
1da177e4 6920 read_unlock(&tasklist_lock);
a4ec24b4 6921 jiffies_to_timespec(time_slice, &t);
1da177e4 6922 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6923 return retval;
3a5c359a 6924
1da177e4
LT
6925out_unlock:
6926 read_unlock(&tasklist_lock);
6927 return retval;
6928}
6929
7c731e0a 6930static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6931
82a1fcb9 6932void sched_show_task(struct task_struct *p)
1da177e4 6933{
1da177e4 6934 unsigned long free = 0;
36c8b586 6935 unsigned state;
1da177e4 6936
1da177e4 6937 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6938 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6939 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6940#if BITS_PER_LONG == 32
1da177e4 6941 if (state == TASK_RUNNING)
cc4ea795 6942 printk(KERN_CONT " running ");
1da177e4 6943 else
cc4ea795 6944 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6945#else
6946 if (state == TASK_RUNNING)
cc4ea795 6947 printk(KERN_CONT " running task ");
1da177e4 6948 else
cc4ea795 6949 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6950#endif
6951#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6952 free = stack_not_used(p);
1da177e4 6953#endif
aa47b7e0
DR
6954 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6955 task_pid_nr(p), task_pid_nr(p->real_parent),
6956 (unsigned long)task_thread_info(p)->flags);
1da177e4 6957
5fb5e6de 6958 show_stack(p, NULL);
1da177e4
LT
6959}
6960
e59e2ae2 6961void show_state_filter(unsigned long state_filter)
1da177e4 6962{
36c8b586 6963 struct task_struct *g, *p;
1da177e4 6964
4bd77321
IM
6965#if BITS_PER_LONG == 32
6966 printk(KERN_INFO
6967 " task PC stack pid father\n");
1da177e4 6968#else
4bd77321
IM
6969 printk(KERN_INFO
6970 " task PC stack pid father\n");
1da177e4
LT
6971#endif
6972 read_lock(&tasklist_lock);
6973 do_each_thread(g, p) {
6974 /*
6975 * reset the NMI-timeout, listing all files on a slow
6976 * console might take alot of time:
6977 */
6978 touch_nmi_watchdog();
39bc89fd 6979 if (!state_filter || (p->state & state_filter))
82a1fcb9 6980 sched_show_task(p);
1da177e4
LT
6981 } while_each_thread(g, p);
6982
04c9167f
JF
6983 touch_all_softlockup_watchdogs();
6984
dd41f596
IM
6985#ifdef CONFIG_SCHED_DEBUG
6986 sysrq_sched_debug_show();
6987#endif
1da177e4 6988 read_unlock(&tasklist_lock);
e59e2ae2
IM
6989 /*
6990 * Only show locks if all tasks are dumped:
6991 */
93335a21 6992 if (!state_filter)
e59e2ae2 6993 debug_show_all_locks();
1da177e4
LT
6994}
6995
1df21055
IM
6996void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6997{
dd41f596 6998 idle->sched_class = &idle_sched_class;
1df21055
IM
6999}
7000
f340c0d1
IM
7001/**
7002 * init_idle - set up an idle thread for a given CPU
7003 * @idle: task in question
7004 * @cpu: cpu the idle task belongs to
7005 *
7006 * NOTE: this function does not set the idle thread's NEED_RESCHED
7007 * flag, to make booting more robust.
7008 */
5c1e1767 7009void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 7010{
70b97a7f 7011 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
7012 unsigned long flags;
7013
5cbd54ef
IM
7014 spin_lock_irqsave(&rq->lock, flags);
7015
dd41f596
IM
7016 __sched_fork(idle);
7017 idle->se.exec_start = sched_clock();
7018
b29739f9 7019 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 7020 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 7021 __set_task_cpu(idle, cpu);
1da177e4 7022
1da177e4 7023 rq->curr = rq->idle = idle;
4866cde0
NP
7024#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7025 idle->oncpu = 1;
7026#endif
1da177e4
LT
7027 spin_unlock_irqrestore(&rq->lock, flags);
7028
7029 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7030#if defined(CONFIG_PREEMPT)
7031 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7032#else
a1261f54 7033 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7034#endif
dd41f596
IM
7035 /*
7036 * The idle tasks have their own, simple scheduling class:
7037 */
7038 idle->sched_class = &idle_sched_class;
fb52607a 7039 ftrace_graph_init_task(idle);
1da177e4
LT
7040}
7041
7042/*
7043 * In a system that switches off the HZ timer nohz_cpu_mask
7044 * indicates which cpus entered this state. This is used
7045 * in the rcu update to wait only for active cpus. For system
7046 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7047 * always be CPU_BITS_NONE.
1da177e4 7048 */
6a7b3dc3 7049cpumask_var_t nohz_cpu_mask;
1da177e4 7050
19978ca6
IM
7051/*
7052 * Increase the granularity value when there are more CPUs,
7053 * because with more CPUs the 'effective latency' as visible
7054 * to users decreases. But the relationship is not linear,
7055 * so pick a second-best guess by going with the log2 of the
7056 * number of CPUs.
7057 *
7058 * This idea comes from the SD scheduler of Con Kolivas:
7059 */
7060static inline void sched_init_granularity(void)
7061{
7062 unsigned int factor = 1 + ilog2(num_online_cpus());
7063 const unsigned long limit = 200000000;
7064
7065 sysctl_sched_min_granularity *= factor;
7066 if (sysctl_sched_min_granularity > limit)
7067 sysctl_sched_min_granularity = limit;
7068
7069 sysctl_sched_latency *= factor;
7070 if (sysctl_sched_latency > limit)
7071 sysctl_sched_latency = limit;
7072
7073 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
7074
7075 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
7076}
7077
1da177e4
LT
7078#ifdef CONFIG_SMP
7079/*
7080 * This is how migration works:
7081 *
70b97a7f 7082 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7083 * runqueue and wake up that CPU's migration thread.
7084 * 2) we down() the locked semaphore => thread blocks.
7085 * 3) migration thread wakes up (implicitly it forces the migrated
7086 * thread off the CPU)
7087 * 4) it gets the migration request and checks whether the migrated
7088 * task is still in the wrong runqueue.
7089 * 5) if it's in the wrong runqueue then the migration thread removes
7090 * it and puts it into the right queue.
7091 * 6) migration thread up()s the semaphore.
7092 * 7) we wake up and the migration is done.
7093 */
7094
7095/*
7096 * Change a given task's CPU affinity. Migrate the thread to a
7097 * proper CPU and schedule it away if the CPU it's executing on
7098 * is removed from the allowed bitmask.
7099 *
7100 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7101 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7102 * call is not atomic; no spinlocks may be held.
7103 */
96f874e2 7104int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7105{
70b97a7f 7106 struct migration_req req;
1da177e4 7107 unsigned long flags;
70b97a7f 7108 struct rq *rq;
48f24c4d 7109 int ret = 0;
1da177e4
LT
7110
7111 rq = task_rq_lock(p, &flags);
6ad4c188 7112 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7113 ret = -EINVAL;
7114 goto out;
7115 }
7116
9985b0ba 7117 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7118 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7119 ret = -EINVAL;
7120 goto out;
7121 }
7122
73fe6aae 7123 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7124 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7125 else {
96f874e2
RR
7126 cpumask_copy(&p->cpus_allowed, new_mask);
7127 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7128 }
7129
1da177e4 7130 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7131 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7132 goto out;
7133
6ad4c188 7134 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7135 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7136 struct task_struct *mt = rq->migration_thread;
7137
7138 get_task_struct(mt);
1da177e4
LT
7139 task_rq_unlock(rq, &flags);
7140 wake_up_process(rq->migration_thread);
693525e3 7141 put_task_struct(mt);
1da177e4
LT
7142 wait_for_completion(&req.done);
7143 tlb_migrate_finish(p->mm);
7144 return 0;
7145 }
7146out:
7147 task_rq_unlock(rq, &flags);
48f24c4d 7148
1da177e4
LT
7149 return ret;
7150}
cd8ba7cd 7151EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7152
7153/*
41a2d6cf 7154 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7155 * this because either it can't run here any more (set_cpus_allowed()
7156 * away from this CPU, or CPU going down), or because we're
7157 * attempting to rebalance this task on exec (sched_exec).
7158 *
7159 * So we race with normal scheduler movements, but that's OK, as long
7160 * as the task is no longer on this CPU.
efc30814
KK
7161 *
7162 * Returns non-zero if task was successfully migrated.
1da177e4 7163 */
efc30814 7164static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7165{
70b97a7f 7166 struct rq *rq_dest, *rq_src;
dd41f596 7167 int ret = 0, on_rq;
1da177e4 7168
e761b772 7169 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7170 return ret;
1da177e4
LT
7171
7172 rq_src = cpu_rq(src_cpu);
7173 rq_dest = cpu_rq(dest_cpu);
7174
7175 double_rq_lock(rq_src, rq_dest);
7176 /* Already moved. */
7177 if (task_cpu(p) != src_cpu)
b1e38734 7178 goto done;
1da177e4 7179 /* Affinity changed (again). */
96f874e2 7180 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7181 goto fail;
1da177e4 7182
dd41f596 7183 on_rq = p->se.on_rq;
6e82a3be 7184 if (on_rq)
2e1cb74a 7185 deactivate_task(rq_src, p, 0);
6e82a3be 7186
1da177e4 7187 set_task_cpu(p, dest_cpu);
dd41f596
IM
7188 if (on_rq) {
7189 activate_task(rq_dest, p, 0);
15afe09b 7190 check_preempt_curr(rq_dest, p, 0);
1da177e4 7191 }
b1e38734 7192done:
efc30814 7193 ret = 1;
b1e38734 7194fail:
1da177e4 7195 double_rq_unlock(rq_src, rq_dest);
efc30814 7196 return ret;
1da177e4
LT
7197}
7198
03b042bf
PM
7199#define RCU_MIGRATION_IDLE 0
7200#define RCU_MIGRATION_NEED_QS 1
7201#define RCU_MIGRATION_GOT_QS 2
7202#define RCU_MIGRATION_MUST_SYNC 3
7203
1da177e4
LT
7204/*
7205 * migration_thread - this is a highprio system thread that performs
7206 * thread migration by bumping thread off CPU then 'pushing' onto
7207 * another runqueue.
7208 */
95cdf3b7 7209static int migration_thread(void *data)
1da177e4 7210{
03b042bf 7211 int badcpu;
1da177e4 7212 int cpu = (long)data;
70b97a7f 7213 struct rq *rq;
1da177e4
LT
7214
7215 rq = cpu_rq(cpu);
7216 BUG_ON(rq->migration_thread != current);
7217
7218 set_current_state(TASK_INTERRUPTIBLE);
7219 while (!kthread_should_stop()) {
70b97a7f 7220 struct migration_req *req;
1da177e4 7221 struct list_head *head;
1da177e4 7222
1da177e4
LT
7223 spin_lock_irq(&rq->lock);
7224
7225 if (cpu_is_offline(cpu)) {
7226 spin_unlock_irq(&rq->lock);
371cbb38 7227 break;
1da177e4
LT
7228 }
7229
7230 if (rq->active_balance) {
7231 active_load_balance(rq, cpu);
7232 rq->active_balance = 0;
7233 }
7234
7235 head = &rq->migration_queue;
7236
7237 if (list_empty(head)) {
7238 spin_unlock_irq(&rq->lock);
7239 schedule();
7240 set_current_state(TASK_INTERRUPTIBLE);
7241 continue;
7242 }
70b97a7f 7243 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7244 list_del_init(head->next);
7245
03b042bf
PM
7246 if (req->task != NULL) {
7247 spin_unlock(&rq->lock);
7248 __migrate_task(req->task, cpu, req->dest_cpu);
7249 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7250 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7251 spin_unlock(&rq->lock);
7252 } else {
7253 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7254 spin_unlock(&rq->lock);
7255 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7256 }
674311d5 7257 local_irq_enable();
1da177e4
LT
7258
7259 complete(&req->done);
7260 }
7261 __set_current_state(TASK_RUNNING);
1da177e4 7262
1da177e4
LT
7263 return 0;
7264}
7265
7266#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7267
7268static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7269{
7270 int ret;
7271
7272 local_irq_disable();
7273 ret = __migrate_task(p, src_cpu, dest_cpu);
7274 local_irq_enable();
7275 return ret;
7276}
7277
054b9108 7278/*
3a4fa0a2 7279 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7280 */
48f24c4d 7281static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7282{
70b97a7f 7283 int dest_cpu;
6ca09dfc 7284 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7285
7286again:
7287 /* Look for allowed, online CPU in same node. */
6ad4c188 7288 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
e76bd8d9
RR
7289 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7290 goto move;
7291
7292 /* Any allowed, online CPU? */
6ad4c188 7293 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
e76bd8d9
RR
7294 if (dest_cpu < nr_cpu_ids)
7295 goto move;
7296
7297 /* No more Mr. Nice Guy. */
7298 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9 7299 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6ad4c188 7300 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
1da177e4 7301
e76bd8d9
RR
7302 /*
7303 * Don't tell them about moving exiting tasks or
7304 * kernel threads (both mm NULL), since they never
7305 * leave kernel.
7306 */
7307 if (p->mm && printk_ratelimit()) {
7308 printk(KERN_INFO "process %d (%s) no "
7309 "longer affine to cpu%d\n",
7310 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7311 }
e76bd8d9
RR
7312 }
7313
7314move:
7315 /* It can have affinity changed while we were choosing. */
7316 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7317 goto again;
1da177e4
LT
7318}
7319
7320/*
7321 * While a dead CPU has no uninterruptible tasks queued at this point,
7322 * it might still have a nonzero ->nr_uninterruptible counter, because
7323 * for performance reasons the counter is not stricly tracking tasks to
7324 * their home CPUs. So we just add the counter to another CPU's counter,
7325 * to keep the global sum constant after CPU-down:
7326 */
70b97a7f 7327static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7328{
6ad4c188 7329 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7330 unsigned long flags;
7331
7332 local_irq_save(flags);
7333 double_rq_lock(rq_src, rq_dest);
7334 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7335 rq_src->nr_uninterruptible = 0;
7336 double_rq_unlock(rq_src, rq_dest);
7337 local_irq_restore(flags);
7338}
7339
7340/* Run through task list and migrate tasks from the dead cpu. */
7341static void migrate_live_tasks(int src_cpu)
7342{
48f24c4d 7343 struct task_struct *p, *t;
1da177e4 7344
f7b4cddc 7345 read_lock(&tasklist_lock);
1da177e4 7346
48f24c4d
IM
7347 do_each_thread(t, p) {
7348 if (p == current)
1da177e4
LT
7349 continue;
7350
48f24c4d
IM
7351 if (task_cpu(p) == src_cpu)
7352 move_task_off_dead_cpu(src_cpu, p);
7353 } while_each_thread(t, p);
1da177e4 7354
f7b4cddc 7355 read_unlock(&tasklist_lock);
1da177e4
LT
7356}
7357
dd41f596
IM
7358/*
7359 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7360 * It does so by boosting its priority to highest possible.
7361 * Used by CPU offline code.
1da177e4
LT
7362 */
7363void sched_idle_next(void)
7364{
48f24c4d 7365 int this_cpu = smp_processor_id();
70b97a7f 7366 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7367 struct task_struct *p = rq->idle;
7368 unsigned long flags;
7369
7370 /* cpu has to be offline */
48f24c4d 7371 BUG_ON(cpu_online(this_cpu));
1da177e4 7372
48f24c4d
IM
7373 /*
7374 * Strictly not necessary since rest of the CPUs are stopped by now
7375 * and interrupts disabled on the current cpu.
1da177e4
LT
7376 */
7377 spin_lock_irqsave(&rq->lock, flags);
7378
dd41f596 7379 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7380
94bc9a7b
DA
7381 update_rq_clock(rq);
7382 activate_task(rq, p, 0);
1da177e4
LT
7383
7384 spin_unlock_irqrestore(&rq->lock, flags);
7385}
7386
48f24c4d
IM
7387/*
7388 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7389 * offline.
