Merge branch 'linus' into tracing/ftrace
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4
LT
77
78/*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87/*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96/*
d7876a08 97 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 98 */
d6322faf 99#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 100
6aa645ea
IM
101#define NICE_0_LOAD SCHED_LOAD_SCALE
102#define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
1da177e4
LT
104/*
105 * These are the 'tuning knobs' of the scheduler:
106 *
a4ec24b4 107 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
108 * Timeslices get refilled after they expire.
109 */
1da177e4 110#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 111
d0b27fa7
PZ
112/*
113 * single value that denotes runtime == period, ie unlimited time.
114 */
115#define RUNTIME_INF ((u64)~0ULL)
116
5517d86b
ED
117#ifdef CONFIG_SMP
118/*
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 */
122static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
123{
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
125}
126
127/*
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
130 */
131static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
132{
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
135}
136#endif
137
e05606d3
IM
138static inline int rt_policy(int policy)
139{
3f33a7ce 140 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
141 return 1;
142 return 0;
143}
144
145static inline int task_has_rt_policy(struct task_struct *p)
146{
147 return rt_policy(p->policy);
148}
149
1da177e4 150/*
6aa645ea 151 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 152 */
6aa645ea
IM
153struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
156};
157
d0b27fa7 158struct rt_bandwidth {
ea736ed5
IM
159 /* nests inside the rq lock: */
160 spinlock_t rt_runtime_lock;
161 ktime_t rt_period;
162 u64 rt_runtime;
163 struct hrtimer rt_period_timer;
d0b27fa7
PZ
164};
165
166static struct rt_bandwidth def_rt_bandwidth;
167
168static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
169
170static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
171{
172 struct rt_bandwidth *rt_b =
173 container_of(timer, struct rt_bandwidth, rt_period_timer);
174 ktime_t now;
175 int overrun;
176 int idle = 0;
177
178 for (;;) {
179 now = hrtimer_cb_get_time(timer);
180 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
181
182 if (!overrun)
183 break;
184
185 idle = do_sched_rt_period_timer(rt_b, overrun);
186 }
187
188 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
189}
190
191static
192void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
193{
194 rt_b->rt_period = ns_to_ktime(period);
195 rt_b->rt_runtime = runtime;
196
ac086bc2
PZ
197 spin_lock_init(&rt_b->rt_runtime_lock);
198
d0b27fa7
PZ
199 hrtimer_init(&rt_b->rt_period_timer,
200 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
201 rt_b->rt_period_timer.function = sched_rt_period_timer;
202 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
203}
204
205static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
206{
207 ktime_t now;
208
209 if (rt_b->rt_runtime == RUNTIME_INF)
210 return;
211
212 if (hrtimer_active(&rt_b->rt_period_timer))
213 return;
214
215 spin_lock(&rt_b->rt_runtime_lock);
216 for (;;) {
217 if (hrtimer_active(&rt_b->rt_period_timer))
218 break;
219
220 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
221 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
222 hrtimer_start(&rt_b->rt_period_timer,
223 rt_b->rt_period_timer.expires,
224 HRTIMER_MODE_ABS);
225 }
226 spin_unlock(&rt_b->rt_runtime_lock);
227}
228
229#ifdef CONFIG_RT_GROUP_SCHED
230static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
231{
232 hrtimer_cancel(&rt_b->rt_period_timer);
233}
234#endif
235
712555ee
HC
236/*
237 * sched_domains_mutex serializes calls to arch_init_sched_domains,
238 * detach_destroy_domains and partition_sched_domains.
239 */
240static DEFINE_MUTEX(sched_domains_mutex);
241
052f1dc7 242#ifdef CONFIG_GROUP_SCHED
29f59db3 243
68318b8e
SV
244#include <linux/cgroup.h>
245
29f59db3
SV
246struct cfs_rq;
247
6f505b16
PZ
248static LIST_HEAD(task_groups);
249
29f59db3 250/* task group related information */
4cf86d77 251struct task_group {
052f1dc7 252#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
253 struct cgroup_subsys_state css;
254#endif
052f1dc7
PZ
255
256#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
052f1dc7
PZ
262#endif
263
264#ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
d0b27fa7 268 struct rt_bandwidth rt_bandwidth;
052f1dc7 269#endif
6b2d7700 270
ae8393e5 271 struct rcu_head rcu;
6f505b16 272 struct list_head list;
f473aa5e
PZ
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
29f59db3
SV
277};
278
354d60c2 279#ifdef CONFIG_USER_SCHED
eff766a6
PZ
280
281/*
282 * Root task group.
283 * Every UID task group (including init_task_group aka UID-0) will
284 * be a child to this group.
285 */
286struct task_group root_task_group;
287
052f1dc7 288#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
289/* Default task group's sched entity on each cpu */
290static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
291/* Default task group's cfs_rq on each cpu */
292static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
052f1dc7
PZ
293#endif
294
295#ifdef CONFIG_RT_GROUP_SCHED
296static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
297static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
052f1dc7 298#endif
eff766a6
PZ
299#else
300#define root_task_group init_task_group
354d60c2 301#endif
6f505b16 302
8ed36996 303/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
304 * a task group's cpu shares.
305 */
8ed36996 306static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 307
052f1dc7 308#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
309#ifdef CONFIG_USER_SCHED
310# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
311#else
312# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
313#endif
314
cb4ad1ff 315/*
2e084786
LJ
316 * A weight of 0 or 1 can cause arithmetics problems.
317 * A weight of a cfs_rq is the sum of weights of which entities
318 * are queued on this cfs_rq, so a weight of a entity should not be
319 * too large, so as the shares value of a task group.
cb4ad1ff
MX
320 * (The default weight is 1024 - so there's no practical
321 * limitation from this.)
322 */
18d95a28 323#define MIN_SHARES 2
2e084786 324#define MAX_SHARES (1UL << 18)
18d95a28 325
052f1dc7
PZ
326static int init_task_group_load = INIT_TASK_GROUP_LOAD;
327#endif
328
29f59db3 329/* Default task group.
3a252015 330 * Every task in system belong to this group at bootup.
29f59db3 331 */
434d53b0 332struct task_group init_task_group;
29f59db3
SV
333
334/* return group to which a task belongs */
4cf86d77 335static inline struct task_group *task_group(struct task_struct *p)
29f59db3 336{
4cf86d77 337 struct task_group *tg;
9b5b7751 338
052f1dc7 339#ifdef CONFIG_USER_SCHED
24e377a8 340 tg = p->user->tg;
052f1dc7 341#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
342 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
343 struct task_group, css);
24e377a8 344#else
41a2d6cf 345 tg = &init_task_group;
24e377a8 346#endif
9b5b7751 347 return tg;
29f59db3
SV
348}
349
350/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 351static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 352{
052f1dc7 353#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
354 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
355 p->se.parent = task_group(p)->se[cpu];
052f1dc7 356#endif
6f505b16 357
052f1dc7 358#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
359 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
360 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 361#endif
29f59db3
SV
362}
363
364#else
365
6f505b16 366static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 367
052f1dc7 368#endif /* CONFIG_GROUP_SCHED */
29f59db3 369
6aa645ea
IM
370/* CFS-related fields in a runqueue */
371struct cfs_rq {
372 struct load_weight load;
373 unsigned long nr_running;
374
6aa645ea 375 u64 exec_clock;
e9acbff6 376 u64 min_vruntime;
6aa645ea
IM
377
378 struct rb_root tasks_timeline;
379 struct rb_node *rb_leftmost;
4a55bd5e
PZ
380
381 struct list_head tasks;
382 struct list_head *balance_iterator;
383
384 /*
385 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
386 * It is set to NULL otherwise (i.e when none are currently running).
387 */
aa2ac252 388 struct sched_entity *curr, *next;
ddc97297
PZ
389
390 unsigned long nr_spread_over;
391
62160e3f 392#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
393 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
394
41a2d6cf
IM
395 /*
396 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
397 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
398 * (like users, containers etc.)
399 *
400 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
401 * list is used during load balance.
402 */
41a2d6cf
IM
403 struct list_head leaf_cfs_rq_list;
404 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
405#endif
406};
1da177e4 407
6aa645ea
IM
408/* Real-Time classes' related field in a runqueue: */
409struct rt_rq {
410 struct rt_prio_array active;
63489e45 411 unsigned long rt_nr_running;
052f1dc7 412#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
413 int highest_prio; /* highest queued rt task prio */
414#endif
fa85ae24 415#ifdef CONFIG_SMP
73fe6aae 416 unsigned long rt_nr_migratory;
a22d7fc1 417 int overloaded;
fa85ae24 418#endif
6f505b16 419 int rt_throttled;
fa85ae24 420 u64 rt_time;
ac086bc2 421 u64 rt_runtime;
ea736ed5 422 /* Nests inside the rq lock: */
ac086bc2 423 spinlock_t rt_runtime_lock;
6f505b16 424
052f1dc7 425#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
426 unsigned long rt_nr_boosted;
427
6f505b16
PZ
428 struct rq *rq;
429 struct list_head leaf_rt_rq_list;
430 struct task_group *tg;
431 struct sched_rt_entity *rt_se;
432#endif
6aa645ea
IM
433};
434
57d885fe
GH
435#ifdef CONFIG_SMP
436
437/*
438 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
439 * variables. Each exclusive cpuset essentially defines an island domain by
440 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
441 * exclusive cpuset is created, we also create and attach a new root-domain
442 * object.
443 *
57d885fe
GH
444 */
445struct root_domain {
446 atomic_t refcount;
447 cpumask_t span;
448 cpumask_t online;
637f5085 449
0eab9146 450 /*
637f5085
GH
451 * The "RT overload" flag: it gets set if a CPU has more than
452 * one runnable RT task.
453 */
454 cpumask_t rto_mask;
0eab9146 455 atomic_t rto_count;
57d885fe
GH
456};
457
dc938520
GH
458/*
459 * By default the system creates a single root-domain with all cpus as
460 * members (mimicking the global state we have today).
461 */
57d885fe
GH
462static struct root_domain def_root_domain;
463
464#endif
465
1da177e4
LT
466/*
467 * This is the main, per-CPU runqueue data structure.
468 *
469 * Locking rule: those places that want to lock multiple runqueues
470 * (such as the load balancing or the thread migration code), lock
471 * acquire operations must be ordered by ascending &runqueue.
472 */
70b97a7f 473struct rq {
d8016491
IM
474 /* runqueue lock: */
475 spinlock_t lock;
1da177e4
LT
476
477 /*
478 * nr_running and cpu_load should be in the same cacheline because
479 * remote CPUs use both these fields when doing load calculation.
480 */
481 unsigned long nr_running;
6aa645ea
IM
482 #define CPU_LOAD_IDX_MAX 5
483 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 484 unsigned char idle_at_tick;
46cb4b7c 485#ifdef CONFIG_NO_HZ
15934a37 486 unsigned long last_tick_seen;
46cb4b7c
SS
487 unsigned char in_nohz_recently;
488#endif
d8016491
IM
489 /* capture load from *all* tasks on this cpu: */
490 struct load_weight load;
6aa645ea
IM
491 unsigned long nr_load_updates;
492 u64 nr_switches;
493
494 struct cfs_rq cfs;
6f505b16 495 struct rt_rq rt;
6f505b16 496
6aa645ea 497#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
498 /* list of leaf cfs_rq on this cpu: */
499 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
500#endif
501#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 502 struct list_head leaf_rt_rq_list;
1da177e4 503#endif
1da177e4
LT
504
505 /*
506 * This is part of a global counter where only the total sum
507 * over all CPUs matters. A task can increase this counter on
508 * one CPU and if it got migrated afterwards it may decrease
509 * it on another CPU. Always updated under the runqueue lock:
510 */
511 unsigned long nr_uninterruptible;
512
36c8b586 513 struct task_struct *curr, *idle;
c9819f45 514 unsigned long next_balance;
1da177e4 515 struct mm_struct *prev_mm;
6aa645ea 516
3e51f33f 517 u64 clock;
6aa645ea 518
1da177e4
LT
519 atomic_t nr_iowait;
520
521#ifdef CONFIG_SMP
0eab9146 522 struct root_domain *rd;
1da177e4
LT
523 struct sched_domain *sd;
524
525 /* For active balancing */
526 int active_balance;
527 int push_cpu;
d8016491
IM
528 /* cpu of this runqueue: */
529 int cpu;
1da177e4 530
36c8b586 531 struct task_struct *migration_thread;
1da177e4
LT
532 struct list_head migration_queue;
533#endif
534
8f4d37ec
PZ
535#ifdef CONFIG_SCHED_HRTICK
536 unsigned long hrtick_flags;
537 ktime_t hrtick_expire;
538 struct hrtimer hrtick_timer;
539#endif
540
1da177e4
LT
541#ifdef CONFIG_SCHEDSTATS
542 /* latency stats */
543 struct sched_info rq_sched_info;
544
545 /* sys_sched_yield() stats */
480b9434
KC
546 unsigned int yld_exp_empty;
547 unsigned int yld_act_empty;
548 unsigned int yld_both_empty;
549 unsigned int yld_count;
1da177e4
LT
550
551 /* schedule() stats */
480b9434
KC
552 unsigned int sched_switch;
553 unsigned int sched_count;
554 unsigned int sched_goidle;
1da177e4
LT
555
556 /* try_to_wake_up() stats */
480b9434
KC
557 unsigned int ttwu_count;
558 unsigned int ttwu_local;
b8efb561
IM
559
560 /* BKL stats */
480b9434 561 unsigned int bkl_count;
1da177e4 562#endif
fcb99371 563 struct lock_class_key rq_lock_key;
1da177e4
LT
564};
565
f34e3b61 566static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 567
dd41f596
IM
568static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
569{
570 rq->curr->sched_class->check_preempt_curr(rq, p);
571}
572
0a2966b4
CL
573static inline int cpu_of(struct rq *rq)
574{
575#ifdef CONFIG_SMP
576 return rq->cpu;
577#else
578 return 0;
579#endif
580}
581
674311d5
NP
582/*
583 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 584 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
585 *
586 * The domain tree of any CPU may only be accessed from within
587 * preempt-disabled sections.
588 */
48f24c4d
IM
589#define for_each_domain(cpu, __sd) \
590 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
591
592#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
593#define this_rq() (&__get_cpu_var(runqueues))
594#define task_rq(p) cpu_rq(task_cpu(p))
595#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
596
3e51f33f
PZ
597static inline void update_rq_clock(struct rq *rq)
598{
599 rq->clock = sched_clock_cpu(cpu_of(rq));
600}
601
bf5c91ba
IM
602/*
603 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
604 */
605#ifdef CONFIG_SCHED_DEBUG
606# define const_debug __read_mostly
607#else
608# define const_debug static const
609#endif
610
017730c1
IM
611/**
612 * runqueue_is_locked
613 *
614 * Returns true if the current cpu runqueue is locked.
615 * This interface allows printk to be called with the runqueue lock
616 * held and know whether or not it is OK to wake up the klogd.
617 */
618int runqueue_is_locked(void)
619{
620 int cpu = get_cpu();
621 struct rq *rq = cpu_rq(cpu);
622 int ret;
623
624 ret = spin_is_locked(&rq->lock);
625 put_cpu();
626 return ret;
627}
628
bf5c91ba
IM
629/*
630 * Debugging: various feature bits
631 */
f00b45c1
PZ
632
633#define SCHED_FEAT(name, enabled) \
634 __SCHED_FEAT_##name ,
635
bf5c91ba 636enum {
f00b45c1 637#include "sched_features.h"
bf5c91ba
IM
638};
639
f00b45c1
PZ
640#undef SCHED_FEAT
641
642#define SCHED_FEAT(name, enabled) \
643 (1UL << __SCHED_FEAT_##name) * enabled |
644
bf5c91ba 645const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
646#include "sched_features.h"
647 0;
648
649#undef SCHED_FEAT
650
651#ifdef CONFIG_SCHED_DEBUG
652#define SCHED_FEAT(name, enabled) \
653 #name ,
654
983ed7a6 655static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
656#include "sched_features.h"
657 NULL
658};
659
660#undef SCHED_FEAT
661
983ed7a6 662static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
663{
664 filp->private_data = inode->i_private;
665 return 0;
666}
667
668static ssize_t
669sched_feat_read(struct file *filp, char __user *ubuf,
670 size_t cnt, loff_t *ppos)
671{
672 char *buf;
673 int r = 0;
674 int len = 0;
675 int i;
676
677 for (i = 0; sched_feat_names[i]; i++) {
678 len += strlen(sched_feat_names[i]);
679 len += 4;
680 }
681
682 buf = kmalloc(len + 2, GFP_KERNEL);
683 if (!buf)
684 return -ENOMEM;
685
686 for (i = 0; sched_feat_names[i]; i++) {
687 if (sysctl_sched_features & (1UL << i))
688 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
689 else
c24b7c52 690 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
691 }
692
693 r += sprintf(buf + r, "\n");
694 WARN_ON(r >= len + 2);
695
696 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
697
698 kfree(buf);
699
700 return r;
701}
702
703static ssize_t
704sched_feat_write(struct file *filp, const char __user *ubuf,
705 size_t cnt, loff_t *ppos)
706{
707 char buf[64];
708 char *cmp = buf;
709 int neg = 0;
710 int i;
711
712 if (cnt > 63)
713 cnt = 63;
714
715 if (copy_from_user(&buf, ubuf, cnt))
716 return -EFAULT;
717
718 buf[cnt] = 0;
719
c24b7c52 720 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
721 neg = 1;
722 cmp += 3;
723 }
724
725 for (i = 0; sched_feat_names[i]; i++) {
726 int len = strlen(sched_feat_names[i]);
727
728 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
729 if (neg)
730 sysctl_sched_features &= ~(1UL << i);
731 else
732 sysctl_sched_features |= (1UL << i);
733 break;
734 }
735 }
736
737 if (!sched_feat_names[i])
738 return -EINVAL;
739
740 filp->f_pos += cnt;
741
742 return cnt;
743}
744
745static struct file_operations sched_feat_fops = {
746 .open = sched_feat_open,
747 .read = sched_feat_read,
748 .write = sched_feat_write,
749};
750
751static __init int sched_init_debug(void)
752{
f00b45c1
PZ
753 debugfs_create_file("sched_features", 0644, NULL, NULL,
754 &sched_feat_fops);
755
756 return 0;
757}
758late_initcall(sched_init_debug);
759
760#endif
761
762#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 763
b82d9fdd
PZ
764/*
765 * Number of tasks to iterate in a single balance run.
766 * Limited because this is done with IRQs disabled.
767 */
768const_debug unsigned int sysctl_sched_nr_migrate = 32;
769
fa85ae24 770/*
9f0c1e56 771 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
772 * default: 1s
773 */
9f0c1e56 774unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 775
6892b75e
IM
776static __read_mostly int scheduler_running;
777
9f0c1e56
PZ
778/*
779 * part of the period that we allow rt tasks to run in us.
780 * default: 0.95s
781 */
782int sysctl_sched_rt_runtime = 950000;
fa85ae24 783
d0b27fa7
PZ
784static inline u64 global_rt_period(void)
785{
786 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
787}
788
789static inline u64 global_rt_runtime(void)
790{
791 if (sysctl_sched_rt_period < 0)
792 return RUNTIME_INF;
793
794 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
795}
fa85ae24 796
690229a0 797unsigned long long time_sync_thresh = 100000;
27ec4407
IM
798
799static DEFINE_PER_CPU(unsigned long long, time_offset);
800static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
801
e436d800 802/*
27ec4407
IM
803 * Global lock which we take every now and then to synchronize
804 * the CPUs time. This method is not warp-safe, but it's good
805 * enough to synchronize slowly diverging time sources and thus
806 * it's good enough for tracing:
e436d800 807 */
27ec4407
IM
808static DEFINE_SPINLOCK(time_sync_lock);
809static unsigned long long prev_global_time;
810
dfbf4a1b 811static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
27ec4407 812{
dfbf4a1b
IM
813 /*
814 * We want this inlined, to not get tracer function calls
815 * in this critical section:
816 */
817 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
818 __raw_spin_lock(&time_sync_lock.raw_lock);
27ec4407
IM
819
820 if (time < prev_global_time) {
821 per_cpu(time_offset, cpu) += prev_global_time - time;
822 time = prev_global_time;
823 } else {
824 prev_global_time = time;
825 }
826
dfbf4a1b
IM
827 __raw_spin_unlock(&time_sync_lock.raw_lock);
828 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
27ec4407
IM
829
830 return time;
831}
832
833static unsigned long long __cpu_clock(int cpu)
e436d800 834{
e436d800 835 unsigned long long now;
e436d800 836
8ced5f69
IM
837 /*
838 * Only call sched_clock() if the scheduler has already been
839 * initialized (some code might call cpu_clock() very early):
840 */
6892b75e
IM
841 if (unlikely(!scheduler_running))
842 return 0;
843
3e51f33f 844 now = sched_clock_cpu(cpu);
e436d800
IM
845
846 return now;
847}
27ec4407
IM
848
849/*
850 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
851 * clock constructed from sched_clock():
852 */
c6531cce 853unsigned long long notrace cpu_clock(int cpu)
27ec4407
IM
854{
855 unsigned long long prev_cpu_time, time, delta_time;
dfbf4a1b 856 unsigned long flags;
27ec4407 857
040ec23d 858 local_irq_save(flags);
27ec4407
IM
859 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
860 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
861 delta_time = time-prev_cpu_time;
862
dfbf4a1b 863 if (unlikely(delta_time > time_sync_thresh)) {
27ec4407 864 time = __sync_cpu_clock(time, cpu);
dfbf4a1b
IM
865 per_cpu(prev_cpu_time, cpu) = time;
866 }
040ec23d 867 local_irq_restore(flags);
27ec4407
IM
868
869 return time;
870}
a58f6f25 871EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 872
1da177e4 873#ifndef prepare_arch_switch
4866cde0
NP
874# define prepare_arch_switch(next) do { } while (0)
875#endif
876#ifndef finish_arch_switch
877# define finish_arch_switch(prev) do { } while (0)
878#endif
879
051a1d1a
DA
880static inline int task_current(struct rq *rq, struct task_struct *p)
881{
882 return rq->curr == p;
883}
884
4866cde0 885#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 886static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 887{
051a1d1a 888 return task_current(rq, p);
4866cde0
NP
889}
890
70b97a7f 891static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
892{
893}
894
70b97a7f 895static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 896{
da04c035
IM
897#ifdef CONFIG_DEBUG_SPINLOCK
898 /* this is a valid case when another task releases the spinlock */
899 rq->lock.owner = current;
900#endif
8a25d5de
IM
901 /*
902 * If we are tracking spinlock dependencies then we have to
903 * fix up the runqueue lock - which gets 'carried over' from
904 * prev into current:
905 */
906 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
907
4866cde0
NP
908 spin_unlock_irq(&rq->lock);
909}
910
911#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 912static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
913{
914#ifdef CONFIG_SMP
915 return p->oncpu;
916#else
051a1d1a 917 return task_current(rq, p);
4866cde0
NP
918#endif
919}
920
70b97a7f 921static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
922{
923#ifdef CONFIG_SMP
924 /*
925 * We can optimise this out completely for !SMP, because the
926 * SMP rebalancing from interrupt is the only thing that cares
927 * here.
928 */
929 next->oncpu = 1;
930#endif
931#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
932 spin_unlock_irq(&rq->lock);
933#else
934 spin_unlock(&rq->lock);
935#endif
936}
937
70b97a7f 938static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
939{
940#ifdef CONFIG_SMP
941 /*
942 * After ->oncpu is cleared, the task can be moved to a different CPU.
943 * We must ensure this doesn't happen until the switch is completely
944 * finished.
945 */
946 smp_wmb();
947 prev->oncpu = 0;
948#endif
949#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
950 local_irq_enable();
1da177e4 951#endif
4866cde0
NP
952}
953#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 954
b29739f9
IM
955/*
956 * __task_rq_lock - lock the runqueue a given task resides on.
957 * Must be called interrupts disabled.
958 */
70b97a7f 959static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
960 __acquires(rq->lock)
961{
3a5c359a
AK
962 for (;;) {
963 struct rq *rq = task_rq(p);
964 spin_lock(&rq->lock);
965 if (likely(rq == task_rq(p)))
966 return rq;
b29739f9 967 spin_unlock(&rq->lock);
b29739f9 968 }
b29739f9
IM
969}
970
1da177e4
LT
971/*
972 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 973 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
974 * explicitly disabling preemption.
975 */
70b97a7f 976static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
977 __acquires(rq->lock)
978{
70b97a7f 979 struct rq *rq;
1da177e4 980
3a5c359a
AK
981 for (;;) {
982 local_irq_save(*flags);
983 rq = task_rq(p);
984 spin_lock(&rq->lock);
985 if (likely(rq == task_rq(p)))
986 return rq;
1da177e4 987 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 988 }
1da177e4
LT
989}
990
a9957449 991static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
992 __releases(rq->lock)
993{
994 spin_unlock(&rq->lock);
995}
996
70b97a7f 997static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
998 __releases(rq->lock)
999{
1000 spin_unlock_irqrestore(&rq->lock, *flags);
1001}
1002
1da177e4 1003/*
cc2a73b5 1004 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1005 */
a9957449 1006static struct rq *this_rq_lock(void)
1da177e4
LT
1007 __acquires(rq->lock)
1008{
70b97a7f 1009 struct rq *rq;
1da177e4
LT
1010
1011 local_irq_disable();
1012 rq = this_rq();
1013 spin_lock(&rq->lock);
1014
1015 return rq;
1016}
1017
8f4d37ec
PZ
1018static void __resched_task(struct task_struct *p, int tif_bit);
1019
1020static inline void resched_task(struct task_struct *p)
1021{
1022 __resched_task(p, TIF_NEED_RESCHED);
1023}
1024
1025#ifdef CONFIG_SCHED_HRTICK
1026/*
1027 * Use HR-timers to deliver accurate preemption points.
1028 *
1029 * Its all a bit involved since we cannot program an hrt while holding the
1030 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1031 * reschedule event.
1032 *
1033 * When we get rescheduled we reprogram the hrtick_timer outside of the
1034 * rq->lock.
1035 */
1036static inline void resched_hrt(struct task_struct *p)
1037{
1038 __resched_task(p, TIF_HRTICK_RESCHED);
1039}
1040
1041static inline void resched_rq(struct rq *rq)
1042{
1043 unsigned long flags;
1044
1045 spin_lock_irqsave(&rq->lock, flags);
1046 resched_task(rq->curr);
1047 spin_unlock_irqrestore(&rq->lock, flags);
1048}
1049
1050enum {
1051 HRTICK_SET, /* re-programm hrtick_timer */
1052 HRTICK_RESET, /* not a new slice */
b328ca18 1053 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
1054};
1055
1056/*
1057 * Use hrtick when:
1058 * - enabled by features
1059 * - hrtimer is actually high res
1060 */
1061static inline int hrtick_enabled(struct rq *rq)
1062{
1063 if (!sched_feat(HRTICK))
1064 return 0;
b328ca18
PZ
1065 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1066 return 0;
8f4d37ec
PZ
1067 return hrtimer_is_hres_active(&rq->hrtick_timer);
1068}
1069
1070/*
1071 * Called to set the hrtick timer state.
1072 *
1073 * called with rq->lock held and irqs disabled
1074 */
1075static void hrtick_start(struct rq *rq, u64 delay, int reset)
1076{
1077 assert_spin_locked(&rq->lock);
1078
1079 /*
1080 * preempt at: now + delay
1081 */
1082 rq->hrtick_expire =
1083 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1084 /*
1085 * indicate we need to program the timer
1086 */
1087 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1088 if (reset)
1089 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1090
1091 /*
1092 * New slices are called from the schedule path and don't need a
1093 * forced reschedule.
1094 */
1095 if (reset)
1096 resched_hrt(rq->curr);
1097}
1098
1099static void hrtick_clear(struct rq *rq)
1100{
1101 if (hrtimer_active(&rq->hrtick_timer))
1102 hrtimer_cancel(&rq->hrtick_timer);
1103}
1104
1105/*
1106 * Update the timer from the possible pending state.
1107 */
1108static void hrtick_set(struct rq *rq)
1109{
1110 ktime_t time;
1111 int set, reset;
1112 unsigned long flags;
1113
1114 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1115
1116 spin_lock_irqsave(&rq->lock, flags);
1117 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1118 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1119 time = rq->hrtick_expire;
1120 clear_thread_flag(TIF_HRTICK_RESCHED);
1121 spin_unlock_irqrestore(&rq->lock, flags);
1122
1123 if (set) {
1124 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1125 if (reset && !hrtimer_active(&rq->hrtick_timer))
1126 resched_rq(rq);
1127 } else
1128 hrtick_clear(rq);
1129}
1130
1131/*
1132 * High-resolution timer tick.
1133 * Runs from hardirq context with interrupts disabled.
1134 */
1135static enum hrtimer_restart hrtick(struct hrtimer *timer)
1136{
1137 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1138
1139 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1140
1141 spin_lock(&rq->lock);
3e51f33f 1142 update_rq_clock(rq);
8f4d37ec
PZ
1143 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1144 spin_unlock(&rq->lock);
1145
1146 return HRTIMER_NORESTART;
1147}
1148
95e904c7 1149#ifdef CONFIG_SMP
b328ca18
PZ
1150static void hotplug_hrtick_disable(int cpu)
1151{
1152 struct rq *rq = cpu_rq(cpu);
1153 unsigned long flags;
1154
1155 spin_lock_irqsave(&rq->lock, flags);
1156 rq->hrtick_flags = 0;
1157 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1158 spin_unlock_irqrestore(&rq->lock, flags);
1159
1160 hrtick_clear(rq);
1161}
1162
1163static void hotplug_hrtick_enable(int cpu)
1164{
1165 struct rq *rq = cpu_rq(cpu);
1166 unsigned long flags;
1167
1168 spin_lock_irqsave(&rq->lock, flags);
1169 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1170 spin_unlock_irqrestore(&rq->lock, flags);
1171}
1172
1173static int
1174hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1175{
1176 int cpu = (int)(long)hcpu;
1177
1178 switch (action) {
1179 case CPU_UP_CANCELED:
1180 case CPU_UP_CANCELED_FROZEN:
1181 case CPU_DOWN_PREPARE:
1182 case CPU_DOWN_PREPARE_FROZEN:
1183 case CPU_DEAD:
1184 case CPU_DEAD_FROZEN:
1185 hotplug_hrtick_disable(cpu);
1186 return NOTIFY_OK;
1187
1188 case CPU_UP_PREPARE:
1189 case CPU_UP_PREPARE_FROZEN:
1190 case CPU_DOWN_FAILED:
1191 case CPU_DOWN_FAILED_FROZEN:
1192 case CPU_ONLINE:
1193 case CPU_ONLINE_FROZEN:
1194 hotplug_hrtick_enable(cpu);
1195 return NOTIFY_OK;
1196 }
1197
1198 return NOTIFY_DONE;
1199}
1200
1201static void init_hrtick(void)
1202{
1203 hotcpu_notifier(hotplug_hrtick, 0);
1204}
95e904c7 1205#endif /* CONFIG_SMP */
b328ca18
PZ
1206
1207static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1208{
1209 rq->hrtick_flags = 0;
1210 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1211 rq->hrtick_timer.function = hrtick;
1212 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1213}
1214
1215void hrtick_resched(void)
1216{
1217 struct rq *rq;
1218 unsigned long flags;
1219
1220 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1221 return;
1222
1223 local_irq_save(flags);
1224 rq = cpu_rq(smp_processor_id());
1225 hrtick_set(rq);
1226 local_irq_restore(flags);
1227}
1228#else
1229static inline void hrtick_clear(struct rq *rq)
1230{
1231}
1232
1233static inline void hrtick_set(struct rq *rq)
1234{
1235}
1236
1237static inline void init_rq_hrtick(struct rq *rq)
1238{
1239}
1240
1241void hrtick_resched(void)
1242{
1243}
b328ca18
PZ
1244
1245static inline void init_hrtick(void)
1246{
1247}
8f4d37ec
PZ
1248#endif
1249
c24d20db
IM
1250/*
1251 * resched_task - mark a task 'to be rescheduled now'.
1252 *
1253 * On UP this means the setting of the need_resched flag, on SMP it
1254 * might also involve a cross-CPU call to trigger the scheduler on
1255 * the target CPU.
1256 */
1257#ifdef CONFIG_SMP
1258
1259#ifndef tsk_is_polling
1260#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1261#endif
1262
8f4d37ec 1263static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1264{
1265 int cpu;
1266
1267 assert_spin_locked(&task_rq(p)->lock);
1268
8f4d37ec 1269 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1270 return;
1271
8f4d37ec 1272 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1273
1274 cpu = task_cpu(p);
1275 if (cpu == smp_processor_id())
1276 return;
1277
1278 /* NEED_RESCHED must be visible before we test polling */
1279 smp_mb();
1280 if (!tsk_is_polling(p))
1281 smp_send_reschedule(cpu);
1282}
1283
1284static void resched_cpu(int cpu)
1285{
1286 struct rq *rq = cpu_rq(cpu);
1287 unsigned long flags;
1288
1289 if (!spin_trylock_irqsave(&rq->lock, flags))
1290 return;
1291 resched_task(cpu_curr(cpu));
1292 spin_unlock_irqrestore(&rq->lock, flags);
1293}
06d8308c
TG
1294
1295#ifdef CONFIG_NO_HZ
1296/*
1297 * When add_timer_on() enqueues a timer into the timer wheel of an
1298 * idle CPU then this timer might expire before the next timer event
1299 * which is scheduled to wake up that CPU. In case of a completely
1300 * idle system the next event might even be infinite time into the
1301 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1302 * leaves the inner idle loop so the newly added timer is taken into
1303 * account when the CPU goes back to idle and evaluates the timer
1304 * wheel for the next timer event.
1305 */
1306void wake_up_idle_cpu(int cpu)
1307{
1308 struct rq *rq = cpu_rq(cpu);
1309
1310 if (cpu == smp_processor_id())
1311 return;
1312
1313 /*
1314 * This is safe, as this function is called with the timer
1315 * wheel base lock of (cpu) held. When the CPU is on the way
1316 * to idle and has not yet set rq->curr to idle then it will
1317 * be serialized on the timer wheel base lock and take the new
1318 * timer into account automatically.
