sched: move sched_feat() definitions
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
f5ff8422 64#include <linux/pagemap.h>
1da177e4 65
5517d86b 66#include <asm/tlb.h>
1da177e4 67
b035b6de
AD
68/*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73unsigned long long __attribute__((weak)) sched_clock(void)
74{
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76}
77
1da177e4
LT
78/*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87/*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96/*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
111 */
112#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 114
5517d86b
ED
115#ifdef CONFIG_SMP
116/*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121{
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123}
124
125/*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130{
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133}
134#endif
135
634fa8c9
IM
136#define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
138
91fcdd4e 139/*
634fa8c9 140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
91fcdd4e 141 * to time slice values: [800ms ... 100ms ... 5ms]
91fcdd4e 142 */
634fa8c9 143static unsigned int static_prio_timeslice(int static_prio)
2dd73a4f 144{
634fa8c9
IM
145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
147
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
2dd73a4f
PW
152}
153
e05606d3
IM
154static inline int rt_policy(int policy)
155{
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
159}
160
161static inline int task_has_rt_policy(struct task_struct *p)
162{
163 return rt_policy(p->policy);
164}
165
1da177e4 166/*
6aa645ea 167 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 168 */
6aa645ea
IM
169struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
172};
173
174struct load_stat {
175 struct load_weight load;
6aa645ea
IM
176};
177
178/* CFS-related fields in a runqueue */
179struct cfs_rq {
180 struct load_weight load;
181 unsigned long nr_running;
182
183 s64 fair_clock;
184 u64 exec_clock;
e9acbff6 185 u64 min_vruntime;
6aa645ea
IM
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
193 /* 'curr' points to currently running entity on this cfs_rq.
194 * It is set to NULL otherwise (i.e when none are currently running).
195 */
196 struct sched_entity *curr;
62160e3f 197#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208#endif
209};
1da177e4 210
6aa645ea
IM
211/* Real-Time classes' related field in a runqueue: */
212struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216};
217
1da177e4
LT
218/*
219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
70b97a7f 225struct rq {
6aa645ea 226 spinlock_t lock; /* runqueue lock */
1da177e4
LT
227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
6aa645ea
IM
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 235 unsigned char idle_at_tick;
46cb4b7c
SS
236#ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238#endif
6aa645ea
IM
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244#ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 246#endif
6aa645ea 247 struct rt_rq rt;
1da177e4
LT
248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
36c8b586 257 struct task_struct *curr, *idle;
c9819f45 258 unsigned long next_balance;
1da177e4 259 struct mm_struct *prev_mm;
6aa645ea 260
6aa645ea
IM
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
265 u64 idle_clock;
266 unsigned int clock_deep_idle_events;
529c7726 267 u64 tick_timestamp;
6aa645ea 268
1da177e4
LT
269 atomic_t nr_iowait;
270
271#ifdef CONFIG_SMP
272 struct sched_domain *sd;
273
274 /* For active balancing */
275 int active_balance;
276 int push_cpu;
0a2966b4 277 int cpu; /* cpu of this runqueue */
1da177e4 278
36c8b586 279 struct task_struct *migration_thread;
1da177e4
LT
280 struct list_head migration_queue;
281#endif
282
283#ifdef CONFIG_SCHEDSTATS
284 /* latency stats */
285 struct sched_info rq_sched_info;
286
287 /* sys_sched_yield() stats */
288 unsigned long yld_exp_empty;
289 unsigned long yld_act_empty;
290 unsigned long yld_both_empty;
291 unsigned long yld_cnt;
292
293 /* schedule() stats */
294 unsigned long sched_switch;
295 unsigned long sched_cnt;
296 unsigned long sched_goidle;
297
298 /* try_to_wake_up() stats */
299 unsigned long ttwu_cnt;
300 unsigned long ttwu_local;
301#endif
fcb99371 302 struct lock_class_key rq_lock_key;
1da177e4
LT
303};
304
f34e3b61 305static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 306static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 307
dd41f596
IM
308static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
309{
310 rq->curr->sched_class->check_preempt_curr(rq, p);
311}
312
0a2966b4
CL
313static inline int cpu_of(struct rq *rq)
314{
315#ifdef CONFIG_SMP
316 return rq->cpu;
317#else
318 return 0;
319#endif
320}
321
20d315d4 322/*
b04a0f4c
IM
323 * Update the per-runqueue clock, as finegrained as the platform can give
324 * us, but without assuming monotonicity, etc.:
20d315d4 325 */
b04a0f4c 326static void __update_rq_clock(struct rq *rq)
20d315d4
IM
327{
328 u64 prev_raw = rq->prev_clock_raw;
329 u64 now = sched_clock();
330 s64 delta = now - prev_raw;
331 u64 clock = rq->clock;
332
b04a0f4c
IM
333#ifdef CONFIG_SCHED_DEBUG
334 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
335#endif
20d315d4
IM
336 /*
337 * Protect against sched_clock() occasionally going backwards:
338 */
339 if (unlikely(delta < 0)) {
340 clock++;
341 rq->clock_warps++;
342 } else {
343 /*
344 * Catch too large forward jumps too:
345 */
529c7726
IM
346 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
347 if (clock < rq->tick_timestamp + TICK_NSEC)
348 clock = rq->tick_timestamp + TICK_NSEC;
349 else
350 clock++;
20d315d4
IM
351 rq->clock_overflows++;
352 } else {
353 if (unlikely(delta > rq->clock_max_delta))
354 rq->clock_max_delta = delta;
355 clock += delta;
356 }
357 }
358
359 rq->prev_clock_raw = now;
360 rq->clock = clock;
b04a0f4c 361}
20d315d4 362
b04a0f4c
IM
363static void update_rq_clock(struct rq *rq)
364{
365 if (likely(smp_processor_id() == cpu_of(rq)))
366 __update_rq_clock(rq);
20d315d4
IM
367}
368
674311d5
NP
369/*
370 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 371 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
372 *
373 * The domain tree of any CPU may only be accessed from within
374 * preempt-disabled sections.
375 */
48f24c4d
IM
376#define for_each_domain(cpu, __sd) \
377 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
378
379#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
380#define this_rq() (&__get_cpu_var(runqueues))
381#define task_rq(p) cpu_rq(task_cpu(p))
382#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
383
bf5c91ba
IM
384/*
385 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
386 */
387#ifdef CONFIG_SCHED_DEBUG
388# define const_debug __read_mostly
389#else
390# define const_debug static const
391#endif
392
393/*
394 * Debugging: various feature bits
395 */
396enum {
397 SCHED_FEAT_FAIR_SLEEPERS = 1,
398 SCHED_FEAT_NEW_FAIR_SLEEPERS = 2,
399 SCHED_FEAT_SLEEPER_AVG = 4,
400 SCHED_FEAT_SLEEPER_LOAD_AVG = 8,
401 SCHED_FEAT_START_DEBIT = 16,
402 SCHED_FEAT_SKIP_INITIAL = 32,
403};
404
405const_debug unsigned int sysctl_sched_features =
406 SCHED_FEAT_FAIR_SLEEPERS *0 |
407 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
408 SCHED_FEAT_SLEEPER_AVG *0 |
409 SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
410 SCHED_FEAT_START_DEBIT *1 |
411 SCHED_FEAT_SKIP_INITIAL *0;
412
413#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
414
e436d800
IM
415/*
416 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
417 * clock constructed from sched_clock():
418 */
419unsigned long long cpu_clock(int cpu)
420{
e436d800
IM
421 unsigned long long now;
422 unsigned long flags;
b04a0f4c 423 struct rq *rq;
e436d800 424
2cd4d0ea 425 local_irq_save(flags);
b04a0f4c
IM
426 rq = cpu_rq(cpu);
427 update_rq_clock(rq);
428 now = rq->clock;
2cd4d0ea 429 local_irq_restore(flags);
e436d800
IM
430
431 return now;
432}
433
138a8aeb
IM
434#ifdef CONFIG_FAIR_GROUP_SCHED
435/* Change a task's ->cfs_rq if it moves across CPUs */
436static inline void set_task_cfs_rq(struct task_struct *p)
437{
438 p->se.cfs_rq = &task_rq(p)->cfs;
439}
440#else
441static inline void set_task_cfs_rq(struct task_struct *p)
442{
443}
444#endif
445
1da177e4 446#ifndef prepare_arch_switch
4866cde0
NP
447# define prepare_arch_switch(next) do { } while (0)
448#endif
449#ifndef finish_arch_switch
450# define finish_arch_switch(prev) do { } while (0)
451#endif
452
453#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 454static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
455{
456 return rq->curr == p;
457}
458
70b97a7f 459static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
460{
461}
462
70b97a7f 463static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 464{
da04c035
IM
465#ifdef CONFIG_DEBUG_SPINLOCK
466 /* this is a valid case when another task releases the spinlock */
467 rq->lock.owner = current;
468#endif
8a25d5de
IM
469 /*
470 * If we are tracking spinlock dependencies then we have to
471 * fix up the runqueue lock - which gets 'carried over' from
472 * prev into current:
473 */
474 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
475
4866cde0
NP
476 spin_unlock_irq(&rq->lock);
477}
478
479#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 480static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
481{
482#ifdef CONFIG_SMP
483 return p->oncpu;
484#else
485 return rq->curr == p;
486#endif
487}
488
70b97a7f 489static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
490{
491#ifdef CONFIG_SMP
492 /*
493 * We can optimise this out completely for !SMP, because the
494 * SMP rebalancing from interrupt is the only thing that cares
495 * here.
496 */
497 next->oncpu = 1;
498#endif
499#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
500 spin_unlock_irq(&rq->lock);
501#else
502 spin_unlock(&rq->lock);
503#endif
504}
505
70b97a7f 506static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
507{
508#ifdef CONFIG_SMP
509 /*
510 * After ->oncpu is cleared, the task can be moved to a different CPU.
511 * We must ensure this doesn't happen until the switch is completely
512 * finished.
513 */
514 smp_wmb();
515 prev->oncpu = 0;
516#endif
517#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
518 local_irq_enable();
1da177e4 519#endif
4866cde0
NP
520}
521#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 522
b29739f9
IM
523/*
524 * __task_rq_lock - lock the runqueue a given task resides on.
525 * Must be called interrupts disabled.
526 */
70b97a7f 527static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
528 __acquires(rq->lock)
529{
70b97a7f 530 struct rq *rq;
b29739f9
IM
531
532repeat_lock_task:
533 rq = task_rq(p);
534 spin_lock(&rq->lock);
535 if (unlikely(rq != task_rq(p))) {
536 spin_unlock(&rq->lock);
537 goto repeat_lock_task;
538 }
539 return rq;
540}
541
1da177e4
LT
542/*
543 * task_rq_lock - lock the runqueue a given task resides on and disable
544 * interrupts. Note the ordering: we can safely lookup the task_rq without
545 * explicitly disabling preemption.
