rcu: Restore checks for blocking in RCU read-side critical sections
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
e6e6685a
GC
78#ifdef CONFIG_PARAVIRT
79#include <asm/paravirt.h>
80#endif
1da177e4 81
6e0534f2 82#include "sched_cpupri.h"
21aa9af0 83#include "workqueue_sched.h"
5091faa4 84#include "sched_autogroup.h"
6e0534f2 85
a8d154b0 86#define CREATE_TRACE_POINTS
ad8d75ff 87#include <trace/events/sched.h>
a8d154b0 88
1da177e4
LT
89/*
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 * and back.
93 */
94#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97
98/*
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
102 */
103#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106
107/*
d7876a08 108 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 109 */
d6322faf 110#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 111
6aa645ea
IM
112#define NICE_0_LOAD SCHED_LOAD_SCALE
113#define NICE_0_SHIFT SCHED_LOAD_SHIFT
114
1da177e4
LT
115/*
116 * These are the 'tuning knobs' of the scheduler:
117 *
a4ec24b4 118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
119 * Timeslices get refilled after they expire.
120 */
1da177e4 121#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 122
d0b27fa7
PZ
123/*
124 * single value that denotes runtime == period, ie unlimited time.
125 */
126#define RUNTIME_INF ((u64)~0ULL)
127
e05606d3
IM
128static inline int rt_policy(int policy)
129{
63f01241 130 if (policy == SCHED_FIFO || policy == SCHED_RR)
e05606d3
IM
131 return 1;
132 return 0;
133}
134
135static inline int task_has_rt_policy(struct task_struct *p)
136{
137 return rt_policy(p->policy);
138}
139
1da177e4 140/*
6aa645ea 141 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 142 */
6aa645ea
IM
143struct rt_prio_array {
144 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
145 struct list_head queue[MAX_RT_PRIO];
146};
147
d0b27fa7 148struct rt_bandwidth {
ea736ed5 149 /* nests inside the rq lock: */
0986b11b 150 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
151 ktime_t rt_period;
152 u64 rt_runtime;
153 struct hrtimer rt_period_timer;
d0b27fa7
PZ
154};
155
156static struct rt_bandwidth def_rt_bandwidth;
157
158static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
159
160static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
161{
162 struct rt_bandwidth *rt_b =
163 container_of(timer, struct rt_bandwidth, rt_period_timer);
164 ktime_t now;
165 int overrun;
166 int idle = 0;
167
168 for (;;) {
169 now = hrtimer_cb_get_time(timer);
170 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
171
172 if (!overrun)
173 break;
174
175 idle = do_sched_rt_period_timer(rt_b, overrun);
176 }
177
178 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179}
180
181static
182void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
183{
184 rt_b->rt_period = ns_to_ktime(period);
185 rt_b->rt_runtime = runtime;
186
0986b11b 187 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 188
d0b27fa7
PZ
189 hrtimer_init(&rt_b->rt_period_timer,
190 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
191 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
192}
193
c8bfff6d
KH
194static inline int rt_bandwidth_enabled(void)
195{
196 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
197}
198
199static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
200{
201 ktime_t now;
202
cac64d00 203 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
204 return;
205
206 if (hrtimer_active(&rt_b->rt_period_timer))
207 return;
208
0986b11b 209 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 210 for (;;) {
7f1e2ca9
PZ
211 unsigned long delta;
212 ktime_t soft, hard;
213
d0b27fa7
PZ
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 break;
216
217 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
218 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
219
220 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
221 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
222 delta = ktime_to_ns(ktime_sub(hard, soft));
223 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 224 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 225 }
0986b11b 226 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
227}
228
229#ifdef CONFIG_RT_GROUP_SCHED
230static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
231{
232 hrtimer_cancel(&rt_b->rt_period_timer);
233}
234#endif
235
712555ee 236/*
c4a8849a 237 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
238 * detach_destroy_domains and partition_sched_domains.
239 */
240static DEFINE_MUTEX(sched_domains_mutex);
241
7c941438 242#ifdef CONFIG_CGROUP_SCHED
29f59db3 243
68318b8e
SV
244#include <linux/cgroup.h>
245
29f59db3
SV
246struct cfs_rq;
247
6f505b16
PZ
248static LIST_HEAD(task_groups);
249
29f59db3 250/* task group related information */
4cf86d77 251struct task_group {
68318b8e 252 struct cgroup_subsys_state css;
6c415b92 253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
2069dd75
PZ
260
261 atomic_t load_weight;
052f1dc7
PZ
262#endif
263
264#ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
d0b27fa7 268 struct rt_bandwidth rt_bandwidth;
052f1dc7 269#endif
6b2d7700 270
ae8393e5 271 struct rcu_head rcu;
6f505b16 272 struct list_head list;
f473aa5e
PZ
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
5091faa4
MG
277
278#ifdef CONFIG_SCHED_AUTOGROUP
279 struct autogroup *autogroup;
280#endif
29f59db3
SV
281};
282
3d4b47b4 283/* task_group_lock serializes the addition/removal of task groups */
8ed36996 284static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 285
e9036b36
CG
286#ifdef CONFIG_FAIR_GROUP_SCHED
287
07e06b01 288# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 289
cb4ad1ff 290/*
2e084786
LJ
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
cb4ad1ff
MX
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
cd62287e
MG
298#define MIN_SHARES (1UL << 1)
299#define MAX_SHARES (1UL << 18)
18d95a28 300
07e06b01 301static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
302#endif
303
29f59db3 304/* Default task group.
3a252015 305 * Every task in system belong to this group at bootup.
29f59db3 306 */
07e06b01 307struct task_group root_task_group;
29f59db3 308
7c941438 309#endif /* CONFIG_CGROUP_SCHED */
29f59db3 310
6aa645ea
IM
311/* CFS-related fields in a runqueue */
312struct cfs_rq {
313 struct load_weight load;
314 unsigned long nr_running;
315
6aa645ea 316 u64 exec_clock;
e9acbff6 317 u64 min_vruntime;
3fe1698b
PZ
318#ifndef CONFIG_64BIT
319 u64 min_vruntime_copy;
320#endif
6aa645ea
IM
321
322 struct rb_root tasks_timeline;
323 struct rb_node *rb_leftmost;
4a55bd5e
PZ
324
325 struct list_head tasks;
326 struct list_head *balance_iterator;
327
328 /*
329 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
330 * It is set to NULL otherwise (i.e when none are currently running).
331 */
ac53db59 332 struct sched_entity *curr, *next, *last, *skip;
ddc97297 333
4934a4d3 334#ifdef CONFIG_SCHED_DEBUG
5ac5c4d6 335 unsigned int nr_spread_over;
4934a4d3 336#endif
ddc97297 337
62160e3f 338#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
339 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
340
41a2d6cf
IM
341 /*
342 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
343 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
344 * (like users, containers etc.)
345 *
346 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
347 * list is used during load balance.
348 */
3d4b47b4 349 int on_list;
41a2d6cf
IM
350 struct list_head leaf_cfs_rq_list;
351 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
352
353#ifdef CONFIG_SMP
c09595f6 354 /*
c8cba857 355 * the part of load.weight contributed by tasks
c09595f6 356 */
c8cba857 357 unsigned long task_weight;
c09595f6 358
c8cba857
PZ
359 /*
360 * h_load = weight * f(tg)
361 *
362 * Where f(tg) is the recursive weight fraction assigned to
363 * this group.
364 */
365 unsigned long h_load;
c09595f6 366
c8cba857 367 /*
3b3d190e
PT
368 * Maintaining per-cpu shares distribution for group scheduling
369 *
370 * load_stamp is the last time we updated the load average
371 * load_last is the last time we updated the load average and saw load
372 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 373 */
2069dd75
PZ
374 u64 load_avg;
375 u64 load_period;
3b3d190e 376 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 377
2069dd75 378 unsigned long load_contribution;
c09595f6 379#endif
6aa645ea
IM
380#endif
381};
1da177e4 382
6aa645ea
IM
383/* Real-Time classes' related field in a runqueue: */
384struct rt_rq {
385 struct rt_prio_array active;
63489e45 386 unsigned long rt_nr_running;
052f1dc7 387#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
388 struct {
389 int curr; /* highest queued rt task prio */
398a153b 390#ifdef CONFIG_SMP
e864c499 391 int next; /* next highest */
398a153b 392#endif
e864c499 393 } highest_prio;
6f505b16 394#endif
fa85ae24 395#ifdef CONFIG_SMP
73fe6aae 396 unsigned long rt_nr_migratory;
a1ba4d8b 397 unsigned long rt_nr_total;
a22d7fc1 398 int overloaded;
917b627d 399 struct plist_head pushable_tasks;
fa85ae24 400#endif
6f505b16 401 int rt_throttled;
fa85ae24 402 u64 rt_time;
ac086bc2 403 u64 rt_runtime;
ea736ed5 404 /* Nests inside the rq lock: */
0986b11b 405 raw_spinlock_t rt_runtime_lock;
6f505b16 406
052f1dc7 407#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
408 unsigned long rt_nr_boosted;
409
6f505b16
PZ
410 struct rq *rq;
411 struct list_head leaf_rt_rq_list;
412 struct task_group *tg;
6f505b16 413#endif
6aa645ea
IM
414};
415
57d885fe
GH
416#ifdef CONFIG_SMP
417
418/*
419 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
420 * variables. Each exclusive cpuset essentially defines an island domain by
421 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
422 * exclusive cpuset is created, we also create and attach a new root-domain
423 * object.
424 *
57d885fe
GH
425 */
426struct root_domain {
427 atomic_t refcount;
26a148eb 428 atomic_t rto_count;
dce840a0 429 struct rcu_head rcu;
c6c4927b
RR
430 cpumask_var_t span;
431 cpumask_var_t online;
637f5085 432
0eab9146 433 /*
637f5085
GH
434 * The "RT overload" flag: it gets set if a CPU has more than
435 * one runnable RT task.
436 */
c6c4927b 437 cpumask_var_t rto_mask;
6e0534f2 438 struct cpupri cpupri;
57d885fe
GH
439};
440
dc938520
GH
441/*
442 * By default the system creates a single root-domain with all cpus as
443 * members (mimicking the global state we have today).
444 */
57d885fe
GH
445static struct root_domain def_root_domain;
446
ed2d372c 447#endif /* CONFIG_SMP */
57d885fe 448
1da177e4
LT
449/*
450 * This is the main, per-CPU runqueue data structure.
451 *
452 * Locking rule: those places that want to lock multiple runqueues
453 * (such as the load balancing or the thread migration code), lock
454 * acquire operations must be ordered by ascending &runqueue.
455 */
70b97a7f 456struct rq {
d8016491 457 /* runqueue lock: */
05fa785c 458 raw_spinlock_t lock;
1da177e4
LT
459
460 /*
461 * nr_running and cpu_load should be in the same cacheline because
462 * remote CPUs use both these fields when doing load calculation.
463 */
464 unsigned long nr_running;
6aa645ea
IM
465 #define CPU_LOAD_IDX_MAX 5
466 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 467 unsigned long last_load_update_tick;
46cb4b7c 468#ifdef CONFIG_NO_HZ
39c0cbe2 469 u64 nohz_stamp;
83cd4fe2 470 unsigned char nohz_balance_kick;
46cb4b7c 471#endif
61eadef6 472 int skip_clock_update;
a64692a3 473
d8016491
IM
474 /* capture load from *all* tasks on this cpu: */
475 struct load_weight load;
6aa645ea
IM
476 unsigned long nr_load_updates;
477 u64 nr_switches;
478
479 struct cfs_rq cfs;
6f505b16 480 struct rt_rq rt;
6f505b16 481
6aa645ea 482#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
483 /* list of leaf cfs_rq on this cpu: */
484 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
485#endif
486#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 487 struct list_head leaf_rt_rq_list;
1da177e4 488#endif
1da177e4
LT
489
490 /*
491 * This is part of a global counter where only the total sum
492 * over all CPUs matters. A task can increase this counter on
493 * one CPU and if it got migrated afterwards it may decrease
494 * it on another CPU. Always updated under the runqueue lock:
495 */
496 unsigned long nr_uninterruptible;
497
34f971f6 498 struct task_struct *curr, *idle, *stop;
c9819f45 499 unsigned long next_balance;
1da177e4 500 struct mm_struct *prev_mm;
6aa645ea 501
3e51f33f 502 u64 clock;
305e6835 503 u64 clock_task;
6aa645ea 504
1da177e4
LT
505 atomic_t nr_iowait;
506
507#ifdef CONFIG_SMP
0eab9146 508 struct root_domain *rd;
1da177e4
LT
509 struct sched_domain *sd;
510
e51fd5e2
PZ
511 unsigned long cpu_power;
512
a0a522ce 513 unsigned char idle_at_tick;
1da177e4 514 /* For active balancing */
3f029d3c 515 int post_schedule;
1da177e4
LT
516 int active_balance;
517 int push_cpu;
969c7921 518 struct cpu_stop_work active_balance_work;
d8016491
IM
519 /* cpu of this runqueue: */
520 int cpu;
1f11eb6a 521 int online;
1da177e4 522
a8a51d5e 523 unsigned long avg_load_per_task;
1da177e4 524
e9e9250b
PZ
525 u64 rt_avg;
526 u64 age_stamp;
1b9508f6
MG
527 u64 idle_stamp;
528 u64 avg_idle;
1da177e4
LT
529#endif
530
aa483808
VP
531#ifdef CONFIG_IRQ_TIME_ACCOUNTING
532 u64 prev_irq_time;
533#endif
e6e6685a
GC
534#ifdef CONFIG_PARAVIRT
535 u64 prev_steal_time;
536#endif
095c0aa8
GC
537#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
538 u64 prev_steal_time_rq;
539#endif
aa483808 540
dce48a84
TG
541 /* calc_load related fields */
542 unsigned long calc_load_update;
543 long calc_load_active;
544
8f4d37ec 545#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
546#ifdef CONFIG_SMP
547 int hrtick_csd_pending;
548 struct call_single_data hrtick_csd;
549#endif
8f4d37ec
PZ
550 struct hrtimer hrtick_timer;
551#endif
552
1da177e4
LT
553#ifdef CONFIG_SCHEDSTATS
554 /* latency stats */
555 struct sched_info rq_sched_info;
9c2c4802
KC
556 unsigned long long rq_cpu_time;
557 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
558
559 /* sys_sched_yield() stats */
480b9434 560 unsigned int yld_count;
1da177e4
LT
561
562 /* schedule() stats */
480b9434
KC
563 unsigned int sched_switch;
564 unsigned int sched_count;
565 unsigned int sched_goidle;
1da177e4
LT
566
567 /* try_to_wake_up() stats */
480b9434
KC
568 unsigned int ttwu_count;
569 unsigned int ttwu_local;
1da177e4 570#endif
317f3941
PZ
571
572#ifdef CONFIG_SMP
573 struct task_struct *wake_list;
574#endif
1da177e4
LT
575};
576
f34e3b61 577static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 578
a64692a3 579
1e5a7405 580static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 581
0a2966b4
CL
582static inline int cpu_of(struct rq *rq)
583{
584#ifdef CONFIG_SMP
585 return rq->cpu;
586#else
587 return 0;
588#endif
589}
590
497f0ab3 591#define rcu_dereference_check_sched_domain(p) \
d11c563d 592 rcu_dereference_check((p), \
d11c563d
PM
593 lockdep_is_held(&sched_domains_mutex))
594
674311d5
NP
595/*
596 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 597 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
598 *
599 * The domain tree of any CPU may only be accessed from within
600 * preempt-disabled sections.
601 */
48f24c4d 602#define for_each_domain(cpu, __sd) \
497f0ab3 603 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
604
605#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
606#define this_rq() (&__get_cpu_var(runqueues))
607#define task_rq(p) cpu_rq(task_cpu(p))
608#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 609#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 610
dc61b1d6
PZ
611#ifdef CONFIG_CGROUP_SCHED
612
613/*
614 * Return the group to which this tasks belongs.
615 *
6c6c54e1
PZ
616 * We use task_subsys_state_check() and extend the RCU verification with
617 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
618 * task it moves into the cgroup. Therefore by holding either of those locks,
619 * we pin the task to the current cgroup.
dc61b1d6
PZ
620 */
621static inline struct task_group *task_group(struct task_struct *p)
622{
5091faa4 623 struct task_group *tg;
dc61b1d6
PZ
624 struct cgroup_subsys_state *css;
625
626 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
6c6c54e1
PZ
627 lockdep_is_held(&p->pi_lock) ||
628 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
629 tg = container_of(css, struct task_group, css);
630
631 return autogroup_task_group(p, tg);
dc61b1d6
PZ
632}
633
634/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
635static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
636{
637#ifdef CONFIG_FAIR_GROUP_SCHED
638 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
639 p->se.parent = task_group(p)->se[cpu];
640#endif
641
642#ifdef CONFIG_RT_GROUP_SCHED
643 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
644 p->rt.parent = task_group(p)->rt_se[cpu];
645#endif
646}
647
648#else /* CONFIG_CGROUP_SCHED */
649
650static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
651static inline struct task_group *task_group(struct task_struct *p)
652{
653 return NULL;
654}
655
656#endif /* CONFIG_CGROUP_SCHED */
657
fe44d621 658static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 659
fe44d621 660static void update_rq_clock(struct rq *rq)
3e51f33f 661{
fe44d621 662 s64 delta;
305e6835 663
61eadef6 664 if (rq->skip_clock_update > 0)
f26f9aff 665 return;
aa483808 666
fe44d621
PZ
667 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
668 rq->clock += delta;
669 update_rq_clock_task(rq, delta);
3e51f33f
PZ
670}
671
bf5c91ba
IM
672/*
673 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
674 */
675#ifdef CONFIG_SCHED_DEBUG
676# define const_debug __read_mostly
677#else
678# define const_debug static const
679#endif
680
017730c1 681/**
1fd06bb1 682 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 683 * @cpu: the processor in question.
017730c1 684 *
017730c1
IM
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
687 */
89f19f04 688int runqueue_is_locked(int cpu)
017730c1 689{
05fa785c 690 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
691}
692
bf5c91ba
IM
693/*
694 * Debugging: various feature bits
695 */
f00b45c1
PZ
696
697#define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
699
bf5c91ba 700enum {
f00b45c1 701#include "sched_features.h"
bf5c91ba
IM
702};
703
f00b45c1
PZ
704#undef SCHED_FEAT
705
706#define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
708
bf5c91ba 709const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
710#include "sched_features.h"
711 0;
712
713#undef SCHED_FEAT
714
715#ifdef CONFIG_SCHED_DEBUG
716#define SCHED_FEAT(name, enabled) \
717 #name ,
718
983ed7a6 719static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
720#include "sched_features.h"
721 NULL
722};
723
724#undef SCHED_FEAT
725
34f3a814 726static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 727{
f00b45c1
PZ
728 int i;
729
730 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 734 }
34f3a814 735 seq_puts(m, "\n");
f00b45c1 736
34f3a814 737 return 0;
f00b45c1
PZ
738}
739
740static ssize_t
741sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
743{
744 char buf[64];
7740191c 745 char *cmp;
f00b45c1
PZ
746 int neg = 0;
747 int i;
748
749 if (cnt > 63)
750 cnt = 63;
751
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
754
755 buf[cnt] = 0;
7740191c 756 cmp = strstrip(buf);
f00b45c1 757
524429c3 758 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
759 neg = 1;
760 cmp += 3;
761 }
762
763 for (i = 0; sched_feat_names[i]; i++) {
7740191c 764 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
765 if (neg)
766 sysctl_sched_features &= ~(1UL << i);
767 else
768 sysctl_sched_features |= (1UL << i);
769 break;
770 }
771 }
772
773 if (!sched_feat_names[i])
774 return -EINVAL;
775
42994724 776 *ppos += cnt;
f00b45c1
PZ
777
778 return cnt;
779}
780
34f3a814
LZ
781static int sched_feat_open(struct inode *inode, struct file *filp)
782{
783 return single_open(filp, sched_feat_show, NULL);
784}
785
828c0950 786static const struct file_operations sched_feat_fops = {
34f3a814
LZ
787 .open = sched_feat_open,
788 .write = sched_feat_write,
789 .read = seq_read,
790 .llseek = seq_lseek,
791 .release = single_release,
f00b45c1
PZ
792};
793
794static __init int sched_init_debug(void)
795{
f00b45c1
PZ
796 debugfs_create_file("sched_features", 0644, NULL, NULL,
797 &sched_feat_fops);
798
799 return 0;
800}
801late_initcall(sched_init_debug);
802
803#endif
804
805#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 806
b82d9fdd
PZ
807/*
808 * Number of tasks to iterate in a single balance run.
809 * Limited because this is done with IRQs disabled.
810 */
811const_debug unsigned int sysctl_sched_nr_migrate = 32;
812
e9e9250b
PZ
813/*
814 * period over which we average the RT time consumption, measured
815 * in ms.
816 *
817 * default: 1s
818 */
819const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
820
fa85ae24 821/*
9f0c1e56 822 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
823 * default: 1s
824 */
9f0c1e56 825unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 826
6892b75e
IM
827static __read_mostly int scheduler_running;
828
9f0c1e56
PZ
829/*
830 * part of the period that we allow rt tasks to run in us.
831 * default: 0.95s
832 */
833int sysctl_sched_rt_runtime = 950000;
fa85ae24 834
d0b27fa7
PZ
835static inline u64 global_rt_period(void)
836{
837 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
838}
839
840static inline u64 global_rt_runtime(void)
841{
e26873bb 842 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
843 return RUNTIME_INF;
844
845 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
846}
fa85ae24 847
1da177e4 848#ifndef prepare_arch_switch
4866cde0
NP
849# define prepare_arch_switch(next) do { } while (0)
850#endif
851#ifndef finish_arch_switch
852# define finish_arch_switch(prev) do { } while (0)
853#endif
854
051a1d1a
DA
855static inline int task_current(struct rq *rq, struct task_struct *p)
856{
857 return rq->curr == p;
858}
859
70b97a7f 860static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 861{
3ca7a440
PZ
862#ifdef CONFIG_SMP
863 return p->on_cpu;
864#else
051a1d1a 865 return task_current(rq, p);
3ca7a440 866#endif
4866cde0
NP
867}
868
3ca7a440 869#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 870static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 871{
3ca7a440
PZ
872#ifdef CONFIG_SMP
873 /*
874 * We can optimise this out completely for !SMP, because the
875 * SMP rebalancing from interrupt is the only thing that cares
876 * here.
877 */
878 next->on_cpu = 1;
879#endif
4866cde0
NP
880}
881
70b97a7f 882static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 883{
3ca7a440
PZ
884#ifdef CONFIG_SMP
885 /*
886 * After ->on_cpu is cleared, the task can be moved to a different CPU.
887 * We must ensure this doesn't happen until the switch is completely
888 * finished.
889 */
890 smp_wmb();
891 prev->on_cpu = 0;
892#endif
da04c035
IM
893#ifdef CONFIG_DEBUG_SPINLOCK
894 /* this is a valid case when another task releases the spinlock */
895 rq->lock.owner = current;
896#endif
8a25d5de
IM
897 /*
898 * If we are tracking spinlock dependencies then we have to
899 * fix up the runqueue lock - which gets 'carried over' from
900 * prev into current:
901 */
902 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
903
05fa785c 904 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
905}
906
907#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 908static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
909{
910#ifdef CONFIG_SMP
911 /*
912 * We can optimise this out completely for !SMP, because the
913 * SMP rebalancing from interrupt is the only thing that cares
914 * here.
915 */
3ca7a440 916 next->on_cpu = 1;
4866cde0
NP
917#endif
918#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 919 raw_spin_unlock_irq(&rq->lock);
4866cde0 920#else
05fa785c 921 raw_spin_unlock(&rq->lock);
4866cde0
NP
922#endif
923}
924
70b97a7f 925static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
926{
927#ifdef CONFIG_SMP
928 /*
3ca7a440 929 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
930 * We must ensure this doesn't happen until the switch is completely
931 * finished.
932 */
933 smp_wmb();
3ca7a440 934 prev->on_cpu = 0;
4866cde0
NP
935#endif
936#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
937 local_irq_enable();
1da177e4 938#endif
4866cde0
NP
939}
940#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 941
0970d299 942/*
0122ec5b 943 * __task_rq_lock - lock the rq @p resides on.
b29739f9 944 */
70b97a7f 945static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
946 __acquires(rq->lock)
947{
0970d299
PZ
948 struct rq *rq;
949
0122ec5b
PZ
950 lockdep_assert_held(&p->pi_lock);
951
3a5c359a 952 for (;;) {
0970d299 953 rq = task_rq(p);
05fa785c 954 raw_spin_lock(&rq->lock);
65cc8e48 955 if (likely(rq == task_rq(p)))
3a5c359a 956 return rq;
05fa785c 957 raw_spin_unlock(&rq->lock);
b29739f9 958 }
b29739f9
IM
959}
960
1da177e4 961/*
0122ec5b 962 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 963 */
70b97a7f 964static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 965 __acquires(p->pi_lock)
1da177e4
LT
966 __acquires(rq->lock)
967{
70b97a7f 968 struct rq *rq;
1da177e4 969
3a5c359a 970 for (;;) {
0122ec5b 971 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 972 rq = task_rq(p);
05fa785c 973 raw_spin_lock(&rq->lock);
65cc8e48 974 if (likely(rq == task_rq(p)))
3a5c359a 975 return rq;
0122ec5b
PZ
976 raw_spin_unlock(&rq->lock);
977 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 978 }
1da177e4
LT
979}
980
a9957449 981static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
982 __releases(rq->lock)
983{
05fa785c 984 raw_spin_unlock(&rq->lock);
b29739f9
IM
985}
986
0122ec5b
PZ
987static inline void
988task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 989 __releases(rq->lock)
0122ec5b 990 __releases(p->pi_lock)
1da177e4 991{
0122ec5b
PZ
992 raw_spin_unlock(&rq->lock);
993 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
994}
995
1da177e4 996/*
cc2a73b5 997 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 998 */
a9957449 999static struct rq *this_rq_lock(void)
1da177e4
LT
1000 __acquires(rq->lock)
1001{
70b97a7f 1002 struct rq *rq;
1da177e4
LT
1003
1004 local_irq_disable();
1005 rq = this_rq();
05fa785c 1006 raw_spin_lock(&rq->lock);
1da177e4
LT
1007
1008 return rq;
1009}
1010
8f4d37ec
PZ
1011#ifdef CONFIG_SCHED_HRTICK
1012/*
1013 * Use HR-timers to deliver accurate preemption points.
1014 *
1015 * Its all a bit involved since we cannot program an hrt while holding the
1016 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1017 * reschedule event.
1018 *
1019 * When we get rescheduled we reprogram the hrtick_timer outside of the
1020 * rq->lock.
1021 */
8f4d37ec
PZ
1022
1023/*
1024 * Use hrtick when:
1025 * - enabled by features
1026 * - hrtimer is actually high res
1027 */
1028static inline int hrtick_enabled(struct rq *rq)
1029{
1030 if (!sched_feat(HRTICK))
1031 return 0;
ba42059f 1032 if (!cpu_active(cpu_of(rq)))
b328ca18 1033 return 0;
8f4d37ec
PZ
1034 return hrtimer_is_hres_active(&rq->hrtick_timer);
1035}
1036
8f4d37ec
PZ
1037static void hrtick_clear(struct rq *rq)
1038{
1039 if (hrtimer_active(&rq->hrtick_timer))
1040 hrtimer_cancel(&rq->hrtick_timer);
1041}
1042
8f4d37ec
PZ
1043/*
1044 * High-resolution timer tick.
1045 * Runs from hardirq context with interrupts disabled.
1046 */
1047static enum hrtimer_restart hrtick(struct hrtimer *timer)
1048{
1049 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1050
1051 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1052
05fa785c 1053 raw_spin_lock(&rq->lock);
3e51f33f 1054 update_rq_clock(rq);
8f4d37ec 1055 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1056 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1057
1058 return HRTIMER_NORESTART;
1059}
1060
95e904c7 1061#ifdef CONFIG_SMP
31656519
PZ
1062/*
1063 * called from hardirq (IPI) context
1064 */
1065static void __hrtick_start(void *arg)
b328ca18 1066{
31656519 1067 struct rq *rq = arg;
b328ca18 1068
05fa785c 1069 raw_spin_lock(&rq->lock);
31656519
PZ
1070 hrtimer_restart(&rq->hrtick_timer);
1071 rq->hrtick_csd_pending = 0;
05fa785c 1072 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1073}
1074
31656519
PZ
1075/*
1076 * Called to set the hrtick timer state.
1077 *
1078 * called with rq->lock held and irqs disabled
1079 */
1080static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1081{
31656519
PZ
1082 struct hrtimer *timer = &rq->hrtick_timer;
1083 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1084
cc584b21 1085 hrtimer_set_expires(timer, time);
31656519
PZ
1086
1087 if (rq == this_rq()) {
1088 hrtimer_restart(timer);
1089 } else if (!rq->hrtick_csd_pending) {
6e275637 1090 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1091 rq->hrtick_csd_pending = 1;
1092 }
b328ca18
PZ
1093}
1094
1095static int
1096hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1097{
1098 int cpu = (int)(long)hcpu;
1099
1100 switch (action) {
1101 case CPU_UP_CANCELED:
1102 case CPU_UP_CANCELED_FROZEN:
1103 case CPU_DOWN_PREPARE:
1104 case CPU_DOWN_PREPARE_FROZEN:
1105 case CPU_DEAD:
1106 case CPU_DEAD_FROZEN:
31656519 1107 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1108 return NOTIFY_OK;
1109 }
1110
1111 return NOTIFY_DONE;
1112}
1113
fa748203 1114static __init void init_hrtick(void)
b328ca18
PZ
1115{
1116 hotcpu_notifier(hotplug_hrtick, 0);
1117}
31656519
PZ
1118#else
1119/*
1120 * Called to set the hrtick timer state.
1121 *
1122 * called with rq->lock held and irqs disabled
1123 */
1124static void hrtick_start(struct rq *rq, u64 delay)
1125{
7f1e2ca9 1126 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1127 HRTIMER_MODE_REL_PINNED, 0);
31656519 1128}
b328ca18 1129
006c75f1 1130static inline void init_hrtick(void)
8f4d37ec 1131{
8f4d37ec 1132}
31656519 1133#endif /* CONFIG_SMP */
8f4d37ec 1134
31656519 1135static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1136{
31656519
PZ
1137#ifdef CONFIG_SMP
1138 rq->hrtick_csd_pending = 0;
8f4d37ec 1139
31656519
PZ
1140 rq->hrtick_csd.flags = 0;
1141 rq->hrtick_csd.func = __hrtick_start;
1142 rq->hrtick_csd.info = rq;
1143#endif
8f4d37ec 1144
31656519
PZ
1145 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1146 rq->hrtick_timer.function = hrtick;
8f4d37ec 1147}
006c75f1 1148#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1149static inline void hrtick_clear(struct rq *rq)
1150{
1151}
1152
8f4d37ec
PZ
1153static inline void init_rq_hrtick(struct rq *rq)
1154{
1155}
1156
b328ca18
PZ
1157static inline void init_hrtick(void)
1158{
1159}
006c75f1 1160#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1161
c24d20db
IM
1162/*
1163 * resched_task - mark a task 'to be rescheduled now'.
1164 *
1165 * On UP this means the setting of the need_resched flag, on SMP it
1166 * might also involve a cross-CPU call to trigger the scheduler on
1167 * the target CPU.
1168 */
1169#ifdef CONFIG_SMP
1170
1171#ifndef tsk_is_polling
1172#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1173#endif
1174
31656519 1175static void resched_task(struct task_struct *p)
c24d20db
IM
1176{
1177 int cpu;
1178
05fa785c 1179 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1180
5ed0cec0 1181 if (test_tsk_need_resched(p))
c24d20db
IM
1182 return;
1183
5ed0cec0 1184 set_tsk_need_resched(p);
c24d20db
IM
1185
1186 cpu = task_cpu(p);
1187 if (cpu == smp_processor_id())
1188 return;
1189
1190 /* NEED_RESCHED must be visible before we test polling */
1191 smp_mb();
1192 if (!tsk_is_polling(p))
1193 smp_send_reschedule(cpu);
1194}
1195
1196static void resched_cpu(int cpu)
1197{
1198 struct rq *rq = cpu_rq(cpu);
1199 unsigned long flags;
1200
05fa785c 1201 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1202 return;
1203 resched_task(cpu_curr(cpu));
05fa785c 1204 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1205}
06d8308c
TG
1206
1207#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1208/*
1209 * In the semi idle case, use the nearest busy cpu for migrating timers
1210 * from an idle cpu. This is good for power-savings.
1211 *
1212 * We don't do similar optimization for completely idle system, as
1213 * selecting an idle cpu will add more delays to the timers than intended
1214 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1215 */
1216int get_nohz_timer_target(void)
1217{
1218 int cpu = smp_processor_id();
1219 int i;
1220 struct sched_domain *sd;
1221
057f3fad 1222 rcu_read_lock();
83cd4fe2 1223 for_each_domain(cpu, sd) {
057f3fad
PZ
1224 for_each_cpu(i, sched_domain_span(sd)) {
1225 if (!idle_cpu(i)) {
1226 cpu = i;
1227 goto unlock;
1228 }
1229 }
83cd4fe2 1230 }
057f3fad
PZ
1231unlock:
1232 rcu_read_unlock();
83cd4fe2
VP
1233 return cpu;
1234}
06d8308c
TG
1235/*
1236 * When add_timer_on() enqueues a timer into the timer wheel of an
1237 * idle CPU then this timer might expire before the next timer event
1238 * which is scheduled to wake up that CPU. In case of a completely
1239 * idle system the next event might even be infinite time into the
1240 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1241 * leaves the inner idle loop so the newly added timer is taken into
1242 * account when the CPU goes back to idle and evaluates the timer
1243 * wheel for the next timer event.
1244 */
1245void wake_up_idle_cpu(int cpu)
1246{
1247 struct rq *rq = cpu_rq(cpu);
1248
1249 if (cpu == smp_processor_id())
1250 return;
1251
1252 /*
1253 * This is safe, as this function is called with the timer
1254 * wheel base lock of (cpu) held. When the CPU is on the way
1255 * to idle and has not yet set rq->curr to idle then it will
1256 * be serialized on the timer wheel base lock and take the new
1257 * timer into account automatically.
1258 */
1259 if (rq->curr != rq->idle)
1260 return;
1261
1262 /*
1263 * We can set TIF_RESCHED on the idle task of the other CPU
1264 * lockless. The worst case is that the other CPU runs the
1265 * idle task through an additional NOOP schedule()
1266 */
5ed0cec0 1267 set_tsk_need_resched(rq->idle);
06d8308c
TG
1268
1269 /* NEED_RESCHED must be visible before we test polling */
1270 smp_mb();
1271 if (!tsk_is_polling(rq->idle))
1272 smp_send_reschedule(cpu);
1273}
39c0cbe2 1274
6d6bc0ad 1275#endif /* CONFIG_NO_HZ */
06d8308c 1276
e9e9250b
PZ
1277static u64 sched_avg_period(void)
1278{
1279 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1280}
1281
1282static void sched_avg_update(struct rq *rq)
1283{
1284 s64 period = sched_avg_period();
1285
1286 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1287 /*
1288 * Inline assembly required to prevent the compiler
1289 * optimising this loop into a divmod call.
1290 * See __iter_div_u64_rem() for another example of this.