1319 */
1320 if (rq->curr != rq->idle)
1321 return;
1322
1323 /*
1324 * We can set TIF_RESCHED on the idle task of the other CPU
1325 * lockless. The worst case is that the other CPU runs the
1326 * idle task through an additional NOOP schedule()
1327 */
1328 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1329
1330 /* NEED_RESCHED must be visible before we test polling */
1331 smp_mb();
1332 if (!tsk_is_polling(rq->idle))
1333 smp_send_reschedule(cpu);
1334}
1335#endif
1336
c24d20db 1337#else
8f4d37ec 1338static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1339{
1340 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1341 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1342}
1343#endif
1344
45bf76df
IM
1345#if BITS_PER_LONG == 32
1346# define WMULT_CONST (~0UL)
1347#else
1348# define WMULT_CONST (1UL << 32)
1349#endif
1350
1351#define WMULT_SHIFT 32
1352
194081eb
IM
1353/*
1354 * Shift right and round:
1355 */
cf2ab469 1356#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1357
cb1c4fc9 1358static unsigned long
45bf76df
IM
1359calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1360 struct load_weight *lw)
1361{
1362 u64 tmp;
1363
7a232e03
LJ
1364 if (!lw->inv_weight) {
1365 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1366 lw->inv_weight = 1;
1367 else
1368 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1369 / (lw->weight+1);
1370 }
45bf76df
IM
1371
1372 tmp = (u64)delta_exec * weight;
1373 /*
1374 * Check whether we'd overflow the 64-bit multiplication:
1375 */
194081eb 1376 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1377 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1378 WMULT_SHIFT/2);
1379 else
cf2ab469 1380 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1381
ecf691da 1382 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1383}
1384
f9305d4a
IM
1385static inline unsigned long
1386calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1387{
1388 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1389}
1390
1091985b 1391static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1392{
1393 lw->weight += inc;
e89996ae 1394 lw->inv_weight = 0;
45bf76df
IM
1395}
1396
1091985b 1397static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1398{
1399 lw->weight -= dec;
e89996ae 1400 lw->inv_weight = 0;
45bf76df
IM
1401}
1402
2dd73a4f
PW
1403/*
1404 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1405 * of tasks with abnormal "nice" values across CPUs the contribution that
1406 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1407 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1408 * scaled version of the new time slice allocation that they receive on time
1409 * slice expiry etc.
1410 */
1411
dd41f596
IM
1412#define WEIGHT_IDLEPRIO 2
1413#define WMULT_IDLEPRIO (1 << 31)
1414
1415/*
1416 * Nice levels are multiplicative, with a gentle 10% change for every
1417 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1418 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1419 * that remained on nice 0.
1420 *
1421 * The "10% effect" is relative and cumulative: from _any_ nice level,
1422 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1423 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1424 * If a task goes up by ~10% and another task goes down by ~10% then
1425 * the relative distance between them is ~25%.)
dd41f596
IM
1426 */
1427static const int prio_to_weight[40] = {
254753dc
IM
1428 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1429 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1430 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1431 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1432 /* 0 */ 1024, 820, 655, 526, 423,
1433 /* 5 */ 335, 272, 215, 172, 137,
1434 /* 10 */ 110, 87, 70, 56, 45,
1435 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1436};
1437
5714d2de
IM
1438/*
1439 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1440 *
1441 * In cases where the weight does not change often, we can use the
1442 * precalculated inverse to speed up arithmetics by turning divisions
1443 * into multiplications:
1444 */
dd41f596 1445static const u32 prio_to_wmult[40] = {
254753dc
IM
1446 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1447 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1448 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1449 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1450 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1451 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1452 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1453 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1454};
2dd73a4f 1455
dd41f596
IM
1456static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1457
1458/*
1459 * runqueue iterator, to support SMP load-balancing between different
1460 * scheduling classes, without having to expose their internal data
1461 * structures to the load-balancing proper:
1462 */
1463struct rq_iterator {
1464 void *arg;
1465 struct task_struct *(*start)(void *);
1466 struct task_struct *(*next)(void *);
1467};
1468
e1d1484f
PW
1469#ifdef CONFIG_SMP
1470static unsigned long
1471balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1472 unsigned long max_load_move, struct sched_domain *sd,
1473 enum cpu_idle_type idle, int *all_pinned,
1474 int *this_best_prio, struct rq_iterator *iterator);
1475
1476static int
1477iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1478 struct sched_domain *sd, enum cpu_idle_type idle,
1479 struct rq_iterator *iterator);
e1d1484f 1480#endif
dd41f596 1481
d842de87
SV
1482#ifdef CONFIG_CGROUP_CPUACCT
1483static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1484#else
1485static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1486#endif
1487
18d95a28
PZ
1488static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1489{
1490 update_load_add(&rq->load, load);
1491}
1492
1493static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1494{
1495 update_load_sub(&rq->load, load);
1496}
1497
e7693a36
GH
1498#ifdef CONFIG_SMP
1499static unsigned long source_load(int cpu, int type);
1500static unsigned long target_load(int cpu, int type);
1501static unsigned long cpu_avg_load_per_task(int cpu);
1502static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
18d95a28
PZ
1503#else /* CONFIG_SMP */
1504
1505#ifdef CONFIG_FAIR_GROUP_SCHED
1506static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1507{
1508}
1509#endif
1510
e7693a36
GH
1511#endif /* CONFIG_SMP */
1512
dd41f596 1513#include "sched_stats.h"
dd41f596 1514#include "sched_idletask.c"
5522d5d5
IM
1515#include "sched_fair.c"
1516#include "sched_rt.c"
dd41f596
IM
1517#ifdef CONFIG_SCHED_DEBUG
1518# include "sched_debug.c"
1519#endif
1520
1521#define sched_class_highest (&rt_sched_class)
1522
6363ca57
IM
1523static inline void inc_load(struct rq *rq, const struct task_struct *p)
1524{
1525 update_load_add(&rq->load, p->se.load.weight);
1526}
1527
1528static inline void dec_load(struct rq *rq, const struct task_struct *p)
1529{
1530 update_load_sub(&rq->load, p->se.load.weight);
1531}
1532
1533static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1534{
1535 rq->nr_running++;
6363ca57 1536 inc_load(rq, p);
9c217245
IM
1537}
1538
6363ca57 1539static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1540{
1541 rq->nr_running--;
6363ca57 1542 dec_load(rq, p);
9c217245
IM
1543}
1544
45bf76df
IM
1545static void set_load_weight(struct task_struct *p)
1546{
1547 if (task_has_rt_policy(p)) {
dd41f596
IM
1548 p->se.load.weight = prio_to_weight[0] * 2;
1549 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1550 return;
1551 }
45bf76df 1552
dd41f596
IM
1553 /*
1554 * SCHED_IDLE tasks get minimal weight:
1555 */
1556 if (p->policy == SCHED_IDLE) {
1557 p->se.load.weight = WEIGHT_IDLEPRIO;
1558 p->se.load.inv_weight = WMULT_IDLEPRIO;
1559 return;
1560 }
71f8bd46 1561
dd41f596
IM
1562 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1563 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1564}
1565
8159f87e 1566static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1567{
dd41f596 1568 sched_info_queued(p);
fd390f6a 1569 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1570 p->se.on_rq = 1;
71f8bd46
IM
1571}
1572
69be72c1 1573static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1574{
f02231e5 1575 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1576 p->se.on_rq = 0;
71f8bd46
IM
1577}
1578
14531189 1579/*
dd41f596 1580 * __normal_prio - return the priority that is based on the static prio
14531189 1581 */
14531189
IM
1582static inline int __normal_prio(struct task_struct *p)
1583{
dd41f596 1584 return p->static_prio;
14531189
IM
1585}
1586
b29739f9
IM
1587/*
1588 * Calculate the expected normal priority: i.e. priority
1589 * without taking RT-inheritance into account. Might be
1590 * boosted by interactivity modifiers. Changes upon fork,
1591 * setprio syscalls, and whenever the interactivity
1592 * estimator recalculates.
1593 */
36c8b586 1594static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1595{
1596 int prio;
1597
e05606d3 1598 if (task_has_rt_policy(p))
b29739f9
IM
1599 prio = MAX_RT_PRIO-1 - p->rt_priority;
1600 else
1601 prio = __normal_prio(p);
1602 return prio;
1603}
1604
1605/*
1606 * Calculate the current priority, i.e. the priority
1607 * taken into account by the scheduler. This value might
1608 * be boosted by RT tasks, or might be boosted by
1609 * interactivity modifiers. Will be RT if the task got
1610 * RT-boosted. If not then it returns p->normal_prio.
1611 */
36c8b586 1612static int effective_prio(struct task_struct *p)
b29739f9
IM
1613{
1614 p->normal_prio = normal_prio(p);
1615 /*
1616 * If we are RT tasks or we were boosted to RT priority,
1617 * keep the priority unchanged. Otherwise, update priority
1618 * to the normal priority:
1619 */
1620 if (!rt_prio(p->prio))
1621 return p->normal_prio;
1622 return p->prio;
1623}
1624
1da177e4 1625/*
dd41f596 1626 * activate_task - move a task to the runqueue.
1da177e4 1627 */
dd41f596 1628static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1629{
d9514f6c 1630 if (task_contributes_to_load(p))
dd41f596 1631 rq->nr_uninterruptible--;
1da177e4 1632
8159f87e 1633 enqueue_task(rq, p, wakeup);
6363ca57 1634 inc_nr_running(p, rq);
1da177e4
LT
1635}
1636
1da177e4
LT
1637/*
1638 * deactivate_task - remove a task from the runqueue.
1639 */
2e1cb74a 1640static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1641{
d9514f6c 1642 if (task_contributes_to_load(p))
dd41f596
IM
1643 rq->nr_uninterruptible++;
1644
69be72c1 1645 dequeue_task(rq, p, sleep);
6363ca57 1646 dec_nr_running(p, rq);
1da177e4
LT
1647}
1648
1da177e4
LT
1649/**
1650 * task_curr - is this task currently executing on a CPU?
1651 * @p: the task in question.
1652 */
36c8b586 1653inline int task_curr(const struct task_struct *p)
1da177e4
LT
1654{
1655 return cpu_curr(task_cpu(p)) == p;
1656}
1657
2dd73a4f
PW
1658/* Used instead of source_load when we know the type == 0 */
1659unsigned long weighted_cpuload(const int cpu)
1660{
495eca49 1661 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1662}
1663
1664static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1665{
6f505b16 1666 set_task_rq(p, cpu);
dd41f596 1667#ifdef CONFIG_SMP
ce96b5ac
DA
1668 /*
1669 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1670 * successfuly executed on another CPU. We must ensure that updates of
1671 * per-task data have been completed by this moment.
1672 */
1673 smp_wmb();
dd41f596 1674 task_thread_info(p)->cpu = cpu;
dd41f596 1675#endif
2dd73a4f
PW
1676}
1677
cb469845
SR
1678static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1679 const struct sched_class *prev_class,
1680 int oldprio, int running)
1681{
1682 if (prev_class != p->sched_class) {
1683 if (prev_class->switched_from)
1684 prev_class->switched_from(rq, p, running);
1685 p->sched_class->switched_to(rq, p, running);
1686 } else
1687 p->sched_class->prio_changed(rq, p, oldprio, running);
1688}
1689
1da177e4 1690#ifdef CONFIG_SMP
c65cc870 1691
cc367732
IM
1692/*
1693 * Is this task likely cache-hot:
1694 */
e7693a36 1695static int
cc367732
IM
1696task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1697{
1698 s64 delta;
1699
f540a608
IM
1700 /*
1701 * Buddy candidates are cache hot:
1702 */
d25ce4cd 1703 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1704 return 1;
1705
cc367732
IM
1706 if (p->sched_class != &fair_sched_class)
1707 return 0;
1708
6bc1665b
IM
1709 if (sysctl_sched_migration_cost == -1)
1710 return 1;
1711 if (sysctl_sched_migration_cost == 0)
1712 return 0;
1713
cc367732
IM
1714 delta = now - p->se.exec_start;
1715
1716 return delta < (s64)sysctl_sched_migration_cost;
1717}
1718
1719
dd41f596 1720void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1721{
dd41f596
IM
1722 int old_cpu = task_cpu(p);
1723 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1724 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1725 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1726 u64 clock_offset;
dd41f596
IM
1727
1728 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1729
1730#ifdef CONFIG_SCHEDSTATS
1731 if (p->se.wait_start)
1732 p->se.wait_start -= clock_offset;
dd41f596
IM
1733 if (p->se.sleep_start)
1734 p->se.sleep_start -= clock_offset;
1735 if (p->se.block_start)
1736 p->se.block_start -= clock_offset;
cc367732
IM
1737 if (old_cpu != new_cpu) {
1738 schedstat_inc(p, se.nr_migrations);
1739 if (task_hot(p, old_rq->clock, NULL))
1740 schedstat_inc(p, se.nr_forced2_migrations);
1741 }
6cfb0d5d 1742#endif
2830cf8c
SV
1743 p->se.vruntime -= old_cfsrq->min_vruntime -
1744 new_cfsrq->min_vruntime;
dd41f596
IM
1745
1746 __set_task_cpu(p, new_cpu);
c65cc870
IM
1747}
1748
70b97a7f 1749struct migration_req {
1da177e4 1750 struct list_head list;
1da177e4 1751
36c8b586 1752 struct task_struct *task;
1da177e4
LT
1753 int dest_cpu;
1754
1da177e4 1755 struct completion done;
70b97a7f 1756};
1da177e4
LT
1757
1758/*
1759 * The task's runqueue lock must be held.
1760 * Returns true if you have to wait for migration thread.
1761 */
36c8b586 1762static int
70b97a7f 1763migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1764{
70b97a7f 1765 struct rq *rq = task_rq(p);
1da177e4
LT
1766
1767 /*
1768 * If the task is not on a runqueue (and not running), then
1769 * it is sufficient to simply update the task's cpu field.
1770 */
dd41f596 1771 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1772 set_task_cpu(p, dest_cpu);
1773 return 0;
1774 }
1775
1776 init_completion(&req->done);
1da177e4
LT
1777 req->task = p;
1778 req->dest_cpu = dest_cpu;
1779 list_add(&req->list, &rq->migration_queue);
48f24c4d 1780
1da177e4
LT
1781 return 1;
1782}
1783
1784/*
1785 * wait_task_inactive - wait for a thread to unschedule.
1786 *
1787 * The caller must ensure that the task *will* unschedule sometime soon,
1788 * else this function might spin for a *long* time. This function can't
1789 * be called with interrupts off, or it may introduce deadlock with
1790 * smp_call_function() if an IPI is sent by the same process we are
1791 * waiting to become inactive.
1792 */
36c8b586 1793void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1794{
1795 unsigned long flags;
dd41f596 1796 int running, on_rq;
70b97a7f 1797 struct rq *rq;
1da177e4 1798
3a5c359a
AK
1799 for (;;) {
1800 /*
1801 * We do the initial early heuristics without holding
1802 * any task-queue locks at all. We'll only try to get
1803 * the runqueue lock when things look like they will
1804 * work out!
1805 */
1806 rq = task_rq(p);
fa490cfd 1807
3a5c359a
AK
1808 /*
1809 * If the task is actively running on another CPU
1810 * still, just relax and busy-wait without holding
1811 * any locks.
1812 *
1813 * NOTE! Since we don't hold any locks, it's not
1814 * even sure that "rq" stays as the right runqueue!
1815 * But we don't care, since "task_running()" will
1816 * return false if the runqueue has changed and p
1817 * is actually now running somewhere else!
1818 */
1819 while (task_running(rq, p))
1820 cpu_relax();
fa490cfd 1821
3a5c359a
AK
1822 /*
1823 * Ok, time to look more closely! We need the rq
1824 * lock now, to be *sure*. If we're wrong, we'll
1825 * just go back and repeat.
1826 */
1827 rq = task_rq_lock(p, &flags);
1828 running = task_running(rq, p);
1829 on_rq = p->se.on_rq;
1830 task_rq_unlock(rq, &flags);
fa490cfd 1831
3a5c359a
AK
1832 /*
1833 * Was it really running after all now that we
1834 * checked with the proper locks actually held?
1835 *
1836 * Oops. Go back and try again..
1837 */
1838 if (unlikely(running)) {
1839 cpu_relax();
1840 continue;
1841 }
fa490cfd 1842
3a5c359a
AK
1843 /*
1844 * It's not enough that it's not actively running,
1845 * it must be off the runqueue _entirely_, and not
1846 * preempted!
1847 *
1848 * So if it wa still runnable (but just not actively
1849 * running right now), it's preempted, and we should
1850 * yield - it could be a while.
1851 */
1852 if (unlikely(on_rq)) {
1853 schedule_timeout_uninterruptible(1);
1854 continue;
1855 }
fa490cfd 1856
3a5c359a
AK
1857 /*
1858 * Ahh, all good. It wasn't running, and it wasn't
1859 * runnable, which means that it will never become
1860 * running in the future either. We're all done!
1861 */
1862 break;
1863 }
1da177e4
LT
1864}
1865
1866/***
1867 * kick_process - kick a running thread to enter/exit the kernel
1868 * @p: the to-be-kicked thread
1869 *
1870 * Cause a process which is running on another CPU to enter
1871 * kernel-mode, without any delay. (to get signals handled.)
1872 *
1873 * NOTE: this function doesnt have to take the runqueue lock,
1874 * because all it wants to ensure is that the remote task enters
1875 * the kernel. If the IPI races and the task has been migrated
1876 * to another CPU then no harm is done and the purpose has been
1877 * achieved as well.
1878 */
36c8b586 1879void kick_process(struct task_struct *p)
1da177e4
LT
1880{
1881 int cpu;
1882
1883 preempt_disable();
1884 cpu = task_cpu(p);
1885 if ((cpu != smp_processor_id()) && task_curr(p))
1886 smp_send_reschedule(cpu);
1887 preempt_enable();
1888}
1889
1890/*
2dd73a4f
PW
1891 * Return a low guess at the load of a migration-source cpu weighted
1892 * according to the scheduling class and "nice" value.
1da177e4
LT
1893 *
1894 * We want to under-estimate the load of migration sources, to
1895 * balance conservatively.
1896 */
a9957449 1897static unsigned long source_load(int cpu, int type)
1da177e4 1898{
70b97a7f 1899 struct rq *rq = cpu_rq(cpu);
dd41f596 1900 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1901
3b0bd9bc 1902 if (type == 0)
dd41f596 1903 return total;
b910472d 1904
dd41f596 1905 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1906}
1907
1908/*
2dd73a4f
PW
1909 * Return a high guess at the load of a migration-target cpu weighted
1910 * according to the scheduling class and "nice" value.
1da177e4 1911 */
a9957449 1912static unsigned long target_load(int cpu, int type)
1da177e4 1913{
70b97a7f 1914 struct rq *rq = cpu_rq(cpu);
dd41f596 1915 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1916
7897986b 1917 if (type == 0)
dd41f596 1918 return total;
3b0bd9bc 1919
dd41f596 1920 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1921}
1922
1923/*
1924 * Return the average load per task on the cpu's run queue
1925 */
e7693a36 1926static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1927{
70b97a7f 1928 struct rq *rq = cpu_rq(cpu);
dd41f596 1929 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1930 unsigned long n = rq->nr_running;
1931
dd41f596 1932 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1933}
1934
147cbb4b
NP
1935/*
1936 * find_idlest_group finds and returns the least busy CPU group within the
1937 * domain.
1938 */
1939static struct sched_group *
1940find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1941{
1942 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1943 unsigned long min_load = ULONG_MAX, this_load = 0;
1944 int load_idx = sd->forkexec_idx;
1945 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1946
1947 do {
1948 unsigned long load, avg_load;
1949 int local_group;
1950 int i;
1951
da5a5522
BD
1952 /* Skip over this group if it has no CPUs allowed */
1953 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1954 continue;
da5a5522 1955
147cbb4b 1956 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1957
1958 /* Tally up the load of all CPUs in the group */
1959 avg_load = 0;
1960
1961 for_each_cpu_mask(i, group->cpumask) {
1962 /* Bias balancing toward cpus of our domain */
1963 if (local_group)
1964 load = source_load(i, load_idx);
1965 else
1966 load = target_load(i, load_idx);
1967
1968 avg_load += load;
1969 }
1970
1971 /* Adjust by relative CPU power of the group */
5517d86b
ED
1972 avg_load = sg_div_cpu_power(group,
1973 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1974
1975 if (local_group) {
1976 this_load = avg_load;
1977 this = group;
1978 } else if (avg_load < min_load) {
1979 min_load = avg_load;
1980 idlest = group;
1981 }
3a5c359a 1982 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1983
1984 if (!idlest || 100*this_load < imbalance*min_load)
1985 return NULL;
1986 return idlest;
1987}
1988
1989/*
0feaece9 1990 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1991 */
95cdf3b7 1992static int
7c16ec58
MT
1993find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1994 cpumask_t *tmp)
147cbb4b
NP
1995{
1996 unsigned long load, min_load = ULONG_MAX;
1997 int idlest = -1;
1998 int i;
1999
da5a5522 2000 /* Traverse only the allowed CPUs */
7c16ec58 2001 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2002
7c16ec58 2003 for_each_cpu_mask(i, *tmp) {
2dd73a4f 2004 load = weighted_cpuload(i);
147cbb4b
NP
2005
2006 if (load < min_load || (load == min_load && i == this_cpu)) {
2007 min_load = load;
2008 idlest = i;
2009 }
2010 }
2011
2012 return idlest;
2013}
2014
476d139c
NP
2015/*
2016 * sched_balance_self: balance the current task (running on cpu) in domains
2017 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2018 * SD_BALANCE_EXEC.
2019 *
2020 * Balance, ie. select the least loaded group.
2021 *
2022 * Returns the target CPU number, or the same CPU if no balancing is needed.
2023 *
2024 * preempt must be disabled.
2025 */
2026static int sched_balance_self(int cpu, int flag)
2027{
2028 struct task_struct *t = current;
2029 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2030
c96d145e 2031 for_each_domain(cpu, tmp) {
9761eea8
IM
2032 /*
2033 * If power savings logic is enabled for a domain, stop there.
2034 */
5c45bf27
SS
2035 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2036 break;
476d139c
NP
2037 if (tmp->flags & flag)
2038 sd = tmp;
c96d145e 2039 }
476d139c
NP
2040
2041 while (sd) {
7c16ec58 2042 cpumask_t span, tmpmask;
476d139c 2043 struct sched_group *group;
1a848870
SS
2044 int new_cpu, weight;
2045
2046 if (!(sd->flags & flag)) {
2047 sd = sd->child;
2048 continue;
2049 }
476d139c
NP
2050
2051 span = sd->span;
2052 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2053 if (!group) {
2054 sd = sd->child;
2055 continue;
2056 }
476d139c 2057
7c16ec58 2058 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2059 if (new_cpu == -1 || new_cpu == cpu) {
2060 /* Now try balancing at a lower domain level of cpu */
2061 sd = sd->child;
2062 continue;
2063 }
476d139c 2064
1a848870 2065 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2066 cpu = new_cpu;
476d139c
NP
2067 sd = NULL;
2068 weight = cpus_weight(span);
2069 for_each_domain(cpu, tmp) {
2070 if (weight <= cpus_weight(tmp->span))
2071 break;
2072 if (tmp->flags & flag)
2073 sd = tmp;
2074 }
2075 /* while loop will break here if sd == NULL */
2076 }
2077
2078 return cpu;
2079}
2080
2081#endif /* CONFIG_SMP */
1da177e4 2082
1da177e4
LT
2083/***
2084 * try_to_wake_up - wake up a thread
2085 * @p: the to-be-woken-up thread
2086 * @state: the mask of task states that can be woken
2087 * @sync: do a synchronous wakeup?
2088 *
2089 * Put it on the run-queue if it's not already there. The "current"
2090 * thread is always on the run-queue (except when the actual
2091 * re-schedule is in progress), and as such you're allowed to do
2092 * the simpler "current->state = TASK_RUNNING" to mark yourself
2093 * runnable without the overhead of this.
2094 *
2095 * returns failure only if the task is already active.
2096 */
36c8b586 2097static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2098{
cc367732 2099 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2100 unsigned long flags;
2101 long old_state;
70b97a7f 2102 struct rq *rq;
1da177e4 2103
b85d0667
IM
2104 if (!sched_feat(SYNC_WAKEUPS))
2105 sync = 0;
2106
04e2f174 2107 smp_wmb();
1da177e4
LT
2108 rq = task_rq_lock(p, &flags);
2109 old_state = p->state;
2110 if (!(old_state & state))
2111 goto out;
2112
dd41f596 2113 if (p->se.on_rq)
1da177e4
LT
2114 goto out_running;
2115
2116 cpu = task_cpu(p);
cc367732 2117 orig_cpu = cpu;
1da177e4
LT
2118 this_cpu = smp_processor_id();
2119
2120#ifdef CONFIG_SMP
2121 if (unlikely(task_running(rq, p)))
2122 goto out_activate;
2123
5d2f5a61
DA
2124 cpu = p->sched_class->select_task_rq(p, sync);
2125 if (cpu != orig_cpu) {
2126 set_task_cpu(p, cpu);
1da177e4
LT
2127 task_rq_unlock(rq, &flags);
2128 /* might preempt at this point */
2129 rq = task_rq_lock(p, &flags);
2130 old_state = p->state;
2131 if (!(old_state & state))
2132 goto out;
dd41f596 2133 if (p->se.on_rq)
1da177e4
LT
2134 goto out_running;
2135
2136 this_cpu = smp_processor_id();
2137 cpu = task_cpu(p);
2138 }
2139
e7693a36
GH
2140#ifdef CONFIG_SCHEDSTATS
2141 schedstat_inc(rq, ttwu_count);
2142 if (cpu == this_cpu)
2143 schedstat_inc(rq, ttwu_local);
2144 else {
2145 struct sched_domain *sd;
2146 for_each_domain(this_cpu, sd) {
2147 if (cpu_isset(cpu, sd->span)) {
2148 schedstat_inc(sd, ttwu_wake_remote);
2149 break;
2150 }
2151 }
2152 }
e7693a36
GH
2153#endif
2154
1da177e4
LT
2155out_activate:
2156#endif /* CONFIG_SMP */
cc367732
IM
2157 schedstat_inc(p, se.nr_wakeups);
2158 if (sync)
2159 schedstat_inc(p, se.nr_wakeups_sync);
2160 if (orig_cpu != cpu)
2161 schedstat_inc(p, se.nr_wakeups_migrate);
2162 if (cpu == this_cpu)
2163 schedstat_inc(p, se.nr_wakeups_local);
2164 else
2165 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2166 update_rq_clock(rq);
dd41f596 2167 activate_task(rq, p, 1);
1da177e4
LT
2168 success = 1;
2169
2170out_running:
5b82a1b0
MD
2171 trace_mark(kernel_sched_wakeup,
2172 "pid %d state %ld ## rq %p task %p rq->curr %p",
2173 p->pid, p->state, rq, p, rq->curr);
4ae7d5ce
IM
2174 check_preempt_curr(rq, p);
2175
1da177e4 2176 p->state = TASK_RUNNING;
9a897c5a
SR
2177#ifdef CONFIG_SMP
2178 if (p->sched_class->task_wake_up)
2179 p->sched_class->task_wake_up(rq, p);
2180#endif
1da177e4
LT
2181out:
2182 task_rq_unlock(rq, &flags);
2183
2184 return success;
2185}
2186
7ad5b3a5 2187int wake_up_process(struct task_struct *p)
1da177e4 2188{
d9514f6c 2189 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2190}
1da177e4
LT
2191EXPORT_SYMBOL(wake_up_process);
2192
7ad5b3a5 2193int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2194{
2195 return try_to_wake_up(p, state, 0);
2196}
2197
1da177e4
LT
2198/*
2199 * Perform scheduler related setup for a newly forked process p.
2200 * p is forked by current.
dd41f596
IM
2201 *
2202 * __sched_fork() is basic setup used by init_idle() too:
2203 */
2204static void __sched_fork(struct task_struct *p)
2205{
dd41f596
IM
2206 p->se.exec_start = 0;
2207 p->se.sum_exec_runtime = 0;
f6cf891c 2208 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2209 p->se.last_wakeup = 0;
2210 p->se.avg_overlap = 0;
6cfb0d5d
IM
2211
2212#ifdef CONFIG_SCHEDSTATS
2213 p->se.wait_start = 0;
dd41f596
IM
2214 p->se.sum_sleep_runtime = 0;
2215 p->se.sleep_start = 0;
dd41f596
IM
2216 p->se.block_start = 0;
2217 p->se.sleep_max = 0;
2218 p->se.block_max = 0;
2219 p->se.exec_max = 0;
eba1ed4b 2220 p->se.slice_max = 0;
dd41f596 2221 p->se.wait_max = 0;
6cfb0d5d 2222#endif
476d139c 2223
fa717060 2224 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2225 p->se.on_rq = 0;
4a55bd5e 2226 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2227
e107be36
AK
2228#ifdef CONFIG_PREEMPT_NOTIFIERS
2229 INIT_HLIST_HEAD(&p->preempt_notifiers);
2230#endif
2231
1da177e4
LT
2232 /*
2233 * We mark the process as running here, but have not actually
2234 * inserted it onto the runqueue yet. This guarantees that
2235 * nobody will actually run it, and a signal or other external
2236 * event cannot wake it up and insert it on the runqueue either.
2237 */
2238 p->state = TASK_RUNNING;
dd41f596
IM
2239}
2240
2241/*
2242 * fork()/clone()-time setup:
2243 */
2244void sched_fork(struct task_struct *p, int clone_flags)
2245{
2246 int cpu = get_cpu();
2247
2248 __sched_fork(p);
2249
2250#ifdef CONFIG_SMP
2251 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2252#endif
02e4bac2 2253 set_task_cpu(p, cpu);
b29739f9
IM
2254
2255 /*
2256 * Make sure we do not leak PI boosting priority to the child:
2257 */
2258 p->prio = current->normal_prio;
2ddbf952
HS
2259 if (!rt_prio(p->prio))
2260 p->sched_class = &fair_sched_class;
b29739f9 2261
52f17b6c 2262#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2263 if (likely(sched_info_on()))
52f17b6c 2264 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2265#endif
d6077cb8 2266#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2267 p->oncpu = 0;
2268#endif
1da177e4 2269#ifdef CONFIG_PREEMPT
4866cde0 2270 /* Want to start with kernel preemption disabled. */
a1261f54 2271 task_thread_info(p)->preempt_count = 1;
1da177e4 2272#endif
476d139c 2273 put_cpu();
1da177e4
LT
2274}
2275
2276/*
2277 * wake_up_new_task - wake up a newly created task for the first time.
2278 *
2279 * This function will do some initial scheduler statistics housekeeping
2280 * that must be done for every newly created context, then puts the task
2281 * on the runqueue and wakes it.
2282 */
7ad5b3a5 2283void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2284{
2285 unsigned long flags;
dd41f596 2286 struct rq *rq;
1da177e4
LT
2287
2288 rq = task_rq_lock(p, &flags);
147cbb4b 2289 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2290 update_rq_clock(rq);
1da177e4
LT
2291
2292 p->prio = effective_prio(p);
2293
b9dca1e0 2294 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2295 activate_task(rq, p, 0);
1da177e4 2296 } else {
1da177e4 2297 /*
dd41f596
IM
2298 * Let the scheduling class do new task startup
2299 * management (if any):
1da177e4 2300 */
ee0827d8 2301 p->sched_class->task_new(rq, p);
6363ca57 2302 inc_nr_running(p, rq);
1da177e4 2303 }
5b82a1b0
MD
2304 trace_mark(kernel_sched_wakeup_new,
2305 "pid %d state %ld ## rq %p task %p rq->curr %p",
2306 p->pid, p->state, rq, p, rq->curr);
dd41f596 2307 check_preempt_curr(rq, p);
9a897c5a
SR
2308#ifdef CONFIG_SMP
2309 if (p->sched_class->task_wake_up)
2310 p->sched_class->task_wake_up(rq, p);
2311#endif
dd41f596 2312 task_rq_unlock(rq, &flags);
1da177e4
LT
2313}
2314
e107be36
AK
2315#ifdef CONFIG_PREEMPT_NOTIFIERS
2316
2317/**
421cee29
RD
2318 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2319 * @notifier: notifier struct to register
e107be36
AK
2320 */
2321void preempt_notifier_register(struct preempt_notifier *notifier)
2322{
2323 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2324}
2325EXPORT_SYMBOL_GPL(preempt_notifier_register);
2326
2327/**
2328 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2329 * @notifier: notifier struct to unregister
e107be36
AK
2330 *
2331 * This is safe to call from within a preemption notifier.
2332 */
2333void preempt_notifier_unregister(struct preempt_notifier *notifier)
2334{
2335 hlist_del(&notifier->link);
2336}
2337EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2338
2339static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2340{
2341 struct preempt_notifier *notifier;
2342 struct hlist_node *node;
2343
2344 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2345 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2346}
2347
2348static void
2349fire_sched_out_preempt_notifiers(struct task_struct *curr,
2350 struct task_struct *next)
2351{
2352 struct preempt_notifier *notifier;
2353 struct hlist_node *node;
2354
2355 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2356 notifier->ops->sched_out(notifier, next);
2357}
2358
2359#else
2360
2361static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2362{
2363}
2364
2365static void
2366fire_sched_out_preempt_notifiers(struct task_struct *curr,
2367 struct task_struct *next)
2368{
2369}
2370
2371#endif
2372
4866cde0
NP
2373/**
2374 * prepare_task_switch - prepare to switch tasks
2375 * @rq: the runqueue preparing to switch
421cee29 2376 * @prev: the current task that is being switched out
4866cde0
NP
2377 * @next: the task we are going to switch to.
2378 *
2379 * This is called with the rq lock held and interrupts off. It must
2380 * be paired with a subsequent finish_task_switch after the context
2381 * switch.
2382 *
2383 * prepare_task_switch sets up locking and calls architecture specific
2384 * hooks.
2385 */
e107be36
AK
2386static inline void
2387prepare_task_switch(struct rq *rq, struct task_struct *prev,
2388 struct task_struct *next)
4866cde0 2389{
e107be36 2390 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2391 prepare_lock_switch(rq, next);
2392 prepare_arch_switch(next);
2393}
2394
1da177e4
LT
2395/**
2396 * finish_task_switch - clean up after a task-switch
344babaa 2397 * @rq: runqueue associated with task-switch
1da177e4
LT
2398 * @prev: the thread we just switched away from.
2399 *
4866cde0
NP
2400 * finish_task_switch must be called after the context switch, paired
2401 * with a prepare_task_switch call before the context switch.
2402 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2403 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2404 *
2405 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2406 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2407 * with the lock held can cause deadlocks; see schedule() for
2408 * details.)