7390 */
7391void idle_task_exit(void)
7392{
7393 struct mm_struct *mm = current->active_mm;
7394
7395 BUG_ON(cpu_online(smp_processor_id()));
7396
7397 if (mm != &init_mm)
7398 switch_mm(mm, &init_mm, current);
7399 mmdrop(mm);
7400}
7401
054b9108 7402/* called under rq->lock with disabled interrupts */
36c8b586 7403static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7404{
70b97a7f 7405 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7406
7407 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7408 BUG_ON(!p->exit_state);
1da177e4
LT
7409
7410 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7411 BUG_ON(p->state == TASK_DEAD);
1da177e4 7412
48f24c4d 7413 get_task_struct(p);
1da177e4
LT
7414
7415 /*
7416 * Drop lock around migration; if someone else moves it,
41a2d6cf 7417 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7418 * fine.
7419 */
f7b4cddc 7420 spin_unlock_irq(&rq->lock);
48f24c4d 7421 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7422 spin_lock_irq(&rq->lock);
1da177e4 7423
48f24c4d 7424 put_task_struct(p);
1da177e4
LT
7425}
7426
7427/* release_task() removes task from tasklist, so we won't find dead tasks. */
7428static void migrate_dead_tasks(unsigned int dead_cpu)
7429{
70b97a7f 7430 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7431 struct task_struct *next;
48f24c4d 7432
dd41f596
IM
7433 for ( ; ; ) {
7434 if (!rq->nr_running)
7435 break;
a8e504d2 7436 update_rq_clock(rq);
b67802ea 7437 next = pick_next_task(rq);
dd41f596
IM
7438 if (!next)
7439 break;
79c53799 7440 next->sched_class->put_prev_task(rq, next);
dd41f596 7441 migrate_dead(dead_cpu, next);
e692ab53 7442
1da177e4
LT
7443 }
7444}
dce48a84
TG
7445
7446/*
7447 * remove the tasks which were accounted by rq from calc_load_tasks.
7448 */
7449static void calc_global_load_remove(struct rq *rq)
7450{
7451 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7452 rq->calc_load_active = 0;
dce48a84 7453}
1da177e4
LT
7454#endif /* CONFIG_HOTPLUG_CPU */
7455
e692ab53
NP
7456#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7457
7458static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7459 {
7460 .procname = "sched_domain",
c57baf1e 7461 .mode = 0555,
e0361851 7462 },
38605cae 7463 {0, },
e692ab53
NP
7464};
7465
7466static struct ctl_table sd_ctl_root[] = {
e0361851 7467 {
c57baf1e 7468 .ctl_name = CTL_KERN,
e0361851 7469 .procname = "kernel",
c57baf1e 7470 .mode = 0555,
e0361851
AD
7471 .child = sd_ctl_dir,
7472 },
38605cae 7473 {0, },
e692ab53
NP
7474};
7475
7476static struct ctl_table *sd_alloc_ctl_entry(int n)
7477{
7478 struct ctl_table *entry =
5cf9f062 7479 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7480
e692ab53
NP
7481 return entry;
7482}
7483
6382bc90
MM
7484static void sd_free_ctl_entry(struct ctl_table **tablep)
7485{
cd790076 7486 struct ctl_table *entry;
6382bc90 7487
cd790076
MM
7488 /*
7489 * In the intermediate directories, both the child directory and
7490 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7491 * will always be set. In the lowest directory the names are
cd790076
MM
7492 * static strings and all have proc handlers.
7493 */
7494 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7495 if (entry->child)
7496 sd_free_ctl_entry(&entry->child);
cd790076
MM
7497 if (entry->proc_handler == NULL)
7498 kfree(entry->procname);
7499 }
6382bc90
MM
7500
7501 kfree(*tablep);
7502 *tablep = NULL;
7503}
7504
e692ab53 7505static void
e0361851 7506set_table_entry(struct ctl_table *entry,
e692ab53
NP
7507 const char *procname, void *data, int maxlen,
7508 mode_t mode, proc_handler *proc_handler)
7509{
e692ab53
NP
7510 entry->procname = procname;
7511 entry->data = data;
7512 entry->maxlen = maxlen;
7513 entry->mode = mode;
7514 entry->proc_handler = proc_handler;
7515}
7516
7517static struct ctl_table *
7518sd_alloc_ctl_domain_table(struct sched_domain *sd)
7519{
a5d8c348 7520 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7521
ad1cdc1d
MM
7522 if (table == NULL)
7523 return NULL;
7524
e0361851 7525 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7526 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7527 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7528 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7529 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7530 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7531 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7532 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7533 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7534 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7535 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7536 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7537 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7538 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7539 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7540 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7541 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7542 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7543 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7544 &sd->cache_nice_tries,
7545 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7546 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7547 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7548 set_table_entry(&table[11], "name", sd->name,
7549 CORENAME_MAX_SIZE, 0444, proc_dostring);
7550 /* &table[12] is terminator */
e692ab53
NP
7551
7552 return table;
7553}
7554
9a4e7159 7555static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7556{
7557 struct ctl_table *entry, *table;
7558 struct sched_domain *sd;
7559 int domain_num = 0, i;
7560 char buf[32];
7561
7562 for_each_domain(cpu, sd)
7563 domain_num++;
7564 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7565 if (table == NULL)
7566 return NULL;
e692ab53
NP
7567
7568 i = 0;
7569 for_each_domain(cpu, sd) {
7570 snprintf(buf, 32, "domain%d", i);
e692ab53 7571 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7572 entry->mode = 0555;
e692ab53
NP
7573 entry->child = sd_alloc_ctl_domain_table(sd);
7574 entry++;
7575 i++;
7576 }
7577 return table;
7578}
7579
7580static struct ctl_table_header *sd_sysctl_header;
6382bc90 7581static void register_sched_domain_sysctl(void)
e692ab53 7582{
6ad4c188 7583 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7584 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7585 char buf[32];
7586
7378547f
MM
7587 WARN_ON(sd_ctl_dir[0].child);
7588 sd_ctl_dir[0].child = entry;
7589
ad1cdc1d
MM
7590 if (entry == NULL)
7591 return;
7592
6ad4c188 7593 for_each_possible_cpu(i) {
e692ab53 7594 snprintf(buf, 32, "cpu%d", i);
e692ab53 7595 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7596 entry->mode = 0555;
e692ab53 7597 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7598 entry++;
e692ab53 7599 }
7378547f
MM
7600
7601 WARN_ON(sd_sysctl_header);
e692ab53
NP
7602 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7603}
6382bc90 7604
7378547f 7605/* may be called multiple times per register */
6382bc90
MM
7606static void unregister_sched_domain_sysctl(void)
7607{
7378547f
MM
7608 if (sd_sysctl_header)
7609 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7610 sd_sysctl_header = NULL;
7378547f
MM
7611 if (sd_ctl_dir[0].child)
7612 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7613}
e692ab53 7614#else
6382bc90
MM
7615static void register_sched_domain_sysctl(void)
7616{
7617}
7618static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7619{
7620}
7621#endif
7622
1f11eb6a
GH
7623static void set_rq_online(struct rq *rq)
7624{
7625 if (!rq->online) {
7626 const struct sched_class *class;
7627
c6c4927b 7628 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7629 rq->online = 1;
7630
7631 for_each_class(class) {
7632 if (class->rq_online)
7633 class->rq_online(rq);
7634 }
7635 }
7636}
7637
7638static void set_rq_offline(struct rq *rq)
7639{
7640 if (rq->online) {
7641 const struct sched_class *class;
7642
7643 for_each_class(class) {
7644 if (class->rq_offline)
7645 class->rq_offline(rq);
7646 }
7647
c6c4927b 7648 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7649 rq->online = 0;
7650 }
7651}
7652
1da177e4
LT
7653/*
7654 * migration_call - callback that gets triggered when a CPU is added.
7655 * Here we can start up the necessary migration thread for the new CPU.
7656 */
48f24c4d
IM
7657static int __cpuinit
7658migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7659{
1da177e4 7660 struct task_struct *p;
48f24c4d 7661 int cpu = (long)hcpu;
1da177e4 7662 unsigned long flags;
70b97a7f 7663 struct rq *rq;
1da177e4
LT
7664
7665 switch (action) {
5be9361c 7666
1da177e4 7667 case CPU_UP_PREPARE:
8bb78442 7668 case CPU_UP_PREPARE_FROZEN:
dd41f596 7669 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7670 if (IS_ERR(p))
7671 return NOTIFY_BAD;
1da177e4
LT
7672 kthread_bind(p, cpu);
7673 /* Must be high prio: stop_machine expects to yield to it. */
7674 rq = task_rq_lock(p, &flags);
dd41f596 7675 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7676 task_rq_unlock(rq, &flags);
371cbb38 7677 get_task_struct(p);
1da177e4 7678 cpu_rq(cpu)->migration_thread = p;
a468d389 7679 rq->calc_load_update = calc_load_update;
1da177e4 7680 break;
48f24c4d 7681
1da177e4 7682 case CPU_ONLINE:
8bb78442 7683 case CPU_ONLINE_FROZEN:
3a4fa0a2 7684 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7685 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7686
7687 /* Update our root-domain */
7688 rq = cpu_rq(cpu);
7689 spin_lock_irqsave(&rq->lock, flags);
7690 if (rq->rd) {
c6c4927b 7691 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7692
7693 set_rq_online(rq);
1f94ef59
GH
7694 }
7695 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7696 break;
48f24c4d 7697
1da177e4
LT
7698#ifdef CONFIG_HOTPLUG_CPU
7699 case CPU_UP_CANCELED:
8bb78442 7700 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7701 if (!cpu_rq(cpu)->migration_thread)
7702 break;
41a2d6cf 7703 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7704 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7705 cpumask_any(cpu_online_mask));
1da177e4 7706 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7707 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7708 cpu_rq(cpu)->migration_thread = NULL;
7709 break;
48f24c4d 7710
1da177e4 7711 case CPU_DEAD:
8bb78442 7712 case CPU_DEAD_FROZEN:
470fd646 7713 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7714 migrate_live_tasks(cpu);
7715 rq = cpu_rq(cpu);
7716 kthread_stop(rq->migration_thread);
371cbb38 7717 put_task_struct(rq->migration_thread);
1da177e4
LT
7718 rq->migration_thread = NULL;
7719 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7720 spin_lock_irq(&rq->lock);
a8e504d2 7721 update_rq_clock(rq);
2e1cb74a 7722 deactivate_task(rq, rq->idle, 0);
1da177e4 7723 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7724 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7725 rq->idle->sched_class = &idle_sched_class;
1da177e4 7726 migrate_dead_tasks(cpu);
d2da272a 7727 spin_unlock_irq(&rq->lock);
470fd646 7728 cpuset_unlock();
1da177e4
LT
7729 migrate_nr_uninterruptible(rq);
7730 BUG_ON(rq->nr_running != 0);
dce48a84 7731 calc_global_load_remove(rq);
41a2d6cf
IM
7732 /*
7733 * No need to migrate the tasks: it was best-effort if
7734 * they didn't take sched_hotcpu_mutex. Just wake up
7735 * the requestors.
7736 */
1da177e4
LT
7737 spin_lock_irq(&rq->lock);
7738 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7739 struct migration_req *req;
7740
1da177e4 7741 req = list_entry(rq->migration_queue.next,
70b97a7f 7742 struct migration_req, list);
1da177e4 7743 list_del_init(&req->list);
9a2bd244 7744 spin_unlock_irq(&rq->lock);
1da177e4 7745 complete(&req->done);
9a2bd244 7746 spin_lock_irq(&rq->lock);
1da177e4
LT
7747 }
7748 spin_unlock_irq(&rq->lock);
7749 break;
57d885fe 7750
08f503b0
GH
7751 case CPU_DYING:
7752 case CPU_DYING_FROZEN:
57d885fe
GH
7753 /* Update our root-domain */
7754 rq = cpu_rq(cpu);
7755 spin_lock_irqsave(&rq->lock, flags);
7756 if (rq->rd) {
c6c4927b 7757 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7758 set_rq_offline(rq);
57d885fe
GH
7759 }
7760 spin_unlock_irqrestore(&rq->lock, flags);
7761 break;
1da177e4
LT
7762#endif
7763 }
7764 return NOTIFY_OK;
7765}
7766
f38b0820
PM
7767/*
7768 * Register at high priority so that task migration (migrate_all_tasks)
7769 * happens before everything else. This has to be lower priority than
cdd6c482 7770 * the notifier in the perf_event subsystem, though.