546 */
70b97a7f 547static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
548 __acquires(rq->lock)
549{
70b97a7f 550 struct rq *rq;
1da177e4
LT
551
552repeat_lock_task:
553 local_irq_save(*flags);
554 rq = task_rq(p);
555 spin_lock(&rq->lock);
556 if (unlikely(rq != task_rq(p))) {
557 spin_unlock_irqrestore(&rq->lock, *flags);
558 goto repeat_lock_task;
559 }
560 return rq;
561}
562
70b97a7f 563static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
564 __releases(rq->lock)
565{
566 spin_unlock(&rq->lock);
567}
568
70b97a7f 569static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
570 __releases(rq->lock)
571{
572 spin_unlock_irqrestore(&rq->lock, *flags);
573}
574
1da177e4 575/*
cc2a73b5 576 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 577 */
70b97a7f 578static inline struct rq *this_rq_lock(void)
1da177e4
LT
579 __acquires(rq->lock)
580{
70b97a7f 581 struct rq *rq;
1da177e4
LT
582
583 local_irq_disable();
584 rq = this_rq();
585 spin_lock(&rq->lock);
586
587 return rq;
588}
589
1b9f19c2 590/*
2aa44d05 591 * We are going deep-idle (irqs are disabled):
1b9f19c2 592 */
2aa44d05 593void sched_clock_idle_sleep_event(void)
1b9f19c2 594{
2aa44d05
IM
595 struct rq *rq = cpu_rq(smp_processor_id());
596
597 spin_lock(&rq->lock);
598 __update_rq_clock(rq);
599 spin_unlock(&rq->lock);
600 rq->clock_deep_idle_events++;
601}
602EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
603
604/*
605 * We just idled delta nanoseconds (called with irqs disabled):
606 */
607void sched_clock_idle_wakeup_event(u64 delta_ns)
608{
609 struct rq *rq = cpu_rq(smp_processor_id());
610 u64 now = sched_clock();
1b9f19c2 611
2aa44d05
IM
612 rq->idle_clock += delta_ns;
613 /*
614 * Override the previous timestamp and ignore all
615 * sched_clock() deltas that occured while we idled,
616 * and use the PM-provided delta_ns to advance the
617 * rq clock:
618 */
619 spin_lock(&rq->lock);
620 rq->prev_clock_raw = now;
621 rq->clock += delta_ns;
622 spin_unlock(&rq->lock);
1b9f19c2 623}
2aa44d05 624EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 625
c24d20db
IM
626/*
627 * resched_task - mark a task 'to be rescheduled now'.
628 *
629 * On UP this means the setting of the need_resched flag, on SMP it
630 * might also involve a cross-CPU call to trigger the scheduler on
631 * the target CPU.
632 */
633#ifdef CONFIG_SMP
634
635#ifndef tsk_is_polling
636#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
637#endif
638
639static void resched_task(struct task_struct *p)
640{
641 int cpu;
642
643 assert_spin_locked(&task_rq(p)->lock);
644
645 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
646 return;
647
648 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
649
650 cpu = task_cpu(p);
651 if (cpu == smp_processor_id())
652 return;
653
654 /* NEED_RESCHED must be visible before we test polling */
655 smp_mb();
656 if (!tsk_is_polling(p))
657 smp_send_reschedule(cpu);
658}
659
660static void resched_cpu(int cpu)
661{
662 struct rq *rq = cpu_rq(cpu);
663 unsigned long flags;
664
665 if (!spin_trylock_irqsave(&rq->lock, flags))
666 return;
667 resched_task(cpu_curr(cpu));
668 spin_unlock_irqrestore(&rq->lock, flags);
669}
670#else
671static inline void resched_task(struct task_struct *p)
672{
673 assert_spin_locked(&task_rq(p)->lock);
674 set_tsk_need_resched(p);
675}
676#endif
677
45bf76df
IM
678static u64 div64_likely32(u64 divident, unsigned long divisor)
679{
680#if BITS_PER_LONG == 32
681 if (likely(divident <= 0xffffffffULL))
682 return (u32)divident / divisor;
683 do_div(divident, divisor);
684
685 return divident;
686#else
687 return divident / divisor;
688#endif
689}
690
691#if BITS_PER_LONG == 32
692# define WMULT_CONST (~0UL)
693#else
694# define WMULT_CONST (1UL << 32)
695#endif
696
697#define WMULT_SHIFT 32
698
194081eb
IM
699/*
700 * Shift right and round:
701 */
cf2ab469 702#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 703
cb1c4fc9 704static unsigned long
45bf76df
IM
705calc_delta_mine(unsigned long delta_exec, unsigned long weight,
706 struct load_weight *lw)
707{
708 u64 tmp;
709
710 if (unlikely(!lw->inv_weight))
194081eb 711 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
712
713 tmp = (u64)delta_exec * weight;
714 /*
715 * Check whether we'd overflow the 64-bit multiplication:
716 */
194081eb 717 if (unlikely(tmp > WMULT_CONST))
cf2ab469 718 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
719 WMULT_SHIFT/2);
720 else
cf2ab469 721 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 722
ecf691da 723 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
724}
725
726static inline unsigned long
727calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
728{
729 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
730}
731
1091985b 732static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
733{
734 lw->weight += inc;
1091985b 735 lw->inv_weight = WMULT_CONST / lw->weight;
45bf76df
IM
736}
737
1091985b 738static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
739{
740 lw->weight -= dec;
1091985b
IM
741 if (likely(lw->weight))
742 lw->inv_weight = WMULT_CONST / lw->weight;
45bf76df
IM
743}
744
2dd73a4f
PW
745/*
746 * To aid in avoiding the subversion of "niceness" due to uneven distribution
747 * of tasks with abnormal "nice" values across CPUs the contribution that
748 * each task makes to its run queue's load is weighted according to its
749 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
750 * scaled version of the new time slice allocation that they receive on time
751 * slice expiry etc.
752 */
753
dd41f596
IM
754#define WEIGHT_IDLEPRIO 2
755#define WMULT_IDLEPRIO (1 << 31)
756
757/*
758 * Nice levels are multiplicative, with a gentle 10% change for every
759 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
760 * nice 1, it will get ~10% less CPU time than another CPU-bound task
761 * that remained on nice 0.
762 *
763 * The "10% effect" is relative and cumulative: from _any_ nice level,
764 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
765 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
766 * If a task goes up by ~10% and another task goes down by ~10% then
767 * the relative distance between them is ~25%.)
dd41f596
IM
768 */
769static const int prio_to_weight[40] = {
254753dc
IM
770 /* -20 */ 88761, 71755, 56483, 46273, 36291,
771 /* -15 */ 29154, 23254, 18705, 14949, 11916,
772 /* -10 */ 9548, 7620, 6100, 4904, 3906,
773 /* -5 */ 3121, 2501, 1991, 1586, 1277,
774 /* 0 */ 1024, 820, 655, 526, 423,
775 /* 5 */ 335, 272, 215, 172, 137,
776 /* 10 */ 110, 87, 70, 56, 45,
777 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
778};
779
5714d2de
IM
780/*
781 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
782 *
783 * In cases where the weight does not change often, we can use the
784 * precalculated inverse to speed up arithmetics by turning divisions
785 * into multiplications:
786 */
dd41f596 787static const u32 prio_to_wmult[40] = {
254753dc
IM
788 /* -20 */ 48388, 59856, 76040, 92818, 118348,
789 /* -15 */ 147320, 184698, 229616, 287308, 360437,
790 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
791 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
792 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
793 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
794 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
795 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 796};
2dd73a4f 797
dd41f596
IM
798static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
799
800/*
801 * runqueue iterator, to support SMP load-balancing between different
802 * scheduling classes, without having to expose their internal data
803 * structures to the load-balancing proper:
804 */
805struct rq_iterator {
806 void *arg;
807 struct task_struct *(*start)(void *);
808 struct task_struct *(*next)(void *);
809};
810
811static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
812 unsigned long max_nr_move, unsigned long max_load_move,
813 struct sched_domain *sd, enum cpu_idle_type idle,
814 int *all_pinned, unsigned long *load_moved,
a4ac01c3 815 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
816
817#include "sched_stats.h"
818#include "sched_rt.c"
819#include "sched_fair.c"
820#include "sched_idletask.c"
821#ifdef CONFIG_SCHED_DEBUG
822# include "sched_debug.c"
823#endif
824
825#define sched_class_highest (&rt_sched_class)
826
9c217245
IM
827/*
828 * Update delta_exec, delta_fair fields for rq.
829 *
830 * delta_fair clock advances at a rate inversely proportional to
831 * total load (rq->ls.load.weight) on the runqueue, while
832 * delta_exec advances at the same rate as wall-clock (provided
833 * cpu is not idle).
834 *
835 * delta_exec / delta_fair is a measure of the (smoothened) load on this
836 * runqueue over any given interval. This (smoothened) load is used
837 * during load balance.
838 *
839 * This function is called /before/ updating rq->ls.load
840 * and when switching tasks.
841 */
29b4b623 842static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 843{
9c217245
IM
844 update_load_add(&rq->ls.load, p->se.load.weight);
845}
846
79b5dddf 847static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 848{
9c217245
IM
849 update_load_sub(&rq->ls.load, p->se.load.weight);
850}
851
e5fa2237 852static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
853{
854 rq->nr_running++;
29b4b623 855 inc_load(rq, p);
9c217245
IM
856}
857
db53181e 858static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
859{
860 rq->nr_running--;
79b5dddf 861 dec_load(rq, p);
9c217245
IM
862}
863
45bf76df
IM
864static void set_load_weight(struct task_struct *p)
865{
dd41f596
IM
866 p->se.wait_runtime = 0;
867
45bf76df 868 if (task_has_rt_policy(p)) {
dd41f596
IM
869 p->se.load.weight = prio_to_weight[0] * 2;
870 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
871 return;
872 }
45bf76df 873
dd41f596
IM
874 /*
875 * SCHED_IDLE tasks get minimal weight:
876 */
877 if (p->policy == SCHED_IDLE) {
878 p->se.load.weight = WEIGHT_IDLEPRIO;
879 p->se.load.inv_weight = WMULT_IDLEPRIO;
880 return;
881 }
71f8bd46 882
dd41f596
IM
883 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
884 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
885}
886
8159f87e 887static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 888{
dd41f596 889 sched_info_queued(p);
fd390f6a 890 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 891 p->se.on_rq = 1;
71f8bd46
IM
892}
893
69be72c1 894static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 895{
f02231e5 896 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 897 p->se.on_rq = 0;
71f8bd46
IM
898}
899
14531189 900/*
dd41f596 901 * __normal_prio - return the priority that is based on the static prio
14531189 902 */
14531189
IM
903static inline int __normal_prio(struct task_struct *p)
904{
dd41f596 905 return p->static_prio;
14531189
IM
906}
907
b29739f9
IM
908/*
909 * Calculate the expected normal priority: i.e. priority
910 * without taking RT-inheritance into account. Might be
911 * boosted by interactivity modifiers. Changes upon fork,
912 * setprio syscalls, and whenever the interactivity
913 * estimator recalculates.