2409 */
a9957449 2410static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2411 __releases(rq->lock)
2412{
1da177e4 2413 struct mm_struct *mm = rq->prev_mm;
55a101f8 2414 long prev_state;
1da177e4
LT
2415
2416 rq->prev_mm = NULL;
2417
2418 /*
2419 * A task struct has one reference for the use as "current".
c394cc9f 2420 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2421 * schedule one last time. The schedule call will never return, and
2422 * the scheduled task must drop that reference.
c394cc9f 2423 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2424 * still held, otherwise prev could be scheduled on another cpu, die
2425 * there before we look at prev->state, and then the reference would
2426 * be dropped twice.
2427 * Manfred Spraul <manfred@colorfullife.com>
2428 */
55a101f8 2429 prev_state = prev->state;
4866cde0
NP
2430 finish_arch_switch(prev);
2431 finish_lock_switch(rq, prev);
9a897c5a
SR
2432#ifdef CONFIG_SMP
2433 if (current->sched_class->post_schedule)
2434 current->sched_class->post_schedule(rq);
2435#endif
e8fa1362 2436
e107be36 2437 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2438 if (mm)
2439 mmdrop(mm);
c394cc9f 2440 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2441 /*
2442 * Remove function-return probe instances associated with this
2443 * task and put them back on the free list.
9761eea8 2444 */
c6fd91f0 2445 kprobe_flush_task(prev);
1da177e4 2446 put_task_struct(prev);
c6fd91f0 2447 }
1da177e4
LT
2448}
2449
2450/**
2451 * schedule_tail - first thing a freshly forked thread must call.
2452 * @prev: the thread we just switched away from.
2453 */
36c8b586 2454asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2455 __releases(rq->lock)
2456{
70b97a7f
IM
2457 struct rq *rq = this_rq();
2458
4866cde0
NP
2459 finish_task_switch(rq, prev);
2460#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2461 /* In this case, finish_task_switch does not reenable preemption */
2462 preempt_enable();
2463#endif
1da177e4 2464 if (current->set_child_tid)
b488893a 2465 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2466}
2467
2468/*
2469 * context_switch - switch to the new MM and the new
2470 * thread's register state.
2471 */
dd41f596 2472static inline void
70b97a7f 2473context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2474 struct task_struct *next)
1da177e4 2475{
dd41f596 2476 struct mm_struct *mm, *oldmm;
1da177e4 2477
e107be36 2478 prepare_task_switch(rq, prev, next);
5b82a1b0
MD
2479 trace_mark(kernel_sched_schedule,
2480 "prev_pid %d next_pid %d prev_state %ld "
2481 "## rq %p prev %p next %p",
2482 prev->pid, next->pid, prev->state,
2483 rq, prev, next);
dd41f596
IM
2484 mm = next->mm;
2485 oldmm = prev->active_mm;
9226d125
ZA
2486 /*
2487 * For paravirt, this is coupled with an exit in switch_to to
2488 * combine the page table reload and the switch backend into
2489 * one hypercall.
2490 */
2491 arch_enter_lazy_cpu_mode();
2492
dd41f596 2493 if (unlikely(!mm)) {
1da177e4
LT
2494 next->active_mm = oldmm;
2495 atomic_inc(&oldmm->mm_count);
2496 enter_lazy_tlb(oldmm, next);
2497 } else
2498 switch_mm(oldmm, mm, next);
2499
dd41f596 2500 if (unlikely(!prev->mm)) {
1da177e4 2501 prev->active_mm = NULL;
1da177e4
LT
2502 rq->prev_mm = oldmm;
2503 }
3a5f5e48
IM
2504 /*
2505 * Since the runqueue lock will be released by the next
2506 * task (which is an invalid locking op but in the case
2507 * of the scheduler it's an obvious special-case), so we
2508 * do an early lockdep release here:
2509 */
2510#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2511 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2512#endif
1da177e4
LT
2513
2514 /* Here we just switch the register state and the stack. */
2515 switch_to(prev, next, prev);
2516
dd41f596
IM
2517 barrier();
2518 /*
2519 * this_rq must be evaluated again because prev may have moved
2520 * CPUs since it called schedule(), thus the 'rq' on its stack
2521 * frame will be invalid.
2522 */
2523 finish_task_switch(this_rq(), prev);
1da177e4
LT
2524}
2525
2526/*
2527 * nr_running, nr_uninterruptible and nr_context_switches:
2528 *
2529 * externally visible scheduler statistics: current number of runnable
2530 * threads, current number of uninterruptible-sleeping threads, total
2531 * number of context switches performed since bootup.
2532 */
2533unsigned long nr_running(void)
2534{
2535 unsigned long i, sum = 0;
2536
2537 for_each_online_cpu(i)
2538 sum += cpu_rq(i)->nr_running;
2539
2540 return sum;
2541}
2542
2543unsigned long nr_uninterruptible(void)
2544{
2545 unsigned long i, sum = 0;
2546
0a945022 2547 for_each_possible_cpu(i)
1da177e4
LT
2548 sum += cpu_rq(i)->nr_uninterruptible;
2549
2550 /*
2551 * Since we read the counters lockless, it might be slightly
2552 * inaccurate. Do not allow it to go below zero though:
2553 */
2554 if (unlikely((long)sum < 0))
2555 sum = 0;
2556
2557 return sum;
2558}
2559
2560unsigned long long nr_context_switches(void)
2561{
cc94abfc
SR
2562 int i;
2563 unsigned long long sum = 0;
1da177e4 2564
0a945022 2565 for_each_possible_cpu(i)
1da177e4
LT
2566 sum += cpu_rq(i)->nr_switches;
2567
2568 return sum;
2569}
2570
2571unsigned long nr_iowait(void)
2572{
2573 unsigned long i, sum = 0;
2574
0a945022 2575 for_each_possible_cpu(i)
1da177e4
LT
2576 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2577
2578 return sum;
2579}
2580
db1b1fef
JS
2581unsigned long nr_active(void)
2582{
2583 unsigned long i, running = 0, uninterruptible = 0;
2584
2585 for_each_online_cpu(i) {
2586 running += cpu_rq(i)->nr_running;
2587 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2588 }
2589
2590 if (unlikely((long)uninterruptible < 0))
2591 uninterruptible = 0;
2592
2593 return running + uninterruptible;
2594}
2595
48f24c4d 2596/*
dd41f596
IM
2597 * Update rq->cpu_load[] statistics. This function is usually called every
2598 * scheduler tick (TICK_NSEC).
48f24c4d 2599 */
dd41f596 2600static void update_cpu_load(struct rq *this_rq)
48f24c4d 2601{
495eca49 2602 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2603 int i, scale;
2604
2605 this_rq->nr_load_updates++;
dd41f596
IM
2606
2607 /* Update our load: */
2608 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2609 unsigned long old_load, new_load;
2610
2611 /* scale is effectively 1 << i now, and >> i divides by scale */
2612
2613 old_load = this_rq->cpu_load[i];
2614 new_load = this_load;
a25707f3
IM
2615 /*
2616 * Round up the averaging division if load is increasing. This
2617 * prevents us from getting stuck on 9 if the load is 10, for
2618 * example.
2619 */
2620 if (new_load > old_load)
2621 new_load += scale-1;
dd41f596
IM
2622 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2623 }
48f24c4d
IM
2624}
2625
dd41f596
IM
2626#ifdef CONFIG_SMP
2627
1da177e4
LT
2628/*
2629 * double_rq_lock - safely lock two runqueues
2630 *
2631 * Note this does not disable interrupts like task_rq_lock,
2632 * you need to do so manually before calling.
2633 */
70b97a7f 2634static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2635 __acquires(rq1->lock)
2636 __acquires(rq2->lock)
2637{
054b9108 2638 BUG_ON(!irqs_disabled());
1da177e4
LT
2639 if (rq1 == rq2) {
2640 spin_lock(&rq1->lock);
2641 __acquire(rq2->lock); /* Fake it out ;) */
2642 } else {
c96d145e 2643 if (rq1 < rq2) {
1da177e4
LT
2644 spin_lock(&rq1->lock);
2645 spin_lock(&rq2->lock);
2646 } else {
2647 spin_lock(&rq2->lock);
2648 spin_lock(&rq1->lock);
2649 }
2650 }
6e82a3be
IM
2651 update_rq_clock(rq1);
2652 update_rq_clock(rq2);
1da177e4
LT
2653}
2654
2655/*
2656 * double_rq_unlock - safely unlock two runqueues
2657 *
2658 * Note this does not restore interrupts like task_rq_unlock,
2659 * you need to do so manually after calling.
2660 */
70b97a7f 2661static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2662 __releases(rq1->lock)
2663 __releases(rq2->lock)
2664{
2665 spin_unlock(&rq1->lock);
2666 if (rq1 != rq2)
2667 spin_unlock(&rq2->lock);
2668 else
2669 __release(rq2->lock);
2670}
2671
2672/*
2673 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2674 */
e8fa1362 2675static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2676 __releases(this_rq->lock)
2677 __acquires(busiest->lock)
2678 __acquires(this_rq->lock)
2679{
e8fa1362
SR
2680 int ret = 0;
2681
054b9108
KK
2682 if (unlikely(!irqs_disabled())) {
2683 /* printk() doesn't work good under rq->lock */
2684 spin_unlock(&this_rq->lock);
2685 BUG_ON(1);
2686 }
1da177e4 2687 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2688 if (busiest < this_rq) {
1da177e4
LT
2689 spin_unlock(&this_rq->lock);
2690 spin_lock(&busiest->lock);
2691 spin_lock(&this_rq->lock);
e8fa1362 2692 ret = 1;
1da177e4
LT
2693 } else
2694 spin_lock(&busiest->lock);
2695 }
e8fa1362 2696 return ret;
1da177e4
LT
2697}
2698
1da177e4
LT
2699/*
2700 * If dest_cpu is allowed for this process, migrate the task to it.
2701 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2702 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2703 * the cpu_allowed mask is restored.
2704 */
36c8b586 2705static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2706{
70b97a7f 2707 struct migration_req req;
1da177e4 2708 unsigned long flags;
70b97a7f 2709 struct rq *rq;
1da177e4
LT
2710
2711 rq = task_rq_lock(p, &flags);
2712 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2713 || unlikely(cpu_is_offline(dest_cpu)))
2714 goto out;
2715
2716 /* force the process onto the specified CPU */
2717 if (migrate_task(p, dest_cpu, &req)) {
2718 /* Need to wait for migration thread (might exit: take ref). */
2719 struct task_struct *mt = rq->migration_thread;
36c8b586 2720
1da177e4
LT
2721 get_task_struct(mt);
2722 task_rq_unlock(rq, &flags);
2723 wake_up_process(mt);
2724 put_task_struct(mt);
2725 wait_for_completion(&req.done);
36c8b586 2726
1da177e4
LT
2727 return;
2728 }
2729out:
2730 task_rq_unlock(rq, &flags);
2731}
2732
2733/*
476d139c
NP
2734 * sched_exec - execve() is a valuable balancing opportunity, because at
2735 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2736 */
2737void sched_exec(void)
2738{
1da177e4 2739 int new_cpu, this_cpu = get_cpu();
476d139c 2740 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2741 put_cpu();
476d139c
NP
2742 if (new_cpu != this_cpu)
2743 sched_migrate_task(current, new_cpu);
1da177e4
LT
2744}
2745
2746/*
2747 * pull_task - move a task from a remote runqueue to the local runqueue.
2748 * Both runqueues must be locked.
2749 */
dd41f596
IM
2750static void pull_task(struct rq *src_rq, struct task_struct *p,
2751 struct rq *this_rq, int this_cpu)
1da177e4 2752{
2e1cb74a 2753 deactivate_task(src_rq, p, 0);
1da177e4 2754 set_task_cpu(p, this_cpu);
dd41f596 2755 activate_task(this_rq, p, 0);
1da177e4
LT
2756 /*
2757 * Note that idle threads have a prio of MAX_PRIO, for this test
2758 * to be always true for them.
2759 */
dd41f596 2760 check_preempt_curr(this_rq, p);
1da177e4
LT
2761}
2762
2763/*
2764 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2765 */
858119e1 2766static
70b97a7f 2767int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2768 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2769 int *all_pinned)
1da177e4
LT
2770{
2771 /*
2772 * We do not migrate tasks that are:
2773 * 1) running (obviously), or
2774 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2775 * 3) are cache-hot on their current CPU.
2776 */
cc367732
IM
2777 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2778 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2779 return 0;
cc367732 2780 }
81026794
NP
2781 *all_pinned = 0;
2782
cc367732
IM
2783 if (task_running(rq, p)) {
2784 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2785 return 0;
cc367732 2786 }
1da177e4 2787
da84d961
IM
2788 /*
2789 * Aggressive migration if:
2790 * 1) task is cache cold, or
2791 * 2) too many balance attempts have failed.
2792 */
2793
6bc1665b
IM
2794 if (!task_hot(p, rq->clock, sd) ||
2795 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2796#ifdef CONFIG_SCHEDSTATS
cc367732 2797 if (task_hot(p, rq->clock, sd)) {
da84d961 2798 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2799 schedstat_inc(p, se.nr_forced_migrations);
2800 }
da84d961
IM
2801#endif
2802 return 1;
2803 }
2804
cc367732
IM
2805 if (task_hot(p, rq->clock, sd)) {
2806 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2807 return 0;
cc367732 2808 }
1da177e4
LT
2809 return 1;
2810}
2811
e1d1484f
PW
2812static unsigned long
2813balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2814 unsigned long max_load_move, struct sched_domain *sd,
2815 enum cpu_idle_type idle, int *all_pinned,
2816 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2817{
b82d9fdd 2818 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2819 struct task_struct *p;
2820 long rem_load_move = max_load_move;
1da177e4 2821
e1d1484f 2822 if (max_load_move == 0)
1da177e4
LT
2823 goto out;
2824
81026794
NP
2825 pinned = 1;
2826
1da177e4 2827 /*
dd41f596 2828 * Start the load-balancing iterator:
1da177e4 2829 */
dd41f596
IM
2830 p = iterator->start(iterator->arg);
2831next:
b82d9fdd 2832 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2833 goto out;
50ddd969 2834 /*
b82d9fdd 2835 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2836 * skip a task if it will be the highest priority task (i.e. smallest
2837 * prio value) on its new queue regardless of its load weight
2838 */
dd41f596
IM
2839 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2840 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2841 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2842 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2843 p = iterator->next(iterator->arg);
2844 goto next;
1da177e4
LT
2845 }
2846
dd41f596 2847 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2848 pulled++;
dd41f596 2849 rem_load_move -= p->se.load.weight;
1da177e4 2850
2dd73a4f 2851 /*
b82d9fdd 2852 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2853 */
e1d1484f 2854 if (rem_load_move > 0) {
a4ac01c3
PW
2855 if (p->prio < *this_best_prio)
2856 *this_best_prio = p->prio;
dd41f596
IM
2857 p = iterator->next(iterator->arg);
2858 goto next;
1da177e4
LT
2859 }
2860out:
2861 /*
e1d1484f 2862 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2863 * so we can safely collect pull_task() stats here rather than
2864 * inside pull_task().
2865 */
2866 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2867
2868 if (all_pinned)
2869 *all_pinned = pinned;
e1d1484f
PW
2870
2871 return max_load_move - rem_load_move;
1da177e4
LT
2872}
2873
dd41f596 2874/*
43010659
PW
2875 * move_tasks tries to move up to max_load_move weighted load from busiest to
2876 * this_rq, as part of a balancing operation within domain "sd".
2877 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2878 *
2879 * Called with both runqueues locked.
2880 */
2881static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2882 unsigned long max_load_move,
dd41f596
IM
2883 struct sched_domain *sd, enum cpu_idle_type idle,
2884 int *all_pinned)
2885{
5522d5d5 2886 const struct sched_class *class = sched_class_highest;
43010659 2887 unsigned long total_load_moved = 0;
a4ac01c3 2888 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2889
2890 do {
43010659
PW
2891 total_load_moved +=
2892 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2893 max_load_move - total_load_moved,
a4ac01c3 2894 sd, idle, all_pinned, &this_best_prio);
dd41f596 2895 class = class->next;
43010659 2896 } while (class && max_load_move > total_load_moved);
dd41f596 2897
43010659
PW
2898 return total_load_moved > 0;
2899}
2900
e1d1484f
PW
2901static int
2902iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2903 struct sched_domain *sd, enum cpu_idle_type idle,
2904 struct rq_iterator *iterator)
2905{
2906 struct task_struct *p = iterator->start(iterator->arg);
2907 int pinned = 0;
2908
2909 while (p) {
2910 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2911 pull_task(busiest, p, this_rq, this_cpu);
2912 /*
2913 * Right now, this is only the second place pull_task()
2914 * is called, so we can safely collect pull_task()
2915 * stats here rather than inside pull_task().
2916 */
2917 schedstat_inc(sd, lb_gained[idle]);
2918
2919 return 1;
2920 }
2921 p = iterator->next(iterator->arg);
2922 }
2923
2924 return 0;
2925}
2926
43010659
PW
2927/*
2928 * move_one_task tries to move exactly one task from busiest to this_rq, as
2929 * part of active balancing operations within "domain".
2930 * Returns 1 if successful and 0 otherwise.
2931 *
2932 * Called with both runqueues locked.
2933 */
2934static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2935 struct sched_domain *sd, enum cpu_idle_type idle)
2936{
5522d5d5 2937 const struct sched_class *class;
43010659
PW
2938
2939 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2940 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2941 return 1;
2942
2943 return 0;
dd41f596
IM
2944}
2945
1da177e4
LT
2946/*
2947 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2948 * domain. It calculates and returns the amount of weighted load which
2949 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2950 */
2951static struct sched_group *
2952find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 2953 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 2954 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
2955{
2956 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2957 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2958 unsigned long max_pull;
2dd73a4f
PW
2959 unsigned long busiest_load_per_task, busiest_nr_running;
2960 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2961 int load_idx, group_imb = 0;
5c45bf27
SS
2962#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2963 int power_savings_balance = 1;
2964 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2965 unsigned long min_nr_running = ULONG_MAX;
2966 struct sched_group *group_min = NULL, *group_leader = NULL;
2967#endif
1da177e4
LT
2968
2969 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2970 busiest_load_per_task = busiest_nr_running = 0;
2971 this_load_per_task = this_nr_running = 0;
d15bcfdb 2972 if (idle == CPU_NOT_IDLE)
7897986b 2973 load_idx = sd->busy_idx;
d15bcfdb 2974 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2975 load_idx = sd->newidle_idx;
2976 else
2977 load_idx = sd->idle_idx;
1da177e4
LT
2978
2979 do {
908a7c1b 2980 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2981 int local_group;
2982 int i;
908a7c1b 2983 int __group_imb = 0;
783609c6 2984 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2985 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2986
2987 local_group = cpu_isset(this_cpu, group->cpumask);
2988
783609c6
SS
2989 if (local_group)
2990 balance_cpu = first_cpu(group->cpumask);
2991
1da177e4 2992 /* Tally up the load of all CPUs in the group */
2dd73a4f 2993 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2994 max_cpu_load = 0;
2995 min_cpu_load = ~0UL;
1da177e4
LT
2996
2997 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2998 struct rq *rq;
2999
3000 if (!cpu_isset(i, *cpus))
3001 continue;
3002
3003 rq = cpu_rq(i);
2dd73a4f 3004
9439aab8 3005 if (*sd_idle && rq->nr_running)
5969fe06
NP
3006 *sd_idle = 0;
3007
1da177e4 3008 /* Bias balancing toward cpus of our domain */
783609c6
SS
3009 if (local_group) {
3010 if (idle_cpu(i) && !first_idle_cpu) {
3011 first_idle_cpu = 1;
3012 balance_cpu = i;
3013 }
3014
a2000572 3015 load = target_load(i, load_idx);
908a7c1b 3016 } else {
a2000572 3017 load = source_load(i, load_idx);
908a7c1b
KC
3018 if (load > max_cpu_load)
3019 max_cpu_load = load;
3020 if (min_cpu_load > load)
3021 min_cpu_load = load;
3022 }
1da177e4
LT
3023
3024 avg_load += load;
2dd73a4f 3025 sum_nr_running += rq->nr_running;
dd41f596 3026 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
3027 }
3028
783609c6
SS
3029 /*
3030 * First idle cpu or the first cpu(busiest) in this sched group
3031 * is eligible for doing load balancing at this and above
9439aab8
SS
3032 * domains. In the newly idle case, we will allow all the cpu's
3033 * to do the newly idle load balance.
783609c6 3034 */
9439aab8
SS
3035 if (idle != CPU_NEWLY_IDLE && local_group &&
3036 balance_cpu != this_cpu && balance) {
783609c6
SS
3037 *balance = 0;
3038 goto ret;
3039 }
3040
1da177e4 3041 total_load += avg_load;
5517d86b 3042 total_pwr += group->__cpu_power;
1da177e4
LT
3043
3044 /* Adjust by relative CPU power of the group */
5517d86b
ED
3045 avg_load = sg_div_cpu_power(group,
3046 avg_load * SCHED_LOAD_SCALE);
1da177e4 3047
908a7c1b
KC
3048 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3049 __group_imb = 1;
3050
5517d86b 3051 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3052
1da177e4
LT
3053 if (local_group) {
3054 this_load = avg_load;
3055 this = group;
2dd73a4f
PW
3056 this_nr_running = sum_nr_running;
3057 this_load_per_task = sum_weighted_load;
3058 } else if (avg_load > max_load &&
908a7c1b 3059 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3060 max_load = avg_load;
3061 busiest = group;
2dd73a4f
PW
3062 busiest_nr_running = sum_nr_running;
3063 busiest_load_per_task = sum_weighted_load;
908a7c1b 3064 group_imb = __group_imb;
1da177e4 3065 }
5c45bf27
SS
3066
3067#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3068 /*
3069 * Busy processors will not participate in power savings
3070 * balance.
3071 */
dd41f596
IM
3072 if (idle == CPU_NOT_IDLE ||
3073 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3074 goto group_next;
5c45bf27
SS
3075
3076 /*
3077 * If the local group is idle or completely loaded
3078 * no need to do power savings balance at this domain
3079 */
3080 if (local_group && (this_nr_running >= group_capacity ||
3081 !this_nr_running))
3082 power_savings_balance = 0;
3083
dd41f596 3084 /*
5c45bf27
SS
3085 * If a group is already running at full capacity or idle,
3086 * don't include that group in power savings calculations
dd41f596
IM
3087 */
3088 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3089 || !sum_nr_running)
dd41f596 3090 goto group_next;
5c45bf27 3091
dd41f596 3092 /*
5c45bf27 3093 * Calculate the group which has the least non-idle load.
dd41f596
IM
3094 * This is the group from where we need to pick up the load
3095 * for saving power
3096 */
3097 if ((sum_nr_running < min_nr_running) ||
3098 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3099 first_cpu(group->cpumask) <
3100 first_cpu(group_min->cpumask))) {
dd41f596
IM
3101 group_min = group;
3102 min_nr_running = sum_nr_running;
5c45bf27
SS
3103 min_load_per_task = sum_weighted_load /
3104 sum_nr_running;
dd41f596 3105 }
5c45bf27 3106
dd41f596 3107 /*
5c45bf27 3108 * Calculate the group which is almost near its
dd41f596
IM
3109 * capacity but still has some space to pick up some load
3110 * from other group and save more power
3111 */
3112 if (sum_nr_running <= group_capacity - 1) {
3113 if (sum_nr_running > leader_nr_running ||
3114 (sum_nr_running == leader_nr_running &&
3115 first_cpu(group->cpumask) >
3116 first_cpu(group_leader->cpumask))) {
3117 group_leader = group;
3118 leader_nr_running = sum_nr_running;
3119 }
48f24c4d 3120 }
5c45bf27
SS
3121group_next:
3122#endif
1da177e4
LT
3123 group = group->next;
3124 } while (group != sd->groups);
3125
2dd73a4f 3126 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3127 goto out_balanced;
3128
3129 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3130
3131 if (this_load >= avg_load ||
3132 100*max_load <= sd->imbalance_pct*this_load)
3133 goto out_balanced;
3134
2dd73a4f 3135 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3136 if (group_imb)
3137 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3138
1da177e4
LT
3139 /*
3140 * We're trying to get all the cpus to the average_load, so we don't
3141 * want to push ourselves above the average load, nor do we wish to
3142 * reduce the max loaded cpu below the average load, as either of these
3143 * actions would just result in more rebalancing later, and ping-pong
3144 * tasks around. Thus we look for the minimum possible imbalance.
3145 * Negative imbalances (*we* are more loaded than anyone else) will
3146 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3147 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3148 * appear as very large values with unsigned longs.
3149 */
2dd73a4f
PW
3150 if (max_load <= busiest_load_per_task)
3151 goto out_balanced;
3152
3153 /*
3154 * In the presence of smp nice balancing, certain scenarios can have
3155 * max load less than avg load(as we skip the groups at or below
3156 * its cpu_power, while calculating max_load..)
3157 */
3158 if (max_load < avg_load) {
3159 *imbalance = 0;
3160 goto small_imbalance;
3161 }
0c117f1b
SS
3162
3163 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3164 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3165
1da177e4 3166 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3167 *imbalance = min(max_pull * busiest->__cpu_power,
3168 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3169 / SCHED_LOAD_SCALE;
3170
2dd73a4f
PW
3171 /*
3172 * if *imbalance is less than the average load per runnable task
3173 * there is no gaurantee that any tasks will be moved so we'll have
3174 * a think about bumping its value to force at least one task to be
3175 * moved
3176 */
7fd0d2dd 3177 if (*imbalance < busiest_load_per_task) {
48f24c4d 3178 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3179 unsigned int imbn;
3180
3181small_imbalance:
3182 pwr_move = pwr_now = 0;
3183 imbn = 2;
3184 if (this_nr_running) {
3185 this_load_per_task /= this_nr_running;
3186 if (busiest_load_per_task > this_load_per_task)
3187 imbn = 1;
3188 } else
3189 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3190
dd41f596
IM
3191 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3192 busiest_load_per_task * imbn) {
2dd73a4f 3193 *imbalance = busiest_load_per_task;
1da177e4
LT
3194 return busiest;
3195 }
3196
3197 /*
3198 * OK, we don't have enough imbalance to justify moving tasks,
3199 * however we may be able to increase total CPU power used by
3200 * moving them.
3201 */
3202
5517d86b
ED
3203 pwr_now += busiest->__cpu_power *
3204 min(busiest_load_per_task, max_load);
3205 pwr_now += this->__cpu_power *
3206 min(this_load_per_task, this_load);
1da177e4
LT
3207 pwr_now /= SCHED_LOAD_SCALE;
3208
3209 /* Amount of load we'd subtract */
5517d86b
ED
3210 tmp = sg_div_cpu_power(busiest,
3211 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3212 if (max_load > tmp)
5517d86b 3213 pwr_move += busiest->__cpu_power *
2dd73a4f 3214 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3215
3216 /* Amount of load we'd add */
5517d86b 3217 if (max_load * busiest->__cpu_power <
33859f7f 3218 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3219 tmp = sg_div_cpu_power(this,
3220 max_load * busiest->__cpu_power);
1da177e4 3221 else
5517d86b
ED
3222 tmp = sg_div_cpu_power(this,
3223 busiest_load_per_task * SCHED_LOAD_SCALE);
3224 pwr_move += this->__cpu_power *
3225 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3226 pwr_move /= SCHED_LOAD_SCALE;
3227
3228 /* Move if we gain throughput */
7fd0d2dd
SS
3229 if (pwr_move > pwr_now)
3230 *imbalance = busiest_load_per_task;
1da177e4
LT
3231 }
3232
1da177e4
LT
3233 return busiest;
3234
3235out_balanced:
5c45bf27 3236#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3237 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3238 goto ret;
1da177e4 3239
5c45bf27
SS
3240 if (this == group_leader && group_leader != group_min) {
3241 *imbalance = min_load_per_task;
3242 return group_min;
3243 }
5c45bf27 3244#endif
783609c6 3245ret:
1da177e4
LT
3246 *imbalance = 0;
3247 return NULL;
3248}
3249
3250/*
3251 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3252 */
70b97a7f 3253static struct rq *
d15bcfdb 3254find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3255 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3256{
70b97a7f 3257 struct rq *busiest = NULL, *rq;
2dd73a4f 3258 unsigned long max_load = 0;
1da177e4
LT
3259 int i;
3260
3261 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3262 unsigned long wl;
0a2966b4
CL
3263
3264 if (!cpu_isset(i, *cpus))
3265 continue;
3266
48f24c4d 3267 rq = cpu_rq(i);
dd41f596 3268 wl = weighted_cpuload(i);
2dd73a4f 3269
dd41f596 3270 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3271 continue;
1da177e4 3272
dd41f596
IM
3273 if (wl > max_load) {
3274 max_load = wl;
48f24c4d 3275 busiest = rq;
1da177e4
LT
3276 }
3277 }
3278
3279 return busiest;
3280}
3281
77391d71
NP
3282/*
3283 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3284 * so long as it is large enough.
3285 */
3286#define MAX_PINNED_INTERVAL 512
3287
1da177e4
LT
3288/*
3289 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3290 * tasks if there is an imbalance.
1da177e4 3291 */
70b97a7f 3292static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3293 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3294 int *balance, cpumask_t *cpus)
1da177e4 3295{
43010659 3296 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3297 struct sched_group *group;
1da177e4 3298 unsigned long imbalance;
70b97a7f 3299 struct rq *busiest;
fe2eea3f 3300 unsigned long flags;
5969fe06 3301
7c16ec58
MT
3302 cpus_setall(*cpus);
3303
89c4710e
SS
3304 /*
3305 * When power savings policy is enabled for the parent domain, idle
3306 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3307 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3308 * portraying it as CPU_NOT_IDLE.
89c4710e 3309 */
d15bcfdb 3310 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3311 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3312 sd_idle = 1;
1da177e4 3313
2d72376b 3314 schedstat_inc(sd, lb_count[idle]);
1da177e4 3315
0a2966b4
CL
3316redo:
3317 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3318 cpus, balance);
783609c6 3319
06066714 3320 if (*balance == 0)
783609c6 3321 goto out_balanced;
783609c6 3322
1da177e4
LT
3323 if (!group) {
3324 schedstat_inc(sd, lb_nobusyg[idle]);
3325 goto out_balanced;
3326 }
3327
7c16ec58 3328 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3329 if (!busiest) {
3330 schedstat_inc(sd, lb_nobusyq[idle]);
3331 goto out_balanced;
3332 }
3333
db935dbd 3334 BUG_ON(busiest == this_rq);
1da177e4
LT
3335
3336 schedstat_add(sd, lb_imbalance[idle], imbalance);
3337
43010659 3338 ld_moved = 0;
1da177e4
LT
3339 if (busiest->nr_running > 1) {
3340 /*
3341 * Attempt to move tasks. If find_busiest_group has found
3342 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3343 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3344 * correctly treated as an imbalance.
3345 */
fe2eea3f 3346 local_irq_save(flags);
e17224bf 3347 double_rq_lock(this_rq, busiest);
43010659 3348 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3349 imbalance, sd, idle, &all_pinned);
e17224bf 3350 double_rq_unlock(this_rq, busiest);
fe2eea3f 3351 local_irq_restore(flags);
81026794 3352
46cb4b7c
SS
3353 /*
3354 * some other cpu did the load balance for us.
3355 */
43010659 3356 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3357 resched_cpu(this_cpu);
3358
81026794 3359 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3360 if (unlikely(all_pinned)) {
7c16ec58
MT
3361 cpu_clear(cpu_of(busiest), *cpus);
3362 if (!cpus_empty(*cpus))
0a2966b4 3363 goto redo;
81026794 3364 goto out_balanced;
0a2966b4 3365 }
1da177e4 3366 }
81026794 3367
43010659 3368 if (!ld_moved) {
1da177e4
LT
3369 schedstat_inc(sd, lb_failed[idle]);
3370 sd->nr_balance_failed++;
3371
3372 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3373
fe2eea3f 3374 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3375
3376 /* don't kick the migration_thread, if the curr
3377 * task on busiest cpu can't be moved to this_cpu
3378 */
3379 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3380 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3381 all_pinned = 1;
3382 goto out_one_pinned;
3383 }
3384
1da177e4
LT
3385 if (!busiest->active_balance) {
3386 busiest->active_balance = 1;
3387 busiest->push_cpu = this_cpu;
81026794 3388 active_balance = 1;
1da177e4 3389 }
fe2eea3f 3390 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3391 if (active_balance)
1da177e4
LT
3392 wake_up_process(busiest->migration_thread);
3393
3394 /*
3395 * We've kicked active balancing, reset the failure
3396 * counter.
3397 */
39507451 3398 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3399 }
81026794 3400 } else
1da177e4
LT
3401 sd->nr_balance_failed = 0;
3402
81026794 3403 if (likely(!active_balance)) {
1da177e4
LT
3404 /* We were unbalanced, so reset the balancing interval */
3405 sd->balance_interval = sd->min_interval;
81026794
NP
3406 } else {
3407 /*
3408 * If we've begun active balancing, start to back off. This
3409 * case may not be covered by the all_pinned logic if there
3410 * is only 1 task on the busy runqueue (because we don't call
3411 * move_tasks).
3412 */
3413 if (sd->balance_interval < sd->max_interval)
3414 sd->balance_interval *= 2;
1da177e4
LT
3415 }
3416
43010659 3417 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3418 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3419 return -1;
3420 return ld_moved;
1da177e4
LT
3421
3422out_balanced:
1da177e4
LT
3423 schedstat_inc(sd, lb_balanced[idle]);
3424
16cfb1c0 3425 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3426
3427out_one_pinned:
1da177e4 3428 /* tune up the balancing interval */
77391d71
NP
3429 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3430 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3431 sd->balance_interval *= 2;
3432
48f24c4d 3433 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3434 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3435 return -1;
3436 return 0;
1da177e4
LT
3437}
3438
3439/*
3440 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3441 * tasks if there is an imbalance.
3442 *
d15bcfdb 3443 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3444 * this_rq is locked.