1da177e4 7771 */
26c2143b 7772static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7773 .notifier_call = migration_call,
7774 .priority = 10
7775};
7776
7babe8db 7777static int __init migration_init(void)
1da177e4
LT
7778{
7779 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7780 int err;
48f24c4d
IM
7781
7782 /* Start one for the boot CPU: */
07dccf33
AM
7783 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7784 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7785 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7786 register_cpu_notifier(&migration_notifier);
7babe8db 7787
a004cd42 7788 return 0;
1da177e4 7789}
7babe8db 7790early_initcall(migration_init);
1da177e4
LT
7791#endif
7792
7793#ifdef CONFIG_SMP
476f3534 7794
3e9830dc 7795#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7796
f6630114
MT
7797static __read_mostly int sched_domain_debug_enabled;
7798
7799static int __init sched_domain_debug_setup(char *str)
7800{
7801 sched_domain_debug_enabled = 1;
7802
7803 return 0;
7804}
7805early_param("sched_debug", sched_domain_debug_setup);
7806
7c16ec58 7807static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7808 struct cpumask *groupmask)
1da177e4 7809{
4dcf6aff 7810 struct sched_group *group = sd->groups;
434d53b0 7811 char str[256];
1da177e4 7812
968ea6d8 7813 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7814 cpumask_clear(groupmask);
4dcf6aff
IM
7815
7816 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7817
7818 if (!(sd->flags & SD_LOAD_BALANCE)) {
7819 printk("does not load-balance\n");
7820 if (sd->parent)
7821 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7822 " has parent");
7823 return -1;
41c7ce9a
NP
7824 }
7825
eefd796a 7826 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7827
758b2cdc 7828 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7829 printk(KERN_ERR "ERROR: domain->span does not contain "
7830 "CPU%d\n", cpu);
7831 }
758b2cdc 7832 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7833 printk(KERN_ERR "ERROR: domain->groups does not contain"
7834 " CPU%d\n", cpu);
7835 }
1da177e4 7836
4dcf6aff 7837 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7838 do {
4dcf6aff
IM
7839 if (!group) {
7840 printk("\n");
7841 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7842 break;
7843 }
7844
18a3885f 7845 if (!group->cpu_power) {
4dcf6aff
IM
7846 printk(KERN_CONT "\n");
7847 printk(KERN_ERR "ERROR: domain->cpu_power not "
7848 "set\n");
7849 break;
7850 }
1da177e4 7851
758b2cdc 7852 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7853 printk(KERN_CONT "\n");
7854 printk(KERN_ERR "ERROR: empty group\n");
7855 break;
7856 }
1da177e4 7857
758b2cdc 7858 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7859 printk(KERN_CONT "\n");
7860 printk(KERN_ERR "ERROR: repeated CPUs\n");
7861 break;
7862 }
1da177e4 7863
758b2cdc 7864 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7865
968ea6d8 7866 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7867
7868 printk(KERN_CONT " %s", str);
18a3885f
PZ
7869 if (group->cpu_power != SCHED_LOAD_SCALE) {
7870 printk(KERN_CONT " (cpu_power = %d)",
7871 group->cpu_power);
381512cf 7872 }
1da177e4 7873
4dcf6aff
IM
7874 group = group->next;
7875 } while (group != sd->groups);
7876 printk(KERN_CONT "\n");
1da177e4 7877
758b2cdc 7878 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7879 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7880
758b2cdc
RR
7881 if (sd->parent &&
7882 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7883 printk(KERN_ERR "ERROR: parent span is not a superset "
7884 "of domain->span\n");
7885 return 0;
7886}
1da177e4 7887
4dcf6aff
IM
7888static void sched_domain_debug(struct sched_domain *sd, int cpu)
7889{
d5dd3db1 7890 cpumask_var_t groupmask;
4dcf6aff 7891 int level = 0;
1da177e4 7892
f6630114
MT
7893 if (!sched_domain_debug_enabled)
7894 return;
7895
4dcf6aff
IM
7896 if (!sd) {
7897 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7898 return;
7899 }
1da177e4 7900
4dcf6aff
IM
7901 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7902
d5dd3db1 7903 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7904 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7905 return;
7906 }
7907
4dcf6aff 7908 for (;;) {
7c16ec58 7909 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7910 break;
1da177e4
LT
7911 level++;
7912 sd = sd->parent;
33859f7f 7913 if (!sd)
4dcf6aff
IM
7914 break;
7915 }
d5dd3db1 7916 free_cpumask_var(groupmask);
1da177e4 7917}
6d6bc0ad 7918#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7919# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7920#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7921
1a20ff27 7922static int sd_degenerate(struct sched_domain *sd)
245af2c7 7923{
758b2cdc 7924 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7925 return 1;
7926
7927 /* Following flags need at least 2 groups */
7928 if (sd->flags & (SD_LOAD_BALANCE |
7929 SD_BALANCE_NEWIDLE |
7930 SD_BALANCE_FORK |
89c4710e
SS
7931 SD_BALANCE_EXEC |
7932 SD_SHARE_CPUPOWER |
7933 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7934 if (sd->groups != sd->groups->next)
7935 return 0;
7936 }
7937
7938 /* Following flags don't use groups */
c88d5910 7939 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7940 return 0;
7941
7942 return 1;
7943}
7944
48f24c4d
IM
7945static int
7946sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7947{
7948 unsigned long cflags = sd->flags, pflags = parent->flags;
7949
7950 if (sd_degenerate(parent))
7951 return 1;
7952
758b2cdc 7953 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7954 return 0;
7955
245af2c7
SS
7956 /* Flags needing groups don't count if only 1 group in parent */
7957 if (parent->groups == parent->groups->next) {
7958 pflags &= ~(SD_LOAD_BALANCE |
7959 SD_BALANCE_NEWIDLE |
7960 SD_BALANCE_FORK |
89c4710e
SS
7961 SD_BALANCE_EXEC |
7962 SD_SHARE_CPUPOWER |
7963 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7964 if (nr_node_ids == 1)
7965 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7966 }
7967 if (~cflags & pflags)
7968 return 0;
7969
7970 return 1;
7971}
7972
c6c4927b
RR
7973static void free_rootdomain(struct root_domain *rd)
7974{
047106ad
PZ
7975 synchronize_sched();
7976
68e74568
RR
7977 cpupri_cleanup(&rd->cpupri);
7978
c6c4927b
RR
7979 free_cpumask_var(rd->rto_mask);
7980 free_cpumask_var(rd->online);
7981 free_cpumask_var(rd->span);
7982 kfree(rd);
7983}
7984
57d885fe
GH
7985static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7986{
a0490fa3 7987 struct root_domain *old_rd = NULL;
57d885fe 7988 unsigned long flags;
57d885fe
GH
7989
7990 spin_lock_irqsave(&rq->lock, flags);
7991
7992 if (rq->rd) {
a0490fa3 7993 old_rd = rq->rd;
57d885fe 7994
c6c4927b 7995 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7996 set_rq_offline(rq);
57d885fe 7997
c6c4927b 7998 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7999
a0490fa3
IM
8000 /*
8001 * If we dont want to free the old_rt yet then
8002 * set old_rd to NULL to skip the freeing later
8003 * in this function:
8004 */
8005 if (!atomic_dec_and_test(&old_rd->refcount))
8006 old_rd = NULL;
57d885fe
GH
8007 }
8008
8009 atomic_inc(&rd->refcount);
8010 rq->rd = rd;
8011
c6c4927b 8012 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 8013 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 8014 set_rq_online(rq);
57d885fe
GH
8015
8016 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
8017
8018 if (old_rd)
8019 free_rootdomain(old_rd);
57d885fe
GH
8020}
8021
fd5e1b5d 8022static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 8023{
36b7b6d4
PE
8024 gfp_t gfp = GFP_KERNEL;
8025
57d885fe
GH
8026 memset(rd, 0, sizeof(*rd));
8027
36b7b6d4
PE
8028 if (bootmem)
8029 gfp = GFP_NOWAIT;
c6c4927b 8030
36b7b6d4 8031 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8032 goto out;
36b7b6d4 8033 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8034 goto free_span;
36b7b6d4 8035 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8036 goto free_online;
6e0534f2 8037
0fb53029 8038 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8039 goto free_rto_mask;
c6c4927b 8040 return 0;
6e0534f2 8041
68e74568
RR
8042free_rto_mask:
8043 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8044free_online:
8045 free_cpumask_var(rd->online);
8046free_span:
8047 free_cpumask_var(rd->span);
0c910d28 8048out:
c6c4927b 8049 return -ENOMEM;
57d885fe
GH
8050}
8051
8052static void init_defrootdomain(void)
8053{
c6c4927b
RR
8054 init_rootdomain(&def_root_domain, true);
8055
57d885fe
GH
8056 atomic_set(&def_root_domain.refcount, 1);
8057}
8058
dc938520 8059static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8060{
8061 struct root_domain *rd;
8062
8063 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8064 if (!rd)
8065 return NULL;
8066
c6c4927b
RR
8067 if (init_rootdomain(rd, false) != 0) {
8068 kfree(rd);
8069 return NULL;
8070 }
57d885fe
GH
8071
8072 return rd;
8073}
8074
1da177e4 8075/*
0eab9146 8076 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8077 * hold the hotplug lock.
8078 */
0eab9146
IM
8079static void
8080cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8081{
70b97a7f 8082 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8083 struct sched_domain *tmp;
8084
8085 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8086 for (tmp = sd; tmp; ) {
245af2c7
SS
8087 struct sched_domain *parent = tmp->parent;
8088 if (!parent)
8089 break;
f29c9b1c 8090
1a848870 8091 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8092 tmp->parent = parent->parent;
1a848870
SS
8093 if (parent->parent)
8094 parent->parent->child = tmp;
f29c9b1c
LZ
8095 } else
8096 tmp = tmp->parent;
245af2c7
SS
8097 }
8098
1a848870 8099 if (sd && sd_degenerate(sd)) {
245af2c7 8100 sd = sd->parent;
1a848870
SS
8101 if (sd)
8102 sd->child = NULL;
8103 }
1da177e4
LT
8104
8105 sched_domain_debug(sd, cpu);
8106
57d885fe 8107 rq_attach_root(rq, rd);
674311d5 8108 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8109}
8110
8111/* cpus with isolated domains */
dcc30a35 8112static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8113
8114/* Setup the mask of cpus configured for isolated domains */
8115static int __init isolated_cpu_setup(char *str)
8116{
bdddd296 8117 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8118 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8119 return 1;
8120}
8121
8927f494 8122__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8123
8124/*
6711cab4
SS
8125 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8126 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8127 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8128 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8129 *
8130 * init_sched_build_groups will build a circular linked list of the groups
8131 * covered by the given span, and will set each group's ->cpumask correctly,
8132 * and ->cpu_power to 0.
8133 */
a616058b 8134static void
96f874e2
RR
8135init_sched_build_groups(const struct cpumask *span,
8136 const struct cpumask *cpu_map,
8137 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8138 struct sched_group **sg,
96f874e2
RR
8139 struct cpumask *tmpmask),
8140 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8141{
8142 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8143 int i;
8144
96f874e2 8145 cpumask_clear(covered);
7c16ec58 8146
abcd083a 8147 for_each_cpu(i, span) {
6711cab4 8148 struct sched_group *sg;
7c16ec58 8149 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8150 int j;
8151
758b2cdc 8152 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8153 continue;
8154
758b2cdc 8155 cpumask_clear(sched_group_cpus(sg));
18a3885f 8156 sg->cpu_power = 0;
1da177e4 8157
abcd083a 8158 for_each_cpu(j, span) {
7c16ec58 8159 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8160 continue;
8161
96f874e2 8162 cpumask_set_cpu(j, covered);
758b2cdc 8163 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8164 }
8165 if (!first)
8166 first = sg;
8167 if (last)
8168 last->next = sg;
8169 last = sg;
8170 }
8171 last->next = first;
8172}
8173
9c1cfda2 8174#define SD_NODES_PER_DOMAIN 16
1da177e4 8175
9c1cfda2 8176#ifdef CONFIG_NUMA
198e2f18 8177
9c1cfda2
JH
8178/**
8179 * find_next_best_node - find the next node to include in a sched_domain
8180 * @node: node whose sched_domain we're building
8181 * @used_nodes: nodes already in the sched_domain
8182 *
41a2d6cf 8183 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8184 * finds the closest node not already in the @used_nodes map.
8185 *
8186 * Should use nodemask_t.
8187 */
c5f59f08 8188static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8189{
8190 int i, n, val, min_val, best_node = 0;
8191
8192 min_val = INT_MAX;
8193
076ac2af 8194 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8195 /* Start at @node */
076ac2af 8196 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8197
8198 if (!nr_cpus_node(n))
8199 continue;
8200
8201 /* Skip already used nodes */
c5f59f08 8202 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8203 continue;
8204
8205 /* Simple min distance search */
8206 val = node_distance(node, n);
8207
8208 if (val < min_val) {
8209 min_val = val;
8210 best_node = n;
8211 }
8212 }
8213
c5f59f08 8214 node_set(best_node, *used_nodes);
9c1cfda2
JH
8215 return best_node;
8216}
8217
8218/**
8219 * sched_domain_node_span - get a cpumask for a node's sched_domain
8220 * @node: node whose cpumask we're constructing
73486722 8221 * @span: resulting cpumask
9c1cfda2 8222 *
41a2d6cf 8223 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8224 * should be one that prevents unnecessary balancing, but also spreads tasks
8225 * out optimally.
8226 */
96f874e2 8227static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8228{
c5f59f08 8229 nodemask_t used_nodes;
48f24c4d 8230 int i;
9c1cfda2 8231
6ca09dfc 8232 cpumask_clear(span);
c5f59f08 8233 nodes_clear(used_nodes);
9c1cfda2 8234
6ca09dfc 8235 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8236 node_set(node, used_nodes);
9c1cfda2
JH
8237
8238 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8239 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8240
6ca09dfc 8241 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8242 }
9c1cfda2 8243}
6d6bc0ad 8244#endif /* CONFIG_NUMA */
9c1cfda2 8245
5c45bf27 8246int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8247
6c99e9ad
RR
8248/*
8249 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8250 *
8251 * ( See the the comments in include/linux/sched.h:struct sched_group
8252 * and struct sched_domain. )
6c99e9ad
RR
8253 */
8254struct static_sched_group {
8255 struct sched_group sg;
8256 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8257};
8258
8259struct static_sched_domain {
8260 struct sched_domain sd;
8261 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8262};
8263
49a02c51
AH
8264struct s_data {
8265#ifdef CONFIG_NUMA
8266 int sd_allnodes;
8267 cpumask_var_t domainspan;
8268 cpumask_var_t covered;
8269 cpumask_var_t notcovered;
8270#endif
8271 cpumask_var_t nodemask;
8272 cpumask_var_t this_sibling_map;
8273 cpumask_var_t this_core_map;
8274 cpumask_var_t send_covered;
8275 cpumask_var_t tmpmask;
8276 struct sched_group **sched_group_nodes;
8277 struct root_domain *rd;
8278};
8279
2109b99e
AH
8280enum s_alloc {
8281 sa_sched_groups = 0,
8282 sa_rootdomain,
8283 sa_tmpmask,
8284 sa_send_covered,
8285 sa_this_core_map,
8286 sa_this_sibling_map,
8287 sa_nodemask,
8288 sa_sched_group_nodes,
8289#ifdef CONFIG_NUMA
8290 sa_notcovered,
8291 sa_covered,
8292 sa_domainspan,
8293#endif
8294 sa_none,
8295};
8296
9c1cfda2 8297/*
48f24c4d 8298 * SMT sched-domains:
9c1cfda2 8299 */
1da177e4 8300#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8301static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8302static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8303
41a2d6cf 8304static int
96f874e2
RR
8305cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8306 struct sched_group **sg, struct cpumask *unused)
1da177e4 8307{
6711cab4 8308 if (sg)
6c99e9ad 8309 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8310 return cpu;
8311}
6d6bc0ad 8312#endif /* CONFIG_SCHED_SMT */
1da177e4 8313
48f24c4d
IM
8314/*
8315 * multi-core sched-domains:
8316 */
1e9f28fa 8317#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8318static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8319static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8320#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8321
8322#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8323static int
96f874e2
RR
8324cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8325 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8326{
6711cab4 8327 int group;
7c16ec58 8328
c69fc56d 8329 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8330 group = cpumask_first(mask);
6711cab4 8331 if (sg)
6c99e9ad 8332 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8333 return group;
1e9f28fa
SS
8334}
8335#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8336static int
96f874e2
RR
8337cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8338 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8339{
6711cab4 8340 if (sg)
6c99e9ad 8341 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8342 return cpu;
8343}
8344#endif
8345
6c99e9ad
RR
8346static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8347static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8348
41a2d6cf 8349static int
96f874e2
RR
8350cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8351 struct sched_group **sg, struct cpumask *mask)
1da177e4 8352{
6711cab4 8353 int group;
48f24c4d 8354#ifdef CONFIG_SCHED_MC
6ca09dfc 8355 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8356 group = cpumask_first(mask);
1e9f28fa 8357#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8358 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8359 group = cpumask_first(mask);
1da177e4 8360#else
6711cab4 8361 group = cpu;
1da177e4 8362#endif
6711cab4 8363 if (sg)
6c99e9ad 8364 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8365 return group;
1da177e4
LT
8366}
8367
8368#ifdef CONFIG_NUMA
1da177e4 8369/*
9c1cfda2
JH
8370 * The init_sched_build_groups can't handle what we want to do with node
8371 * groups, so roll our own. Now each node has its own list of groups which
8372 * gets dynamically allocated.
1da177e4 8373 */
62ea9ceb 8374static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8375static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8376
62ea9ceb 8377static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8378static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8379
96f874e2
RR
8380static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8381 struct sched_group **sg,
8382 struct cpumask *nodemask)
9c1cfda2 8383{
6711cab4
SS
8384 int group;
8385
6ca09dfc 8386 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8387 group = cpumask_first(nodemask);
6711cab4
SS
8388
8389 if (sg)
6c99e9ad 8390 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8391 return group;
1da177e4 8392}
6711cab4 8393
08069033
SS
8394static void init_numa_sched_groups_power(struct sched_group *group_head)
8395{
8396 struct sched_group *sg = group_head;
8397 int j;
8398
8399 if (!sg)
8400 return;
3a5c359a 8401 do {
758b2cdc 8402 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8403 struct sched_domain *sd;
08069033 8404
6c99e9ad 8405 sd = &per_cpu(phys_domains, j).sd;
13318a71 8406 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8407 /*
8408 * Only add "power" once for each
8409 * physical package.