1291 */
1292 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1293 rq->age_stamp += period;
1294 rq->rt_avg /= 2;
1295 }
1296}
1297
1298static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1299{
1300 rq->rt_avg += rt_delta;
1301 sched_avg_update(rq);
1302}
1303
6d6bc0ad 1304#else /* !CONFIG_SMP */
31656519 1305static void resched_task(struct task_struct *p)
c24d20db 1306{
05fa785c 1307 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1308 set_tsk_need_resched(p);
c24d20db 1309}
e9e9250b
PZ
1310
1311static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1312{
1313}
da2b71ed
SS
1314
1315static void sched_avg_update(struct rq *rq)
1316{
1317}
6d6bc0ad 1318#endif /* CONFIG_SMP */
c24d20db 1319
45bf76df
IM
1320#if BITS_PER_LONG == 32
1321# define WMULT_CONST (~0UL)
1322#else
1323# define WMULT_CONST (1UL << 32)
1324#endif
1325
1326#define WMULT_SHIFT 32
1327
194081eb
IM
1328/*
1329 * Shift right and round:
1330 */
cf2ab469 1331#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1332
a7be37ac
PZ
1333/*
1334 * delta *= weight / lw
1335 */
cb1c4fc9 1336static unsigned long
45bf76df
IM
1337calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1338 struct load_weight *lw)
1339{
1340 u64 tmp;
1341
c8b28116
NR
1342 /*
1343 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1344 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1345 * 2^SCHED_LOAD_RESOLUTION.
1346 */
1347 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1348 tmp = (u64)delta_exec * scale_load_down(weight);
1349 else
1350 tmp = (u64)delta_exec;
db670dac 1351
7a232e03 1352 if (!lw->inv_weight) {
c8b28116
NR
1353 unsigned long w = scale_load_down(lw->weight);
1354
1355 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
7a232e03 1356 lw->inv_weight = 1;
c8b28116
NR
1357 else if (unlikely(!w))
1358 lw->inv_weight = WMULT_CONST;
7a232e03 1359 else
c8b28116 1360 lw->inv_weight = WMULT_CONST / w;
7a232e03 1361 }
45bf76df 1362
45bf76df
IM
1363 /*
1364 * Check whether we'd overflow the 64-bit multiplication:
1365 */
194081eb 1366 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1367 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1368 WMULT_SHIFT/2);
1369 else
cf2ab469 1370 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1371
ecf691da 1372 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1373}
1374
1091985b 1375static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1376{
1377 lw->weight += inc;
e89996ae 1378 lw->inv_weight = 0;
45bf76df
IM
1379}
1380
1091985b 1381static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1382{
1383 lw->weight -= dec;
e89996ae 1384 lw->inv_weight = 0;
45bf76df
IM
1385}
1386
2069dd75
PZ
1387static inline void update_load_set(struct load_weight *lw, unsigned long w)
1388{
1389 lw->weight = w;
1390 lw->inv_weight = 0;
1391}
1392
2dd73a4f
PW
1393/*
1394 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1395 * of tasks with abnormal "nice" values across CPUs the contribution that
1396 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1397 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1398 * scaled version of the new time slice allocation that they receive on time
1399 * slice expiry etc.
1400 */
1401
cce7ade8
PZ
1402#define WEIGHT_IDLEPRIO 3
1403#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1404
1405/*
1406 * Nice levels are multiplicative, with a gentle 10% change for every
1407 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1408 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1409 * that remained on nice 0.
1410 *
1411 * The "10% effect" is relative and cumulative: from _any_ nice level,
1412 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1413 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1414 * If a task goes up by ~10% and another task goes down by ~10% then
1415 * the relative distance between them is ~25%.)
dd41f596
IM
1416 */
1417static const int prio_to_weight[40] = {
254753dc
IM
1418 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1419 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1420 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1421 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1422 /* 0 */ 1024, 820, 655, 526, 423,
1423 /* 5 */ 335, 272, 215, 172, 137,
1424 /* 10 */ 110, 87, 70, 56, 45,
1425 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1426};
1427
5714d2de
IM
1428/*
1429 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1430 *
1431 * In cases where the weight does not change often, we can use the
1432 * precalculated inverse to speed up arithmetics by turning divisions
1433 * into multiplications:
1434 */
dd41f596 1435static const u32 prio_to_wmult[40] = {
254753dc
IM
1436 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1437 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1438 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1439 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1440 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1441 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1442 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1443 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1444};
2dd73a4f 1445
ef12fefa
BR
1446/* Time spent by the tasks of the cpu accounting group executing in ... */
1447enum cpuacct_stat_index {
1448 CPUACCT_STAT_USER, /* ... user mode */
1449 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1450
1451 CPUACCT_STAT_NSTATS,
1452};
1453
d842de87
SV
1454#ifdef CONFIG_CGROUP_CPUACCT
1455static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1456static void cpuacct_update_stats(struct task_struct *tsk,
1457 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1458#else
1459static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1460static inline void cpuacct_update_stats(struct task_struct *tsk,
1461 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1462#endif
1463
18d95a28
PZ
1464static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1465{
1466 update_load_add(&rq->load, load);
1467}
1468
1469static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1470{
1471 update_load_sub(&rq->load, load);
1472}
1473
7940ca36 1474#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1475typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1476
1477/*
1478 * Iterate the full tree, calling @down when first entering a node and @up when
1479 * leaving it for the final time.
1480 */
eb755805 1481static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1482{
1483 struct task_group *parent, *child;
eb755805 1484 int ret;
c09595f6
PZ
1485
1486 rcu_read_lock();
1487 parent = &root_task_group;
1488down:
eb755805
PZ
1489 ret = (*down)(parent, data);
1490 if (ret)
1491 goto out_unlock;
c09595f6
PZ
1492 list_for_each_entry_rcu(child, &parent->children, siblings) {
1493 parent = child;
1494 goto down;
1495
1496up:
1497 continue;
1498 }
eb755805
PZ
1499 ret = (*up)(parent, data);
1500 if (ret)
1501 goto out_unlock;
c09595f6
PZ
1502
1503 child = parent;
1504 parent = parent->parent;
1505 if (parent)
1506 goto up;
eb755805 1507out_unlock:
c09595f6 1508 rcu_read_unlock();
eb755805
PZ
1509
1510 return ret;
c09595f6
PZ
1511}
1512
eb755805
PZ
1513static int tg_nop(struct task_group *tg, void *data)
1514{
1515 return 0;
c09595f6 1516}
eb755805
PZ
1517#endif
1518
1519#ifdef CONFIG_SMP
f5f08f39
PZ
1520/* Used instead of source_load when we know the type == 0 */
1521static unsigned long weighted_cpuload(const int cpu)
1522{
1523 return cpu_rq(cpu)->load.weight;
1524}
1525
1526/*
1527 * Return a low guess at the load of a migration-source cpu weighted
1528 * according to the scheduling class and "nice" value.
1529 *
1530 * We want to under-estimate the load of migration sources, to
1531 * balance conservatively.
1532 */
1533static unsigned long source_load(int cpu, int type)
1534{
1535 struct rq *rq = cpu_rq(cpu);
1536 unsigned long total = weighted_cpuload(cpu);
1537
1538 if (type == 0 || !sched_feat(LB_BIAS))
1539 return total;
1540
1541 return min(rq->cpu_load[type-1], total);
1542}
1543
1544/*
1545 * Return a high guess at the load of a migration-target cpu weighted
1546 * according to the scheduling class and "nice" value.
1547 */
1548static unsigned long target_load(int cpu, int type)
1549{
1550 struct rq *rq = cpu_rq(cpu);
1551 unsigned long total = weighted_cpuload(cpu);
1552
1553 if (type == 0 || !sched_feat(LB_BIAS))
1554 return total;
1555
1556 return max(rq->cpu_load[type-1], total);
1557}
1558
ae154be1
PZ
1559static unsigned long power_of(int cpu)
1560{
e51fd5e2 1561 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1562}
1563
eb755805
PZ
1564static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1565
1566static unsigned long cpu_avg_load_per_task(int cpu)
1567{
1568 struct rq *rq = cpu_rq(cpu);
af6d596f 1569 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1570
4cd42620
SR
1571 if (nr_running)
1572 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1573 else
1574 rq->avg_load_per_task = 0;
eb755805
PZ
1575
1576 return rq->avg_load_per_task;
1577}
1578
8f45e2b5
GH
1579#ifdef CONFIG_PREEMPT
1580
b78bb868
PZ
1581static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1582
70574a99 1583/*
8f45e2b5
GH
1584 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1585 * way at the expense of forcing extra atomic operations in all
1586 * invocations. This assures that the double_lock is acquired using the
1587 * same underlying policy as the spinlock_t on this architecture, which
1588 * reduces latency compared to the unfair variant below. However, it
1589 * also adds more overhead and therefore may reduce throughput.
70574a99 1590 */
8f45e2b5
GH
1591static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1592 __releases(this_rq->lock)
1593 __acquires(busiest->lock)
1594 __acquires(this_rq->lock)
1595{
05fa785c 1596 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1597 double_rq_lock(this_rq, busiest);
1598
1599 return 1;
1600}
1601
1602#else
1603/*
1604 * Unfair double_lock_balance: Optimizes throughput at the expense of
1605 * latency by eliminating extra atomic operations when the locks are
1606 * already in proper order on entry. This favors lower cpu-ids and will
1607 * grant the double lock to lower cpus over higher ids under contention,
1608 * regardless of entry order into the function.
1609 */
1610static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1611 __releases(this_rq->lock)
1612 __acquires(busiest->lock)
1613 __acquires(this_rq->lock)
1614{
1615 int ret = 0;
1616
05fa785c 1617 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1618 if (busiest < this_rq) {
05fa785c
TG
1619 raw_spin_unlock(&this_rq->lock);
1620 raw_spin_lock(&busiest->lock);
1621 raw_spin_lock_nested(&this_rq->lock,
1622 SINGLE_DEPTH_NESTING);
70574a99
AD
1623 ret = 1;
1624 } else
05fa785c
TG
1625 raw_spin_lock_nested(&busiest->lock,
1626 SINGLE_DEPTH_NESTING);
70574a99
AD
1627 }
1628 return ret;
1629}
1630
8f45e2b5
GH
1631#endif /* CONFIG_PREEMPT */
1632
1633/*
1634 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1635 */
1636static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1637{
1638 if (unlikely(!irqs_disabled())) {
1639 /* printk() doesn't work good under rq->lock */
05fa785c 1640 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1641 BUG_ON(1);
1642 }
1643
1644 return _double_lock_balance(this_rq, busiest);
1645}
1646
70574a99
AD
1647static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1648 __releases(busiest->lock)
1649{
05fa785c 1650 raw_spin_unlock(&busiest->lock);
70574a99
AD
1651 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1652}
1e3c88bd
PZ
1653
1654/*
1655 * double_rq_lock - safely lock two runqueues
1656 *
1657 * Note this does not disable interrupts like task_rq_lock,
1658 * you need to do so manually before calling.
1659 */
1660static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1661 __acquires(rq1->lock)
1662 __acquires(rq2->lock)
1663{
1664 BUG_ON(!irqs_disabled());
1665 if (rq1 == rq2) {
1666 raw_spin_lock(&rq1->lock);
1667 __acquire(rq2->lock); /* Fake it out ;) */
1668 } else {
1669 if (rq1 < rq2) {
1670 raw_spin_lock(&rq1->lock);
1671 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1672 } else {
1673 raw_spin_lock(&rq2->lock);
1674 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1675 }
1676 }
1e3c88bd
PZ
1677}
1678
1679/*
1680 * double_rq_unlock - safely unlock two runqueues
1681 *
1682 * Note this does not restore interrupts like task_rq_unlock,
1683 * you need to do so manually after calling.
1684 */
1685static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1686 __releases(rq1->lock)
1687 __releases(rq2->lock)
1688{
1689 raw_spin_unlock(&rq1->lock);
1690 if (rq1 != rq2)
1691 raw_spin_unlock(&rq2->lock);
1692 else
1693 __release(rq2->lock);
1694}
1695
d95f4122
MG
1696#else /* CONFIG_SMP */
1697
1698/*
1699 * double_rq_lock - safely lock two runqueues
1700 *
1701 * Note this does not disable interrupts like task_rq_lock,
1702 * you need to do so manually before calling.
1703 */
1704static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1705 __acquires(rq1->lock)
1706 __acquires(rq2->lock)
1707{
1708 BUG_ON(!irqs_disabled());
1709 BUG_ON(rq1 != rq2);
1710 raw_spin_lock(&rq1->lock);
1711 __acquire(rq2->lock); /* Fake it out ;) */
1712}
1713
1714/*
1715 * double_rq_unlock - safely unlock two runqueues
1716 *
1717 * Note this does not restore interrupts like task_rq_unlock,
1718 * you need to do so manually after calling.
1719 */
1720static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1721 __releases(rq1->lock)
1722 __releases(rq2->lock)
1723{
1724 BUG_ON(rq1 != rq2);
1725 raw_spin_unlock(&rq1->lock);
1726 __release(rq2->lock);
1727}
1728
18d95a28
PZ
1729#endif
1730
74f5187a 1731static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1732static void update_sysctl(void);
acb4a848 1733static int get_update_sysctl_factor(void);
fdf3e95d 1734static void update_cpu_load(struct rq *this_rq);
dce48a84 1735
cd29fe6f
PZ
1736static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1737{
1738 set_task_rq(p, cpu);
1739#ifdef CONFIG_SMP
1740 /*
1741 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1742 * successfuly executed on another CPU. We must ensure that updates of
1743 * per-task data have been completed by this moment.
1744 */
1745 smp_wmb();
1746 task_thread_info(p)->cpu = cpu;
1747#endif
1748}
dce48a84 1749
1e3c88bd 1750static const struct sched_class rt_sched_class;
dd41f596 1751
34f971f6 1752#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1753#define for_each_class(class) \
1754 for (class = sched_class_highest; class; class = class->next)
dd41f596 1755
1e3c88bd
PZ
1756#include "sched_stats.h"
1757
c09595f6 1758static void inc_nr_running(struct rq *rq)
9c217245
IM
1759{
1760 rq->nr_running++;
9c217245
IM
1761}
1762
c09595f6 1763static void dec_nr_running(struct rq *rq)
9c217245
IM
1764{
1765 rq->nr_running--;
9c217245
IM
1766}
1767
45bf76df
IM
1768static void set_load_weight(struct task_struct *p)
1769{
f05998d4
NR
1770 int prio = p->static_prio - MAX_RT_PRIO;
1771 struct load_weight *load = &p->se.load;
1772
dd41f596
IM
1773 /*
1774 * SCHED_IDLE tasks get minimal weight:
1775 */
1776 if (p->policy == SCHED_IDLE) {
c8b28116 1777 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1778 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1779 return;
1780 }
71f8bd46 1781
c8b28116 1782 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 1783 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
1784}
1785
371fd7e7 1786static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1787{
a64692a3 1788 update_rq_clock(rq);
dd41f596 1789 sched_info_queued(p);
371fd7e7 1790 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1791}
1792
371fd7e7 1793static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1794{
a64692a3 1795 update_rq_clock(rq);
46ac22ba 1796 sched_info_dequeued(p);
371fd7e7 1797 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1798}
1799
1e3c88bd
PZ
1800/*
1801 * activate_task - move a task to the runqueue.
1802 */
371fd7e7 1803static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1804{
1805 if (task_contributes_to_load(p))
1806 rq->nr_uninterruptible--;
1807
371fd7e7 1808 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1809 inc_nr_running(rq);
1810}
1811
1812/*
1813 * deactivate_task - remove a task from the runqueue.
1814 */
371fd7e7 1815static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1816{
1817 if (task_contributes_to_load(p))
1818 rq->nr_uninterruptible++;
1819
371fd7e7 1820 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1821 dec_nr_running(rq);
1822}
1823
b52bfee4
VP
1824#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1825
305e6835
VP
1826/*
1827 * There are no locks covering percpu hardirq/softirq time.
1828 * They are only modified in account_system_vtime, on corresponding CPU
1829 * with interrupts disabled. So, writes are safe.
1830 * They are read and saved off onto struct rq in update_rq_clock().
1831 * This may result in other CPU reading this CPU's irq time and can
1832 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1833 * or new value with a side effect of accounting a slice of irq time to wrong
1834 * task when irq is in progress while we read rq->clock. That is a worthy
1835 * compromise in place of having locks on each irq in account_system_time.
305e6835 1836 */
b52bfee4
VP
1837static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1838static DEFINE_PER_CPU(u64, cpu_softirq_time);
1839
1840static DEFINE_PER_CPU(u64, irq_start_time);
1841static int sched_clock_irqtime;
1842
1843void enable_sched_clock_irqtime(void)
1844{
1845 sched_clock_irqtime = 1;
1846}
1847
1848void disable_sched_clock_irqtime(void)
1849{
1850 sched_clock_irqtime = 0;
1851}
1852
8e92c201
PZ
1853#ifndef CONFIG_64BIT
1854static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1855
1856static inline void irq_time_write_begin(void)
1857{
1858 __this_cpu_inc(irq_time_seq.sequence);
1859 smp_wmb();
1860}
1861
1862static inline void irq_time_write_end(void)
1863{
1864 smp_wmb();
1865 __this_cpu_inc(irq_time_seq.sequence);
1866}
1867
1868static inline u64 irq_time_read(int cpu)
1869{
1870 u64 irq_time;
1871 unsigned seq;
1872
1873 do {
1874 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1875 irq_time = per_cpu(cpu_softirq_time, cpu) +
1876 per_cpu(cpu_hardirq_time, cpu);
1877 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1878
1879 return irq_time;
1880}
1881#else /* CONFIG_64BIT */
1882static inline void irq_time_write_begin(void)
1883{
1884}
1885
1886static inline void irq_time_write_end(void)
1887{
1888}
1889
1890static inline u64 irq_time_read(int cpu)
305e6835 1891{
305e6835
VP
1892 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1893}
8e92c201 1894#endif /* CONFIG_64BIT */
305e6835 1895
fe44d621
PZ
1896/*
1897 * Called before incrementing preempt_count on {soft,}irq_enter
1898 * and before decrementing preempt_count on {soft,}irq_exit.
1899 */
b52bfee4
VP
1900void account_system_vtime(struct task_struct *curr)
1901{
1902 unsigned long flags;
fe44d621 1903 s64 delta;
b52bfee4 1904 int cpu;
b52bfee4
VP
1905
1906 if (!sched_clock_irqtime)
1907 return;
1908
1909 local_irq_save(flags);
1910
b52bfee4 1911 cpu = smp_processor_id();
fe44d621
PZ
1912 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1913 __this_cpu_add(irq_start_time, delta);
1914
8e92c201 1915 irq_time_write_begin();
b52bfee4
VP
1916 /*
1917 * We do not account for softirq time from ksoftirqd here.
1918 * We want to continue accounting softirq time to ksoftirqd thread
1919 * in that case, so as not to confuse scheduler with a special task
1920 * that do not consume any time, but still wants to run.
1921 */
1922 if (hardirq_count())
fe44d621 1923 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1924 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1925 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1926
8e92c201 1927 irq_time_write_end();
b52bfee4
VP
1928 local_irq_restore(flags);
1929}
b7dadc38 1930EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1931
e6e6685a
GC
1932#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1933
1934#ifdef CONFIG_PARAVIRT
1935static inline u64 steal_ticks(u64 steal)
aa483808 1936{
e6e6685a
GC
1937 if (unlikely(steal > NSEC_PER_SEC))
1938 return div_u64(steal, TICK_NSEC);
fe44d621 1939
e6e6685a
GC
1940 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1941}
1942#endif
1943
fe44d621 1944static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1945{
095c0aa8
GC
1946/*
1947 * In theory, the compile should just see 0 here, and optimize out the call
1948 * to sched_rt_avg_update. But I don't trust it...
1949 */
1950#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
1951 s64 steal = 0, irq_delta = 0;
1952#endif
1953#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 1954 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1955
1956 /*
1957 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1958 * this case when a previous update_rq_clock() happened inside a
1959 * {soft,}irq region.
1960 *
1961 * When this happens, we stop ->clock_task and only update the
1962 * prev_irq_time stamp to account for the part that fit, so that a next
1963 * update will consume the rest. This ensures ->clock_task is
1964 * monotonic.
1965 *
1966 * It does however cause some slight miss-attribution of {soft,}irq
1967 * time, a more accurate solution would be to update the irq_time using
1968 * the current rq->clock timestamp, except that would require using
1969 * atomic ops.
1970 */
1971 if (irq_delta > delta)
1972 irq_delta = delta;
1973
1974 rq->prev_irq_time += irq_delta;
1975 delta -= irq_delta;
095c0aa8
GC
1976#endif
1977#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1978 if (static_branch((&paravirt_steal_rq_enabled))) {
1979 u64 st;
1980
1981 steal = paravirt_steal_clock(cpu_of(rq));
1982 steal -= rq->prev_steal_time_rq;
1983
1984 if (unlikely(steal > delta))
1985 steal = delta;
1986
1987 st = steal_ticks(steal);
1988 steal = st * TICK_NSEC;
1989
1990 rq->prev_steal_time_rq += steal;
1991
1992 delta -= steal;
1993 }
1994#endif
1995
fe44d621
PZ
1996 rq->clock_task += delta;
1997
095c0aa8
GC
1998#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
1999 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2000 sched_rt_avg_update(rq, irq_delta + steal);
2001#endif
aa483808
VP
2002}
2003
095c0aa8 2004#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
2005static int irqtime_account_hi_update(void)
2006{
2007 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2008 unsigned long flags;
2009 u64 latest_ns;
2010 int ret = 0;
2011
2012 local_irq_save(flags);
2013 latest_ns = this_cpu_read(cpu_hardirq_time);
2014 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2015 ret = 1;
2016 local_irq_restore(flags);
2017 return ret;
2018}
2019
2020static int irqtime_account_si_update(void)
2021{
2022 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2023 unsigned long flags;
2024 u64 latest_ns;
2025 int ret = 0;
2026
2027 local_irq_save(flags);
2028 latest_ns = this_cpu_read(cpu_softirq_time);
2029 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2030 ret = 1;
2031 local_irq_restore(flags);
2032 return ret;
2033}
2034
fe44d621 2035#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 2036
abb74cef
VP
2037#define sched_clock_irqtime (0)
2038
095c0aa8 2039#endif
b52bfee4 2040
1e3c88bd
PZ
2041#include "sched_idletask.c"
2042#include "sched_fair.c"
2043#include "sched_rt.c"
5091faa4 2044#include "sched_autogroup.c"
34f971f6 2045#include "sched_stoptask.c"
1e3c88bd
PZ
2046#ifdef CONFIG_SCHED_DEBUG
2047# include "sched_debug.c"
2048#endif
2049
34f971f6
PZ
2050void sched_set_stop_task(int cpu, struct task_struct *stop)
2051{
2052 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2053 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2054
2055 if (stop) {
2056 /*
2057 * Make it appear like a SCHED_FIFO task, its something
2058 * userspace knows about and won't get confused about.
2059 *
2060 * Also, it will make PI more or less work without too
2061 * much confusion -- but then, stop work should not
2062 * rely on PI working anyway.
2063 */
2064 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2065
2066 stop->sched_class = &stop_sched_class;
2067 }
2068
2069 cpu_rq(cpu)->stop = stop;
2070
2071 if (old_stop) {
2072 /*
2073 * Reset it back to a normal scheduling class so that
2074 * it can die in pieces.
2075 */
2076 old_stop->sched_class = &rt_sched_class;
2077 }
2078}
2079
14531189 2080/*
dd41f596 2081 * __normal_prio - return the priority that is based on the static prio
14531189 2082 */
14531189
IM
2083static inline int __normal_prio(struct task_struct *p)
2084{
dd41f596 2085 return p->static_prio;
14531189
IM
2086}
2087
b29739f9
IM
2088/*
2089 * Calculate the expected normal priority: i.e. priority
2090 * without taking RT-inheritance into account. Might be
2091 * boosted by interactivity modifiers. Changes upon fork,
2092 * setprio syscalls, and whenever the interactivity
2093 * estimator recalculates.
2094 */
36c8b586 2095static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2096{
2097 int prio;
2098
e05606d3 2099 if (task_has_rt_policy(p))
b29739f9
IM
2100 prio = MAX_RT_PRIO-1 - p->rt_priority;
2101 else
2102 prio = __normal_prio(p);
2103 return prio;
2104}
2105
2106/*
2107 * Calculate the current priority, i.e. the priority
2108 * taken into account by the scheduler. This value might
2109 * be boosted by RT tasks, or might be boosted by
2110 * interactivity modifiers. Will be RT if the task got
2111 * RT-boosted. If not then it returns p->normal_prio.
2112 */
36c8b586 2113static int effective_prio(struct task_struct *p)
b29739f9
IM
2114{
2115 p->normal_prio = normal_prio(p);
2116 /*
2117 * If we are RT tasks or we were boosted to RT priority,
2118 * keep the priority unchanged. Otherwise, update priority
2119 * to the normal priority:
2120 */
2121 if (!rt_prio(p->prio))
2122 return p->normal_prio;
2123 return p->prio;
2124}
2125
1da177e4
LT
2126/**
2127 * task_curr - is this task currently executing on a CPU?
2128 * @p: the task in question.
2129 */
36c8b586 2130inline int task_curr(const struct task_struct *p)
1da177e4
LT
2131{
2132 return cpu_curr(task_cpu(p)) == p;
2133}
2134
cb469845
SR
2135static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2136 const struct sched_class *prev_class,
da7a735e 2137 int oldprio)
cb469845
SR
2138{
2139 if (prev_class != p->sched_class) {
2140 if (prev_class->switched_from)
da7a735e
PZ
2141 prev_class->switched_from(rq, p);
2142 p->sched_class->switched_to(rq, p);
2143 } else if (oldprio != p->prio)
2144 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2145}
2146
1e5a7405
PZ
2147static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2148{
2149 const struct sched_class *class;
2150
2151 if (p->sched_class == rq->curr->sched_class) {
2152 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2153 } else {
2154 for_each_class(class) {
2155 if (class == rq->curr->sched_class)
2156 break;
2157 if (class == p->sched_class) {
2158 resched_task(rq->curr);
2159 break;
2160 }
2161 }
2162 }
2163
2164 /*
2165 * A queue event has occurred, and we're going to schedule. In
2166 * this case, we can save a useless back to back clock update.
2167 */
fd2f4419 2168 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2169 rq->skip_clock_update = 1;
2170}
2171
1da177e4 2172#ifdef CONFIG_SMP
cc367732
IM
2173/*
2174 * Is this task likely cache-hot:
2175 */
e7693a36 2176static int
cc367732
IM
2177task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2178{
2179 s64 delta;
2180
e6c8fba7
PZ
2181 if (p->sched_class != &fair_sched_class)
2182 return 0;
2183
ef8002f6
NR
2184 if (unlikely(p->policy == SCHED_IDLE))
2185 return 0;
2186
f540a608
IM
2187 /*
2188 * Buddy candidates are cache hot:
2189 */
f685ceac 2190 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2191 (&p->se == cfs_rq_of(&p->se)->next ||
2192 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2193 return 1;
2194
6bc1665b
IM
2195 if (sysctl_sched_migration_cost == -1)
2196 return 1;
2197 if (sysctl_sched_migration_cost == 0)
2198 return 0;
2199
cc367732
IM
2200 delta = now - p->se.exec_start;
2201
2202 return delta < (s64)sysctl_sched_migration_cost;
2203}
2204
dd41f596 2205void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2206{
e2912009
PZ
2207#ifdef CONFIG_SCHED_DEBUG
2208 /*
2209 * We should never call set_task_cpu() on a blocked task,
2210 * ttwu() will sort out the placement.
2211 */
077614ee
PZ
2212 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2213 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2214
2215#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2216 /*
2217 * The caller should hold either p->pi_lock or rq->lock, when changing
2218 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2219 *
2220 * sched_move_task() holds both and thus holding either pins the cgroup,
2221 * see set_task_rq().
2222 *
2223 * Furthermore, all task_rq users should acquire both locks, see
2224 * task_rq_lock().
2225 */
0122ec5b
PZ
2226 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2227 lockdep_is_held(&task_rq(p)->lock)));
2228#endif
e2912009
PZ
2229#endif
2230
de1d7286 2231 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2232
0c69774e
PZ
2233 if (task_cpu(p) != new_cpu) {
2234 p->se.nr_migrations++;
a8b0ca17 2235 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 2236 }
dd41f596
IM
2237
2238 __set_task_cpu(p, new_cpu);
c65cc870
IM
2239}
2240
969c7921 2241struct migration_arg {
36c8b586 2242 struct task_struct *task;
1da177e4 2243 int dest_cpu;
70b97a7f 2244};
1da177e4 2245
969c7921
TH
2246static int migration_cpu_stop(void *data);
2247
1da177e4
LT
2248/*
2249 * wait_task_inactive - wait for a thread to unschedule.
2250 *
85ba2d86
RM
2251 * If @match_state is nonzero, it's the @p->state value just checked and
2252 * not expected to change. If it changes, i.e. @p might have woken up,
2253 * then return zero. When we succeed in waiting for @p to be off its CPU,
2254 * we return a positive number (its total switch count). If a second call
2255 * a short while later returns the same number, the caller can be sure that
2256 * @p has remained unscheduled the whole time.
2257 *
1da177e4
LT
2258 * The caller must ensure that the task *will* unschedule sometime soon,
2259 * else this function might spin for a *long* time. This function can't
2260 * be called with interrupts off, or it may introduce deadlock with
2261 * smp_call_function() if an IPI is sent by the same process we are
2262 * waiting to become inactive.
2263 */
85ba2d86 2264unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2265{
2266 unsigned long flags;
dd41f596 2267 int running, on_rq;
85ba2d86 2268 unsigned long ncsw;
70b97a7f 2269 struct rq *rq;
1da177e4 2270
3a5c359a
AK
2271 for (;;) {
2272 /*
2273 * We do the initial early heuristics without holding
2274 * any task-queue locks at all. We'll only try to get
2275 * the runqueue lock when things look like they will
2276 * work out!
2277 */
2278 rq = task_rq(p);
fa490cfd 2279
3a5c359a
AK
2280 /*
2281 * If the task is actively running on another CPU
2282 * still, just relax and busy-wait without holding
2283 * any locks.
2284 *
2285 * NOTE! Since we don't hold any locks, it's not
2286 * even sure that "rq" stays as the right runqueue!
2287 * But we don't care, since "task_running()" will
2288 * return false if the runqueue has changed and p
2289 * is actually now running somewhere else!
2290 */
85ba2d86
RM
2291 while (task_running(rq, p)) {
2292 if (match_state && unlikely(p->state != match_state))
2293 return 0;
3a5c359a 2294 cpu_relax();
85ba2d86 2295 }
fa490cfd 2296
3a5c359a
AK
2297 /*
2298 * Ok, time to look more closely! We need the rq
2299 * lock now, to be *sure*. If we're wrong, we'll
2300 * just go back and repeat.
2301 */
2302 rq = task_rq_lock(p, &flags);
27a9da65 2303 trace_sched_wait_task(p);
3a5c359a 2304 running = task_running(rq, p);
fd2f4419 2305 on_rq = p->on_rq;
85ba2d86 2306 ncsw = 0;
f31e11d8 2307 if (!match_state || p->state == match_state)
93dcf55f 2308 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2309 task_rq_unlock(rq, p, &flags);
fa490cfd 2310
85ba2d86
RM
2311 /*
2312 * If it changed from the expected state, bail out now.
2313 */
2314 if (unlikely(!ncsw))
2315 break;
2316
3a5c359a
AK
2317 /*
2318 * Was it really running after all now that we
2319 * checked with the proper locks actually held?
2320 *
2321 * Oops. Go back and try again..
2322 */
2323 if (unlikely(running)) {
2324 cpu_relax();
2325 continue;
2326 }
fa490cfd 2327
3a5c359a
AK
2328 /*
2329 * It's not enough that it's not actively running,
2330 * it must be off the runqueue _entirely_, and not
2331 * preempted!
2332 *
80dd99b3 2333 * So if it was still runnable (but just not actively
3a5c359a
AK
2334 * running right now), it's preempted, and we should
2335 * yield - it could be a while.
2336 */
2337 if (unlikely(on_rq)) {
8eb90c30
TG
2338 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2339
2340 set_current_state(TASK_UNINTERRUPTIBLE);
2341 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2342 continue;
2343 }
fa490cfd 2344
3a5c359a
AK
2345 /*
2346 * Ahh, all good. It wasn't running, and it wasn't
2347 * runnable, which means that it will never become
2348 * running in the future either. We're all done!
2349 */
2350 break;
2351 }
85ba2d86
RM
2352
2353 return ncsw;
1da177e4
LT
2354}
2355
2356/***
2357 * kick_process - kick a running thread to enter/exit the kernel
2358 * @p: the to-be-kicked thread
2359 *
2360 * Cause a process which is running on another CPU to enter
2361 * kernel-mode, without any delay. (to get signals handled.)
2362 *
25985edc 2363 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2364 * because all it wants to ensure is that the remote task enters
2365 * the kernel. If the IPI races and the task has been migrated
2366 * to another CPU then no harm is done and the purpose has been
2367 * achieved as well.
2368 */
36c8b586 2369void kick_process(struct task_struct *p)
1da177e4
LT
2370{
2371 int cpu;
2372
2373 preempt_disable();
2374 cpu = task_cpu(p);
2375 if ((cpu != smp_processor_id()) && task_curr(p))
2376 smp_send_reschedule(cpu);
2377 preempt_enable();
2378}
b43e3521 2379EXPORT_SYMBOL_GPL(kick_process);
476d139c 2380#endif /* CONFIG_SMP */
1da177e4 2381
970b13ba 2382#ifdef CONFIG_SMP
30da688e 2383/*
013fdb80 2384 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2385 */
5da9a0fb
PZ
2386static int select_fallback_rq(int cpu, struct task_struct *p)
2387{
2388 int dest_cpu;
2389 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2390
2391 /* Look for allowed, online CPU in same node. */
2392 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2393 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2394 return dest_cpu;
2395
2396 /* Any allowed, online CPU? */
2397 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2398 if (dest_cpu < nr_cpu_ids)
2399 return dest_cpu;
2400
2401 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2402 dest_cpu = cpuset_cpus_allowed_fallback(p);
2403 /*
2404 * Don't tell them about moving exiting tasks or
2405 * kernel threads (both mm NULL), since they never
2406 * leave kernel.
2407 */
2408 if (p->mm && printk_ratelimit()) {
2409 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2410 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2411 }
2412
2413 return dest_cpu;
2414}
2415
e2912009 2416/*
013fdb80 2417 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2418 */
970b13ba 2419static inline
7608dec2 2420int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2421{
7608dec2 2422 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2423
2424 /*
2425 * In order not to call set_task_cpu() on a blocking task we need
2426 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2427 * cpu.
2428 *
2429 * Since this is common to all placement strategies, this lives here.
2430 *
2431 * [ this allows ->select_task() to simply return task_cpu(p) and
2432 * not worry about this generic constraint ]
2433 */
2434 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2435 !cpu_online(cpu)))
5da9a0fb 2436 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2437
2438 return cpu;
970b13ba 2439}
09a40af5
MG
2440
2441static void update_avg(u64 *avg, u64 sample)
2442{
2443 s64 diff = sample - *avg;
2444 *avg += diff >> 3;
2445}
970b13ba
PZ
2446#endif
2447
d7c01d27 2448static void
b84cb5df 2449ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2450{
d7c01d27 2451#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2452 struct rq *rq = this_rq();
2453
d7c01d27
PZ
2454#ifdef CONFIG_SMP
2455 int this_cpu = smp_processor_id();
2456
2457 if (cpu == this_cpu) {
2458 schedstat_inc(rq, ttwu_local);
2459 schedstat_inc(p, se.statistics.nr_wakeups_local);
2460 } else {
2461 struct sched_domain *sd;
2462
2463 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 2464 rcu_read_lock();
d7c01d27
PZ
2465 for_each_domain(this_cpu, sd) {
2466 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2467 schedstat_inc(sd, ttwu_wake_remote);
2468 break;
2469 }
2470 }
057f3fad 2471 rcu_read_unlock();
d7c01d27 2472 }
f339b9dc
PZ
2473
2474 if (wake_flags & WF_MIGRATED)
2475 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2476
d7c01d27
PZ
2477#endif /* CONFIG_SMP */
2478
2479 schedstat_inc(rq, ttwu_count);
9ed3811a 2480 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2481
2482 if (wake_flags & WF_SYNC)
9ed3811a 2483 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 2484
d7c01d27
PZ
2485#endif /* CONFIG_SCHEDSTATS */
2486}
2487
2488static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2489{
9ed3811a 2490 activate_task(rq, p, en_flags);
fd2f4419 2491 p->on_rq = 1;
c2f7115e
PZ
2492
2493 /* if a worker is waking up, notify workqueue */
2494 if (p->flags & PF_WQ_WORKER)
2495 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2496}
2497
23f41eeb
PZ
2498/*
2499 * Mark the task runnable and perform wakeup-preemption.