3445 */
48f24c4d 3446static int
7c16ec58
MT
3447load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3448 cpumask_t *cpus)
1da177e4
LT
3449{
3450 struct sched_group *group;
70b97a7f 3451 struct rq *busiest = NULL;
1da177e4 3452 unsigned long imbalance;
43010659 3453 int ld_moved = 0;
5969fe06 3454 int sd_idle = 0;
969bb4e4 3455 int all_pinned = 0;
7c16ec58
MT
3456
3457 cpus_setall(*cpus);
5969fe06 3458
89c4710e
SS
3459 /*
3460 * When power savings policy is enabled for the parent domain, idle
3461 * sibling can pick up load irrespective of busy siblings. In this case,
3462 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3463 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3464 */
3465 if (sd->flags & SD_SHARE_CPUPOWER &&
3466 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3467 sd_idle = 1;
1da177e4 3468
2d72376b 3469 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3470redo:
d15bcfdb 3471 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3472 &sd_idle, cpus, NULL);
1da177e4 3473 if (!group) {
d15bcfdb 3474 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3475 goto out_balanced;
1da177e4
LT
3476 }
3477
7c16ec58 3478 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3479 if (!busiest) {
d15bcfdb 3480 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3481 goto out_balanced;
1da177e4
LT
3482 }
3483
db935dbd
NP
3484 BUG_ON(busiest == this_rq);
3485
d15bcfdb 3486 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3487
43010659 3488 ld_moved = 0;
d6d5cfaf
NP
3489 if (busiest->nr_running > 1) {
3490 /* Attempt to move tasks */
3491 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3492 /* this_rq->clock is already updated */
3493 update_rq_clock(busiest);
43010659 3494 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3495 imbalance, sd, CPU_NEWLY_IDLE,
3496 &all_pinned);
d6d5cfaf 3497 spin_unlock(&busiest->lock);
0a2966b4 3498
969bb4e4 3499 if (unlikely(all_pinned)) {
7c16ec58
MT
3500 cpu_clear(cpu_of(busiest), *cpus);
3501 if (!cpus_empty(*cpus))
0a2966b4
CL
3502 goto redo;
3503 }
d6d5cfaf
NP
3504 }
3505
43010659 3506 if (!ld_moved) {
d15bcfdb 3507 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3508 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3509 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3510 return -1;
3511 } else
16cfb1c0 3512 sd->nr_balance_failed = 0;
1da177e4 3513
43010659 3514 return ld_moved;
16cfb1c0
NP
3515
3516out_balanced:
d15bcfdb 3517 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3518 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3519 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3520 return -1;
16cfb1c0 3521 sd->nr_balance_failed = 0;
48f24c4d 3522
16cfb1c0 3523 return 0;
1da177e4
LT
3524}
3525
3526/*
3527 * idle_balance is called by schedule() if this_cpu is about to become
3528 * idle. Attempts to pull tasks from other CPUs.
3529 */
70b97a7f 3530static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3531{
3532 struct sched_domain *sd;
dd41f596
IM
3533 int pulled_task = -1;
3534 unsigned long next_balance = jiffies + HZ;
7c16ec58 3535 cpumask_t tmpmask;
1da177e4
LT
3536
3537 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3538 unsigned long interval;
3539
3540 if (!(sd->flags & SD_LOAD_BALANCE))
3541 continue;
3542
3543 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3544 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3545 pulled_task = load_balance_newidle(this_cpu, this_rq,
3546 sd, &tmpmask);
92c4ca5c
CL
3547
3548 interval = msecs_to_jiffies(sd->balance_interval);
3549 if (time_after(next_balance, sd->last_balance + interval))
3550 next_balance = sd->last_balance + interval;
3551 if (pulled_task)
3552 break;
1da177e4 3553 }
dd41f596 3554 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3555 /*
3556 * We are going idle. next_balance may be set based on
3557 * a busy processor. So reset next_balance.
3558 */
3559 this_rq->next_balance = next_balance;
dd41f596 3560 }
1da177e4
LT
3561}
3562
3563/*
3564 * active_load_balance is run by migration threads. It pushes running tasks
3565 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3566 * running on each physical CPU where possible, and avoids physical /
3567 * logical imbalances.
3568 *
3569 * Called with busiest_rq locked.
3570 */
70b97a7f 3571static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3572{
39507451 3573 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3574 struct sched_domain *sd;
3575 struct rq *target_rq;
39507451 3576
48f24c4d 3577 /* Is there any task to move? */
39507451 3578 if (busiest_rq->nr_running <= 1)
39507451
NP
3579 return;
3580
3581 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3582
3583 /*
39507451 3584 * This condition is "impossible", if it occurs
41a2d6cf 3585 * we need to fix it. Originally reported by
39507451 3586 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3587 */
39507451 3588 BUG_ON(busiest_rq == target_rq);
1da177e4 3589
39507451
NP
3590 /* move a task from busiest_rq to target_rq */
3591 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3592 update_rq_clock(busiest_rq);
3593 update_rq_clock(target_rq);
39507451
NP
3594
3595 /* Search for an sd spanning us and the target CPU. */
c96d145e 3596 for_each_domain(target_cpu, sd) {
39507451 3597 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3598 cpu_isset(busiest_cpu, sd->span))
39507451 3599 break;
c96d145e 3600 }
39507451 3601
48f24c4d 3602 if (likely(sd)) {
2d72376b 3603 schedstat_inc(sd, alb_count);
39507451 3604
43010659
PW
3605 if (move_one_task(target_rq, target_cpu, busiest_rq,
3606 sd, CPU_IDLE))
48f24c4d
IM
3607 schedstat_inc(sd, alb_pushed);
3608 else
3609 schedstat_inc(sd, alb_failed);
3610 }
39507451 3611 spin_unlock(&target_rq->lock);
1da177e4
LT
3612}
3613
46cb4b7c
SS
3614#ifdef CONFIG_NO_HZ
3615static struct {
3616 atomic_t load_balancer;
41a2d6cf 3617 cpumask_t cpu_mask;
46cb4b7c
SS
3618} nohz ____cacheline_aligned = {
3619 .load_balancer = ATOMIC_INIT(-1),
3620 .cpu_mask = CPU_MASK_NONE,
3621};
3622
7835b98b 3623/*
46cb4b7c
SS
3624 * This routine will try to nominate the ilb (idle load balancing)
3625 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3626 * load balancing on behalf of all those cpus. If all the cpus in the system
3627 * go into this tickless mode, then there will be no ilb owner (as there is
3628 * no need for one) and all the cpus will sleep till the next wakeup event
3629 * arrives...
3630 *
3631 * For the ilb owner, tick is not stopped. And this tick will be used
3632 * for idle load balancing. ilb owner will still be part of
3633 * nohz.cpu_mask..
7835b98b 3634 *
46cb4b7c
SS
3635 * While stopping the tick, this cpu will become the ilb owner if there
3636 * is no other owner. And will be the owner till that cpu becomes busy
3637 * or if all cpus in the system stop their ticks at which point
3638 * there is no need for ilb owner.
3639 *
3640 * When the ilb owner becomes busy, it nominates another owner, during the
3641 * next busy scheduler_tick()
3642 */
3643int select_nohz_load_balancer(int stop_tick)
3644{
3645 int cpu = smp_processor_id();
3646
3647 if (stop_tick) {
3648 cpu_set(cpu, nohz.cpu_mask);
3649 cpu_rq(cpu)->in_nohz_recently = 1;
3650
3651 /*
3652 * If we are going offline and still the leader, give up!
3653 */
3654 if (cpu_is_offline(cpu) &&
3655 atomic_read(&nohz.load_balancer) == cpu) {
3656 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3657 BUG();
3658 return 0;
3659 }
3660
3661 /* time for ilb owner also to sleep */
3662 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3663 if (atomic_read(&nohz.load_balancer) == cpu)
3664 atomic_set(&nohz.load_balancer, -1);
3665 return 0;
3666 }
3667
3668 if (atomic_read(&nohz.load_balancer) == -1) {
3669 /* make me the ilb owner */
3670 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3671 return 1;
3672 } else if (atomic_read(&nohz.load_balancer) == cpu)
3673 return 1;
3674 } else {
3675 if (!cpu_isset(cpu, nohz.cpu_mask))
3676 return 0;
3677
3678 cpu_clear(cpu, nohz.cpu_mask);
3679
3680 if (atomic_read(&nohz.load_balancer) == cpu)
3681 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3682 BUG();
3683 }
3684 return 0;
3685}
3686#endif
3687
3688static DEFINE_SPINLOCK(balancing);
3689
3690/*
7835b98b
CL
3691 * It checks each scheduling domain to see if it is due to be balanced,
3692 * and initiates a balancing operation if so.
3693 *
3694 * Balancing parameters are set up in arch_init_sched_domains.
3695 */
a9957449 3696static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3697{
46cb4b7c
SS
3698 int balance = 1;
3699 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3700 unsigned long interval;
3701 struct sched_domain *sd;
46cb4b7c 3702 /* Earliest time when we have to do rebalance again */
c9819f45 3703 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3704 int update_next_balance = 0;
7c16ec58 3705 cpumask_t tmp;
1da177e4 3706
46cb4b7c 3707 for_each_domain(cpu, sd) {
1da177e4
LT
3708 if (!(sd->flags & SD_LOAD_BALANCE))
3709 continue;
3710
3711 interval = sd->balance_interval;
d15bcfdb 3712 if (idle != CPU_IDLE)
1da177e4
LT
3713 interval *= sd->busy_factor;
3714
3715 /* scale ms to jiffies */
3716 interval = msecs_to_jiffies(interval);
3717 if (unlikely(!interval))
3718 interval = 1;
dd41f596
IM
3719 if (interval > HZ*NR_CPUS/10)
3720 interval = HZ*NR_CPUS/10;
3721
1da177e4 3722
08c183f3
CL
3723 if (sd->flags & SD_SERIALIZE) {
3724 if (!spin_trylock(&balancing))
3725 goto out;
3726 }
3727
c9819f45 3728 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3729 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3730 /*
3731 * We've pulled tasks over so either we're no
5969fe06
NP
3732 * longer idle, or one of our SMT siblings is
3733 * not idle.
3734 */
d15bcfdb 3735 idle = CPU_NOT_IDLE;
1da177e4 3736 }
1bd77f2d 3737 sd->last_balance = jiffies;
1da177e4 3738 }
08c183f3
CL
3739 if (sd->flags & SD_SERIALIZE)
3740 spin_unlock(&balancing);
3741out:
f549da84 3742 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3743 next_balance = sd->last_balance + interval;
f549da84
SS
3744 update_next_balance = 1;
3745 }
783609c6
SS
3746
3747 /*
3748 * Stop the load balance at this level. There is another
3749 * CPU in our sched group which is doing load balancing more
3750 * actively.
3751 */
3752 if (!balance)
3753 break;
1da177e4 3754 }
f549da84
SS
3755
3756 /*
3757 * next_balance will be updated only when there is a need.
3758 * When the cpu is attached to null domain for ex, it will not be
3759 * updated.
3760 */
3761 if (likely(update_next_balance))
3762 rq->next_balance = next_balance;
46cb4b7c
SS
3763}
3764
3765/*
3766 * run_rebalance_domains is triggered when needed from the scheduler tick.
3767 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3768 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3769 */
3770static void run_rebalance_domains(struct softirq_action *h)
3771{
dd41f596
IM
3772 int this_cpu = smp_processor_id();
3773 struct rq *this_rq = cpu_rq(this_cpu);
3774 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3775 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3776
dd41f596 3777 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3778
3779#ifdef CONFIG_NO_HZ
3780 /*
3781 * If this cpu is the owner for idle load balancing, then do the
3782 * balancing on behalf of the other idle cpus whose ticks are
3783 * stopped.
3784 */
dd41f596
IM
3785 if (this_rq->idle_at_tick &&
3786 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3787 cpumask_t cpus = nohz.cpu_mask;
3788 struct rq *rq;
3789 int balance_cpu;
3790
dd41f596 3791 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3792 for_each_cpu_mask(balance_cpu, cpus) {
3793 /*
3794 * If this cpu gets work to do, stop the load balancing
3795 * work being done for other cpus. Next load
3796 * balancing owner will pick it up.
3797 */
3798 if (need_resched())
3799 break;
3800
de0cf899 3801 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3802
3803 rq = cpu_rq(balance_cpu);
dd41f596
IM
3804 if (time_after(this_rq->next_balance, rq->next_balance))
3805 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3806 }
3807 }
3808#endif
3809}
3810
3811/*
3812 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3813 *
3814 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3815 * idle load balancing owner or decide to stop the periodic load balancing,
3816 * if the whole system is idle.
3817 */
dd41f596 3818static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3819{
46cb4b7c
SS
3820#ifdef CONFIG_NO_HZ
3821 /*
3822 * If we were in the nohz mode recently and busy at the current
3823 * scheduler tick, then check if we need to nominate new idle
3824 * load balancer.
3825 */
3826 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3827 rq->in_nohz_recently = 0;
3828
3829 if (atomic_read(&nohz.load_balancer) == cpu) {
3830 cpu_clear(cpu, nohz.cpu_mask);
3831 atomic_set(&nohz.load_balancer, -1);
3832 }
3833
3834 if (atomic_read(&nohz.load_balancer) == -1) {
3835 /*
3836 * simple selection for now: Nominate the
3837 * first cpu in the nohz list to be the next
3838 * ilb owner.
3839 *
3840 * TBD: Traverse the sched domains and nominate
3841 * the nearest cpu in the nohz.cpu_mask.
3842 */
3843 int ilb = first_cpu(nohz.cpu_mask);
3844
434d53b0 3845 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3846 resched_cpu(ilb);
3847 }
3848 }
3849
3850 /*
3851 * If this cpu is idle and doing idle load balancing for all the
3852 * cpus with ticks stopped, is it time for that to stop?
3853 */
3854 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3855 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3856 resched_cpu(cpu);
3857 return;
3858 }
3859
3860 /*
3861 * If this cpu is idle and the idle load balancing is done by
3862 * someone else, then no need raise the SCHED_SOFTIRQ
3863 */
3864 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3865 cpu_isset(cpu, nohz.cpu_mask))
3866 return;
3867#endif
3868 if (time_after_eq(jiffies, rq->next_balance))
3869 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3870}
dd41f596
IM
3871
3872#else /* CONFIG_SMP */
3873
1da177e4
LT
3874/*
3875 * on UP we do not need to balance between CPUs:
3876 */
70b97a7f 3877static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3878{
3879}
dd41f596 3880
1da177e4
LT
3881#endif
3882
1da177e4
LT
3883DEFINE_PER_CPU(struct kernel_stat, kstat);
3884
3885EXPORT_PER_CPU_SYMBOL(kstat);
3886
3887/*
41b86e9c
IM
3888 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3889 * that have not yet been banked in case the task is currently running.
1da177e4 3890 */
41b86e9c 3891unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3892{
1da177e4 3893 unsigned long flags;
41b86e9c
IM
3894 u64 ns, delta_exec;
3895 struct rq *rq;
48f24c4d 3896
41b86e9c
IM
3897 rq = task_rq_lock(p, &flags);
3898 ns = p->se.sum_exec_runtime;
051a1d1a 3899 if (task_current(rq, p)) {
a8e504d2
IM
3900 update_rq_clock(rq);
3901 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3902 if ((s64)delta_exec > 0)
3903 ns += delta_exec;
3904 }
3905 task_rq_unlock(rq, &flags);
48f24c4d 3906
1da177e4
LT
3907 return ns;
3908}
3909
1da177e4
LT
3910/*
3911 * Account user cpu time to a process.
3912 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3913 * @cputime: the cpu time spent in user space since the last update
3914 */
3915void account_user_time(struct task_struct *p, cputime_t cputime)
3916{
3917 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3918 cputime64_t tmp;
3919
3920 p->utime = cputime_add(p->utime, cputime);
3921
3922 /* Add user time to cpustat. */
3923 tmp = cputime_to_cputime64(cputime);
3924 if (TASK_NICE(p) > 0)
3925 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3926 else
3927 cpustat->user = cputime64_add(cpustat->user, tmp);
3928}
3929
94886b84
LV
3930/*
3931 * Account guest cpu time to a process.
3932 * @p: the process that the cpu time gets accounted to
3933 * @cputime: the cpu time spent in virtual machine since the last update
3934 */
f7402e03 3935static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3936{
3937 cputime64_t tmp;
3938 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3939
3940 tmp = cputime_to_cputime64(cputime);
3941
3942 p->utime = cputime_add(p->utime, cputime);
3943 p->gtime = cputime_add(p->gtime, cputime);
3944
3945 cpustat->user = cputime64_add(cpustat->user, tmp);
3946 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3947}
3948
c66f08be
MN
3949/*
3950 * Account scaled user cpu time to a process.
3951 * @p: the process that the cpu time gets accounted to
3952 * @cputime: the cpu time spent in user space since the last update
3953 */
3954void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3955{
3956 p->utimescaled = cputime_add(p->utimescaled, cputime);
3957}
3958
1da177e4
LT
3959/*
3960 * Account system cpu time to a process.
3961 * @p: the process that the cpu time gets accounted to
3962 * @hardirq_offset: the offset to subtract from hardirq_count()
3963 * @cputime: the cpu time spent in kernel space since the last update
3964 */
3965void account_system_time(struct task_struct *p, int hardirq_offset,
3966 cputime_t cputime)
3967{
3968 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3969 struct rq *rq = this_rq();
1da177e4
LT
3970 cputime64_t tmp;
3971
983ed7a6
HH
3972 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3973 account_guest_time(p, cputime);
3974 return;
3975 }
94886b84 3976
1da177e4
LT
3977 p->stime = cputime_add(p->stime, cputime);
3978
3979 /* Add system time to cpustat. */
3980 tmp = cputime_to_cputime64(cputime);
3981 if (hardirq_count() - hardirq_offset)
3982 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3983 else if (softirq_count())
3984 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3985 else if (p != rq->idle)
1da177e4 3986 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3987 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3988 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3989 else
3990 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3991 /* Account for system time used */
3992 acct_update_integrals(p);
1da177e4
LT
3993}
3994
c66f08be
MN
3995/*
3996 * Account scaled system cpu time to a process.
3997 * @p: the process that the cpu time gets accounted to
3998 * @hardirq_offset: the offset to subtract from hardirq_count()
3999 * @cputime: the cpu time spent in kernel space since the last update
4000 */
4001void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4002{
4003 p->stimescaled = cputime_add(p->stimescaled, cputime);
4004}
4005
1da177e4
LT
4006/*
4007 * Account for involuntary wait time.
4008 * @p: the process from which the cpu time has been stolen
4009 * @steal: the cpu time spent in involuntary wait
4010 */
4011void account_steal_time(struct task_struct *p, cputime_t steal)
4012{
4013 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4014 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4015 struct rq *rq = this_rq();
1da177e4
LT
4016
4017 if (p == rq->idle) {
4018 p->stime = cputime_add(p->stime, steal);
4019 if (atomic_read(&rq->nr_iowait) > 0)
4020 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4021 else
4022 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4023 } else
1da177e4
LT
4024 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4025}
4026
7835b98b
CL
4027/*
4028 * This function gets called by the timer code, with HZ frequency.
4029 * We call it with interrupts disabled.
4030 *
4031 * It also gets called by the fork code, when changing the parent's
4032 * timeslices.
4033 */
4034void scheduler_tick(void)
4035{
7835b98b
CL
4036 int cpu = smp_processor_id();
4037 struct rq *rq = cpu_rq(cpu);
dd41f596 4038 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4039
4040 sched_clock_tick();
dd41f596
IM
4041
4042 spin_lock(&rq->lock);
3e51f33f 4043 update_rq_clock(rq);
f1a438d8 4044 update_cpu_load(rq);
fa85ae24 4045 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4046 spin_unlock(&rq->lock);
7835b98b 4047
e418e1c2 4048#ifdef CONFIG_SMP
dd41f596
IM
4049 rq->idle_at_tick = idle_cpu(cpu);
4050 trigger_load_balance(rq, cpu);
e418e1c2 4051#endif
1da177e4
LT
4052}
4053
6cd8a4bb
SR
4054#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4055 defined(CONFIG_PREEMPT_TRACER))
4056
4057static inline unsigned long get_parent_ip(unsigned long addr)
4058{
4059 if (in_lock_functions(addr)) {
4060 addr = CALLER_ADDR2;
4061 if (in_lock_functions(addr))
4062 addr = CALLER_ADDR3;
4063 }
4064 return addr;
4065}
1da177e4 4066
43627582 4067void __kprobes add_preempt_count(int val)
1da177e4 4068{
6cd8a4bb 4069#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4070 /*
4071 * Underflow?
4072 */
9a11b49a
IM
4073 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4074 return;
6cd8a4bb 4075#endif
1da177e4 4076 preempt_count() += val;
6cd8a4bb 4077#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4078 /*
4079 * Spinlock count overflowing soon?
4080 */
33859f7f
MOS
4081 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4082 PREEMPT_MASK - 10);
6cd8a4bb
SR
4083#endif
4084 if (preempt_count() == val)
4085 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4086}
4087EXPORT_SYMBOL(add_preempt_count);
4088
43627582 4089void __kprobes sub_preempt_count(int val)
1da177e4 4090{
6cd8a4bb 4091#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4092 /*
4093 * Underflow?
4094 */
9a11b49a
IM
4095 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4096 return;
1da177e4
LT
4097 /*
4098 * Is the spinlock portion underflowing?
4099 */
9a11b49a
IM
4100 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4101 !(preempt_count() & PREEMPT_MASK)))
4102 return;
6cd8a4bb 4103#endif
9a11b49a 4104
6cd8a4bb
SR
4105 if (preempt_count() == val)
4106 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4107 preempt_count() -= val;
4108}
4109EXPORT_SYMBOL(sub_preempt_count);
4110
4111#endif
4112
4113/*
dd41f596 4114 * Print scheduling while atomic bug:
1da177e4 4115 */
dd41f596 4116static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4117{
838225b4
SS
4118 struct pt_regs *regs = get_irq_regs();
4119
4120 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4121 prev->comm, prev->pid, preempt_count());
4122
dd41f596
IM
4123 debug_show_held_locks(prev);
4124 if (irqs_disabled())
4125 print_irqtrace_events(prev);
838225b4
SS
4126
4127 if (regs)
4128 show_regs(regs);
4129 else
4130 dump_stack();
dd41f596 4131}
1da177e4 4132
dd41f596
IM
4133/*
4134 * Various schedule()-time debugging checks and statistics:
4135 */
4136static inline void schedule_debug(struct task_struct *prev)
4137{
1da177e4 4138 /*
41a2d6cf 4139 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4140 * schedule() atomically, we ignore that path for now.
4141 * Otherwise, whine if we are scheduling when we should not be.
4142 */
3f33a7ce 4143 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4144 __schedule_bug(prev);
4145
1da177e4
LT
4146 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4147
2d72376b 4148 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4149#ifdef CONFIG_SCHEDSTATS
4150 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4151 schedstat_inc(this_rq(), bkl_count);
4152 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4153 }
4154#endif
dd41f596
IM
4155}
4156
4157/*
4158 * Pick up the highest-prio task:
4159 */
4160static inline struct task_struct *
ff95f3df 4161pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4162{
5522d5d5 4163 const struct sched_class *class;
dd41f596 4164 struct task_struct *p;
1da177e4
LT
4165
4166 /*
dd41f596
IM
4167 * Optimization: we know that if all tasks are in
4168 * the fair class we can call that function directly:
1da177e4 4169 */
dd41f596 4170 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4171 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4172 if (likely(p))
4173 return p;
1da177e4
LT
4174 }
4175
dd41f596
IM
4176 class = sched_class_highest;
4177 for ( ; ; ) {
fb8d4724 4178 p = class->pick_next_task(rq);
dd41f596
IM
4179 if (p)
4180 return p;
4181 /*
4182 * Will never be NULL as the idle class always
4183 * returns a non-NULL p:
4184 */
4185 class = class->next;
4186 }
4187}
1da177e4 4188
dd41f596
IM
4189/*
4190 * schedule() is the main scheduler function.
4191 */
4192asmlinkage void __sched schedule(void)
4193{
4194 struct task_struct *prev, *next;
67ca7bde 4195 unsigned long *switch_count;
dd41f596 4196 struct rq *rq;
dd41f596
IM
4197 int cpu;
4198
4199need_resched:
4200 preempt_disable();
4201 cpu = smp_processor_id();
4202 rq = cpu_rq(cpu);
4203 rcu_qsctr_inc(cpu);
4204 prev = rq->curr;
4205 switch_count = &prev->nivcsw;
4206
4207 release_kernel_lock(prev);
4208need_resched_nonpreemptible:
4209
4210 schedule_debug(prev);
1da177e4 4211
8f4d37ec
PZ
4212 hrtick_clear(rq);
4213
1e819950
IM
4214 /*
4215 * Do the rq-clock update outside the rq lock:
4216 */
4217 local_irq_disable();
3e51f33f 4218 update_rq_clock(rq);
1e819950
IM
4219 spin_lock(&rq->lock);
4220 clear_tsk_need_resched(prev);
1da177e4 4221
1da177e4 4222 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4223 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4224 prev->state = TASK_RUNNING;
16882c1e 4225 else
2e1cb74a 4226 deactivate_task(rq, prev, 1);
dd41f596 4227 switch_count = &prev->nvcsw;
1da177e4
LT
4228 }
4229
9a897c5a
SR
4230#ifdef CONFIG_SMP
4231 if (prev->sched_class->pre_schedule)
4232 prev->sched_class->pre_schedule(rq, prev);
4233#endif
f65eda4f 4234
dd41f596 4235 if (unlikely(!rq->nr_running))
1da177e4 4236 idle_balance(cpu, rq);
1da177e4 4237
31ee529c 4238 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4239 next = pick_next_task(rq, prev);
1da177e4 4240
1da177e4 4241 if (likely(prev != next)) {
673a90a1
DS
4242 sched_info_switch(prev, next);
4243
1da177e4
LT
4244 rq->nr_switches++;
4245 rq->curr = next;
4246 ++*switch_count;
4247
dd41f596 4248 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4249 /*
4250 * the context switch might have flipped the stack from under
4251 * us, hence refresh the local variables.
4252 */
4253 cpu = smp_processor_id();
4254 rq = cpu_rq(cpu);
1da177e4
LT
4255 } else
4256 spin_unlock_irq(&rq->lock);
4257
8f4d37ec
PZ
4258 hrtick_set(rq);
4259
4260 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4261 goto need_resched_nonpreemptible;
8f4d37ec 4262
1da177e4
LT
4263 preempt_enable_no_resched();
4264 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4265 goto need_resched;
4266}
1da177e4
LT
4267EXPORT_SYMBOL(schedule);
4268
4269#ifdef CONFIG_PREEMPT
4270/*
2ed6e34f 4271 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4272 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4273 * occur there and call schedule directly.
4274 */
4275asmlinkage void __sched preempt_schedule(void)
4276{
4277 struct thread_info *ti = current_thread_info();
6478d880 4278
1da177e4
LT
4279 /*
4280 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4281 * we do not want to preempt the current task. Just return..
1da177e4 4282 */
beed33a8 4283 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4284 return;
4285
3a5c359a
AK
4286 do {
4287 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4288 schedule();
3a5c359a 4289 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4290
3a5c359a
AK
4291 /*
4292 * Check again in case we missed a preemption opportunity
4293 * between schedule and now.
4294 */
4295 barrier();
4296 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4297}
1da177e4
LT
4298EXPORT_SYMBOL(preempt_schedule);
4299
4300/*
2ed6e34f 4301 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4302 * off of irq context.
4303 * Note, that this is called and return with irqs disabled. This will
4304 * protect us against recursive calling from irq.
4305 */
4306asmlinkage void __sched preempt_schedule_irq(void)
4307{
4308 struct thread_info *ti = current_thread_info();
6478d880 4309
2ed6e34f 4310 /* Catch callers which need to be fixed */
1da177e4
LT
4311 BUG_ON(ti->preempt_count || !irqs_disabled());
4312
3a5c359a
AK
4313 do {
4314 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4315 local_irq_enable();
4316 schedule();
4317 local_irq_disable();
3a5c359a 4318 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4319
3a5c359a
AK
4320 /*
4321 * Check again in case we missed a preemption opportunity
4322 * between schedule and now.
4323 */
4324 barrier();
4325 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4326}
4327
4328#endif /* CONFIG_PREEMPT */
4329
95cdf3b7
IM
4330int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4331 void *key)
1da177e4 4332{
48f24c4d 4333 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4334}
1da177e4
LT
4335EXPORT_SYMBOL(default_wake_function);
4336
4337/*
41a2d6cf
IM
4338 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4339 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4340 * number) then we wake all the non-exclusive tasks and one exclusive task.
4341 *
4342 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4343 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4344 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4345 */
4346static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4347 int nr_exclusive, int sync, void *key)
4348{
2e45874c 4349 wait_queue_t *curr, *next;
1da177e4 4350
2e45874c 4351 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4352 unsigned flags = curr->flags;
4353
1da177e4 4354 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4355 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4356 break;
4357 }
4358}
4359
4360/**
4361 * __wake_up - wake up threads blocked on a waitqueue.
4362 * @q: the waitqueue
4363 * @mode: which threads
4364 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4365 * @key: is directly passed to the wakeup function
1da177e4 4366 */
7ad5b3a5 4367void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4368 int nr_exclusive, void *key)
1da177e4
LT
4369{
4370 unsigned long flags;
4371
4372 spin_lock_irqsave(&q->lock, flags);
4373 __wake_up_common(q, mode, nr_exclusive, 0, key);
4374 spin_unlock_irqrestore(&q->lock, flags);
4375}
1da177e4
LT
4376EXPORT_SYMBOL(__wake_up);
4377
4378/*
4379 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4380 */
7ad5b3a5 4381void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4382{
4383 __wake_up_common(q, mode, 1, 0, NULL);
4384}
4385
4386/**
67be2dd1 4387 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4388 * @q: the waitqueue
4389 * @mode: which threads
4390 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4391 *
4392 * The sync wakeup differs that the waker knows that it will schedule
4393 * away soon, so while the target thread will be woken up, it will not
4394 * be migrated to another CPU - ie. the two threads are 'synchronized'
4395 * with each other. This can prevent needless bouncing between CPUs.
4396 *
4397 * On UP it can prevent extra preemption.
4398 */
7ad5b3a5 4399void
95cdf3b7 4400__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4401{
4402 unsigned long flags;
4403 int sync = 1;
4404
4405 if (unlikely(!q))
4406 return;
4407
4408 if (unlikely(!nr_exclusive))
4409 sync = 0;
4410
4411 spin_lock_irqsave(&q->lock, flags);
4412 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4413 spin_unlock_irqrestore(&q->lock, flags);
4414}
4415EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4416
b15136e9 4417void complete(struct completion *x)
1da177e4
LT
4418{
4419 unsigned long flags;
4420
4421 spin_lock_irqsave(&x->wait.lock, flags);
4422 x->done++;
d9514f6c 4423 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4424 spin_unlock_irqrestore(&x->wait.lock, flags);
4425}
4426EXPORT_SYMBOL(complete);
4427
b15136e9 4428void complete_all(struct completion *x)
1da177e4
LT
4429{
4430 unsigned long flags;
4431
4432 spin_lock_irqsave(&x->wait.lock, flags);
4433 x->done += UINT_MAX/2;
d9514f6c 4434 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4435 spin_unlock_irqrestore(&x->wait.lock, flags);
4436}
4437EXPORT_SYMBOL(complete_all);
4438
8cbbe86d
AK
4439static inline long __sched
4440do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4441{
1da177e4
LT
4442 if (!x->done) {
4443 DECLARE_WAITQUEUE(wait, current);
4444
4445 wait.flags |= WQ_FLAG_EXCLUSIVE;
4446 __add_wait_queue_tail(&x->wait, &wait);
4447 do {
009e577e
MW
4448 if ((state == TASK_INTERRUPTIBLE &&
4449 signal_pending(current)) ||
4450 (state == TASK_KILLABLE &&
4451 fatal_signal_pending(current))) {
ea71a546
ON
4452 timeout = -ERESTARTSYS;
4453 break;
8cbbe86d
AK
4454 }
4455 __set_current_state(state);
1da177e4
LT
4456 spin_unlock_irq(&x->wait.lock);
4457 timeout = schedule_timeout(timeout);
4458 spin_lock_irq(&x->wait.lock);
ea71a546 4459 } while (!x->done && timeout);
1da177e4 4460 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4461 if (!x->done)
4462 return timeout;
1da177e4
LT
4463 }
4464 x->done--;
ea71a546 4465 return timeout ?: 1;
1da177e4 4466}
1da177e4 4467
8cbbe86d
AK
4468static long __sched
4469wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4470{
1da177e4
LT
4471 might_sleep();
4472
4473 spin_lock_irq(&x->wait.lock);
8cbbe86d 4474 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4475 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4476 return timeout;
4477}
1da177e4 4478
b15136e9 4479void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4480{
4481 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4482}
8cbbe86d 4483EXPORT_SYMBOL(wait_for_completion);
1da177e4 4484
b15136e9 4485unsigned long __sched
8cbbe86d 4486wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4487{
8cbbe86d 4488 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4489}
8cbbe86d 4490EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4491
8cbbe86d 4492int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4493{
51e97990
AK
4494 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4495 if (t == -ERESTARTSYS)
4496 return t;
4497 return 0;
0fec171c 4498}
8cbbe86d 4499EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4500
b15136e9 4501unsigned long __sched
8cbbe86d
AK
4502wait_for_completion_interruptible_timeout(struct completion *x,
4503 unsigned long timeout)
0fec171c 4504{
8cbbe86d 4505 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4506}
8cbbe86d 4507EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4508
009e577e
MW
4509int __sched wait_for_completion_killable(struct completion *x)
4510{
4511 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4512 if (t == -ERESTARTSYS)
4513 return t;
4514 return 0;
4515}
4516EXPORT_SYMBOL(wait_for_completion_killable);
4517
8cbbe86d
AK
4518static long __sched
4519sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4520{
0fec171c
IM
4521 unsigned long flags;
4522 wait_queue_t wait;
4523
4524 init_waitqueue_entry(&wait, current);
1da177e4 4525
8cbbe86d 4526 __set_current_state(state);
1da177e4 4527
8cbbe86d
AK
4528 spin_lock_irqsave(&q->lock, flags);
4529 __add_wait_queue(q, &wait);
4530 spin_unlock(&q->lock);
4531 timeout = schedule_timeout(timeout);
4532 spin_lock_irq(&q->lock);
4533 __remove_wait_queue(q, &wait);
4534 spin_unlock_irqrestore(&q->lock, flags);
4535
4536 return timeout;
4537}
4538
4539void __sched interruptible_sleep_on(wait_queue_head_t *q)
4540{
4541 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4542}
1da177e4
LT
4543EXPORT_SYMBOL(interruptible_sleep_on);
4544
0fec171c 4545long __sched
95cdf3b7 4546interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4547{
8cbbe86d 4548 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4549}
1da177e4
LT
4550EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4551
0fec171c 4552void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4553{
8cbbe86d 4554 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4555}
1da177e4
LT
4556EXPORT_SYMBOL(sleep_on);
4557
0fec171c 4558long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4559{
8cbbe86d 4560 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4561}
1da177e4
LT
4562EXPORT_SYMBOL(sleep_on_timeout);
4563
b29739f9
IM
4564#ifdef CONFIG_RT_MUTEXES
4565
4566/*
4567 * rt_mutex_setprio - set the current priority of a task
4568 * @p: task
4569 * @prio: prio value (kernel-internal form)
4570 *
4571 * This function changes the 'effective' priority of a task. It does
4572 * not touch ->normal_prio like __setscheduler().