914 */
36c8b586 915static inline int normal_prio(struct task_struct *p)
b29739f9
IM
916{
917 int prio;
918
e05606d3 919 if (task_has_rt_policy(p))
b29739f9
IM
920 prio = MAX_RT_PRIO-1 - p->rt_priority;
921 else
922 prio = __normal_prio(p);
923 return prio;
924}
925
926/*
927 * Calculate the current priority, i.e. the priority
928 * taken into account by the scheduler. This value might
929 * be boosted by RT tasks, or might be boosted by
930 * interactivity modifiers. Will be RT if the task got
931 * RT-boosted. If not then it returns p->normal_prio.
932 */
36c8b586 933static int effective_prio(struct task_struct *p)
b29739f9
IM
934{
935 p->normal_prio = normal_prio(p);
936 /*
937 * If we are RT tasks or we were boosted to RT priority,
938 * keep the priority unchanged. Otherwise, update priority
939 * to the normal priority:
940 */
941 if (!rt_prio(p->prio))
942 return p->normal_prio;
943 return p->prio;
944}
945
1da177e4 946/*
dd41f596 947 * activate_task - move a task to the runqueue.
1da177e4 948 */
dd41f596 949static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 950{
dd41f596
IM
951 if (p->state == TASK_UNINTERRUPTIBLE)
952 rq->nr_uninterruptible--;
1da177e4 953
8159f87e 954 enqueue_task(rq, p, wakeup);
e5fa2237 955 inc_nr_running(p, rq);
1da177e4
LT
956}
957
958/*
dd41f596 959 * activate_idle_task - move idle task to the _front_ of runqueue.
1da177e4 960 */
dd41f596 961static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4 962{
a8e504d2 963 update_rq_clock(rq);
1da177e4 964
dd41f596
IM
965 if (p->state == TASK_UNINTERRUPTIBLE)
966 rq->nr_uninterruptible--;
ece8a684 967
8159f87e 968 enqueue_task(rq, p, 0);
e5fa2237 969 inc_nr_running(p, rq);
1da177e4
LT
970}
971
972/*
973 * deactivate_task - remove a task from the runqueue.
974 */
2e1cb74a 975static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 976{
dd41f596
IM
977 if (p->state == TASK_UNINTERRUPTIBLE)
978 rq->nr_uninterruptible++;
979
69be72c1 980 dequeue_task(rq, p, sleep);
db53181e 981 dec_nr_running(p, rq);
1da177e4
LT
982}
983
1da177e4
LT
984/**
985 * task_curr - is this task currently executing on a CPU?
986 * @p: the task in question.
987 */
36c8b586 988inline int task_curr(const struct task_struct *p)
1da177e4
LT
989{
990 return cpu_curr(task_cpu(p)) == p;
991}
992
2dd73a4f
PW
993/* Used instead of source_load when we know the type == 0 */
994unsigned long weighted_cpuload(const int cpu)
995{
dd41f596
IM
996 return cpu_rq(cpu)->ls.load.weight;
997}
998
999static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1000{
1001#ifdef CONFIG_SMP
1002 task_thread_info(p)->cpu = cpu;
1003 set_task_cfs_rq(p);
1004#endif
2dd73a4f
PW
1005}
1006
1da177e4 1007#ifdef CONFIG_SMP
c65cc870 1008
dd41f596 1009void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1010{
dd41f596
IM
1011 int old_cpu = task_cpu(p);
1012 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1013 u64 clock_offset, fair_clock_offset;
1014
1015 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1016 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
1017
dd41f596
IM
1018 if (p->se.wait_start_fair)
1019 p->se.wait_start_fair -= fair_clock_offset;
6cfb0d5d
IM
1020 if (p->se.sleep_start_fair)
1021 p->se.sleep_start_fair -= fair_clock_offset;
1022
1023#ifdef CONFIG_SCHEDSTATS
1024 if (p->se.wait_start)
1025 p->se.wait_start -= clock_offset;
dd41f596
IM
1026 if (p->se.sleep_start)
1027 p->se.sleep_start -= clock_offset;
1028 if (p->se.block_start)
1029 p->se.block_start -= clock_offset;
6cfb0d5d 1030#endif
dd41f596
IM
1031
1032 __set_task_cpu(p, new_cpu);
c65cc870
IM
1033}
1034
70b97a7f 1035struct migration_req {
1da177e4 1036 struct list_head list;
1da177e4 1037
36c8b586 1038 struct task_struct *task;
1da177e4
LT
1039 int dest_cpu;
1040
1da177e4 1041 struct completion done;
70b97a7f 1042};
1da177e4
LT
1043
1044/*
1045 * The task's runqueue lock must be held.
1046 * Returns true if you have to wait for migration thread.
1047 */
36c8b586 1048static int
70b97a7f 1049migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1050{
70b97a7f 1051 struct rq *rq = task_rq(p);
1da177e4
LT
1052
1053 /*
1054 * If the task is not on a runqueue (and not running), then
1055 * it is sufficient to simply update the task's cpu field.
1056 */
dd41f596 1057 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1058 set_task_cpu(p, dest_cpu);
1059 return 0;
1060 }
1061
1062 init_completion(&req->done);
1da177e4
LT
1063 req->task = p;
1064 req->dest_cpu = dest_cpu;
1065 list_add(&req->list, &rq->migration_queue);
48f24c4d 1066
1da177e4
LT
1067 return 1;
1068}
1069
1070/*
1071 * wait_task_inactive - wait for a thread to unschedule.
1072 *
1073 * The caller must ensure that the task *will* unschedule sometime soon,
1074 * else this function might spin for a *long* time. This function can't
1075 * be called with interrupts off, or it may introduce deadlock with
1076 * smp_call_function() if an IPI is sent by the same process we are
1077 * waiting to become inactive.
1078 */
36c8b586 1079void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1080{
1081 unsigned long flags;
dd41f596 1082 int running, on_rq;
70b97a7f 1083 struct rq *rq;
1da177e4
LT
1084
1085repeat:
fa490cfd
LT
1086 /*
1087 * We do the initial early heuristics without holding
1088 * any task-queue locks at all. We'll only try to get
1089 * the runqueue lock when things look like they will
1090 * work out!
1091 */
1092 rq = task_rq(p);
1093
1094 /*
1095 * If the task is actively running on another CPU
1096 * still, just relax and busy-wait without holding
1097 * any locks.
1098 *
1099 * NOTE! Since we don't hold any locks, it's not
1100 * even sure that "rq" stays as the right runqueue!
1101 * But we don't care, since "task_running()" will
1102 * return false if the runqueue has changed and p
1103 * is actually now running somewhere else!
1104 */
1105 while (task_running(rq, p))
1106 cpu_relax();
1107
1108 /*
1109 * Ok, time to look more closely! We need the rq
1110 * lock now, to be *sure*. If we're wrong, we'll
1111 * just go back and repeat.
1112 */
1da177e4 1113 rq = task_rq_lock(p, &flags);
fa490cfd 1114 running = task_running(rq, p);
dd41f596 1115 on_rq = p->se.on_rq;
fa490cfd
LT
1116 task_rq_unlock(rq, &flags);
1117
1118 /*
1119 * Was it really running after all now that we
1120 * checked with the proper locks actually held?
1121 *
1122 * Oops. Go back and try again..
1123 */
1124 if (unlikely(running)) {
1da177e4 1125 cpu_relax();
1da177e4
LT
1126 goto repeat;
1127 }
fa490cfd
LT
1128
1129 /*
1130 * It's not enough that it's not actively running,
1131 * it must be off the runqueue _entirely_, and not
1132 * preempted!
1133 *
1134 * So if it wa still runnable (but just not actively
1135 * running right now), it's preempted, and we should
1136 * yield - it could be a while.
1137 */
dd41f596 1138 if (unlikely(on_rq)) {
fa490cfd
LT
1139 yield();
1140 goto repeat;
1141 }
1142
1143 /*
1144 * Ahh, all good. It wasn't running, and it wasn't
1145 * runnable, which means that it will never become
1146 * running in the future either. We're all done!
1147 */
1da177e4
LT
1148}
1149
1150/***
1151 * kick_process - kick a running thread to enter/exit the kernel
1152 * @p: the to-be-kicked thread
1153 *
1154 * Cause a process which is running on another CPU to enter
1155 * kernel-mode, without any delay. (to get signals handled.)
1156 *
1157 * NOTE: this function doesnt have to take the runqueue lock,
1158 * because all it wants to ensure is that the remote task enters
1159 * the kernel. If the IPI races and the task has been migrated
1160 * to another CPU then no harm is done and the purpose has been
1161 * achieved as well.
1162 */
36c8b586 1163void kick_process(struct task_struct *p)
1da177e4
LT
1164{
1165 int cpu;
1166
1167 preempt_disable();
1168 cpu = task_cpu(p);
1169 if ((cpu != smp_processor_id()) && task_curr(p))
1170 smp_send_reschedule(cpu);
1171 preempt_enable();
1172}
1173
1174/*
2dd73a4f
PW
1175 * Return a low guess at the load of a migration-source cpu weighted
1176 * according to the scheduling class and "nice" value.
1da177e4
LT
1177 *
1178 * We want to under-estimate the load of migration sources, to
1179 * balance conservatively.
1180 */
a2000572 1181static inline unsigned long source_load(int cpu, int type)
1da177e4 1182{
70b97a7f 1183 struct rq *rq = cpu_rq(cpu);
dd41f596 1184 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1185
3b0bd9bc 1186 if (type == 0)
dd41f596 1187 return total;
b910472d 1188
dd41f596 1189 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1190}
1191
1192/*
2dd73a4f
PW
1193 * Return a high guess at the load of a migration-target cpu weighted
1194 * according to the scheduling class and "nice" value.