2500 */
89363381 2501static void
23f41eeb 2502ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2503{
89363381 2504 trace_sched_wakeup(p, true);
9ed3811a
TH
2505 check_preempt_curr(rq, p, wake_flags);
2506
2507 p->state = TASK_RUNNING;
2508#ifdef CONFIG_SMP
2509 if (p->sched_class->task_woken)
2510 p->sched_class->task_woken(rq, p);
2511
e69c6341 2512 if (rq->idle_stamp) {
9ed3811a
TH
2513 u64 delta = rq->clock - rq->idle_stamp;
2514 u64 max = 2*sysctl_sched_migration_cost;
2515
2516 if (delta > max)
2517 rq->avg_idle = max;
2518 else
2519 update_avg(&rq->avg_idle, delta);
2520 rq->idle_stamp = 0;
2521 }
2522#endif
2523}
2524
c05fbafb
PZ
2525static void
2526ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2527{
2528#ifdef CONFIG_SMP
2529 if (p->sched_contributes_to_load)
2530 rq->nr_uninterruptible--;
2531#endif
2532
2533 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2534 ttwu_do_wakeup(rq, p, wake_flags);
2535}
2536
2537/*
2538 * Called in case the task @p isn't fully descheduled from its runqueue,
2539 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2540 * since all we need to do is flip p->state to TASK_RUNNING, since
2541 * the task is still ->on_rq.
2542 */
2543static int ttwu_remote(struct task_struct *p, int wake_flags)
2544{
2545 struct rq *rq;
2546 int ret = 0;
2547
2548 rq = __task_rq_lock(p);
2549 if (p->on_rq) {
2550 ttwu_do_wakeup(rq, p, wake_flags);
2551 ret = 1;
2552 }
2553 __task_rq_unlock(rq);
2554
2555 return ret;
2556}
2557
317f3941 2558#ifdef CONFIG_SMP
c5d753a5 2559static void sched_ttwu_do_pending(struct task_struct *list)
317f3941
PZ
2560{
2561 struct rq *rq = this_rq();
317f3941
PZ
2562
2563 raw_spin_lock(&rq->lock);
2564
2565 while (list) {
2566 struct task_struct *p = list;
2567 list = list->wake_entry;
2568 ttwu_do_activate(rq, p, 0);
2569 }
2570
2571 raw_spin_unlock(&rq->lock);
2572}
2573
c5d753a5
PZ
2574#ifdef CONFIG_HOTPLUG_CPU
2575
2576static void sched_ttwu_pending(void)
2577{
2578 struct rq *rq = this_rq();
2579 struct task_struct *list = xchg(&rq->wake_list, NULL);
2580
2581 if (!list)
2582 return;
2583
2584 sched_ttwu_do_pending(list);
2585}
2586
2587#endif /* CONFIG_HOTPLUG_CPU */
2588
317f3941
PZ
2589void scheduler_ipi(void)
2590{
c5d753a5
PZ
2591 struct rq *rq = this_rq();
2592 struct task_struct *list = xchg(&rq->wake_list, NULL);
2593
2594 if (!list)
2595 return;
2596
2597 /*
2598 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2599 * traditionally all their work was done from the interrupt return
2600 * path. Now that we actually do some work, we need to make sure
2601 * we do call them.
2602 *
2603 * Some archs already do call them, luckily irq_enter/exit nest
2604 * properly.
2605 *
2606 * Arguably we should visit all archs and update all handlers,
2607 * however a fair share of IPIs are still resched only so this would
2608 * somewhat pessimize the simple resched case.
2609 */
2610 irq_enter();
2611 sched_ttwu_do_pending(list);
2612 irq_exit();
317f3941
PZ
2613}
2614
2615static void ttwu_queue_remote(struct task_struct *p, int cpu)
2616{
2617 struct rq *rq = cpu_rq(cpu);
2618 struct task_struct *next = rq->wake_list;
2619
2620 for (;;) {
2621 struct task_struct *old = next;
2622
2623 p->wake_entry = next;
2624 next = cmpxchg(&rq->wake_list, old, p);
2625 if (next == old)
2626 break;
2627 }
2628
2629 if (!next)
2630 smp_send_reschedule(cpu);
2631}
d6aa8f85
PZ
2632
2633#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2634static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2635{
2636 struct rq *rq;
2637 int ret = 0;
2638
2639 rq = __task_rq_lock(p);
2640 if (p->on_cpu) {
2641 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2642 ttwu_do_wakeup(rq, p, wake_flags);
2643 ret = 1;
2644 }
2645 __task_rq_unlock(rq);
2646
2647 return ret;
2648
2649}
2650#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2651#endif /* CONFIG_SMP */
317f3941 2652
c05fbafb
PZ
2653static void ttwu_queue(struct task_struct *p, int cpu)
2654{
2655 struct rq *rq = cpu_rq(cpu);
2656
17d9f311 2657#if defined(CONFIG_SMP)
317f3941 2658 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
f01114cb 2659 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
2660 ttwu_queue_remote(p, cpu);
2661 return;
2662 }
2663#endif
2664
c05fbafb
PZ
2665 raw_spin_lock(&rq->lock);
2666 ttwu_do_activate(rq, p, 0);
2667 raw_spin_unlock(&rq->lock);
9ed3811a
TH
2668}
2669
2670/**
1da177e4 2671 * try_to_wake_up - wake up a thread
9ed3811a 2672 * @p: the thread to be awakened
1da177e4 2673 * @state: the mask of task states that can be woken
9ed3811a 2674 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2675 *
2676 * Put it on the run-queue if it's not already there. The "current"
2677 * thread is always on the run-queue (except when the actual
2678 * re-schedule is in progress), and as such you're allowed to do
2679 * the simpler "current->state = TASK_RUNNING" to mark yourself
2680 * runnable without the overhead of this.
2681 *
9ed3811a
TH
2682 * Returns %true if @p was woken up, %false if it was already running
2683 * or @state didn't match @p's state.
1da177e4 2684 */
e4a52bcb
PZ
2685static int
2686try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2687{
1da177e4 2688 unsigned long flags;
c05fbafb 2689 int cpu, success = 0;
2398f2c6 2690
04e2f174 2691 smp_wmb();
013fdb80 2692 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2693 if (!(p->state & state))
1da177e4
LT
2694 goto out;
2695
c05fbafb 2696 success = 1; /* we're going to change ->state */
1da177e4 2697 cpu = task_cpu(p);
1da177e4 2698
c05fbafb
PZ
2699 if (p->on_rq && ttwu_remote(p, wake_flags))
2700 goto stat;
1da177e4 2701
1da177e4 2702#ifdef CONFIG_SMP
e9c84311 2703 /*
c05fbafb
PZ
2704 * If the owning (remote) cpu is still in the middle of schedule() with
2705 * this task as prev, wait until its done referencing the task.
e9c84311 2706 */
e4a52bcb
PZ
2707 while (p->on_cpu) {
2708#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2709 /*
d6aa8f85
PZ
2710 * In case the architecture enables interrupts in
2711 * context_switch(), we cannot busy wait, since that
2712 * would lead to deadlocks when an interrupt hits and
2713 * tries to wake up @prev. So bail and do a complete
2714 * remote wakeup.
e4a52bcb 2715 */
d6aa8f85 2716 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 2717 goto stat;
d6aa8f85 2718#else
e4a52bcb 2719 cpu_relax();
d6aa8f85 2720#endif
371fd7e7 2721 }
0970d299 2722 /*
e4a52bcb 2723 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 2724 */
e4a52bcb 2725 smp_rmb();
1da177e4 2726
a8e4f2ea 2727 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2728 p->state = TASK_WAKING;
e7693a36 2729
e4a52bcb 2730 if (p->sched_class->task_waking)
74f8e4b2 2731 p->sched_class->task_waking(p);
efbbd05a 2732
7608dec2 2733 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2734 if (task_cpu(p) != cpu) {
2735 wake_flags |= WF_MIGRATED;
e4a52bcb 2736 set_task_cpu(p, cpu);
f339b9dc 2737 }
1da177e4 2738#endif /* CONFIG_SMP */
1da177e4 2739
c05fbafb
PZ
2740 ttwu_queue(p, cpu);
2741stat:
b84cb5df 2742 ttwu_stat(p, cpu, wake_flags);
1da177e4 2743out:
013fdb80 2744 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2745
2746 return success;
2747}
2748
21aa9af0
TH
2749/**
2750 * try_to_wake_up_local - try to wake up a local task with rq lock held
2751 * @p: the thread to be awakened
2752 *
2acca55e 2753 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2754 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2755 * the current task.
21aa9af0
TH
2756 */
2757static void try_to_wake_up_local(struct task_struct *p)
2758{
2759 struct rq *rq = task_rq(p);
21aa9af0
TH
2760
2761 BUG_ON(rq != this_rq());
2762 BUG_ON(p == current);
2763 lockdep_assert_held(&rq->lock);
2764
2acca55e
PZ
2765 if (!raw_spin_trylock(&p->pi_lock)) {
2766 raw_spin_unlock(&rq->lock);
2767 raw_spin_lock(&p->pi_lock);
2768 raw_spin_lock(&rq->lock);
2769 }
2770
21aa9af0 2771 if (!(p->state & TASK_NORMAL))
2acca55e 2772 goto out;
21aa9af0 2773
fd2f4419 2774 if (!p->on_rq)
d7c01d27
PZ
2775 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2776
23f41eeb 2777 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2778 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2779out:
2780 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2781}
2782
50fa610a
DH
2783/**
2784 * wake_up_process - Wake up a specific process
2785 * @p: The process to be woken up.
2786 *
2787 * Attempt to wake up the nominated process and move it to the set of runnable
2788 * processes. Returns 1 if the process was woken up, 0 if it was already
2789 * running.
2790 *
2791 * It may be assumed that this function implies a write memory barrier before
2792 * changing the task state if and only if any tasks are woken up.
2793 */
7ad5b3a5 2794int wake_up_process(struct task_struct *p)
1da177e4 2795{
d9514f6c 2796 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2797}
1da177e4
LT
2798EXPORT_SYMBOL(wake_up_process);
2799
7ad5b3a5 2800int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2801{
2802 return try_to_wake_up(p, state, 0);
2803}
2804
1da177e4
LT
2805/*
2806 * Perform scheduler related setup for a newly forked process p.
2807 * p is forked by current.
dd41f596
IM
2808 *
2809 * __sched_fork() is basic setup used by init_idle() too:
2810 */
2811static void __sched_fork(struct task_struct *p)
2812{
fd2f4419
PZ
2813 p->on_rq = 0;
2814
2815 p->se.on_rq = 0;
dd41f596
IM
2816 p->se.exec_start = 0;
2817 p->se.sum_exec_runtime = 0;
f6cf891c 2818 p->se.prev_sum_exec_runtime = 0;
6c594c21 2819 p->se.nr_migrations = 0;
da7a735e 2820 p->se.vruntime = 0;
fd2f4419 2821 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2822
2823#ifdef CONFIG_SCHEDSTATS
41acab88 2824 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2825#endif
476d139c 2826
fa717060 2827 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2828
e107be36
AK
2829#ifdef CONFIG_PREEMPT_NOTIFIERS
2830 INIT_HLIST_HEAD(&p->preempt_notifiers);
2831#endif
dd41f596
IM
2832}
2833
2834/*
2835 * fork()/clone()-time setup:
2836 */
3e51e3ed 2837void sched_fork(struct task_struct *p)
dd41f596 2838{
0122ec5b 2839 unsigned long flags;
dd41f596
IM
2840 int cpu = get_cpu();
2841
2842 __sched_fork(p);
06b83b5f 2843 /*
0017d735 2844 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2845 * nobody will actually run it, and a signal or other external
2846 * event cannot wake it up and insert it on the runqueue either.
2847 */
0017d735 2848 p->state = TASK_RUNNING;
dd41f596 2849
b9dc29e7
MG
2850 /*
2851 * Revert to default priority/policy on fork if requested.
2852 */
2853 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2854 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2855 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2856 p->normal_prio = p->static_prio;
2857 }
b9dc29e7 2858
6c697bdf
MG
2859 if (PRIO_TO_NICE(p->static_prio) < 0) {
2860 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2861 p->normal_prio = p->static_prio;
6c697bdf
MG
2862 set_load_weight(p);
2863 }
2864
b9dc29e7
MG
2865 /*
2866 * We don't need the reset flag anymore after the fork. It has
2867 * fulfilled its duty:
2868 */
2869 p->sched_reset_on_fork = 0;
2870 }
ca94c442 2871
f83f9ac2
PW
2872 /*
2873 * Make sure we do not leak PI boosting priority to the child.
2874 */
2875 p->prio = current->normal_prio;
2876
2ddbf952
HS
2877 if (!rt_prio(p->prio))
2878 p->sched_class = &fair_sched_class;
b29739f9 2879
cd29fe6f
PZ
2880 if (p->sched_class->task_fork)
2881 p->sched_class->task_fork(p);
2882
86951599
PZ
2883 /*
2884 * The child is not yet in the pid-hash so no cgroup attach races,
2885 * and the cgroup is pinned to this child due to cgroup_fork()
2886 * is ran before sched_fork().
2887 *
2888 * Silence PROVE_RCU.
2889 */
0122ec5b 2890 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2891 set_task_cpu(p, cpu);
0122ec5b 2892 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2893
52f17b6c 2894#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2895 if (likely(sched_info_on()))
52f17b6c 2896 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2897#endif
3ca7a440
PZ
2898#if defined(CONFIG_SMP)
2899 p->on_cpu = 0;
4866cde0 2900#endif
bdd4e85d 2901#ifdef CONFIG_PREEMPT_COUNT
4866cde0 2902 /* Want to start with kernel preemption disabled. */
a1261f54 2903 task_thread_info(p)->preempt_count = 1;
1da177e4 2904#endif
806c09a7 2905#ifdef CONFIG_SMP
917b627d 2906 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2907#endif
917b627d 2908
476d139c 2909 put_cpu();
1da177e4
LT
2910}
2911
2912/*
2913 * wake_up_new_task - wake up a newly created task for the first time.
2914 *
2915 * This function will do some initial scheduler statistics housekeeping
2916 * that must be done for every newly created context, then puts the task
2917 * on the runqueue and wakes it.
2918 */
3e51e3ed 2919void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2920{
2921 unsigned long flags;
dd41f596 2922 struct rq *rq;
fabf318e 2923
ab2515c4 2924 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2925#ifdef CONFIG_SMP
2926 /*
2927 * Fork balancing, do it here and not earlier because:
2928 * - cpus_allowed can change in the fork path
2929 * - any previously selected cpu might disappear through hotplug
fabf318e 2930 */
ab2515c4 2931 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
2932#endif
2933
ab2515c4 2934 rq = __task_rq_lock(p);
cd29fe6f 2935 activate_task(rq, p, 0);
fd2f4419 2936 p->on_rq = 1;
89363381 2937 trace_sched_wakeup_new(p, true);
a7558e01 2938 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2939#ifdef CONFIG_SMP
efbbd05a
PZ
2940 if (p->sched_class->task_woken)
2941 p->sched_class->task_woken(rq, p);
9a897c5a 2942#endif
0122ec5b 2943 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2944}
2945
e107be36
AK
2946#ifdef CONFIG_PREEMPT_NOTIFIERS
2947
2948/**
80dd99b3 2949 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2950 * @notifier: notifier struct to register
e107be36
AK
2951 */
2952void preempt_notifier_register(struct preempt_notifier *notifier)
2953{
2954 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2955}
2956EXPORT_SYMBOL_GPL(preempt_notifier_register);
2957
2958/**
2959 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2960 * @notifier: notifier struct to unregister
e107be36
AK
2961 *
2962 * This is safe to call from within a preemption notifier.
2963 */
2964void preempt_notifier_unregister(struct preempt_notifier *notifier)
2965{
2966 hlist_del(&notifier->link);
2967}
2968EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2969
2970static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2971{
2972 struct preempt_notifier *notifier;
2973 struct hlist_node *node;
2974
2975 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2976 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2977}
2978
2979static void
2980fire_sched_out_preempt_notifiers(struct task_struct *curr,
2981 struct task_struct *next)
2982{
2983 struct preempt_notifier *notifier;
2984 struct hlist_node *node;
2985
2986 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2987 notifier->ops->sched_out(notifier, next);
2988}
2989
6d6bc0ad 2990#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2991
2992static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2993{
2994}
2995
2996static void
2997fire_sched_out_preempt_notifiers(struct task_struct *curr,
2998 struct task_struct *next)
2999{
3000}
3001
6d6bc0ad 3002#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3003
4866cde0
NP
3004/**
3005 * prepare_task_switch - prepare to switch tasks
3006 * @rq: the runqueue preparing to switch
421cee29 3007 * @prev: the current task that is being switched out
4866cde0
NP
3008 * @next: the task we are going to switch to.
3009 *
3010 * This is called with the rq lock held and interrupts off. It must
3011 * be paired with a subsequent finish_task_switch after the context
3012 * switch.
3013 *
3014 * prepare_task_switch sets up locking and calls architecture specific
3015 * hooks.
3016 */
e107be36
AK
3017static inline void
3018prepare_task_switch(struct rq *rq, struct task_struct *prev,
3019 struct task_struct *next)
4866cde0 3020{
fe4b04fa
PZ
3021 sched_info_switch(prev, next);
3022 perf_event_task_sched_out(prev, next);
e107be36 3023 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
3024 prepare_lock_switch(rq, next);
3025 prepare_arch_switch(next);
fe4b04fa 3026 trace_sched_switch(prev, next);
4866cde0
NP
3027}
3028
1da177e4
LT
3029/**
3030 * finish_task_switch - clean up after a task-switch
344babaa 3031 * @rq: runqueue associated with task-switch
1da177e4
LT
3032 * @prev: the thread we just switched away from.
3033 *
4866cde0
NP
3034 * finish_task_switch must be called after the context switch, paired
3035 * with a prepare_task_switch call before the context switch.
3036 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3037 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3038 *
3039 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3040 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3041 * with the lock held can cause deadlocks; see schedule() for
3042 * details.)
3043 */
a9957449 3044static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
3045 __releases(rq->lock)
3046{
1da177e4 3047 struct mm_struct *mm = rq->prev_mm;
55a101f8 3048 long prev_state;
1da177e4
LT
3049
3050 rq->prev_mm = NULL;
3051
3052 /*
3053 * A task struct has one reference for the use as "current".
c394cc9f 3054 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3055 * schedule one last time. The schedule call will never return, and
3056 * the scheduled task must drop that reference.
c394cc9f 3057 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
3058 * still held, otherwise prev could be scheduled on another cpu, die
3059 * there before we look at prev->state, and then the reference would
3060 * be dropped twice.
3061 * Manfred Spraul <manfred@colorfullife.com>
3062 */
55a101f8 3063 prev_state = prev->state;
4866cde0 3064 finish_arch_switch(prev);
8381f65d
JI
3065#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3066 local_irq_disable();
3067#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 3068 perf_event_task_sched_in(prev, current);
8381f65d
JI
3069#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3070 local_irq_enable();
3071#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 3072 finish_lock_switch(rq, prev);
e8fa1362 3073
e107be36 3074 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
3075 if (mm)
3076 mmdrop(mm);
c394cc9f 3077 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 3078 /*
3079 * Remove function-return probe instances associated with this
3080 * task and put them back on the free list.
9761eea8 3081 */
c6fd91f0 3082 kprobe_flush_task(prev);
1da177e4 3083 put_task_struct(prev);
c6fd91f0 3084 }
1da177e4
LT
3085}
3086
3f029d3c
GH
3087#ifdef CONFIG_SMP
3088
3089/* assumes rq->lock is held */
3090static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3091{
3092 if (prev->sched_class->pre_schedule)
3093 prev->sched_class->pre_schedule(rq, prev);
3094}
3095
3096/* rq->lock is NOT held, but preemption is disabled */
3097static inline void post_schedule(struct rq *rq)
3098{
3099 if (rq->post_schedule) {
3100 unsigned long flags;
3101
05fa785c 3102 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3103 if (rq->curr->sched_class->post_schedule)
3104 rq->curr->sched_class->post_schedule(rq);
05fa785c 3105 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3106
3107 rq->post_schedule = 0;
3108 }
3109}
3110
3111#else
da19ab51 3112
3f029d3c
GH
3113static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3114{
3115}
3116
3117static inline void post_schedule(struct rq *rq)
3118{
1da177e4
LT
3119}
3120
3f029d3c
GH
3121#endif
3122
1da177e4
LT
3123/**
3124 * schedule_tail - first thing a freshly forked thread must call.
3125 * @prev: the thread we just switched away from.
3126 */
36c8b586 3127asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3128 __releases(rq->lock)
3129{
70b97a7f
IM
3130 struct rq *rq = this_rq();
3131
4866cde0 3132 finish_task_switch(rq, prev);
da19ab51 3133
3f029d3c
GH
3134 /*
3135 * FIXME: do we need to worry about rq being invalidated by the
3136 * task_switch?
3137 */
3138 post_schedule(rq);
70b97a7f 3139
4866cde0
NP
3140#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3141 /* In this case, finish_task_switch does not reenable preemption */
3142 preempt_enable();
3143#endif
1da177e4 3144 if (current->set_child_tid)
b488893a 3145 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3146}
3147
3148/*
3149 * context_switch - switch to the new MM and the new
3150 * thread's register state.
3151 */
dd41f596 3152static inline void
70b97a7f 3153context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3154 struct task_struct *next)
1da177e4 3155{
dd41f596 3156 struct mm_struct *mm, *oldmm;
1da177e4 3157
e107be36 3158 prepare_task_switch(rq, prev, next);
fe4b04fa 3159
dd41f596
IM
3160 mm = next->mm;
3161 oldmm = prev->active_mm;
9226d125
ZA
3162 /*
3163 * For paravirt, this is coupled with an exit in switch_to to
3164 * combine the page table reload and the switch backend into
3165 * one hypercall.
3166 */
224101ed 3167 arch_start_context_switch(prev);
9226d125 3168
31915ab4 3169 if (!mm) {
1da177e4
LT
3170 next->active_mm = oldmm;
3171 atomic_inc(&oldmm->mm_count);
3172 enter_lazy_tlb(oldmm, next);
3173 } else
3174 switch_mm(oldmm, mm, next);
3175
31915ab4 3176 if (!prev->mm) {
1da177e4 3177 prev->active_mm = NULL;
1da177e4
LT
3178 rq->prev_mm = oldmm;
3179 }
3a5f5e48
IM
3180 /*
3181 * Since the runqueue lock will be released by the next
3182 * task (which is an invalid locking op but in the case
3183 * of the scheduler it's an obvious special-case), so we
3184 * do an early lockdep release here:
3185 */
3186#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3187 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3188#endif
1da177e4
LT
3189
3190 /* Here we just switch the register state and the stack. */
3191 switch_to(prev, next, prev);
3192
dd41f596
IM
3193 barrier();
3194 /*
3195 * this_rq must be evaluated again because prev may have moved
3196 * CPUs since it called schedule(), thus the 'rq' on its stack
3197 * frame will be invalid.
3198 */
3199 finish_task_switch(this_rq(), prev);
1da177e4
LT
3200}
3201
3202/*
3203 * nr_running, nr_uninterruptible and nr_context_switches:
3204 *
3205 * externally visible scheduler statistics: current number of runnable
3206 * threads, current number of uninterruptible-sleeping threads, total
3207 * number of context switches performed since bootup.
3208 */
3209unsigned long nr_running(void)
3210{
3211 unsigned long i, sum = 0;
3212
3213 for_each_online_cpu(i)
3214 sum += cpu_rq(i)->nr_running;
3215
3216 return sum;
f711f609 3217}
1da177e4
LT
3218
3219unsigned long nr_uninterruptible(void)
f711f609 3220{
1da177e4 3221 unsigned long i, sum = 0;
f711f609 3222
0a945022 3223 for_each_possible_cpu(i)
1da177e4 3224 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3225
3226 /*
1da177e4
LT
3227 * Since we read the counters lockless, it might be slightly
3228 * inaccurate. Do not allow it to go below zero though:
f711f609 3229 */
1da177e4
LT
3230 if (unlikely((long)sum < 0))
3231 sum = 0;
f711f609 3232
1da177e4 3233 return sum;
f711f609 3234}
f711f609 3235
1da177e4 3236unsigned long long nr_context_switches(void)
46cb4b7c 3237{
cc94abfc
SR
3238 int i;
3239 unsigned long long sum = 0;
46cb4b7c 3240
0a945022 3241 for_each_possible_cpu(i)
1da177e4 3242 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3243
1da177e4
LT
3244 return sum;
3245}
483b4ee6 3246
1da177e4
LT
3247unsigned long nr_iowait(void)
3248{
3249 unsigned long i, sum = 0;
483b4ee6 3250
0a945022 3251 for_each_possible_cpu(i)
1da177e4 3252 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3253
1da177e4
LT
3254 return sum;
3255}
483b4ee6 3256
8c215bd3 3257unsigned long nr_iowait_cpu(int cpu)
69d25870 3258{
8c215bd3 3259 struct rq *this = cpu_rq(cpu);
69d25870
AV
3260 return atomic_read(&this->nr_iowait);
3261}
46cb4b7c 3262
69d25870
AV
3263unsigned long this_cpu_load(void)
3264{
3265 struct rq *this = this_rq();
3266 return this->cpu_load[0];
3267}
e790fb0b 3268
46cb4b7c 3269
dce48a84
TG
3270/* Variables and functions for calc_load */
3271static atomic_long_t calc_load_tasks;
3272static unsigned long calc_load_update;
3273unsigned long avenrun[3];
3274EXPORT_SYMBOL(avenrun);
46cb4b7c 3275
74f5187a
PZ
3276static long calc_load_fold_active(struct rq *this_rq)
3277{
3278 long nr_active, delta = 0;
3279
3280 nr_active = this_rq->nr_running;
3281 nr_active += (long) this_rq->nr_uninterruptible;
3282
3283 if (nr_active != this_rq->calc_load_active) {
3284 delta = nr_active - this_rq->calc_load_active;
3285 this_rq->calc_load_active = nr_active;
3286 }
3287
3288 return delta;
3289}
3290
0f004f5a
PZ
3291static unsigned long
3292calc_load(unsigned long load, unsigned long exp, unsigned long active)
3293{
3294 load *= exp;
3295 load += active * (FIXED_1 - exp);
3296 load += 1UL << (FSHIFT - 1);
3297 return load >> FSHIFT;
3298}
3299
74f5187a
PZ
3300#ifdef CONFIG_NO_HZ
3301/*
3302 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3303 *
3304 * When making the ILB scale, we should try to pull this in as well.
3305 */
3306static atomic_long_t calc_load_tasks_idle;
3307
3308static void calc_load_account_idle(struct rq *this_rq)
3309{
3310 long delta;
3311
3312 delta = calc_load_fold_active(this_rq);
3313 if (delta)
3314 atomic_long_add(delta, &calc_load_tasks_idle);
3315}
3316
3317static long calc_load_fold_idle(void)
3318{
3319 long delta = 0;
3320
3321 /*
3322 * Its got a race, we don't care...
3323 */
3324 if (atomic_long_read(&calc_load_tasks_idle))
3325 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3326
3327 return delta;
3328}
0f004f5a
PZ
3329
3330/**
3331 * fixed_power_int - compute: x^n, in O(log n) time
3332 *
3333 * @x: base of the power
3334 * @frac_bits: fractional bits of @x
3335 * @n: power to raise @x to.
3336 *
3337 * By exploiting the relation between the definition of the natural power
3338 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3339 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3340 * (where: n_i \elem {0, 1}, the binary vector representing n),
3341 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3342 * of course trivially computable in O(log_2 n), the length of our binary
3343 * vector.
3344 */
3345static unsigned long
3346fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3347{
3348 unsigned long result = 1UL << frac_bits;
3349
3350 if (n) for (;;) {
3351 if (n & 1) {
3352 result *= x;
3353 result += 1UL << (frac_bits - 1);
3354 result >>= frac_bits;
3355 }
3356 n >>= 1;
3357 if (!n)
3358 break;
3359 x *= x;
3360 x += 1UL << (frac_bits - 1);
3361 x >>= frac_bits;
3362 }
3363
3364 return result;
3365}
3366
3367/*
3368 * a1 = a0 * e + a * (1 - e)
3369 *
3370 * a2 = a1 * e + a * (1 - e)
3371 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3372 * = a0 * e^2 + a * (1 - e) * (1 + e)
3373 *
3374 * a3 = a2 * e + a * (1 - e)
3375 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3376 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3377 *
3378 * ...
3379 *
3380 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3381 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3382 * = a0 * e^n + a * (1 - e^n)
3383 *
3384 * [1] application of the geometric series:
3385 *
3386 * n 1 - x^(n+1)
3387 * S_n := \Sum x^i = -------------
3388 * i=0 1 - x
3389 */
3390static unsigned long
3391calc_load_n(unsigned long load, unsigned long exp,
3392 unsigned long active, unsigned int n)
3393{
3394
3395 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3396}
3397
3398/*
3399 * NO_HZ can leave us missing all per-cpu ticks calling
3400 * calc_load_account_active(), but since an idle CPU folds its delta into
3401 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3402 * in the pending idle delta if our idle period crossed a load cycle boundary.
3403 *
3404 * Once we've updated the global active value, we need to apply the exponential
3405 * weights adjusted to the number of cycles missed.
3406 */
3407static void calc_global_nohz(unsigned long ticks)
3408{
3409 long delta, active, n;
3410
3411 if (time_before(jiffies, calc_load_update))
3412 return;
3413
3414 /*
3415 * If we crossed a calc_load_update boundary, make sure to fold
3416 * any pending idle changes, the respective CPUs might have
3417 * missed the tick driven calc_load_account_active() update
3418 * due to NO_HZ.
3419 */
3420 delta = calc_load_fold_idle();
3421 if (delta)
3422 atomic_long_add(delta, &calc_load_tasks);
3423
3424 /*
3425 * If we were idle for multiple load cycles, apply them.
3426 */
3427 if (ticks >= LOAD_FREQ) {
3428 n = ticks / LOAD_FREQ;
3429
3430 active = atomic_long_read(&calc_load_tasks);
3431 active = active > 0 ? active * FIXED_1 : 0;
3432
3433 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3434 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3435 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3436
3437 calc_load_update += n * LOAD_FREQ;
3438 }
3439
3440 /*
3441 * Its possible the remainder of the above division also crosses
3442 * a LOAD_FREQ period, the regular check in calc_global_load()
3443 * which comes after this will take care of that.
3444 *
3445 * Consider us being 11 ticks before a cycle completion, and us
3446 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3447 * age us 4 cycles, and the test in calc_global_load() will
3448 * pick up the final one.
3449 */
3450}
74f5187a
PZ
3451#else
3452static void calc_load_account_idle(struct rq *this_rq)
3453{
3454}
3455
3456static inline long calc_load_fold_idle(void)
3457{
3458 return 0;
3459}
0f004f5a
PZ
3460
3461static void calc_global_nohz(unsigned long ticks)
3462{
3463}
74f5187a
PZ
3464#endif
3465
2d02494f
TG
3466/**
3467 * get_avenrun - get the load average array
3468 * @loads: pointer to dest load array
3469 * @offset: offset to add
3470 * @shift: shift count to shift the result left
3471 *
3472 * These values are estimates at best, so no need for locking.
3473 */
3474void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3475{
3476 loads[0] = (avenrun[0] + offset) << shift;
3477 loads[1] = (avenrun[1] + offset) << shift;
3478 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3479}
46cb4b7c 3480
46cb4b7c 3481/*
dce48a84
TG
3482 * calc_load - update the avenrun load estimates 10 ticks after the
3483 * CPUs have updated calc_load_tasks.
7835b98b 3484 */
0f004f5a 3485void calc_global_load(unsigned long ticks)
7835b98b 3486{
dce48a84 3487 long active;
1da177e4 3488
0f004f5a
PZ
3489 calc_global_nohz(ticks);
3490
3491 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3492 return;
1da177e4 3493
dce48a84
TG
3494 active = atomic_long_read(&calc_load_tasks);
3495 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3496
dce48a84
TG
3497 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3498 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3499 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3500
dce48a84
TG
3501 calc_load_update += LOAD_FREQ;
3502}
1da177e4 3503
dce48a84 3504/*
74f5187a
PZ
3505 * Called from update_cpu_load() to periodically update this CPU's
3506 * active count.
dce48a84
TG
3507 */
3508static void calc_load_account_active(struct rq *this_rq)
3509{
74f5187a 3510 long delta;
08c183f3 3511
74f5187a
PZ
3512 if (time_before(jiffies, this_rq->calc_load_update))
3513 return;
783609c6 3514
74f5187a
PZ
3515 delta = calc_load_fold_active(this_rq);
3516 delta += calc_load_fold_idle();
3517 if (delta)
dce48a84 3518 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3519
3520 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3521}
3522
fdf3e95d
VP
3523/*
3524 * The exact cpuload at various idx values, calculated at every tick would be
3525 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3526 *
3527 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3528 * on nth tick when cpu may be busy, then we have:
3529 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3530 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3531 *
3532 * decay_load_missed() below does efficient calculation of
3533 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3534 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3535 *
3536 * The calculation is approximated on a 128 point scale.
3537 * degrade_zero_ticks is the number of ticks after which load at any
3538 * particular idx is approximated to be zero.
3539 * degrade_factor is a precomputed table, a row for each load idx.
3540 * Each column corresponds to degradation factor for a power of two ticks,
3541 * based on 128 point scale.
3542 * Example:
3543 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3544 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3545 *
3546 * With this power of 2 load factors, we can degrade the load n times
3547 * by looking at 1 bits in n and doing as many mult/shift instead of
3548 * n mult/shifts needed by the exact degradation.
3549 */
3550#define DEGRADE_SHIFT 7
3551static const unsigned char
3552 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3553static const unsigned char
3554 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3555 {0, 0, 0, 0, 0, 0, 0, 0},
3556 {64, 32, 8, 0, 0, 0, 0, 0},
3557 {96, 72, 40, 12, 1, 0, 0},
3558 {112, 98, 75, 43, 15, 1, 0},
3559 {120, 112, 98, 76, 45, 16, 2} };
3560
3561/*
3562 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3563 * would be when CPU is idle and so we just decay the old load without
3564 * adding any new load.
3565 */
3566static unsigned long
3567decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3568{
3569 int j = 0;
3570
3571 if (!missed_updates)
3572 return load;
3573
3574 if (missed_updates >= degrade_zero_ticks[idx])
3575 return 0;
3576
3577 if (idx == 1)
3578 return load >> missed_updates;
3579
3580 while (missed_updates) {
3581 if (missed_updates % 2)
3582 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3583
3584 missed_updates >>= 1;
3585 j++;
3586 }
3587 return load;
3588}
3589
46cb4b7c 3590/*
dd41f596 3591 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3592 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3593 * every tick. We fix it up based on jiffies.