4573 *
4574 * Used by the rt_mutex code to implement priority inheritance logic.
4575 */
36c8b586 4576void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4577{
4578 unsigned long flags;
83b699ed 4579 int oldprio, on_rq, running;
70b97a7f 4580 struct rq *rq;
cb469845 4581 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4582
4583 BUG_ON(prio < 0 || prio > MAX_PRIO);
4584
4585 rq = task_rq_lock(p, &flags);
a8e504d2 4586 update_rq_clock(rq);
b29739f9 4587
d5f9f942 4588 oldprio = p->prio;
dd41f596 4589 on_rq = p->se.on_rq;
051a1d1a 4590 running = task_current(rq, p);
0e1f3483 4591 if (on_rq)
69be72c1 4592 dequeue_task(rq, p, 0);
0e1f3483
HS
4593 if (running)
4594 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4595
4596 if (rt_prio(prio))
4597 p->sched_class = &rt_sched_class;
4598 else
4599 p->sched_class = &fair_sched_class;
4600
b29739f9
IM
4601 p->prio = prio;
4602
0e1f3483
HS
4603 if (running)
4604 p->sched_class->set_curr_task(rq);
dd41f596 4605 if (on_rq) {
8159f87e 4606 enqueue_task(rq, p, 0);
cb469845
SR
4607
4608 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4609 }
4610 task_rq_unlock(rq, &flags);
4611}
4612
4613#endif
4614
36c8b586 4615void set_user_nice(struct task_struct *p, long nice)
1da177e4 4616{
dd41f596 4617 int old_prio, delta, on_rq;
1da177e4 4618 unsigned long flags;
70b97a7f 4619 struct rq *rq;
1da177e4
LT
4620
4621 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4622 return;
4623 /*
4624 * We have to be careful, if called from sys_setpriority(),
4625 * the task might be in the middle of scheduling on another CPU.
4626 */
4627 rq = task_rq_lock(p, &flags);
a8e504d2 4628 update_rq_clock(rq);
1da177e4
LT
4629 /*
4630 * The RT priorities are set via sched_setscheduler(), but we still
4631 * allow the 'normal' nice value to be set - but as expected
4632 * it wont have any effect on scheduling until the task is
dd41f596 4633 * SCHED_FIFO/SCHED_RR:
1da177e4 4634 */
e05606d3 4635 if (task_has_rt_policy(p)) {
1da177e4
LT
4636 p->static_prio = NICE_TO_PRIO(nice);
4637 goto out_unlock;
4638 }
dd41f596 4639 on_rq = p->se.on_rq;
6363ca57 4640 if (on_rq) {
69be72c1 4641 dequeue_task(rq, p, 0);
6363ca57
IM
4642 dec_load(rq, p);
4643 }
1da177e4 4644
1da177e4 4645 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4646 set_load_weight(p);
b29739f9
IM
4647 old_prio = p->prio;
4648 p->prio = effective_prio(p);
4649 delta = p->prio - old_prio;
1da177e4 4650
dd41f596 4651 if (on_rq) {
8159f87e 4652 enqueue_task(rq, p, 0);
6363ca57 4653 inc_load(rq, p);
1da177e4 4654 /*
d5f9f942
AM
4655 * If the task increased its priority or is running and
4656 * lowered its priority, then reschedule its CPU:
1da177e4 4657 */
d5f9f942 4658 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4659 resched_task(rq->curr);
4660 }
4661out_unlock:
4662 task_rq_unlock(rq, &flags);
4663}
1da177e4
LT
4664EXPORT_SYMBOL(set_user_nice);
4665
e43379f1
MM
4666/*
4667 * can_nice - check if a task can reduce its nice value
4668 * @p: task
4669 * @nice: nice value
4670 */
36c8b586 4671int can_nice(const struct task_struct *p, const int nice)
e43379f1 4672{
024f4747
MM
4673 /* convert nice value [19,-20] to rlimit style value [1,40] */
4674 int nice_rlim = 20 - nice;
48f24c4d 4675
e43379f1
MM
4676 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4677 capable(CAP_SYS_NICE));
4678}
4679
1da177e4
LT
4680#ifdef __ARCH_WANT_SYS_NICE
4681
4682/*
4683 * sys_nice - change the priority of the current process.
4684 * @increment: priority increment
4685 *
4686 * sys_setpriority is a more generic, but much slower function that
4687 * does similar things.
4688 */
4689asmlinkage long sys_nice(int increment)
4690{
48f24c4d 4691 long nice, retval;
1da177e4
LT
4692
4693 /*
4694 * Setpriority might change our priority at the same moment.
4695 * We don't have to worry. Conceptually one call occurs first
4696 * and we have a single winner.
4697 */
e43379f1
MM
4698 if (increment < -40)
4699 increment = -40;
1da177e4
LT
4700 if (increment > 40)
4701 increment = 40;
4702
4703 nice = PRIO_TO_NICE(current->static_prio) + increment;
4704 if (nice < -20)
4705 nice = -20;
4706 if (nice > 19)
4707 nice = 19;
4708
e43379f1
MM
4709 if (increment < 0 && !can_nice(current, nice))
4710 return -EPERM;
4711
1da177e4
LT
4712 retval = security_task_setnice(current, nice);
4713 if (retval)
4714 return retval;
4715
4716 set_user_nice(current, nice);
4717 return 0;
4718}
4719
4720#endif
4721
4722/**
4723 * task_prio - return the priority value of a given task.
4724 * @p: the task in question.
4725 *
4726 * This is the priority value as seen by users in /proc.
4727 * RT tasks are offset by -200. Normal tasks are centered
4728 * around 0, value goes from -16 to +15.
4729 */
36c8b586 4730int task_prio(const struct task_struct *p)
1da177e4
LT
4731{
4732 return p->prio - MAX_RT_PRIO;
4733}
4734
4735/**
4736 * task_nice - return the nice value of a given task.
4737 * @p: the task in question.
4738 */
36c8b586 4739int task_nice(const struct task_struct *p)
1da177e4
LT
4740{
4741 return TASK_NICE(p);
4742}
150d8bed 4743EXPORT_SYMBOL(task_nice);
1da177e4
LT
4744
4745/**
4746 * idle_cpu - is a given cpu idle currently?
4747 * @cpu: the processor in question.
4748 */
4749int idle_cpu(int cpu)
4750{
4751 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4752}
4753
1da177e4
LT
4754/**
4755 * idle_task - return the idle task for a given cpu.
4756 * @cpu: the processor in question.
4757 */
36c8b586 4758struct task_struct *idle_task(int cpu)
1da177e4
LT
4759{
4760 return cpu_rq(cpu)->idle;
4761}
4762
4763/**
4764 * find_process_by_pid - find a process with a matching PID value.
4765 * @pid: the pid in question.
4766 */
a9957449 4767static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4768{
228ebcbe 4769 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4770}
4771
4772/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4773static void
4774__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4775{
dd41f596 4776 BUG_ON(p->se.on_rq);
48f24c4d 4777
1da177e4 4778 p->policy = policy;
dd41f596
IM
4779 switch (p->policy) {
4780 case SCHED_NORMAL:
4781 case SCHED_BATCH:
4782 case SCHED_IDLE:
4783 p->sched_class = &fair_sched_class;
4784 break;
4785 case SCHED_FIFO:
4786 case SCHED_RR:
4787 p->sched_class = &rt_sched_class;
4788 break;
4789 }
4790
1da177e4 4791 p->rt_priority = prio;
b29739f9
IM
4792 p->normal_prio = normal_prio(p);
4793 /* we are holding p->pi_lock already */
4794 p->prio = rt_mutex_getprio(p);
2dd73a4f 4795 set_load_weight(p);
1da177e4
LT
4796}
4797
4798/**
72fd4a35 4799 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4800 * @p: the task in question.
4801 * @policy: new policy.
4802 * @param: structure containing the new RT priority.
5fe1d75f 4803 *
72fd4a35 4804 * NOTE that the task may be already dead.
1da177e4 4805 */
95cdf3b7
IM
4806int sched_setscheduler(struct task_struct *p, int policy,
4807 struct sched_param *param)
1da177e4 4808{
83b699ed 4809 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4810 unsigned long flags;
cb469845 4811 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4812 struct rq *rq;
1da177e4 4813
66e5393a
SR
4814 /* may grab non-irq protected spin_locks */
4815 BUG_ON(in_interrupt());
1da177e4
LT
4816recheck:
4817 /* double check policy once rq lock held */
4818 if (policy < 0)
4819 policy = oldpolicy = p->policy;
4820 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4821 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4822 policy != SCHED_IDLE)
b0a9499c 4823 return -EINVAL;
1da177e4
LT
4824 /*
4825 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4826 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4827 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4828 */
4829 if (param->sched_priority < 0 ||
95cdf3b7 4830 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4831 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4832 return -EINVAL;
e05606d3 4833 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4834 return -EINVAL;
4835
37e4ab3f
OC
4836 /*
4837 * Allow unprivileged RT tasks to decrease priority:
4838 */
4839 if (!capable(CAP_SYS_NICE)) {
e05606d3 4840 if (rt_policy(policy)) {
8dc3e909 4841 unsigned long rlim_rtprio;
8dc3e909
ON
4842
4843 if (!lock_task_sighand(p, &flags))
4844 return -ESRCH;
4845 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4846 unlock_task_sighand(p, &flags);
4847
4848 /* can't set/change the rt policy */
4849 if (policy != p->policy && !rlim_rtprio)
4850 return -EPERM;
4851
4852 /* can't increase priority */
4853 if (param->sched_priority > p->rt_priority &&
4854 param->sched_priority > rlim_rtprio)
4855 return -EPERM;
4856 }
dd41f596
IM
4857 /*
4858 * Like positive nice levels, dont allow tasks to
4859 * move out of SCHED_IDLE either:
4860 */
4861 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4862 return -EPERM;
5fe1d75f 4863
37e4ab3f
OC
4864 /* can't change other user's priorities */
4865 if ((current->euid != p->euid) &&
4866 (current->euid != p->uid))
4867 return -EPERM;
4868 }
1da177e4 4869
b68aa230
PZ
4870#ifdef CONFIG_RT_GROUP_SCHED
4871 /*
4872 * Do not allow realtime tasks into groups that have no runtime
4873 * assigned.
4874 */
d0b27fa7 4875 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4876 return -EPERM;
4877#endif
4878
1da177e4
LT
4879 retval = security_task_setscheduler(p, policy, param);
4880 if (retval)
4881 return retval;
b29739f9
IM
4882 /*
4883 * make sure no PI-waiters arrive (or leave) while we are
4884 * changing the priority of the task:
4885 */
4886 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4887 /*
4888 * To be able to change p->policy safely, the apropriate
4889 * runqueue lock must be held.
4890 */
b29739f9 4891 rq = __task_rq_lock(p);
1da177e4
LT
4892 /* recheck policy now with rq lock held */
4893 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4894 policy = oldpolicy = -1;
b29739f9
IM
4895 __task_rq_unlock(rq);
4896 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4897 goto recheck;
4898 }
2daa3577 4899 update_rq_clock(rq);
dd41f596 4900 on_rq = p->se.on_rq;
051a1d1a 4901 running = task_current(rq, p);
0e1f3483 4902 if (on_rq)
2e1cb74a 4903 deactivate_task(rq, p, 0);
0e1f3483
HS
4904 if (running)
4905 p->sched_class->put_prev_task(rq, p);
f6b53205 4906
1da177e4 4907 oldprio = p->prio;
dd41f596 4908 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4909
0e1f3483
HS
4910 if (running)
4911 p->sched_class->set_curr_task(rq);
dd41f596
IM
4912 if (on_rq) {
4913 activate_task(rq, p, 0);
cb469845
SR
4914
4915 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4916 }
b29739f9
IM
4917 __task_rq_unlock(rq);
4918 spin_unlock_irqrestore(&p->pi_lock, flags);
4919
95e02ca9
TG
4920 rt_mutex_adjust_pi(p);
4921
1da177e4
LT
4922 return 0;
4923}
4924EXPORT_SYMBOL_GPL(sched_setscheduler);
4925
95cdf3b7
IM
4926static int
4927do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4928{
1da177e4
LT
4929 struct sched_param lparam;
4930 struct task_struct *p;
36c8b586 4931 int retval;
1da177e4
LT
4932
4933 if (!param || pid < 0)
4934 return -EINVAL;
4935 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4936 return -EFAULT;
5fe1d75f
ON
4937
4938 rcu_read_lock();
4939 retval = -ESRCH;
1da177e4 4940 p = find_process_by_pid(pid);
5fe1d75f
ON
4941 if (p != NULL)
4942 retval = sched_setscheduler(p, policy, &lparam);
4943 rcu_read_unlock();
36c8b586 4944
1da177e4
LT
4945 return retval;
4946}
4947
4948/**
4949 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4950 * @pid: the pid in question.
4951 * @policy: new policy.
4952 * @param: structure containing the new RT priority.
4953 */
41a2d6cf
IM
4954asmlinkage long
4955sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4956{
c21761f1
JB
4957 /* negative values for policy are not valid */
4958 if (policy < 0)
4959 return -EINVAL;
4960
1da177e4
LT
4961 return do_sched_setscheduler(pid, policy, param);
4962}
4963
4964/**
4965 * sys_sched_setparam - set/change the RT priority of a thread
4966 * @pid: the pid in question.
4967 * @param: structure containing the new RT priority.
4968 */
4969asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4970{
4971 return do_sched_setscheduler(pid, -1, param);
4972}
4973
4974/**
4975 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4976 * @pid: the pid in question.
4977 */
4978asmlinkage long sys_sched_getscheduler(pid_t pid)
4979{
36c8b586 4980 struct task_struct *p;
3a5c359a 4981 int retval;
1da177e4
LT
4982
4983 if (pid < 0)
3a5c359a 4984 return -EINVAL;
1da177e4
LT
4985
4986 retval = -ESRCH;
4987 read_lock(&tasklist_lock);
4988 p = find_process_by_pid(pid);
4989 if (p) {
4990 retval = security_task_getscheduler(p);
4991 if (!retval)
4992 retval = p->policy;
4993 }
4994 read_unlock(&tasklist_lock);
1da177e4
LT
4995 return retval;
4996}
4997
4998/**
4999 * sys_sched_getscheduler - get the RT priority of a thread
5000 * @pid: the pid in question.
5001 * @param: structure containing the RT priority.
5002 */
5003asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5004{
5005 struct sched_param lp;
36c8b586 5006 struct task_struct *p;
3a5c359a 5007 int retval;
1da177e4
LT
5008
5009 if (!param || pid < 0)
3a5c359a 5010 return -EINVAL;
1da177e4
LT
5011
5012 read_lock(&tasklist_lock);
5013 p = find_process_by_pid(pid);
5014 retval = -ESRCH;
5015 if (!p)
5016 goto out_unlock;
5017
5018 retval = security_task_getscheduler(p);
5019 if (retval)
5020 goto out_unlock;
5021
5022 lp.sched_priority = p->rt_priority;
5023 read_unlock(&tasklist_lock);
5024
5025 /*
5026 * This one might sleep, we cannot do it with a spinlock held ...
5027 */
5028 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5029
1da177e4
LT
5030 return retval;
5031
5032out_unlock:
5033 read_unlock(&tasklist_lock);
5034 return retval;
5035}
5036
b53e921b 5037long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5038{
1da177e4 5039 cpumask_t cpus_allowed;
b53e921b 5040 cpumask_t new_mask = *in_mask;
36c8b586
IM
5041 struct task_struct *p;
5042 int retval;
1da177e4 5043
95402b38 5044 get_online_cpus();
1da177e4
LT
5045 read_lock(&tasklist_lock);
5046
5047 p = find_process_by_pid(pid);
5048 if (!p) {
5049 read_unlock(&tasklist_lock);
95402b38 5050 put_online_cpus();
1da177e4
LT
5051 return -ESRCH;
5052 }
5053
5054 /*
5055 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5056 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5057 * usage count and then drop tasklist_lock.
5058 */
5059 get_task_struct(p);
5060 read_unlock(&tasklist_lock);
5061
5062 retval = -EPERM;
5063 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5064 !capable(CAP_SYS_NICE))
5065 goto out_unlock;
5066
e7834f8f
DQ
5067 retval = security_task_setscheduler(p, 0, NULL);
5068 if (retval)
5069 goto out_unlock;
5070
f9a86fcb 5071 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5072 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5073 again:
7c16ec58 5074 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5075
8707d8b8 5076 if (!retval) {
f9a86fcb 5077 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5078 if (!cpus_subset(new_mask, cpus_allowed)) {
5079 /*
5080 * We must have raced with a concurrent cpuset
5081 * update. Just reset the cpus_allowed to the
5082 * cpuset's cpus_allowed
5083 */
5084 new_mask = cpus_allowed;
5085 goto again;
5086 }
5087 }
1da177e4
LT
5088out_unlock:
5089 put_task_struct(p);
95402b38 5090 put_online_cpus();
1da177e4
LT
5091 return retval;
5092}
5093
5094static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5095 cpumask_t *new_mask)
5096{
5097 if (len < sizeof(cpumask_t)) {
5098 memset(new_mask, 0, sizeof(cpumask_t));
5099 } else if (len > sizeof(cpumask_t)) {
5100 len = sizeof(cpumask_t);
5101 }
5102 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5103}
5104
5105/**
5106 * sys_sched_setaffinity - set the cpu affinity of a process
5107 * @pid: pid of the process
5108 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5109 * @user_mask_ptr: user-space pointer to the new cpu mask
5110 */
5111asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5112 unsigned long __user *user_mask_ptr)
5113{
5114 cpumask_t new_mask;
5115 int retval;
5116
5117 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5118 if (retval)
5119 return retval;
5120
b53e921b 5121 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5122}
5123
5124/*
5125 * Represents all cpu's present in the system
5126 * In systems capable of hotplug, this map could dynamically grow
5127 * as new cpu's are detected in the system via any platform specific
5128 * method, such as ACPI for e.g.
5129 */
5130
4cef0c61 5131cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
5132EXPORT_SYMBOL(cpu_present_map);
5133
5134#ifndef CONFIG_SMP
4cef0c61 5135cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
5136EXPORT_SYMBOL(cpu_online_map);
5137
4cef0c61 5138cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 5139EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
5140#endif
5141
5142long sched_getaffinity(pid_t pid, cpumask_t *mask)
5143{
36c8b586 5144 struct task_struct *p;
1da177e4 5145 int retval;
1da177e4 5146
95402b38 5147 get_online_cpus();
1da177e4
LT
5148 read_lock(&tasklist_lock);
5149
5150 retval = -ESRCH;
5151 p = find_process_by_pid(pid);
5152 if (!p)
5153 goto out_unlock;
5154
e7834f8f
DQ
5155 retval = security_task_getscheduler(p);
5156 if (retval)
5157 goto out_unlock;
5158
2f7016d9 5159 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5160
5161out_unlock:
5162 read_unlock(&tasklist_lock);
95402b38 5163 put_online_cpus();
1da177e4 5164
9531b62f 5165 return retval;
1da177e4
LT
5166}
5167
5168/**
5169 * sys_sched_getaffinity - get the cpu affinity of a process
5170 * @pid: pid of the process
5171 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5172 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5173 */
5174asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5175 unsigned long __user *user_mask_ptr)
5176{
5177 int ret;
5178 cpumask_t mask;
5179
5180 if (len < sizeof(cpumask_t))
5181 return -EINVAL;
5182
5183 ret = sched_getaffinity(pid, &mask);
5184 if (ret < 0)
5185 return ret;
5186
5187 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5188 return -EFAULT;
5189
5190 return sizeof(cpumask_t);
5191}
5192
5193/**
5194 * sys_sched_yield - yield the current processor to other threads.
5195 *
dd41f596
IM
5196 * This function yields the current CPU to other tasks. If there are no
5197 * other threads running on this CPU then this function will return.
1da177e4
LT
5198 */
5199asmlinkage long sys_sched_yield(void)
5200{
70b97a7f 5201 struct rq *rq = this_rq_lock();
1da177e4 5202
2d72376b 5203 schedstat_inc(rq, yld_count);
4530d7ab 5204 current->sched_class->yield_task(rq);
1da177e4
LT
5205
5206 /*
5207 * Since we are going to call schedule() anyway, there's
5208 * no need to preempt or enable interrupts:
5209 */
5210 __release(rq->lock);
8a25d5de 5211 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5212 _raw_spin_unlock(&rq->lock);
5213 preempt_enable_no_resched();
5214
5215 schedule();
5216
5217 return 0;
5218}
5219
e7b38404 5220static void __cond_resched(void)
1da177e4 5221{
8e0a43d8
IM
5222#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5223 __might_sleep(__FILE__, __LINE__);
5224#endif
5bbcfd90
IM
5225 /*
5226 * The BKS might be reacquired before we have dropped
5227 * PREEMPT_ACTIVE, which could trigger a second
5228 * cond_resched() call.
5229 */
1da177e4
LT
5230 do {
5231 add_preempt_count(PREEMPT_ACTIVE);
5232 schedule();
5233 sub_preempt_count(PREEMPT_ACTIVE);
5234 } while (need_resched());
5235}
5236
02b67cc3 5237int __sched _cond_resched(void)
1da177e4 5238{
9414232f
IM
5239 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5240 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5241 __cond_resched();
5242 return 1;
5243 }
5244 return 0;
5245}
02b67cc3 5246EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5247
5248/*
5249 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5250 * call schedule, and on return reacquire the lock.
5251 *
41a2d6cf 5252 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5253 * operations here to prevent schedule() from being called twice (once via
5254 * spin_unlock(), once by hand).
5255 */
95cdf3b7 5256int cond_resched_lock(spinlock_t *lock)
1da177e4 5257{
95c354fe 5258 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5259 int ret = 0;
5260
95c354fe 5261 if (spin_needbreak(lock) || resched) {
1da177e4 5262 spin_unlock(lock);
95c354fe
NP
5263 if (resched && need_resched())
5264 __cond_resched();
5265 else
5266 cpu_relax();
6df3cecb 5267 ret = 1;
1da177e4 5268 spin_lock(lock);
1da177e4 5269 }
6df3cecb 5270 return ret;
1da177e4 5271}
1da177e4
LT
5272EXPORT_SYMBOL(cond_resched_lock);
5273
5274int __sched cond_resched_softirq(void)
5275{
5276 BUG_ON(!in_softirq());
5277
9414232f 5278 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5279 local_bh_enable();
1da177e4
LT
5280 __cond_resched();
5281 local_bh_disable();
5282 return 1;
5283 }
5284 return 0;
5285}
1da177e4
LT
5286EXPORT_SYMBOL(cond_resched_softirq);
5287
1da177e4
LT
5288/**
5289 * yield - yield the current processor to other threads.
5290 *
72fd4a35 5291 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5292 * thread runnable and calls sys_sched_yield().
5293 */
5294void __sched yield(void)
5295{
5296 set_current_state(TASK_RUNNING);
5297 sys_sched_yield();
5298}
1da177e4
LT
5299EXPORT_SYMBOL(yield);
5300
5301/*
41a2d6cf 5302 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5303 * that process accounting knows that this is a task in IO wait state.
5304 *
5305 * But don't do that if it is a deliberate, throttling IO wait (this task
5306 * has set its backing_dev_info: the queue against which it should throttle)
5307 */
5308void __sched io_schedule(void)
5309{
70b97a7f 5310 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5311
0ff92245 5312 delayacct_blkio_start();
1da177e4
LT
5313 atomic_inc(&rq->nr_iowait);
5314 schedule();
5315 atomic_dec(&rq->nr_iowait);
0ff92245 5316 delayacct_blkio_end();
1da177e4 5317}
1da177e4
LT
5318EXPORT_SYMBOL(io_schedule);
5319
5320long __sched io_schedule_timeout(long timeout)
5321{
70b97a7f 5322 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5323 long ret;
5324
0ff92245 5325 delayacct_blkio_start();
1da177e4
LT
5326 atomic_inc(&rq->nr_iowait);
5327 ret = schedule_timeout(timeout);
5328 atomic_dec(&rq->nr_iowait);
0ff92245 5329 delayacct_blkio_end();
1da177e4
LT
5330 return ret;
5331}
5332
5333/**
5334 * sys_sched_get_priority_max - return maximum RT priority.
5335 * @policy: scheduling class.
5336 *
5337 * this syscall returns the maximum rt_priority that can be used
5338 * by a given scheduling class.
5339 */
5340asmlinkage long sys_sched_get_priority_max(int policy)
5341{
5342 int ret = -EINVAL;
5343
5344 switch (policy) {
5345 case SCHED_FIFO:
5346 case SCHED_RR:
5347 ret = MAX_USER_RT_PRIO-1;
5348 break;
5349 case SCHED_NORMAL:
b0a9499c 5350 case SCHED_BATCH:
dd41f596 5351 case SCHED_IDLE:
1da177e4
LT
5352 ret = 0;
5353 break;
5354 }
5355 return ret;
5356}
5357
5358/**
5359 * sys_sched_get_priority_min - return minimum RT priority.
5360 * @policy: scheduling class.
5361 *
5362 * this syscall returns the minimum rt_priority that can be used
5363 * by a given scheduling class.
5364 */
5365asmlinkage long sys_sched_get_priority_min(int policy)
5366{
5367 int ret = -EINVAL;
5368
5369 switch (policy) {
5370 case SCHED_FIFO:
5371 case SCHED_RR:
5372 ret = 1;
5373 break;
5374 case SCHED_NORMAL:
b0a9499c 5375 case SCHED_BATCH:
dd41f596 5376 case SCHED_IDLE:
1da177e4
LT
5377 ret = 0;
5378 }
5379 return ret;
5380}
5381
5382/**
5383 * sys_sched_rr_get_interval - return the default timeslice of a process.
5384 * @pid: pid of the process.
5385 * @interval: userspace pointer to the timeslice value.
5386 *
5387 * this syscall writes the default timeslice value of a given process
5388 * into the user-space timespec buffer. A value of '0' means infinity.
5389 */
5390asmlinkage
5391long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5392{
36c8b586 5393 struct task_struct *p;
a4ec24b4 5394 unsigned int time_slice;
3a5c359a 5395 int retval;
1da177e4 5396 struct timespec t;
1da177e4
LT
5397
5398 if (pid < 0)
3a5c359a 5399 return -EINVAL;
1da177e4
LT
5400
5401 retval = -ESRCH;
5402 read_lock(&tasklist_lock);
5403 p = find_process_by_pid(pid);
5404 if (!p)
5405 goto out_unlock;
5406
5407 retval = security_task_getscheduler(p);
5408 if (retval)
5409 goto out_unlock;
5410
77034937
IM
5411 /*
5412 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5413 * tasks that are on an otherwise idle runqueue:
5414 */
5415 time_slice = 0;
5416 if (p->policy == SCHED_RR) {
a4ec24b4 5417 time_slice = DEF_TIMESLICE;
1868f958 5418 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5419 struct sched_entity *se = &p->se;
5420 unsigned long flags;
5421 struct rq *rq;
5422
5423 rq = task_rq_lock(p, &flags);
77034937
IM
5424 if (rq->cfs.load.weight)
5425 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5426 task_rq_unlock(rq, &flags);
5427 }
1da177e4 5428 read_unlock(&tasklist_lock);
a4ec24b4 5429 jiffies_to_timespec(time_slice, &t);
1da177e4 5430 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5431 return retval;
3a5c359a 5432
1da177e4
LT
5433out_unlock:
5434 read_unlock(&tasklist_lock);
5435 return retval;
5436}
5437
7c731e0a 5438static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5439
82a1fcb9 5440void sched_show_task(struct task_struct *p)
1da177e4 5441{
1da177e4 5442 unsigned long free = 0;
36c8b586 5443 unsigned state;
1da177e4 5444
1da177e4 5445 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5446 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5447 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5448#if BITS_PER_LONG == 32
1da177e4 5449 if (state == TASK_RUNNING)
cc4ea795 5450 printk(KERN_CONT " running ");
1da177e4 5451 else
cc4ea795 5452 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5453#else
5454 if (state == TASK_RUNNING)
cc4ea795 5455 printk(KERN_CONT " running task ");
1da177e4 5456 else
cc4ea795 5457 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5458#endif
5459#ifdef CONFIG_DEBUG_STACK_USAGE
5460 {
10ebffde 5461 unsigned long *n = end_of_stack(p);
1da177e4
LT
5462 while (!*n)
5463 n++;
10ebffde 5464 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5465 }
5466#endif
ba25f9dc 5467 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5468 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5469
5fb5e6de 5470 show_stack(p, NULL);
1da177e4
LT
5471}
5472
e59e2ae2 5473void show_state_filter(unsigned long state_filter)
1da177e4 5474{
36c8b586 5475 struct task_struct *g, *p;
1da177e4 5476
4bd77321
IM
5477#if BITS_PER_LONG == 32
5478 printk(KERN_INFO
5479 " task PC stack pid father\n");
1da177e4 5480#else
4bd77321
IM
5481 printk(KERN_INFO
5482 " task PC stack pid father\n");
1da177e4
LT
5483#endif
5484 read_lock(&tasklist_lock);
5485 do_each_thread(g, p) {
5486 /*
5487 * reset the NMI-timeout, listing all files on a slow
5488 * console might take alot of time:
5489 */
5490 touch_nmi_watchdog();
39bc89fd 5491 if (!state_filter || (p->state & state_filter))
82a1fcb9 5492 sched_show_task(p);
1da177e4
LT
5493 } while_each_thread(g, p);
5494
04c9167f
JF
5495 touch_all_softlockup_watchdogs();
5496
dd41f596
IM
5497#ifdef CONFIG_SCHED_DEBUG
5498 sysrq_sched_debug_show();
5499#endif
1da177e4 5500 read_unlock(&tasklist_lock);
e59e2ae2
IM
5501 /*
5502 * Only show locks if all tasks are dumped:
5503 */
5504 if (state_filter == -1)
5505 debug_show_all_locks();
1da177e4
LT
5506}
5507
1df21055
IM
5508void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5509{
dd41f596 5510 idle->sched_class = &idle_sched_class;
1df21055
IM
5511}
5512
f340c0d1
IM
5513/**
5514 * init_idle - set up an idle thread for a given CPU
5515 * @idle: task in question
5516 * @cpu: cpu the idle task belongs to
5517 *
5518 * NOTE: this function does not set the idle thread's NEED_RESCHED
5519 * flag, to make booting more robust.
5520 */
5c1e1767 5521void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5522{
70b97a7f 5523 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5524 unsigned long flags;
5525
dd41f596
IM
5526 __sched_fork(idle);
5527 idle->se.exec_start = sched_clock();
5528
b29739f9 5529 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5530 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5531 __set_task_cpu(idle, cpu);
1da177e4
LT
5532
5533 spin_lock_irqsave(&rq->lock, flags);
5534 rq->curr = rq->idle = idle;
4866cde0
NP
5535#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5536 idle->oncpu = 1;
5537#endif
1da177e4
LT
5538 spin_unlock_irqrestore(&rq->lock, flags);
5539
5540 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5541#if defined(CONFIG_PREEMPT)
5542 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5543#else
a1261f54 5544 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5545#endif
dd41f596
IM
5546 /*
5547 * The idle tasks have their own, simple scheduling class:
5548 */
5549 idle->sched_class = &idle_sched_class;
1da177e4
LT
5550}
5551
5552/*
5553 * In a system that switches off the HZ timer nohz_cpu_mask
5554 * indicates which cpus entered this state. This is used
5555 * in the rcu update to wait only for active cpus. For system
5556 * which do not switch off the HZ timer nohz_cpu_mask should
5557 * always be CPU_MASK_NONE.
5558 */
5559cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5560
19978ca6
IM
5561/*
5562 * Increase the granularity value when there are more CPUs,
5563 * because with more CPUs the 'effective latency' as visible
5564 * to users decreases. But the relationship is not linear,
5565 * so pick a second-best guess by going with the log2 of the
5566 * number of CPUs.
5567 *
5568 * This idea comes from the SD scheduler of Con Kolivas:
5569 */
5570static inline void sched_init_granularity(void)
5571{
5572 unsigned int factor = 1 + ilog2(num_online_cpus());
5573 const unsigned long limit = 200000000;
5574
5575 sysctl_sched_min_granularity *= factor;
5576 if (sysctl_sched_min_granularity > limit)
5577 sysctl_sched_min_granularity = limit;
5578
5579 sysctl_sched_latency *= factor;
5580 if (sysctl_sched_latency > limit)
5581 sysctl_sched_latency = limit;
5582
5583 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5584}
5585
1da177e4
LT
5586#ifdef CONFIG_SMP
5587/*
5588 * This is how migration works:
5589 *
70b97a7f 5590 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5591 * runqueue and wake up that CPU's migration thread.
5592 * 2) we down() the locked semaphore => thread blocks.
5593 * 3) migration thread wakes up (implicitly it forces the migrated
5594 * thread off the CPU)
5595 * 4) it gets the migration request and checks whether the migrated
5596 * task is still in the wrong runqueue.
5597 * 5) if it's in the wrong runqueue then the migration thread removes
5598 * it and puts it into the right queue.
5599 * 6) migration thread up()s the semaphore.
5600 * 7) we wake up and the migration is done.
5601 */
5602
5603/*
5604 * Change a given task's CPU affinity. Migrate the thread to a
5605 * proper CPU and schedule it away if the CPU it's executing on
5606 * is removed from the allowed bitmask.
5607 *
5608 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5609 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5610 * call is not atomic; no spinlocks may be held.