1da177e4 1195 */
a2000572 1196static inline unsigned long target_load(int cpu, int type)
1da177e4 1197{
70b97a7f 1198 struct rq *rq = cpu_rq(cpu);
dd41f596 1199 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1200
7897986b 1201 if (type == 0)
dd41f596 1202 return total;
3b0bd9bc 1203
dd41f596 1204 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1205}
1206
1207/*
1208 * Return the average load per task on the cpu's run queue
1209 */
1210static inline unsigned long cpu_avg_load_per_task(int cpu)
1211{
70b97a7f 1212 struct rq *rq = cpu_rq(cpu);
dd41f596 1213 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1214 unsigned long n = rq->nr_running;
1215
dd41f596 1216 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1217}
1218
147cbb4b
NP
1219/*
1220 * find_idlest_group finds and returns the least busy CPU group within the
1221 * domain.
1222 */
1223static struct sched_group *
1224find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1225{
1226 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1227 unsigned long min_load = ULONG_MAX, this_load = 0;
1228 int load_idx = sd->forkexec_idx;
1229 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1230
1231 do {
1232 unsigned long load, avg_load;
1233 int local_group;
1234 int i;
1235
da5a5522
BD
1236 /* Skip over this group if it has no CPUs allowed */
1237 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1238 goto nextgroup;
1239
147cbb4b 1240 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1241
1242 /* Tally up the load of all CPUs in the group */
1243 avg_load = 0;
1244
1245 for_each_cpu_mask(i, group->cpumask) {
1246 /* Bias balancing toward cpus of our domain */
1247 if (local_group)
1248 load = source_load(i, load_idx);
1249 else
1250 load = target_load(i, load_idx);
1251
1252 avg_load += load;
1253 }
1254
1255 /* Adjust by relative CPU power of the group */
5517d86b
ED
1256 avg_load = sg_div_cpu_power(group,
1257 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1258
1259 if (local_group) {
1260 this_load = avg_load;
1261 this = group;
1262 } else if (avg_load < min_load) {
1263 min_load = avg_load;
1264 idlest = group;
1265 }
da5a5522 1266nextgroup:
147cbb4b
NP
1267 group = group->next;
1268 } while (group != sd->groups);
1269
1270 if (!idlest || 100*this_load < imbalance*min_load)
1271 return NULL;
1272 return idlest;
1273}
1274
1275/*
0feaece9 1276 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1277 */
95cdf3b7
IM
1278static int
1279find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1280{
da5a5522 1281 cpumask_t tmp;
147cbb4b
NP
1282 unsigned long load, min_load = ULONG_MAX;
1283 int idlest = -1;
1284 int i;
1285
da5a5522
BD
1286 /* Traverse only the allowed CPUs */
1287 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1288
1289 for_each_cpu_mask(i, tmp) {
2dd73a4f 1290 load = weighted_cpuload(i);
147cbb4b
NP
1291
1292 if (load < min_load || (load == min_load && i == this_cpu)) {
1293 min_load = load;
1294 idlest = i;
1295 }
1296 }
1297
1298 return idlest;
1299}
1300
476d139c
NP
1301/*
1302 * sched_balance_self: balance the current task (running on cpu) in domains
1303 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1304 * SD_BALANCE_EXEC.
1305 *
1306 * Balance, ie. select the least loaded group.
1307 *
1308 * Returns the target CPU number, or the same CPU if no balancing is needed.
1309 *
1310 * preempt must be disabled.
1311 */
1312static int sched_balance_self(int cpu, int flag)
1313{
1314 struct task_struct *t = current;
1315 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1316
c96d145e 1317 for_each_domain(cpu, tmp) {
9761eea8
IM
1318 /*
1319 * If power savings logic is enabled for a domain, stop there.
1320 */
5c45bf27
SS
1321 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1322 break;
476d139c
NP
1323 if (tmp->flags & flag)
1324 sd = tmp;
c96d145e 1325 }
476d139c
NP
1326
1327 while (sd) {
1328 cpumask_t span;
1329 struct sched_group *group;
1a848870
SS
1330 int new_cpu, weight;
1331
1332 if (!(sd->flags & flag)) {
1333 sd = sd->child;
1334 continue;
1335 }
476d139c
NP
1336
1337 span = sd->span;
1338 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1339 if (!group) {
1340 sd = sd->child;
1341 continue;
1342 }
476d139c 1343
da5a5522 1344 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1345 if (new_cpu == -1 || new_cpu == cpu) {
1346 /* Now try balancing at a lower domain level of cpu */
1347 sd = sd->child;
1348 continue;
1349 }
476d139c 1350
1a848870 1351 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1352 cpu = new_cpu;
476d139c
NP
1353 sd = NULL;
1354 weight = cpus_weight(span);
1355 for_each_domain(cpu, tmp) {
1356 if (weight <= cpus_weight(tmp->span))
1357 break;
1358 if (tmp->flags & flag)
1359 sd = tmp;
1360 }
1361 /* while loop will break here if sd == NULL */
1362 }
1363
1364 return cpu;
1365}
1366
1367#endif /* CONFIG_SMP */
1da177e4
LT
1368
1369/*
1370 * wake_idle() will wake a task on an idle cpu if task->cpu is
1371 * not idle and an idle cpu is available. The span of cpus to
1372 * search starts with cpus closest then further out as needed,
1373 * so we always favor a closer, idle cpu.
1374 *
1375 * Returns the CPU we should wake onto.
1376 */
1377#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1378static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1379{
1380 cpumask_t tmp;
1381 struct sched_domain *sd;
1382 int i;
1383
4953198b
SS
1384 /*
1385 * If it is idle, then it is the best cpu to run this task.
1386 *
1387 * This cpu is also the best, if it has more than one task already.
1388 * Siblings must be also busy(in most cases) as they didn't already
1389 * pickup the extra load from this cpu and hence we need not check
1390 * sibling runqueue info. This will avoid the checks and cache miss
1391 * penalities associated with that.
1392 */
1393 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1394 return cpu;
1395
1396 for_each_domain(cpu, sd) {
1397 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1398 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1399 for_each_cpu_mask(i, tmp) {
1400 if (idle_cpu(i))
1401 return i;
1402 }
9761eea8 1403 } else {
e0f364f4 1404 break;
9761eea8 1405 }
1da177e4
LT
1406 }
1407 return cpu;
1408}
1409#else
36c8b586 1410static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1411{
1412 return cpu;
1413}
1414#endif
1415
1416/***
1417 * try_to_wake_up - wake up a thread
1418 * @p: the to-be-woken-up thread
1419 * @state: the mask of task states that can be woken
1420 * @sync: do a synchronous wakeup?
1421 *
1422 * Put it on the run-queue if it's not already there. The "current"
1423 * thread is always on the run-queue (except when the actual
1424 * re-schedule is in progress), and as such you're allowed to do
1425 * the simpler "current->state = TASK_RUNNING" to mark yourself
1426 * runnable without the overhead of this.
1427 *
1428 * returns failure only if the task is already active.
1429 */
36c8b586 1430static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1431{
1432 int cpu, this_cpu, success = 0;
1433 unsigned long flags;
1434 long old_state;
70b97a7f 1435 struct rq *rq;
1da177e4 1436#ifdef CONFIG_SMP
7897986b 1437 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1438 unsigned long load, this_load;
1da177e4
LT
1439 int new_cpu;
1440#endif
1441
1442 rq = task_rq_lock(p, &flags);
1443 old_state = p->state;
1444 if (!(old_state & state))
1445 goto out;
1446
dd41f596 1447 if (p->se.on_rq)
1da177e4
LT
1448 goto out_running;
1449
1450 cpu = task_cpu(p);
1451 this_cpu = smp_processor_id();
1452
1453#ifdef CONFIG_SMP
1454 if (unlikely(task_running(rq, p)))
1455 goto out_activate;
1456
7897986b
NP
1457 new_cpu = cpu;
1458
1da177e4
LT
1459 schedstat_inc(rq, ttwu_cnt);
1460 if (cpu == this_cpu) {
1461 schedstat_inc(rq, ttwu_local);
7897986b
NP
1462 goto out_set_cpu;
1463 }
1464
1465 for_each_domain(this_cpu, sd) {
1466 if (cpu_isset(cpu, sd->span)) {
1467 schedstat_inc(sd, ttwu_wake_remote);
1468 this_sd = sd;
1469 break;
1da177e4
LT
1470 }
1471 }
1da177e4 1472
7897986b 1473 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1474 goto out_set_cpu;
1475
1da177e4 1476 /*
7897986b 1477 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1478 */
7897986b
NP
1479 if (this_sd) {
1480 int idx = this_sd->wake_idx;
1481 unsigned int imbalance;
1da177e4 1482
a3f21bce
NP
1483 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1484
7897986b
NP
1485 load = source_load(cpu, idx);
1486 this_load = target_load(this_cpu, idx);
1da177e4 1487
7897986b
NP
1488 new_cpu = this_cpu; /* Wake to this CPU if we can */
1489
a3f21bce
NP
1490 if (this_sd->flags & SD_WAKE_AFFINE) {
1491 unsigned long tl = this_load;
33859f7f
MOS
1492 unsigned long tl_per_task;
1493
1494 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1495
1da177e4 1496 /*
a3f21bce
NP
1497 * If sync wakeup then subtract the (maximum possible)
1498 * effect of the currently running task from the load
1499 * of the current CPU:
1da177e4 1500 */
a3f21bce 1501 if (sync)
dd41f596 1502 tl -= current->se.load.weight;
a3f21bce
NP
1503
1504 if ((tl <= load &&
2dd73a4f 1505 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1506 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1507 /*
1508 * This domain has SD_WAKE_AFFINE and
1509 * p is cache cold in this domain, and
1510 * there is no bad imbalance.
1511 */
1512 schedstat_inc(this_sd, ttwu_move_affine);
1513 goto out_set_cpu;
1514 }
1515 }
1516
1517 /*
1518 * Start passive balancing when half the imbalance_pct
1519 * limit is reached.
1520 */
1521 if (this_sd->flags & SD_WAKE_BALANCE) {
1522 if (imbalance*this_load <= 100*load) {
1523 schedstat_inc(this_sd, ttwu_move_balance);
1524 goto out_set_cpu;
1525 }
1da177e4
LT
1526 }
1527 }
1528
1529 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1530out_set_cpu:
1531 new_cpu = wake_idle(new_cpu, p);
1532 if (new_cpu != cpu) {
1533 set_task_cpu(p, new_cpu);
1534 task_rq_unlock(rq, &flags);
1535 /* might preempt at this point */
1536 rq = task_rq_lock(p, &flags);
1537 old_state = p->state;
1538 if (!(old_state & state))
1539 goto out;
dd41f596 1540 if (p->se.on_rq)
1da177e4
LT
1541 goto out_running;
1542
1543 this_cpu = smp_processor_id();
1544 cpu = task_cpu(p);
1545 }
1546
1547out_activate:
1548#endif /* CONFIG_SMP */
2daa3577 1549 update_rq_clock(rq);
dd41f596 1550 activate_task(rq, p, 1);
1da177e4
LT
1551 /*
1552 * Sync wakeups (i.e. those types of wakeups where the waker
1553 * has indicated that it will leave the CPU in short order)
1554 * don't trigger a preemption, if the woken up task will run on
1555 * this cpu. (in this case the 'I will reschedule' promise of
1556 * the waker guarantees that the freshly woken up task is going
1557 * to be considered on this CPU.)