8410 */
8411 continue;
8412 }
08069033 8413
18a3885f 8414 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8415 }
8416 sg = sg->next;
8417 } while (sg != group_head);
08069033 8418}
0601a88d
AH
8419
8420static int build_numa_sched_groups(struct s_data *d,
8421 const struct cpumask *cpu_map, int num)
8422{
8423 struct sched_domain *sd;
8424 struct sched_group *sg, *prev;
8425 int n, j;
8426
8427 cpumask_clear(d->covered);
8428 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8429 if (cpumask_empty(d->nodemask)) {
8430 d->sched_group_nodes[num] = NULL;
8431 goto out;
8432 }
8433
8434 sched_domain_node_span(num, d->domainspan);
8435 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8436
8437 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8438 GFP_KERNEL, num);
8439 if (!sg) {
8440 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8441 num);
8442 return -ENOMEM;
8443 }
8444 d->sched_group_nodes[num] = sg;
8445
8446 for_each_cpu(j, d->nodemask) {
8447 sd = &per_cpu(node_domains, j).sd;
8448 sd->groups = sg;
8449 }
8450
18a3885f 8451 sg->cpu_power = 0;
0601a88d
AH
8452 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8453 sg->next = sg;
8454 cpumask_or(d->covered, d->covered, d->nodemask);
8455
8456 prev = sg;
8457 for (j = 0; j < nr_node_ids; j++) {
8458 n = (num + j) % nr_node_ids;
8459 cpumask_complement(d->notcovered, d->covered);
8460 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8461 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8462 if (cpumask_empty(d->tmpmask))
8463 break;
8464 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8465 if (cpumask_empty(d->tmpmask))
8466 continue;
8467 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8468 GFP_KERNEL, num);
8469 if (!sg) {
8470 printk(KERN_WARNING
8471 "Can not alloc domain group for node %d\n", j);
8472 return -ENOMEM;
8473 }
18a3885f 8474 sg->cpu_power = 0;
0601a88d
AH
8475 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8476 sg->next = prev->next;
8477 cpumask_or(d->covered, d->covered, d->tmpmask);
8478 prev->next = sg;
8479 prev = sg;
8480 }
8481out:
8482 return 0;
8483}
6d6bc0ad 8484#endif /* CONFIG_NUMA */
1da177e4 8485
a616058b 8486#ifdef CONFIG_NUMA
51888ca2 8487/* Free memory allocated for various sched_group structures */
96f874e2
RR
8488static void free_sched_groups(const struct cpumask *cpu_map,
8489 struct cpumask *nodemask)
51888ca2 8490{
a616058b 8491 int cpu, i;
51888ca2 8492
abcd083a 8493 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8494 struct sched_group **sched_group_nodes
8495 = sched_group_nodes_bycpu[cpu];
8496
51888ca2
SV
8497 if (!sched_group_nodes)
8498 continue;
8499
076ac2af 8500 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8501 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8502
6ca09dfc 8503 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8504 if (cpumask_empty(nodemask))
51888ca2
SV
8505 continue;
8506
8507 if (sg == NULL)
8508 continue;
8509 sg = sg->next;
8510next_sg:
8511 oldsg = sg;
8512 sg = sg->next;
8513 kfree(oldsg);
8514 if (oldsg != sched_group_nodes[i])
8515 goto next_sg;
8516 }
8517 kfree(sched_group_nodes);
8518 sched_group_nodes_bycpu[cpu] = NULL;
8519 }
51888ca2 8520}
6d6bc0ad 8521#else /* !CONFIG_NUMA */
96f874e2
RR
8522static void free_sched_groups(const struct cpumask *cpu_map,
8523 struct cpumask *nodemask)
a616058b
SS
8524{
8525}
6d6bc0ad 8526#endif /* CONFIG_NUMA */
51888ca2 8527
89c4710e
SS
8528/*
8529 * Initialize sched groups cpu_power.
8530 *
8531 * cpu_power indicates the capacity of sched group, which is used while
8532 * distributing the load between different sched groups in a sched domain.
8533 * Typically cpu_power for all the groups in a sched domain will be same unless
8534 * there are asymmetries in the topology. If there are asymmetries, group
8535 * having more cpu_power will pickup more load compared to the group having
8536 * less cpu_power.
89c4710e
SS
8537 */
8538static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8539{
8540 struct sched_domain *child;
8541 struct sched_group *group;
f93e65c1
PZ
8542 long power;
8543 int weight;
89c4710e
SS
8544
8545 WARN_ON(!sd || !sd->groups);
8546
13318a71 8547 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8548 return;
8549
8550 child = sd->child;
8551
18a3885f 8552 sd->groups->cpu_power = 0;
5517d86b 8553
f93e65c1
PZ
8554 if (!child) {
8555 power = SCHED_LOAD_SCALE;
8556 weight = cpumask_weight(sched_domain_span(sd));
8557 /*
8558 * SMT siblings share the power of a single core.
a52bfd73
PZ
8559 * Usually multiple threads get a better yield out of
8560 * that one core than a single thread would have,
8561 * reflect that in sd->smt_gain.
f93e65c1 8562 */
a52bfd73
PZ
8563 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8564 power *= sd->smt_gain;
f93e65c1 8565 power /= weight;
a52bfd73
PZ
8566 power >>= SCHED_LOAD_SHIFT;
8567 }
18a3885f 8568 sd->groups->cpu_power += power;
89c4710e
SS
8569 return;
8570 }
8571
89c4710e 8572 /*
f93e65c1 8573 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8574 */
8575 group = child->groups;
8576 do {
18a3885f 8577 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8578 group = group->next;
8579 } while (group != child->groups);
8580}
8581
7c16ec58
MT
8582/*
8583 * Initializers for schedule domains
8584 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8585 */
8586
a5d8c348
IM
8587#ifdef CONFIG_SCHED_DEBUG
8588# define SD_INIT_NAME(sd, type) sd->name = #type
8589#else
8590# define SD_INIT_NAME(sd, type) do { } while (0)
8591#endif
8592
7c16ec58 8593#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8594
7c16ec58
MT
8595#define SD_INIT_FUNC(type) \
8596static noinline void sd_init_##type(struct sched_domain *sd) \
8597{ \
8598 memset(sd, 0, sizeof(*sd)); \
8599 *sd = SD_##type##_INIT; \
1d3504fc 8600 sd->level = SD_LV_##type; \
a5d8c348 8601 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8602}
8603
8604SD_INIT_FUNC(CPU)
8605#ifdef CONFIG_NUMA
8606 SD_INIT_FUNC(ALLNODES)
8607 SD_INIT_FUNC(NODE)
8608#endif
8609#ifdef CONFIG_SCHED_SMT
8610 SD_INIT_FUNC(SIBLING)
8611#endif
8612#ifdef CONFIG_SCHED_MC
8613 SD_INIT_FUNC(MC)
8614#endif
8615
1d3504fc
HS
8616static int default_relax_domain_level = -1;
8617
8618static int __init setup_relax_domain_level(char *str)
8619{
30e0e178
LZ
8620 unsigned long val;
8621
8622 val = simple_strtoul(str, NULL, 0);
8623 if (val < SD_LV_MAX)
8624 default_relax_domain_level = val;
8625
1d3504fc
HS
8626 return 1;
8627}
8628__setup("relax_domain_level=", setup_relax_domain_level);
8629
8630static void set_domain_attribute(struct sched_domain *sd,
8631 struct sched_domain_attr *attr)
8632{
8633 int request;
8634
8635 if (!attr || attr->relax_domain_level < 0) {
8636 if (default_relax_domain_level < 0)
8637 return;
8638 else
8639 request = default_relax_domain_level;
8640 } else
8641 request = attr->relax_domain_level;
8642 if (request < sd->level) {
8643 /* turn off idle balance on this domain */
c88d5910 8644 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8645 } else {
8646 /* turn on idle balance on this domain */
c88d5910 8647 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8648 }
8649}
8650
2109b99e
AH
8651static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8652 const struct cpumask *cpu_map)
8653{
8654 switch (what) {
8655 case sa_sched_groups:
8656 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8657 d->sched_group_nodes = NULL;
8658 case sa_rootdomain:
8659 free_rootdomain(d->rd); /* fall through */
8660 case sa_tmpmask:
8661 free_cpumask_var(d->tmpmask); /* fall through */
8662 case sa_send_covered:
8663 free_cpumask_var(d->send_covered); /* fall through */
8664 case sa_this_core_map:
8665 free_cpumask_var(d->this_core_map); /* fall through */
8666 case sa_this_sibling_map:
8667 free_cpumask_var(d->this_sibling_map); /* fall through */
8668 case sa_nodemask:
8669 free_cpumask_var(d->nodemask); /* fall through */
8670 case sa_sched_group_nodes:
d1b55138 8671#ifdef CONFIG_NUMA
2109b99e
AH
8672 kfree(d->sched_group_nodes); /* fall through */
8673 case sa_notcovered:
8674 free_cpumask_var(d->notcovered); /* fall through */
8675 case sa_covered:
8676 free_cpumask_var(d->covered); /* fall through */
8677 case sa_domainspan:
8678 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8679#endif
2109b99e
AH
8680 case sa_none:
8681 break;
8682 }
8683}
3404c8d9 8684
2109b99e
AH
8685static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8686 const struct cpumask *cpu_map)
8687{
3404c8d9 8688#ifdef CONFIG_NUMA
2109b99e
AH
8689 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8690 return sa_none;
8691 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8692 return sa_domainspan;
8693 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8694 return sa_covered;
8695 /* Allocate the per-node list of sched groups */
8696 d->sched_group_nodes = kcalloc(nr_node_ids,
8697 sizeof(struct sched_group *), GFP_KERNEL);
8698 if (!d->sched_group_nodes) {
d1b55138 8699 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8700 return sa_notcovered;
d1b55138 8701 }
2109b99e 8702 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8703#endif
2109b99e
AH
8704 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8705 return sa_sched_group_nodes;
8706 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8707 return sa_nodemask;
8708 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8709 return sa_this_sibling_map;
8710 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8711 return sa_this_core_map;
8712 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8713 return sa_send_covered;
8714 d->rd = alloc_rootdomain();
8715 if (!d->rd) {
57d885fe 8716 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8717 return sa_tmpmask;
57d885fe 8718 }
2109b99e
AH
8719 return sa_rootdomain;
8720}
57d885fe 8721
7f4588f3
AH
8722static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8723 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8724{
8725 struct sched_domain *sd = NULL;
7c16ec58 8726#ifdef CONFIG_NUMA
7f4588f3 8727 struct sched_domain *parent;
1da177e4 8728
7f4588f3
AH
8729 d->sd_allnodes = 0;
8730 if (cpumask_weight(cpu_map) >
8731 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8732 sd = &per_cpu(allnodes_domains, i).sd;
8733 SD_INIT(sd, ALLNODES);
1d3504fc 8734 set_domain_attribute(sd, attr);
7f4588f3
AH
8735 cpumask_copy(sched_domain_span(sd), cpu_map);
8736 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8737 d->sd_allnodes = 1;
8738 }
8739 parent = sd;
8740
8741 sd = &per_cpu(node_domains, i).sd;
8742 SD_INIT(sd, NODE);
8743 set_domain_attribute(sd, attr);
8744 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8745 sd->parent = parent;
8746 if (parent)
8747 parent->child = sd;
8748 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8749#endif
7f4588f3
AH
8750 return sd;
8751}
1da177e4 8752
87cce662
AH
8753static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8754 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8755 struct sched_domain *parent, int i)
8756{
8757 struct sched_domain *sd;
8758 sd = &per_cpu(phys_domains, i).sd;
8759 SD_INIT(sd, CPU);
8760 set_domain_attribute(sd, attr);
8761 cpumask_copy(sched_domain_span(sd), d->nodemask);
8762 sd->parent = parent;
8763 if (parent)
8764 parent->child = sd;
8765 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8766 return sd;
8767}
1da177e4 8768
410c4081
AH
8769static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8770 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8771 struct sched_domain *parent, int i)
8772{
8773 struct sched_domain *sd = parent;
1e9f28fa 8774#ifdef CONFIG_SCHED_MC
410c4081
AH
8775 sd = &per_cpu(core_domains, i).sd;
8776 SD_INIT(sd, MC);
8777 set_domain_attribute(sd, attr);
8778 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8779 sd->parent = parent;
8780 parent->child = sd;
8781 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8782#endif
410c4081
AH
8783 return sd;
8784}
1e9f28fa 8785
d8173535
AH
8786static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8787 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8788 struct sched_domain *parent, int i)
8789{
8790 struct sched_domain *sd = parent;
1da177e4 8791#ifdef CONFIG_SCHED_SMT
d8173535
AH
8792 sd = &per_cpu(cpu_domains, i).sd;
8793 SD_INIT(sd, SIBLING);
8794 set_domain_attribute(sd, attr);
8795 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8796 sd->parent = parent;
8797 parent->child = sd;
8798 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8799#endif
d8173535
AH
8800 return sd;
8801}
1da177e4 8802
0e8e85c9
AH
8803static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8804 const struct cpumask *cpu_map, int cpu)
8805{
8806 switch (l) {
1da177e4 8807#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8808 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8809 cpumask_and(d->this_sibling_map, cpu_map,
8810 topology_thread_cpumask(cpu));
8811 if (cpu == cpumask_first(d->this_sibling_map))
8812 init_sched_build_groups(d->this_sibling_map, cpu_map,
8813 &cpu_to_cpu_group,
8814 d->send_covered, d->tmpmask);
8815 break;
1da177e4 8816#endif
1e9f28fa 8817#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8818 case SD_LV_MC: /* set up multi-core groups */
8819 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8820 if (cpu == cpumask_first(d->this_core_map))
8821 init_sched_build_groups(d->this_core_map, cpu_map,
8822 &cpu_to_core_group,
8823 d->send_covered, d->tmpmask);
8824 break;
1e9f28fa 8825#endif
86548096
AH
8826 case SD_LV_CPU: /* set up physical groups */
8827 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8828 if (!cpumask_empty(d->nodemask))
8829 init_sched_build_groups(d->nodemask, cpu_map,
8830 &cpu_to_phys_group,
8831 d->send_covered, d->tmpmask);
8832 break;
1da177e4 8833#ifdef CONFIG_NUMA
de616e36
AH
8834 case SD_LV_ALLNODES:
8835 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8836 d->send_covered, d->tmpmask);
8837 break;
8838#endif
0e8e85c9
AH
8839 default:
8840 break;
7c16ec58 8841 }
0e8e85c9 8842}
9c1cfda2 8843
2109b99e
AH
8844/*
8845 * Build sched domains for a given set of cpus and attach the sched domains
8846 * to the individual cpus
8847 */
8848static int __build_sched_domains(const struct cpumask *cpu_map,
8849 struct sched_domain_attr *attr)
8850{
8851 enum s_alloc alloc_state = sa_none;
8852 struct s_data d;
294b0c96 8853 struct sched_domain *sd;
2109b99e 8854 int i;
7c16ec58 8855#ifdef CONFIG_NUMA
2109b99e 8856 d.sd_allnodes = 0;
7c16ec58 8857#endif
9c1cfda2 8858
2109b99e
AH
8859 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8860 if (alloc_state != sa_rootdomain)
8861 goto error;
8862 alloc_state = sa_sched_groups;
9c1cfda2 8863
1da177e4 8864 /*
1a20ff27 8865 * Set up domains for cpus specified by the cpu_map.