5611 */
cd8ba7cd 5612int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5613{
70b97a7f 5614 struct migration_req req;
1da177e4 5615 unsigned long flags;
70b97a7f 5616 struct rq *rq;
48f24c4d 5617 int ret = 0;
1da177e4
LT
5618
5619 rq = task_rq_lock(p, &flags);
cd8ba7cd 5620 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5621 ret = -EINVAL;
5622 goto out;
5623 }
5624
73fe6aae 5625 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5626 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5627 else {
cd8ba7cd
MT
5628 p->cpus_allowed = *new_mask;
5629 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5630 }
5631
1da177e4 5632 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5633 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5634 goto out;
5635
cd8ba7cd 5636 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5637 /* Need help from migration thread: drop lock and wait. */
5638 task_rq_unlock(rq, &flags);
5639 wake_up_process(rq->migration_thread);
5640 wait_for_completion(&req.done);
5641 tlb_migrate_finish(p->mm);
5642 return 0;
5643 }
5644out:
5645 task_rq_unlock(rq, &flags);
48f24c4d 5646
1da177e4
LT
5647 return ret;
5648}
cd8ba7cd 5649EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5650
5651/*
41a2d6cf 5652 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5653 * this because either it can't run here any more (set_cpus_allowed()
5654 * away from this CPU, or CPU going down), or because we're
5655 * attempting to rebalance this task on exec (sched_exec).
5656 *
5657 * So we race with normal scheduler movements, but that's OK, as long
5658 * as the task is no longer on this CPU.
efc30814
KK
5659 *
5660 * Returns non-zero if task was successfully migrated.
1da177e4 5661 */
efc30814 5662static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5663{
70b97a7f 5664 struct rq *rq_dest, *rq_src;
dd41f596 5665 int ret = 0, on_rq;
1da177e4
LT
5666
5667 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5668 return ret;
1da177e4
LT
5669
5670 rq_src = cpu_rq(src_cpu);
5671 rq_dest = cpu_rq(dest_cpu);
5672
5673 double_rq_lock(rq_src, rq_dest);
5674 /* Already moved. */
5675 if (task_cpu(p) != src_cpu)
5676 goto out;
5677 /* Affinity changed (again). */
5678 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5679 goto out;
5680
dd41f596 5681 on_rq = p->se.on_rq;
6e82a3be 5682 if (on_rq)
2e1cb74a 5683 deactivate_task(rq_src, p, 0);
6e82a3be 5684
1da177e4 5685 set_task_cpu(p, dest_cpu);
dd41f596
IM
5686 if (on_rq) {
5687 activate_task(rq_dest, p, 0);
5688 check_preempt_curr(rq_dest, p);
1da177e4 5689 }
efc30814 5690 ret = 1;
1da177e4
LT
5691out:
5692 double_rq_unlock(rq_src, rq_dest);
efc30814 5693 return ret;
1da177e4
LT
5694}
5695
5696/*
5697 * migration_thread - this is a highprio system thread that performs
5698 * thread migration by bumping thread off CPU then 'pushing' onto
5699 * another runqueue.
5700 */
95cdf3b7 5701static int migration_thread(void *data)
1da177e4 5702{
1da177e4 5703 int cpu = (long)data;
70b97a7f 5704 struct rq *rq;
1da177e4
LT
5705
5706 rq = cpu_rq(cpu);
5707 BUG_ON(rq->migration_thread != current);
5708
5709 set_current_state(TASK_INTERRUPTIBLE);
5710 while (!kthread_should_stop()) {
70b97a7f 5711 struct migration_req *req;
1da177e4 5712 struct list_head *head;
1da177e4 5713
1da177e4
LT
5714 spin_lock_irq(&rq->lock);
5715
5716 if (cpu_is_offline(cpu)) {
5717 spin_unlock_irq(&rq->lock);
5718 goto wait_to_die;
5719 }
5720
5721 if (rq->active_balance) {
5722 active_load_balance(rq, cpu);
5723 rq->active_balance = 0;
5724 }
5725
5726 head = &rq->migration_queue;
5727
5728 if (list_empty(head)) {
5729 spin_unlock_irq(&rq->lock);
5730 schedule();
5731 set_current_state(TASK_INTERRUPTIBLE);
5732 continue;
5733 }
70b97a7f 5734 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5735 list_del_init(head->next);
5736
674311d5
NP
5737 spin_unlock(&rq->lock);
5738 __migrate_task(req->task, cpu, req->dest_cpu);
5739 local_irq_enable();
1da177e4
LT
5740
5741 complete(&req->done);
5742 }
5743 __set_current_state(TASK_RUNNING);
5744 return 0;
5745
5746wait_to_die:
5747 /* Wait for kthread_stop */
5748 set_current_state(TASK_INTERRUPTIBLE);
5749 while (!kthread_should_stop()) {
5750 schedule();
5751 set_current_state(TASK_INTERRUPTIBLE);
5752 }
5753 __set_current_state(TASK_RUNNING);
5754 return 0;
5755}
5756
5757#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5758
5759static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5760{
5761 int ret;
5762
5763 local_irq_disable();
5764 ret = __migrate_task(p, src_cpu, dest_cpu);
5765 local_irq_enable();
5766 return ret;
5767}
5768
054b9108 5769/*
3a4fa0a2 5770 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5771 * NOTE: interrupts should be disabled by the caller
5772 */
48f24c4d 5773static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5774{
efc30814 5775 unsigned long flags;
1da177e4 5776 cpumask_t mask;
70b97a7f
IM
5777 struct rq *rq;
5778 int dest_cpu;
1da177e4 5779
3a5c359a
AK
5780 do {
5781 /* On same node? */
5782 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5783 cpus_and(mask, mask, p->cpus_allowed);
5784 dest_cpu = any_online_cpu(mask);
5785
5786 /* On any allowed CPU? */
434d53b0 5787 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5788 dest_cpu = any_online_cpu(p->cpus_allowed);
5789
5790 /* No more Mr. Nice Guy. */
434d53b0 5791 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5792 cpumask_t cpus_allowed;
5793
5794 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5795 /*
5796 * Try to stay on the same cpuset, where the
5797 * current cpuset may be a subset of all cpus.
5798 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5799 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5800 * called within calls to cpuset_lock/cpuset_unlock.
5801 */
3a5c359a 5802 rq = task_rq_lock(p, &flags);
470fd646 5803 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5804 dest_cpu = any_online_cpu(p->cpus_allowed);
5805 task_rq_unlock(rq, &flags);
1da177e4 5806
3a5c359a
AK
5807 /*
5808 * Don't tell them about moving exiting tasks or
5809 * kernel threads (both mm NULL), since they never
5810 * leave kernel.
5811 */
41a2d6cf 5812 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5813 printk(KERN_INFO "process %d (%s) no "
5814 "longer affine to cpu%d\n",
41a2d6cf
IM
5815 task_pid_nr(p), p->comm, dead_cpu);
5816 }
3a5c359a 5817 }
f7b4cddc 5818 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5819}
5820
5821/*
5822 * While a dead CPU has no uninterruptible tasks queued at this point,
5823 * it might still have a nonzero ->nr_uninterruptible counter, because
5824 * for performance reasons the counter is not stricly tracking tasks to
5825 * their home CPUs. So we just add the counter to another CPU's counter,
5826 * to keep the global sum constant after CPU-down:
5827 */
70b97a7f 5828static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5829{
7c16ec58 5830 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5831 unsigned long flags;
5832
5833 local_irq_save(flags);
5834 double_rq_lock(rq_src, rq_dest);
5835 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5836 rq_src->nr_uninterruptible = 0;
5837 double_rq_unlock(rq_src, rq_dest);
5838 local_irq_restore(flags);
5839}
5840
5841/* Run through task list and migrate tasks from the dead cpu. */
5842static void migrate_live_tasks(int src_cpu)
5843{
48f24c4d 5844 struct task_struct *p, *t;
1da177e4 5845
f7b4cddc 5846 read_lock(&tasklist_lock);
1da177e4 5847
48f24c4d
IM
5848 do_each_thread(t, p) {
5849 if (p == current)
1da177e4
LT
5850 continue;
5851
48f24c4d
IM
5852 if (task_cpu(p) == src_cpu)
5853 move_task_off_dead_cpu(src_cpu, p);
5854 } while_each_thread(t, p);
1da177e4 5855
f7b4cddc 5856 read_unlock(&tasklist_lock);
1da177e4
LT
5857}
5858
dd41f596
IM
5859/*
5860 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5861 * It does so by boosting its priority to highest possible.
5862 * Used by CPU offline code.
1da177e4
LT
5863 */
5864void sched_idle_next(void)
5865{
48f24c4d 5866 int this_cpu = smp_processor_id();
70b97a7f 5867 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5868 struct task_struct *p = rq->idle;
5869 unsigned long flags;
5870
5871 /* cpu has to be offline */
48f24c4d 5872 BUG_ON(cpu_online(this_cpu));
1da177e4 5873
48f24c4d
IM
5874 /*
5875 * Strictly not necessary since rest of the CPUs are stopped by now
5876 * and interrupts disabled on the current cpu.
1da177e4
LT
5877 */
5878 spin_lock_irqsave(&rq->lock, flags);
5879
dd41f596 5880 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5881
94bc9a7b
DA
5882 update_rq_clock(rq);
5883 activate_task(rq, p, 0);
1da177e4
LT
5884
5885 spin_unlock_irqrestore(&rq->lock, flags);
5886}
5887
48f24c4d
IM
5888/*
5889 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5890 * offline.
5891 */
5892void idle_task_exit(void)
5893{
5894 struct mm_struct *mm = current->active_mm;
5895
5896 BUG_ON(cpu_online(smp_processor_id()));
5897
5898 if (mm != &init_mm)
5899 switch_mm(mm, &init_mm, current);
5900 mmdrop(mm);
5901}
5902
054b9108 5903/* called under rq->lock with disabled interrupts */
36c8b586 5904static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5905{
70b97a7f 5906 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5907
5908 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5909 BUG_ON(!p->exit_state);
1da177e4
LT
5910
5911 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5912 BUG_ON(p->state == TASK_DEAD);
1da177e4 5913
48f24c4d 5914 get_task_struct(p);
1da177e4
LT
5915
5916 /*
5917 * Drop lock around migration; if someone else moves it,
41a2d6cf 5918 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5919 * fine.
5920 */
f7b4cddc 5921 spin_unlock_irq(&rq->lock);
48f24c4d 5922 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5923 spin_lock_irq(&rq->lock);
1da177e4 5924
48f24c4d 5925 put_task_struct(p);
1da177e4
LT
5926}
5927
5928/* release_task() removes task from tasklist, so we won't find dead tasks. */
5929static void migrate_dead_tasks(unsigned int dead_cpu)
5930{
70b97a7f 5931 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5932 struct task_struct *next;
48f24c4d 5933
dd41f596
IM
5934 for ( ; ; ) {
5935 if (!rq->nr_running)
5936 break;
a8e504d2 5937 update_rq_clock(rq);
ff95f3df 5938 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5939 if (!next)
5940 break;
5941 migrate_dead(dead_cpu, next);
e692ab53 5942
1da177e4
LT
5943 }
5944}
5945#endif /* CONFIG_HOTPLUG_CPU */
5946
e692ab53
NP
5947#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5948
5949static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5950 {
5951 .procname = "sched_domain",
c57baf1e 5952 .mode = 0555,
e0361851 5953 },
38605cae 5954 {0, },
e692ab53
NP
5955};
5956
5957static struct ctl_table sd_ctl_root[] = {
e0361851 5958 {
c57baf1e 5959 .ctl_name = CTL_KERN,
e0361851 5960 .procname = "kernel",
c57baf1e 5961 .mode = 0555,
e0361851
AD
5962 .child = sd_ctl_dir,
5963 },
38605cae 5964 {0, },
e692ab53
NP
5965};
5966
5967static struct ctl_table *sd_alloc_ctl_entry(int n)
5968{
5969 struct ctl_table *entry =
5cf9f062 5970 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5971
e692ab53
NP
5972 return entry;
5973}
5974
6382bc90
MM
5975static void sd_free_ctl_entry(struct ctl_table **tablep)
5976{
cd790076 5977 struct ctl_table *entry;
6382bc90 5978
cd790076
MM
5979 /*
5980 * In the intermediate directories, both the child directory and
5981 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5982 * will always be set. In the lowest directory the names are
cd790076
MM
5983 * static strings and all have proc handlers.
5984 */
5985 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5986 if (entry->child)
5987 sd_free_ctl_entry(&entry->child);
cd790076
MM
5988 if (entry->proc_handler == NULL)
5989 kfree(entry->procname);
5990 }
6382bc90
MM
5991
5992 kfree(*tablep);
5993 *tablep = NULL;
5994}
5995
e692ab53 5996static void
e0361851 5997set_table_entry(struct ctl_table *entry,
e692ab53
NP
5998 const char *procname, void *data, int maxlen,
5999 mode_t mode, proc_handler *proc_handler)
6000{
e692ab53
NP
6001 entry->procname = procname;
6002 entry->data = data;
6003 entry->maxlen = maxlen;
6004 entry->mode = mode;
6005 entry->proc_handler = proc_handler;
6006}
6007
6008static struct ctl_table *
6009sd_alloc_ctl_domain_table(struct sched_domain *sd)
6010{
ace8b3d6 6011 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6012
ad1cdc1d
MM
6013 if (table == NULL)
6014 return NULL;
6015
e0361851 6016 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6017 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6018 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6019 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6020 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6021 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6022 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6023 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6024 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6025 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6026 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6027 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6028 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6029 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6030 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6031 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6032 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6033 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6034 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6035 &sd->cache_nice_tries,
6036 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6037 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6038 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6039 /* &table[11] is terminator */
e692ab53
NP
6040
6041 return table;
6042}
6043
9a4e7159 6044static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6045{
6046 struct ctl_table *entry, *table;
6047 struct sched_domain *sd;
6048 int domain_num = 0, i;
6049 char buf[32];
6050
6051 for_each_domain(cpu, sd)
6052 domain_num++;
6053 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6054 if (table == NULL)
6055 return NULL;
e692ab53
NP
6056
6057 i = 0;
6058 for_each_domain(cpu, sd) {
6059 snprintf(buf, 32, "domain%d", i);
e692ab53 6060 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6061 entry->mode = 0555;
e692ab53
NP
6062 entry->child = sd_alloc_ctl_domain_table(sd);
6063 entry++;
6064 i++;
6065 }
6066 return table;
6067}
6068
6069static struct ctl_table_header *sd_sysctl_header;
6382bc90 6070static void register_sched_domain_sysctl(void)
e692ab53
NP
6071{
6072 int i, cpu_num = num_online_cpus();
6073 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6074 char buf[32];
6075
7378547f
MM
6076 WARN_ON(sd_ctl_dir[0].child);
6077 sd_ctl_dir[0].child = entry;
6078
ad1cdc1d
MM
6079 if (entry == NULL)
6080 return;
6081
97b6ea7b 6082 for_each_online_cpu(i) {
e692ab53 6083 snprintf(buf, 32, "cpu%d", i);
e692ab53 6084 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6085 entry->mode = 0555;
e692ab53 6086 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6087 entry++;
e692ab53 6088 }
7378547f
MM
6089
6090 WARN_ON(sd_sysctl_header);
e692ab53
NP
6091 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6092}
6382bc90 6093
7378547f 6094/* may be called multiple times per register */
6382bc90
MM
6095static void unregister_sched_domain_sysctl(void)
6096{
7378547f
MM
6097 if (sd_sysctl_header)
6098 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6099 sd_sysctl_header = NULL;
7378547f
MM
6100 if (sd_ctl_dir[0].child)
6101 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6102}
e692ab53 6103#else
6382bc90
MM
6104static void register_sched_domain_sysctl(void)
6105{
6106}
6107static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6108{
6109}
6110#endif
6111
1da177e4
LT
6112/*
6113 * migration_call - callback that gets triggered when a CPU is added.
6114 * Here we can start up the necessary migration thread for the new CPU.
6115 */
48f24c4d
IM
6116static int __cpuinit
6117migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6118{
1da177e4 6119 struct task_struct *p;
48f24c4d 6120 int cpu = (long)hcpu;
1da177e4 6121 unsigned long flags;
70b97a7f 6122 struct rq *rq;
1da177e4
LT
6123
6124 switch (action) {
5be9361c 6125
1da177e4 6126 case CPU_UP_PREPARE:
8bb78442 6127 case CPU_UP_PREPARE_FROZEN:
dd41f596 6128 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6129 if (IS_ERR(p))
6130 return NOTIFY_BAD;
1da177e4
LT
6131 kthread_bind(p, cpu);
6132 /* Must be high prio: stop_machine expects to yield to it. */
6133 rq = task_rq_lock(p, &flags);
dd41f596 6134 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6135 task_rq_unlock(rq, &flags);
6136 cpu_rq(cpu)->migration_thread = p;
6137 break;
48f24c4d 6138
1da177e4 6139 case CPU_ONLINE:
8bb78442 6140 case CPU_ONLINE_FROZEN:
3a4fa0a2 6141 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6142 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6143
6144 /* Update our root-domain */
6145 rq = cpu_rq(cpu);
6146 spin_lock_irqsave(&rq->lock, flags);
6147 if (rq->rd) {
6148 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6149 cpu_set(cpu, rq->rd->online);
6150 }
6151 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6152 break;
48f24c4d 6153
1da177e4
LT
6154#ifdef CONFIG_HOTPLUG_CPU
6155 case CPU_UP_CANCELED:
8bb78442 6156 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6157 if (!cpu_rq(cpu)->migration_thread)
6158 break;
41a2d6cf 6159 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6160 kthread_bind(cpu_rq(cpu)->migration_thread,
6161 any_online_cpu(cpu_online_map));
1da177e4
LT
6162 kthread_stop(cpu_rq(cpu)->migration_thread);
6163 cpu_rq(cpu)->migration_thread = NULL;
6164 break;
48f24c4d 6165
1da177e4 6166 case CPU_DEAD:
8bb78442 6167 case CPU_DEAD_FROZEN:
470fd646 6168 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6169 migrate_live_tasks(cpu);
6170 rq = cpu_rq(cpu);
6171 kthread_stop(rq->migration_thread);
6172 rq->migration_thread = NULL;
6173 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6174 spin_lock_irq(&rq->lock);
a8e504d2 6175 update_rq_clock(rq);
2e1cb74a 6176 deactivate_task(rq, rq->idle, 0);
1da177e4 6177 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6178 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6179 rq->idle->sched_class = &idle_sched_class;
1da177e4 6180 migrate_dead_tasks(cpu);
d2da272a 6181 spin_unlock_irq(&rq->lock);
470fd646 6182 cpuset_unlock();
1da177e4
LT
6183 migrate_nr_uninterruptible(rq);
6184 BUG_ON(rq->nr_running != 0);
6185
41a2d6cf
IM
6186 /*
6187 * No need to migrate the tasks: it was best-effort if
6188 * they didn't take sched_hotcpu_mutex. Just wake up
6189 * the requestors.
6190 */
1da177e4
LT
6191 spin_lock_irq(&rq->lock);
6192 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6193 struct migration_req *req;
6194
1da177e4 6195 req = list_entry(rq->migration_queue.next,
70b97a7f 6196 struct migration_req, list);
1da177e4
LT
6197 list_del_init(&req->list);
6198 complete(&req->done);
6199 }
6200 spin_unlock_irq(&rq->lock);
6201 break;
57d885fe 6202
08f503b0
GH
6203 case CPU_DYING:
6204 case CPU_DYING_FROZEN:
57d885fe
GH
6205 /* Update our root-domain */
6206 rq = cpu_rq(cpu);
6207 spin_lock_irqsave(&rq->lock, flags);
6208 if (rq->rd) {
6209 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6210 cpu_clear(cpu, rq->rd->online);
6211 }
6212 spin_unlock_irqrestore(&rq->lock, flags);
6213 break;
1da177e4
LT
6214#endif
6215 }
6216 return NOTIFY_OK;
6217}
6218
6219/* Register at highest priority so that task migration (migrate_all_tasks)
6220 * happens before everything else.
6221 */
26c2143b 6222static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6223 .notifier_call = migration_call,
6224 .priority = 10
6225};
6226
e6fe6649 6227void __init migration_init(void)
1da177e4
LT
6228{
6229 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6230 int err;
48f24c4d
IM
6231
6232 /* Start one for the boot CPU: */
07dccf33
AM
6233 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6234 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6235 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6236 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6237}
6238#endif
6239
6240#ifdef CONFIG_SMP
476f3534 6241
3e9830dc 6242#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6243
7c16ec58
MT
6244static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6245 cpumask_t *groupmask)
1da177e4 6246{
4dcf6aff 6247 struct sched_group *group = sd->groups;
434d53b0 6248 char str[256];
1da177e4 6249
434d53b0 6250 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6251 cpus_clear(*groupmask);
4dcf6aff
IM
6252
6253 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6254
6255 if (!(sd->flags & SD_LOAD_BALANCE)) {
6256 printk("does not load-balance\n");
6257 if (sd->parent)
6258 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6259 " has parent");
6260 return -1;
41c7ce9a
NP
6261 }
6262
4dcf6aff
IM
6263 printk(KERN_CONT "span %s\n", str);
6264
6265 if (!cpu_isset(cpu, sd->span)) {
6266 printk(KERN_ERR "ERROR: domain->span does not contain "
6267 "CPU%d\n", cpu);
6268 }
6269 if (!cpu_isset(cpu, group->cpumask)) {
6270 printk(KERN_ERR "ERROR: domain->groups does not contain"
6271 " CPU%d\n", cpu);
6272 }
1da177e4 6273
4dcf6aff 6274 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6275 do {
4dcf6aff
IM
6276 if (!group) {
6277 printk("\n");
6278 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6279 break;
6280 }
6281
4dcf6aff
IM
6282 if (!group->__cpu_power) {
6283 printk(KERN_CONT "\n");
6284 printk(KERN_ERR "ERROR: domain->cpu_power not "
6285 "set\n");
6286 break;
6287 }
1da177e4 6288
4dcf6aff
IM
6289 if (!cpus_weight(group->cpumask)) {
6290 printk(KERN_CONT "\n");
6291 printk(KERN_ERR "ERROR: empty group\n");
6292 break;
6293 }
1da177e4 6294
7c16ec58 6295 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6296 printk(KERN_CONT "\n");
6297 printk(KERN_ERR "ERROR: repeated CPUs\n");
6298 break;
6299 }
1da177e4 6300
7c16ec58 6301 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6302
434d53b0 6303 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6304 printk(KERN_CONT " %s", str);
1da177e4 6305
4dcf6aff
IM
6306 group = group->next;
6307 } while (group != sd->groups);
6308 printk(KERN_CONT "\n");
1da177e4 6309
7c16ec58 6310 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6311 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6312
7c16ec58 6313 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6314 printk(KERN_ERR "ERROR: parent span is not a superset "
6315 "of domain->span\n");
6316 return 0;
6317}
1da177e4 6318
4dcf6aff
IM
6319static void sched_domain_debug(struct sched_domain *sd, int cpu)
6320{
7c16ec58 6321 cpumask_t *groupmask;
4dcf6aff 6322 int level = 0;
1da177e4 6323
4dcf6aff
IM
6324 if (!sd) {
6325 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6326 return;
6327 }
1da177e4 6328
4dcf6aff
IM
6329 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6330
7c16ec58
MT
6331 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6332 if (!groupmask) {
6333 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6334 return;
6335 }
6336
4dcf6aff 6337 for (;;) {
7c16ec58 6338 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6339 break;
1da177e4
LT
6340 level++;
6341 sd = sd->parent;
33859f7f 6342 if (!sd)
4dcf6aff
IM
6343 break;
6344 }
7c16ec58 6345 kfree(groupmask);
1da177e4
LT
6346}
6347#else
48f24c4d 6348# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6349#endif
6350
1a20ff27 6351static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6352{
6353 if (cpus_weight(sd->span) == 1)
6354 return 1;
6355
6356 /* Following flags need at least 2 groups */
6357 if (sd->flags & (SD_LOAD_BALANCE |
6358 SD_BALANCE_NEWIDLE |
6359 SD_BALANCE_FORK |
89c4710e
SS
6360 SD_BALANCE_EXEC |
6361 SD_SHARE_CPUPOWER |
6362 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6363 if (sd->groups != sd->groups->next)
6364 return 0;
6365 }
6366
6367 /* Following flags don't use groups */
6368 if (sd->flags & (SD_WAKE_IDLE |
6369 SD_WAKE_AFFINE |
6370 SD_WAKE_BALANCE))
6371 return 0;
6372
6373 return 1;
6374}
6375
48f24c4d
IM
6376static int
6377sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6378{
6379 unsigned long cflags = sd->flags, pflags = parent->flags;
6380
6381 if (sd_degenerate(parent))
6382 return 1;
6383
6384 if (!cpus_equal(sd->span, parent->span))
6385 return 0;
6386
6387 /* Does parent contain flags not in child? */
6388 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6389 if (cflags & SD_WAKE_AFFINE)
6390 pflags &= ~SD_WAKE_BALANCE;
6391 /* Flags needing groups don't count if only 1 group in parent */
6392 if (parent->groups == parent->groups->next) {
6393 pflags &= ~(SD_LOAD_BALANCE |
6394 SD_BALANCE_NEWIDLE |
6395 SD_BALANCE_FORK |
89c4710e
SS
6396 SD_BALANCE_EXEC |
6397 SD_SHARE_CPUPOWER |
6398 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6399 }
6400 if (~cflags & pflags)
6401 return 0;
6402
6403 return 1;
6404}
6405
57d885fe
GH
6406static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6407{
6408 unsigned long flags;
6409 const struct sched_class *class;
6410
6411 spin_lock_irqsave(&rq->lock, flags);
6412
6413 if (rq->rd) {
6414 struct root_domain *old_rd = rq->rd;
6415
0eab9146 6416 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6417 if (class->leave_domain)
6418 class->leave_domain(rq);
0eab9146 6419 }
57d885fe 6420
dc938520
GH
6421 cpu_clear(rq->cpu, old_rd->span);
6422 cpu_clear(rq->cpu, old_rd->online);
6423
57d885fe
GH
6424 if (atomic_dec_and_test(&old_rd->refcount))
6425 kfree(old_rd);
6426 }
6427
6428 atomic_inc(&rd->refcount);
6429 rq->rd = rd;
6430
dc938520 6431 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6432 if (cpu_isset(rq->cpu, cpu_online_map))
6433 cpu_set(rq->cpu, rd->online);
dc938520 6434
0eab9146 6435 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6436 if (class->join_domain)
6437 class->join_domain(rq);
0eab9146 6438 }
57d885fe
GH
6439
6440 spin_unlock_irqrestore(&rq->lock, flags);
6441}
6442
dc938520 6443static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6444{
6445 memset(rd, 0, sizeof(*rd));
6446
dc938520
GH
6447 cpus_clear(rd->span);
6448 cpus_clear(rd->online);
57d885fe
GH
6449}
6450
6451static void init_defrootdomain(void)
6452{
dc938520 6453 init_rootdomain(&def_root_domain);
57d885fe
GH
6454 atomic_set(&def_root_domain.refcount, 1);
6455}
6456
dc938520 6457static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6458{
6459 struct root_domain *rd;
6460
6461 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6462 if (!rd)
6463 return NULL;
6464
dc938520 6465 init_rootdomain(rd);
57d885fe
GH
6466
6467 return rd;
6468}
6469
1da177e4 6470/*
0eab9146 6471 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6472 * hold the hotplug lock.
6473 */
0eab9146
IM
6474static void
6475cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6476{
70b97a7f 6477 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6478 struct sched_domain *tmp;
6479
6480 /* Remove the sched domains which do not contribute to scheduling. */
6481 for (tmp = sd; tmp; tmp = tmp->parent) {
6482 struct sched_domain *parent = tmp->parent;
6483 if (!parent)
6484 break;
1a848870 6485 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6486 tmp->parent = parent->parent;
1a848870
SS
6487 if (parent->parent)
6488 parent->parent->child = tmp;
6489 }
245af2c7
SS
6490 }
6491
1a848870 6492 if (sd && sd_degenerate(sd)) {
245af2c7 6493 sd = sd->parent;
1a848870
SS
6494 if (sd)
6495 sd->child = NULL;
6496 }
1da177e4
LT
6497
6498 sched_domain_debug(sd, cpu);
6499
57d885fe 6500 rq_attach_root(rq, rd);
674311d5 6501 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6502}
6503
6504/* cpus with isolated domains */
67af63a6 6505static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6506
6507/* Setup the mask of cpus configured for isolated domains */
6508static int __init isolated_cpu_setup(char *str)
6509{
6510 int ints[NR_CPUS], i;
6511
6512 str = get_options(str, ARRAY_SIZE(ints), ints);
6513 cpus_clear(cpu_isolated_map);
6514 for (i = 1; i <= ints[0]; i++)
6515 if (ints[i] < NR_CPUS)
6516 cpu_set(ints[i], cpu_isolated_map);
6517 return 1;
6518}
6519
8927f494 6520__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6521
6522/*
6711cab4
SS
6523 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6524 * to a function which identifies what group(along with sched group) a CPU
6525 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6526 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6527 *
6528 * init_sched_build_groups will build a circular linked list of the groups
6529 * covered by the given span, and will set each group's ->cpumask correctly,
6530 * and ->cpu_power to 0.
6531 */
a616058b 6532static void
7c16ec58 6533init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6534 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6535 struct sched_group **sg,
6536 cpumask_t *tmpmask),
6537 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6538{
6539 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6540 int i;
6541
7c16ec58
MT
6542 cpus_clear(*covered);
6543
6544 for_each_cpu_mask(i, *span) {
6711cab4 6545 struct sched_group *sg;
7c16ec58 6546 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6547 int j;
6548
7c16ec58 6549 if (cpu_isset(i, *covered))
1da177e4
LT
6550 continue;
6551
7c16ec58 6552 cpus_clear(sg->cpumask);
5517d86b 6553 sg->__cpu_power = 0;
1da177e4 6554
7c16ec58
MT
6555 for_each_cpu_mask(j, *span) {
6556 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6557 continue;
6558
7c16ec58 6559 cpu_set(j, *covered);
1da177e4
LT
6560 cpu_set(j, sg->cpumask);
6561 }
6562 if (!first)
6563 first = sg;
6564 if (last)
6565 last->next = sg;
6566 last = sg;
6567 }
6568 last->next = first;
6569}
6570
9c1cfda2 6571#define SD_NODES_PER_DOMAIN 16
1da177e4 6572
9c1cfda2 6573#ifdef CONFIG_NUMA
198e2f18 6574
9c1cfda2
JH
6575/**
6576 * find_next_best_node - find the next node to include in a sched_domain
6577 * @node: node whose sched_domain we're building
6578 * @used_nodes: nodes already in the sched_domain
6579 *
41a2d6cf 6580 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6581 * finds the closest node not already in the @used_nodes map.
6582 *
6583 * Should use nodemask_t.
6584 */
c5f59f08 6585static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6586{
6587 int i, n, val, min_val, best_node = 0;
6588
6589 min_val = INT_MAX;
6590
6591 for (i = 0; i < MAX_NUMNODES; i++) {
6592 /* Start at @node */
6593 n = (node + i) % MAX_NUMNODES;
6594
6595 if (!nr_cpus_node(n))
6596 continue;
6597
6598 /* Skip already used nodes */
c5f59f08 6599 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6600 continue;
6601
6602 /* Simple min distance search */
6603 val = node_distance(node, n);
6604
6605 if (val < min_val) {
6606 min_val = val;
6607 best_node = n;
6608 }
6609 }
6610
c5f59f08 6611 node_set(best_node, *used_nodes);
9c1cfda2
JH
6612 return best_node;
6613}
6614
6615/**
6616 * sched_domain_node_span - get a cpumask for a node's sched_domain
6617 * @node: node whose cpumask we're constructing
73486722 6618 * @span: resulting cpumask
9c1cfda2 6619 *
41a2d6cf 6620 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6621 * should be one that prevents unnecessary balancing, but also spreads tasks
6622 * out optimally.
6623 */
4bdbaad3 6624static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6625{
c5f59f08 6626 nodemask_t used_nodes;
c5f59f08 6627 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6628 int i;
9c1cfda2 6629
4bdbaad3 6630 cpus_clear(*span);
c5f59f08 6631 nodes_clear(used_nodes);
9c1cfda2 6632
4bdbaad3 6633 cpus_or(*span, *span, *nodemask);
c5f59f08 6634 node_set(node, used_nodes);
9c1cfda2
JH
6635
6636 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6637 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6638
c5f59f08 6639 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6640 cpus_or(*span, *span, *nodemask);
9c1cfda2 6641 }
9c1cfda2
JH
6642}
6643#endif
6644
5c45bf27 6645int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6646
9c1cfda2 6647/*
48f24c4d 6648 * SMT sched-domains:
9c1cfda2 6649 */
1da177e4
LT
6650#ifdef CONFIG_SCHED_SMT
6651static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6652static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6653
41a2d6cf 6654static int
7c16ec58
MT
6655cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6656 cpumask_t *unused)
1da177e4 6657{
6711cab4
SS
6658 if (sg)
6659 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6660 return cpu;
6661}
6662#endif
6663
48f24c4d
IM
6664/*
6665 * multi-core sched-domains:
6666 */
1e9f28fa
SS
6667#ifdef CONFIG_SCHED_MC
6668static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6669static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6670#endif
6671
6672#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6673static int
7c16ec58
MT
6674cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6675 cpumask_t *mask)
1e9f28fa 6676{
6711cab4 6677 int group;
7c16ec58
MT
6678
6679 *mask = per_cpu(cpu_sibling_map, cpu);
6680 cpus_and(*mask, *mask, *cpu_map);
6681 group = first_cpu(*mask);
6711cab4
SS
6682 if (sg)
6683 *sg = &per_cpu(sched_group_core, group);
6684 return group;
1e9f28fa
SS
6685}
6686#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6687static int
7c16ec58
MT
6688cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6689 cpumask_t *unused)
1e9f28fa 6690{
6711cab4
SS
6691 if (sg)
6692 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6693 return cpu;
6694}
6695#endif
6696
1da177e4 6697static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6698static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6699
41a2d6cf 6700static int
7c16ec58
MT
6701cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6702 cpumask_t *mask)
1da177e4 6703{
6711cab4 6704 int group;
48f24c4d 6705#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6706 *mask = cpu_coregroup_map(cpu);
6707 cpus_and(*mask, *mask, *cpu_map);
6708 group = first_cpu(*mask);
1e9f28fa 6709#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6710 *mask = per_cpu(cpu_sibling_map, cpu);
6711 cpus_and(*mask, *mask, *cpu_map);
6712 group = first_cpu(*mask);
1da177e4 6713#else
6711cab4 6714 group = cpu;
1da177e4 6715#endif
6711cab4
SS
6716 if (sg)
6717 *sg = &per_cpu(sched_group_phys, group);
6718 return group;
1da177e4
LT
6719}
6720
6721#ifdef CONFIG_NUMA
1da177e4 6722/*
9c1cfda2
JH
6723 * The init_sched_build_groups can't handle what we want to do with node
6724 * groups, so roll our own. Now each node has its own list of groups which
6725 * gets dynamically allocated.