1558 */
dd41f596
IM
1559 if (!sync || cpu != this_cpu)
1560 check_preempt_curr(rq, p);
1da177e4
LT
1561 success = 1;
1562
1563out_running:
1564 p->state = TASK_RUNNING;
1565out:
1566 task_rq_unlock(rq, &flags);
1567
1568 return success;
1569}
1570
36c8b586 1571int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1572{
1573 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1574 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1575}
1da177e4
LT
1576EXPORT_SYMBOL(wake_up_process);
1577
36c8b586 1578int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1579{
1580 return try_to_wake_up(p, state, 0);
1581}
1582
1da177e4
LT
1583/*
1584 * Perform scheduler related setup for a newly forked process p.
1585 * p is forked by current.
dd41f596
IM
1586 *
1587 * __sched_fork() is basic setup used by init_idle() too:
1588 */
1589static void __sched_fork(struct task_struct *p)
1590{
1591 p->se.wait_start_fair = 0;
dd41f596
IM
1592 p->se.exec_start = 0;
1593 p->se.sum_exec_runtime = 0;
f6cf891c 1594 p->se.prev_sum_exec_runtime = 0;
dd41f596 1595 p->se.wait_runtime = 0;
6cfb0d5d
IM
1596 p->se.sleep_start_fair = 0;
1597
1598#ifdef CONFIG_SCHEDSTATS
1599 p->se.wait_start = 0;
dd41f596
IM
1600 p->se.sum_wait_runtime = 0;
1601 p->se.sum_sleep_runtime = 0;
1602 p->se.sleep_start = 0;
dd41f596
IM
1603 p->se.block_start = 0;
1604 p->se.sleep_max = 0;
1605 p->se.block_max = 0;
1606 p->se.exec_max = 0;
eba1ed4b 1607 p->se.slice_max = 0;
dd41f596
IM
1608 p->se.wait_max = 0;
1609 p->se.wait_runtime_overruns = 0;
1610 p->se.wait_runtime_underruns = 0;
6cfb0d5d 1611#endif
476d139c 1612
dd41f596
IM
1613 INIT_LIST_HEAD(&p->run_list);
1614 p->se.on_rq = 0;
476d139c 1615
e107be36
AK
1616#ifdef CONFIG_PREEMPT_NOTIFIERS
1617 INIT_HLIST_HEAD(&p->preempt_notifiers);
1618#endif
1619
1da177e4
LT
1620 /*
1621 * We mark the process as running here, but have not actually
1622 * inserted it onto the runqueue yet. This guarantees that
1623 * nobody will actually run it, and a signal or other external
1624 * event cannot wake it up and insert it on the runqueue either.
1625 */
1626 p->state = TASK_RUNNING;
dd41f596
IM
1627}
1628
1629/*
1630 * fork()/clone()-time setup:
1631 */
1632void sched_fork(struct task_struct *p, int clone_flags)
1633{
1634 int cpu = get_cpu();
1635
1636 __sched_fork(p);
1637
1638#ifdef CONFIG_SMP
1639 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1640#endif
1641 __set_task_cpu(p, cpu);
b29739f9
IM
1642
1643 /*
1644 * Make sure we do not leak PI boosting priority to the child:
1645 */
1646 p->prio = current->normal_prio;
1647
52f17b6c 1648#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1649 if (likely(sched_info_on()))
52f17b6c 1650 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1651#endif
d6077cb8 1652#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1653 p->oncpu = 0;
1654#endif
1da177e4 1655#ifdef CONFIG_PREEMPT
4866cde0 1656 /* Want to start with kernel preemption disabled. */
a1261f54 1657 task_thread_info(p)->preempt_count = 1;
1da177e4 1658#endif
476d139c 1659 put_cpu();
1da177e4
LT
1660}
1661
1662/*
1663 * wake_up_new_task - wake up a newly created task for the first time.
1664 *
1665 * This function will do some initial scheduler statistics housekeeping
1666 * that must be done for every newly created context, then puts the task
1667 * on the runqueue and wakes it.
1668 */
36c8b586 1669void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1670{
1671 unsigned long flags;
dd41f596
IM
1672 struct rq *rq;
1673 int this_cpu;
1da177e4
LT
1674
1675 rq = task_rq_lock(p, &flags);
147cbb4b 1676 BUG_ON(p->state != TASK_RUNNING);
dd41f596 1677 this_cpu = smp_processor_id(); /* parent's CPU */
a8e504d2 1678 update_rq_clock(rq);
1da177e4
LT
1679
1680 p->prio = effective_prio(p);
1681
9c95e731
HS
1682 if (rt_prio(p->prio))
1683 p->sched_class = &rt_sched_class;
1684 else
1685 p->sched_class = &fair_sched_class;
1686
44142fac
IM
1687 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1688 !current->se.on_rq) {
dd41f596 1689 activate_task(rq, p, 0);
1da177e4 1690 } else {
1da177e4 1691 /*
dd41f596
IM
1692 * Let the scheduling class do new task startup
1693 * management (if any):
1da177e4 1694 */
ee0827d8 1695 p->sched_class->task_new(rq, p);
e5fa2237 1696 inc_nr_running(p, rq);
1da177e4 1697 }
dd41f596
IM
1698 check_preempt_curr(rq, p);
1699 task_rq_unlock(rq, &flags);
1da177e4
LT
1700}
1701
e107be36
AK
1702#ifdef CONFIG_PREEMPT_NOTIFIERS
1703
1704/**
421cee29
RD
1705 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1706 * @notifier: notifier struct to register
e107be36
AK
1707 */
1708void preempt_notifier_register(struct preempt_notifier *notifier)
1709{
1710 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1711}
1712EXPORT_SYMBOL_GPL(preempt_notifier_register);
1713
1714/**
1715 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1716 * @notifier: notifier struct to unregister
e107be36
AK
1717 *
1718 * This is safe to call from within a preemption notifier.
1719 */
1720void preempt_notifier_unregister(struct preempt_notifier *notifier)
1721{
1722 hlist_del(&notifier->link);
1723}
1724EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1725
1726static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1727{
1728 struct preempt_notifier *notifier;
1729 struct hlist_node *node;
1730
1731 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1732 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1733}
1734
1735static void
1736fire_sched_out_preempt_notifiers(struct task_struct *curr,
1737 struct task_struct *next)
1738{
1739 struct preempt_notifier *notifier;
1740 struct hlist_node *node;
1741
1742 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1743 notifier->ops->sched_out(notifier, next);
1744}
1745
1746#else
1747
1748static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1749{
1750}
1751
1752static void
1753fire_sched_out_preempt_notifiers(struct task_struct *curr,
1754 struct task_struct *next)
1755{
1756}
1757
1758#endif
1759
4866cde0
NP
1760/**
1761 * prepare_task_switch - prepare to switch tasks
1762 * @rq: the runqueue preparing to switch
421cee29 1763 * @prev: the current task that is being switched out
4866cde0
NP
1764 * @next: the task we are going to switch to.
1765 *
1766 * This is called with the rq lock held and interrupts off. It must
1767 * be paired with a subsequent finish_task_switch after the context
1768 * switch.
1769 *
1770 * prepare_task_switch sets up locking and calls architecture specific
1771 * hooks.
1772 */
e107be36
AK
1773static inline void
1774prepare_task_switch(struct rq *rq, struct task_struct *prev,
1775 struct task_struct *next)
4866cde0 1776{
e107be36 1777 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1778 prepare_lock_switch(rq, next);
1779 prepare_arch_switch(next);
1780}
1781
1da177e4
LT
1782/**
1783 * finish_task_switch - clean up after a task-switch
344babaa 1784 * @rq: runqueue associated with task-switch
1da177e4
LT
1785 * @prev: the thread we just switched away from.
1786 *
4866cde0
NP
1787 * finish_task_switch must be called after the context switch, paired
1788 * with a prepare_task_switch call before the context switch.
1789 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1790 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1791 *
1792 * Note that we may have delayed dropping an mm in context_switch(). If
1793 * so, we finish that here outside of the runqueue lock. (Doing it
1794 * with the lock held can cause deadlocks; see schedule() for
1795 * details.)
1796 */
70b97a7f 1797static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1798 __releases(rq->lock)
1799{
1da177e4 1800 struct mm_struct *mm = rq->prev_mm;
55a101f8 1801 long prev_state;
1da177e4
LT
1802
1803 rq->prev_mm = NULL;
1804
1805 /*
1806 * A task struct has one reference for the use as "current".
c394cc9f 1807 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1808 * schedule one last time. The schedule call will never return, and
1809 * the scheduled task must drop that reference.
c394cc9f 1810 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1811 * still held, otherwise prev could be scheduled on another cpu, die
1812 * there before we look at prev->state, and then the reference would
1813 * be dropped twice.
1814 * Manfred Spraul <manfred@colorfullife.com>
1815 */
55a101f8 1816 prev_state = prev->state;
4866cde0
NP
1817 finish_arch_switch(prev);
1818 finish_lock_switch(rq, prev);
e107be36 1819 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1820 if (mm)
1821 mmdrop(mm);
c394cc9f 1822 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1823 /*
1824 * Remove function-return probe instances associated with this
1825 * task and put them back on the free list.
9761eea8 1826 */
c6fd91f0 1827 kprobe_flush_task(prev);
1da177e4 1828 put_task_struct(prev);
c6fd91f0 1829 }
1da177e4
LT
1830}
1831
1832/**
1833 * schedule_tail - first thing a freshly forked thread must call.
1834 * @prev: the thread we just switched away from.
1835 */
36c8b586 1836asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1837 __releases(rq->lock)
1838{
70b97a7f
IM
1839 struct rq *rq = this_rq();
1840
4866cde0
NP
1841 finish_task_switch(rq, prev);
1842#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1843 /* In this case, finish_task_switch does not reenable preemption */
1844 preempt_enable();
1845#endif
1da177e4
LT
1846 if (current->set_child_tid)
1847 put_user(current->pid, current->set_child_tid);
1848}
1849
1850/*
1851 * context_switch - switch to the new MM and the new
1852 * thread's register state.