46cb4b7c 3594 */
dd41f596 3595static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3596{
495eca49 3597 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3598 unsigned long curr_jiffies = jiffies;
3599 unsigned long pending_updates;
dd41f596 3600 int i, scale;
46cb4b7c 3601
dd41f596 3602 this_rq->nr_load_updates++;
46cb4b7c 3603
fdf3e95d
VP
3604 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3605 if (curr_jiffies == this_rq->last_load_update_tick)
3606 return;
3607
3608 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3609 this_rq->last_load_update_tick = curr_jiffies;
3610
dd41f596 3611 /* Update our load: */
fdf3e95d
VP
3612 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3613 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3614 unsigned long old_load, new_load;
7d1e6a9b 3615
dd41f596 3616 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3617
dd41f596 3618 old_load = this_rq->cpu_load[i];
fdf3e95d 3619 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3620 new_load = this_load;
a25707f3
IM
3621 /*
3622 * Round up the averaging division if load is increasing. This
3623 * prevents us from getting stuck on 9 if the load is 10, for
3624 * example.
3625 */
3626 if (new_load > old_load)
fdf3e95d
VP
3627 new_load += scale - 1;
3628
3629 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3630 }
da2b71ed
SS
3631
3632 sched_avg_update(this_rq);
fdf3e95d
VP
3633}
3634
3635static void update_cpu_load_active(struct rq *this_rq)
3636{
3637 update_cpu_load(this_rq);
46cb4b7c 3638
74f5187a 3639 calc_load_account_active(this_rq);
46cb4b7c
SS
3640}
3641
dd41f596 3642#ifdef CONFIG_SMP
8a0be9ef 3643
46cb4b7c 3644/*
38022906
PZ
3645 * sched_exec - execve() is a valuable balancing opportunity, because at
3646 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3647 */
38022906 3648void sched_exec(void)
46cb4b7c 3649{
38022906 3650 struct task_struct *p = current;
1da177e4 3651 unsigned long flags;
0017d735 3652 int dest_cpu;
46cb4b7c 3653
8f42ced9 3654 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3655 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3656 if (dest_cpu == smp_processor_id())
3657 goto unlock;
38022906 3658
8f42ced9 3659 if (likely(cpu_active(dest_cpu))) {
969c7921 3660 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3661
8f42ced9
PZ
3662 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3663 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3664 return;
3665 }
0017d735 3666unlock:
8f42ced9 3667 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3668}
dd41f596 3669
1da177e4
LT
3670#endif
3671
1da177e4
LT
3672DEFINE_PER_CPU(struct kernel_stat, kstat);
3673
3674EXPORT_PER_CPU_SYMBOL(kstat);
3675
3676/*
c5f8d995 3677 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3678 * @p in case that task is currently running.
c5f8d995
HS
3679 *
3680 * Called with task_rq_lock() held on @rq.
1da177e4 3681 */
c5f8d995
HS
3682static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3683{
3684 u64 ns = 0;
3685
3686 if (task_current(rq, p)) {
3687 update_rq_clock(rq);
305e6835 3688 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3689 if ((s64)ns < 0)
3690 ns = 0;
3691 }
3692
3693 return ns;
3694}
3695
bb34d92f 3696unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3697{
1da177e4 3698 unsigned long flags;
41b86e9c 3699 struct rq *rq;
bb34d92f 3700 u64 ns = 0;
48f24c4d 3701
41b86e9c 3702 rq = task_rq_lock(p, &flags);
c5f8d995 3703 ns = do_task_delta_exec(p, rq);
0122ec5b 3704 task_rq_unlock(rq, p, &flags);
1508487e 3705
c5f8d995
HS
3706 return ns;
3707}
f06febc9 3708
c5f8d995
HS
3709/*
3710 * Return accounted runtime for the task.
3711 * In case the task is currently running, return the runtime plus current's
3712 * pending runtime that have not been accounted yet.
3713 */
3714unsigned long long task_sched_runtime(struct task_struct *p)
3715{
3716 unsigned long flags;
3717 struct rq *rq;
3718 u64 ns = 0;
3719
3720 rq = task_rq_lock(p, &flags);
3721 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3722 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3723
3724 return ns;
3725}
48f24c4d 3726
c5f8d995
HS
3727/*
3728 * Return sum_exec_runtime for the thread group.
3729 * In case the task is currently running, return the sum plus current's
3730 * pending runtime that have not been accounted yet.
3731 *
3732 * Note that the thread group might have other running tasks as well,
3733 * so the return value not includes other pending runtime that other
3734 * running tasks might have.
3735 */
3736unsigned long long thread_group_sched_runtime(struct task_struct *p)
3737{
3738 struct task_cputime totals;
3739 unsigned long flags;
3740 struct rq *rq;
3741 u64 ns;
3742
3743 rq = task_rq_lock(p, &flags);
3744 thread_group_cputime(p, &totals);
3745 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3746 task_rq_unlock(rq, p, &flags);
48f24c4d 3747
1da177e4
LT
3748 return ns;
3749}
3750
1da177e4
LT
3751/*
3752 * Account user cpu time to a process.
3753 * @p: the process that the cpu time gets accounted to
1da177e4 3754 * @cputime: the cpu time spent in user space since the last update
457533a7 3755 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3756 */
457533a7
MS
3757void account_user_time(struct task_struct *p, cputime_t cputime,
3758 cputime_t cputime_scaled)
1da177e4
LT
3759{
3760 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3761 cputime64_t tmp;
3762
457533a7 3763 /* Add user time to process. */
1da177e4 3764 p->utime = cputime_add(p->utime, cputime);
457533a7 3765 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3766 account_group_user_time(p, cputime);
1da177e4
LT
3767
3768 /* Add user time to cpustat. */
3769 tmp = cputime_to_cputime64(cputime);
3770 if (TASK_NICE(p) > 0)
3771 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3772 else
3773 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3774
3775 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3776 /* Account for user time used */
3777 acct_update_integrals(p);
1da177e4
LT
3778}
3779
94886b84
LV
3780/*
3781 * Account guest cpu time to a process.
3782 * @p: the process that the cpu time gets accounted to
3783 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3784 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3785 */
457533a7
MS
3786static void account_guest_time(struct task_struct *p, cputime_t cputime,
3787 cputime_t cputime_scaled)
94886b84
LV
3788{
3789 cputime64_t tmp;
3790 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3791
3792 tmp = cputime_to_cputime64(cputime);
3793
457533a7 3794 /* Add guest time to process. */
94886b84 3795 p->utime = cputime_add(p->utime, cputime);
457533a7 3796 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3797 account_group_user_time(p, cputime);
94886b84
LV
3798 p->gtime = cputime_add(p->gtime, cputime);
3799
457533a7 3800 /* Add guest time to cpustat. */
ce0e7b28
RO
3801 if (TASK_NICE(p) > 0) {
3802 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3803 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3804 } else {
3805 cpustat->user = cputime64_add(cpustat->user, tmp);
3806 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3807 }
94886b84
LV
3808}
3809
70a89a66
VP
3810/*
3811 * Account system cpu time to a process and desired cpustat field
3812 * @p: the process that the cpu time gets accounted to
3813 * @cputime: the cpu time spent in kernel space since the last update
3814 * @cputime_scaled: cputime scaled by cpu frequency
3815 * @target_cputime64: pointer to cpustat field that has to be updated
3816 */
3817static inline
3818void __account_system_time(struct task_struct *p, cputime_t cputime,
3819 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3820{
3821 cputime64_t tmp = cputime_to_cputime64(cputime);
3822
3823 /* Add system time to process. */
3824 p->stime = cputime_add(p->stime, cputime);
3825 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3826 account_group_system_time(p, cputime);
3827
3828 /* Add system time to cpustat. */
3829 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3830 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3831
3832 /* Account for system time used */
3833 acct_update_integrals(p);
3834}
3835
1da177e4
LT
3836/*
3837 * Account system cpu time to a process.
3838 * @p: the process that the cpu time gets accounted to
3839 * @hardirq_offset: the offset to subtract from hardirq_count()
3840 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3841 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3842 */
3843void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3844 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3845{
3846 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3847 cputime64_t *target_cputime64;
1da177e4 3848
983ed7a6 3849 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3850 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3851 return;
3852 }
94886b84 3853
1da177e4 3854 if (hardirq_count() - hardirq_offset)
70a89a66 3855 target_cputime64 = &cpustat->irq;
75e1056f 3856 else if (in_serving_softirq())
70a89a66 3857 target_cputime64 = &cpustat->softirq;
1da177e4 3858 else
70a89a66 3859 target_cputime64 = &cpustat->system;
ef12fefa 3860
70a89a66 3861 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3862}
3863
c66f08be 3864/*
1da177e4 3865 * Account for involuntary wait time.
544b4a1f 3866 * @cputime: the cpu time spent in involuntary wait
c66f08be 3867 */
79741dd3 3868void account_steal_time(cputime_t cputime)
c66f08be 3869{
79741dd3
MS
3870 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3871 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3872
3873 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3874}
3875
1da177e4 3876/*
79741dd3
MS
3877 * Account for idle time.
3878 * @cputime: the cpu time spent in idle wait
1da177e4 3879 */
79741dd3 3880void account_idle_time(cputime_t cputime)
1da177e4
LT
3881{
3882 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3883 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3884 struct rq *rq = this_rq();
1da177e4 3885
79741dd3
MS
3886 if (atomic_read(&rq->nr_iowait) > 0)
3887 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3888 else
3889 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3890}
3891
e6e6685a
GC
3892static __always_inline bool steal_account_process_tick(void)
3893{
3894#ifdef CONFIG_PARAVIRT
3895 if (static_branch(&paravirt_steal_enabled)) {
3896 u64 steal, st = 0;
3897
3898 steal = paravirt_steal_clock(smp_processor_id());
3899 steal -= this_rq()->prev_steal_time;
3900
3901 st = steal_ticks(steal);
3902 this_rq()->prev_steal_time += st * TICK_NSEC;
3903
3904 account_steal_time(st);
3905 return st;
3906 }
3907#endif
3908 return false;
3909}
3910
79741dd3
MS
3911#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3912
abb74cef
VP
3913#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3914/*
3915 * Account a tick to a process and cpustat
3916 * @p: the process that the cpu time gets accounted to
3917 * @user_tick: is the tick from userspace
3918 * @rq: the pointer to rq
3919 *
3920 * Tick demultiplexing follows the order
3921 * - pending hardirq update
3922 * - pending softirq update
3923 * - user_time
3924 * - idle_time
3925 * - system time
3926 * - check for guest_time
3927 * - else account as system_time
3928 *
3929 * Check for hardirq is done both for system and user time as there is
3930 * no timer going off while we are on hardirq and hence we may never get an
3931 * opportunity to update it solely in system time.
3932 * p->stime and friends are only updated on system time and not on irq
3933 * softirq as those do not count in task exec_runtime any more.
3934 */
3935static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3936 struct rq *rq)
3937{
3938 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3939 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3940 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3941
e6e6685a
GC
3942 if (steal_account_process_tick())
3943 return;
3944
abb74cef
VP
3945 if (irqtime_account_hi_update()) {
3946 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3947 } else if (irqtime_account_si_update()) {
3948 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3949 } else if (this_cpu_ksoftirqd() == p) {
3950 /*
3951 * ksoftirqd time do not get accounted in cpu_softirq_time.
3952 * So, we have to handle it separately here.
3953 * Also, p->stime needs to be updated for ksoftirqd.
3954 */
3955 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3956 &cpustat->softirq);
abb74cef
VP
3957 } else if (user_tick) {
3958 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3959 } else if (p == rq->idle) {
3960 account_idle_time(cputime_one_jiffy);
3961 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3962 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3963 } else {
3964 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3965 &cpustat->system);
3966 }
3967}
3968
3969static void irqtime_account_idle_ticks(int ticks)
3970{
3971 int i;
3972 struct rq *rq = this_rq();
3973
3974 for (i = 0; i < ticks; i++)
3975 irqtime_account_process_tick(current, 0, rq);
3976}
544b4a1f 3977#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3978static void irqtime_account_idle_ticks(int ticks) {}
3979static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3980 struct rq *rq) {}
544b4a1f 3981#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3982
3983/*
3984 * Account a single tick of cpu time.
3985 * @p: the process that the cpu time gets accounted to
3986 * @user_tick: indicates if the tick is a user or a system tick
3987 */
3988void account_process_tick(struct task_struct *p, int user_tick)
3989{
a42548a1 3990 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3991 struct rq *rq = this_rq();
3992
abb74cef
VP
3993 if (sched_clock_irqtime) {
3994 irqtime_account_process_tick(p, user_tick, rq);
3995 return;
3996 }
3997
e6e6685a
GC
3998 if (steal_account_process_tick())
3999 return;
4000
79741dd3 4001 if (user_tick)
a42548a1 4002 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 4003 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 4004 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
4005 one_jiffy_scaled);
4006 else
a42548a1 4007 account_idle_time(cputime_one_jiffy);
79741dd3
MS
4008}
4009
4010/*
4011 * Account multiple ticks of steal time.
4012 * @p: the process from which the cpu time has been stolen
4013 * @ticks: number of stolen ticks
4014 */
4015void account_steal_ticks(unsigned long ticks)
4016{
4017 account_steal_time(jiffies_to_cputime(ticks));
4018}
4019
4020/*
4021 * Account multiple ticks of idle time.
4022 * @ticks: number of stolen ticks
4023 */
4024void account_idle_ticks(unsigned long ticks)
4025{
abb74cef
VP
4026
4027 if (sched_clock_irqtime) {
4028 irqtime_account_idle_ticks(ticks);
4029 return;
4030 }
4031
79741dd3 4032 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4033}
4034
79741dd3
MS
4035#endif
4036
49048622
BS
4037/*
4038 * Use precise platform statistics if available:
4039 */
4040#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 4041void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4042{
d99ca3b9
HS
4043 *ut = p->utime;
4044 *st = p->stime;
49048622
BS
4045}
4046
0cf55e1e 4047void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4048{
0cf55e1e
HS
4049 struct task_cputime cputime;
4050
4051 thread_group_cputime(p, &cputime);
4052
4053 *ut = cputime.utime;
4054 *st = cputime.stime;
49048622
BS
4055}
4056#else
761b1d26
HS
4057
4058#ifndef nsecs_to_cputime
b7b20df9 4059# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
4060#endif
4061
d180c5bc 4062void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4063{
d99ca3b9 4064 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
4065
4066 /*
4067 * Use CFS's precise accounting:
4068 */
d180c5bc 4069 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
4070
4071 if (total) {
e75e863d 4072 u64 temp = rtime;
d180c5bc 4073
e75e863d 4074 temp *= utime;
49048622 4075 do_div(temp, total);
d180c5bc
HS
4076 utime = (cputime_t)temp;
4077 } else
4078 utime = rtime;
49048622 4079
d180c5bc
HS
4080 /*
4081 * Compare with previous values, to keep monotonicity:
4082 */
761b1d26 4083 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 4084 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 4085
d99ca3b9
HS
4086 *ut = p->prev_utime;
4087 *st = p->prev_stime;
49048622
BS
4088}
4089
0cf55e1e
HS
4090/*
4091 * Must be called with siglock held.
4092 */
4093void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4094{
0cf55e1e
HS
4095 struct signal_struct *sig = p->signal;
4096 struct task_cputime cputime;
4097 cputime_t rtime, utime, total;
49048622 4098
0cf55e1e 4099 thread_group_cputime(p, &cputime);
49048622 4100
0cf55e1e
HS
4101 total = cputime_add(cputime.utime, cputime.stime);
4102 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 4103
0cf55e1e 4104 if (total) {
e75e863d 4105 u64 temp = rtime;
49048622 4106
e75e863d 4107 temp *= cputime.utime;
0cf55e1e
HS
4108 do_div(temp, total);
4109 utime = (cputime_t)temp;
4110 } else
4111 utime = rtime;
4112
4113 sig->prev_utime = max(sig->prev_utime, utime);
4114 sig->prev_stime = max(sig->prev_stime,
4115 cputime_sub(rtime, sig->prev_utime));
4116
4117 *ut = sig->prev_utime;
4118 *st = sig->prev_stime;
49048622 4119}
49048622 4120#endif
49048622 4121
7835b98b
CL
4122/*
4123 * This function gets called by the timer code, with HZ frequency.
4124 * We call it with interrupts disabled.
7835b98b
CL
4125 */
4126void scheduler_tick(void)
4127{
7835b98b
CL
4128 int cpu = smp_processor_id();
4129 struct rq *rq = cpu_rq(cpu);
dd41f596 4130 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4131
4132 sched_clock_tick();
dd41f596 4133
05fa785c 4134 raw_spin_lock(&rq->lock);
3e51f33f 4135 update_rq_clock(rq);
fdf3e95d 4136 update_cpu_load_active(rq);
fa85ae24 4137 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4138 raw_spin_unlock(&rq->lock);
7835b98b 4139
e9d2b064 4140 perf_event_task_tick();
e220d2dc 4141
e418e1c2 4142#ifdef CONFIG_SMP
dd41f596
IM
4143 rq->idle_at_tick = idle_cpu(cpu);
4144 trigger_load_balance(rq, cpu);
e418e1c2 4145#endif
1da177e4
LT
4146}
4147
132380a0 4148notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4149{
4150 if (in_lock_functions(addr)) {
4151 addr = CALLER_ADDR2;
4152 if (in_lock_functions(addr))
4153 addr = CALLER_ADDR3;
4154 }
4155 return addr;
4156}
1da177e4 4157
7e49fcce
SR
4158#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4159 defined(CONFIG_PREEMPT_TRACER))
4160
43627582 4161void __kprobes add_preempt_count(int val)
1da177e4 4162{
6cd8a4bb 4163#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4164 /*
4165 * Underflow?
4166 */
9a11b49a
IM
4167 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4168 return;
6cd8a4bb 4169#endif
1da177e4 4170 preempt_count() += val;
6cd8a4bb 4171#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4172 /*
4173 * Spinlock count overflowing soon?
4174 */
33859f7f
MOS
4175 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4176 PREEMPT_MASK - 10);
6cd8a4bb
SR
4177#endif
4178 if (preempt_count() == val)
4179 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4180}
4181EXPORT_SYMBOL(add_preempt_count);
4182
43627582 4183void __kprobes sub_preempt_count(int val)
1da177e4 4184{
6cd8a4bb 4185#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4186 /*
4187 * Underflow?
4188 */
01e3eb82 4189 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4190 return;
1da177e4
LT
4191 /*
4192 * Is the spinlock portion underflowing?
4193 */
9a11b49a
IM
4194 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4195 !(preempt_count() & PREEMPT_MASK)))
4196 return;
6cd8a4bb 4197#endif
9a11b49a 4198
6cd8a4bb
SR
4199 if (preempt_count() == val)
4200 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4201 preempt_count() -= val;
4202}
4203EXPORT_SYMBOL(sub_preempt_count);
4204
4205#endif
4206
4207/*
dd41f596 4208 * Print scheduling while atomic bug:
1da177e4 4209 */
dd41f596 4210static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4211{
838225b4
SS
4212 struct pt_regs *regs = get_irq_regs();
4213
3df0fc5b
PZ
4214 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4215 prev->comm, prev->pid, preempt_count());
838225b4 4216
dd41f596 4217 debug_show_held_locks(prev);
e21f5b15 4218 print_modules();
dd41f596
IM
4219 if (irqs_disabled())
4220 print_irqtrace_events(prev);
838225b4
SS
4221
4222 if (regs)
4223 show_regs(regs);
4224 else
4225 dump_stack();
dd41f596 4226}
1da177e4 4227
dd41f596
IM
4228/*
4229 * Various schedule()-time debugging checks and statistics:
4230 */
4231static inline void schedule_debug(struct task_struct *prev)
4232{
1da177e4 4233 /*
41a2d6cf 4234 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4235 * schedule() atomically, we ignore that path for now.
4236 * Otherwise, whine if we are scheduling when we should not be.
4237 */
3f33a7ce 4238 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 4239 __schedule_bug(prev);
b3fbab05 4240 rcu_sleep_check();
dd41f596 4241
1da177e4
LT
4242 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4243
2d72376b 4244 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
4245}
4246
6cecd084 4247static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4248{
61eadef6 4249 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 4250 update_rq_clock(rq);
6cecd084 4251 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4252}
4253
dd41f596
IM
4254/*
4255 * Pick up the highest-prio task:
4256 */
4257static inline struct task_struct *
b67802ea 4258pick_next_task(struct rq *rq)
dd41f596 4259{
5522d5d5 4260 const struct sched_class *class;
dd41f596 4261 struct task_struct *p;
1da177e4
LT
4262
4263 /*
dd41f596
IM
4264 * Optimization: we know that if all tasks are in
4265 * the fair class we can call that function directly:
1da177e4 4266 */
dd41f596 4267 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4268 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4269 if (likely(p))
4270 return p;
1da177e4
LT
4271 }
4272
34f971f6 4273 for_each_class(class) {
fb8d4724 4274 p = class->pick_next_task(rq);
dd41f596
IM
4275 if (p)
4276 return p;
dd41f596 4277 }
34f971f6
PZ
4278
4279 BUG(); /* the idle class will always have a runnable task */
dd41f596 4280}
1da177e4 4281
dd41f596 4282/*
c259e01a 4283 * __schedule() is the main scheduler function.
dd41f596 4284 */
c259e01a 4285static void __sched __schedule(void)
dd41f596
IM
4286{
4287 struct task_struct *prev, *next;
67ca7bde 4288 unsigned long *switch_count;
dd41f596 4289 struct rq *rq;
31656519 4290 int cpu;
dd41f596 4291
ff743345
PZ
4292need_resched:
4293 preempt_disable();
dd41f596
IM
4294 cpu = smp_processor_id();
4295 rq = cpu_rq(cpu);
25502a6c 4296 rcu_note_context_switch(cpu);
dd41f596 4297 prev = rq->curr;
dd41f596 4298
dd41f596 4299 schedule_debug(prev);
1da177e4 4300
31656519 4301 if (sched_feat(HRTICK))
f333fdc9 4302 hrtick_clear(rq);
8f4d37ec 4303
05fa785c 4304 raw_spin_lock_irq(&rq->lock);
1da177e4 4305
246d86b5 4306 switch_count = &prev->nivcsw;
1da177e4 4307 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4308 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4309 prev->state = TASK_RUNNING;
21aa9af0 4310 } else {
2acca55e
PZ
4311 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4312 prev->on_rq = 0;
4313
21aa9af0 4314 /*
2acca55e
PZ
4315 * If a worker went to sleep, notify and ask workqueue
4316 * whether it wants to wake up a task to maintain
4317 * concurrency.
21aa9af0
TH
4318 */
4319 if (prev->flags & PF_WQ_WORKER) {
4320 struct task_struct *to_wakeup;
4321
4322 to_wakeup = wq_worker_sleeping(prev, cpu);
4323 if (to_wakeup)
4324 try_to_wake_up_local(to_wakeup);
4325 }
21aa9af0 4326 }
dd41f596 4327 switch_count = &prev->nvcsw;
1da177e4
LT
4328 }
4329
3f029d3c 4330 pre_schedule(rq, prev);
f65eda4f 4331
dd41f596 4332 if (unlikely(!rq->nr_running))
1da177e4 4333 idle_balance(cpu, rq);
1da177e4 4334
df1c99d4 4335 put_prev_task(rq, prev);
b67802ea 4336 next = pick_next_task(rq);
f26f9aff
MG
4337 clear_tsk_need_resched(prev);
4338 rq->skip_clock_update = 0;
1da177e4 4339
1da177e4 4340 if (likely(prev != next)) {
1da177e4
LT
4341 rq->nr_switches++;
4342 rq->curr = next;
4343 ++*switch_count;
4344
dd41f596 4345 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4346 /*
246d86b5
ON
4347 * The context switch have flipped the stack from under us
4348 * and restored the local variables which were saved when
4349 * this task called schedule() in the past. prev == current
4350 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4351 */
4352 cpu = smp_processor_id();
4353 rq = cpu_rq(cpu);
1da177e4 4354 } else
05fa785c 4355 raw_spin_unlock_irq(&rq->lock);
1da177e4 4356
3f029d3c 4357 post_schedule(rq);
1da177e4 4358
1da177e4 4359 preempt_enable_no_resched();
ff743345 4360 if (need_resched())
1da177e4
LT
4361 goto need_resched;
4362}
c259e01a 4363
9c40cef2
TG
4364static inline void sched_submit_work(struct task_struct *tsk)
4365{
4366 if (!tsk->state)
4367 return;
4368 /*
4369 * If we are going to sleep and we have plugged IO queued,
4370 * make sure to submit it to avoid deadlocks.
4371 */
4372 if (blk_needs_flush_plug(tsk))
4373 blk_schedule_flush_plug(tsk);
4374}
4375
c259e01a
TG
4376asmlinkage void schedule(void)
4377{
9c40cef2
TG
4378 struct task_struct *tsk = current;
4379
4380 sched_submit_work(tsk);
c259e01a
TG
4381 __schedule();
4382}
1da177e4
LT
4383EXPORT_SYMBOL(schedule);
4384
c08f7829 4385#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4386
c6eb3dda
PZ
4387static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4388{
c6eb3dda 4389 if (lock->owner != owner)
307bf980 4390 return false;
0d66bf6d
PZ
4391
4392 /*
c6eb3dda
PZ
4393 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4394 * lock->owner still matches owner, if that fails, owner might
4395 * point to free()d memory, if it still matches, the rcu_read_lock()
4396 * ensures the memory stays valid.
0d66bf6d 4397 */
c6eb3dda 4398 barrier();
0d66bf6d 4399
307bf980 4400 return owner->on_cpu;
c6eb3dda 4401}
0d66bf6d 4402
c6eb3dda
PZ
4403/*
4404 * Look out! "owner" is an entirely speculative pointer
4405 * access and not reliable.
4406 */
4407int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4408{
4409 if (!sched_feat(OWNER_SPIN))
4410 return 0;
0d66bf6d 4411
307bf980 4412 rcu_read_lock();
c6eb3dda
PZ
4413 while (owner_running(lock, owner)) {
4414 if (need_resched())
307bf980 4415 break;
0d66bf6d 4416
335d7afb 4417 arch_mutex_cpu_relax();
0d66bf6d 4418 }
307bf980 4419 rcu_read_unlock();
4b402210 4420
c6eb3dda 4421 /*
307bf980
TG
4422 * We break out the loop above on need_resched() and when the
4423 * owner changed, which is a sign for heavy contention. Return
4424 * success only when lock->owner is NULL.
c6eb3dda 4425 */
307bf980 4426 return lock->owner == NULL;
0d66bf6d
PZ
4427}
4428#endif
4429
1da177e4
LT
4430#ifdef CONFIG_PREEMPT
4431/*
2ed6e34f 4432 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4433 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4434 * occur there and call schedule directly.
4435 */
d1f74e20 4436asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4437{
4438 struct thread_info *ti = current_thread_info();
6478d880 4439
1da177e4
LT
4440 /*
4441 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4442 * we do not want to preempt the current task. Just return..
1da177e4 4443 */
beed33a8 4444 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4445 return;
4446
3a5c359a 4447 do {
d1f74e20 4448 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 4449 __schedule();
d1f74e20 4450 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4451
3a5c359a
AK
4452 /*
4453 * Check again in case we missed a preemption opportunity
4454 * between schedule and now.
4455 */
4456 barrier();
5ed0cec0 4457 } while (need_resched());
1da177e4 4458}
1da177e4
LT
4459EXPORT_SYMBOL(preempt_schedule);
4460
4461/*
2ed6e34f 4462 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4463 * off of irq context.
4464 * Note, that this is called and return with irqs disabled. This will
4465 * protect us against recursive calling from irq.
4466 */
4467asmlinkage void __sched preempt_schedule_irq(void)
4468{
4469 struct thread_info *ti = current_thread_info();
6478d880 4470
2ed6e34f 4471 /* Catch callers which need to be fixed */
1da177e4
LT
4472 BUG_ON(ti->preempt_count || !irqs_disabled());
4473
3a5c359a
AK
4474 do {
4475 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4476 local_irq_enable();
c259e01a 4477 __schedule();
3a5c359a 4478 local_irq_disable();
3a5c359a 4479 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4480
3a5c359a
AK
4481 /*
4482 * Check again in case we missed a preemption opportunity
4483 * between schedule and now.
4484 */
4485 barrier();
5ed0cec0 4486 } while (need_resched());
1da177e4
LT
4487}
4488
4489#endif /* CONFIG_PREEMPT */
4490
63859d4f 4491int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4492 void *key)
1da177e4 4493{
63859d4f 4494 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4495}
1da177e4
LT
4496EXPORT_SYMBOL(default_wake_function);
4497
4498/*
41a2d6cf
IM
4499 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4500 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4501 * number) then we wake all the non-exclusive tasks and one exclusive task.
4502 *
4503 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4504 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4505 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4506 */
78ddb08f 4507static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4508 int nr_exclusive, int wake_flags, void *key)
1da177e4 4509{
2e45874c 4510 wait_queue_t *curr, *next;
1da177e4 4511
2e45874c 4512 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4513 unsigned flags = curr->flags;
4514
63859d4f 4515 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4516 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4517 break;
4518 }
4519}
4520
4521/**
4522 * __wake_up - wake up threads blocked on a waitqueue.
4523 * @q: the waitqueue
4524 * @mode: which threads
4525 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4526 * @key: is directly passed to the wakeup function
50fa610a
DH
4527 *
4528 * It may be assumed that this function implies a write memory barrier before
4529 * changing the task state if and only if any tasks are woken up.
1da177e4 4530 */
7ad5b3a5 4531void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4532 int nr_exclusive, void *key)
1da177e4
LT
4533{
4534 unsigned long flags;
4535
4536 spin_lock_irqsave(&q->lock, flags);
4537 __wake_up_common(q, mode, nr_exclusive, 0, key);
4538 spin_unlock_irqrestore(&q->lock, flags);
4539}
1da177e4
LT
4540EXPORT_SYMBOL(__wake_up);
4541
4542/*
4543 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4544 */
7ad5b3a5 4545void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4546{
4547 __wake_up_common(q, mode, 1, 0, NULL);
4548}
22c43c81 4549EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4550
4ede816a
DL
4551void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4552{
4553 __wake_up_common(q, mode, 1, 0, key);
4554}
bf294b41 4555EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4556
1da177e4 4557/**
4ede816a 4558 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4559 * @q: the waitqueue
4560 * @mode: which threads
4561 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4562 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4563 *
4564 * The sync wakeup differs that the waker knows that it will schedule
4565 * away soon, so while the target thread will be woken up, it will not
4566 * be migrated to another CPU - ie. the two threads are 'synchronized'
4567 * with each other. This can prevent needless bouncing between CPUs.
4568 *
4569 * On UP it can prevent extra preemption.
50fa610a
DH
4570 *
4571 * It may be assumed that this function implies a write memory barrier before
4572 * changing the task state if and only if any tasks are woken up.
1da177e4 4573 */
4ede816a
DL
4574void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4575 int nr_exclusive, void *key)
1da177e4
LT
4576{
4577 unsigned long flags;
7d478721 4578 int wake_flags = WF_SYNC;
1da177e4
LT
4579
4580 if (unlikely(!q))
4581 return;
4582
4583 if (unlikely(!nr_exclusive))
7d478721 4584 wake_flags = 0;
1da177e4
LT
4585
4586 spin_lock_irqsave(&q->lock, flags);
7d478721 4587 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4588 spin_unlock_irqrestore(&q->lock, flags);
4589}
4ede816a
DL
4590EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4591
4592/*
4593 * __wake_up_sync - see __wake_up_sync_key()
4594 */
4595void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4596{
4597 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4598}
1da177e4
LT
4599EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4600
65eb3dc6
KD
4601/**
4602 * complete: - signals a single thread waiting on this completion
4603 * @x: holds the state of this particular completion
4604 *
4605 * This will wake up a single thread waiting on this completion. Threads will be
4606 * awakened in the same order in which they were queued.
4607 *
4608 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4609 *
4610 * It may be assumed that this function implies a write memory barrier before
4611 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4612 */
b15136e9 4613void complete(struct completion *x)
1da177e4
LT
4614{
4615 unsigned long flags;
4616
4617 spin_lock_irqsave(&x->wait.lock, flags);
4618 x->done++;
d9514f6c 4619 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4620 spin_unlock_irqrestore(&x->wait.lock, flags);
4621}
4622EXPORT_SYMBOL(complete);
4623
65eb3dc6
KD
4624/**
4625 * complete_all: - signals all threads waiting on this completion
4626 * @x: holds the state of this particular completion
4627 *
4628 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4629 *
4630 * It may be assumed that this function implies a write memory barrier before
4631 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4632 */
b15136e9 4633void complete_all(struct completion *x)
1da177e4
LT
4634{
4635 unsigned long flags;
4636
4637 spin_lock_irqsave(&x->wait.lock, flags);
4638 x->done += UINT_MAX/2;
d9514f6c 4639 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4640 spin_unlock_irqrestore(&x->wait.lock, flags);
4641}
4642EXPORT_SYMBOL(complete_all);
4643
8cbbe86d
AK
4644static inline long __sched
4645do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4646{
1da177e4
LT
4647 if (!x->done) {
4648 DECLARE_WAITQUEUE(wait, current);
4649
a93d2f17 4650 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4651 do {
94d3d824 4652 if (signal_pending_state(state, current)) {
ea71a546
ON
4653 timeout = -ERESTARTSYS;
4654 break;
8cbbe86d
AK
4655 }
4656 __set_current_state(state);
1da177e4
LT
4657 spin_unlock_irq(&x->wait.lock);
4658 timeout = schedule_timeout(timeout);
4659 spin_lock_irq(&x->wait.lock);
ea71a546 4660 } while (!x->done && timeout);
1da177e4 4661 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4662 if (!x->done)
4663 return timeout;
1da177e4
LT
4664 }
4665 x->done--;
ea71a546 4666 return timeout ?: 1;
1da177e4 4667}
1da177e4 4668
8cbbe86d
AK
4669static long __sched
4670wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4671{
1da177e4
LT
4672 might_sleep();
4673
4674 spin_lock_irq(&x->wait.lock);
8cbbe86d 4675 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4676 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4677 return timeout;
4678}
1da177e4 4679
65eb3dc6
KD
4680/**
4681 * wait_for_completion: - waits for completion of a task
4682 * @x: holds the state of this particular completion
4683 *
4684 * This waits to be signaled for completion of a specific task. It is NOT
4685 * interruptible and there is no timeout.
4686 *
4687 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4688 * and interrupt capability. Also see complete().
4689 */
b15136e9 4690void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4691{
4692 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4693}
8cbbe86d 4694EXPORT_SYMBOL(wait_for_completion);
1da177e4 4695
65eb3dc6
KD
4696/**
4697 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4698 * @x: holds the state of this particular completion
4699 * @timeout: timeout value in jiffies
4700 *
4701 * This waits for either a completion of a specific task to be signaled or for a
4702 * specified timeout to expire. The timeout is in jiffies. It is not
4703 * interruptible.
4704 */
b15136e9 4705unsigned long __sched
8cbbe86d 4706wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4707{
8cbbe86d 4708 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4709}
8cbbe86d 4710EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4711
65eb3dc6
KD
4712/**
4713 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4714 * @x: holds the state of this particular completion
4715 *
4716 * This waits for completion of a specific task to be signaled. It is
4717 * interruptible.
4718 */
8cbbe86d 4719int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4720{
51e97990
AK
4721 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4722 if (t == -ERESTARTSYS)
4723 return t;
4724 return 0;
0fec171c 4725}
8cbbe86d 4726EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4727
65eb3dc6
KD
4728/**
4729 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4730 * @x: holds the state of this particular completion
4731 * @timeout: timeout value in jiffies
4732 *
4733 * This waits for either a completion of a specific task to be signaled or for a
4734 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4735 */
6bf41237 4736long __sched
8cbbe86d
AK
4737wait_for_completion_interruptible_timeout(struct completion *x,
4738 unsigned long timeout)
0fec171c 4739{
8cbbe86d 4740 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4741}
8cbbe86d 4742EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4743
65eb3dc6
KD
4744/**
4745 * wait_for_completion_killable: - waits for completion of a task (killable)
4746 * @x: holds the state of this particular completion
4747 *
4748 * This waits to be signaled for completion of a specific task. It can be
4749 * interrupted by a kill signal.