1da177e4 8866 */
abcd083a 8867 for_each_cpu(i, cpu_map) {
49a02c51
AH
8868 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8869 cpu_map);
9761eea8 8870
7f4588f3 8871 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8872 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8873 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8874 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8875 }
9c1cfda2 8876
abcd083a 8877 for_each_cpu(i, cpu_map) {
0e8e85c9 8878 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8879 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8880 }
9c1cfda2 8881
1da177e4 8882 /* Set up physical groups */
86548096
AH
8883 for (i = 0; i < nr_node_ids; i++)
8884 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8885
1da177e4
LT
8886#ifdef CONFIG_NUMA
8887 /* Set up node groups */
de616e36
AH
8888 if (d.sd_allnodes)
8889 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8890
0601a88d
AH
8891 for (i = 0; i < nr_node_ids; i++)
8892 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8893 goto error;
1da177e4
LT
8894#endif
8895
8896 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8897#ifdef CONFIG_SCHED_SMT
abcd083a 8898 for_each_cpu(i, cpu_map) {
294b0c96 8899 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8900 init_sched_groups_power(i, sd);
5c45bf27 8901 }
1da177e4 8902#endif
1e9f28fa 8903#ifdef CONFIG_SCHED_MC
abcd083a 8904 for_each_cpu(i, cpu_map) {
294b0c96 8905 sd = &per_cpu(core_domains, i).sd;
89c4710e 8906 init_sched_groups_power(i, sd);
5c45bf27
SS
8907 }
8908#endif
1e9f28fa 8909
abcd083a 8910 for_each_cpu(i, cpu_map) {
294b0c96 8911 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8912 init_sched_groups_power(i, sd);
1da177e4
LT
8913 }
8914
9c1cfda2 8915#ifdef CONFIG_NUMA
076ac2af 8916 for (i = 0; i < nr_node_ids; i++)
49a02c51 8917 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8918
49a02c51 8919 if (d.sd_allnodes) {
6711cab4 8920 struct sched_group *sg;
f712c0c7 8921
96f874e2 8922 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8923 d.tmpmask);
f712c0c7
SS
8924 init_numa_sched_groups_power(sg);
8925 }
9c1cfda2
JH
8926#endif
8927
1da177e4 8928 /* Attach the domains */
abcd083a 8929 for_each_cpu(i, cpu_map) {
1da177e4 8930#ifdef CONFIG_SCHED_SMT
6c99e9ad 8931 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8932#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8933 sd = &per_cpu(core_domains, i).sd;
1da177e4 8934#else
6c99e9ad 8935 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8936#endif
49a02c51 8937 cpu_attach_domain(sd, d.rd, i);
1da177e4 8938 }
51888ca2 8939
2109b99e
AH
8940 d.sched_group_nodes = NULL; /* don't free this we still need it */
8941 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8942 return 0;
51888ca2 8943
51888ca2 8944error:
2109b99e
AH
8945 __free_domain_allocs(&d, alloc_state, cpu_map);
8946 return -ENOMEM;
1da177e4 8947}
029190c5 8948
96f874e2 8949static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8950{
8951 return __build_sched_domains(cpu_map, NULL);
8952}
8953
acc3f5d7 8954static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8955static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8956static struct sched_domain_attr *dattr_cur;
8957 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8958
8959/*
8960 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8961 * cpumask) fails, then fallback to a single sched domain,
8962 * as determined by the single cpumask fallback_doms.
029190c5 8963 */
4212823f 8964static cpumask_var_t fallback_doms;
029190c5 8965
ee79d1bd
HC
8966/*
8967 * arch_update_cpu_topology lets virtualized architectures update the
8968 * cpu core maps. It is supposed to return 1 if the topology changed
8969 * or 0 if it stayed the same.
8970 */
8971int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8972{
ee79d1bd 8973 return 0;
22e52b07
HC
8974}
8975
acc3f5d7
RR
8976cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8977{
8978 int i;
8979 cpumask_var_t *doms;
8980
8981 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8982 if (!doms)
8983 return NULL;
8984 for (i = 0; i < ndoms; i++) {
8985 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8986 free_sched_domains(doms, i);
8987 return NULL;
8988 }
8989 }
8990 return doms;
8991}
8992
8993void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8994{
8995 unsigned int i;
8996 for (i = 0; i < ndoms; i++)
8997 free_cpumask_var(doms[i]);
8998 kfree(doms);
8999}
9000
1a20ff27 9001/*
41a2d6cf 9002 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
9003 * For now this just excludes isolated cpus, but could be used to
9004 * exclude other special cases in the future.
1a20ff27 9005 */
96f874e2 9006static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 9007{
7378547f
MM
9008 int err;
9009
22e52b07 9010 arch_update_cpu_topology();
029190c5 9011 ndoms_cur = 1;
acc3f5d7 9012 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 9013 if (!doms_cur)
acc3f5d7
RR
9014 doms_cur = &fallback_doms;
9015 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 9016 dattr_cur = NULL;
acc3f5d7 9017 err = build_sched_domains(doms_cur[0]);
6382bc90 9018 register_sched_domain_sysctl();
7378547f
MM
9019
9020 return err;
1a20ff27
DG
9021}
9022
96f874e2
RR
9023static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9024 struct cpumask *tmpmask)
1da177e4 9025{
7c16ec58 9026 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9027}
1da177e4 9028
1a20ff27
DG
9029/*
9030 * Detach sched domains from a group of cpus specified in cpu_map
9031 * These cpus will now be attached to the NULL domain
9032 */
96f874e2 9033static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9034{
96f874e2
RR
9035 /* Save because hotplug lock held. */
9036 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9037 int i;
9038
abcd083a 9039 for_each_cpu(i, cpu_map)
57d885fe 9040 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9041 synchronize_sched();
96f874e2 9042 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9043}
9044
1d3504fc
HS
9045/* handle null as "default" */
9046static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9047 struct sched_domain_attr *new, int idx_new)
9048{
9049 struct sched_domain_attr tmp;
9050
9051 /* fast path */
9052 if (!new && !cur)
9053 return 1;
9054
9055 tmp = SD_ATTR_INIT;
9056 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9057 new ? (new + idx_new) : &tmp,
9058 sizeof(struct sched_domain_attr));
9059}
9060
029190c5
PJ
9061/*
9062 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9063 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9064 * doms_new[] to the current sched domain partitioning, doms_cur[].
9065 * It destroys each deleted domain and builds each new domain.
9066 *
acc3f5d7 9067 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9068 * The masks don't intersect (don't overlap.) We should setup one
9069 * sched domain for each mask. CPUs not in any of the cpumasks will
9070 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9071 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9072 * it as it is.
9073 *
acc3f5d7
RR
9074 * The passed in 'doms_new' should be allocated using
9075 * alloc_sched_domains. This routine takes ownership of it and will
9076 * free_sched_domains it when done with it. If the caller failed the
9077 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9078 * and partition_sched_domains() will fallback to the single partition
9079 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9080 *
96f874e2 9081 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9082 * ndoms_new == 0 is a special case for destroying existing domains,
9083 * and it will not create the default domain.
dfb512ec 9084 *
029190c5
PJ
9085 * Call with hotplug lock held
9086 */
acc3f5d7 9087void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9088 struct sched_domain_attr *dattr_new)
029190c5 9089{
dfb512ec 9090 int i, j, n;
d65bd5ec 9091 int new_topology;
029190c5 9092
712555ee 9093 mutex_lock(&sched_domains_mutex);
a1835615 9094
7378547f
MM
9095 /* always unregister in case we don't destroy any domains */
9096 unregister_sched_domain_sysctl();
9097
d65bd5ec
HC
9098 /* Let architecture update cpu core mappings. */
9099 new_topology = arch_update_cpu_topology();
9100
dfb512ec 9101 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9102
9103 /* Destroy deleted domains */
9104 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9105 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9106 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9107 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9108 goto match1;
9109 }
9110 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9111 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9112match1:
9113 ;
9114 }
9115
e761b772
MK
9116 if (doms_new == NULL) {
9117 ndoms_cur = 0;
acc3f5d7 9118 doms_new = &fallback_doms;
6ad4c188 9119 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9120 WARN_ON_ONCE(dattr_new);
e761b772
MK
9121 }
9122
029190c5
PJ
9123 /* Build new domains */
9124 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9125 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9126 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9127 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9128 goto match2;
9129 }
9130 /* no match - add a new doms_new */
acc3f5d7 9131 __build_sched_domains(doms_new[i],
1d3504fc 9132 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9133match2:
9134 ;
9135 }
9136
9137 /* Remember the new sched domains */
acc3f5d7
RR
9138 if (doms_cur != &fallback_doms)
9139 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9140 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9141 doms_cur = doms_new;
1d3504fc 9142 dattr_cur = dattr_new;
029190c5 9143 ndoms_cur = ndoms_new;
7378547f
MM
9144
9145 register_sched_domain_sysctl();
a1835615 9146
712555ee 9147 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9148}
9149
5c45bf27 9150#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9151static void arch_reinit_sched_domains(void)
5c45bf27 9152{
95402b38 9153 get_online_cpus();
dfb512ec
MK
9154
9155 /* Destroy domains first to force the rebuild */
9156 partition_sched_domains(0, NULL, NULL);
9157
e761b772 9158 rebuild_sched_domains();
95402b38 9159 put_online_cpus();
5c45bf27
SS
9160}
9161
9162static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9163{
afb8a9b7 9164 unsigned int level = 0;
5c45bf27 9165
afb8a9b7
GS
9166 if (sscanf(buf, "%u", &level) != 1)
9167 return -EINVAL;
9168
9169 /*
9170 * level is always be positive so don't check for
9171 * level < POWERSAVINGS_BALANCE_NONE which is 0
9172 * What happens on 0 or 1 byte write,
9173 * need to check for count as well?
9174 */
9175
9176 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9177 return -EINVAL;
9178
9179 if (smt)
afb8a9b7 9180 sched_smt_power_savings = level;
5c45bf27 9181 else
afb8a9b7 9182 sched_mc_power_savings = level;
5c45bf27 9183
c70f22d2 9184 arch_reinit_sched_domains();
5c45bf27 9185
c70f22d2 9186 return count;
5c45bf27
SS
9187}
9188
5c45bf27 9189#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9190static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9191 char *page)
5c45bf27
SS
9192{
9193 return sprintf(page, "%u\n", sched_mc_power_savings);
9194}
f718cd4a 9195static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9196 const char *buf, size_t count)
5c45bf27
SS
9197{
9198 return sched_power_savings_store(buf, count, 0);
9199}
f718cd4a
AK
9200static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9201 sched_mc_power_savings_show,
9202 sched_mc_power_savings_store);
5c45bf27
SS
9203#endif
9204
9205#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9206static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9207 char *page)
5c45bf27
SS
9208{
9209 return sprintf(page, "%u\n", sched_smt_power_savings);
9210}
f718cd4a 9211static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9212 const char *buf, size_t count)
5c45bf27
SS
9213{
9214 return sched_power_savings_store(buf, count, 1);
9215}
f718cd4a
AK
9216static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9217 sched_smt_power_savings_show,
6707de00
AB
9218 sched_smt_power_savings_store);
9219#endif
9220
39aac648 9221int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9222{
9223 int err = 0;
9224
9225#ifdef CONFIG_SCHED_SMT
9226 if (smt_capable())
9227 err = sysfs_create_file(&cls->kset.kobj,
9228 &attr_sched_smt_power_savings.attr);
9229#endif
9230#ifdef CONFIG_SCHED_MC
9231 if (!err && mc_capable())
9232 err = sysfs_create_file(&cls->kset.kobj,
9233 &attr_sched_mc_power_savings.attr);
9234#endif
9235 return err;
9236}
6d6bc0ad 9237#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9238
e761b772 9239#ifndef CONFIG_CPUSETS
1da177e4 9240/*
e761b772
MK
9241 * Add online and remove offline CPUs from the scheduler domains.
9242 * When cpusets are enabled they take over this function.
1da177e4
LT
9243 */
9244static int update_sched_domains(struct notifier_block *nfb,
9245 unsigned long action, void *hcpu)
e761b772
MK
9246{
9247 switch (action) {
9248 case CPU_ONLINE:
9249 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9250 case CPU_DOWN_PREPARE:
9251 case CPU_DOWN_PREPARE_FROZEN:
9252 case CPU_DOWN_FAILED:
9253 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9254 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9255 return NOTIFY_OK;
9256
9257 default:
9258 return NOTIFY_DONE;
9259 }
9260}
9261#endif
9262
9263static int update_runtime(struct notifier_block *nfb,
9264 unsigned long action, void *hcpu)
1da177e4 9265{
7def2be1
PZ
9266 int cpu = (int)(long)hcpu;
9267
1da177e4 9268 switch (action) {
1da177e4 9269 case CPU_DOWN_PREPARE:
8bb78442 9270 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9271 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9272 return NOTIFY_OK;
9273
1da177e4 9274 case CPU_DOWN_FAILED:
8bb78442 9275 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9276 case CPU_ONLINE:
8bb78442 9277 case CPU_ONLINE_FROZEN:
7def2be1 9278 enable_runtime(cpu_rq(cpu));
e761b772
MK
9279 return NOTIFY_OK;
9280
1da177e4
LT
9281 default:
9282 return NOTIFY_DONE;
9283 }
1da177e4 9284}
1da177e4
LT
9285
9286void __init sched_init_smp(void)
9287{
dcc30a35
RR
9288 cpumask_var_t non_isolated_cpus;
9289
9290 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9291 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9292
434d53b0
MT
9293#if defined(CONFIG_NUMA)
9294 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9295 GFP_KERNEL);
9296 BUG_ON(sched_group_nodes_bycpu == NULL);
9297#endif
95402b38 9298 get_online_cpus();
712555ee 9299 mutex_lock(&sched_domains_mutex);
6ad4c188 9300 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9301 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9302 if (cpumask_empty(non_isolated_cpus))
9303 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9304 mutex_unlock(&sched_domains_mutex);
95402b38 9305 put_online_cpus();
e761b772
MK
9306
9307#ifndef CONFIG_CPUSETS
1da177e4
LT
9308 /* XXX: Theoretical race here - CPU may be hotplugged now */
9309 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9310#endif
9311
9312 /* RT runtime code needs to handle some hotplug events */
9313 hotcpu_notifier(update_runtime, 0);
9314
b328ca18 9315 init_hrtick();
5c1e1767
NP
9316
9317 /* Move init over to a non-isolated CPU */
dcc30a35 9318 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9319 BUG();
19978ca6 9320 sched_init_granularity();
dcc30a35 9321 free_cpumask_var(non_isolated_cpus);
4212823f 9322
0e3900e6 9323 init_sched_rt_class();
1da177e4
LT
9324}
9325#else
9326void __init sched_init_smp(void)
9327{
19978ca6 9328 sched_init_granularity();
1da177e4
LT
9329}
9330#endif /* CONFIG_SMP */
9331
cd1bb94b
AB
9332const_debug unsigned int sysctl_timer_migration = 1;
9333
1da177e4
LT
9334int in_sched_functions(unsigned long addr)
9335{
1da177e4
LT
9336 return in_lock_functions(addr) ||
9337 (addr >= (unsigned long)__sched_text_start
9338 && addr < (unsigned long)__sched_text_end);
9339}
9340
a9957449 9341static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9342{