1853 */
dd41f596 1854static inline void
70b97a7f 1855context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1856 struct task_struct *next)
1da177e4 1857{
dd41f596 1858 struct mm_struct *mm, *oldmm;
1da177e4 1859
e107be36 1860 prepare_task_switch(rq, prev, next);
dd41f596
IM
1861 mm = next->mm;
1862 oldmm = prev->active_mm;
9226d125
ZA
1863 /*
1864 * For paravirt, this is coupled with an exit in switch_to to
1865 * combine the page table reload and the switch backend into
1866 * one hypercall.
1867 */
1868 arch_enter_lazy_cpu_mode();
1869
dd41f596 1870 if (unlikely(!mm)) {
1da177e4
LT
1871 next->active_mm = oldmm;
1872 atomic_inc(&oldmm->mm_count);
1873 enter_lazy_tlb(oldmm, next);
1874 } else
1875 switch_mm(oldmm, mm, next);
1876
dd41f596 1877 if (unlikely(!prev->mm)) {
1da177e4 1878 prev->active_mm = NULL;
1da177e4
LT
1879 rq->prev_mm = oldmm;
1880 }
3a5f5e48
IM
1881 /*
1882 * Since the runqueue lock will be released by the next
1883 * task (which is an invalid locking op but in the case
1884 * of the scheduler it's an obvious special-case), so we
1885 * do an early lockdep release here:
1886 */
1887#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1888 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1889#endif
1da177e4
LT
1890
1891 /* Here we just switch the register state and the stack. */
1892 switch_to(prev, next, prev);
1893
dd41f596
IM
1894 barrier();
1895 /*
1896 * this_rq must be evaluated again because prev may have moved
1897 * CPUs since it called schedule(), thus the 'rq' on its stack
1898 * frame will be invalid.
1899 */
1900 finish_task_switch(this_rq(), prev);
1da177e4
LT
1901}
1902
1903/*
1904 * nr_running, nr_uninterruptible and nr_context_switches:
1905 *
1906 * externally visible scheduler statistics: current number of runnable
1907 * threads, current number of uninterruptible-sleeping threads, total
1908 * number of context switches performed since bootup.
1909 */
1910unsigned long nr_running(void)
1911{
1912 unsigned long i, sum = 0;
1913
1914 for_each_online_cpu(i)
1915 sum += cpu_rq(i)->nr_running;
1916
1917 return sum;
1918}
1919
1920unsigned long nr_uninterruptible(void)
1921{
1922 unsigned long i, sum = 0;
1923
0a945022 1924 for_each_possible_cpu(i)
1da177e4
LT
1925 sum += cpu_rq(i)->nr_uninterruptible;
1926
1927 /*
1928 * Since we read the counters lockless, it might be slightly
1929 * inaccurate. Do not allow it to go below zero though:
1930 */
1931 if (unlikely((long)sum < 0))
1932 sum = 0;
1933
1934 return sum;
1935}
1936
1937unsigned long long nr_context_switches(void)
1938{
cc94abfc
SR
1939 int i;
1940 unsigned long long sum = 0;
1da177e4 1941
0a945022 1942 for_each_possible_cpu(i)
1da177e4
LT
1943 sum += cpu_rq(i)->nr_switches;
1944
1945 return sum;
1946}
1947
1948unsigned long nr_iowait(void)
1949{
1950 unsigned long i, sum = 0;
1951
0a945022 1952 for_each_possible_cpu(i)
1da177e4
LT
1953 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1954
1955 return sum;
1956}
1957
db1b1fef
JS
1958unsigned long nr_active(void)
1959{
1960 unsigned long i, running = 0, uninterruptible = 0;
1961
1962 for_each_online_cpu(i) {
1963 running += cpu_rq(i)->nr_running;
1964 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1965 }
1966
1967 if (unlikely((long)uninterruptible < 0))
1968 uninterruptible = 0;
1969
1970 return running + uninterruptible;
1971}
1972
48f24c4d 1973/*
dd41f596
IM
1974 * Update rq->cpu_load[] statistics. This function is usually called every
1975 * scheduler tick (TICK_NSEC).
48f24c4d 1976 */
dd41f596 1977static void update_cpu_load(struct rq *this_rq)
48f24c4d 1978{
53df556e 1979 unsigned long this_load = this_rq->ls.load.weight;
dd41f596
IM
1980 int i, scale;
1981
1982 this_rq->nr_load_updates++;
dd41f596
IM
1983
1984 /* Update our load: */
1985 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1986 unsigned long old_load, new_load;
1987
1988 /* scale is effectively 1 << i now, and >> i divides by scale */
1989
1990 old_load = this_rq->cpu_load[i];
1991 new_load = this_load;
a25707f3
IM
1992 /*
1993 * Round up the averaging division if load is increasing. This
1994 * prevents us from getting stuck on 9 if the load is 10, for
1995 * example.
1996 */
1997 if (new_load > old_load)
1998 new_load += scale-1;
dd41f596
IM
1999 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2000 }
48f24c4d
IM
2001}
2002
dd41f596
IM
2003#ifdef CONFIG_SMP
2004
1da177e4
LT
2005/*
2006 * double_rq_lock - safely lock two runqueues
2007 *
2008 * Note this does not disable interrupts like task_rq_lock,
2009 * you need to do so manually before calling.
2010 */
70b97a7f 2011static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2012 __acquires(rq1->lock)
2013 __acquires(rq2->lock)
2014{
054b9108 2015 BUG_ON(!irqs_disabled());
1da177e4
LT
2016 if (rq1 == rq2) {
2017 spin_lock(&rq1->lock);
2018 __acquire(rq2->lock); /* Fake it out ;) */
2019 } else {
c96d145e 2020 if (rq1 < rq2) {
1da177e4
LT
2021 spin_lock(&rq1->lock);
2022 spin_lock(&rq2->lock);
2023 } else {
2024 spin_lock(&rq2->lock);
2025 spin_lock(&rq1->lock);
2026 }
2027 }
6e82a3be
IM
2028 update_rq_clock(rq1);
2029 update_rq_clock(rq2);
1da177e4
LT
2030}
2031
2032/*
2033 * double_rq_unlock - safely unlock two runqueues
2034 *
2035 * Note this does not restore interrupts like task_rq_unlock,
2036 * you need to do so manually after calling.
2037 */
70b97a7f 2038static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2039 __releases(rq1->lock)
2040 __releases(rq2->lock)
2041{
2042 spin_unlock(&rq1->lock);
2043 if (rq1 != rq2)
2044 spin_unlock(&rq2->lock);
2045 else
2046 __release(rq2->lock);
2047}
2048
2049/*
2050 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2051 */
70b97a7f 2052static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2053 __releases(this_rq->lock)
2054 __acquires(busiest->lock)
2055 __acquires(this_rq->lock)
2056{
054b9108
KK
2057 if (unlikely(!irqs_disabled())) {
2058 /* printk() doesn't work good under rq->lock */
2059 spin_unlock(&this_rq->lock);
2060 BUG_ON(1);
2061 }
1da177e4 2062 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2063 if (busiest < this_rq) {
1da177e4
LT
2064 spin_unlock(&this_rq->lock);
2065 spin_lock(&busiest->lock);
2066 spin_lock(&this_rq->lock);
2067 } else
2068 spin_lock(&busiest->lock);
2069 }
2070}
2071
1da177e4
LT
2072/*
2073 * If dest_cpu is allowed for this process, migrate the task to it.
2074 * This is accomplished by forcing the cpu_allowed mask to only
2075 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2076 * the cpu_allowed mask is restored.
2077 */
36c8b586 2078static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2079{
70b97a7f 2080 struct migration_req req;
1da177e4 2081 unsigned long flags;
70b97a7f 2082 struct rq *rq;
1da177e4
LT
2083
2084 rq = task_rq_lock(p, &flags);
2085 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2086 || unlikely(cpu_is_offline(dest_cpu)))
2087 goto out;
2088
2089 /* force the process onto the specified CPU */
2090 if (migrate_task(p, dest_cpu, &req)) {
2091 /* Need to wait for migration thread (might exit: take ref). */
2092 struct task_struct *mt = rq->migration_thread;
36c8b586 2093
1da177e4
LT
2094 get_task_struct(mt);
2095 task_rq_unlock(rq, &flags);
2096 wake_up_process(mt);
2097 put_task_struct(mt);
2098 wait_for_completion(&req.done);
36c8b586 2099
1da177e4
LT
2100 return;
2101 }
2102out:
2103 task_rq_unlock(rq, &flags);
2104}
2105
2106/*
476d139c
NP
2107 * sched_exec - execve() is a valuable balancing opportunity, because at
2108 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2109 */
2110void sched_exec(void)
2111{
1da177e4 2112 int new_cpu, this_cpu = get_cpu();
476d139c 2113 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2114 put_cpu();
476d139c
NP
2115 if (new_cpu != this_cpu)
2116 sched_migrate_task(current, new_cpu);
1da177e4
LT
2117}
2118
2119/*
2120 * pull_task - move a task from a remote runqueue to the local runqueue.
2121 * Both runqueues must be locked.
2122 */
dd41f596
IM
2123static void pull_task(struct rq *src_rq, struct task_struct *p,
2124 struct rq *this_rq, int this_cpu)
1da177e4 2125{
2e1cb74a 2126 deactivate_task(src_rq, p, 0);
1da177e4 2127 set_task_cpu(p, this_cpu);
dd41f596 2128 activate_task(this_rq, p, 0);
1da177e4
LT
2129 /*
2130 * Note that idle threads have a prio of MAX_PRIO, for this test
2131 * to be always true for them.
2132 */
dd41f596 2133 check_preempt_curr(this_rq, p);
1da177e4
LT
2134}
2135
2136/*
2137 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2138 */
858119e1 2139static
70b97a7f 2140int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2141 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2142 int *all_pinned)
1da177e4
LT
2143{
2144 /*
2145 * We do not migrate tasks that are:
2146 * 1) running (obviously), or
2147 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2148 * 3) are cache-hot on their current CPU.