1da177e4 6726 */
9c1cfda2 6727static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6728static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6729
9c1cfda2 6730static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6731static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6732
6711cab4 6733static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6734 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6735{
6711cab4
SS
6736 int group;
6737
7c16ec58
MT
6738 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6739 cpus_and(*nodemask, *nodemask, *cpu_map);
6740 group = first_cpu(*nodemask);
6711cab4
SS
6741
6742 if (sg)
6743 *sg = &per_cpu(sched_group_allnodes, group);
6744 return group;
1da177e4 6745}
6711cab4 6746
08069033
SS
6747static void init_numa_sched_groups_power(struct sched_group *group_head)
6748{
6749 struct sched_group *sg = group_head;
6750 int j;
6751
6752 if (!sg)
6753 return;
3a5c359a
AK
6754 do {
6755 for_each_cpu_mask(j, sg->cpumask) {
6756 struct sched_domain *sd;
08069033 6757
3a5c359a
AK
6758 sd = &per_cpu(phys_domains, j);
6759 if (j != first_cpu(sd->groups->cpumask)) {
6760 /*
6761 * Only add "power" once for each
6762 * physical package.
6763 */
6764 continue;
6765 }
08069033 6766
3a5c359a
AK
6767 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6768 }
6769 sg = sg->next;
6770 } while (sg != group_head);
08069033 6771}
1da177e4
LT
6772#endif
6773
a616058b 6774#ifdef CONFIG_NUMA
51888ca2 6775/* Free memory allocated for various sched_group structures */
7c16ec58 6776static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6777{
a616058b 6778 int cpu, i;
51888ca2
SV
6779
6780 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6781 struct sched_group **sched_group_nodes
6782 = sched_group_nodes_bycpu[cpu];
6783
51888ca2
SV
6784 if (!sched_group_nodes)
6785 continue;
6786
6787 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6788 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6789
7c16ec58
MT
6790 *nodemask = node_to_cpumask(i);
6791 cpus_and(*nodemask, *nodemask, *cpu_map);
6792 if (cpus_empty(*nodemask))
51888ca2
SV
6793 continue;
6794
6795 if (sg == NULL)
6796 continue;
6797 sg = sg->next;
6798next_sg:
6799 oldsg = sg;
6800 sg = sg->next;
6801 kfree(oldsg);
6802 if (oldsg != sched_group_nodes[i])
6803 goto next_sg;
6804 }
6805 kfree(sched_group_nodes);
6806 sched_group_nodes_bycpu[cpu] = NULL;
6807 }
51888ca2 6808}
a616058b 6809#else
7c16ec58 6810static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6811{
6812}
6813#endif
51888ca2 6814
89c4710e
SS
6815/*
6816 * Initialize sched groups cpu_power.
6817 *
6818 * cpu_power indicates the capacity of sched group, which is used while
6819 * distributing the load between different sched groups in a sched domain.
6820 * Typically cpu_power for all the groups in a sched domain will be same unless
6821 * there are asymmetries in the topology. If there are asymmetries, group
6822 * having more cpu_power will pickup more load compared to the group having
6823 * less cpu_power.
6824 *
6825 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6826 * the maximum number of tasks a group can handle in the presence of other idle
6827 * or lightly loaded groups in the same sched domain.
6828 */
6829static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6830{
6831 struct sched_domain *child;
6832 struct sched_group *group;
6833
6834 WARN_ON(!sd || !sd->groups);
6835
6836 if (cpu != first_cpu(sd->groups->cpumask))
6837 return;
6838
6839 child = sd->child;
6840
5517d86b
ED
6841 sd->groups->__cpu_power = 0;
6842
89c4710e
SS
6843 /*
6844 * For perf policy, if the groups in child domain share resources
6845 * (for example cores sharing some portions of the cache hierarchy
6846 * or SMT), then set this domain groups cpu_power such that each group
6847 * can handle only one task, when there are other idle groups in the
6848 * same sched domain.
6849 */
6850 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6851 (child->flags &
6852 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6853 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6854 return;
6855 }
6856
89c4710e
SS
6857 /*
6858 * add cpu_power of each child group to this groups cpu_power
6859 */
6860 group = child->groups;
6861 do {
5517d86b 6862 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6863 group = group->next;
6864 } while (group != child->groups);
6865}
6866
7c16ec58
MT
6867/*
6868 * Initializers for schedule domains
6869 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6870 */
6871
6872#define SD_INIT(sd, type) sd_init_##type(sd)
6873#define SD_INIT_FUNC(type) \
6874static noinline void sd_init_##type(struct sched_domain *sd) \
6875{ \
6876 memset(sd, 0, sizeof(*sd)); \
6877 *sd = SD_##type##_INIT; \
1d3504fc 6878 sd->level = SD_LV_##type; \
7c16ec58
MT
6879}
6880
6881SD_INIT_FUNC(CPU)
6882#ifdef CONFIG_NUMA
6883 SD_INIT_FUNC(ALLNODES)
6884 SD_INIT_FUNC(NODE)
6885#endif
6886#ifdef CONFIG_SCHED_SMT
6887 SD_INIT_FUNC(SIBLING)
6888#endif
6889#ifdef CONFIG_SCHED_MC
6890 SD_INIT_FUNC(MC)
6891#endif
6892
6893/*
6894 * To minimize stack usage kmalloc room for cpumasks and share the
6895 * space as the usage in build_sched_domains() dictates. Used only
6896 * if the amount of space is significant.
6897 */
6898struct allmasks {
6899 cpumask_t tmpmask; /* make this one first */
6900 union {
6901 cpumask_t nodemask;
6902 cpumask_t this_sibling_map;
6903 cpumask_t this_core_map;
6904 };
6905 cpumask_t send_covered;
6906
6907#ifdef CONFIG_NUMA
6908 cpumask_t domainspan;
6909 cpumask_t covered;
6910 cpumask_t notcovered;
6911#endif
6912};
6913
6914#if NR_CPUS > 128
6915#define SCHED_CPUMASK_ALLOC 1
6916#define SCHED_CPUMASK_FREE(v) kfree(v)
6917#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6918#else
6919#define SCHED_CPUMASK_ALLOC 0
6920#define SCHED_CPUMASK_FREE(v)
6921#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6922#endif
6923
6924#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6925 ((unsigned long)(a) + offsetof(struct allmasks, v))
6926
1d3504fc
HS
6927static int default_relax_domain_level = -1;
6928
6929static int __init setup_relax_domain_level(char *str)
6930{
30e0e178
LZ
6931 unsigned long val;
6932
6933 val = simple_strtoul(str, NULL, 0);
6934 if (val < SD_LV_MAX)
6935 default_relax_domain_level = val;
6936
1d3504fc
HS
6937 return 1;
6938}
6939__setup("relax_domain_level=", setup_relax_domain_level);
6940
6941static void set_domain_attribute(struct sched_domain *sd,
6942 struct sched_domain_attr *attr)
6943{
6944 int request;
6945
6946 if (!attr || attr->relax_domain_level < 0) {
6947 if (default_relax_domain_level < 0)
6948 return;
6949 else
6950 request = default_relax_domain_level;
6951 } else
6952 request = attr->relax_domain_level;
6953 if (request < sd->level) {
6954 /* turn off idle balance on this domain */
6955 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
6956 } else {
6957 /* turn on idle balance on this domain */
6958 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
6959 }
6960}
6961
1da177e4 6962/*
1a20ff27
DG
6963 * Build sched domains for a given set of cpus and attach the sched domains
6964 * to the individual cpus
1da177e4 6965 */
1d3504fc
HS
6966static int __build_sched_domains(const cpumask_t *cpu_map,
6967 struct sched_domain_attr *attr)
1da177e4
LT
6968{
6969 int i;
57d885fe 6970 struct root_domain *rd;
7c16ec58
MT
6971 SCHED_CPUMASK_DECLARE(allmasks);
6972 cpumask_t *tmpmask;
d1b55138
JH
6973#ifdef CONFIG_NUMA
6974 struct sched_group **sched_group_nodes = NULL;
6711cab4 6975 int sd_allnodes = 0;
d1b55138
JH
6976
6977 /*
6978 * Allocate the per-node list of sched groups
6979 */
5cf9f062 6980 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6981 GFP_KERNEL);
d1b55138
JH
6982 if (!sched_group_nodes) {
6983 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6984 return -ENOMEM;
d1b55138 6985 }
d1b55138 6986#endif
1da177e4 6987
dc938520 6988 rd = alloc_rootdomain();
57d885fe
GH
6989 if (!rd) {
6990 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
6991#ifdef CONFIG_NUMA
6992 kfree(sched_group_nodes);
6993#endif
57d885fe
GH
6994 return -ENOMEM;
6995 }
6996
7c16ec58
MT
6997#if SCHED_CPUMASK_ALLOC
6998 /* get space for all scratch cpumask variables */
6999 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7000 if (!allmasks) {
7001 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7002 kfree(rd);
7003#ifdef CONFIG_NUMA
7004 kfree(sched_group_nodes);
7005#endif
7006 return -ENOMEM;
7007 }
7008#endif
7009 tmpmask = (cpumask_t *)allmasks;
7010
7011
7012#ifdef CONFIG_NUMA
7013 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7014#endif
7015
1da177e4 7016 /*
1a20ff27 7017 * Set up domains for cpus specified by the cpu_map.
1da177e4 7018 */
1a20ff27 7019 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7020 struct sched_domain *sd = NULL, *p;
7c16ec58 7021 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7022
7c16ec58
MT
7023 *nodemask = node_to_cpumask(cpu_to_node(i));
7024 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7025
7026#ifdef CONFIG_NUMA
dd41f596 7027 if (cpus_weight(*cpu_map) >
7c16ec58 7028 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7029 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7030 SD_INIT(sd, ALLNODES);
1d3504fc 7031 set_domain_attribute(sd, attr);
9c1cfda2 7032 sd->span = *cpu_map;
7c16ec58 7033 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7034 p = sd;
6711cab4 7035 sd_allnodes = 1;
9c1cfda2
JH
7036 } else
7037 p = NULL;
7038
1da177e4 7039 sd = &per_cpu(node_domains, i);
7c16ec58 7040 SD_INIT(sd, NODE);
1d3504fc 7041 set_domain_attribute(sd, attr);
4bdbaad3 7042 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7043 sd->parent = p;
1a848870
SS
7044 if (p)
7045 p->child = sd;
9c1cfda2 7046 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7047#endif
7048
7049 p = sd;
7050 sd = &per_cpu(phys_domains, i);
7c16ec58 7051 SD_INIT(sd, CPU);
1d3504fc 7052 set_domain_attribute(sd, attr);
7c16ec58 7053 sd->span = *nodemask;
1da177e4 7054 sd->parent = p;
1a848870
SS
7055 if (p)
7056 p->child = sd;
7c16ec58 7057 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7058
1e9f28fa
SS
7059#ifdef CONFIG_SCHED_MC
7060 p = sd;
7061 sd = &per_cpu(core_domains, i);
7c16ec58 7062 SD_INIT(sd, MC);
1d3504fc 7063 set_domain_attribute(sd, attr);
1e9f28fa
SS
7064 sd->span = cpu_coregroup_map(i);
7065 cpus_and(sd->span, sd->span, *cpu_map);
7066 sd->parent = p;
1a848870 7067 p->child = sd;
7c16ec58 7068 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7069#endif
7070
1da177e4
LT
7071#ifdef CONFIG_SCHED_SMT
7072 p = sd;
7073 sd = &per_cpu(cpu_domains, i);
7c16ec58 7074 SD_INIT(sd, SIBLING);
1d3504fc 7075 set_domain_attribute(sd, attr);
d5a7430d 7076 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7077 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7078 sd->parent = p;
1a848870 7079 p->child = sd;
7c16ec58 7080 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7081#endif
7082 }
7083
7084#ifdef CONFIG_SCHED_SMT
7085 /* Set up CPU (sibling) groups */
9c1cfda2 7086 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7087 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7088 SCHED_CPUMASK_VAR(send_covered, allmasks);
7089
7090 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7091 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7092 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7093 continue;
7094
dd41f596 7095 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7096 &cpu_to_cpu_group,
7097 send_covered, tmpmask);
1da177e4
LT
7098 }
7099#endif
7100
1e9f28fa
SS
7101#ifdef CONFIG_SCHED_MC
7102 /* Set up multi-core groups */
7103 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7104 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7105 SCHED_CPUMASK_VAR(send_covered, allmasks);
7106
7107 *this_core_map = cpu_coregroup_map(i);
7108 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7109 if (i != first_cpu(*this_core_map))
1e9f28fa 7110 continue;
7c16ec58 7111
dd41f596 7112 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7113 &cpu_to_core_group,
7114 send_covered, tmpmask);
1e9f28fa
SS
7115 }
7116#endif
7117
1da177e4
LT
7118 /* Set up physical groups */
7119 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7120 SCHED_CPUMASK_VAR(nodemask, allmasks);
7121 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7122
7c16ec58
MT
7123 *nodemask = node_to_cpumask(i);
7124 cpus_and(*nodemask, *nodemask, *cpu_map);
7125 if (cpus_empty(*nodemask))
1da177e4
LT
7126 continue;
7127
7c16ec58
MT
7128 init_sched_build_groups(nodemask, cpu_map,
7129 &cpu_to_phys_group,
7130 send_covered, tmpmask);
1da177e4
LT
7131 }
7132
7133#ifdef CONFIG_NUMA
7134 /* Set up node groups */
7c16ec58
MT
7135 if (sd_allnodes) {
7136 SCHED_CPUMASK_VAR(send_covered, allmasks);
7137
7138 init_sched_build_groups(cpu_map, cpu_map,
7139 &cpu_to_allnodes_group,
7140 send_covered, tmpmask);
7141 }
9c1cfda2
JH
7142
7143 for (i = 0; i < MAX_NUMNODES; i++) {
7144 /* Set up node groups */
7145 struct sched_group *sg, *prev;
7c16ec58
MT
7146 SCHED_CPUMASK_VAR(nodemask, allmasks);
7147 SCHED_CPUMASK_VAR(domainspan, allmasks);
7148 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7149 int j;
7150
7c16ec58
MT
7151 *nodemask = node_to_cpumask(i);
7152 cpus_clear(*covered);
7153
7154 cpus_and(*nodemask, *nodemask, *cpu_map);
7155 if (cpus_empty(*nodemask)) {
d1b55138 7156 sched_group_nodes[i] = NULL;
9c1cfda2 7157 continue;
d1b55138 7158 }
9c1cfda2 7159
4bdbaad3 7160 sched_domain_node_span(i, domainspan);
7c16ec58 7161 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7162
15f0b676 7163 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7164 if (!sg) {
7165 printk(KERN_WARNING "Can not alloc domain group for "
7166 "node %d\n", i);
7167 goto error;
7168 }
9c1cfda2 7169 sched_group_nodes[i] = sg;
7c16ec58 7170 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7171 struct sched_domain *sd;
9761eea8 7172
9c1cfda2
JH
7173 sd = &per_cpu(node_domains, j);
7174 sd->groups = sg;
9c1cfda2 7175 }
5517d86b 7176 sg->__cpu_power = 0;
7c16ec58 7177 sg->cpumask = *nodemask;
51888ca2 7178 sg->next = sg;
7c16ec58 7179 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7180 prev = sg;
7181
7182 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7183 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7184 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7185 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7186
7c16ec58
MT
7187 cpus_complement(*notcovered, *covered);
7188 cpus_and(*tmpmask, *notcovered, *cpu_map);
7189 cpus_and(*tmpmask, *tmpmask, *domainspan);
7190 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7191 break;
7192
7c16ec58
MT
7193 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7194 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7195 continue;
7196
15f0b676
SV
7197 sg = kmalloc_node(sizeof(struct sched_group),
7198 GFP_KERNEL, i);
9c1cfda2
JH
7199 if (!sg) {
7200 printk(KERN_WARNING
7201 "Can not alloc domain group for node %d\n", j);
51888ca2 7202 goto error;
9c1cfda2 7203 }
5517d86b 7204 sg->__cpu_power = 0;
7c16ec58 7205 sg->cpumask = *tmpmask;
51888ca2 7206 sg->next = prev->next;
7c16ec58 7207 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7208 prev->next = sg;
7209 prev = sg;
7210 }
9c1cfda2 7211 }
1da177e4
LT
7212#endif
7213
7214 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7215#ifdef CONFIG_SCHED_SMT
1a20ff27 7216 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7217 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7218
89c4710e 7219 init_sched_groups_power(i, sd);
5c45bf27 7220 }
1da177e4 7221#endif
1e9f28fa 7222#ifdef CONFIG_SCHED_MC
5c45bf27 7223 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7224 struct sched_domain *sd = &per_cpu(core_domains, i);
7225
89c4710e 7226 init_sched_groups_power(i, sd);
5c45bf27
SS
7227 }
7228#endif
1e9f28fa 7229
5c45bf27 7230 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7231 struct sched_domain *sd = &per_cpu(phys_domains, i);
7232
89c4710e 7233 init_sched_groups_power(i, sd);
1da177e4
LT
7234 }
7235
9c1cfda2 7236#ifdef CONFIG_NUMA
08069033
SS
7237 for (i = 0; i < MAX_NUMNODES; i++)
7238 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7239
6711cab4
SS
7240 if (sd_allnodes) {
7241 struct sched_group *sg;
f712c0c7 7242
7c16ec58
MT
7243 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7244 tmpmask);
f712c0c7
SS
7245 init_numa_sched_groups_power(sg);
7246 }
9c1cfda2
JH
7247#endif
7248
1da177e4 7249 /* Attach the domains */
1a20ff27 7250 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7251 struct sched_domain *sd;
7252#ifdef CONFIG_SCHED_SMT
7253 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7254#elif defined(CONFIG_SCHED_MC)
7255 sd = &per_cpu(core_domains, i);
1da177e4
LT
7256#else
7257 sd = &per_cpu(phys_domains, i);
7258#endif
57d885fe 7259 cpu_attach_domain(sd, rd, i);
1da177e4 7260 }
51888ca2 7261
7c16ec58 7262 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7263 return 0;
7264
a616058b 7265#ifdef CONFIG_NUMA
51888ca2 7266error:
7c16ec58
MT
7267 free_sched_groups(cpu_map, tmpmask);
7268 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7269 return -ENOMEM;
a616058b 7270#endif
1da177e4 7271}
029190c5 7272
1d3504fc
HS
7273static int build_sched_domains(const cpumask_t *cpu_map)
7274{
7275 return __build_sched_domains(cpu_map, NULL);
7276}
7277
029190c5
PJ
7278static cpumask_t *doms_cur; /* current sched domains */
7279static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7280static struct sched_domain_attr *dattr_cur;
7281 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7282
7283/*
7284 * Special case: If a kmalloc of a doms_cur partition (array of
7285 * cpumask_t) fails, then fallback to a single sched domain,
7286 * as determined by the single cpumask_t fallback_doms.
7287 */
7288static cpumask_t fallback_doms;
7289
22e52b07
HC
7290void __attribute__((weak)) arch_update_cpu_topology(void)
7291{
7292}
7293
f18f982a
MK
7294/*
7295 * Free current domain masks.
7296 * Called after all cpus are attached to NULL domain.
7297 */
7298static void free_sched_domains(void)
7299{
7300 ndoms_cur = 0;
7301 if (doms_cur != &fallback_doms)
7302 kfree(doms_cur);
7303 doms_cur = &fallback_doms;
7304}
7305
1a20ff27 7306/*
41a2d6cf 7307 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7308 * For now this just excludes isolated cpus, but could be used to
7309 * exclude other special cases in the future.
1a20ff27 7310 */
51888ca2 7311static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7312{
7378547f
MM
7313 int err;
7314
22e52b07 7315 arch_update_cpu_topology();
029190c5
PJ
7316 ndoms_cur = 1;
7317 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7318 if (!doms_cur)
7319 doms_cur = &fallback_doms;
7320 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7321 dattr_cur = NULL;
7378547f 7322 err = build_sched_domains(doms_cur);
6382bc90 7323 register_sched_domain_sysctl();
7378547f
MM
7324
7325 return err;
1a20ff27
DG
7326}
7327
7c16ec58
MT
7328static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7329 cpumask_t *tmpmask)
1da177e4 7330{
7c16ec58 7331 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7332}
1da177e4 7333
1a20ff27
DG
7334/*
7335 * Detach sched domains from a group of cpus specified in cpu_map
7336 * These cpus will now be attached to the NULL domain
7337 */
858119e1 7338static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7339{
7c16ec58 7340 cpumask_t tmpmask;
1a20ff27
DG
7341 int i;
7342
6382bc90
MM
7343 unregister_sched_domain_sysctl();
7344
1a20ff27 7345 for_each_cpu_mask(i, *cpu_map)
57d885fe 7346 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7347 synchronize_sched();
7c16ec58 7348 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7349}
7350
1d3504fc
HS
7351/* handle null as "default" */
7352static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7353 struct sched_domain_attr *new, int idx_new)
7354{
7355 struct sched_domain_attr tmp;
7356
7357 /* fast path */
7358 if (!new && !cur)
7359 return 1;
7360
7361 tmp = SD_ATTR_INIT;
7362 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7363 new ? (new + idx_new) : &tmp,
7364 sizeof(struct sched_domain_attr));
7365}
7366
029190c5
PJ
7367/*
7368 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7369 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7370 * doms_new[] to the current sched domain partitioning, doms_cur[].
7371 * It destroys each deleted domain and builds each new domain.
7372 *
7373 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7374 * The masks don't intersect (don't overlap.) We should setup one
7375 * sched domain for each mask. CPUs not in any of the cpumasks will
7376 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7377 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7378 * it as it is.
7379 *
41a2d6cf
IM
7380 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7381 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7382 * failed the kmalloc call, then it can pass in doms_new == NULL,
7383 * and partition_sched_domains() will fallback to the single partition
7384 * 'fallback_doms'.
7385 *
7386 * Call with hotplug lock held
7387 */
1d3504fc
HS
7388void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7389 struct sched_domain_attr *dattr_new)
029190c5
PJ
7390{
7391 int i, j;
7392
712555ee 7393 mutex_lock(&sched_domains_mutex);
a1835615 7394
7378547f
MM
7395 /* always unregister in case we don't destroy any domains */
7396 unregister_sched_domain_sysctl();
7397
029190c5
PJ
7398 if (doms_new == NULL) {
7399 ndoms_new = 1;
7400 doms_new = &fallback_doms;
7401 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7402 dattr_new = NULL;
029190c5
PJ
7403 }
7404
7405 /* Destroy deleted domains */
7406 for (i = 0; i < ndoms_cur; i++) {
7407 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7408 if (cpus_equal(doms_cur[i], doms_new[j])
7409 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7410 goto match1;
7411 }
7412 /* no match - a current sched domain not in new doms_new[] */
7413 detach_destroy_domains(doms_cur + i);
7414match1:
7415 ;
7416 }
7417
7418 /* Build new domains */
7419 for (i = 0; i < ndoms_new; i++) {
7420 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7421 if (cpus_equal(doms_new[i], doms_cur[j])
7422 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7423 goto match2;
7424 }
7425 /* no match - add a new doms_new */
1d3504fc
HS
7426 __build_sched_domains(doms_new + i,
7427 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7428match2:
7429 ;
7430 }
7431
7432 /* Remember the new sched domains */
7433 if (doms_cur != &fallback_doms)
7434 kfree(doms_cur);
1d3504fc 7435 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7436 doms_cur = doms_new;
1d3504fc 7437 dattr_cur = dattr_new;
029190c5 7438 ndoms_cur = ndoms_new;
7378547f
MM
7439
7440 register_sched_domain_sysctl();
a1835615 7441
712555ee 7442 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7443}
7444
5c45bf27 7445#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7446int arch_reinit_sched_domains(void)
5c45bf27
SS
7447{
7448 int err;
7449
95402b38 7450 get_online_cpus();
712555ee 7451 mutex_lock(&sched_domains_mutex);
5c45bf27 7452 detach_destroy_domains(&cpu_online_map);
f18f982a 7453 free_sched_domains();
5c45bf27 7454 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7455 mutex_unlock(&sched_domains_mutex);
95402b38 7456 put_online_cpus();
5c45bf27
SS
7457
7458 return err;
7459}
7460
7461static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7462{
7463 int ret;
7464
7465 if (buf[0] != '0' && buf[0] != '1')
7466 return -EINVAL;
7467
7468 if (smt)
7469 sched_smt_power_savings = (buf[0] == '1');
7470 else
7471 sched_mc_power_savings = (buf[0] == '1');
7472
7473 ret = arch_reinit_sched_domains();
7474
7475 return ret ? ret : count;
7476}
7477
5c45bf27
SS
7478#ifdef CONFIG_SCHED_MC
7479static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7480{
7481 return sprintf(page, "%u\n", sched_mc_power_savings);
7482}
48f24c4d
IM
7483static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7484 const char *buf, size_t count)
5c45bf27
SS
7485{
7486 return sched_power_savings_store(buf, count, 0);
7487}
6707de00
AB
7488static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7489 sched_mc_power_savings_store);
5c45bf27
SS
7490#endif
7491
7492#ifdef CONFIG_SCHED_SMT
7493static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7494{
7495 return sprintf(page, "%u\n", sched_smt_power_savings);
7496}
48f24c4d
IM
7497static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7498 const char *buf, size_t count)
5c45bf27
SS
7499{
7500 return sched_power_savings_store(buf, count, 1);
7501}
6707de00
AB
7502static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7503 sched_smt_power_savings_store);
7504#endif
7505
7506int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7507{
7508 int err = 0;
7509
7510#ifdef CONFIG_SCHED_SMT
7511 if (smt_capable())
7512 err = sysfs_create_file(&cls->kset.kobj,
7513 &attr_sched_smt_power_savings.attr);
7514#endif
7515#ifdef CONFIG_SCHED_MC
7516 if (!err && mc_capable())
7517 err = sysfs_create_file(&cls->kset.kobj,
7518 &attr_sched_mc_power_savings.attr);
7519#endif
7520 return err;
7521}
5c45bf27
SS
7522#endif
7523
1da177e4 7524/*
41a2d6cf 7525 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7526 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7527 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7528 * which will prevent rebalancing while the sched domains are recalculated.
7529 */
7530static int update_sched_domains(struct notifier_block *nfb,
7531 unsigned long action, void *hcpu)
7532{
1da177e4
LT
7533 switch (action) {
7534 case CPU_UP_PREPARE:
8bb78442 7535 case CPU_UP_PREPARE_FROZEN:
1da177e4 7536 case CPU_DOWN_PREPARE:
8bb78442 7537 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7538 detach_destroy_domains(&cpu_online_map);
f18f982a 7539 free_sched_domains();
1da177e4
LT
7540 return NOTIFY_OK;
7541
7542 case CPU_UP_CANCELED:
8bb78442 7543 case CPU_UP_CANCELED_FROZEN:
1da177e4 7544 case CPU_DOWN_FAILED:
8bb78442 7545 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7546 case CPU_ONLINE:
8bb78442 7547 case CPU_ONLINE_FROZEN:
1da177e4 7548 case CPU_DEAD:
8bb78442 7549 case CPU_DEAD_FROZEN:
1da177e4
LT
7550 /*
7551 * Fall through and re-initialise the domains.
7552 */
7553 break;
7554 default:
7555 return NOTIFY_DONE;
7556 }
7557
f18f982a
MK
7558#ifndef CONFIG_CPUSETS
7559 /*
7560 * Create default domain partitioning if cpusets are disabled.
7561 * Otherwise we let cpusets rebuild the domains based on the
7562 * current setup.
7563 */
7564
1da177e4 7565 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7566 arch_init_sched_domains(&cpu_online_map);
f18f982a 7567#endif
1da177e4
LT
7568
7569 return NOTIFY_OK;
7570}
1da177e4
LT
7571
7572void __init sched_init_smp(void)
7573{
5c1e1767
NP
7574 cpumask_t non_isolated_cpus;
7575
434d53b0
MT
7576#if defined(CONFIG_NUMA)
7577 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7578 GFP_KERNEL);
7579 BUG_ON(sched_group_nodes_bycpu == NULL);
7580#endif
95402b38 7581 get_online_cpus();
712555ee 7582 mutex_lock(&sched_domains_mutex);
1a20ff27 7583 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7584 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7585 if (cpus_empty(non_isolated_cpus))
7586 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7587 mutex_unlock(&sched_domains_mutex);
95402b38 7588 put_online_cpus();
1da177e4
LT
7589 /* XXX: Theoretical race here - CPU may be hotplugged now */
7590 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7591 init_hrtick();
5c1e1767
NP
7592
7593 /* Move init over to a non-isolated CPU */
7c16ec58 7594 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7595 BUG();
19978ca6 7596 sched_init_granularity();
1da177e4
LT
7597}
7598#else
7599void __init sched_init_smp(void)
7600{
19978ca6 7601 sched_init_granularity();
1da177e4
LT
7602}
7603#endif /* CONFIG_SMP */
7604
7605int in_sched_functions(unsigned long addr)
7606{
1da177e4
LT
7607 return in_lock_functions(addr) ||
7608 (addr >= (unsigned long)__sched_text_start
7609 && addr < (unsigned long)__sched_text_end);
7610}
7611
a9957449 7612static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7613{
7614 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7615 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7616#ifdef CONFIG_FAIR_GROUP_SCHED
7617 cfs_rq->rq = rq;
7618#endif
67e9fb2a 7619 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7620}
7621
fa85ae24
PZ
7622static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7623{
7624 struct rt_prio_array *array;
7625 int i;
7626
7627 array = &rt_rq->active;
7628 for (i = 0; i < MAX_RT_PRIO; i++) {
7629 INIT_LIST_HEAD(array->queue + i);
7630 __clear_bit(i, array->bitmap);
7631 }
7632 /* delimiter for bitsearch: */
7633 __set_bit(MAX_RT_PRIO, array->bitmap);
7634
052f1dc7 7635#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7636 rt_rq->highest_prio = MAX_RT_PRIO;
7637#endif
fa85ae24
PZ
7638#ifdef CONFIG_SMP
7639 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7640 rt_rq->overloaded = 0;
7641#endif
7642
7643 rt_rq->rt_time = 0;
7644 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7645 rt_rq->rt_runtime = 0;
7646 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7647
052f1dc7 7648#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7649 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7650 rt_rq->rq = rq;
7651#endif
fa85ae24
PZ
7652}
7653
6f505b16 7654#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7655static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7656 struct sched_entity *se, int cpu, int add,
7657 struct sched_entity *parent)
6f505b16 7658{
ec7dc8ac 7659 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7660 tg->cfs_rq[cpu] = cfs_rq;
7661 init_cfs_rq(cfs_rq, rq);
7662 cfs_rq->tg = tg;
7663 if (add)
7664 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7665
7666 tg->se[cpu] = se;
354d60c2
DG
7667 /* se could be NULL for init_task_group */
7668 if (!se)
7669 return;
7670
ec7dc8ac
DG
7671 if (!parent)
7672 se->cfs_rq = &rq->cfs;
7673 else
7674 se->cfs_rq = parent->my_q;
7675
6f505b16
PZ
7676 se->my_q = cfs_rq;
7677 se->load.weight = tg->shares;
e05510d0 7678 se->load.inv_weight = 0;
ec7dc8ac 7679 se->parent = parent;
6f505b16 7680}
052f1dc7 7681#endif
6f505b16 7682
052f1dc7 7683#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7684static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7685 struct sched_rt_entity *rt_se, int cpu, int add,
7686 struct sched_rt_entity *parent)
6f505b16 7687{
ec7dc8ac
DG
7688 struct rq *rq = cpu_rq(cpu);
7689
6f505b16
PZ
7690 tg->rt_rq[cpu] = rt_rq;
7691 init_rt_rq(rt_rq, rq);
7692 rt_rq->tg = tg;
7693 rt_rq->rt_se = rt_se;
ac086bc2 7694 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7695 if (add)
7696 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7697
7698 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7699 if (!rt_se)
7700 return;
7701
ec7dc8ac
DG
7702 if (!parent)
7703 rt_se->rt_rq = &rq->rt;
7704 else
7705 rt_se->rt_rq = parent->my_q;
7706
6f505b16 7707 rt_se->my_q = rt_rq;
ec7dc8ac 7708 rt_se->parent = parent;
6f505b16
PZ
7709 INIT_LIST_HEAD(&rt_se->run_list);
7710}
7711#endif
7712
1da177e4
LT
7713void __init sched_init(void)
7714{
dd41f596 7715 int i, j;
434d53b0
MT
7716 unsigned long alloc_size = 0, ptr;
7717
7718#ifdef CONFIG_FAIR_GROUP_SCHED
7719 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7720#endif
7721#ifdef CONFIG_RT_GROUP_SCHED
7722 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7723#endif
7724#ifdef CONFIG_USER_SCHED
7725 alloc_size *= 2;
434d53b0
MT
7726#endif
7727 /*
7728 * As sched_init() is called before page_alloc is setup,
7729 * we use alloc_bootmem().