4750 */
009e577e
MW
4751int __sched wait_for_completion_killable(struct completion *x)
4752{
4753 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4754 if (t == -ERESTARTSYS)
4755 return t;
4756 return 0;
4757}
4758EXPORT_SYMBOL(wait_for_completion_killable);
4759
0aa12fb4
SW
4760/**
4761 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4762 * @x: holds the state of this particular completion
4763 * @timeout: timeout value in jiffies
4764 *
4765 * This waits for either a completion of a specific task to be
4766 * signaled or for a specified timeout to expire. It can be
4767 * interrupted by a kill signal. The timeout is in jiffies.
4768 */
6bf41237 4769long __sched
0aa12fb4
SW
4770wait_for_completion_killable_timeout(struct completion *x,
4771 unsigned long timeout)
4772{
4773 return wait_for_common(x, timeout, TASK_KILLABLE);
4774}
4775EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4776
be4de352
DC
4777/**
4778 * try_wait_for_completion - try to decrement a completion without blocking
4779 * @x: completion structure
4780 *
4781 * Returns: 0 if a decrement cannot be done without blocking
4782 * 1 if a decrement succeeded.
4783 *
4784 * If a completion is being used as a counting completion,
4785 * attempt to decrement the counter without blocking. This
4786 * enables us to avoid waiting if the resource the completion
4787 * is protecting is not available.
4788 */
4789bool try_wait_for_completion(struct completion *x)
4790{
7539a3b3 4791 unsigned long flags;
be4de352
DC
4792 int ret = 1;
4793
7539a3b3 4794 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4795 if (!x->done)
4796 ret = 0;
4797 else
4798 x->done--;
7539a3b3 4799 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4800 return ret;
4801}
4802EXPORT_SYMBOL(try_wait_for_completion);
4803
4804/**
4805 * completion_done - Test to see if a completion has any waiters
4806 * @x: completion structure
4807 *
4808 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4809 * 1 if there are no waiters.
4810 *
4811 */
4812bool completion_done(struct completion *x)
4813{
7539a3b3 4814 unsigned long flags;
be4de352
DC
4815 int ret = 1;
4816
7539a3b3 4817 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4818 if (!x->done)
4819 ret = 0;
7539a3b3 4820 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4821 return ret;
4822}
4823EXPORT_SYMBOL(completion_done);
4824
8cbbe86d
AK
4825static long __sched
4826sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4827{
0fec171c
IM
4828 unsigned long flags;
4829 wait_queue_t wait;
4830
4831 init_waitqueue_entry(&wait, current);
1da177e4 4832
8cbbe86d 4833 __set_current_state(state);
1da177e4 4834
8cbbe86d
AK
4835 spin_lock_irqsave(&q->lock, flags);
4836 __add_wait_queue(q, &wait);
4837 spin_unlock(&q->lock);
4838 timeout = schedule_timeout(timeout);
4839 spin_lock_irq(&q->lock);
4840 __remove_wait_queue(q, &wait);
4841 spin_unlock_irqrestore(&q->lock, flags);
4842
4843 return timeout;
4844}
4845
4846void __sched interruptible_sleep_on(wait_queue_head_t *q)
4847{
4848 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4849}
1da177e4
LT
4850EXPORT_SYMBOL(interruptible_sleep_on);
4851
0fec171c 4852long __sched
95cdf3b7 4853interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4854{
8cbbe86d 4855 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4856}
1da177e4
LT
4857EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4858
0fec171c 4859void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4860{
8cbbe86d 4861 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4862}
1da177e4
LT
4863EXPORT_SYMBOL(sleep_on);
4864
0fec171c 4865long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4866{
8cbbe86d 4867 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4868}
1da177e4
LT
4869EXPORT_SYMBOL(sleep_on_timeout);
4870
b29739f9
IM
4871#ifdef CONFIG_RT_MUTEXES
4872
4873/*
4874 * rt_mutex_setprio - set the current priority of a task
4875 * @p: task
4876 * @prio: prio value (kernel-internal form)
4877 *
4878 * This function changes the 'effective' priority of a task. It does
4879 * not touch ->normal_prio like __setscheduler().
4880 *
4881 * Used by the rt_mutex code to implement priority inheritance logic.
4882 */
36c8b586 4883void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4884{
83b699ed 4885 int oldprio, on_rq, running;
70b97a7f 4886 struct rq *rq;
83ab0aa0 4887 const struct sched_class *prev_class;
b29739f9
IM
4888
4889 BUG_ON(prio < 0 || prio > MAX_PRIO);
4890
0122ec5b 4891 rq = __task_rq_lock(p);
b29739f9 4892
a8027073 4893 trace_sched_pi_setprio(p, prio);
d5f9f942 4894 oldprio = p->prio;
83ab0aa0 4895 prev_class = p->sched_class;
fd2f4419 4896 on_rq = p->on_rq;
051a1d1a 4897 running = task_current(rq, p);
0e1f3483 4898 if (on_rq)
69be72c1 4899 dequeue_task(rq, p, 0);
0e1f3483
HS
4900 if (running)
4901 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4902
4903 if (rt_prio(prio))
4904 p->sched_class = &rt_sched_class;
4905 else
4906 p->sched_class = &fair_sched_class;
4907
b29739f9
IM
4908 p->prio = prio;
4909
0e1f3483
HS
4910 if (running)
4911 p->sched_class->set_curr_task(rq);
da7a735e 4912 if (on_rq)
371fd7e7 4913 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4914
da7a735e 4915 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4916 __task_rq_unlock(rq);
b29739f9
IM
4917}
4918
4919#endif
4920
36c8b586 4921void set_user_nice(struct task_struct *p, long nice)
1da177e4 4922{
dd41f596 4923 int old_prio, delta, on_rq;
1da177e4 4924 unsigned long flags;
70b97a7f 4925 struct rq *rq;
1da177e4
LT
4926
4927 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4928 return;
4929 /*
4930 * We have to be careful, if called from sys_setpriority(),
4931 * the task might be in the middle of scheduling on another CPU.
4932 */
4933 rq = task_rq_lock(p, &flags);
4934 /*
4935 * The RT priorities are set via sched_setscheduler(), but we still
4936 * allow the 'normal' nice value to be set - but as expected
4937 * it wont have any effect on scheduling until the task is
dd41f596 4938 * SCHED_FIFO/SCHED_RR:
1da177e4 4939 */
e05606d3 4940 if (task_has_rt_policy(p)) {
1da177e4
LT
4941 p->static_prio = NICE_TO_PRIO(nice);
4942 goto out_unlock;
4943 }
fd2f4419 4944 on_rq = p->on_rq;
c09595f6 4945 if (on_rq)
69be72c1 4946 dequeue_task(rq, p, 0);
1da177e4 4947
1da177e4 4948 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4949 set_load_weight(p);
b29739f9
IM
4950 old_prio = p->prio;
4951 p->prio = effective_prio(p);
4952 delta = p->prio - old_prio;
1da177e4 4953
dd41f596 4954 if (on_rq) {
371fd7e7 4955 enqueue_task(rq, p, 0);
1da177e4 4956 /*
d5f9f942
AM
4957 * If the task increased its priority or is running and
4958 * lowered its priority, then reschedule its CPU:
1da177e4 4959 */
d5f9f942 4960 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4961 resched_task(rq->curr);
4962 }
4963out_unlock:
0122ec5b 4964 task_rq_unlock(rq, p, &flags);
1da177e4 4965}
1da177e4
LT
4966EXPORT_SYMBOL(set_user_nice);
4967
e43379f1
MM
4968/*
4969 * can_nice - check if a task can reduce its nice value
4970 * @p: task
4971 * @nice: nice value
4972 */
36c8b586 4973int can_nice(const struct task_struct *p, const int nice)
e43379f1 4974{
024f4747
MM
4975 /* convert nice value [19,-20] to rlimit style value [1,40] */
4976 int nice_rlim = 20 - nice;
48f24c4d 4977
78d7d407 4978 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4979 capable(CAP_SYS_NICE));
4980}
4981
1da177e4
LT
4982#ifdef __ARCH_WANT_SYS_NICE
4983
4984/*
4985 * sys_nice - change the priority of the current process.
4986 * @increment: priority increment
4987 *
4988 * sys_setpriority is a more generic, but much slower function that
4989 * does similar things.
4990 */
5add95d4 4991SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4992{
48f24c4d 4993 long nice, retval;
1da177e4
LT
4994
4995 /*
4996 * Setpriority might change our priority at the same moment.
4997 * We don't have to worry. Conceptually one call occurs first
4998 * and we have a single winner.
4999 */
e43379f1
MM
5000 if (increment < -40)
5001 increment = -40;
1da177e4
LT
5002 if (increment > 40)
5003 increment = 40;
5004
2b8f836f 5005 nice = TASK_NICE(current) + increment;
1da177e4
LT
5006 if (nice < -20)
5007 nice = -20;
5008 if (nice > 19)
5009 nice = 19;
5010
e43379f1
MM
5011 if (increment < 0 && !can_nice(current, nice))
5012 return -EPERM;
5013
1da177e4
LT
5014 retval = security_task_setnice(current, nice);
5015 if (retval)
5016 return retval;
5017
5018 set_user_nice(current, nice);
5019 return 0;
5020}
5021
5022#endif
5023
5024/**
5025 * task_prio - return the priority value of a given task.
5026 * @p: the task in question.
5027 *
5028 * This is the priority value as seen by users in /proc.
5029 * RT tasks are offset by -200. Normal tasks are centered
5030 * around 0, value goes from -16 to +15.
5031 */
36c8b586 5032int task_prio(const struct task_struct *p)
1da177e4
LT
5033{
5034 return p->prio - MAX_RT_PRIO;
5035}
5036
5037/**
5038 * task_nice - return the nice value of a given task.
5039 * @p: the task in question.
5040 */
36c8b586 5041int task_nice(const struct task_struct *p)
1da177e4
LT
5042{
5043 return TASK_NICE(p);
5044}
150d8bed 5045EXPORT_SYMBOL(task_nice);
1da177e4
LT
5046
5047/**
5048 * idle_cpu - is a given cpu idle currently?
5049 * @cpu: the processor in question.
5050 */
5051int idle_cpu(int cpu)
5052{
5053 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5054}
5055
1da177e4
LT
5056/**
5057 * idle_task - return the idle task for a given cpu.
5058 * @cpu: the processor in question.
5059 */
36c8b586 5060struct task_struct *idle_task(int cpu)
1da177e4
LT
5061{
5062 return cpu_rq(cpu)->idle;
5063}
5064
5065/**
5066 * find_process_by_pid - find a process with a matching PID value.
5067 * @pid: the pid in question.
5068 */
a9957449 5069static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5070{
228ebcbe 5071 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5072}
5073
5074/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5075static void
5076__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5077{
1da177e4
LT
5078 p->policy = policy;
5079 p->rt_priority = prio;
b29739f9
IM
5080 p->normal_prio = normal_prio(p);
5081 /* we are holding p->pi_lock already */
5082 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
5083 if (rt_prio(p->prio))
5084 p->sched_class = &rt_sched_class;
5085 else
5086 p->sched_class = &fair_sched_class;
2dd73a4f 5087 set_load_weight(p);
1da177e4
LT
5088}
5089
c69e8d9c
DH
5090/*
5091 * check the target process has a UID that matches the current process's
5092 */
5093static bool check_same_owner(struct task_struct *p)
5094{
5095 const struct cred *cred = current_cred(), *pcred;
5096 bool match;
5097
5098 rcu_read_lock();
5099 pcred = __task_cred(p);
b0e77598
SH
5100 if (cred->user->user_ns == pcred->user->user_ns)
5101 match = (cred->euid == pcred->euid ||
5102 cred->euid == pcred->uid);
5103 else
5104 match = false;
c69e8d9c
DH
5105 rcu_read_unlock();
5106 return match;
5107}
5108
961ccddd 5109static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5110 const struct sched_param *param, bool user)
1da177e4 5111{
83b699ed 5112 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5113 unsigned long flags;
83ab0aa0 5114 const struct sched_class *prev_class;
70b97a7f 5115 struct rq *rq;
ca94c442 5116 int reset_on_fork;
1da177e4 5117
66e5393a
SR
5118 /* may grab non-irq protected spin_locks */
5119 BUG_ON(in_interrupt());
1da177e4
LT
5120recheck:
5121 /* double check policy once rq lock held */
ca94c442
LP
5122 if (policy < 0) {
5123 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5124 policy = oldpolicy = p->policy;
ca94c442
LP
5125 } else {
5126 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5127 policy &= ~SCHED_RESET_ON_FORK;
5128
5129 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5130 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5131 policy != SCHED_IDLE)
5132 return -EINVAL;
5133 }
5134
1da177e4
LT
5135 /*
5136 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5137 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5138 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5139 */
5140 if (param->sched_priority < 0 ||
95cdf3b7 5141 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5142 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5143 return -EINVAL;
e05606d3 5144 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5145 return -EINVAL;
5146
37e4ab3f
OC
5147 /*
5148 * Allow unprivileged RT tasks to decrease priority:
5149 */
961ccddd 5150 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5151 if (rt_policy(policy)) {
a44702e8
ON
5152 unsigned long rlim_rtprio =
5153 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5154
5155 /* can't set/change the rt policy */
5156 if (policy != p->policy && !rlim_rtprio)
5157 return -EPERM;
5158
5159 /* can't increase priority */
5160 if (param->sched_priority > p->rt_priority &&
5161 param->sched_priority > rlim_rtprio)
5162 return -EPERM;
5163 }
c02aa73b 5164
dd41f596 5165 /*
c02aa73b
DH
5166 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5167 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5168 */
c02aa73b
DH
5169 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5170 if (!can_nice(p, TASK_NICE(p)))
5171 return -EPERM;
5172 }
5fe1d75f 5173
37e4ab3f 5174 /* can't change other user's priorities */
c69e8d9c 5175 if (!check_same_owner(p))
37e4ab3f 5176 return -EPERM;
ca94c442
LP
5177
5178 /* Normal users shall not reset the sched_reset_on_fork flag */
5179 if (p->sched_reset_on_fork && !reset_on_fork)
5180 return -EPERM;
37e4ab3f 5181 }
1da177e4 5182
725aad24 5183 if (user) {
b0ae1981 5184 retval = security_task_setscheduler(p);
725aad24
JF
5185 if (retval)
5186 return retval;
5187 }
5188
b29739f9
IM
5189 /*
5190 * make sure no PI-waiters arrive (or leave) while we are
5191 * changing the priority of the task:
0122ec5b 5192 *
25985edc 5193 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5194 * runqueue lock must be held.
5195 */
0122ec5b 5196 rq = task_rq_lock(p, &flags);
dc61b1d6 5197
34f971f6
PZ
5198 /*
5199 * Changing the policy of the stop threads its a very bad idea
5200 */
5201 if (p == rq->stop) {
0122ec5b 5202 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5203 return -EINVAL;
5204 }
5205
a51e9198
DF
5206 /*
5207 * If not changing anything there's no need to proceed further:
5208 */
5209 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5210 param->sched_priority == p->rt_priority))) {
5211
5212 __task_rq_unlock(rq);
5213 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5214 return 0;
5215 }
5216
dc61b1d6
PZ
5217#ifdef CONFIG_RT_GROUP_SCHED
5218 if (user) {
5219 /*
5220 * Do not allow realtime tasks into groups that have no runtime
5221 * assigned.
5222 */
5223 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5224 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5225 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5226 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5227 return -EPERM;
5228 }
5229 }
5230#endif
5231
1da177e4
LT
5232 /* recheck policy now with rq lock held */
5233 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5234 policy = oldpolicy = -1;
0122ec5b 5235 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5236 goto recheck;
5237 }
fd2f4419 5238 on_rq = p->on_rq;
051a1d1a 5239 running = task_current(rq, p);
0e1f3483 5240 if (on_rq)
2e1cb74a 5241 deactivate_task(rq, p, 0);
0e1f3483
HS
5242 if (running)
5243 p->sched_class->put_prev_task(rq, p);
f6b53205 5244
ca94c442
LP
5245 p->sched_reset_on_fork = reset_on_fork;
5246
1da177e4 5247 oldprio = p->prio;
83ab0aa0 5248 prev_class = p->sched_class;
dd41f596 5249 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5250
0e1f3483
HS
5251 if (running)
5252 p->sched_class->set_curr_task(rq);
da7a735e 5253 if (on_rq)
dd41f596 5254 activate_task(rq, p, 0);
cb469845 5255
da7a735e 5256 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5257 task_rq_unlock(rq, p, &flags);
b29739f9 5258
95e02ca9
TG
5259 rt_mutex_adjust_pi(p);
5260
1da177e4
LT
5261 return 0;
5262}
961ccddd
RR
5263
5264/**
5265 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5266 * @p: the task in question.
5267 * @policy: new policy.
5268 * @param: structure containing the new RT priority.
5269 *
5270 * NOTE that the task may be already dead.
5271 */
5272int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5273 const struct sched_param *param)
961ccddd
RR
5274{
5275 return __sched_setscheduler(p, policy, param, true);
5276}
1da177e4
LT
5277EXPORT_SYMBOL_GPL(sched_setscheduler);
5278
961ccddd
RR
5279/**
5280 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5281 * @p: the task in question.
5282 * @policy: new policy.
5283 * @param: structure containing the new RT priority.
5284 *
5285 * Just like sched_setscheduler, only don't bother checking if the
5286 * current context has permission. For example, this is needed in
5287 * stop_machine(): we create temporary high priority worker threads,
5288 * but our caller might not have that capability.
5289 */
5290int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5291 const struct sched_param *param)
961ccddd
RR
5292{
5293 return __sched_setscheduler(p, policy, param, false);
5294}
5295
95cdf3b7
IM
5296static int
5297do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5298{
1da177e4
LT
5299 struct sched_param lparam;
5300 struct task_struct *p;
36c8b586 5301 int retval;
1da177e4
LT
5302
5303 if (!param || pid < 0)
5304 return -EINVAL;
5305 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5306 return -EFAULT;
5fe1d75f
ON
5307
5308 rcu_read_lock();
5309 retval = -ESRCH;
1da177e4 5310 p = find_process_by_pid(pid);
5fe1d75f
ON
5311 if (p != NULL)
5312 retval = sched_setscheduler(p, policy, &lparam);
5313 rcu_read_unlock();
36c8b586 5314
1da177e4
LT
5315 return retval;
5316}
5317
5318/**
5319 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5320 * @pid: the pid in question.
5321 * @policy: new policy.
5322 * @param: structure containing the new RT priority.
5323 */
5add95d4
HC
5324SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5325 struct sched_param __user *, param)
1da177e4 5326{
c21761f1
JB
5327 /* negative values for policy are not valid */
5328 if (policy < 0)
5329 return -EINVAL;
5330
1da177e4
LT
5331 return do_sched_setscheduler(pid, policy, param);
5332}
5333
5334/**
5335 * sys_sched_setparam - set/change the RT priority of a thread
5336 * @pid: the pid in question.
5337 * @param: structure containing the new RT priority.
5338 */
5add95d4 5339SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5340{
5341 return do_sched_setscheduler(pid, -1, param);
5342}
5343
5344/**
5345 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5346 * @pid: the pid in question.
5347 */
5add95d4 5348SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5349{
36c8b586 5350 struct task_struct *p;
3a5c359a 5351 int retval;
1da177e4
LT
5352
5353 if (pid < 0)
3a5c359a 5354 return -EINVAL;
1da177e4
LT
5355
5356 retval = -ESRCH;
5fe85be0 5357 rcu_read_lock();
1da177e4
LT
5358 p = find_process_by_pid(pid);
5359 if (p) {
5360 retval = security_task_getscheduler(p);
5361 if (!retval)
ca94c442
LP
5362 retval = p->policy
5363 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5364 }
5fe85be0 5365 rcu_read_unlock();
1da177e4
LT
5366 return retval;
5367}
5368
5369/**
ca94c442 5370 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5371 * @pid: the pid in question.
5372 * @param: structure containing the RT priority.
5373 */
5add95d4 5374SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5375{
5376 struct sched_param lp;
36c8b586 5377 struct task_struct *p;
3a5c359a 5378 int retval;
1da177e4
LT
5379
5380 if (!param || pid < 0)
3a5c359a 5381 return -EINVAL;
1da177e4 5382
5fe85be0 5383 rcu_read_lock();
1da177e4
LT
5384 p = find_process_by_pid(pid);
5385 retval = -ESRCH;
5386 if (!p)
5387 goto out_unlock;
5388
5389 retval = security_task_getscheduler(p);
5390 if (retval)
5391 goto out_unlock;
5392
5393 lp.sched_priority = p->rt_priority;
5fe85be0 5394 rcu_read_unlock();
1da177e4
LT
5395
5396 /*
5397 * This one might sleep, we cannot do it with a spinlock held ...
5398 */
5399 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5400
1da177e4
LT
5401 return retval;
5402
5403out_unlock:
5fe85be0 5404 rcu_read_unlock();
1da177e4
LT
5405 return retval;
5406}
5407
96f874e2 5408long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5409{
5a16f3d3 5410 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5411 struct task_struct *p;
5412 int retval;
1da177e4 5413
95402b38 5414 get_online_cpus();
23f5d142 5415 rcu_read_lock();
1da177e4
LT
5416
5417 p = find_process_by_pid(pid);
5418 if (!p) {
23f5d142 5419 rcu_read_unlock();
95402b38 5420 put_online_cpus();
1da177e4
LT
5421 return -ESRCH;
5422 }
5423
23f5d142 5424 /* Prevent p going away */
1da177e4 5425 get_task_struct(p);
23f5d142 5426 rcu_read_unlock();
1da177e4 5427
5a16f3d3
RR
5428 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5429 retval = -ENOMEM;
5430 goto out_put_task;
5431 }
5432 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5433 retval = -ENOMEM;
5434 goto out_free_cpus_allowed;
5435 }
1da177e4 5436 retval = -EPERM;
b0e77598 5437 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5438 goto out_unlock;
5439
b0ae1981 5440 retval = security_task_setscheduler(p);
e7834f8f
DQ
5441 if (retval)
5442 goto out_unlock;
5443
5a16f3d3
RR
5444 cpuset_cpus_allowed(p, cpus_allowed);
5445 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5446again:
5a16f3d3 5447 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5448
8707d8b8 5449 if (!retval) {
5a16f3d3
RR
5450 cpuset_cpus_allowed(p, cpus_allowed);
5451 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5452 /*
5453 * We must have raced with a concurrent cpuset
5454 * update. Just reset the cpus_allowed to the
5455 * cpuset's cpus_allowed
5456 */
5a16f3d3 5457 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5458 goto again;
5459 }
5460 }
1da177e4 5461out_unlock:
5a16f3d3
RR
5462 free_cpumask_var(new_mask);
5463out_free_cpus_allowed:
5464 free_cpumask_var(cpus_allowed);
5465out_put_task:
1da177e4 5466 put_task_struct(p);
95402b38 5467 put_online_cpus();
1da177e4
LT
5468 return retval;
5469}
5470
5471static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5472 struct cpumask *new_mask)
1da177e4 5473{
96f874e2
RR
5474 if (len < cpumask_size())
5475 cpumask_clear(new_mask);
5476 else if (len > cpumask_size())
5477 len = cpumask_size();
5478
1da177e4
LT
5479 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5480}
5481
5482/**
5483 * sys_sched_setaffinity - set the cpu affinity of a process
5484 * @pid: pid of the process
5485 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5486 * @user_mask_ptr: user-space pointer to the new cpu mask
5487 */
5add95d4
HC
5488SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5489 unsigned long __user *, user_mask_ptr)
1da177e4 5490{
5a16f3d3 5491 cpumask_var_t new_mask;
1da177e4
LT
5492 int retval;
5493
5a16f3d3
RR
5494 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5495 return -ENOMEM;
1da177e4 5496
5a16f3d3
RR
5497 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5498 if (retval == 0)
5499 retval = sched_setaffinity(pid, new_mask);
5500 free_cpumask_var(new_mask);
5501 return retval;
1da177e4
LT
5502}
5503
96f874e2 5504long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5505{
36c8b586 5506 struct task_struct *p;
31605683 5507 unsigned long flags;
1da177e4 5508 int retval;
1da177e4 5509
95402b38 5510 get_online_cpus();
23f5d142 5511 rcu_read_lock();
1da177e4
LT
5512
5513 retval = -ESRCH;
5514 p = find_process_by_pid(pid);
5515 if (!p)
5516 goto out_unlock;
5517
e7834f8f
DQ
5518 retval = security_task_getscheduler(p);
5519 if (retval)
5520 goto out_unlock;
5521
013fdb80 5522 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5523 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5524 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5525
5526out_unlock:
23f5d142 5527 rcu_read_unlock();
95402b38 5528 put_online_cpus();
1da177e4 5529
9531b62f 5530 return retval;
1da177e4
LT
5531}
5532
5533/**
5534 * sys_sched_getaffinity - get the cpu affinity of a process
5535 * @pid: pid of the process
5536 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5537 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5538 */
5add95d4
HC
5539SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5540 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5541{
5542 int ret;
f17c8607 5543 cpumask_var_t mask;
1da177e4 5544
84fba5ec 5545 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5546 return -EINVAL;
5547 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5548 return -EINVAL;
5549
f17c8607
RR
5550 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5551 return -ENOMEM;
1da177e4 5552
f17c8607
RR
5553 ret = sched_getaffinity(pid, mask);
5554 if (ret == 0) {
8bc037fb 5555 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5556
5557 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5558 ret = -EFAULT;
5559 else
cd3d8031 5560 ret = retlen;
f17c8607
RR
5561 }
5562 free_cpumask_var(mask);
1da177e4 5563
f17c8607 5564 return ret;
1da177e4
LT
5565}
5566
5567/**
5568 * sys_sched_yield - yield the current processor to other threads.
5569 *
dd41f596
IM
5570 * This function yields the current CPU to other tasks. If there are no
5571 * other threads running on this CPU then this function will return.
1da177e4 5572 */
5add95d4 5573SYSCALL_DEFINE0(sched_yield)
1da177e4 5574{
70b97a7f 5575 struct rq *rq = this_rq_lock();
1da177e4 5576
2d72376b 5577 schedstat_inc(rq, yld_count);
4530d7ab 5578 current->sched_class->yield_task(rq);
1da177e4
LT
5579
5580 /*
5581 * Since we are going to call schedule() anyway, there's
5582 * no need to preempt or enable interrupts:
5583 */
5584 __release(rq->lock);
8a25d5de 5585 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5586 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5587 preempt_enable_no_resched();
5588
5589 schedule();
5590
5591 return 0;
5592}
5593
d86ee480
PZ
5594static inline int should_resched(void)
5595{
5596 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5597}
5598
e7b38404 5599static void __cond_resched(void)
1da177e4 5600{
e7aaaa69 5601 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 5602 __schedule();
e7aaaa69 5603 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5604}
5605
02b67cc3 5606int __sched _cond_resched(void)
1da177e4 5607{
d86ee480 5608 if (should_resched()) {
1da177e4
LT
5609 __cond_resched();
5610 return 1;
5611 }
5612 return 0;
5613}
02b67cc3 5614EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5615
5616/*
613afbf8 5617 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5618 * call schedule, and on return reacquire the lock.
5619 *
41a2d6cf 5620 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5621 * operations here to prevent schedule() from being called twice (once via
5622 * spin_unlock(), once by hand).
5623 */
613afbf8 5624int __cond_resched_lock(spinlock_t *lock)
1da177e4 5625{
d86ee480 5626 int resched = should_resched();
6df3cecb
JK
5627 int ret = 0;
5628
f607c668
PZ
5629 lockdep_assert_held(lock);
5630
95c354fe 5631 if (spin_needbreak(lock) || resched) {
1da177e4 5632 spin_unlock(lock);
d86ee480 5633 if (resched)
95c354fe
NP
5634 __cond_resched();
5635 else
5636 cpu_relax();
6df3cecb 5637 ret = 1;
1da177e4 5638 spin_lock(lock);
1da177e4 5639 }
6df3cecb 5640 return ret;
1da177e4 5641}
613afbf8 5642EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5643
613afbf8 5644int __sched __cond_resched_softirq(void)
1da177e4
LT
5645{
5646 BUG_ON(!in_softirq());
5647
d86ee480 5648 if (should_resched()) {
98d82567 5649 local_bh_enable();
1da177e4
LT
5650 __cond_resched();
5651 local_bh_disable();
5652 return 1;
5653 }
5654 return 0;
5655}
613afbf8 5656EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5657
1da177e4
LT
5658/**
5659 * yield - yield the current processor to other threads.
5660 *
72fd4a35 5661 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5662 * thread runnable and calls sys_sched_yield().
5663 */
5664void __sched yield(void)
5665{
5666 set_current_state(TASK_RUNNING);
5667 sys_sched_yield();
5668}
1da177e4
LT
5669EXPORT_SYMBOL(yield);
5670
d95f4122
MG
5671/**
5672 * yield_to - yield the current processor to another thread in
5673 * your thread group, or accelerate that thread toward the
5674 * processor it's on.
16addf95
RD
5675 * @p: target task
5676 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5677 *
5678 * It's the caller's job to ensure that the target task struct
5679 * can't go away on us before we can do any checks.
5680 *
5681 * Returns true if we indeed boosted the target task.
5682 */
5683bool __sched yield_to(struct task_struct *p, bool preempt)
5684{
5685 struct task_struct *curr = current;
5686 struct rq *rq, *p_rq;
5687 unsigned long flags;
5688 bool yielded = 0;
5689
5690 local_irq_save(flags);
5691 rq = this_rq();
5692
5693again:
5694 p_rq = task_rq(p);
5695 double_rq_lock(rq, p_rq);
5696 while (task_rq(p) != p_rq) {
5697 double_rq_unlock(rq, p_rq);
5698 goto again;
5699 }
5700
5701 if (!curr->sched_class->yield_to_task)
5702 goto out;
5703
5704 if (curr->sched_class != p->sched_class)
5705 goto out;
5706
5707 if (task_running(p_rq, p) || p->state)
5708 goto out;
5709
5710 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5711 if (yielded) {
d95f4122 5712 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5713 /*
5714 * Make p's CPU reschedule; pick_next_entity takes care of
5715 * fairness.
5716 */
5717 if (preempt && rq != p_rq)
5718 resched_task(p_rq->curr);
5719 }
d95f4122
MG
5720
5721out:
5722 double_rq_unlock(rq, p_rq);
5723 local_irq_restore(flags);
5724
5725 if (yielded)
5726 schedule();
5727
5728 return yielded;
5729}
5730EXPORT_SYMBOL_GPL(yield_to);
5731
1da177e4 5732/*
41a2d6cf 5733 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5734 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5735 */
5736void __sched io_schedule(void)
5737{
54d35f29 5738 struct rq *rq = raw_rq();
1da177e4 5739
0ff92245 5740 delayacct_blkio_start();
1da177e4 5741 atomic_inc(&rq->nr_iowait);
73c10101 5742 blk_flush_plug(current);
8f0dfc34 5743 current->in_iowait = 1;
1da177e4 5744 schedule();
8f0dfc34 5745 current->in_iowait = 0;
1da177e4 5746 atomic_dec(&rq->nr_iowait);
0ff92245 5747 delayacct_blkio_end();
1da177e4 5748}
1da177e4
LT
5749EXPORT_SYMBOL(io_schedule);
5750
5751long __sched io_schedule_timeout(long timeout)
5752{
54d35f29 5753 struct rq *rq = raw_rq();
1da177e4
LT
5754 long ret;
5755
0ff92245 5756 delayacct_blkio_start();
1da177e4 5757 atomic_inc(&rq->nr_iowait);
73c10101 5758 blk_flush_plug(current);
8f0dfc34 5759 current->in_iowait = 1;
1da177e4 5760 ret = schedule_timeout(timeout);
8f0dfc34 5761 current->in_iowait = 0;
1da177e4 5762 atomic_dec(&rq->nr_iowait);
0ff92245 5763 delayacct_blkio_end();
1da177e4
LT
5764 return ret;
5765}
5766
5767/**
5768 * sys_sched_get_priority_max - return maximum RT priority.
5769 * @policy: scheduling class.
5770 *
5771 * this syscall returns the maximum rt_priority that can be used
5772 * by a given scheduling class.
5773 */
5add95d4 5774SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5775{
5776 int ret = -EINVAL;
5777
5778 switch (policy) {
5779 case SCHED_FIFO:
5780 case SCHED_RR:
5781 ret = MAX_USER_RT_PRIO-1;
5782 break;
5783 case SCHED_NORMAL:
b0a9499c 5784 case SCHED_BATCH:
dd41f596 5785 case SCHED_IDLE:
1da177e4
LT
5786 ret = 0;
5787 break;
5788 }
5789 return ret;
5790}
5791
5792/**
5793 * sys_sched_get_priority_min - return minimum RT priority.
5794 * @policy: scheduling class.
5795 *
5796 * this syscall returns the minimum rt_priority that can be used
5797 * by a given scheduling class.
5798 */
5add95d4 5799SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5800{
5801 int ret = -EINVAL;
5802
5803 switch (policy) {
5804 case SCHED_FIFO:
5805 case SCHED_RR:
5806 ret = 1;
5807 break;
5808 case SCHED_NORMAL:
b0a9499c 5809 case SCHED_BATCH:
dd41f596 5810 case SCHED_IDLE:
1da177e4
LT
5811 ret = 0;
5812 }
5813 return ret;
5814}
5815
5816/**
5817 * sys_sched_rr_get_interval - return the default timeslice of a process.
5818 * @pid: pid of the process.
5819 * @interval: userspace pointer to the timeslice value.
5820 *
5821 * this syscall writes the default timeslice value of a given process
5822 * into the user-space timespec buffer. A value of '0' means infinity.