9343 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9344 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9345#ifdef CONFIG_FAIR_GROUP_SCHED
9346 cfs_rq->rq = rq;
9347#endif
67e9fb2a 9348 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9349}
9350
fa85ae24
PZ
9351static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9352{
9353 struct rt_prio_array *array;
9354 int i;
9355
9356 array = &rt_rq->active;
9357 for (i = 0; i < MAX_RT_PRIO; i++) {
9358 INIT_LIST_HEAD(array->queue + i);
9359 __clear_bit(i, array->bitmap);
9360 }
9361 /* delimiter for bitsearch: */
9362 __set_bit(MAX_RT_PRIO, array->bitmap);
9363
052f1dc7 9364#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9365 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9366#ifdef CONFIG_SMP
e864c499 9367 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9368#endif
48d5e258 9369#endif
fa85ae24
PZ
9370#ifdef CONFIG_SMP
9371 rt_rq->rt_nr_migratory = 0;
fa85ae24 9372 rt_rq->overloaded = 0;
c20b08e3 9373 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9374#endif
9375
9376 rt_rq->rt_time = 0;
9377 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9378 rt_rq->rt_runtime = 0;
9379 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9380
052f1dc7 9381#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9382 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9383 rt_rq->rq = rq;
9384#endif
fa85ae24
PZ
9385}
9386
6f505b16 9387#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9388static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9389 struct sched_entity *se, int cpu, int add,
9390 struct sched_entity *parent)
6f505b16 9391{
ec7dc8ac 9392 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9393 tg->cfs_rq[cpu] = cfs_rq;
9394 init_cfs_rq(cfs_rq, rq);
9395 cfs_rq->tg = tg;
9396 if (add)
9397 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9398
9399 tg->se[cpu] = se;
354d60c2
DG
9400 /* se could be NULL for init_task_group */
9401 if (!se)
9402 return;
9403
ec7dc8ac
DG
9404 if (!parent)
9405 se->cfs_rq = &rq->cfs;
9406 else
9407 se->cfs_rq = parent->my_q;
9408
6f505b16
PZ
9409 se->my_q = cfs_rq;
9410 se->load.weight = tg->shares;
e05510d0 9411 se->load.inv_weight = 0;
ec7dc8ac 9412 se->parent = parent;
6f505b16 9413}
052f1dc7 9414#endif
6f505b16 9415
052f1dc7 9416#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9417static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9418 struct sched_rt_entity *rt_se, int cpu, int add,
9419 struct sched_rt_entity *parent)
6f505b16 9420{
ec7dc8ac
DG
9421 struct rq *rq = cpu_rq(cpu);
9422
6f505b16
PZ
9423 tg->rt_rq[cpu] = rt_rq;
9424 init_rt_rq(rt_rq, rq);
9425 rt_rq->tg = tg;
9426 rt_rq->rt_se = rt_se;
ac086bc2 9427 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9428 if (add)
9429 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9430
9431 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9432 if (!rt_se)
9433 return;
9434
ec7dc8ac
DG
9435 if (!parent)
9436 rt_se->rt_rq = &rq->rt;
9437 else
9438 rt_se->rt_rq = parent->my_q;
9439
6f505b16 9440 rt_se->my_q = rt_rq;
ec7dc8ac 9441 rt_se->parent = parent;
6f505b16
PZ
9442 INIT_LIST_HEAD(&rt_se->run_list);
9443}
9444#endif
9445
1da177e4
LT
9446void __init sched_init(void)
9447{
dd41f596 9448 int i, j;
434d53b0
MT
9449 unsigned long alloc_size = 0, ptr;
9450
9451#ifdef CONFIG_FAIR_GROUP_SCHED
9452 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9453#endif
9454#ifdef CONFIG_RT_GROUP_SCHED
9455 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9456#endif
9457#ifdef CONFIG_USER_SCHED
9458 alloc_size *= 2;
df7c8e84
RR
9459#endif
9460#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9461 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9462#endif
434d53b0 9463 if (alloc_size) {
36b7b6d4 9464 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9465
9466#ifdef CONFIG_FAIR_GROUP_SCHED
9467 init_task_group.se = (struct sched_entity **)ptr;
9468 ptr += nr_cpu_ids * sizeof(void **);
9469
9470 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9471 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9472
9473#ifdef CONFIG_USER_SCHED
9474 root_task_group.se = (struct sched_entity **)ptr;
9475 ptr += nr_cpu_ids * sizeof(void **);
9476
9477 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9478 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9479#endif /* CONFIG_USER_SCHED */
9480#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9481#ifdef CONFIG_RT_GROUP_SCHED
9482 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9483 ptr += nr_cpu_ids * sizeof(void **);
9484
9485 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9486 ptr += nr_cpu_ids * sizeof(void **);
9487
9488#ifdef CONFIG_USER_SCHED
9489 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9490 ptr += nr_cpu_ids * sizeof(void **);
9491
9492 root_task_group.rt_rq = (struct rt_rq **)ptr;
9493 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9494#endif /* CONFIG_USER_SCHED */
9495#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9496#ifdef CONFIG_CPUMASK_OFFSTACK
9497 for_each_possible_cpu(i) {
9498 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9499 ptr += cpumask_size();
9500 }
9501#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9502 }
dd41f596 9503
57d885fe
GH
9504#ifdef CONFIG_SMP
9505 init_defrootdomain();
9506#endif
9507
d0b27fa7
PZ
9508 init_rt_bandwidth(&def_rt_bandwidth,
9509 global_rt_period(), global_rt_runtime());
9510
9511#ifdef CONFIG_RT_GROUP_SCHED
9512 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9513 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9514#ifdef CONFIG_USER_SCHED
9515 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9516 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9517#endif /* CONFIG_USER_SCHED */
9518#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9519
052f1dc7 9520#ifdef CONFIG_GROUP_SCHED
6f505b16 9521 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9522 INIT_LIST_HEAD(&init_task_group.children);
9523
9524#ifdef CONFIG_USER_SCHED
9525 INIT_LIST_HEAD(&root_task_group.children);
9526 init_task_group.parent = &root_task_group;
9527 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9528#endif /* CONFIG_USER_SCHED */
9529#endif /* CONFIG_GROUP_SCHED */
6f505b16 9530
4a6cc4bd
JK
9531#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9532 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9533 __alignof__(unsigned long));
9534#endif
0a945022 9535 for_each_possible_cpu(i) {
70b97a7f 9536 struct rq *rq;
1da177e4
LT
9537
9538 rq = cpu_rq(i);
9539 spin_lock_init(&rq->lock);
7897986b 9540 rq->nr_running = 0;
dce48a84
TG
9541 rq->calc_load_active = 0;
9542 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9543 init_cfs_rq(&rq->cfs, rq);
6f505b16 9544 init_rt_rq(&rq->rt, rq);
dd41f596 9545#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9546 init_task_group.shares = init_task_group_load;
6f505b16 9547 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9548#ifdef CONFIG_CGROUP_SCHED
9549 /*
9550 * How much cpu bandwidth does init_task_group get?
9551 *
9552 * In case of task-groups formed thr' the cgroup filesystem, it
9553 * gets 100% of the cpu resources in the system. This overall
9554 * system cpu resource is divided among the tasks of
9555 * init_task_group and its child task-groups in a fair manner,
9556 * based on each entity's (task or task-group's) weight
9557 * (se->load.weight).
9558 *
9559 * In other words, if init_task_group has 10 tasks of weight
9560 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9561 * then A0's share of the cpu resource is:
9562 *
0d905bca 9563 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9564 *
9565 * We achieve this by letting init_task_group's tasks sit
9566 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9567 */
ec7dc8ac 9568 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9569#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9570 root_task_group.shares = NICE_0_LOAD;
9571 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9572 /*
9573 * In case of task-groups formed thr' the user id of tasks,
9574 * init_task_group represents tasks belonging to root user.
9575 * Hence it forms a sibling of all subsequent groups formed.
9576 * In this case, init_task_group gets only a fraction of overall
9577 * system cpu resource, based on the weight assigned to root
9578 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9579 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9580 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9581 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9582 */
ec7dc8ac 9583 init_tg_cfs_entry(&init_task_group,
84e9dabf 9584 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9585 &per_cpu(init_sched_entity, i), i, 1,
9586 root_task_group.se[i]);
6f505b16 9587
052f1dc7 9588#endif
354d60c2
DG
9589#endif /* CONFIG_FAIR_GROUP_SCHED */
9590
9591 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9592#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9593 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9594#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9595 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9596#elif defined CONFIG_USER_SCHED
eff766a6 9597 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9598 init_tg_rt_entry(&init_task_group,
6f505b16 9599 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9600 &per_cpu(init_sched_rt_entity, i), i, 1,
9601 root_task_group.rt_se[i]);
354d60c2 9602#endif
dd41f596 9603#endif
1da177e4 9604
dd41f596
IM
9605 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9606 rq->cpu_load[j] = 0;
1da177e4 9607#ifdef CONFIG_SMP
41c7ce9a 9608 rq->sd = NULL;
57d885fe 9609 rq->rd = NULL;
3f029d3c 9610 rq->post_schedule = 0;
1da177e4 9611 rq->active_balance = 0;
dd41f596 9612 rq->next_balance = jiffies;
1da177e4 9613 rq->push_cpu = 0;
0a2966b4 9614 rq->cpu = i;
1f11eb6a 9615 rq->online = 0;
1da177e4 9616 rq->migration_thread = NULL;
eae0c9df
MG
9617 rq->idle_stamp = 0;
9618 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9619 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9620 rq_attach_root(rq, &def_root_domain);
1da177e4 9621#endif
8f4d37ec 9622 init_rq_hrtick(rq);
1da177e4 9623 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9624 }
9625
2dd73a4f 9626 set_load_weight(&init_task);
b50f60ce 9627
e107be36
AK
9628#ifdef CONFIG_PREEMPT_NOTIFIERS
9629 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9630#endif
9631
c9819f45 9632#ifdef CONFIG_SMP
962cf36c 9633 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9634#endif
9635
b50f60ce
HC
9636#ifdef CONFIG_RT_MUTEXES
9637 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9638#endif
9639
1da177e4
LT
9640 /*
9641 * The boot idle thread does lazy MMU switching as well:
9642 */
9643 atomic_inc(&init_mm.mm_count);
9644 enter_lazy_tlb(&init_mm, current);
9645
9646 /*
9647 * Make us the idle thread. Technically, schedule() should not be
9648 * called from this thread, however somewhere below it might be,
9649 * but because we are the idle thread, we just pick up running again
9650 * when this runqueue becomes "idle".
9651 */
9652 init_idle(current, smp_processor_id());
dce48a84
TG
9653
9654 calc_load_update = jiffies + LOAD_FREQ;
9655
dd41f596
IM
9656 /*
9657 * During early bootup we pretend to be a normal task:
9658 */
9659 current->sched_class = &fair_sched_class;
6892b75e 9660
6a7b3dc3 9661 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9662 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9663#ifdef CONFIG_SMP
7d1e6a9b 9664#ifdef CONFIG_NO_HZ
49557e62 9665 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9666 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9667#endif
bdddd296
RR
9668 /* May be allocated at isolcpus cmdline parse time */
9669 if (cpu_isolated_map == NULL)
9670 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9671#endif /* SMP */
6a7b3dc3 9672
cdd6c482 9673 perf_event_init();
0d905bca 9674
6892b75e 9675 scheduler_running = 1;
1da177e4
LT
9676}
9677
9678#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9679static inline int preempt_count_equals(int preempt_offset)
9680{
9681 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9682
9683 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9684}
9685
9686void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9687{
48f24c4d 9688#ifdef in_atomic
1da177e4
LT
9689 static unsigned long prev_jiffy; /* ratelimiting */
9690
e4aafea2
FW
9691 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9692 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9693 return;
9694 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9695 return;
9696 prev_jiffy = jiffies;
9697
9698 printk(KERN_ERR
9699 "BUG: sleeping function called from invalid context at %s:%d\n",
9700 file, line);
9701 printk(KERN_ERR
9702 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9703 in_atomic(), irqs_disabled(),
9704 current->pid, current->comm);
9705
9706 debug_show_held_locks(current);
9707 if (irqs_disabled())
9708 print_irqtrace_events(current);
9709 dump_stack();
1da177e4
LT
9710#endif
9711}
9712EXPORT_SYMBOL(__might_sleep);
9713#endif
9714
9715#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9716static void normalize_task(struct rq *rq, struct task_struct *p)
9717{
9718 int on_rq;
3e51f33f 9719
3a5e4dc1
AK
9720 update_rq_clock(rq);
9721 on_rq = p->se.on_rq;
9722 if (on_rq)
9723 deactivate_task(rq, p, 0);
9724 __setscheduler(rq, p, SCHED_NORMAL, 0);
9725 if (on_rq) {
9726 activate_task(rq, p, 0);
9727 resched_task(rq->curr);
9728 }
9729}
9730
1da177e4
LT
9731void normalize_rt_tasks(void)
9732{
a0f98a1c 9733 struct task_struct *g, *p;
1da177e4 9734 unsigned long flags;
70b97a7f 9735 struct rq *rq;
1da177e4 9736
4cf5d77a 9737 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9738 do_each_thread(g, p) {
178be793
IM
9739 /*
9740 * Only normalize user tasks:
9741 */
9742 if (!p->mm)
9743 continue;
9744
6cfb0d5d 9745 p->se.exec_start = 0;
6cfb0d5d 9746#ifdef CONFIG_SCHEDSTATS
dd41f596 9747 p->se.wait_start = 0;
dd41f596 9748 p->se.sleep_start = 0;
dd41f596 9749 p->se.block_start = 0;
6cfb0d5d 9750#endif
dd41f596
IM
9751
9752 if (!rt_task(p)) {
9753 /*
9754 * Renice negative nice level userspace
9755 * tasks back to 0:
9756 */
9757 if (TASK_NICE(p) < 0 && p->mm)
9758 set_user_nice(p, 0);
1da177e4 9759 continue;
dd41f596 9760 }
1da177e4 9761
4cf5d77a 9762 spin_lock(&p->pi_lock);
b29739f9 9763 rq = __task_rq_lock(p);
1da177e4 9764
178be793 9765 normalize_task(rq, p);
3a5e4dc1 9766
b29739f9 9767 __task_rq_unlock(rq);
4cf5d77a 9768 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9769 } while_each_thread(g, p);
9770
4cf5d77a 9771 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9772}
9773
9774#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9775
9776#ifdef CONFIG_IA64
9777/*
9778 * These functions are only useful for the IA64 MCA handling.
9779 *
9780 * They can only be called when the whole system has been
9781 * stopped - every CPU needs to be quiescent, and no scheduling
9782 * activity can take place. Using them for anything else would
9783 * be a serious bug, and as a result, they aren't even visible
9784 * under any other configuration.
9785 */
9786
9787/**
9788 * curr_task - return the current task for a given cpu.
9789 * @cpu: the processor in question.
9790 *
9791 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9792 */
36c8b586 9793struct task_struct *curr_task(int cpu)
1df5c10a
LT
9794{
9795 return cpu_curr(cpu);
9796}
9797
9798/**
9799 * set_curr_task - set the current task for a given cpu.
9800 * @cpu: the processor in question.
9801 * @p: the task pointer to set.
9802 *
9803 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9804 * are serviced on a separate stack. It allows the architecture to switch the
9805 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9806 * must be called with all CPU's synchronized, and interrupts disabled, the
9807 * and caller must save the original value of the current task (see
9808 * curr_task() above) and restore that value before reenabling interrupts and
9809 * re-starting the system.