2149 */
1da177e4
LT
2150 if (!cpu_isset(this_cpu, p->cpus_allowed))
2151 return 0;
81026794
NP
2152 *all_pinned = 0;
2153
2154 if (task_running(rq, p))
2155 return 0;
1da177e4 2156
1da177e4
LT
2157 return 1;
2158}
2159
dd41f596 2160static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2161 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2162 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2163 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2164 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2165{
dd41f596
IM
2166 int pulled = 0, pinned = 0, skip_for_load;
2167 struct task_struct *p;
2168 long rem_load_move = max_load_move;
1da177e4 2169
2dd73a4f 2170 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2171 goto out;
2172
81026794
NP
2173 pinned = 1;
2174
1da177e4 2175 /*
dd41f596 2176 * Start the load-balancing iterator:
1da177e4 2177 */
dd41f596
IM
2178 p = iterator->start(iterator->arg);
2179next:
2180 if (!p)
1da177e4 2181 goto out;
50ddd969
PW
2182 /*
2183 * To help distribute high priority tasks accross CPUs we don't
2184 * skip a task if it will be the highest priority task (i.e. smallest
2185 * prio value) on its new queue regardless of its load weight
2186 */
dd41f596
IM
2187 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2188 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2189 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2190 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2191 p = iterator->next(iterator->arg);
2192 goto next;
1da177e4
LT
2193 }
2194
dd41f596 2195 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2196 pulled++;
dd41f596 2197 rem_load_move -= p->se.load.weight;
1da177e4 2198
2dd73a4f
PW
2199 /*
2200 * We only want to steal up to the prescribed number of tasks
2201 * and the prescribed amount of weighted load.
2202 */
2203 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2204 if (p->prio < *this_best_prio)
2205 *this_best_prio = p->prio;
dd41f596
IM
2206 p = iterator->next(iterator->arg);
2207 goto next;
1da177e4
LT
2208 }
2209out:
2210 /*
2211 * Right now, this is the only place pull_task() is called,
2212 * so we can safely collect pull_task() stats here rather than
2213 * inside pull_task().
2214 */
2215 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2216
2217 if (all_pinned)
2218 *all_pinned = pinned;
dd41f596 2219 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2220 return pulled;
2221}
2222
dd41f596 2223/*
43010659
PW
2224 * move_tasks tries to move up to max_load_move weighted load from busiest to
2225 * this_rq, as part of a balancing operation within domain "sd".
2226 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2227 *
2228 * Called with both runqueues locked.
2229 */
2230static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2231 unsigned long max_load_move,
dd41f596
IM
2232 struct sched_domain *sd, enum cpu_idle_type idle,
2233 int *all_pinned)
2234{
2235 struct sched_class *class = sched_class_highest;
43010659 2236 unsigned long total_load_moved = 0;
a4ac01c3 2237 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2238
2239 do {
43010659
PW
2240 total_load_moved +=
2241 class->load_balance(this_rq, this_cpu, busiest,
2242 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2243 sd, idle, all_pinned, &this_best_prio);
dd41f596 2244 class = class->next;
43010659 2245 } while (class && max_load_move > total_load_moved);
dd41f596 2246
43010659
PW
2247 return total_load_moved > 0;
2248}
2249
2250/*
2251 * move_one_task tries to move exactly one task from busiest to this_rq, as
2252 * part of active balancing operations within "domain".
2253 * Returns 1 if successful and 0 otherwise.
2254 *
2255 * Called with both runqueues locked.
2256 */
2257static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2258 struct sched_domain *sd, enum cpu_idle_type idle)
2259{
2260 struct sched_class *class;
a4ac01c3 2261 int this_best_prio = MAX_PRIO;
43010659
PW
2262
2263 for (class = sched_class_highest; class; class = class->next)
2264 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2265 1, ULONG_MAX, sd, idle, NULL,
2266 &this_best_prio))
43010659
PW
2267 return 1;
2268
2269 return 0;
dd41f596
IM
2270}
2271
1da177e4
LT
2272/*
2273 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2274 * domain. It calculates and returns the amount of weighted load which
2275 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2276 */
2277static struct sched_group *
2278find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2279 unsigned long *imbalance, enum cpu_idle_type idle,
2280 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2281{
2282 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2283 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2284 unsigned long max_pull;
2dd73a4f
PW
2285 unsigned long busiest_load_per_task, busiest_nr_running;
2286 unsigned long this_load_per_task, this_nr_running;
7897986b 2287 int load_idx;
5c45bf27
SS
2288#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2289 int power_savings_balance = 1;
2290 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2291 unsigned long min_nr_running = ULONG_MAX;
2292 struct sched_group *group_min = NULL, *group_leader = NULL;
2293#endif
1da177e4
LT
2294
2295 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2296 busiest_load_per_task = busiest_nr_running = 0;
2297 this_load_per_task = this_nr_running = 0;
d15bcfdb 2298 if (idle == CPU_NOT_IDLE)
7897986b 2299 load_idx = sd->busy_idx;
d15bcfdb 2300 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2301 load_idx = sd->newidle_idx;
2302 else
2303 load_idx = sd->idle_idx;
1da177e4
LT
2304
2305 do {
5c45bf27 2306 unsigned long load, group_capacity;
1da177e4
LT
2307 int local_group;
2308 int i;
783609c6 2309 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2310 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2311
2312 local_group = cpu_isset(this_cpu, group->cpumask);
2313
783609c6
SS
2314 if (local_group)
2315 balance_cpu = first_cpu(group->cpumask);
2316
1da177e4 2317 /* Tally up the load of all CPUs in the group */
2dd73a4f 2318 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2319
2320 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2321 struct rq *rq;
2322
2323 if (!cpu_isset(i, *cpus))
2324 continue;
2325
2326 rq = cpu_rq(i);
2dd73a4f 2327
9439aab8 2328 if (*sd_idle && rq->nr_running)
5969fe06
NP
2329 *sd_idle = 0;
2330
1da177e4 2331 /* Bias balancing toward cpus of our domain */
783609c6
SS
2332 if (local_group) {
2333 if (idle_cpu(i) && !first_idle_cpu) {
2334 first_idle_cpu = 1;
2335 balance_cpu = i;
2336 }
2337
a2000572 2338 load = target_load(i, load_idx);
783609c6 2339 } else
a2000572 2340 load = source_load(i, load_idx);
1da177e4
LT
2341
2342 avg_load += load;
2dd73a4f 2343 sum_nr_running += rq->nr_running;
dd41f596 2344 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2345 }
2346
783609c6
SS
2347 /*
2348 * First idle cpu or the first cpu(busiest) in this sched group
2349 * is eligible for doing load balancing at this and above
9439aab8
SS
2350 * domains. In the newly idle case, we will allow all the cpu's
2351 * to do the newly idle load balance.
783609c6 2352 */
9439aab8
SS
2353 if (idle != CPU_NEWLY_IDLE && local_group &&
2354 balance_cpu != this_cpu && balance) {
783609c6
SS
2355 *balance = 0;
2356 goto ret;
2357 }
2358
1da177e4 2359 total_load += avg_load;
5517d86b 2360 total_pwr += group->__cpu_power;
1da177e4
LT
2361
2362 /* Adjust by relative CPU power of the group */
5517d86b
ED
2363 avg_load = sg_div_cpu_power(group,
2364 avg_load * SCHED_LOAD_SCALE);
1da177e4 2365
5517d86b 2366 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2367
1da177e4
LT
2368 if (local_group) {
2369 this_load = avg_load;
2370 this = group;
2dd73a4f
PW
2371 this_nr_running = sum_nr_running;
2372 this_load_per_task = sum_weighted_load;
2373 } else if (avg_load > max_load &&
5c45bf27 2374 sum_nr_running > group_capacity) {
1da177e4
LT
2375 max_load = avg_load;
2376 busiest = group;
2dd73a4f
PW
2377 busiest_nr_running = sum_nr_running;
2378 busiest_load_per_task = sum_weighted_load;
1da177e4 2379 }
5c45bf27
SS
2380
2381#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2382 /*
2383 * Busy processors will not participate in power savings
2384 * balance.
2385 */
dd41f596
IM
2386 if (idle == CPU_NOT_IDLE ||
2387 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2388 goto group_next;
5c45bf27
SS
2389
2390 /*
2391 * If the local group is idle or completely loaded
2392 * no need to do power savings balance at this domain
2393 */
2394 if (local_group && (this_nr_running >= group_capacity ||
2395 !this_nr_running))
2396 power_savings_balance = 0;
2397
dd41f596 2398 /*
5c45bf27
SS
2399 * If a group is already running at full capacity or idle,
2400 * don't include that group in power savings calculations
dd41f596
IM
2401 */
2402 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2403 || !sum_nr_running)
dd41f596 2404 goto group_next;
5c45bf27 2405
dd41f596 2406 /*
5c45bf27 2407 * Calculate the group which has the least non-idle load.
dd41f596
IM
2408 * This is the group from where we need to pick up the load
2409 * for saving power
2410 */
2411 if ((sum_nr_running < min_nr_running) ||
2412 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2413 first_cpu(group->cpumask) <
2414 first_cpu(group_min->cpumask))) {
dd41f596
IM
2415 group_min = group;
2416 min_nr_running = sum_nr_running;
5c45bf27
SS
2417 min_load_per_task = sum_weighted_load /
2418 sum_nr_running;
dd41f596 2419 }
5c45bf27 2420
dd41f596 2421 /*
5c45bf27 2422 * Calculate the group which is almost near its
dd41f596
IM
2423 * capacity but still has some space to pick up some load
2424 * from other group and save more power
2425 */
2426 if (sum_nr_running <= group_capacity - 1) {
2427 if (sum_nr_running > leader_nr_running ||
2428 (sum_nr_running == leader_nr_running &&
2429 first_cpu(group->cpumask) >
2430 first_cpu(group_leader->cpumask))) {
2431 group_leader = group;
2432 leader_nr_running = sum_nr_running;
2433 }
48f24c4d 2434 }
5c45bf27
SS
2435group_next:
2436#endif
1da177e4
LT
2437 group = group->next;
2438 } while (group != sd->groups);
2439
2dd73a4f 2440 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2441 goto out_balanced;
2442
2443 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2444
2445 if (this_load >= avg_load ||
2446 100*max_load <= sd->imbalance_pct*this_load)
2447 goto out_balanced;
2448
2dd73a4f 2449 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2450 /*
2451 * We're trying to get all the cpus to the average_load, so we don't
2452 * want to push ourselves above the average load, nor do we wish to
2453 * reduce the max loaded cpu below the average load, as either of these
2454 * actions would just result in more rebalancing later, and ping-pong
2455 * tasks around. Thus we look for the minimum possible imbalance.
2456 * Negative imbalances (*we* are more loaded than anyone else) will
2457 * be counted as no imbalance for these purposes -- we can't fix that
2458 * by pulling tasks to us. Be careful of negative numbers as they'll
2459 * appear as very large values with unsigned longs.
2460 */
2dd73a4f
PW
2461 if (max_load <= busiest_load_per_task)
2462 goto out_balanced;
2463
2464 /*
2465 * In the presence of smp nice balancing, certain scenarios can have
2466 * max load less than avg load(as we skip the groups at or below
2467 * its cpu_power, while calculating max_load..)