5823 */
17da2bd9 5824SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5825 struct timespec __user *, interval)
1da177e4 5826{
36c8b586 5827 struct task_struct *p;
a4ec24b4 5828 unsigned int time_slice;
dba091b9
TG
5829 unsigned long flags;
5830 struct rq *rq;
3a5c359a 5831 int retval;
1da177e4 5832 struct timespec t;
1da177e4
LT
5833
5834 if (pid < 0)
3a5c359a 5835 return -EINVAL;
1da177e4
LT
5836
5837 retval = -ESRCH;
1a551ae7 5838 rcu_read_lock();
1da177e4
LT
5839 p = find_process_by_pid(pid);
5840 if (!p)
5841 goto out_unlock;
5842
5843 retval = security_task_getscheduler(p);
5844 if (retval)
5845 goto out_unlock;
5846
dba091b9
TG
5847 rq = task_rq_lock(p, &flags);
5848 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5849 task_rq_unlock(rq, p, &flags);
a4ec24b4 5850
1a551ae7 5851 rcu_read_unlock();
a4ec24b4 5852 jiffies_to_timespec(time_slice, &t);
1da177e4 5853 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5854 return retval;
3a5c359a 5855
1da177e4 5856out_unlock:
1a551ae7 5857 rcu_read_unlock();
1da177e4
LT
5858 return retval;
5859}
5860
7c731e0a 5861static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5862
82a1fcb9 5863void sched_show_task(struct task_struct *p)
1da177e4 5864{
1da177e4 5865 unsigned long free = 0;
36c8b586 5866 unsigned state;
1da177e4 5867
1da177e4 5868 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5869 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5870 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5871#if BITS_PER_LONG == 32
1da177e4 5872 if (state == TASK_RUNNING)
3df0fc5b 5873 printk(KERN_CONT " running ");
1da177e4 5874 else
3df0fc5b 5875 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5876#else
5877 if (state == TASK_RUNNING)
3df0fc5b 5878 printk(KERN_CONT " running task ");
1da177e4 5879 else
3df0fc5b 5880 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5881#endif
5882#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5883 free = stack_not_used(p);
1da177e4 5884#endif
3df0fc5b 5885 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5886 task_pid_nr(p), task_pid_nr(p->real_parent),
5887 (unsigned long)task_thread_info(p)->flags);
1da177e4 5888
5fb5e6de 5889 show_stack(p, NULL);
1da177e4
LT
5890}
5891
e59e2ae2 5892void show_state_filter(unsigned long state_filter)
1da177e4 5893{
36c8b586 5894 struct task_struct *g, *p;
1da177e4 5895
4bd77321 5896#if BITS_PER_LONG == 32
3df0fc5b
PZ
5897 printk(KERN_INFO
5898 " task PC stack pid father\n");
1da177e4 5899#else
3df0fc5b
PZ
5900 printk(KERN_INFO
5901 " task PC stack pid father\n");
1da177e4
LT
5902#endif
5903 read_lock(&tasklist_lock);
5904 do_each_thread(g, p) {
5905 /*
5906 * reset the NMI-timeout, listing all files on a slow
25985edc 5907 * console might take a lot of time:
1da177e4
LT
5908 */
5909 touch_nmi_watchdog();
39bc89fd 5910 if (!state_filter || (p->state & state_filter))
82a1fcb9 5911 sched_show_task(p);
1da177e4
LT
5912 } while_each_thread(g, p);
5913
04c9167f
JF
5914 touch_all_softlockup_watchdogs();
5915
dd41f596
IM
5916#ifdef CONFIG_SCHED_DEBUG
5917 sysrq_sched_debug_show();
5918#endif
1da177e4 5919 read_unlock(&tasklist_lock);
e59e2ae2
IM
5920 /*
5921 * Only show locks if all tasks are dumped:
5922 */
93335a21 5923 if (!state_filter)
e59e2ae2 5924 debug_show_all_locks();
1da177e4
LT
5925}
5926
1df21055
IM
5927void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5928{
dd41f596 5929 idle->sched_class = &idle_sched_class;
1df21055
IM
5930}
5931
f340c0d1
IM
5932/**
5933 * init_idle - set up an idle thread for a given CPU
5934 * @idle: task in question
5935 * @cpu: cpu the idle task belongs to
5936 *
5937 * NOTE: this function does not set the idle thread's NEED_RESCHED
5938 * flag, to make booting more robust.
5939 */
5c1e1767 5940void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5941{
70b97a7f 5942 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5943 unsigned long flags;
5944
05fa785c 5945 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5946
dd41f596 5947 __sched_fork(idle);
06b83b5f 5948 idle->state = TASK_RUNNING;
dd41f596
IM
5949 idle->se.exec_start = sched_clock();
5950
1e1b6c51 5951 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
5952 /*
5953 * We're having a chicken and egg problem, even though we are
5954 * holding rq->lock, the cpu isn't yet set to this cpu so the
5955 * lockdep check in task_group() will fail.
5956 *
5957 * Similar case to sched_fork(). / Alternatively we could
5958 * use task_rq_lock() here and obtain the other rq->lock.
5959 *
5960 * Silence PROVE_RCU
5961 */
5962 rcu_read_lock();
dd41f596 5963 __set_task_cpu(idle, cpu);
6506cf6c 5964 rcu_read_unlock();
1da177e4 5965
1da177e4 5966 rq->curr = rq->idle = idle;
3ca7a440
PZ
5967#if defined(CONFIG_SMP)
5968 idle->on_cpu = 1;
4866cde0 5969#endif
05fa785c 5970 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5971
5972 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5973 task_thread_info(idle)->preempt_count = 0;
625f2a37 5974
dd41f596
IM
5975 /*
5976 * The idle tasks have their own, simple scheduling class:
5977 */
5978 idle->sched_class = &idle_sched_class;
868baf07 5979 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5980}
5981
5982/*
5983 * In a system that switches off the HZ timer nohz_cpu_mask
5984 * indicates which cpus entered this state. This is used
5985 * in the rcu update to wait only for active cpus. For system
5986 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5987 * always be CPU_BITS_NONE.
1da177e4 5988 */
6a7b3dc3 5989cpumask_var_t nohz_cpu_mask;
1da177e4 5990
19978ca6
IM
5991/*
5992 * Increase the granularity value when there are more CPUs,
5993 * because with more CPUs the 'effective latency' as visible
5994 * to users decreases. But the relationship is not linear,
5995 * so pick a second-best guess by going with the log2 of the
5996 * number of CPUs.
5997 *
5998 * This idea comes from the SD scheduler of Con Kolivas:
5999 */
acb4a848 6000static int get_update_sysctl_factor(void)
19978ca6 6001{
4ca3ef71 6002 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
6003 unsigned int factor;
6004
6005 switch (sysctl_sched_tunable_scaling) {
6006 case SCHED_TUNABLESCALING_NONE:
6007 factor = 1;
6008 break;
6009 case SCHED_TUNABLESCALING_LINEAR:
6010 factor = cpus;
6011 break;
6012 case SCHED_TUNABLESCALING_LOG:
6013 default:
6014 factor = 1 + ilog2(cpus);
6015 break;
6016 }
19978ca6 6017
acb4a848
CE
6018 return factor;
6019}
19978ca6 6020
acb4a848
CE
6021static void update_sysctl(void)
6022{
6023 unsigned int factor = get_update_sysctl_factor();
19978ca6 6024
0bcdcf28
CE
6025#define SET_SYSCTL(name) \
6026 (sysctl_##name = (factor) * normalized_sysctl_##name)
6027 SET_SYSCTL(sched_min_granularity);
6028 SET_SYSCTL(sched_latency);
6029 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
6030#undef SET_SYSCTL
6031}
55cd5340 6032
0bcdcf28
CE
6033static inline void sched_init_granularity(void)
6034{
6035 update_sysctl();
19978ca6
IM
6036}
6037
1da177e4 6038#ifdef CONFIG_SMP
1e1b6c51
KM
6039void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6040{
6041 if (p->sched_class && p->sched_class->set_cpus_allowed)
6042 p->sched_class->set_cpus_allowed(p, new_mask);
6043 else {
6044 cpumask_copy(&p->cpus_allowed, new_mask);
6045 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6046 }
6047}
6048
1da177e4
LT
6049/*
6050 * This is how migration works:
6051 *
969c7921
TH
6052 * 1) we invoke migration_cpu_stop() on the target CPU using
6053 * stop_one_cpu().
6054 * 2) stopper starts to run (implicitly forcing the migrated thread
6055 * off the CPU)
6056 * 3) it checks whether the migrated task is still in the wrong runqueue.
6057 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 6058 * it and puts it into the right queue.
969c7921
TH
6059 * 5) stopper completes and stop_one_cpu() returns and the migration
6060 * is done.
1da177e4
LT
6061 */
6062
6063/*
6064 * Change a given task's CPU affinity. Migrate the thread to a
6065 * proper CPU and schedule it away if the CPU it's executing on
6066 * is removed from the allowed bitmask.
6067 *
6068 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6069 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6070 * call is not atomic; no spinlocks may be held.
6071 */
96f874e2 6072int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
6073{
6074 unsigned long flags;
70b97a7f 6075 struct rq *rq;
969c7921 6076 unsigned int dest_cpu;
48f24c4d 6077 int ret = 0;
1da177e4
LT
6078
6079 rq = task_rq_lock(p, &flags);
e2912009 6080
db44fc01
YZ
6081 if (cpumask_equal(&p->cpus_allowed, new_mask))
6082 goto out;
6083
6ad4c188 6084 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
6085 ret = -EINVAL;
6086 goto out;
6087 }
6088
db44fc01 6089 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
6090 ret = -EINVAL;
6091 goto out;
6092 }
6093
1e1b6c51 6094 do_set_cpus_allowed(p, new_mask);
73fe6aae 6095
1da177e4 6096 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6097 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6098 goto out;
6099
969c7921 6100 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 6101 if (p->on_rq) {
969c7921 6102 struct migration_arg arg = { p, dest_cpu };
1da177e4 6103 /* Need help from migration thread: drop lock and wait. */
0122ec5b 6104 task_rq_unlock(rq, p, &flags);
969c7921 6105 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
6106 tlb_migrate_finish(p->mm);
6107 return 0;
6108 }
6109out:
0122ec5b 6110 task_rq_unlock(rq, p, &flags);
48f24c4d 6111
1da177e4
LT
6112 return ret;
6113}
cd8ba7cd 6114EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6115
6116/*
41a2d6cf 6117 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6118 * this because either it can't run here any more (set_cpus_allowed()
6119 * away from this CPU, or CPU going down), or because we're
6120 * attempting to rebalance this task on exec (sched_exec).
6121 *
6122 * So we race with normal scheduler movements, but that's OK, as long
6123 * as the task is no longer on this CPU.
efc30814
KK
6124 *
6125 * Returns non-zero if task was successfully migrated.
1da177e4 6126 */
efc30814 6127static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6128{
70b97a7f 6129 struct rq *rq_dest, *rq_src;
e2912009 6130 int ret = 0;
1da177e4 6131
e761b772 6132 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6133 return ret;
1da177e4
LT
6134
6135 rq_src = cpu_rq(src_cpu);
6136 rq_dest = cpu_rq(dest_cpu);
6137
0122ec5b 6138 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6139 double_rq_lock(rq_src, rq_dest);
6140 /* Already moved. */
6141 if (task_cpu(p) != src_cpu)
b1e38734 6142 goto done;
1da177e4 6143 /* Affinity changed (again). */
96f874e2 6144 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6145 goto fail;
1da177e4 6146
e2912009
PZ
6147 /*
6148 * If we're not on a rq, the next wake-up will ensure we're
6149 * placed properly.
6150 */
fd2f4419 6151 if (p->on_rq) {
2e1cb74a 6152 deactivate_task(rq_src, p, 0);
e2912009 6153 set_task_cpu(p, dest_cpu);
dd41f596 6154 activate_task(rq_dest, p, 0);
15afe09b 6155 check_preempt_curr(rq_dest, p, 0);
1da177e4 6156 }
b1e38734 6157done:
efc30814 6158 ret = 1;
b1e38734 6159fail:
1da177e4 6160 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6161 raw_spin_unlock(&p->pi_lock);
efc30814 6162 return ret;
1da177e4
LT
6163}
6164
6165/*
969c7921
TH
6166 * migration_cpu_stop - this will be executed by a highprio stopper thread
6167 * and performs thread migration by bumping thread off CPU then
6168 * 'pushing' onto another runqueue.
1da177e4 6169 */
969c7921 6170static int migration_cpu_stop(void *data)
1da177e4 6171{
969c7921 6172 struct migration_arg *arg = data;
f7b4cddc 6173
969c7921
TH
6174 /*
6175 * The original target cpu might have gone down and we might
6176 * be on another cpu but it doesn't matter.
6177 */
f7b4cddc 6178 local_irq_disable();
969c7921 6179 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6180 local_irq_enable();
1da177e4 6181 return 0;
f7b4cddc
ON
6182}
6183
1da177e4 6184#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6185
054b9108 6186/*
48c5ccae
PZ
6187 * Ensures that the idle task is using init_mm right before its cpu goes
6188 * offline.
054b9108 6189 */
48c5ccae 6190void idle_task_exit(void)
1da177e4 6191{
48c5ccae 6192 struct mm_struct *mm = current->active_mm;
e76bd8d9 6193
48c5ccae 6194 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6195
48c5ccae
PZ
6196 if (mm != &init_mm)
6197 switch_mm(mm, &init_mm, current);
6198 mmdrop(mm);
1da177e4
LT
6199}
6200
6201/*
6202 * While a dead CPU has no uninterruptible tasks queued at this point,
6203 * it might still have a nonzero ->nr_uninterruptible counter, because
6204 * for performance reasons the counter is not stricly tracking tasks to
6205 * their home CPUs. So we just add the counter to another CPU's counter,
6206 * to keep the global sum constant after CPU-down:
6207 */
70b97a7f 6208static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6209{
6ad4c188 6210 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6211
1da177e4
LT
6212 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6213 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6214}
6215
dd41f596 6216/*
48c5ccae 6217 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6218 */
48c5ccae 6219static void calc_global_load_remove(struct rq *rq)
1da177e4 6220{
48c5ccae
PZ
6221 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6222 rq->calc_load_active = 0;
1da177e4
LT
6223}
6224
48f24c4d 6225/*
48c5ccae
PZ
6226 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6227 * try_to_wake_up()->select_task_rq().
6228 *
6229 * Called with rq->lock held even though we'er in stop_machine() and
6230 * there's no concurrency possible, we hold the required locks anyway
6231 * because of lock validation efforts.
1da177e4 6232 */
48c5ccae 6233static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6234{
70b97a7f 6235 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6236 struct task_struct *next, *stop = rq->stop;
6237 int dest_cpu;
1da177e4
LT
6238
6239 /*
48c5ccae
PZ
6240 * Fudge the rq selection such that the below task selection loop
6241 * doesn't get stuck on the currently eligible stop task.
6242 *
6243 * We're currently inside stop_machine() and the rq is either stuck
6244 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6245 * either way we should never end up calling schedule() until we're
6246 * done here.
1da177e4 6247 */
48c5ccae 6248 rq->stop = NULL;
48f24c4d 6249
dd41f596 6250 for ( ; ; ) {
48c5ccae
PZ
6251 /*
6252 * There's this thread running, bail when that's the only
6253 * remaining thread.
6254 */
6255 if (rq->nr_running == 1)
dd41f596 6256 break;
48c5ccae 6257
b67802ea 6258 next = pick_next_task(rq);
48c5ccae 6259 BUG_ON(!next);
79c53799 6260 next->sched_class->put_prev_task(rq, next);
e692ab53 6261
48c5ccae
PZ
6262 /* Find suitable destination for @next, with force if needed. */
6263 dest_cpu = select_fallback_rq(dead_cpu, next);
6264 raw_spin_unlock(&rq->lock);
6265
6266 __migrate_task(next, dead_cpu, dest_cpu);
6267
6268 raw_spin_lock(&rq->lock);
1da177e4 6269 }
dce48a84 6270
48c5ccae 6271 rq->stop = stop;
dce48a84 6272}
48c5ccae 6273
1da177e4
LT
6274#endif /* CONFIG_HOTPLUG_CPU */
6275
e692ab53
NP
6276#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6277
6278static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6279 {
6280 .procname = "sched_domain",
c57baf1e 6281 .mode = 0555,
e0361851 6282 },
56992309 6283 {}
e692ab53
NP
6284};
6285
6286static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6287 {
6288 .procname = "kernel",
c57baf1e 6289 .mode = 0555,
e0361851
AD
6290 .child = sd_ctl_dir,
6291 },
56992309 6292 {}
e692ab53
NP
6293};
6294
6295static struct ctl_table *sd_alloc_ctl_entry(int n)
6296{
6297 struct ctl_table *entry =
5cf9f062 6298 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6299
e692ab53
NP
6300 return entry;
6301}
6302
6382bc90
MM
6303static void sd_free_ctl_entry(struct ctl_table **tablep)
6304{
cd790076 6305 struct ctl_table *entry;
6382bc90 6306
cd790076
MM
6307 /*
6308 * In the intermediate directories, both the child directory and
6309 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6310 * will always be set. In the lowest directory the names are
cd790076
MM
6311 * static strings and all have proc handlers.
6312 */
6313 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6314 if (entry->child)
6315 sd_free_ctl_entry(&entry->child);
cd790076
MM
6316 if (entry->proc_handler == NULL)
6317 kfree(entry->procname);
6318 }
6382bc90
MM
6319
6320 kfree(*tablep);
6321 *tablep = NULL;
6322}
6323
e692ab53 6324static void
e0361851 6325set_table_entry(struct ctl_table *entry,
e692ab53
NP
6326 const char *procname, void *data, int maxlen,
6327 mode_t mode, proc_handler *proc_handler)
6328{
e692ab53
NP
6329 entry->procname = procname;
6330 entry->data = data;
6331 entry->maxlen = maxlen;
6332 entry->mode = mode;
6333 entry->proc_handler = proc_handler;
6334}
6335
6336static struct ctl_table *
6337sd_alloc_ctl_domain_table(struct sched_domain *sd)
6338{
a5d8c348 6339 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6340
ad1cdc1d
MM
6341 if (table == NULL)
6342 return NULL;
6343
e0361851 6344 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6345 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6346 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6347 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6348 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6349 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6350 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6351 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6352 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6353 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6354 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6355 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6356 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6357 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6358 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6359 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6360 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6361 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6362 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6363 &sd->cache_nice_tries,
6364 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6365 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6366 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6367 set_table_entry(&table[11], "name", sd->name,
6368 CORENAME_MAX_SIZE, 0444, proc_dostring);
6369 /* &table[12] is terminator */
e692ab53
NP
6370
6371 return table;
6372}
6373
9a4e7159 6374static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6375{
6376 struct ctl_table *entry, *table;
6377 struct sched_domain *sd;
6378 int domain_num = 0, i;
6379 char buf[32];
6380
6381 for_each_domain(cpu, sd)
6382 domain_num++;
6383 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6384 if (table == NULL)
6385 return NULL;
e692ab53
NP
6386
6387 i = 0;
6388 for_each_domain(cpu, sd) {
6389 snprintf(buf, 32, "domain%d", i);
e692ab53 6390 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6391 entry->mode = 0555;
e692ab53
NP
6392 entry->child = sd_alloc_ctl_domain_table(sd);
6393 entry++;
6394 i++;
6395 }
6396 return table;
6397}
6398
6399static struct ctl_table_header *sd_sysctl_header;
6382bc90 6400static void register_sched_domain_sysctl(void)
e692ab53 6401{
6ad4c188 6402 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6403 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6404 char buf[32];
6405
7378547f
MM
6406 WARN_ON(sd_ctl_dir[0].child);
6407 sd_ctl_dir[0].child = entry;
6408
ad1cdc1d
MM
6409 if (entry == NULL)
6410 return;
6411
6ad4c188 6412 for_each_possible_cpu(i) {
e692ab53 6413 snprintf(buf, 32, "cpu%d", i);
e692ab53 6414 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6415 entry->mode = 0555;
e692ab53 6416 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6417 entry++;
e692ab53 6418 }
7378547f
MM
6419
6420 WARN_ON(sd_sysctl_header);
e692ab53
NP
6421 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6422}
6382bc90 6423
7378547f 6424/* may be called multiple times per register */
6382bc90
MM
6425static void unregister_sched_domain_sysctl(void)
6426{
7378547f
MM
6427 if (sd_sysctl_header)
6428 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6429 sd_sysctl_header = NULL;
7378547f
MM
6430 if (sd_ctl_dir[0].child)
6431 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6432}
e692ab53 6433#else
6382bc90
MM
6434static void register_sched_domain_sysctl(void)
6435{
6436}
6437static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6438{
6439}
6440#endif
6441
1f11eb6a
GH
6442static void set_rq_online(struct rq *rq)
6443{
6444 if (!rq->online) {
6445 const struct sched_class *class;
6446
c6c4927b 6447 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6448 rq->online = 1;
6449
6450 for_each_class(class) {
6451 if (class->rq_online)
6452 class->rq_online(rq);
6453 }
6454 }
6455}
6456
6457static void set_rq_offline(struct rq *rq)
6458{
6459 if (rq->online) {
6460 const struct sched_class *class;
6461
6462 for_each_class(class) {
6463 if (class->rq_offline)
6464 class->rq_offline(rq);
6465 }
6466
c6c4927b 6467 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6468 rq->online = 0;
6469 }
6470}
6471
1da177e4
LT
6472/*
6473 * migration_call - callback that gets triggered when a CPU is added.
6474 * Here we can start up the necessary migration thread for the new CPU.
6475 */
48f24c4d
IM
6476static int __cpuinit
6477migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6478{
48f24c4d 6479 int cpu = (long)hcpu;
1da177e4 6480 unsigned long flags;
969c7921 6481 struct rq *rq = cpu_rq(cpu);
1da177e4 6482
48c5ccae 6483 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6484
1da177e4 6485 case CPU_UP_PREPARE:
a468d389 6486 rq->calc_load_update = calc_load_update;
1da177e4 6487 break;
48f24c4d 6488
1da177e4 6489 case CPU_ONLINE:
1f94ef59 6490 /* Update our root-domain */
05fa785c 6491 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6492 if (rq->rd) {
c6c4927b 6493 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6494
6495 set_rq_online(rq);
1f94ef59 6496 }
05fa785c 6497 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6498 break;
48f24c4d 6499
1da177e4 6500#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6501 case CPU_DYING:
317f3941 6502 sched_ttwu_pending();
57d885fe 6503 /* Update our root-domain */
05fa785c 6504 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6505 if (rq->rd) {
c6c4927b 6506 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6507 set_rq_offline(rq);
57d885fe 6508 }
48c5ccae
PZ
6509 migrate_tasks(cpu);
6510 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6511 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6512
6513 migrate_nr_uninterruptible(rq);
6514 calc_global_load_remove(rq);
57d885fe 6515 break;
1da177e4
LT
6516#endif
6517 }
49c022e6
PZ
6518
6519 update_max_interval();
6520
1da177e4
LT
6521 return NOTIFY_OK;
6522}
6523
f38b0820
PM
6524/*
6525 * Register at high priority so that task migration (migrate_all_tasks)
6526 * happens before everything else. This has to be lower priority than
cdd6c482 6527 * the notifier in the perf_event subsystem, though.
1da177e4 6528 */
26c2143b 6529static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6530 .notifier_call = migration_call,
50a323b7 6531 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6532};
6533
3a101d05
TH
6534static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6535 unsigned long action, void *hcpu)
6536{
6537 switch (action & ~CPU_TASKS_FROZEN) {
6538 case CPU_ONLINE:
6539 case CPU_DOWN_FAILED:
6540 set_cpu_active((long)hcpu, true);
6541 return NOTIFY_OK;
6542 default:
6543 return NOTIFY_DONE;
6544 }
6545}
6546
6547static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6548 unsigned long action, void *hcpu)
6549{
6550 switch (action & ~CPU_TASKS_FROZEN) {
6551 case CPU_DOWN_PREPARE:
6552 set_cpu_active((long)hcpu, false);
6553 return NOTIFY_OK;
6554 default:
6555 return NOTIFY_DONE;
6556 }
6557}
6558
7babe8db 6559static int __init migration_init(void)
1da177e4
LT
6560{
6561 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6562 int err;
48f24c4d 6563
3a101d05 6564 /* Initialize migration for the boot CPU */
07dccf33
AM
6565 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6566 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6567 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6568 register_cpu_notifier(&migration_notifier);
7babe8db 6569
3a101d05
TH
6570 /* Register cpu active notifiers */
6571 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6572 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6573
a004cd42 6574 return 0;
1da177e4 6575}
7babe8db 6576early_initcall(migration_init);
1da177e4
LT
6577#endif
6578
6579#ifdef CONFIG_SMP
476f3534 6580
4cb98839
PZ
6581static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6582
3e9830dc 6583#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6584
f6630114
MT
6585static __read_mostly int sched_domain_debug_enabled;
6586
6587static int __init sched_domain_debug_setup(char *str)
6588{
6589 sched_domain_debug_enabled = 1;
6590
6591 return 0;
6592}
6593early_param("sched_debug", sched_domain_debug_setup);
6594
7c16ec58 6595static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6596 struct cpumask *groupmask)
1da177e4 6597{
4dcf6aff 6598 struct sched_group *group = sd->groups;
434d53b0 6599 char str[256];
1da177e4 6600
968ea6d8 6601 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6602 cpumask_clear(groupmask);
4dcf6aff
IM
6603
6604 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6605
6606 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6607 printk("does not load-balance\n");
4dcf6aff 6608 if (sd->parent)
3df0fc5b
PZ
6609 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6610 " has parent");
4dcf6aff 6611 return -1;
41c7ce9a
NP
6612 }
6613
3df0fc5b 6614 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6615
758b2cdc 6616 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6617 printk(KERN_ERR "ERROR: domain->span does not contain "
6618 "CPU%d\n", cpu);
4dcf6aff 6619 }
758b2cdc 6620 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6621 printk(KERN_ERR "ERROR: domain->groups does not contain"
6622 " CPU%d\n", cpu);
4dcf6aff 6623 }
1da177e4 6624
4dcf6aff 6625 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6626 do {
4dcf6aff 6627 if (!group) {
3df0fc5b
PZ
6628 printk("\n");
6629 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6630 break;
6631 }
6632
9c3f75cb 6633 if (!group->sgp->power) {
3df0fc5b
PZ
6634 printk(KERN_CONT "\n");
6635 printk(KERN_ERR "ERROR: domain->cpu_power not "
6636 "set\n");
4dcf6aff
IM
6637 break;
6638 }
1da177e4 6639
758b2cdc 6640 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6641 printk(KERN_CONT "\n");
6642 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6643 break;
6644 }
1da177e4 6645
758b2cdc 6646 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6647 printk(KERN_CONT "\n");
6648 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6649 break;
6650 }
1da177e4 6651
758b2cdc 6652 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6653
968ea6d8 6654 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6655
3df0fc5b 6656 printk(KERN_CONT " %s", str);
9c3f75cb 6657 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 6658 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 6659 group->sgp->power);
381512cf 6660 }
1da177e4 6661
4dcf6aff
IM
6662 group = group->next;
6663 } while (group != sd->groups);
3df0fc5b 6664 printk(KERN_CONT "\n");
1da177e4 6665
758b2cdc 6666 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6667 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6668
758b2cdc
RR
6669 if (sd->parent &&
6670 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6671 printk(KERN_ERR "ERROR: parent span is not a superset "
6672 "of domain->span\n");
4dcf6aff
IM
6673 return 0;
6674}
1da177e4 6675
4dcf6aff
IM
6676static void sched_domain_debug(struct sched_domain *sd, int cpu)
6677{
6678 int level = 0;
1da177e4 6679
f6630114
MT
6680 if (!sched_domain_debug_enabled)
6681 return;
6682
4dcf6aff
IM
6683 if (!sd) {
6684 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6685 return;
6686 }
1da177e4 6687
4dcf6aff
IM
6688 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6689
6690 for (;;) {
4cb98839 6691 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6692 break;
1da177e4
LT
6693 level++;
6694 sd = sd->parent;
33859f7f 6695 if (!sd)
4dcf6aff
IM
6696 break;
6697 }
1da177e4 6698}
6d6bc0ad 6699#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6700# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6701#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6702
1a20ff27 6703static int sd_degenerate(struct sched_domain *sd)
245af2c7 6704{
758b2cdc 6705 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6706 return 1;
6707
6708 /* Following flags need at least 2 groups */
6709 if (sd->flags & (SD_LOAD_BALANCE |
6710 SD_BALANCE_NEWIDLE |
6711 SD_BALANCE_FORK |
89c4710e
SS
6712 SD_BALANCE_EXEC |
6713 SD_SHARE_CPUPOWER |
6714 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6715 if (sd->groups != sd->groups->next)
6716 return 0;
6717 }
6718
6719 /* Following flags don't use groups */
c88d5910 6720 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6721 return 0;
6722
6723 return 1;
6724}
6725
48f24c4d
IM
6726static int
6727sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6728{
6729 unsigned long cflags = sd->flags, pflags = parent->flags;
6730
6731 if (sd_degenerate(parent))
6732 return 1;
6733
758b2cdc 6734 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6735 return 0;
6736
245af2c7
SS
6737 /* Flags needing groups don't count if only 1 group in parent */
6738 if (parent->groups == parent->groups->next) {
6739 pflags &= ~(SD_LOAD_BALANCE |
6740 SD_BALANCE_NEWIDLE |
6741 SD_BALANCE_FORK |
89c4710e
SS
6742 SD_BALANCE_EXEC |
6743 SD_SHARE_CPUPOWER |
6744 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6745 if (nr_node_ids == 1)
6746 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6747 }
6748 if (~cflags & pflags)
6749 return 0;
6750
6751 return 1;
6752}
6753
dce840a0 6754static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6755{
dce840a0 6756 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6757
68e74568 6758 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6759 free_cpumask_var(rd->rto_mask);
6760 free_cpumask_var(rd->online);
6761 free_cpumask_var(rd->span);
6762 kfree(rd);
6763}
6764
57d885fe
GH
6765static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6766{
a0490fa3 6767 struct root_domain *old_rd = NULL;
57d885fe 6768 unsigned long flags;
57d885fe 6769
05fa785c 6770 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6771
6772 if (rq->rd) {
a0490fa3 6773 old_rd = rq->rd;
57d885fe 6774
c6c4927b 6775 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6776 set_rq_offline(rq);
57d885fe 6777
c6c4927b 6778 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6779
a0490fa3
IM
6780 /*
6781 * If we dont want to free the old_rt yet then
6782 * set old_rd to NULL to skip the freeing later
6783 * in this function:
6784 */
6785 if (!atomic_dec_and_test(&old_rd->refcount))
6786 old_rd = NULL;
57d885fe
GH
6787 }
6788
6789 atomic_inc(&rd->refcount);
6790 rq->rd = rd;
6791
c6c4927b 6792 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6793 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6794 set_rq_online(rq);
57d885fe 6795
05fa785c 6796 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6797
6798 if (old_rd)
dce840a0 6799 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6800}
6801
68c38fc3 6802static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6803{
6804 memset(rd, 0, sizeof(*rd));
6805
68c38fc3 6806 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6807 goto out;
68c38fc3 6808 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6809 goto free_span;
68c38fc3 6810 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6811 goto free_online;
6e0534f2 6812
68c38fc3 6813 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6814 goto free_rto_mask;
c6c4927b 6815 return 0;
6e0534f2 6816
68e74568
RR
6817free_rto_mask:
6818 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6819free_online:
6820 free_cpumask_var(rd->online);
6821free_span:
6822 free_cpumask_var(rd->span);
0c910d28 6823out:
c6c4927b 6824 return -ENOMEM;
57d885fe
GH
6825}
6826
6827static void init_defrootdomain(void)
6828{
68c38fc3 6829 init_rootdomain(&def_root_domain);
c6c4927b 6830
57d885fe
GH
6831 atomic_set(&def_root_domain.refcount, 1);
6832}
6833
dc938520 6834static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6835{
6836 struct root_domain *rd;
6837
6838 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6839 if (!rd)
6840 return NULL;
6841
68c38fc3 6842 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6843 kfree(rd);
6844 return NULL;
6845 }
57d885fe
GH
6846
6847 return rd;
6848}
6849
e3589f6c
PZ
6850static void free_sched_groups(struct sched_group *sg, int free_sgp)
6851{
6852 struct sched_group *tmp, *first;
6853
6854 if (!sg)
6855 return;
6856
6857 first = sg;
6858 do {
6859 tmp = sg->next;
6860
6861 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
6862 kfree(sg->sgp);
6863
6864 kfree(sg);
6865 sg = tmp;
6866 } while (sg != first);
6867}
6868
dce840a0
PZ
6869static void free_sched_domain(struct rcu_head *rcu)
6870{
6871 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
6872
6873 /*
6874 * If its an overlapping domain it has private groups, iterate and
6875 * nuke them all.
6876 */
6877 if (sd->flags & SD_OVERLAP) {
6878 free_sched_groups(sd->groups, 1);
6879 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 6880 kfree(sd->groups->sgp);
dce840a0 6881 kfree(sd->groups);
9c3f75cb 6882 }
dce840a0
PZ
6883 kfree(sd);
6884}
6885
6886static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6887{
6888 call_rcu(&sd->rcu, free_sched_domain);
6889}
6890
6891static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6892{
6893 for (; sd; sd = sd->parent)
6894 destroy_sched_domain(sd, cpu);
6895}
6896
1da177e4 6897/*
0eab9146 6898 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6899 * hold the hotplug lock.
6900 */
0eab9146
IM
6901static void
6902cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6903{
70b97a7f 6904 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6905 struct sched_domain *tmp;
6906
6907 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6908 for (tmp = sd; tmp; ) {
245af2c7
SS
6909 struct sched_domain *parent = tmp->parent;
6910 if (!parent)
6911 break;
f29c9b1c 6912
1a848870 6913 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6914 tmp->parent = parent->parent;
1a848870
SS
6915 if (parent->parent)
6916 parent->parent->child = tmp;
dce840a0 6917 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6918 } else
6919 tmp = tmp->parent;
245af2c7
SS
6920 }
6921
1a848870 6922 if (sd && sd_degenerate(sd)) {
dce840a0 6923 tmp = sd;
245af2c7 6924 sd = sd->parent;
dce840a0 6925 destroy_sched_domain(tmp, cpu);
1a848870
SS
6926 if (sd)
6927 sd->child = NULL;
6928 }
1da177e4 6929
4cb98839 6930 sched_domain_debug(sd, cpu);
1da177e4 6931
57d885fe 6932 rq_attach_root(rq, rd);
dce840a0 6933 tmp = rq->sd;
674311d5 6934 rcu_assign_pointer(rq->sd, sd);
dce840a0 6935 destroy_sched_domains(tmp, cpu);
1da177e4
LT
6936}
6937
6938/* cpus with isolated domains */
dcc30a35 6939static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6940
6941/* Setup the mask of cpus configured for isolated domains */
6942static int __init isolated_cpu_setup(char *str)
6943{
bdddd296 6944 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6945 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6946 return 1;
6947}
6948
8927f494 6949__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6950
9c1cfda2 6951#define SD_NODES_PER_DOMAIN 16
1da177e4 6952
9c1cfda2 6953#ifdef CONFIG_NUMA
198e2f18 6954
9c1cfda2
JH
6955/**
6956 * find_next_best_node - find the next node to include in a sched_domain
6957 * @node: node whose sched_domain we're building
6958 * @used_nodes: nodes already in the sched_domain
6959 *
41a2d6cf 6960 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6961 * finds the closest node not already in the @used_nodes map.
6962 *
6963 * Should use nodemask_t.
6964 */
c5f59f08 6965static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 6966{
7142d17e 6967 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
6968
6969 min_val = INT_MAX;
6970
076ac2af 6971 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6972 /* Start at @node */
076ac2af 6973 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6974
6975 if (!nr_cpus_node(n))
6976 continue;
6977
6978 /* Skip already used nodes */
c5f59f08 6979 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6980 continue;
6981
6982 /* Simple min distance search */
6983 val = node_distance(node, n);
6984
6985 if (val < min_val) {
6986 min_val = val;
6987 best_node = n;
6988 }
6989 }
6990
7142d17e
HD
6991 if (best_node != -1)
6992 node_set(best_node, *used_nodes);
9c1cfda2
JH
6993 return best_node;
6994}
6995
6996/**
6997 * sched_domain_node_span - get a cpumask for a node's sched_domain
6998 * @node: node whose cpumask we're constructing
73486722 6999 * @span: resulting cpumask
9c1cfda2 7000 *
41a2d6cf 7001 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7002 * should be one that prevents unnecessary balancing, but also spreads tasks
7003 * out optimally.