9810 *
9811 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9812 */
36c8b586 9813void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9814{
9815 cpu_curr(cpu) = p;
9816}
9817
9818#endif
29f59db3 9819
bccbe08a
PZ
9820#ifdef CONFIG_FAIR_GROUP_SCHED
9821static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9822{
9823 int i;
9824
9825 for_each_possible_cpu(i) {
9826 if (tg->cfs_rq)
9827 kfree(tg->cfs_rq[i]);
9828 if (tg->se)
9829 kfree(tg->se[i]);
6f505b16
PZ
9830 }
9831
9832 kfree(tg->cfs_rq);
9833 kfree(tg->se);
6f505b16
PZ
9834}
9835
ec7dc8ac
DG
9836static
9837int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9838{
29f59db3 9839 struct cfs_rq *cfs_rq;
eab17229 9840 struct sched_entity *se;
9b5b7751 9841 struct rq *rq;
29f59db3
SV
9842 int i;
9843
434d53b0 9844 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9845 if (!tg->cfs_rq)
9846 goto err;
434d53b0 9847 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9848 if (!tg->se)
9849 goto err;
052f1dc7
PZ
9850
9851 tg->shares = NICE_0_LOAD;
29f59db3
SV
9852
9853 for_each_possible_cpu(i) {
9b5b7751 9854 rq = cpu_rq(i);
29f59db3 9855
eab17229
LZ
9856 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9857 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9858 if (!cfs_rq)
9859 goto err;
9860
eab17229
LZ
9861 se = kzalloc_node(sizeof(struct sched_entity),
9862 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9863 if (!se)
9864 goto err;
9865
eab17229 9866 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9867 }
9868
9869 return 1;
9870
9871 err:
9872 return 0;
9873}
9874
9875static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9876{
9877 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9878 &cpu_rq(cpu)->leaf_cfs_rq_list);
9879}
9880
9881static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9882{
9883 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9884}
6d6bc0ad 9885#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9886static inline void free_fair_sched_group(struct task_group *tg)
9887{
9888}
9889
ec7dc8ac
DG
9890static inline
9891int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9892{
9893 return 1;
9894}
9895
9896static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9897{
9898}
9899
9900static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9901{
9902}
6d6bc0ad 9903#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9904
9905#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9906static void free_rt_sched_group(struct task_group *tg)
9907{
9908 int i;
9909
d0b27fa7
PZ
9910 destroy_rt_bandwidth(&tg->rt_bandwidth);
9911
bccbe08a
PZ
9912 for_each_possible_cpu(i) {
9913 if (tg->rt_rq)
9914 kfree(tg->rt_rq[i]);
9915 if (tg->rt_se)
9916 kfree(tg->rt_se[i]);
9917 }
9918
9919 kfree(tg->rt_rq);
9920 kfree(tg->rt_se);
9921}
9922
ec7dc8ac
DG
9923static
9924int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9925{
9926 struct rt_rq *rt_rq;
eab17229 9927 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9928 struct rq *rq;
9929 int i;
9930
434d53b0 9931 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9932 if (!tg->rt_rq)
9933 goto err;
434d53b0 9934 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9935 if (!tg->rt_se)
9936 goto err;
9937
d0b27fa7
PZ
9938 init_rt_bandwidth(&tg->rt_bandwidth,
9939 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9940
9941 for_each_possible_cpu(i) {
9942 rq = cpu_rq(i);
9943
eab17229
LZ
9944 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9945 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9946 if (!rt_rq)
9947 goto err;
29f59db3 9948
eab17229
LZ
9949 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9950 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9951 if (!rt_se)
9952 goto err;
29f59db3 9953
eab17229 9954 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9955 }
9956
bccbe08a
PZ
9957 return 1;
9958
9959 err:
9960 return 0;
9961}
9962
9963static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9964{
9965 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9966 &cpu_rq(cpu)->leaf_rt_rq_list);
9967}
9968
9969static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9970{
9971 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9972}
6d6bc0ad 9973#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9974static inline void free_rt_sched_group(struct task_group *tg)
9975{
9976}
9977
ec7dc8ac
DG
9978static inline
9979int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9980{
9981 return 1;
9982}
9983
9984static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9985{
9986}
9987
9988static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9989{
9990}
6d6bc0ad 9991#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9992
d0b27fa7 9993#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9994static void free_sched_group(struct task_group *tg)
9995{
9996 free_fair_sched_group(tg);
9997 free_rt_sched_group(tg);
9998 kfree(tg);
9999}
10000
10001/* allocate runqueue etc for a new task group */
ec7dc8ac 10002struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
10003{
10004 struct task_group *tg;
10005 unsigned long flags;
10006 int i;
10007
10008 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10009 if (!tg)
10010 return ERR_PTR(-ENOMEM);
10011
ec7dc8ac 10012 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10013 goto err;
10014
ec7dc8ac 10015 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10016 goto err;
10017
8ed36996 10018 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10019 for_each_possible_cpu(i) {
bccbe08a
PZ
10020 register_fair_sched_group(tg, i);
10021 register_rt_sched_group(tg, i);
9b5b7751 10022 }
6f505b16 10023 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
10024
10025 WARN_ON(!parent); /* root should already exist */
10026
10027 tg->parent = parent;
f473aa5e 10028 INIT_LIST_HEAD(&tg->children);
09f2724a 10029 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10030 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10031
9b5b7751 10032 return tg;
29f59db3
SV
10033
10034err:
6f505b16 10035 free_sched_group(tg);
29f59db3
SV
10036 return ERR_PTR(-ENOMEM);
10037}
10038
9b5b7751 10039/* rcu callback to free various structures associated with a task group */
6f505b16 10040static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10041{
29f59db3 10042 /* now it should be safe to free those cfs_rqs */
6f505b16 10043 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10044}
10045
9b5b7751 10046/* Destroy runqueue etc associated with a task group */
4cf86d77 10047void sched_destroy_group(struct task_group *tg)
29f59db3 10048{
8ed36996 10049 unsigned long flags;
9b5b7751 10050 int i;
29f59db3 10051
8ed36996 10052 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10053 for_each_possible_cpu(i) {
bccbe08a
PZ
10054 unregister_fair_sched_group(tg, i);
10055 unregister_rt_sched_group(tg, i);
9b5b7751 10056 }
6f505b16 10057 list_del_rcu(&tg->list);
f473aa5e 10058 list_del_rcu(&tg->siblings);
8ed36996 10059 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10060
9b5b7751 10061 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10062 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10063}
10064
9b5b7751 10065/* change task's runqueue when it moves between groups.
3a252015
IM
10066 * The caller of this function should have put the task in its new group
10067 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10068 * reflect its new group.
9b5b7751
SV
10069 */
10070void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10071{
10072 int on_rq, running;
10073 unsigned long flags;
10074 struct rq *rq;
10075
10076 rq = task_rq_lock(tsk, &flags);
10077
29f59db3
SV
10078 update_rq_clock(rq);
10079
051a1d1a 10080 running = task_current(rq, tsk);
29f59db3
SV
10081 on_rq = tsk->se.on_rq;
10082
0e1f3483 10083 if (on_rq)
29f59db3 10084 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10085 if (unlikely(running))
10086 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10087
6f505b16 10088 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10089
810b3817
PZ
10090#ifdef CONFIG_FAIR_GROUP_SCHED
10091 if (tsk->sched_class->moved_group)
10092 tsk->sched_class->moved_group(tsk);
10093#endif
10094
0e1f3483
HS
10095 if (unlikely(running))
10096 tsk->sched_class->set_curr_task(rq);
10097 if (on_rq)
7074badb 10098 enqueue_task(rq, tsk, 0);
29f59db3 10099
29f59db3
SV
10100 task_rq_unlock(rq, &flags);
10101}
6d6bc0ad 10102#endif /* CONFIG_GROUP_SCHED */
29f59db3 10103
052f1dc7 10104#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10105static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10106{
10107 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10108 int on_rq;
10109
29f59db3 10110 on_rq = se->on_rq;
62fb1851 10111 if (on_rq)
29f59db3
SV
10112 dequeue_entity(cfs_rq, se, 0);
10113
10114 se->load.weight = shares;
e05510d0 10115 se->load.inv_weight = 0;
29f59db3 10116
62fb1851 10117 if (on_rq)
29f59db3 10118 enqueue_entity(cfs_rq, se, 0);
c09595f6 10119}
62fb1851 10120
c09595f6
PZ
10121static void set_se_shares(struct sched_entity *se, unsigned long shares)
10122{
10123 struct cfs_rq *cfs_rq = se->cfs_rq;
10124 struct rq *rq = cfs_rq->rq;
10125 unsigned long flags;
10126
10127 spin_lock_irqsave(&rq->lock, flags);
10128 __set_se_shares(se, shares);
10129 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10130}
10131
8ed36996
PZ
10132static DEFINE_MUTEX(shares_mutex);
10133
4cf86d77 10134int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10135{
10136 int i;
8ed36996 10137 unsigned long flags;
c61935fd 10138
ec7dc8ac
DG
10139 /*
10140 * We can't change the weight of the root cgroup.
10141 */
10142 if (!tg->se[0])
10143 return -EINVAL;
10144
18d95a28
PZ
10145 if (shares < MIN_SHARES)
10146 shares = MIN_SHARES;
cb4ad1ff
MX
10147 else if (shares > MAX_SHARES)
10148 shares = MAX_SHARES;
62fb1851 10149
8ed36996 10150 mutex_lock(&shares_mutex);
9b5b7751 10151 if (tg->shares == shares)
5cb350ba 10152 goto done;
29f59db3 10153
8ed36996 10154 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10155 for_each_possible_cpu(i)
10156 unregister_fair_sched_group(tg, i);
f473aa5e 10157 list_del_rcu(&tg->siblings);
8ed36996 10158 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10159
10160 /* wait for any ongoing reference to this group to finish */
10161 synchronize_sched();
10162
10163 /*
10164 * Now we are free to modify the group's share on each cpu
10165 * w/o tripping rebalance_share or load_balance_fair.
10166 */
9b5b7751 10167 tg->shares = shares;
c09595f6
PZ
10168 for_each_possible_cpu(i) {
10169 /*
10170 * force a rebalance
10171 */
10172 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10173 set_se_shares(tg->se[i], shares);
c09595f6 10174 }
29f59db3 10175
6b2d7700
SV
10176 /*
10177 * Enable load balance activity on this group, by inserting it back on
10178 * each cpu's rq->leaf_cfs_rq_list.
10179 */
8ed36996 10180 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10181 for_each_possible_cpu(i)
10182 register_fair_sched_group(tg, i);
f473aa5e 10183 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10184 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10185done:
8ed36996 10186 mutex_unlock(&shares_mutex);
9b5b7751 10187 return 0;
29f59db3
SV
10188}
10189
5cb350ba
DG
10190unsigned long sched_group_shares(struct task_group *tg)
10191{
10192 return tg->shares;
10193}
052f1dc7 10194#endif
5cb350ba 10195
052f1dc7 10196#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10197/*
9f0c1e56 10198 * Ensure that the real time constraints are schedulable.
6f505b16 10199 */
9f0c1e56
PZ
10200static DEFINE_MUTEX(rt_constraints_mutex);
10201
10202static unsigned long to_ratio(u64 period, u64 runtime)
10203{
10204 if (runtime == RUNTIME_INF)
9a7e0b18 10205 return 1ULL << 20;
9f0c1e56 10206
9a7e0b18 10207 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10208}
10209
9a7e0b18
PZ
10210/* Must be called with tasklist_lock held */
10211static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10212{
9a7e0b18 10213 struct task_struct *g, *p;
b40b2e8e 10214
9a7e0b18
PZ
10215 do_each_thread(g, p) {
10216 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10217 return 1;
10218 } while_each_thread(g, p);
b40b2e8e 10219
9a7e0b18
PZ
10220 return 0;
10221}
b40b2e8e 10222
9a7e0b18
PZ
10223struct rt_schedulable_data {
10224 struct task_group *tg;
10225 u64 rt_period;
10226 u64 rt_runtime;
10227};
b40b2e8e 10228
9a7e0b18
PZ
10229static int tg_schedulable(struct task_group *tg, void *data)
10230{
10231 struct rt_schedulable_data *d = data;
10232 struct task_group *child;
10233 unsigned long total, sum = 0;
10234 u64 period, runtime;
b40b2e8e 10235
9a7e0b18
PZ
10236 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10237 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10238
9a7e0b18
PZ
10239 if (tg == d->tg) {
10240 period = d->rt_period;
10241 runtime = d->rt_runtime;
b40b2e8e 10242 }
b40b2e8e 10243
98a4826b
PZ
10244#ifdef CONFIG_USER_SCHED
10245 if (tg == &root_task_group) {
10246 period = global_rt_period();
10247 runtime = global_rt_runtime();
10248 }
10249#endif
10250
4653f803
PZ
10251 /*
10252 * Cannot have more runtime than the period.
10253 */
10254 if (runtime > period && runtime != RUNTIME_INF)
10255 return -EINVAL;
6f505b16 10256
4653f803
PZ
10257 /*
10258 * Ensure we don't starve existing RT tasks.
10259 */
9a7e0b18
PZ
10260 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10261 return -EBUSY;
6f505b16 10262
9a7e0b18 10263 total = to_ratio(period, runtime);
6f505b16 10264
4653f803
PZ
10265 /*
10266 * Nobody can have more than the global setting allows.
10267 */
10268 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10269 return -EINVAL;
6f505b16 10270
4653f803
PZ
10271 /*
10272 * The sum of our children's runtime should not exceed our own.
10273 */
9a7e0b18
PZ
10274 list_for_each_entry_rcu(child, &tg->children, siblings) {
10275 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10276 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10277
9a7e0b18
PZ
10278 if (child == d->tg) {
10279 period = d->rt_period;
10280 runtime = d->rt_runtime;
10281 }
6f505b16 10282
9a7e0b18 10283 sum += to_ratio(period, runtime);
9f0c1e56 10284 }
6f505b16 10285
9a7e0b18
PZ
10286 if (sum > total)
10287 return -EINVAL;
10288
10289 return 0;
6f505b16
PZ
10290}
10291
9a7e0b18 10292static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10293{
9a7e0b18
PZ
10294 struct rt_schedulable_data data = {
10295 .tg = tg,
10296 .rt_period = period,
10297 .rt_runtime = runtime,
10298 };
10299
10300 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10301}
10302
d0b27fa7
PZ
10303static int tg_set_bandwidth(struct task_group *tg,
10304 u64 rt_period, u64 rt_runtime)
6f505b16 10305{
ac086bc2 10306 int i, err = 0;
9f0c1e56 10307
9f0c1e56 10308 mutex_lock(&rt_constraints_mutex);
521f1a24 10309 read_lock(&tasklist_lock);
9a7e0b18
PZ
10310 err = __rt_schedulable(tg, rt_period, rt_runtime);
10311 if (err)
9f0c1e56 10312 goto unlock;
ac086bc2
PZ
10313
10314 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10315 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10316 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10317
10318 for_each_possible_cpu(i) {
10319 struct rt_rq *rt_rq = tg->rt_rq[i];
10320
10321 spin_lock(&rt_rq->rt_runtime_lock);
10322 rt_rq->rt_runtime = rt_runtime;
10323 spin_unlock(&rt_rq->rt_runtime_lock);
10324 }
10325 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10326 unlock:
521f1a24 10327 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10328 mutex_unlock(&rt_constraints_mutex);
10329
10330 return err;
6f505b16
PZ
10331}
10332
d0b27fa7
PZ
10333int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10334{
10335 u64 rt_runtime, rt_period;
10336
10337 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10338 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10339 if (rt_runtime_us < 0)
10340 rt_runtime = RUNTIME_INF;
10341
10342 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10343}
10344
9f0c1e56
PZ
10345long sched_group_rt_runtime(struct task_group *tg)
10346{
10347 u64 rt_runtime_us;
10348
d0b27fa7 10349 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10350 return -1;
10351
d0b27fa7 10352 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10353 do_div(rt_runtime_us, NSEC_PER_USEC);
10354 return rt_runtime_us;
10355}
d0b27fa7
PZ
10356
10357int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10358{
10359 u64 rt_runtime, rt_period;
10360
10361 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10362 rt_runtime = tg->rt_bandwidth.rt_runtime;
10363
619b0488
R
10364 if (rt_period == 0)
10365 return -EINVAL;
10366
d0b27fa7
PZ
10367 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10368}
10369
10370long sched_group_rt_period(struct task_group *tg)
10371{
10372 u64 rt_period_us;
10373
10374 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10375 do_div(rt_period_us, NSEC_PER_USEC);
10376 return rt_period_us;
10377}
10378
10379static int sched_rt_global_constraints(void)
10380{
4653f803 10381 u64 runtime, period;
d0b27fa7
PZ
10382 int ret = 0;
10383
ec5d4989
HS
10384 if (sysctl_sched_rt_period <= 0)
10385 return -EINVAL;
10386
4653f803
PZ
10387 runtime = global_rt_runtime();
10388 period = global_rt_period();
10389
10390 /*
10391 * Sanity check on the sysctl variables.
10392 */
10393 if (runtime > period && runtime != RUNTIME_INF)
10394 return -EINVAL;
10b612f4 10395
d0b27fa7 10396 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10397 read_lock(&tasklist_lock);
4653f803 10398 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10399 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10400 mutex_unlock(&rt_constraints_mutex);
10401
10402 return ret;
10403}
54e99124
DG
10404
10405int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10406{
10407 /* Don't accept realtime tasks when there is no way for them to run */
10408 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10409 return 0;
10410
10411 return 1;
10412}
10413
6d6bc0ad 10414#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10415static int sched_rt_global_constraints(void)
10416{
ac086bc2
PZ
10417 unsigned long flags;
10418 int i;
10419
ec5d4989
HS
10420 if (sysctl_sched_rt_period <= 0)
10421 return -EINVAL;
10422
60aa605d
PZ
10423 /*
10424 * There's always some RT tasks in the root group
10425 * -- migration, kstopmachine etc..