7730 */
7731 if (alloc_size) {
5a9d3225 7732 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7733
7734#ifdef CONFIG_FAIR_GROUP_SCHED
7735 init_task_group.se = (struct sched_entity **)ptr;
7736 ptr += nr_cpu_ids * sizeof(void **);
7737
7738 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7739 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7740
7741#ifdef CONFIG_USER_SCHED
7742 root_task_group.se = (struct sched_entity **)ptr;
7743 ptr += nr_cpu_ids * sizeof(void **);
7744
7745 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7746 ptr += nr_cpu_ids * sizeof(void **);
7747#endif
434d53b0
MT
7748#endif
7749#ifdef CONFIG_RT_GROUP_SCHED
7750 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7751 ptr += nr_cpu_ids * sizeof(void **);
7752
7753 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7754 ptr += nr_cpu_ids * sizeof(void **);
7755
7756#ifdef CONFIG_USER_SCHED
7757 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7758 ptr += nr_cpu_ids * sizeof(void **);
7759
7760 root_task_group.rt_rq = (struct rt_rq **)ptr;
7761 ptr += nr_cpu_ids * sizeof(void **);
7762#endif
434d53b0
MT
7763#endif
7764 }
dd41f596 7765
57d885fe
GH
7766#ifdef CONFIG_SMP
7767 init_defrootdomain();
7768#endif
7769
d0b27fa7
PZ
7770 init_rt_bandwidth(&def_rt_bandwidth,
7771 global_rt_period(), global_rt_runtime());
7772
7773#ifdef CONFIG_RT_GROUP_SCHED
7774 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7775 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7776#ifdef CONFIG_USER_SCHED
7777 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7778 global_rt_period(), RUNTIME_INF);
7779#endif
d0b27fa7
PZ
7780#endif
7781
052f1dc7 7782#ifdef CONFIG_GROUP_SCHED
6f505b16 7783 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7784 INIT_LIST_HEAD(&init_task_group.children);
7785
7786#ifdef CONFIG_USER_SCHED
7787 INIT_LIST_HEAD(&root_task_group.children);
7788 init_task_group.parent = &root_task_group;
7789 list_add(&init_task_group.siblings, &root_task_group.children);
7790#endif
6f505b16
PZ
7791#endif
7792
0a945022 7793 for_each_possible_cpu(i) {
70b97a7f 7794 struct rq *rq;
1da177e4
LT
7795
7796 rq = cpu_rq(i);
7797 spin_lock_init(&rq->lock);
fcb99371 7798 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7799 rq->nr_running = 0;
dd41f596 7800 init_cfs_rq(&rq->cfs, rq);
6f505b16 7801 init_rt_rq(&rq->rt, rq);
dd41f596 7802#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7803 init_task_group.shares = init_task_group_load;
6f505b16 7804 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7805#ifdef CONFIG_CGROUP_SCHED
7806 /*
7807 * How much cpu bandwidth does init_task_group get?
7808 *
7809 * In case of task-groups formed thr' the cgroup filesystem, it
7810 * gets 100% of the cpu resources in the system. This overall
7811 * system cpu resource is divided among the tasks of
7812 * init_task_group and its child task-groups in a fair manner,
7813 * based on each entity's (task or task-group's) weight
7814 * (se->load.weight).
7815 *
7816 * In other words, if init_task_group has 10 tasks of weight
7817 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7818 * then A0's share of the cpu resource is:
7819 *
7820 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7821 *
7822 * We achieve this by letting init_task_group's tasks sit
7823 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7824 */
ec7dc8ac 7825 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 7826#elif defined CONFIG_USER_SCHED
eff766a6
PZ
7827 root_task_group.shares = NICE_0_LOAD;
7828 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
7829 /*
7830 * In case of task-groups formed thr' the user id of tasks,
7831 * init_task_group represents tasks belonging to root user.
7832 * Hence it forms a sibling of all subsequent groups formed.
7833 * In this case, init_task_group gets only a fraction of overall
7834 * system cpu resource, based on the weight assigned to root
7835 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7836 * by letting tasks of init_task_group sit in a separate cfs_rq
7837 * (init_cfs_rq) and having one entity represent this group of
7838 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7839 */
ec7dc8ac 7840 init_tg_cfs_entry(&init_task_group,
6f505b16 7841 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
7842 &per_cpu(init_sched_entity, i), i, 1,
7843 root_task_group.se[i]);
6f505b16 7844
052f1dc7 7845#endif
354d60c2
DG
7846#endif /* CONFIG_FAIR_GROUP_SCHED */
7847
7848 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7849#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7850 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7851#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7852 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7853#elif defined CONFIG_USER_SCHED
eff766a6 7854 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 7855 init_tg_rt_entry(&init_task_group,
6f505b16 7856 &per_cpu(init_rt_rq, i),
eff766a6
PZ
7857 &per_cpu(init_sched_rt_entity, i), i, 1,
7858 root_task_group.rt_se[i]);
354d60c2 7859#endif
dd41f596 7860#endif
1da177e4 7861
dd41f596
IM
7862 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7863 rq->cpu_load[j] = 0;
1da177e4 7864#ifdef CONFIG_SMP
41c7ce9a 7865 rq->sd = NULL;
57d885fe 7866 rq->rd = NULL;
1da177e4 7867 rq->active_balance = 0;
dd41f596 7868 rq->next_balance = jiffies;
1da177e4 7869 rq->push_cpu = 0;
0a2966b4 7870 rq->cpu = i;
1da177e4
LT
7871 rq->migration_thread = NULL;
7872 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7873 rq_attach_root(rq, &def_root_domain);
1da177e4 7874#endif
8f4d37ec 7875 init_rq_hrtick(rq);
1da177e4 7876 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7877 }
7878
2dd73a4f 7879 set_load_weight(&init_task);
b50f60ce 7880
e107be36
AK
7881#ifdef CONFIG_PREEMPT_NOTIFIERS
7882 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7883#endif
7884
c9819f45
CL
7885#ifdef CONFIG_SMP
7886 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7887#endif
7888
b50f60ce
HC
7889#ifdef CONFIG_RT_MUTEXES
7890 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7891#endif
7892
1da177e4
LT
7893 /*
7894 * The boot idle thread does lazy MMU switching as well:
7895 */
7896 atomic_inc(&init_mm.mm_count);
7897 enter_lazy_tlb(&init_mm, current);
7898
7899 /*
7900 * Make us the idle thread. Technically, schedule() should not be
7901 * called from this thread, however somewhere below it might be,
7902 * but because we are the idle thread, we just pick up running again
7903 * when this runqueue becomes "idle".
7904 */
7905 init_idle(current, smp_processor_id());
dd41f596
IM
7906 /*
7907 * During early bootup we pretend to be a normal task:
7908 */
7909 current->sched_class = &fair_sched_class;
6892b75e
IM
7910
7911 scheduler_running = 1;
1da177e4
LT
7912}
7913
7914#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7915void __might_sleep(char *file, int line)
7916{
48f24c4d 7917#ifdef in_atomic
1da177e4
LT
7918 static unsigned long prev_jiffy; /* ratelimiting */
7919
7920 if ((in_atomic() || irqs_disabled()) &&
7921 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7922 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7923 return;
7924 prev_jiffy = jiffies;
91368d73 7925 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7926 " context at %s:%d\n", file, line);
7927 printk("in_atomic():%d, irqs_disabled():%d\n",
7928 in_atomic(), irqs_disabled());
a4c410f0 7929 debug_show_held_locks(current);
3117df04
IM
7930 if (irqs_disabled())
7931 print_irqtrace_events(current);
1da177e4
LT
7932 dump_stack();
7933 }
7934#endif
7935}
7936EXPORT_SYMBOL(__might_sleep);
7937#endif
7938
7939#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7940static void normalize_task(struct rq *rq, struct task_struct *p)
7941{
7942 int on_rq;
3e51f33f 7943
3a5e4dc1
AK
7944 update_rq_clock(rq);
7945 on_rq = p->se.on_rq;
7946 if (on_rq)
7947 deactivate_task(rq, p, 0);
7948 __setscheduler(rq, p, SCHED_NORMAL, 0);
7949 if (on_rq) {
7950 activate_task(rq, p, 0);
7951 resched_task(rq->curr);
7952 }
7953}
7954
1da177e4
LT
7955void normalize_rt_tasks(void)
7956{
a0f98a1c 7957 struct task_struct *g, *p;
1da177e4 7958 unsigned long flags;
70b97a7f 7959 struct rq *rq;
1da177e4 7960
4cf5d77a 7961 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7962 do_each_thread(g, p) {
178be793
IM
7963 /*
7964 * Only normalize user tasks:
7965 */
7966 if (!p->mm)
7967 continue;
7968
6cfb0d5d 7969 p->se.exec_start = 0;
6cfb0d5d 7970#ifdef CONFIG_SCHEDSTATS
dd41f596 7971 p->se.wait_start = 0;
dd41f596 7972 p->se.sleep_start = 0;
dd41f596 7973 p->se.block_start = 0;
6cfb0d5d 7974#endif
dd41f596
IM
7975
7976 if (!rt_task(p)) {
7977 /*
7978 * Renice negative nice level userspace
7979 * tasks back to 0:
7980 */
7981 if (TASK_NICE(p) < 0 && p->mm)
7982 set_user_nice(p, 0);
1da177e4 7983 continue;
dd41f596 7984 }
1da177e4 7985
4cf5d77a 7986 spin_lock(&p->pi_lock);
b29739f9 7987 rq = __task_rq_lock(p);
1da177e4 7988
178be793 7989 normalize_task(rq, p);
3a5e4dc1 7990
b29739f9 7991 __task_rq_unlock(rq);
4cf5d77a 7992 spin_unlock(&p->pi_lock);
a0f98a1c
IM
7993 } while_each_thread(g, p);
7994
4cf5d77a 7995 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7996}
7997
7998#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7999
8000#ifdef CONFIG_IA64
8001/*
8002 * These functions are only useful for the IA64 MCA handling.
8003 *
8004 * They can only be called when the whole system has been
8005 * stopped - every CPU needs to be quiescent, and no scheduling
8006 * activity can take place. Using them for anything else would
8007 * be a serious bug, and as a result, they aren't even visible
8008 * under any other configuration.
8009 */
8010
8011/**
8012 * curr_task - return the current task for a given cpu.
8013 * @cpu: the processor in question.
8014 *
8015 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8016 */
36c8b586 8017struct task_struct *curr_task(int cpu)
1df5c10a
LT
8018{
8019 return cpu_curr(cpu);
8020}
8021
8022/**
8023 * set_curr_task - set the current task for a given cpu.
8024 * @cpu: the processor in question.
8025 * @p: the task pointer to set.
8026 *
8027 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8028 * are serviced on a separate stack. It allows the architecture to switch the
8029 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8030 * must be called with all CPU's synchronized, and interrupts disabled, the
8031 * and caller must save the original value of the current task (see
8032 * curr_task() above) and restore that value before reenabling interrupts and
8033 * re-starting the system.
8034 *
8035 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8036 */
36c8b586 8037void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8038{
8039 cpu_curr(cpu) = p;
8040}
8041
8042#endif
29f59db3 8043
bccbe08a
PZ
8044#ifdef CONFIG_FAIR_GROUP_SCHED
8045static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8046{
8047 int i;
8048
8049 for_each_possible_cpu(i) {
8050 if (tg->cfs_rq)
8051 kfree(tg->cfs_rq[i]);
8052 if (tg->se)
8053 kfree(tg->se[i]);
6f505b16
PZ
8054 }
8055
8056 kfree(tg->cfs_rq);
8057 kfree(tg->se);
6f505b16
PZ
8058}
8059
ec7dc8ac
DG
8060static
8061int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8062{
29f59db3 8063 struct cfs_rq *cfs_rq;
ec7dc8ac 8064 struct sched_entity *se, *parent_se;
9b5b7751 8065 struct rq *rq;
29f59db3
SV
8066 int i;
8067
434d53b0 8068 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8069 if (!tg->cfs_rq)
8070 goto err;
434d53b0 8071 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8072 if (!tg->se)
8073 goto err;
052f1dc7
PZ
8074
8075 tg->shares = NICE_0_LOAD;
29f59db3
SV
8076
8077 for_each_possible_cpu(i) {
9b5b7751 8078 rq = cpu_rq(i);
29f59db3 8079
6f505b16
PZ
8080 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8081 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8082 if (!cfs_rq)
8083 goto err;
8084
6f505b16
PZ
8085 se = kmalloc_node(sizeof(struct sched_entity),
8086 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8087 if (!se)
8088 goto err;
8089
ec7dc8ac
DG
8090 parent_se = parent ? parent->se[i] : NULL;
8091 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8092 }
8093
8094 return 1;
8095
8096 err:
8097 return 0;
8098}
8099
8100static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8101{
8102 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8103 &cpu_rq(cpu)->leaf_cfs_rq_list);
8104}
8105
8106static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8107{
8108 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8109}
8110#else
8111static inline void free_fair_sched_group(struct task_group *tg)
8112{
8113}
8114
ec7dc8ac
DG
8115static inline
8116int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8117{
8118 return 1;
8119}
8120
8121static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8122{
8123}
8124
8125static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8126{
8127}
052f1dc7
PZ
8128#endif
8129
8130#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8131static void free_rt_sched_group(struct task_group *tg)
8132{
8133 int i;
8134
d0b27fa7
PZ
8135 destroy_rt_bandwidth(&tg->rt_bandwidth);
8136
bccbe08a
PZ
8137 for_each_possible_cpu(i) {
8138 if (tg->rt_rq)
8139 kfree(tg->rt_rq[i]);
8140 if (tg->rt_se)
8141 kfree(tg->rt_se[i]);
8142 }
8143
8144 kfree(tg->rt_rq);
8145 kfree(tg->rt_se);
8146}
8147
ec7dc8ac
DG
8148static
8149int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8150{
8151 struct rt_rq *rt_rq;
ec7dc8ac 8152 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8153 struct rq *rq;
8154 int i;
8155
434d53b0 8156 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8157 if (!tg->rt_rq)
8158 goto err;
434d53b0 8159 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8160 if (!tg->rt_se)
8161 goto err;
8162
d0b27fa7
PZ
8163 init_rt_bandwidth(&tg->rt_bandwidth,
8164 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8165
8166 for_each_possible_cpu(i) {
8167 rq = cpu_rq(i);
8168
6f505b16
PZ
8169 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8170 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8171 if (!rt_rq)
8172 goto err;
29f59db3 8173
6f505b16
PZ
8174 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8175 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8176 if (!rt_se)
8177 goto err;
29f59db3 8178
ec7dc8ac
DG
8179 parent_se = parent ? parent->rt_se[i] : NULL;
8180 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8181 }
8182
bccbe08a
PZ
8183 return 1;
8184
8185 err:
8186 return 0;
8187}
8188
8189static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8190{
8191 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8192 &cpu_rq(cpu)->leaf_rt_rq_list);
8193}
8194
8195static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8196{
8197 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8198}
8199#else
8200static inline void free_rt_sched_group(struct task_group *tg)
8201{
8202}
8203
ec7dc8ac
DG
8204static inline
8205int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8206{
8207 return 1;
8208}
8209
8210static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8211{
8212}
8213
8214static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8215{
8216}
8217#endif
8218
d0b27fa7 8219#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8220static void free_sched_group(struct task_group *tg)
8221{
8222 free_fair_sched_group(tg);
8223 free_rt_sched_group(tg);
8224 kfree(tg);
8225}
8226
8227/* allocate runqueue etc for a new task group */
ec7dc8ac 8228struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8229{
8230 struct task_group *tg;
8231 unsigned long flags;
8232 int i;
8233
8234 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8235 if (!tg)
8236 return ERR_PTR(-ENOMEM);
8237
ec7dc8ac 8238 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8239 goto err;
8240
ec7dc8ac 8241 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8242 goto err;
8243
8ed36996 8244 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8245 for_each_possible_cpu(i) {
bccbe08a
PZ
8246 register_fair_sched_group(tg, i);
8247 register_rt_sched_group(tg, i);
9b5b7751 8248 }
6f505b16 8249 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8250
8251 WARN_ON(!parent); /* root should already exist */
8252
8253 tg->parent = parent;
8254 list_add_rcu(&tg->siblings, &parent->children);
8255 INIT_LIST_HEAD(&tg->children);
8ed36996 8256 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8257
9b5b7751 8258 return tg;
29f59db3
SV
8259
8260err:
6f505b16 8261 free_sched_group(tg);
29f59db3
SV
8262 return ERR_PTR(-ENOMEM);
8263}
8264
9b5b7751 8265/* rcu callback to free various structures associated with a task group */
6f505b16 8266static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8267{
29f59db3 8268 /* now it should be safe to free those cfs_rqs */
6f505b16 8269 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8270}
8271
9b5b7751 8272/* Destroy runqueue etc associated with a task group */
4cf86d77 8273void sched_destroy_group(struct task_group *tg)
29f59db3 8274{
8ed36996 8275 unsigned long flags;
9b5b7751 8276 int i;
29f59db3 8277
8ed36996 8278 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8279 for_each_possible_cpu(i) {
bccbe08a
PZ
8280 unregister_fair_sched_group(tg, i);
8281 unregister_rt_sched_group(tg, i);
9b5b7751 8282 }
6f505b16 8283 list_del_rcu(&tg->list);
f473aa5e 8284 list_del_rcu(&tg->siblings);
8ed36996 8285 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8286
9b5b7751 8287 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8288 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8289}
8290
9b5b7751 8291/* change task's runqueue when it moves between groups.
3a252015
IM
8292 * The caller of this function should have put the task in its new group
8293 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8294 * reflect its new group.
9b5b7751
SV
8295 */
8296void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8297{
8298 int on_rq, running;
8299 unsigned long flags;
8300 struct rq *rq;
8301
8302 rq = task_rq_lock(tsk, &flags);
8303
29f59db3
SV
8304 update_rq_clock(rq);
8305
051a1d1a 8306 running = task_current(rq, tsk);
29f59db3
SV
8307 on_rq = tsk->se.on_rq;
8308
0e1f3483 8309 if (on_rq)
29f59db3 8310 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8311 if (unlikely(running))
8312 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8313
6f505b16 8314 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8315
810b3817
PZ
8316#ifdef CONFIG_FAIR_GROUP_SCHED
8317 if (tsk->sched_class->moved_group)
8318 tsk->sched_class->moved_group(tsk);
8319#endif
8320
0e1f3483
HS
8321 if (unlikely(running))
8322 tsk->sched_class->set_curr_task(rq);
8323 if (on_rq)
7074badb 8324 enqueue_task(rq, tsk, 0);
29f59db3 8325
29f59db3
SV
8326 task_rq_unlock(rq, &flags);
8327}
d0b27fa7 8328#endif
29f59db3 8329
052f1dc7 8330#ifdef CONFIG_FAIR_GROUP_SCHED
6363ca57 8331static void set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8332{
8333 struct cfs_rq *cfs_rq = se->cfs_rq;
6363ca57 8334 struct rq *rq = cfs_rq->rq;
29f59db3
SV
8335 int on_rq;
8336
6363ca57
IM
8337 spin_lock_irq(&rq->lock);
8338
29f59db3 8339 on_rq = se->on_rq;
62fb1851 8340 if (on_rq)
29f59db3
SV
8341 dequeue_entity(cfs_rq, se, 0);
8342
8343 se->load.weight = shares;
e05510d0 8344 se->load.inv_weight = 0;
29f59db3 8345
62fb1851 8346 if (on_rq)
29f59db3 8347 enqueue_entity(cfs_rq, se, 0);
62fb1851 8348
6363ca57 8349 spin_unlock_irq(&rq->lock);
29f59db3
SV
8350}
8351
8ed36996
PZ
8352static DEFINE_MUTEX(shares_mutex);
8353
4cf86d77 8354int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8355{
8356 int i;
8ed36996 8357 unsigned long flags;
c61935fd 8358
ec7dc8ac
DG
8359 /*
8360 * We can't change the weight of the root cgroup.
8361 */
8362 if (!tg->se[0])
8363 return -EINVAL;
8364
18d95a28
PZ
8365 if (shares < MIN_SHARES)
8366 shares = MIN_SHARES;
cb4ad1ff
MX
8367 else if (shares > MAX_SHARES)
8368 shares = MAX_SHARES;
62fb1851 8369
8ed36996 8370 mutex_lock(&shares_mutex);
9b5b7751 8371 if (tg->shares == shares)
5cb350ba 8372 goto done;
29f59db3 8373
8ed36996 8374 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8375 for_each_possible_cpu(i)
8376 unregister_fair_sched_group(tg, i);
f473aa5e 8377 list_del_rcu(&tg->siblings);
8ed36996 8378 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8379
8380 /* wait for any ongoing reference to this group to finish */
8381 synchronize_sched();
8382
8383 /*
8384 * Now we are free to modify the group's share on each cpu
8385 * w/o tripping rebalance_share or load_balance_fair.
8386 */
9b5b7751 8387 tg->shares = shares;
6363ca57 8388 for_each_possible_cpu(i)
cb4ad1ff 8389 set_se_shares(tg->se[i], shares);
29f59db3 8390
6b2d7700
SV
8391 /*
8392 * Enable load balance activity on this group, by inserting it back on
8393 * each cpu's rq->leaf_cfs_rq_list.
8394 */
8ed36996 8395 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8396 for_each_possible_cpu(i)
8397 register_fair_sched_group(tg, i);
f473aa5e 8398 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8399 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8400done:
8ed36996 8401 mutex_unlock(&shares_mutex);
9b5b7751 8402 return 0;
29f59db3
SV
8403}
8404
5cb350ba
DG
8405unsigned long sched_group_shares(struct task_group *tg)
8406{
8407 return tg->shares;
8408}
052f1dc7 8409#endif
5cb350ba 8410
052f1dc7 8411#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8412/*
9f0c1e56 8413 * Ensure that the real time constraints are schedulable.
6f505b16 8414 */
9f0c1e56
PZ
8415static DEFINE_MUTEX(rt_constraints_mutex);
8416
8417static unsigned long to_ratio(u64 period, u64 runtime)
8418{
8419 if (runtime == RUNTIME_INF)
8420 return 1ULL << 16;
8421
6f6d6a1a 8422 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8423}
8424
b40b2e8e
PZ
8425#ifdef CONFIG_CGROUP_SCHED
8426static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8427{
49307fd6 8428 struct task_group *tgi, *parent = tg ? tg->parent : NULL;
b40b2e8e
PZ
8429 unsigned long total = 0;
8430
8431 if (!parent) {
8432 if (global_rt_period() < period)
8433 return 0;
8434
8435 return to_ratio(period, runtime) <
8436 to_ratio(global_rt_period(), global_rt_runtime());
8437 }
8438
8439 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8440 return 0;
8441
8442 rcu_read_lock();
8443 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8444 if (tgi == tg)
8445 continue;
8446
8447 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8448 tgi->rt_bandwidth.rt_runtime);
8449 }
8450 rcu_read_unlock();
8451
8452 return total + to_ratio(period, runtime) <
8453 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8454 parent->rt_bandwidth.rt_runtime);
8455}
8456#elif defined CONFIG_USER_SCHED
9f0c1e56 8457static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8458{
8459 struct task_group *tgi;
8460 unsigned long total = 0;
9f0c1e56 8461 unsigned long global_ratio =
d0b27fa7 8462 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8463
8464 rcu_read_lock();
9f0c1e56
PZ
8465 list_for_each_entry_rcu(tgi, &task_groups, list) {
8466 if (tgi == tg)
8467 continue;
6f505b16 8468
d0b27fa7
PZ
8469 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8470 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8471 }
8472 rcu_read_unlock();
6f505b16 8473
9f0c1e56 8474 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8475}
b40b2e8e 8476#endif
6f505b16 8477
521f1a24
DG
8478/* Must be called with tasklist_lock held */
8479static inline int tg_has_rt_tasks(struct task_group *tg)
8480{
8481 struct task_struct *g, *p;
8482 do_each_thread(g, p) {
8483 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8484 return 1;
8485 } while_each_thread(g, p);
8486 return 0;
8487}
8488
d0b27fa7
PZ
8489static int tg_set_bandwidth(struct task_group *tg,
8490 u64 rt_period, u64 rt_runtime)
6f505b16 8491{
ac086bc2 8492 int i, err = 0;
9f0c1e56 8493
9f0c1e56 8494 mutex_lock(&rt_constraints_mutex);
521f1a24 8495 read_lock(&tasklist_lock);
ac086bc2 8496 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8497 err = -EBUSY;
8498 goto unlock;
8499 }
9f0c1e56
PZ
8500 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8501 err = -EINVAL;
8502 goto unlock;
8503 }
ac086bc2
PZ
8504
8505 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8506 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8507 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8508
8509 for_each_possible_cpu(i) {
8510 struct rt_rq *rt_rq = tg->rt_rq[i];
8511
8512 spin_lock(&rt_rq->rt_runtime_lock);
8513 rt_rq->rt_runtime = rt_runtime;
8514 spin_unlock(&rt_rq->rt_runtime_lock);
8515 }
8516 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8517 unlock:
521f1a24 8518 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8519 mutex_unlock(&rt_constraints_mutex);
8520
8521 return err;
6f505b16
PZ
8522}
8523
d0b27fa7
PZ
8524int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8525{
8526 u64 rt_runtime, rt_period;
8527
8528 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8529 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8530 if (rt_runtime_us < 0)
8531 rt_runtime = RUNTIME_INF;
8532
8533 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8534}
8535
9f0c1e56
PZ
8536long sched_group_rt_runtime(struct task_group *tg)
8537{
8538 u64 rt_runtime_us;
8539
d0b27fa7 8540 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8541 return -1;
8542
d0b27fa7 8543 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8544 do_div(rt_runtime_us, NSEC_PER_USEC);
8545 return rt_runtime_us;
8546}
d0b27fa7
PZ
8547
8548int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8549{
8550 u64 rt_runtime, rt_period;
8551
8552 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8553 rt_runtime = tg->rt_bandwidth.rt_runtime;
8554
8555 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8556}
8557
8558long sched_group_rt_period(struct task_group *tg)
8559{
8560 u64 rt_period_us;
8561
8562 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8563 do_div(rt_period_us, NSEC_PER_USEC);
8564 return rt_period_us;
8565}
8566
8567static int sched_rt_global_constraints(void)
8568{
8569 int ret = 0;
8570
8571 mutex_lock(&rt_constraints_mutex);
8572 if (!__rt_schedulable(NULL, 1, 0))
8573 ret = -EINVAL;
8574 mutex_unlock(&rt_constraints_mutex);
8575
8576 return ret;
8577}
8578#else
8579static int sched_rt_global_constraints(void)
8580{
ac086bc2
PZ
8581 unsigned long flags;
8582 int i;
8583
8584 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8585 for_each_possible_cpu(i) {
8586 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8587
8588 spin_lock(&rt_rq->rt_runtime_lock);
8589 rt_rq->rt_runtime = global_rt_runtime();
8590 spin_unlock(&rt_rq->rt_runtime_lock);
8591 }
8592 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8593
d0b27fa7
PZ
8594 return 0;
8595}
052f1dc7 8596#endif
d0b27fa7
PZ
8597
8598int sched_rt_handler(struct ctl_table *table, int write,
8599 struct file *filp, void __user *buffer, size_t *lenp,
8600 loff_t *ppos)
8601{
8602 int ret;
8603 int old_period, old_runtime;
8604 static DEFINE_MUTEX(mutex);
8605
8606 mutex_lock(&mutex);
8607 old_period = sysctl_sched_rt_period;
8608 old_runtime = sysctl_sched_rt_runtime;
8609
8610 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8611
8612 if (!ret && write) {
8613 ret = sched_rt_global_constraints();
8614 if (ret) {
8615 sysctl_sched_rt_period = old_period;
8616 sysctl_sched_rt_runtime = old_runtime;
8617 } else {
8618 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8619 def_rt_bandwidth.rt_period =
8620 ns_to_ktime(global_rt_period());
8621 }
8622 }
8623 mutex_unlock(&mutex);
8624
8625 return ret;
8626}
68318b8e 8627
052f1dc7 8628#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8629
8630/* return corresponding task_group object of a cgroup */
2b01dfe3 8631static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8632{
2b01dfe3
PM
8633 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8634 struct task_group, css);
68318b8e
SV
8635}
8636
8637static struct cgroup_subsys_state *
2b01dfe3 8638cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8639{
ec7dc8ac 8640 struct task_group *tg, *parent;
68318b8e 8641
2b01dfe3 8642 if (!cgrp->parent) {
68318b8e 8643 /* This is early initialization for the top cgroup */
2b01dfe3 8644 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8645 return &init_task_group.css;
8646 }
8647
ec7dc8ac
DG
8648 parent = cgroup_tg(cgrp->parent);
8649 tg = sched_create_group(parent);
68318b8e
SV
8650 if (IS_ERR(tg))
8651 return ERR_PTR(-ENOMEM);
8652
8653 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8654 tg->css.cgroup = cgrp;
68318b8e
SV
8655
8656 return &tg->css;
8657}
8658
41a2d6cf
IM
8659static void
8660cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8661{
2b01dfe3 8662 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8663
8664 sched_destroy_group(tg);
8665}
8666
41a2d6cf
IM
8667static int
8668cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8669 struct task_struct *tsk)
68318b8e 8670{
b68aa230
PZ
8671#ifdef CONFIG_RT_GROUP_SCHED
8672 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8673 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8674 return -EINVAL;
8675#else
68318b8e
SV
8676 /* We don't support RT-tasks being in separate groups */
8677 if (tsk->sched_class != &fair_sched_class)
8678 return -EINVAL;
b68aa230 8679#endif
68318b8e
SV
8680
8681 return 0;
8682}
8683
8684static void
2b01dfe3 8685cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8686 struct cgroup *old_cont, struct task_struct *tsk)
8687{
8688 sched_move_task(tsk);
8689}
8690
052f1dc7 8691#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8692static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8693 u64 shareval)
68318b8e 8694{
2b01dfe3 8695 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8696}
8697
f4c753b7 8698static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8699{
2b01dfe3 8700 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8701
8702 return (u64) tg->shares;
8703}
052f1dc7 8704#endif
68318b8e 8705
052f1dc7 8706#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8707static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8708 s64 val)
6f505b16 8709{
06ecb27c 8710 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8711}
8712
06ecb27c 8713static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8714{
06ecb27c 8715 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8716}
d0b27fa7
PZ
8717
8718static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8719 u64 rt_period_us)
8720{
8721 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8722}
8723
8724static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8725{
8726 return sched_group_rt_period(cgroup_tg(cgrp));
8727}
052f1dc7 8728#endif
6f505b16 8729
fe5c7cc2 8730static struct cftype cpu_files[] = {
052f1dc7 8731#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8732 {
8733 .name = "shares",
f4c753b7
PM
8734 .read_u64 = cpu_shares_read_u64,
8735 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8736 },
052f1dc7
PZ
8737#endif
8738#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8739 {
9f0c1e56 8740 .name = "rt_runtime_us",
06ecb27c
PM
8741 .read_s64 = cpu_rt_runtime_read,
8742 .write_s64 = cpu_rt_runtime_write,
6f505b16 8743 },
d0b27fa7
PZ
8744 {
8745 .name = "rt_period_us",
f4c753b7
PM
8746 .read_u64 = cpu_rt_period_read_uint,
8747 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8748 },
052f1dc7 8749#endif
68318b8e
SV
8750};
8751
8752static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8753{
fe5c7cc2 8754 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8755}
8756
8757struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8758 .name = "cpu",
8759 .create = cpu_cgroup_create,
8760 .destroy = cpu_cgroup_destroy,
8761 .can_attach = cpu_cgroup_can_attach,
8762 .attach = cpu_cgroup_attach,
8763 .populate = cpu_cgroup_populate,
8764 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8765 .early_init = 1,
8766};
8767
052f1dc7 8768#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8769
8770#ifdef CONFIG_CGROUP_CPUACCT
8771
8772/*
8773 * CPU accounting code for task groups.
8774 *
8775 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8776 * (balbir@in.ibm.com).
8777 */
8778
8779/* track cpu usage of a group of tasks */
8780struct cpuacct {
8781 struct cgroup_subsys_state css;
8782 /* cpuusage holds pointer to a u64-type object on every cpu */
8783 u64 *cpuusage;
8784};
8785
8786struct cgroup_subsys cpuacct_subsys;
8787
8788/* return cpu accounting group corresponding to this container */
32cd756a 8789static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8790{
32cd756a 8791 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8792 struct cpuacct, css);
8793}
8794
8795/* return cpu accounting group to which this task belongs */
8796static inline struct cpuacct *task_ca(struct task_struct *tsk)
8797{
8798 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8799 struct cpuacct, css);
8800}
8801
8802/* create a new cpu accounting group */
8803static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8804 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8805{
8806 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8807
8808 if (!ca)
8809 return ERR_PTR(-ENOMEM);
8810
8811 ca->cpuusage = alloc_percpu(u64);
8812 if (!ca->cpuusage) {
8813 kfree(ca);
8814 return ERR_PTR(-ENOMEM);
8815 }
8816
8817 return &ca->css;
8818}
8819
8820/* destroy an existing cpu accounting group */
41a2d6cf 8821static void
32cd756a 8822cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8823{
32cd756a 8824 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8825
8826 free_percpu(ca->cpuusage);
8827 kfree(ca);
8828}
8829
8830/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8831static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8832{
32cd756a 8833 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8834 u64 totalcpuusage = 0;
8835 int i;
8836
8837 for_each_possible_cpu(i) {
8838 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8839
8840 /*
8841 * Take rq->lock to make 64-bit addition safe on 32-bit
8842 * platforms.
8843 */
8844 spin_lock_irq(&cpu_rq(i)->lock);
8845 totalcpuusage += *cpuusage;
8846 spin_unlock_irq(&cpu_rq(i)->lock);
8847 }
8848
8849 return totalcpuusage;
8850}
8851
0297b803
DG
8852static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8853 u64 reset)
8854{
8855 struct cpuacct *ca = cgroup_ca(cgrp);
8856 int err = 0;
8857 int i;
8858
8859 if (reset) {
8860 err = -EINVAL;
8861 goto out;
8862 }
8863
8864 for_each_possible_cpu(i) {
8865 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8866
8867 spin_lock_irq(&cpu_rq(i)->lock);
8868 *cpuusage = 0;
8869 spin_unlock_irq(&cpu_rq(i)->lock);
8870 }
8871out:
8872 return err;
8873}
8874
d842de87
SV
8875static struct cftype files[] = {
8876 {
8877 .name = "usage",
f4c753b7
PM
8878 .read_u64 = cpuusage_read,
8879 .write_u64 = cpuusage_write,
d842de87
SV
8880 },
8881};
8882
32cd756a 8883static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8884{
32cd756a 8885 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8886}
8887
8888/*
8889 * charge this task's execution time to its accounting group.
8890 *
8891 * called with rq->lock held.
8892 */
8893static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8894{
8895 struct cpuacct *ca;
8896
8897 if (!cpuacct_subsys.active)
8898 return;
8899
8900 ca = task_ca(tsk);
8901 if (ca) {
8902 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8903
8904 *cpuusage += cputime;
8905 }
8906}
8907
8908struct cgroup_subsys cpuacct_subsys = {
8909 .name = "cpuacct",
8910 .create = cpuacct_create,
8911 .destroy = cpuacct_destroy,
8912 .populate = cpuacct_populate,
8913 .subsys_id = cpuacct_subsys_id,
8914};
8915#endif /* CONFIG_CGROUP_CPUACCT */
This page took 1.627392 seconds and 5 git commands to generate.