7004 */
96f874e2 7005static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7006{
c5f59f08 7007 nodemask_t used_nodes;
48f24c4d 7008 int i;
9c1cfda2 7009
6ca09dfc 7010 cpumask_clear(span);
c5f59f08 7011 nodes_clear(used_nodes);
9c1cfda2 7012
6ca09dfc 7013 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7014 node_set(node, used_nodes);
9c1cfda2
JH
7015
7016 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7017 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
7018 if (next_node < 0)
7019 break;
6ca09dfc 7020 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7021 }
9c1cfda2 7022}
d3081f52
PZ
7023
7024static const struct cpumask *cpu_node_mask(int cpu)
7025{
7026 lockdep_assert_held(&sched_domains_mutex);
7027
7028 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7029
7030 return sched_domains_tmpmask;
7031}
2c402dc3
PZ
7032
7033static const struct cpumask *cpu_allnodes_mask(int cpu)
7034{
7035 return cpu_possible_mask;
7036}
6d6bc0ad 7037#endif /* CONFIG_NUMA */
9c1cfda2 7038
d3081f52
PZ
7039static const struct cpumask *cpu_cpu_mask(int cpu)
7040{
7041 return cpumask_of_node(cpu_to_node(cpu));
7042}
7043
5c45bf27 7044int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7045
dce840a0
PZ
7046struct sd_data {
7047 struct sched_domain **__percpu sd;
7048 struct sched_group **__percpu sg;
9c3f75cb 7049 struct sched_group_power **__percpu sgp;
dce840a0
PZ
7050};
7051
49a02c51 7052struct s_data {
21d42ccf 7053 struct sched_domain ** __percpu sd;
49a02c51
AH
7054 struct root_domain *rd;
7055};
7056
2109b99e 7057enum s_alloc {
2109b99e 7058 sa_rootdomain,
21d42ccf 7059 sa_sd,
dce840a0 7060 sa_sd_storage,
2109b99e
AH
7061 sa_none,
7062};
7063
54ab4ff4
PZ
7064struct sched_domain_topology_level;
7065
7066typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
7067typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7068
e3589f6c
PZ
7069#define SDTL_OVERLAP 0x01
7070
eb7a74e6 7071struct sched_domain_topology_level {
2c402dc3
PZ
7072 sched_domain_init_f init;
7073 sched_domain_mask_f mask;
e3589f6c 7074 int flags;
54ab4ff4 7075 struct sd_data data;
eb7a74e6
PZ
7076};
7077
e3589f6c
PZ
7078static int
7079build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7080{
7081 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7082 const struct cpumask *span = sched_domain_span(sd);
7083 struct cpumask *covered = sched_domains_tmpmask;
7084 struct sd_data *sdd = sd->private;
7085 struct sched_domain *child;
7086 int i;
7087
7088 cpumask_clear(covered);
7089
7090 for_each_cpu(i, span) {
7091 struct cpumask *sg_span;
7092
7093 if (cpumask_test_cpu(i, covered))
7094 continue;
7095
7096 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7097 GFP_KERNEL, cpu_to_node(i));
7098
7099 if (!sg)
7100 goto fail;
7101
7102 sg_span = sched_group_cpus(sg);
7103
7104 child = *per_cpu_ptr(sdd->sd, i);
7105 if (child->child) {
7106 child = child->child;
7107 cpumask_copy(sg_span, sched_domain_span(child));
7108 } else
7109 cpumask_set_cpu(i, sg_span);
7110
7111 cpumask_or(covered, covered, sg_span);
7112
7113 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7114 atomic_inc(&sg->sgp->ref);
7115
7116 if (cpumask_test_cpu(cpu, sg_span))
7117 groups = sg;
7118
7119 if (!first)
7120 first = sg;
7121 if (last)
7122 last->next = sg;
7123 last = sg;
7124 last->next = first;
7125 }
7126 sd->groups = groups;
7127
7128 return 0;
7129
7130fail:
7131 free_sched_groups(first, 0);
7132
7133 return -ENOMEM;
7134}
7135
dce840a0 7136static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 7137{
dce840a0
PZ
7138 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7139 struct sched_domain *child = sd->child;
1da177e4 7140
dce840a0
PZ
7141 if (child)
7142 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 7143
9c3f75cb 7144 if (sg) {
dce840a0 7145 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 7146 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 7147 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 7148 }
dce840a0
PZ
7149
7150 return cpu;
1e9f28fa 7151}
1e9f28fa 7152
01a08546 7153/*
dce840a0
PZ
7154 * build_sched_groups will build a circular linked list of the groups
7155 * covered by the given span, and will set each group's ->cpumask correctly,
7156 * and ->cpu_power to 0.
e3589f6c
PZ
7157 *
7158 * Assumes the sched_domain tree is fully constructed
01a08546 7159 */
e3589f6c
PZ
7160static int
7161build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 7162{
dce840a0
PZ
7163 struct sched_group *first = NULL, *last = NULL;
7164 struct sd_data *sdd = sd->private;
7165 const struct cpumask *span = sched_domain_span(sd);
f96225fd 7166 struct cpumask *covered;
dce840a0 7167 int i;
9c1cfda2 7168
e3589f6c
PZ
7169 get_group(cpu, sdd, &sd->groups);
7170 atomic_inc(&sd->groups->ref);
7171
7172 if (cpu != cpumask_first(sched_domain_span(sd)))
7173 return 0;
7174
f96225fd
PZ
7175 lockdep_assert_held(&sched_domains_mutex);
7176 covered = sched_domains_tmpmask;
7177
dce840a0 7178 cpumask_clear(covered);
6711cab4 7179
dce840a0
PZ
7180 for_each_cpu(i, span) {
7181 struct sched_group *sg;
7182 int group = get_group(i, sdd, &sg);
7183 int j;
6711cab4 7184
dce840a0
PZ
7185 if (cpumask_test_cpu(i, covered))
7186 continue;
6711cab4 7187
dce840a0 7188 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 7189 sg->sgp->power = 0;
0601a88d 7190
dce840a0
PZ
7191 for_each_cpu(j, span) {
7192 if (get_group(j, sdd, NULL) != group)
7193 continue;
0601a88d 7194
dce840a0
PZ
7195 cpumask_set_cpu(j, covered);
7196 cpumask_set_cpu(j, sched_group_cpus(sg));
7197 }
0601a88d 7198
dce840a0
PZ
7199 if (!first)
7200 first = sg;
7201 if (last)
7202 last->next = sg;
7203 last = sg;
7204 }
7205 last->next = first;
e3589f6c
PZ
7206
7207 return 0;
0601a88d 7208}
51888ca2 7209
89c4710e
SS
7210/*
7211 * Initialize sched groups cpu_power.
7212 *
7213 * cpu_power indicates the capacity of sched group, which is used while
7214 * distributing the load between different sched groups in a sched domain.
7215 * Typically cpu_power for all the groups in a sched domain will be same unless
7216 * there are asymmetries in the topology. If there are asymmetries, group
7217 * having more cpu_power will pickup more load compared to the group having
7218 * less cpu_power.
89c4710e
SS
7219 */
7220static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7221{
e3589f6c 7222 struct sched_group *sg = sd->groups;
89c4710e 7223
e3589f6c
PZ
7224 WARN_ON(!sd || !sg);
7225
7226 do {
7227 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7228 sg = sg->next;
7229 } while (sg != sd->groups);
89c4710e 7230
e3589f6c
PZ
7231 if (cpu != group_first_cpu(sg))
7232 return;
aae6d3dd 7233
d274cb30 7234 update_group_power(sd, cpu);
89c4710e
SS
7235}
7236
7c16ec58
MT
7237/*
7238 * Initializers for schedule domains
7239 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7240 */
7241
a5d8c348
IM
7242#ifdef CONFIG_SCHED_DEBUG
7243# define SD_INIT_NAME(sd, type) sd->name = #type
7244#else
7245# define SD_INIT_NAME(sd, type) do { } while (0)
7246#endif
7247
54ab4ff4
PZ
7248#define SD_INIT_FUNC(type) \
7249static noinline struct sched_domain * \
7250sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7251{ \
7252 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7253 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
7254 SD_INIT_NAME(sd, type); \
7255 sd->private = &tl->data; \
7256 return sd; \
7c16ec58
MT
7257}
7258
7259SD_INIT_FUNC(CPU)
7260#ifdef CONFIG_NUMA
7261 SD_INIT_FUNC(ALLNODES)
7262 SD_INIT_FUNC(NODE)
7263#endif
7264#ifdef CONFIG_SCHED_SMT
7265 SD_INIT_FUNC(SIBLING)
7266#endif
7267#ifdef CONFIG_SCHED_MC
7268 SD_INIT_FUNC(MC)
7269#endif
01a08546
HC
7270#ifdef CONFIG_SCHED_BOOK
7271 SD_INIT_FUNC(BOOK)
7272#endif
7c16ec58 7273
1d3504fc 7274static int default_relax_domain_level = -1;
60495e77 7275int sched_domain_level_max;
1d3504fc
HS
7276
7277static int __init setup_relax_domain_level(char *str)
7278{
30e0e178
LZ
7279 unsigned long val;
7280
7281 val = simple_strtoul(str, NULL, 0);
60495e77 7282 if (val < sched_domain_level_max)
30e0e178
LZ
7283 default_relax_domain_level = val;
7284
1d3504fc
HS
7285 return 1;
7286}
7287__setup("relax_domain_level=", setup_relax_domain_level);
7288
7289static void set_domain_attribute(struct sched_domain *sd,
7290 struct sched_domain_attr *attr)
7291{
7292 int request;
7293
7294 if (!attr || attr->relax_domain_level < 0) {
7295 if (default_relax_domain_level < 0)
7296 return;
7297 else
7298 request = default_relax_domain_level;
7299 } else
7300 request = attr->relax_domain_level;
7301 if (request < sd->level) {
7302 /* turn off idle balance on this domain */
c88d5910 7303 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7304 } else {
7305 /* turn on idle balance on this domain */
c88d5910 7306 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7307 }
7308}
7309
54ab4ff4
PZ
7310static void __sdt_free(const struct cpumask *cpu_map);
7311static int __sdt_alloc(const struct cpumask *cpu_map);
7312
2109b99e
AH
7313static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7314 const struct cpumask *cpu_map)
7315{
7316 switch (what) {
2109b99e 7317 case sa_rootdomain:
822ff793
PZ
7318 if (!atomic_read(&d->rd->refcount))
7319 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7320 case sa_sd:
7321 free_percpu(d->sd); /* fall through */
dce840a0 7322 case sa_sd_storage:
54ab4ff4 7323 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
7324 case sa_none:
7325 break;
7326 }
7327}
3404c8d9 7328
2109b99e
AH
7329static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7330 const struct cpumask *cpu_map)
7331{
dce840a0
PZ
7332 memset(d, 0, sizeof(*d));
7333
54ab4ff4
PZ
7334 if (__sdt_alloc(cpu_map))
7335 return sa_sd_storage;
dce840a0
PZ
7336 d->sd = alloc_percpu(struct sched_domain *);
7337 if (!d->sd)
7338 return sa_sd_storage;
2109b99e 7339 d->rd = alloc_rootdomain();
dce840a0 7340 if (!d->rd)
21d42ccf 7341 return sa_sd;
2109b99e
AH
7342 return sa_rootdomain;
7343}
57d885fe 7344
dce840a0
PZ
7345/*
7346 * NULL the sd_data elements we've used to build the sched_domain and
7347 * sched_group structure so that the subsequent __free_domain_allocs()
7348 * will not free the data we're using.
7349 */
7350static void claim_allocations(int cpu, struct sched_domain *sd)
7351{
7352 struct sd_data *sdd = sd->private;
dce840a0
PZ
7353
7354 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7355 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7356
e3589f6c 7357 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 7358 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
7359
7360 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 7361 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
7362}
7363
2c402dc3
PZ
7364#ifdef CONFIG_SCHED_SMT
7365static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 7366{
2c402dc3 7367 return topology_thread_cpumask(cpu);
3bd65a80 7368}
2c402dc3 7369#endif
7f4588f3 7370
d069b916
PZ
7371/*
7372 * Topology list, bottom-up.
7373 */
2c402dc3 7374static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
7375#ifdef CONFIG_SCHED_SMT
7376 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 7377#endif
1e9f28fa 7378#ifdef CONFIG_SCHED_MC
2c402dc3 7379 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 7380#endif
d069b916
PZ
7381#ifdef CONFIG_SCHED_BOOK
7382 { sd_init_BOOK, cpu_book_mask, },
7383#endif
7384 { sd_init_CPU, cpu_cpu_mask, },
7385#ifdef CONFIG_NUMA
e3589f6c 7386 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 7387 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 7388#endif
eb7a74e6
PZ
7389 { NULL, },
7390};
7391
7392static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7393
54ab4ff4
PZ
7394static int __sdt_alloc(const struct cpumask *cpu_map)
7395{
7396 struct sched_domain_topology_level *tl;
7397 int j;
7398
7399 for (tl = sched_domain_topology; tl->init; tl++) {
7400 struct sd_data *sdd = &tl->data;
7401
7402 sdd->sd = alloc_percpu(struct sched_domain *);
7403 if (!sdd->sd)
7404 return -ENOMEM;
7405
7406 sdd->sg = alloc_percpu(struct sched_group *);
7407 if (!sdd->sg)
7408 return -ENOMEM;
7409
9c3f75cb
PZ
7410 sdd->sgp = alloc_percpu(struct sched_group_power *);
7411 if (!sdd->sgp)
7412 return -ENOMEM;
7413
54ab4ff4
PZ
7414 for_each_cpu(j, cpu_map) {
7415 struct sched_domain *sd;
7416 struct sched_group *sg;
9c3f75cb 7417 struct sched_group_power *sgp;
54ab4ff4
PZ
7418
7419 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7420 GFP_KERNEL, cpu_to_node(j));
7421 if (!sd)
7422 return -ENOMEM;
7423
7424 *per_cpu_ptr(sdd->sd, j) = sd;
7425
7426 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7427 GFP_KERNEL, cpu_to_node(j));
7428 if (!sg)
7429 return -ENOMEM;
7430
7431 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
7432
7433 sgp = kzalloc_node(sizeof(struct sched_group_power),
7434 GFP_KERNEL, cpu_to_node(j));
7435 if (!sgp)
7436 return -ENOMEM;
7437
7438 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
7439 }
7440 }
7441
7442 return 0;
7443}
7444
7445static void __sdt_free(const struct cpumask *cpu_map)
7446{
7447 struct sched_domain_topology_level *tl;
7448 int j;
7449
7450 for (tl = sched_domain_topology; tl->init; tl++) {
7451 struct sd_data *sdd = &tl->data;
7452
7453 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
7454 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7455 if (sd && (sd->flags & SD_OVERLAP))
7456 free_sched_groups(sd->groups, 0);
feff8fa0 7457 kfree(*per_cpu_ptr(sdd->sd, j));
54ab4ff4 7458 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 7459 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
7460 }
7461 free_percpu(sdd->sd);
7462 free_percpu(sdd->sg);
9c3f75cb 7463 free_percpu(sdd->sgp);
54ab4ff4
PZ
7464 }
7465}
7466
2c402dc3
PZ
7467struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7468 struct s_data *d, const struct cpumask *cpu_map,
d069b916 7469 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
7470 int cpu)
7471{
54ab4ff4 7472 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 7473 if (!sd)
d069b916 7474 return child;
2c402dc3
PZ
7475
7476 set_domain_attribute(sd, attr);
7477 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7478 if (child) {
7479 sd->level = child->level + 1;
7480 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7481 child->parent = sd;
60495e77 7482 }
d069b916 7483 sd->child = child;
2c402dc3
PZ
7484
7485 return sd;
7486}
7487
2109b99e
AH
7488/*
7489 * Build sched domains for a given set of cpus and attach the sched domains
7490 * to the individual cpus
7491 */
dce840a0
PZ
7492static int build_sched_domains(const struct cpumask *cpu_map,
7493 struct sched_domain_attr *attr)
2109b99e
AH
7494{
7495 enum s_alloc alloc_state = sa_none;
dce840a0 7496 struct sched_domain *sd;
2109b99e 7497 struct s_data d;
822ff793 7498 int i, ret = -ENOMEM;
9c1cfda2 7499
2109b99e
AH
7500 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7501 if (alloc_state != sa_rootdomain)
7502 goto error;
9c1cfda2 7503
dce840a0 7504 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7505 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7506 struct sched_domain_topology_level *tl;
7507
3bd65a80 7508 sd = NULL;
e3589f6c 7509 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 7510 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
7511 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7512 sd->flags |= SD_OVERLAP;
d110235d
PZ
7513 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7514 break;
e3589f6c 7515 }
d274cb30 7516
d069b916
PZ
7517 while (sd->child)
7518 sd = sd->child;
7519
21d42ccf 7520 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7521 }
7522
7523 /* Build the groups for the domains */
7524 for_each_cpu(i, cpu_map) {
7525 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7526 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7527 if (sd->flags & SD_OVERLAP) {
7528 if (build_overlap_sched_groups(sd, i))
7529 goto error;
7530 } else {
7531 if (build_sched_groups(sd, i))
7532 goto error;
7533 }
1cf51902 7534 }
a06dadbe 7535 }
9c1cfda2 7536
1da177e4 7537 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7538 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7539 if (!cpumask_test_cpu(i, cpu_map))
7540 continue;
9c1cfda2 7541
dce840a0
PZ
7542 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7543 claim_allocations(i, sd);
cd4ea6ae 7544 init_sched_groups_power(i, sd);
dce840a0 7545 }
f712c0c7 7546 }
9c1cfda2 7547
1da177e4 7548 /* Attach the domains */
dce840a0 7549 rcu_read_lock();
abcd083a 7550 for_each_cpu(i, cpu_map) {
21d42ccf 7551 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7552 cpu_attach_domain(sd, d.rd, i);
1da177e4 7553 }
dce840a0 7554 rcu_read_unlock();
51888ca2 7555
822ff793 7556 ret = 0;
51888ca2 7557error:
2109b99e 7558 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7559 return ret;
1da177e4 7560}
029190c5 7561
acc3f5d7 7562static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7563static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7564static struct sched_domain_attr *dattr_cur;
7565 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7566
7567/*
7568 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7569 * cpumask) fails, then fallback to a single sched domain,
7570 * as determined by the single cpumask fallback_doms.
029190c5 7571 */
4212823f 7572static cpumask_var_t fallback_doms;
029190c5 7573
ee79d1bd
HC
7574/*
7575 * arch_update_cpu_topology lets virtualized architectures update the
7576 * cpu core maps. It is supposed to return 1 if the topology changed
7577 * or 0 if it stayed the same.
7578 */
7579int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7580{
ee79d1bd 7581 return 0;
22e52b07
HC
7582}
7583
acc3f5d7
RR
7584cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7585{
7586 int i;
7587 cpumask_var_t *doms;
7588
7589 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7590 if (!doms)
7591 return NULL;
7592 for (i = 0; i < ndoms; i++) {
7593 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7594 free_sched_domains(doms, i);
7595 return NULL;
7596 }
7597 }
7598 return doms;
7599}
7600
7601void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7602{
7603 unsigned int i;
7604 for (i = 0; i < ndoms; i++)
7605 free_cpumask_var(doms[i]);
7606 kfree(doms);
7607}
7608
1a20ff27 7609/*
41a2d6cf 7610 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7611 * For now this just excludes isolated cpus, but could be used to
7612 * exclude other special cases in the future.
1a20ff27 7613 */
c4a8849a 7614static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7615{
7378547f
MM
7616 int err;
7617
22e52b07 7618 arch_update_cpu_topology();
029190c5 7619 ndoms_cur = 1;
acc3f5d7 7620 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7621 if (!doms_cur)
acc3f5d7
RR
7622 doms_cur = &fallback_doms;
7623 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7624 dattr_cur = NULL;
dce840a0 7625 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7626 register_sched_domain_sysctl();
7378547f
MM
7627
7628 return err;
1a20ff27
DG
7629}
7630
1a20ff27
DG
7631/*
7632 * Detach sched domains from a group of cpus specified in cpu_map
7633 * These cpus will now be attached to the NULL domain
7634 */
96f874e2 7635static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7636{
7637 int i;
7638
dce840a0 7639 rcu_read_lock();
abcd083a 7640 for_each_cpu(i, cpu_map)
57d885fe 7641 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7642 rcu_read_unlock();
1a20ff27
DG
7643}
7644
1d3504fc
HS
7645/* handle null as "default" */
7646static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7647 struct sched_domain_attr *new, int idx_new)
7648{
7649 struct sched_domain_attr tmp;
7650
7651 /* fast path */
7652 if (!new && !cur)
7653 return 1;
7654
7655 tmp = SD_ATTR_INIT;
7656 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7657 new ? (new + idx_new) : &tmp,
7658 sizeof(struct sched_domain_attr));
7659}
7660
029190c5
PJ
7661/*
7662 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7663 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7664 * doms_new[] to the current sched domain partitioning, doms_cur[].
7665 * It destroys each deleted domain and builds each new domain.
7666 *
acc3f5d7 7667 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7668 * The masks don't intersect (don't overlap.) We should setup one
7669 * sched domain for each mask. CPUs not in any of the cpumasks will
7670 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7671 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7672 * it as it is.
7673 *
acc3f5d7
RR
7674 * The passed in 'doms_new' should be allocated using
7675 * alloc_sched_domains. This routine takes ownership of it and will
7676 * free_sched_domains it when done with it. If the caller failed the
7677 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7678 * and partition_sched_domains() will fallback to the single partition
7679 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7680 *
96f874e2 7681 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7682 * ndoms_new == 0 is a special case for destroying existing domains,
7683 * and it will not create the default domain.
dfb512ec 7684 *
029190c5
PJ
7685 * Call with hotplug lock held
7686 */
acc3f5d7 7687void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7688 struct sched_domain_attr *dattr_new)
029190c5 7689{
dfb512ec 7690 int i, j, n;
d65bd5ec 7691 int new_topology;
029190c5 7692
712555ee 7693 mutex_lock(&sched_domains_mutex);
a1835615 7694
7378547f
MM
7695 /* always unregister in case we don't destroy any domains */
7696 unregister_sched_domain_sysctl();
7697
d65bd5ec
HC
7698 /* Let architecture update cpu core mappings. */
7699 new_topology = arch_update_cpu_topology();
7700
dfb512ec 7701 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7702
7703 /* Destroy deleted domains */
7704 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7705 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7706 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7707 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7708 goto match1;
7709 }
7710 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7711 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7712match1:
7713 ;
7714 }
7715
e761b772
MK
7716 if (doms_new == NULL) {
7717 ndoms_cur = 0;
acc3f5d7 7718 doms_new = &fallback_doms;
6ad4c188 7719 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7720 WARN_ON_ONCE(dattr_new);
e761b772
MK
7721 }
7722
029190c5
PJ
7723 /* Build new domains */
7724 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7725 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7726 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7727 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7728 goto match2;
7729 }
7730 /* no match - add a new doms_new */
dce840a0 7731 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7732match2:
7733 ;
7734 }
7735
7736 /* Remember the new sched domains */
acc3f5d7
RR
7737 if (doms_cur != &fallback_doms)
7738 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7739 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7740 doms_cur = doms_new;
1d3504fc 7741 dattr_cur = dattr_new;
029190c5 7742 ndoms_cur = ndoms_new;
7378547f
MM
7743
7744 register_sched_domain_sysctl();
a1835615 7745
712555ee 7746 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7747}
7748
5c45bf27 7749#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7750static void reinit_sched_domains(void)
5c45bf27 7751{
95402b38 7752 get_online_cpus();
dfb512ec
MK
7753
7754 /* Destroy domains first to force the rebuild */
7755 partition_sched_domains(0, NULL, NULL);
7756
e761b772 7757 rebuild_sched_domains();
95402b38 7758 put_online_cpus();
5c45bf27
SS
7759}
7760
7761static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7762{
afb8a9b7 7763 unsigned int level = 0;
5c45bf27 7764
afb8a9b7
GS
7765 if (sscanf(buf, "%u", &level) != 1)
7766 return -EINVAL;
7767
7768 /*
7769 * level is always be positive so don't check for
7770 * level < POWERSAVINGS_BALANCE_NONE which is 0
7771 * What happens on 0 or 1 byte write,
7772 * need to check for count as well?
7773 */
7774
7775 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7776 return -EINVAL;
7777
7778 if (smt)
afb8a9b7 7779 sched_smt_power_savings = level;
5c45bf27 7780 else
afb8a9b7 7781 sched_mc_power_savings = level;
5c45bf27 7782
c4a8849a 7783 reinit_sched_domains();
5c45bf27 7784
c70f22d2 7785 return count;
5c45bf27
SS
7786}
7787
5c45bf27 7788#ifdef CONFIG_SCHED_MC
f718cd4a 7789static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7790 struct sysdev_class_attribute *attr,
f718cd4a 7791 char *page)
5c45bf27
SS
7792{
7793 return sprintf(page, "%u\n", sched_mc_power_savings);
7794}
f718cd4a 7795static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7796 struct sysdev_class_attribute *attr,
48f24c4d 7797 const char *buf, size_t count)
5c45bf27
SS
7798{
7799 return sched_power_savings_store(buf, count, 0);
7800}
f718cd4a
AK
7801static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7802 sched_mc_power_savings_show,
7803 sched_mc_power_savings_store);
5c45bf27
SS
7804#endif
7805
7806#ifdef CONFIG_SCHED_SMT
f718cd4a 7807static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7808 struct sysdev_class_attribute *attr,
f718cd4a 7809 char *page)
5c45bf27
SS
7810{
7811 return sprintf(page, "%u\n", sched_smt_power_savings);
7812}
f718cd4a 7813static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7814 struct sysdev_class_attribute *attr,
48f24c4d 7815 const char *buf, size_t count)
5c45bf27
SS
7816{
7817 return sched_power_savings_store(buf, count, 1);
7818}
f718cd4a
AK
7819static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7820 sched_smt_power_savings_show,
6707de00
AB
7821 sched_smt_power_savings_store);
7822#endif
7823
39aac648 7824int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7825{
7826 int err = 0;
7827
7828#ifdef CONFIG_SCHED_SMT
7829 if (smt_capable())
7830 err = sysfs_create_file(&cls->kset.kobj,
7831 &attr_sched_smt_power_savings.attr);
7832#endif
7833#ifdef CONFIG_SCHED_MC
7834 if (!err && mc_capable())
7835 err = sysfs_create_file(&cls->kset.kobj,
7836 &attr_sched_mc_power_savings.attr);
7837#endif
7838 return err;
7839}
6d6bc0ad 7840#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7841
1da177e4 7842/*
3a101d05
TH
7843 * Update cpusets according to cpu_active mask. If cpusets are
7844 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7845 * around partition_sched_domains().
1da177e4 7846 */
0b2e918a
TH
7847static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7848 void *hcpu)
e761b772 7849{
3a101d05 7850 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7851 case CPU_ONLINE:
6ad4c188 7852 case CPU_DOWN_FAILED:
3a101d05 7853 cpuset_update_active_cpus();
e761b772 7854 return NOTIFY_OK;
3a101d05
TH
7855 default:
7856 return NOTIFY_DONE;
7857 }
7858}
e761b772 7859
0b2e918a
TH
7860static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7861 void *hcpu)
3a101d05
TH
7862{
7863 switch (action & ~CPU_TASKS_FROZEN) {
7864 case CPU_DOWN_PREPARE:
7865 cpuset_update_active_cpus();
7866 return NOTIFY_OK;
e761b772
MK
7867 default:
7868 return NOTIFY_DONE;
7869 }
7870}
e761b772
MK
7871
7872static int update_runtime(struct notifier_block *nfb,
7873 unsigned long action, void *hcpu)
1da177e4 7874{
7def2be1
PZ
7875 int cpu = (int)(long)hcpu;
7876
1da177e4 7877 switch (action) {
1da177e4 7878 case CPU_DOWN_PREPARE:
8bb78442 7879 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7880 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7881 return NOTIFY_OK;
7882
1da177e4 7883 case CPU_DOWN_FAILED:
8bb78442 7884 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7885 case CPU_ONLINE:
8bb78442 7886 case CPU_ONLINE_FROZEN:
7def2be1 7887 enable_runtime(cpu_rq(cpu));
e761b772
MK
7888 return NOTIFY_OK;
7889
1da177e4
LT
7890 default:
7891 return NOTIFY_DONE;
7892 }
1da177e4 7893}
1da177e4
LT
7894
7895void __init sched_init_smp(void)
7896{
dcc30a35
RR
7897 cpumask_var_t non_isolated_cpus;
7898
7899 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7900 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7901
95402b38 7902 get_online_cpus();
712555ee 7903 mutex_lock(&sched_domains_mutex);
c4a8849a 7904 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7905 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7906 if (cpumask_empty(non_isolated_cpus))
7907 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7908 mutex_unlock(&sched_domains_mutex);
95402b38 7909 put_online_cpus();
e761b772 7910
3a101d05
TH
7911 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7912 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7913
7914 /* RT runtime code needs to handle some hotplug events */
7915 hotcpu_notifier(update_runtime, 0);
7916
b328ca18 7917 init_hrtick();
5c1e1767
NP
7918
7919 /* Move init over to a non-isolated CPU */
dcc30a35 7920 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7921 BUG();
19978ca6 7922 sched_init_granularity();
dcc30a35 7923 free_cpumask_var(non_isolated_cpus);
4212823f 7924
0e3900e6 7925 init_sched_rt_class();
1da177e4
LT
7926}
7927#else
7928void __init sched_init_smp(void)
7929{
19978ca6 7930 sched_init_granularity();
1da177e4
LT
7931}
7932#endif /* CONFIG_SMP */
7933
cd1bb94b
AB
7934const_debug unsigned int sysctl_timer_migration = 1;
7935
1da177e4
LT
7936int in_sched_functions(unsigned long addr)
7937{
1da177e4
LT
7938 return in_lock_functions(addr) ||
7939 (addr >= (unsigned long)__sched_text_start
7940 && addr < (unsigned long)__sched_text_end);
7941}
7942
acb5a9ba 7943static void init_cfs_rq(struct cfs_rq *cfs_rq)
dd41f596
IM
7944{
7945 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7946 INIT_LIST_HEAD(&cfs_rq->tasks);
67e9fb2a 7947 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
c64be78f
PZ
7948#ifndef CONFIG_64BIT
7949 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7950#endif
dd41f596
IM
7951}
7952
fa85ae24
PZ
7953static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7954{
7955 struct rt_prio_array *array;
7956 int i;
7957
7958 array = &rt_rq->active;
7959 for (i = 0; i < MAX_RT_PRIO; i++) {
7960 INIT_LIST_HEAD(array->queue + i);
7961 __clear_bit(i, array->bitmap);
7962 }
7963 /* delimiter for bitsearch: */
7964 __set_bit(MAX_RT_PRIO, array->bitmap);
7965
acb5a9ba 7966#if defined CONFIG_SMP
e864c499
GH
7967 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7968 rt_rq->highest_prio.next = MAX_RT_PRIO;
fa85ae24 7969 rt_rq->rt_nr_migratory = 0;
fa85ae24 7970 rt_rq->overloaded = 0;
732375c6 7971 plist_head_init(&rt_rq->pushable_tasks);
fa85ae24
PZ
7972#endif
7973
7974 rt_rq->rt_time = 0;
7975 rt_rq->rt_throttled = 0;
ac086bc2 7976 rt_rq->rt_runtime = 0;
0986b11b 7977 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
fa85ae24
PZ
7978}
7979
6f505b16 7980#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7981static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7982 struct sched_entity *se, int cpu,
ec7dc8ac 7983 struct sched_entity *parent)
6f505b16 7984{
ec7dc8ac 7985 struct rq *rq = cpu_rq(cpu);
acb5a9ba 7986
6f505b16 7987 cfs_rq->tg = tg;
acb5a9ba
JS
7988 cfs_rq->rq = rq;
7989#ifdef CONFIG_SMP
7990 /* allow initial update_cfs_load() to truncate */
7991 cfs_rq->load_stamp = 1;
7992#endif
6f505b16 7993
acb5a9ba 7994 tg->cfs_rq[cpu] = cfs_rq;
6f505b16 7995 tg->se[cpu] = se;
acb5a9ba 7996
07e06b01 7997 /* se could be NULL for root_task_group */
354d60c2
DG
7998 if (!se)
7999 return;
8000
ec7dc8ac
DG
8001 if (!parent)
8002 se->cfs_rq = &rq->cfs;
8003 else
8004 se->cfs_rq = parent->my_q;
8005
6f505b16 8006 se->my_q = cfs_rq;
9437178f 8007 update_load_set(&se->load, 0);
ec7dc8ac 8008 se->parent = parent;
6f505b16 8009}
052f1dc7 8010#endif
6f505b16 8011
052f1dc7 8012#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8013static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8014 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8015 struct sched_rt_entity *parent)
6f505b16 8016{
ec7dc8ac
DG
8017 struct rq *rq = cpu_rq(cpu);
8018
acb5a9ba
JS
8019 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8020 rt_rq->rt_nr_boosted = 0;
8021 rt_rq->rq = rq;
6f505b16 8022 rt_rq->tg = tg;
6f505b16 8023
acb5a9ba 8024 tg->rt_rq[cpu] = rt_rq;
6f505b16 8025 tg->rt_se[cpu] = rt_se;
acb5a9ba 8026
354d60c2
DG
8027 if (!rt_se)
8028 return;
8029
ec7dc8ac
DG
8030 if (!parent)
8031 rt_se->rt_rq = &rq->rt;
8032 else
8033 rt_se->rt_rq = parent->my_q;
8034
6f505b16 8035 rt_se->my_q = rt_rq;
ec7dc8ac 8036 rt_se->parent = parent;
6f505b16
PZ
8037 INIT_LIST_HEAD(&rt_se->run_list);
8038}
8039#endif
8040
1da177e4
LT
8041void __init sched_init(void)
8042{
dd41f596 8043 int i, j;
434d53b0
MT
8044 unsigned long alloc_size = 0, ptr;
8045
8046#ifdef CONFIG_FAIR_GROUP_SCHED
8047 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8048#endif
8049#ifdef CONFIG_RT_GROUP_SCHED
8050 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8051#endif
df7c8e84 8052#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8053 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8054#endif
434d53b0 8055 if (alloc_size) {
36b7b6d4 8056 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8057
8058#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8059 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8060 ptr += nr_cpu_ids * sizeof(void **);
8061
07e06b01 8062 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8063 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8064
6d6bc0ad 8065#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8066#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8067 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8068 ptr += nr_cpu_ids * sizeof(void **);
8069
07e06b01 8070 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8071 ptr += nr_cpu_ids * sizeof(void **);
8072
6d6bc0ad 8073#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8074#ifdef CONFIG_CPUMASK_OFFSTACK
8075 for_each_possible_cpu(i) {
8076 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8077 ptr += cpumask_size();
8078 }
8079#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8080 }
dd41f596 8081
57d885fe
GH
8082#ifdef CONFIG_SMP
8083 init_defrootdomain();
8084#endif
8085
d0b27fa7
PZ
8086 init_rt_bandwidth(&def_rt_bandwidth,
8087 global_rt_period(), global_rt_runtime());
8088
8089#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8090 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8091 global_rt_period(), global_rt_runtime());
6d6bc0ad 8092#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8093
7c941438 8094#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8095 list_add(&root_task_group.list, &task_groups);
8096 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8097 autogroup_init(&init_task);
7c941438 8098#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8099
0a945022 8100 for_each_possible_cpu(i) {
70b97a7f 8101 struct rq *rq;
1da177e4
LT
8102
8103 rq = cpu_rq(i);
05fa785c 8104 raw_spin_lock_init(&rq->lock);
7897986b 8105 rq->nr_running = 0;
dce48a84
TG
8106 rq->calc_load_active = 0;
8107 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 8108 init_cfs_rq(&rq->cfs);
6f505b16 8109 init_rt_rq(&rq->rt, rq);
dd41f596 8110#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8111 root_task_group.shares = root_task_group_load;
6f505b16 8112 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8113 /*
07e06b01 8114 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8115 *
8116 * In case of task-groups formed thr' the cgroup filesystem, it
8117 * gets 100% of the cpu resources in the system. This overall
8118 * system cpu resource is divided among the tasks of
07e06b01 8119 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8120 * based on each entity's (task or task-group's) weight
8121 * (se->load.weight).