10426 */
10427 if (sysctl_sched_rt_runtime == 0)
10428 return -EBUSY;
10429
ac086bc2
PZ
10430 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10431 for_each_possible_cpu(i) {
10432 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10433
10434 spin_lock(&rt_rq->rt_runtime_lock);
10435 rt_rq->rt_runtime = global_rt_runtime();
10436 spin_unlock(&rt_rq->rt_runtime_lock);
10437 }
10438 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10439
d0b27fa7
PZ
10440 return 0;
10441}
6d6bc0ad 10442#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10443
10444int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10445 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10446 loff_t *ppos)
10447{
10448 int ret;
10449 int old_period, old_runtime;
10450 static DEFINE_MUTEX(mutex);
10451
10452 mutex_lock(&mutex);
10453 old_period = sysctl_sched_rt_period;
10454 old_runtime = sysctl_sched_rt_runtime;
10455
8d65af78 10456 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10457
10458 if (!ret && write) {
10459 ret = sched_rt_global_constraints();
10460 if (ret) {
10461 sysctl_sched_rt_period = old_period;
10462 sysctl_sched_rt_runtime = old_runtime;
10463 } else {
10464 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10465 def_rt_bandwidth.rt_period =
10466 ns_to_ktime(global_rt_period());
10467 }
10468 }
10469 mutex_unlock(&mutex);
10470
10471 return ret;
10472}
68318b8e 10473
052f1dc7 10474#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10475
10476/* return corresponding task_group object of a cgroup */
2b01dfe3 10477static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10478{
2b01dfe3
PM
10479 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10480 struct task_group, css);
68318b8e
SV
10481}
10482
10483static struct cgroup_subsys_state *
2b01dfe3 10484cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10485{
ec7dc8ac 10486 struct task_group *tg, *parent;
68318b8e 10487
2b01dfe3 10488 if (!cgrp->parent) {
68318b8e 10489 /* This is early initialization for the top cgroup */
68318b8e
SV
10490 return &init_task_group.css;
10491 }
10492
ec7dc8ac
DG
10493 parent = cgroup_tg(cgrp->parent);
10494 tg = sched_create_group(parent);
68318b8e
SV
10495 if (IS_ERR(tg))
10496 return ERR_PTR(-ENOMEM);
10497
68318b8e
SV
10498 return &tg->css;
10499}
10500
41a2d6cf
IM
10501static void
10502cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10503{
2b01dfe3 10504 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10505
10506 sched_destroy_group(tg);
10507}
10508
41a2d6cf 10509static int
be367d09 10510cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10511{
b68aa230 10512#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10513 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10514 return -EINVAL;
10515#else
68318b8e
SV
10516 /* We don't support RT-tasks being in separate groups */
10517 if (tsk->sched_class != &fair_sched_class)
10518 return -EINVAL;
b68aa230 10519#endif
be367d09
BB
10520 return 0;
10521}
68318b8e 10522
be367d09
BB
10523static int
10524cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10525 struct task_struct *tsk, bool threadgroup)
10526{
10527 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10528 if (retval)
10529 return retval;
10530 if (threadgroup) {
10531 struct task_struct *c;
10532 rcu_read_lock();
10533 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10534 retval = cpu_cgroup_can_attach_task(cgrp, c);
10535 if (retval) {
10536 rcu_read_unlock();
10537 return retval;
10538 }
10539 }
10540 rcu_read_unlock();
10541 }
68318b8e
SV
10542 return 0;
10543}
10544
10545static void
2b01dfe3 10546cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10547 struct cgroup *old_cont, struct task_struct *tsk,
10548 bool threadgroup)
68318b8e
SV
10549{
10550 sched_move_task(tsk);
be367d09
BB
10551 if (threadgroup) {
10552 struct task_struct *c;
10553 rcu_read_lock();
10554 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10555 sched_move_task(c);
10556 }
10557 rcu_read_unlock();
10558 }
68318b8e
SV
10559}
10560
052f1dc7 10561#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10562static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10563 u64 shareval)
68318b8e 10564{
2b01dfe3 10565 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10566}
10567
f4c753b7 10568static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10569{
2b01dfe3 10570 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10571
10572 return (u64) tg->shares;
10573}
6d6bc0ad 10574#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10575
052f1dc7 10576#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10577static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10578 s64 val)
6f505b16 10579{
06ecb27c 10580 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10581}
10582
06ecb27c 10583static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10584{
06ecb27c 10585 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10586}
d0b27fa7
PZ
10587
10588static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10589 u64 rt_period_us)
10590{
10591 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10592}
10593
10594static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10595{
10596 return sched_group_rt_period(cgroup_tg(cgrp));
10597}
6d6bc0ad 10598#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10599
fe5c7cc2 10600static struct cftype cpu_files[] = {
052f1dc7 10601#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10602 {
10603 .name = "shares",
f4c753b7
PM
10604 .read_u64 = cpu_shares_read_u64,
10605 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10606 },
052f1dc7
PZ
10607#endif
10608#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10609 {
9f0c1e56 10610 .name = "rt_runtime_us",
06ecb27c
PM
10611 .read_s64 = cpu_rt_runtime_read,
10612 .write_s64 = cpu_rt_runtime_write,
6f505b16 10613 },
d0b27fa7
PZ
10614 {
10615 .name = "rt_period_us",
f4c753b7
PM
10616 .read_u64 = cpu_rt_period_read_uint,
10617 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10618 },
052f1dc7 10619#endif
68318b8e
SV
10620};
10621
10622static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10623{
fe5c7cc2 10624 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10625}
10626
10627struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10628 .name = "cpu",
10629 .create = cpu_cgroup_create,
10630 .destroy = cpu_cgroup_destroy,
10631 .can_attach = cpu_cgroup_can_attach,
10632 .attach = cpu_cgroup_attach,
10633 .populate = cpu_cgroup_populate,
10634 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10635 .early_init = 1,
10636};
10637
052f1dc7 10638#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10639
10640#ifdef CONFIG_CGROUP_CPUACCT
10641
10642/*
10643 * CPU accounting code for task groups.
10644 *
10645 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10646 * (balbir@in.ibm.com).
10647 */
10648
934352f2 10649/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10650struct cpuacct {
10651 struct cgroup_subsys_state css;
10652 /* cpuusage holds pointer to a u64-type object on every cpu */
10653 u64 *cpuusage;
ef12fefa 10654 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10655 struct cpuacct *parent;
d842de87
SV
10656};
10657
10658struct cgroup_subsys cpuacct_subsys;
10659
10660/* return cpu accounting group corresponding to this container */
32cd756a 10661static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10662{
32cd756a 10663 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10664 struct cpuacct, css);
10665}
10666
10667/* return cpu accounting group to which this task belongs */
10668static inline struct cpuacct *task_ca(struct task_struct *tsk)
10669{
10670 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10671 struct cpuacct, css);
10672}
10673
10674/* create a new cpu accounting group */
10675static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10676 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10677{
10678 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10679 int i;
d842de87
SV
10680
10681 if (!ca)
ef12fefa 10682 goto out;
d842de87
SV
10683
10684 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10685 if (!ca->cpuusage)
10686 goto out_free_ca;
10687
10688 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10689 if (percpu_counter_init(&ca->cpustat[i], 0))
10690 goto out_free_counters;
d842de87 10691
934352f2
BR
10692 if (cgrp->parent)
10693 ca->parent = cgroup_ca(cgrp->parent);
10694
d842de87 10695 return &ca->css;
ef12fefa
BR
10696
10697out_free_counters:
10698 while (--i >= 0)
10699 percpu_counter_destroy(&ca->cpustat[i]);
10700 free_percpu(ca->cpuusage);
10701out_free_ca:
10702 kfree(ca);
10703out:
10704 return ERR_PTR(-ENOMEM);
d842de87
SV
10705}
10706
10707/* destroy an existing cpu accounting group */
41a2d6cf 10708static void
32cd756a 10709cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10710{
32cd756a 10711 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10712 int i;
d842de87 10713
ef12fefa
BR
10714 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10715 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10716 free_percpu(ca->cpuusage);
10717 kfree(ca);
10718}
10719
720f5498
KC
10720static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10721{
b36128c8 10722 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10723 u64 data;
10724
10725#ifndef CONFIG_64BIT
10726 /*
10727 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10728 */
10729 spin_lock_irq(&cpu_rq(cpu)->lock);
10730 data = *cpuusage;
10731 spin_unlock_irq(&cpu_rq(cpu)->lock);
10732#else
10733 data = *cpuusage;
10734#endif
10735
10736 return data;
10737}
10738
10739static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10740{
b36128c8 10741 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10742
10743#ifndef CONFIG_64BIT
10744 /*
10745 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10746 */
10747 spin_lock_irq(&cpu_rq(cpu)->lock);
10748 *cpuusage = val;
10749 spin_unlock_irq(&cpu_rq(cpu)->lock);
10750#else
10751 *cpuusage = val;
10752#endif
10753}
10754
d842de87 10755/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10756static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10757{
32cd756a 10758 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10759 u64 totalcpuusage = 0;
10760 int i;
10761
720f5498
KC
10762 for_each_present_cpu(i)
10763 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10764
10765 return totalcpuusage;
10766}
10767
0297b803
DG
10768static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10769 u64 reset)
10770{
10771 struct cpuacct *ca = cgroup_ca(cgrp);
10772 int err = 0;
10773 int i;
10774
10775 if (reset) {
10776 err = -EINVAL;
10777 goto out;
10778 }
10779
720f5498
KC
10780 for_each_present_cpu(i)
10781 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10782
0297b803
DG
10783out:
10784 return err;
10785}
10786
e9515c3c
KC
10787static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10788 struct seq_file *m)
10789{
10790 struct cpuacct *ca = cgroup_ca(cgroup);
10791 u64 percpu;
10792 int i;
10793
10794 for_each_present_cpu(i) {
10795 percpu = cpuacct_cpuusage_read(ca, i);
10796 seq_printf(m, "%llu ", (unsigned long long) percpu);
10797 }
10798 seq_printf(m, "\n");
10799 return 0;
10800}
10801
ef12fefa
BR
10802static const char *cpuacct_stat_desc[] = {
10803 [CPUACCT_STAT_USER] = "user",
10804 [CPUACCT_STAT_SYSTEM] = "system",
10805};
10806
10807static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10808 struct cgroup_map_cb *cb)
10809{
10810 struct cpuacct *ca = cgroup_ca(cgrp);
10811 int i;
10812
10813 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10814 s64 val = percpu_counter_read(&ca->cpustat[i]);
10815 val = cputime64_to_clock_t(val);
10816 cb->fill(cb, cpuacct_stat_desc[i], val);
10817 }
10818 return 0;
10819}
10820
d842de87
SV
10821static struct cftype files[] = {
10822 {
10823 .name = "usage",
f4c753b7
PM
10824 .read_u64 = cpuusage_read,
10825 .write_u64 = cpuusage_write,
d842de87 10826 },
e9515c3c
KC
10827 {
10828 .name = "usage_percpu",
10829 .read_seq_string = cpuacct_percpu_seq_read,
10830 },
ef12fefa
BR
10831 {
10832 .name = "stat",
10833 .read_map = cpuacct_stats_show,
10834 },
d842de87
SV
10835};
10836
32cd756a 10837static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10838{
32cd756a 10839 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10840}
10841
10842/*
10843 * charge this task's execution time to its accounting group.
10844 *
10845 * called with rq->lock held.
10846 */
10847static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10848{
10849 struct cpuacct *ca;
934352f2 10850 int cpu;
d842de87 10851
c40c6f85 10852 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10853 return;
10854
934352f2 10855 cpu = task_cpu(tsk);
a18b83b7
BR
10856
10857 rcu_read_lock();
10858
d842de87 10859 ca = task_ca(tsk);
d842de87 10860
934352f2 10861 for (; ca; ca = ca->parent) {
b36128c8 10862 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10863 *cpuusage += cputime;
10864 }
a18b83b7
BR
10865
10866 rcu_read_unlock();
d842de87
SV
10867}
10868
ef12fefa
BR
10869/*
10870 * Charge the system/user time to the task's accounting group.
10871 */
10872static void cpuacct_update_stats(struct task_struct *tsk,
10873 enum cpuacct_stat_index idx, cputime_t val)
10874{
10875 struct cpuacct *ca;
10876
10877 if (unlikely(!cpuacct_subsys.active))
10878 return;
10879
10880 rcu_read_lock();
10881 ca = task_ca(tsk);
10882
10883 do {
10884 percpu_counter_add(&ca->cpustat[idx], val);
10885 ca = ca->parent;
10886 } while (ca);
10887 rcu_read_unlock();
10888}
10889
d842de87
SV
10890struct cgroup_subsys cpuacct_subsys = {
10891 .name = "cpuacct",
10892 .create = cpuacct_create,
10893 .destroy = cpuacct_destroy,
10894 .populate = cpuacct_populate,
10895 .subsys_id = cpuacct_subsys_id,
10896};
10897#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10898
10899#ifndef CONFIG_SMP
10900
10901int rcu_expedited_torture_stats(char *page)
10902{
10903 return 0;
10904}
10905EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10906
10907void synchronize_sched_expedited(void)
10908{
10909}
10910EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10911
10912#else /* #ifndef CONFIG_SMP */
10913
10914static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10915static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10916
10917#define RCU_EXPEDITED_STATE_POST -2
10918#define RCU_EXPEDITED_STATE_IDLE -1
10919
10920static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10921
10922int rcu_expedited_torture_stats(char *page)
10923{
10924 int cnt = 0;
10925 int cpu;
10926
10927 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10928 for_each_online_cpu(cpu) {
10929 cnt += sprintf(&page[cnt], " %d:%d",
10930 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10931 }
10932 cnt += sprintf(&page[cnt], "\n");
10933 return cnt;
10934}
10935EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10936
10937static long synchronize_sched_expedited_count;
10938
10939/*
10940 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10941 * approach to force grace period to end quickly. This consumes
10942 * significant time on all CPUs, and is thus not recommended for
10943 * any sort of common-case code.
10944 *
10945 * Note that it is illegal to call this function while holding any
10946 * lock that is acquired by a CPU-hotplug notifier. Failing to
10947 * observe this restriction will result in deadlock.
10948 */
10949void synchronize_sched_expedited(void)
10950{
10951 int cpu;
10952 unsigned long flags;
10953 bool need_full_sync = 0;
10954 struct rq *rq;
10955 struct migration_req *req;
10956 long snap;
10957 int trycount = 0;
10958
10959 smp_mb(); /* ensure prior mod happens before capturing snap. */
10960 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10961 get_online_cpus();
10962 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10963 put_online_cpus();
10964 if (trycount++ < 10)
10965 udelay(trycount * num_online_cpus());
10966 else {
10967 synchronize_sched();
10968 return;
10969 }
10970 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10971 smp_mb(); /* ensure test happens before caller kfree */
10972 return;
10973 }
10974 get_online_cpus();
10975 }
10976 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10977 for_each_online_cpu(cpu) {
10978 rq = cpu_rq(cpu);
10979 req = &per_cpu(rcu_migration_req, cpu);
10980 init_completion(&req->done);
10981 req->task = NULL;
10982 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10983 spin_lock_irqsave(&rq->lock, flags);
10984 list_add(&req->list, &rq->migration_queue);
10985 spin_unlock_irqrestore(&rq->lock, flags);
10986 wake_up_process(rq->migration_thread);
10987 }
10988 for_each_online_cpu(cpu) {
10989 rcu_expedited_state = cpu;
10990 req = &per_cpu(rcu_migration_req, cpu);
10991 rq = cpu_rq(cpu);
10992 wait_for_completion(&req->done);
10993 spin_lock_irqsave(&rq->lock, flags);
10994 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10995 need_full_sync = 1;
10996 req->dest_cpu = RCU_MIGRATION_IDLE;
10997 spin_unlock_irqrestore(&rq->lock, flags);
10998 }
10999 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 11000 synchronize_sched_expedited_count++;
03b042bf
PM
11001 mutex_unlock(&rcu_sched_expedited_mutex);
11002 put_online_cpus();
11003 if (need_full_sync)
11004 synchronize_sched();
11005}
11006EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11007
11008#endif /* #else #ifndef CONFIG_SMP */
This page took 3.031699 seconds and 5 git commands to generate.