8122 *
07e06b01 8123 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8124 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8125 * then A0's share of the cpu resource is:
8126 *
0d905bca 8127 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8128 *
07e06b01
YZ
8129 * We achieve this by letting root_task_group's tasks sit
8130 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8131 */
07e06b01 8132 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8133#endif /* CONFIG_FAIR_GROUP_SCHED */
8134
8135 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8136#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8137 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8138 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8139#endif
1da177e4 8140
dd41f596
IM
8141 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8142 rq->cpu_load[j] = 0;
fdf3e95d
VP
8143
8144 rq->last_load_update_tick = jiffies;
8145
1da177e4 8146#ifdef CONFIG_SMP
41c7ce9a 8147 rq->sd = NULL;
57d885fe 8148 rq->rd = NULL;
1399fa78 8149 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 8150 rq->post_schedule = 0;
1da177e4 8151 rq->active_balance = 0;
dd41f596 8152 rq->next_balance = jiffies;
1da177e4 8153 rq->push_cpu = 0;
0a2966b4 8154 rq->cpu = i;
1f11eb6a 8155 rq->online = 0;
eae0c9df
MG
8156 rq->idle_stamp = 0;
8157 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8158 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8159#ifdef CONFIG_NO_HZ
8160 rq->nohz_balance_kick = 0;
8161 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8162#endif
1da177e4 8163#endif
8f4d37ec 8164 init_rq_hrtick(rq);
1da177e4 8165 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8166 }
8167
2dd73a4f 8168 set_load_weight(&init_task);
b50f60ce 8169
e107be36
AK
8170#ifdef CONFIG_PREEMPT_NOTIFIERS
8171 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8172#endif
8173
c9819f45 8174#ifdef CONFIG_SMP
962cf36c 8175 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8176#endif
8177
b50f60ce 8178#ifdef CONFIG_RT_MUTEXES
732375c6 8179 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
8180#endif
8181
1da177e4
LT
8182 /*
8183 * The boot idle thread does lazy MMU switching as well:
8184 */
8185 atomic_inc(&init_mm.mm_count);
8186 enter_lazy_tlb(&init_mm, current);
8187
8188 /*
8189 * Make us the idle thread. Technically, schedule() should not be
8190 * called from this thread, however somewhere below it might be,
8191 * but because we are the idle thread, we just pick up running again
8192 * when this runqueue becomes "idle".
8193 */
8194 init_idle(current, smp_processor_id());
dce48a84
TG
8195
8196 calc_load_update = jiffies + LOAD_FREQ;
8197
dd41f596
IM
8198 /*
8199 * During early bootup we pretend to be a normal task:
8200 */
8201 current->sched_class = &fair_sched_class;
6892b75e 8202
6a7b3dc3 8203 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8204 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8205#ifdef CONFIG_SMP
4cb98839 8206 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 8207#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8208 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8209 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8210 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8211 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8212 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8213#endif
bdddd296
RR
8214 /* May be allocated at isolcpus cmdline parse time */
8215 if (cpu_isolated_map == NULL)
8216 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8217#endif /* SMP */
6a7b3dc3 8218
6892b75e 8219 scheduler_running = 1;
1da177e4
LT
8220}
8221
d902db1e 8222#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
8223static inline int preempt_count_equals(int preempt_offset)
8224{
234da7bc 8225 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8226
4ba8216c 8227 return (nested == preempt_offset);
e4aafea2
FW
8228}
8229
d894837f 8230void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8231{
1da177e4
LT
8232 static unsigned long prev_jiffy; /* ratelimiting */
8233
b3fbab05 8234 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
8235 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8236 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8237 return;
8238 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8239 return;
8240 prev_jiffy = jiffies;
8241
3df0fc5b
PZ
8242 printk(KERN_ERR
8243 "BUG: sleeping function called from invalid context at %s:%d\n",
8244 file, line);
8245 printk(KERN_ERR
8246 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8247 in_atomic(), irqs_disabled(),
8248 current->pid, current->comm);
aef745fc
IM
8249
8250 debug_show_held_locks(current);
8251 if (irqs_disabled())
8252 print_irqtrace_events(current);
8253 dump_stack();
1da177e4
LT
8254}
8255EXPORT_SYMBOL(__might_sleep);
8256#endif
8257
8258#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8259static void normalize_task(struct rq *rq, struct task_struct *p)
8260{
da7a735e
PZ
8261 const struct sched_class *prev_class = p->sched_class;
8262 int old_prio = p->prio;
3a5e4dc1 8263 int on_rq;
3e51f33f 8264
fd2f4419 8265 on_rq = p->on_rq;
3a5e4dc1
AK
8266 if (on_rq)
8267 deactivate_task(rq, p, 0);
8268 __setscheduler(rq, p, SCHED_NORMAL, 0);
8269 if (on_rq) {
8270 activate_task(rq, p, 0);
8271 resched_task(rq->curr);
8272 }
da7a735e
PZ
8273
8274 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8275}
8276
1da177e4
LT
8277void normalize_rt_tasks(void)
8278{
a0f98a1c 8279 struct task_struct *g, *p;
1da177e4 8280 unsigned long flags;
70b97a7f 8281 struct rq *rq;
1da177e4 8282
4cf5d77a 8283 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8284 do_each_thread(g, p) {
178be793
IM
8285 /*
8286 * Only normalize user tasks:
8287 */
8288 if (!p->mm)
8289 continue;
8290
6cfb0d5d 8291 p->se.exec_start = 0;
6cfb0d5d 8292#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8293 p->se.statistics.wait_start = 0;
8294 p->se.statistics.sleep_start = 0;
8295 p->se.statistics.block_start = 0;
6cfb0d5d 8296#endif
dd41f596
IM
8297
8298 if (!rt_task(p)) {
8299 /*
8300 * Renice negative nice level userspace
8301 * tasks back to 0:
8302 */
8303 if (TASK_NICE(p) < 0 && p->mm)
8304 set_user_nice(p, 0);
1da177e4 8305 continue;
dd41f596 8306 }
1da177e4 8307
1d615482 8308 raw_spin_lock(&p->pi_lock);
b29739f9 8309 rq = __task_rq_lock(p);
1da177e4 8310
178be793 8311 normalize_task(rq, p);
3a5e4dc1 8312
b29739f9 8313 __task_rq_unlock(rq);
1d615482 8314 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8315 } while_each_thread(g, p);
8316
4cf5d77a 8317 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8318}
8319
8320#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8321
67fc4e0c 8322#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8323/*
67fc4e0c 8324 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8325 *
8326 * They can only be called when the whole system has been
8327 * stopped - every CPU needs to be quiescent, and no scheduling
8328 * activity can take place. Using them for anything else would
8329 * be a serious bug, and as a result, they aren't even visible
8330 * under any other configuration.
8331 */
8332
8333/**
8334 * curr_task - return the current task for a given cpu.
8335 * @cpu: the processor in question.
8336 *
8337 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8338 */
36c8b586 8339struct task_struct *curr_task(int cpu)
1df5c10a
LT
8340{
8341 return cpu_curr(cpu);
8342}
8343
67fc4e0c
JW
8344#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8345
8346#ifdef CONFIG_IA64
1df5c10a
LT
8347/**
8348 * set_curr_task - set the current task for a given cpu.
8349 * @cpu: the processor in question.
8350 * @p: the task pointer to set.
8351 *
8352 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8353 * are serviced on a separate stack. It allows the architecture to switch the
8354 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8355 * must be called with all CPU's synchronized, and interrupts disabled, the
8356 * and caller must save the original value of the current task (see
8357 * curr_task() above) and restore that value before reenabling interrupts and
8358 * re-starting the system.
8359 *
8360 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8361 */
36c8b586 8362void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8363{
8364 cpu_curr(cpu) = p;
8365}
8366
8367#endif
29f59db3 8368
bccbe08a
PZ
8369#ifdef CONFIG_FAIR_GROUP_SCHED
8370static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8371{
8372 int i;
8373
8374 for_each_possible_cpu(i) {
8375 if (tg->cfs_rq)
8376 kfree(tg->cfs_rq[i]);
8377 if (tg->se)
8378 kfree(tg->se[i]);
6f505b16
PZ
8379 }
8380
8381 kfree(tg->cfs_rq);
8382 kfree(tg->se);
6f505b16
PZ
8383}
8384
ec7dc8ac
DG
8385static
8386int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8387{
29f59db3 8388 struct cfs_rq *cfs_rq;
eab17229 8389 struct sched_entity *se;
29f59db3
SV
8390 int i;
8391
434d53b0 8392 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8393 if (!tg->cfs_rq)
8394 goto err;
434d53b0 8395 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8396 if (!tg->se)
8397 goto err;
052f1dc7
PZ
8398
8399 tg->shares = NICE_0_LOAD;
29f59db3
SV
8400
8401 for_each_possible_cpu(i) {
eab17229
LZ
8402 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8403 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8404 if (!cfs_rq)
8405 goto err;
8406
eab17229
LZ
8407 se = kzalloc_node(sizeof(struct sched_entity),
8408 GFP_KERNEL, cpu_to_node(i));
29f59db3 8409 if (!se)
dfc12eb2 8410 goto err_free_rq;
29f59db3 8411
acb5a9ba 8412 init_cfs_rq(cfs_rq);
3d4b47b4 8413 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8414 }
8415
8416 return 1;
8417
49246274 8418err_free_rq:
dfc12eb2 8419 kfree(cfs_rq);
49246274 8420err:
bccbe08a
PZ
8421 return 0;
8422}
8423
bccbe08a
PZ
8424static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8425{
3d4b47b4
PZ
8426 struct rq *rq = cpu_rq(cpu);
8427 unsigned long flags;
3d4b47b4
PZ
8428
8429 /*
8430 * Only empty task groups can be destroyed; so we can speculatively
8431 * check on_list without danger of it being re-added.
8432 */
8433 if (!tg->cfs_rq[cpu]->on_list)
8434 return;
8435
8436 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8437 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8438 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8439}
5f817d67 8440#else /* !CONFIG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8441static inline void free_fair_sched_group(struct task_group *tg)
8442{
8443}
8444
ec7dc8ac
DG
8445static inline
8446int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8447{
8448 return 1;
8449}
8450
bccbe08a
PZ
8451static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8452{
8453}
6d6bc0ad 8454#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8455
8456#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8457static void free_rt_sched_group(struct task_group *tg)
8458{
8459 int i;
8460
99bc5242
BL
8461 if (tg->rt_se)
8462 destroy_rt_bandwidth(&tg->rt_bandwidth);
d0b27fa7 8463
bccbe08a
PZ
8464 for_each_possible_cpu(i) {
8465 if (tg->rt_rq)
8466 kfree(tg->rt_rq[i]);
8467 if (tg->rt_se)
8468 kfree(tg->rt_se[i]);
8469 }
8470
8471 kfree(tg->rt_rq);
8472 kfree(tg->rt_se);
8473}
8474
ec7dc8ac
DG
8475static
8476int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8477{
8478 struct rt_rq *rt_rq;
eab17229 8479 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8480 int i;
8481
434d53b0 8482 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8483 if (!tg->rt_rq)
8484 goto err;
434d53b0 8485 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8486 if (!tg->rt_se)
8487 goto err;
8488
d0b27fa7
PZ
8489 init_rt_bandwidth(&tg->rt_bandwidth,
8490 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8491
8492 for_each_possible_cpu(i) {
eab17229
LZ
8493 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8494 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8495 if (!rt_rq)
8496 goto err;
29f59db3 8497
eab17229
LZ
8498 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8499 GFP_KERNEL, cpu_to_node(i));
6f505b16 8500 if (!rt_se)
dfc12eb2 8501 goto err_free_rq;
29f59db3 8502
acb5a9ba
JS
8503 init_rt_rq(rt_rq, cpu_rq(i));
8504 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
3d4b47b4 8505 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8506 }
8507
bccbe08a
PZ
8508 return 1;
8509
49246274 8510err_free_rq:
dfc12eb2 8511 kfree(rt_rq);
49246274 8512err:
bccbe08a
PZ
8513 return 0;
8514}
6d6bc0ad 8515#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8516static inline void free_rt_sched_group(struct task_group *tg)
8517{
8518}
8519
ec7dc8ac
DG
8520static inline
8521int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8522{
8523 return 1;
8524}
6d6bc0ad 8525#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8526
7c941438 8527#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8528static void free_sched_group(struct task_group *tg)
8529{
8530 free_fair_sched_group(tg);
8531 free_rt_sched_group(tg);
e9aa1dd1 8532 autogroup_free(tg);
bccbe08a
PZ
8533 kfree(tg);
8534}
8535
8536/* allocate runqueue etc for a new task group */
ec7dc8ac 8537struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8538{
8539 struct task_group *tg;
8540 unsigned long flags;
bccbe08a
PZ
8541
8542 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8543 if (!tg)
8544 return ERR_PTR(-ENOMEM);
8545
ec7dc8ac 8546 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8547 goto err;
8548
ec7dc8ac 8549 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8550 goto err;
8551
8ed36996 8552 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8553 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8554
8555 WARN_ON(!parent); /* root should already exist */
8556
8557 tg->parent = parent;
f473aa5e 8558 INIT_LIST_HEAD(&tg->children);
09f2724a 8559 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8560 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8561
9b5b7751 8562 return tg;
29f59db3
SV
8563
8564err:
6f505b16 8565 free_sched_group(tg);
29f59db3
SV
8566 return ERR_PTR(-ENOMEM);
8567}
8568
9b5b7751 8569/* rcu callback to free various structures associated with a task group */
6f505b16 8570static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8571{
29f59db3 8572 /* now it should be safe to free those cfs_rqs */
6f505b16 8573 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8574}
8575
9b5b7751 8576/* Destroy runqueue etc associated with a task group */
4cf86d77 8577void sched_destroy_group(struct task_group *tg)
29f59db3 8578{
8ed36996 8579 unsigned long flags;
9b5b7751 8580 int i;
29f59db3 8581
3d4b47b4
PZ
8582 /* end participation in shares distribution */
8583 for_each_possible_cpu(i)
bccbe08a 8584 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8585
8586 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8587 list_del_rcu(&tg->list);
f473aa5e 8588 list_del_rcu(&tg->siblings);
8ed36996 8589 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8590
9b5b7751 8591 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8592 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8593}
8594
9b5b7751 8595/* change task's runqueue when it moves between groups.
3a252015
IM
8596 * The caller of this function should have put the task in its new group
8597 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8598 * reflect its new group.
9b5b7751
SV
8599 */
8600void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8601{
8602 int on_rq, running;
8603 unsigned long flags;
8604 struct rq *rq;
8605
8606 rq = task_rq_lock(tsk, &flags);
8607
051a1d1a 8608 running = task_current(rq, tsk);
fd2f4419 8609 on_rq = tsk->on_rq;
29f59db3 8610
0e1f3483 8611 if (on_rq)
29f59db3 8612 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8613 if (unlikely(running))
8614 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8615
810b3817 8616#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8617 if (tsk->sched_class->task_move_group)
8618 tsk->sched_class->task_move_group(tsk, on_rq);
8619 else
810b3817 8620#endif
b2b5ce02 8621 set_task_rq(tsk, task_cpu(tsk));
810b3817 8622
0e1f3483
HS
8623 if (unlikely(running))
8624 tsk->sched_class->set_curr_task(rq);
8625 if (on_rq)
371fd7e7 8626 enqueue_task(rq, tsk, 0);
29f59db3 8627
0122ec5b 8628 task_rq_unlock(rq, tsk, &flags);
29f59db3 8629}
7c941438 8630#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8631
052f1dc7 8632#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8633static DEFINE_MUTEX(shares_mutex);
8634
4cf86d77 8635int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8636{
8637 int i;
8ed36996 8638 unsigned long flags;
c61935fd 8639
ec7dc8ac
DG
8640 /*
8641 * We can't change the weight of the root cgroup.
8642 */
8643 if (!tg->se[0])
8644 return -EINVAL;
8645
cd62287e 8646 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
62fb1851 8647
8ed36996 8648 mutex_lock(&shares_mutex);
9b5b7751 8649 if (tg->shares == shares)
5cb350ba 8650 goto done;
29f59db3 8651
9b5b7751 8652 tg->shares = shares;
c09595f6 8653 for_each_possible_cpu(i) {
9437178f
PT
8654 struct rq *rq = cpu_rq(i);
8655 struct sched_entity *se;
8656
8657 se = tg->se[i];
8658 /* Propagate contribution to hierarchy */
8659 raw_spin_lock_irqsave(&rq->lock, flags);
8660 for_each_sched_entity(se)
6d5ab293 8661 update_cfs_shares(group_cfs_rq(se));
9437178f 8662 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8663 }
29f59db3 8664
5cb350ba 8665done:
8ed36996 8666 mutex_unlock(&shares_mutex);
9b5b7751 8667 return 0;
29f59db3
SV
8668}
8669
5cb350ba
DG
8670unsigned long sched_group_shares(struct task_group *tg)
8671{
8672 return tg->shares;
8673}
052f1dc7 8674#endif
5cb350ba 8675
052f1dc7 8676#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8677/*
9f0c1e56 8678 * Ensure that the real time constraints are schedulable.
6f505b16 8679 */
9f0c1e56
PZ
8680static DEFINE_MUTEX(rt_constraints_mutex);
8681
8682static unsigned long to_ratio(u64 period, u64 runtime)
8683{
8684 if (runtime == RUNTIME_INF)
9a7e0b18 8685 return 1ULL << 20;
9f0c1e56 8686
9a7e0b18 8687 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8688}
8689
9a7e0b18
PZ
8690/* Must be called with tasklist_lock held */
8691static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8692{
9a7e0b18 8693 struct task_struct *g, *p;
b40b2e8e 8694
9a7e0b18
PZ
8695 do_each_thread(g, p) {
8696 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8697 return 1;
8698 } while_each_thread(g, p);
b40b2e8e 8699
9a7e0b18
PZ
8700 return 0;
8701}
b40b2e8e 8702
9a7e0b18
PZ
8703struct rt_schedulable_data {
8704 struct task_group *tg;
8705 u64 rt_period;
8706 u64 rt_runtime;
8707};
b40b2e8e 8708
9a7e0b18
PZ
8709static int tg_schedulable(struct task_group *tg, void *data)
8710{
8711 struct rt_schedulable_data *d = data;
8712 struct task_group *child;
8713 unsigned long total, sum = 0;
8714 u64 period, runtime;
b40b2e8e 8715
9a7e0b18
PZ
8716 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8717 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8718
9a7e0b18
PZ
8719 if (tg == d->tg) {
8720 period = d->rt_period;
8721 runtime = d->rt_runtime;
b40b2e8e 8722 }
b40b2e8e 8723
4653f803
PZ
8724 /*
8725 * Cannot have more runtime than the period.
8726 */
8727 if (runtime > period && runtime != RUNTIME_INF)
8728 return -EINVAL;
6f505b16 8729
4653f803
PZ
8730 /*
8731 * Ensure we don't starve existing RT tasks.
8732 */
9a7e0b18
PZ
8733 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8734 return -EBUSY;
6f505b16 8735
9a7e0b18 8736 total = to_ratio(period, runtime);
6f505b16 8737
4653f803
PZ
8738 /*
8739 * Nobody can have more than the global setting allows.
8740 */
8741 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8742 return -EINVAL;
6f505b16 8743
4653f803
PZ
8744 /*
8745 * The sum of our children's runtime should not exceed our own.
8746 */
9a7e0b18
PZ
8747 list_for_each_entry_rcu(child, &tg->children, siblings) {
8748 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8749 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8750
9a7e0b18
PZ
8751 if (child == d->tg) {
8752 period = d->rt_period;
8753 runtime = d->rt_runtime;
8754 }
6f505b16 8755
9a7e0b18 8756 sum += to_ratio(period, runtime);
9f0c1e56 8757 }
6f505b16 8758
9a7e0b18
PZ
8759 if (sum > total)
8760 return -EINVAL;
8761
8762 return 0;
6f505b16
PZ
8763}
8764
9a7e0b18 8765static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8766{
9a7e0b18
PZ
8767 struct rt_schedulable_data data = {
8768 .tg = tg,
8769 .rt_period = period,
8770 .rt_runtime = runtime,
8771 };
8772
8773 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8774}
8775
d0b27fa7
PZ
8776static int tg_set_bandwidth(struct task_group *tg,
8777 u64 rt_period, u64 rt_runtime)
6f505b16 8778{
ac086bc2 8779 int i, err = 0;
9f0c1e56 8780
9f0c1e56 8781 mutex_lock(&rt_constraints_mutex);
521f1a24 8782 read_lock(&tasklist_lock);
9a7e0b18
PZ
8783 err = __rt_schedulable(tg, rt_period, rt_runtime);
8784 if (err)
9f0c1e56 8785 goto unlock;
ac086bc2 8786
0986b11b 8787 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8788 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8789 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8790
8791 for_each_possible_cpu(i) {
8792 struct rt_rq *rt_rq = tg->rt_rq[i];
8793
0986b11b 8794 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8795 rt_rq->rt_runtime = rt_runtime;
0986b11b 8796 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8797 }
0986b11b 8798 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8799unlock:
521f1a24 8800 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8801 mutex_unlock(&rt_constraints_mutex);
8802
8803 return err;
6f505b16
PZ
8804}
8805
d0b27fa7
PZ
8806int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8807{
8808 u64 rt_runtime, rt_period;
8809
8810 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8811 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8812 if (rt_runtime_us < 0)
8813 rt_runtime = RUNTIME_INF;
8814
8815 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8816}
8817
9f0c1e56
PZ
8818long sched_group_rt_runtime(struct task_group *tg)
8819{
8820 u64 rt_runtime_us;
8821
d0b27fa7 8822 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8823 return -1;
8824
d0b27fa7 8825 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8826 do_div(rt_runtime_us, NSEC_PER_USEC);
8827 return rt_runtime_us;
8828}
d0b27fa7
PZ
8829
8830int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8831{
8832 u64 rt_runtime, rt_period;
8833
8834 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8835 rt_runtime = tg->rt_bandwidth.rt_runtime;
8836
619b0488
R
8837 if (rt_period == 0)
8838 return -EINVAL;
8839
d0b27fa7
PZ
8840 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8841}
8842
8843long sched_group_rt_period(struct task_group *tg)
8844{
8845 u64 rt_period_us;
8846
8847 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8848 do_div(rt_period_us, NSEC_PER_USEC);
8849 return rt_period_us;
8850}
8851
8852static int sched_rt_global_constraints(void)
8853{
4653f803 8854 u64 runtime, period;
d0b27fa7
PZ
8855 int ret = 0;
8856
ec5d4989
HS
8857 if (sysctl_sched_rt_period <= 0)
8858 return -EINVAL;
8859
4653f803
PZ
8860 runtime = global_rt_runtime();
8861 period = global_rt_period();
8862
8863 /*
8864 * Sanity check on the sysctl variables.
8865 */
8866 if (runtime > period && runtime != RUNTIME_INF)
8867 return -EINVAL;
10b612f4 8868
d0b27fa7 8869 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8870 read_lock(&tasklist_lock);
4653f803 8871 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8872 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8873 mutex_unlock(&rt_constraints_mutex);
8874
8875 return ret;
8876}
54e99124
DG
8877
8878int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8879{
8880 /* Don't accept realtime tasks when there is no way for them to run */
8881 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8882 return 0;
8883
8884 return 1;
8885}
8886
6d6bc0ad 8887#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8888static int sched_rt_global_constraints(void)
8889{
ac086bc2
PZ
8890 unsigned long flags;
8891 int i;
8892
ec5d4989
HS
8893 if (sysctl_sched_rt_period <= 0)
8894 return -EINVAL;
8895
60aa605d
PZ
8896 /*
8897 * There's always some RT tasks in the root group
8898 * -- migration, kstopmachine etc..
8899 */
8900 if (sysctl_sched_rt_runtime == 0)
8901 return -EBUSY;
8902
0986b11b 8903 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8904 for_each_possible_cpu(i) {
8905 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8906
0986b11b 8907 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8908 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8909 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8910 }
0986b11b 8911 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8912
d0b27fa7
PZ
8913 return 0;
8914}
6d6bc0ad 8915#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8916
8917int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8918 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8919 loff_t *ppos)
8920{
8921 int ret;
8922 int old_period, old_runtime;
8923 static DEFINE_MUTEX(mutex);
8924
8925 mutex_lock(&mutex);
8926 old_period = sysctl_sched_rt_period;
8927 old_runtime = sysctl_sched_rt_runtime;
8928
8d65af78 8929 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8930
8931 if (!ret && write) {
8932 ret = sched_rt_global_constraints();
8933 if (ret) {
8934 sysctl_sched_rt_period = old_period;
8935 sysctl_sched_rt_runtime = old_runtime;
8936 } else {
8937 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8938 def_rt_bandwidth.rt_period =
8939 ns_to_ktime(global_rt_period());
8940 }
8941 }
8942 mutex_unlock(&mutex);
8943
8944 return ret;
8945}
68318b8e 8946
052f1dc7 8947#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8948
8949/* return corresponding task_group object of a cgroup */
2b01dfe3 8950static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8951{
2b01dfe3
PM
8952 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8953 struct task_group, css);
68318b8e
SV
8954}
8955
8956static struct cgroup_subsys_state *
2b01dfe3 8957cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8958{
ec7dc8ac 8959 struct task_group *tg, *parent;
68318b8e 8960
2b01dfe3 8961 if (!cgrp->parent) {
68318b8e 8962 /* This is early initialization for the top cgroup */
07e06b01 8963 return &root_task_group.css;
68318b8e
SV
8964 }
8965
ec7dc8ac
DG
8966 parent = cgroup_tg(cgrp->parent);
8967 tg = sched_create_group(parent);
68318b8e
SV
8968 if (IS_ERR(tg))
8969 return ERR_PTR(-ENOMEM);
8970
68318b8e
SV
8971 return &tg->css;
8972}
8973
41a2d6cf
IM
8974static void
8975cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8976{
2b01dfe3 8977 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8978
8979 sched_destroy_group(tg);
8980}
8981
41a2d6cf 8982static int
be367d09 8983cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8984{
b68aa230 8985#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8986 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8987 return -EINVAL;
8988#else
68318b8e
SV
8989 /* We don't support RT-tasks being in separate groups */
8990 if (tsk->sched_class != &fair_sched_class)
8991 return -EINVAL;
b68aa230 8992#endif
be367d09
BB
8993 return 0;
8994}
68318b8e 8995
68318b8e 8996static void
f780bdb7 8997cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
8998{
8999 sched_move_task(tsk);
9000}
9001
068c5cc5 9002static void
d41d5a01
PZ
9003cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9004 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9005{
9006 /*
9007 * cgroup_exit() is called in the copy_process() failure path.
9008 * Ignore this case since the task hasn't ran yet, this avoids
9009 * trying to poke a half freed task state from generic code.
9010 */
9011 if (!(task->flags & PF_EXITING))
9012 return;
9013
9014 sched_move_task(task);
9015}
9016
052f1dc7 9017#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9018static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9019 u64 shareval)
68318b8e 9020{
c8b28116 9021 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
9022}
9023
f4c753b7 9024static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9025{
2b01dfe3 9026 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 9027
c8b28116 9028 return (u64) scale_load_down(tg->shares);
68318b8e 9029}
6d6bc0ad 9030#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9031
052f1dc7 9032#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9033static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9034 s64 val)
6f505b16 9035{
06ecb27c 9036 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9037}
9038
06ecb27c 9039static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9040{
06ecb27c 9041 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9042}
d0b27fa7
PZ
9043
9044static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9045 u64 rt_period_us)
9046{
9047 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9048}
9049
9050static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9051{
9052 return sched_group_rt_period(cgroup_tg(cgrp));
9053}
6d6bc0ad 9054#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9055
fe5c7cc2 9056static struct cftype cpu_files[] = {
052f1dc7 9057#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9058 {
9059 .name = "shares",
f4c753b7
PM
9060 .read_u64 = cpu_shares_read_u64,
9061 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9062 },
052f1dc7
PZ
9063#endif
9064#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9065 {
9f0c1e56 9066 .name = "rt_runtime_us",
06ecb27c
PM
9067 .read_s64 = cpu_rt_runtime_read,
9068 .write_s64 = cpu_rt_runtime_write,
6f505b16 9069 },
d0b27fa7
PZ
9070 {
9071 .name = "rt_period_us",
f4c753b7
PM
9072 .read_u64 = cpu_rt_period_read_uint,
9073 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9074 },
052f1dc7 9075#endif
68318b8e
SV
9076};
9077
9078static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9079{
fe5c7cc2 9080 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9081}
9082
9083struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9084 .name = "cpu",
9085 .create = cpu_cgroup_create,
9086 .destroy = cpu_cgroup_destroy,
f780bdb7
BB
9087 .can_attach_task = cpu_cgroup_can_attach_task,
9088 .attach_task = cpu_cgroup_attach_task,
068c5cc5 9089 .exit = cpu_cgroup_exit,
38605cae
IM
9090 .populate = cpu_cgroup_populate,
9091 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9092 .early_init = 1,
9093};
9094
052f1dc7 9095#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9096
9097#ifdef CONFIG_CGROUP_CPUACCT
9098
9099/*
9100 * CPU accounting code for task groups.
9101 *
9102 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9103 * (balbir@in.ibm.com).
9104 */
9105
934352f2 9106/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9107struct cpuacct {
9108 struct cgroup_subsys_state css;
9109 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9110 u64 __percpu *cpuusage;
ef12fefa 9111 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9112 struct cpuacct *parent;
d842de87
SV
9113};
9114
9115struct cgroup_subsys cpuacct_subsys;
9116
9117/* return cpu accounting group corresponding to this container */
32cd756a 9118static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9119{
32cd756a 9120 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9121 struct cpuacct, css);
9122}
9123
9124/* return cpu accounting group to which this task belongs */
9125static inline struct cpuacct *task_ca(struct task_struct *tsk)
9126{
9127 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9128 struct cpuacct, css);
9129}
9130
9131/* create a new cpu accounting group */
9132static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9133 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9134{
9135 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9136 int i;
d842de87
SV
9137
9138 if (!ca)
ef12fefa 9139 goto out;
d842de87
SV
9140
9141 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9142 if (!ca->cpuusage)
9143 goto out_free_ca;
9144
9145 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9146 if (percpu_counter_init(&ca->cpustat[i], 0))
9147 goto out_free_counters;
d842de87 9148
934352f2
BR
9149 if (cgrp->parent)
9150 ca->parent = cgroup_ca(cgrp->parent);
9151
d842de87 9152 return &ca->css;
ef12fefa
BR
9153
9154out_free_counters:
9155 while (--i >= 0)
9156 percpu_counter_destroy(&ca->cpustat[i]);
9157 free_percpu(ca->cpuusage);
9158out_free_ca:
9159 kfree(ca);
9160out:
9161 return ERR_PTR(-ENOMEM);
d842de87
SV
9162}
9163
9164/* destroy an existing cpu accounting group */
41a2d6cf 9165static void
32cd756a 9166cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9167{
32cd756a 9168 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9169 int i;
d842de87 9170
ef12fefa
BR
9171 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9172 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9173 free_percpu(ca->cpuusage);
9174 kfree(ca);
9175}
9176
720f5498
KC
9177static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9178{
b36128c8 9179 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9180 u64 data;
9181
9182#ifndef CONFIG_64BIT
9183 /*
9184 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9185 */
05fa785c 9186 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9187 data = *cpuusage;
05fa785c 9188 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9189#else
9190 data = *cpuusage;
9191#endif
9192
9193 return data;
9194}
9195
9196static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9197{
b36128c8 9198 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9199
9200#ifndef CONFIG_64BIT
9201 /*
9202 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9203 */
05fa785c 9204 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9205 *cpuusage = val;
05fa785c 9206 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9207#else
9208 *cpuusage = val;
9209#endif
9210}
9211
d842de87 9212/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9213static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9214{
32cd756a 9215 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9216 u64 totalcpuusage = 0;
9217 int i;
9218
720f5498
KC
9219 for_each_present_cpu(i)
9220 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9221
9222 return totalcpuusage;
9223}
9224
0297b803
DG
9225static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9226 u64 reset)
9227{
9228 struct cpuacct *ca = cgroup_ca(cgrp);
9229 int err = 0;
9230 int i;
9231
9232 if (reset) {
9233 err = -EINVAL;
9234 goto out;
9235 }
9236
720f5498
KC
9237 for_each_present_cpu(i)
9238 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9239
0297b803
DG
9240out:
9241 return err;
9242}
9243
e9515c3c
KC
9244static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9245 struct seq_file *m)
9246{
9247 struct cpuacct *ca = cgroup_ca(cgroup);
9248 u64 percpu;
9249 int i;
9250
9251 for_each_present_cpu(i) {
9252 percpu = cpuacct_cpuusage_read(ca, i);
9253 seq_printf(m, "%llu ", (unsigned long long) percpu);
9254 }
9255 seq_printf(m, "\n");
9256 return 0;
9257}
9258
ef12fefa
BR
9259static const char *cpuacct_stat_desc[] = {
9260 [CPUACCT_STAT_USER] = "user",
9261 [CPUACCT_STAT_SYSTEM] = "system",
9262};
9263
9264static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9265 struct cgroup_map_cb *cb)
9266{
9267 struct cpuacct *ca = cgroup_ca(cgrp);
9268 int i;
9269
9270 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9271 s64 val = percpu_counter_read(&ca->cpustat[i]);
9272 val = cputime64_to_clock_t(val);
9273 cb->fill(cb, cpuacct_stat_desc[i], val);
9274 }
9275 return 0;
9276}
9277
d842de87
SV
9278static struct cftype files[] = {
9279 {
9280 .name = "usage",
f4c753b7
PM
9281 .read_u64 = cpuusage_read,
9282 .write_u64 = cpuusage_write,
d842de87 9283 },
e9515c3c
KC
9284 {
9285 .name = "usage_percpu",
9286 .read_seq_string = cpuacct_percpu_seq_read,
9287 },
ef12fefa
BR
9288 {
9289 .name = "stat",
9290 .read_map = cpuacct_stats_show,
9291 },
d842de87
SV
9292};
9293
32cd756a 9294static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9295{
32cd756a 9296 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9297}
9298
9299/*
9300 * charge this task's execution time to its accounting group.
9301 *
9302 * called with rq->lock held.
9303 */
9304static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9305{
9306 struct cpuacct *ca;
934352f2 9307 int cpu;
d842de87 9308
c40c6f85 9309 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9310 return;
9311
934352f2 9312 cpu = task_cpu(tsk);
a18b83b7
BR
9313
9314 rcu_read_lock();
9315
d842de87 9316 ca = task_ca(tsk);
d842de87 9317
934352f2 9318 for (; ca; ca = ca->parent) {
b36128c8 9319 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9320 *cpuusage += cputime;
9321 }
a18b83b7
BR
9322
9323 rcu_read_unlock();
d842de87
SV
9324}
9325
fa535a77
AB
9326/*
9327 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9328 * in cputime_t units. As a result, cpuacct_update_stats calls
9329 * percpu_counter_add with values large enough to always overflow the
9330 * per cpu batch limit causing bad SMP scalability.
9331 *
9332 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9333 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9334 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9335 */
9336#ifdef CONFIG_SMP
9337#define CPUACCT_BATCH \
9338 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9339#else
9340#define CPUACCT_BATCH 0
9341#endif
9342
ef12fefa
BR
9343/*
9344 * Charge the system/user time to the task's accounting group.
9345 */
9346static void cpuacct_update_stats(struct task_struct *tsk,
9347 enum cpuacct_stat_index idx, cputime_t val)
9348{
9349 struct cpuacct *ca;
fa535a77 9350 int batch = CPUACCT_BATCH;
ef12fefa
BR
9351
9352 if (unlikely(!cpuacct_subsys.active))
9353 return;
9354
9355 rcu_read_lock();
9356 ca = task_ca(tsk);
9357
9358 do {
fa535a77 9359 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9360 ca = ca->parent;
9361 } while (ca);
9362 rcu_read_unlock();
9363}
9364
d842de87
SV
9365struct cgroup_subsys cpuacct_subsys = {
9366 .name = "cpuacct",
9367 .create = cpuacct_create,
9368 .destroy = cpuacct_destroy,
9369 .populate = cpuacct_populate,
9370 .subsys_id = cpuacct_subsys_id,
9371};
9372#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9373
This page took 2.324264 seconds and 5 git commands to generate.