2468 */
2469 if (max_load < avg_load) {
2470 *imbalance = 0;
2471 goto small_imbalance;
2472 }
0c117f1b
SS
2473
2474 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2475 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2476
1da177e4 2477 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2478 *imbalance = min(max_pull * busiest->__cpu_power,
2479 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2480 / SCHED_LOAD_SCALE;
2481
2dd73a4f
PW
2482 /*
2483 * if *imbalance is less than the average load per runnable task
2484 * there is no gaurantee that any tasks will be moved so we'll have
2485 * a think about bumping its value to force at least one task to be
2486 * moved
2487 */
7fd0d2dd 2488 if (*imbalance < busiest_load_per_task) {
48f24c4d 2489 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2490 unsigned int imbn;
2491
2492small_imbalance:
2493 pwr_move = pwr_now = 0;
2494 imbn = 2;
2495 if (this_nr_running) {
2496 this_load_per_task /= this_nr_running;
2497 if (busiest_load_per_task > this_load_per_task)
2498 imbn = 1;
2499 } else
2500 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2501
dd41f596
IM
2502 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2503 busiest_load_per_task * imbn) {
2dd73a4f 2504 *imbalance = busiest_load_per_task;
1da177e4
LT
2505 return busiest;
2506 }
2507
2508 /*
2509 * OK, we don't have enough imbalance to justify moving tasks,
2510 * however we may be able to increase total CPU power used by
2511 * moving them.
2512 */
2513
5517d86b
ED
2514 pwr_now += busiest->__cpu_power *
2515 min(busiest_load_per_task, max_load);
2516 pwr_now += this->__cpu_power *
2517 min(this_load_per_task, this_load);
1da177e4
LT
2518 pwr_now /= SCHED_LOAD_SCALE;
2519
2520 /* Amount of load we'd subtract */
5517d86b
ED
2521 tmp = sg_div_cpu_power(busiest,
2522 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2523 if (max_load > tmp)
5517d86b 2524 pwr_move += busiest->__cpu_power *
2dd73a4f 2525 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2526
2527 /* Amount of load we'd add */
5517d86b 2528 if (max_load * busiest->__cpu_power <
33859f7f 2529 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2530 tmp = sg_div_cpu_power(this,
2531 max_load * busiest->__cpu_power);
1da177e4 2532 else
5517d86b
ED
2533 tmp = sg_div_cpu_power(this,
2534 busiest_load_per_task * SCHED_LOAD_SCALE);
2535 pwr_move += this->__cpu_power *
2536 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2537 pwr_move /= SCHED_LOAD_SCALE;
2538
2539 /* Move if we gain throughput */
7fd0d2dd
SS
2540 if (pwr_move > pwr_now)
2541 *imbalance = busiest_load_per_task;
1da177e4
LT
2542 }
2543
1da177e4
LT
2544 return busiest;
2545
2546out_balanced:
5c45bf27 2547#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2548 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2549 goto ret;
1da177e4 2550
5c45bf27
SS
2551 if (this == group_leader && group_leader != group_min) {
2552 *imbalance = min_load_per_task;
2553 return group_min;
2554 }
5c45bf27 2555#endif
783609c6 2556ret:
1da177e4
LT
2557 *imbalance = 0;
2558 return NULL;
2559}
2560
2561/*
2562 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2563 */
70b97a7f 2564static struct rq *
d15bcfdb 2565find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2566 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2567{
70b97a7f 2568 struct rq *busiest = NULL, *rq;
2dd73a4f 2569 unsigned long max_load = 0;
1da177e4
LT
2570 int i;
2571
2572 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2573 unsigned long wl;
0a2966b4
CL
2574
2575 if (!cpu_isset(i, *cpus))
2576 continue;
2577
48f24c4d 2578 rq = cpu_rq(i);
dd41f596 2579 wl = weighted_cpuload(i);
2dd73a4f 2580
dd41f596 2581 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2582 continue;
1da177e4 2583
dd41f596
IM
2584 if (wl > max_load) {
2585 max_load = wl;
48f24c4d 2586 busiest = rq;
1da177e4
LT
2587 }
2588 }
2589
2590 return busiest;
2591}
2592
77391d71
NP
2593/*
2594 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2595 * so long as it is large enough.
2596 */
2597#define MAX_PINNED_INTERVAL 512
2598
1da177e4
LT
2599/*
2600 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2601 * tasks if there is an imbalance.
1da177e4 2602 */
70b97a7f 2603static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2604 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2605 int *balance)
1da177e4 2606{
43010659 2607 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2608 struct sched_group *group;
1da177e4 2609 unsigned long imbalance;
70b97a7f 2610 struct rq *busiest;
0a2966b4 2611 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2612 unsigned long flags;
5969fe06 2613
89c4710e
SS
2614 /*
2615 * When power savings policy is enabled for the parent domain, idle
2616 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2617 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2618 * portraying it as CPU_NOT_IDLE.
89c4710e 2619 */
d15bcfdb 2620 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2621 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2622 sd_idle = 1;
1da177e4 2623
1da177e4
LT
2624 schedstat_inc(sd, lb_cnt[idle]);
2625
0a2966b4
CL
2626redo:
2627 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2628 &cpus, balance);
2629
06066714 2630 if (*balance == 0)
783609c6 2631 goto out_balanced;
783609c6 2632
1da177e4
LT
2633 if (!group) {
2634 schedstat_inc(sd, lb_nobusyg[idle]);
2635 goto out_balanced;
2636 }
2637
0a2966b4 2638 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2639 if (!busiest) {
2640 schedstat_inc(sd, lb_nobusyq[idle]);
2641 goto out_balanced;
2642 }
2643
db935dbd 2644 BUG_ON(busiest == this_rq);
1da177e4
LT
2645
2646 schedstat_add(sd, lb_imbalance[idle], imbalance);
2647
43010659 2648 ld_moved = 0;
1da177e4
LT
2649 if (busiest->nr_running > 1) {
2650 /*
2651 * Attempt to move tasks. If find_busiest_group has found
2652 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2653 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2654 * correctly treated as an imbalance.
2655 */
fe2eea3f 2656 local_irq_save(flags);
e17224bf 2657 double_rq_lock(this_rq, busiest);
43010659 2658 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2659 imbalance, sd, idle, &all_pinned);
e17224bf 2660 double_rq_unlock(this_rq, busiest);
fe2eea3f 2661 local_irq_restore(flags);
81026794 2662
46cb4b7c
SS
2663 /*
2664 * some other cpu did the load balance for us.
2665 */
43010659 2666 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2667 resched_cpu(this_cpu);
2668
81026794 2669 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2670 if (unlikely(all_pinned)) {
2671 cpu_clear(cpu_of(busiest), cpus);
2672 if (!cpus_empty(cpus))
2673 goto redo;
81026794 2674 goto out_balanced;
0a2966b4 2675 }
1da177e4 2676 }
81026794 2677
43010659 2678 if (!ld_moved) {
1da177e4
LT
2679 schedstat_inc(sd, lb_failed[idle]);
2680 sd->nr_balance_failed++;
2681
2682 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2683
fe2eea3f 2684 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2685
2686 /* don't kick the migration_thread, if the curr
2687 * task on busiest cpu can't be moved to this_cpu
2688 */
2689 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2690 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2691 all_pinned = 1;
2692 goto out_one_pinned;
2693 }
2694
1da177e4
LT
2695 if (!busiest->active_balance) {
2696 busiest->active_balance = 1;
2697 busiest->push_cpu = this_cpu;
81026794 2698 active_balance = 1;
1da177e4 2699 }
fe2eea3f 2700 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2701 if (active_balance)
1da177e4
LT
2702 wake_up_process(busiest->migration_thread);
2703
2704 /*
2705 * We've kicked active balancing, reset the failure
2706 * counter.
2707 */
39507451 2708 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2709 }
81026794 2710 } else
1da177e4
LT
2711 sd->nr_balance_failed = 0;
2712
81026794 2713 if (likely(!active_balance)) {
1da177e4
LT
2714 /* We were unbalanced, so reset the balancing interval */
2715 sd->balance_interval = sd->min_interval;
81026794
NP
2716 } else {
2717 /*
2718 * If we've begun active balancing, start to back off. This
2719 * case may not be covered by the all_pinned logic if there
2720 * is only 1 task on the busy runqueue (because we don't call
2721 * move_tasks).
2722 */
2723 if (sd->balance_interval < sd->max_interval)
2724 sd->balance_interval *= 2;
1da177e4
LT
2725 }
2726
43010659 2727 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2728 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2729 return -1;
43010659 2730 return ld_moved;
1da177e4
LT
2731
2732out_balanced:
1da177e4
LT
2733 schedstat_inc(sd, lb_balanced[idle]);
2734
16cfb1c0 2735 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2736
2737out_one_pinned:
1da177e4 2738 /* tune up the balancing interval */
77391d71
NP
2739 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2740 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2741 sd->balance_interval *= 2;
2742
48f24c4d 2743 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2744 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2745 return -1;
1da177e4
LT
2746 return 0;
2747}
2748
2749/*
2750 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2751 * tasks if there is an imbalance.
2752 *
d15bcfdb 2753 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2754 * this_rq is locked.
2755 */
48f24c4d 2756static int
70b97a7f 2757load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2758{
2759 struct sched_group *group;
70b97a7f 2760 struct rq *busiest = NULL;
1da177e4 2761 unsigned long imbalance;
43010659 2762 int ld_moved = 0;
5969fe06 2763 int sd_idle = 0;
969bb4e4 2764 int all_pinned = 0;
0a2966b4 2765 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2766
89c4710e
SS
2767 /*
2768 * When power savings policy is enabled for the parent domain, idle
2769 * sibling can pick up load irrespective of busy siblings. In this case,
2770 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2771 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2772 */
2773 if (sd->flags & SD_SHARE_CPUPOWER &&
2774 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2775 sd_idle = 1;
1da177e4 2776
d15bcfdb 2777 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
0a2966b4 2778redo:
d15bcfdb 2779 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2780 &sd_idle, &cpus, NULL);
1da177e4 2781 if (!group) {
d15bcfdb 2782 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2783 goto out_balanced;
1da177e4
LT
2784 }
2785
d15bcfdb 2786 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2787 &cpus);
db935dbd 2788 if (!busiest) {
d15bcfdb 2789 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2790 goto out_balanced;
1da177e4
LT
2791 }
2792
db935dbd
NP
2793 BUG_ON(busiest == this_rq);
2794
d15bcfdb 2795 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2796
43010659 2797 ld_moved = 0;
d6d5cfaf
NP
2798 if (busiest->nr_running > 1) {
2799 /* Attempt to move tasks */
2800 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2801 /* this_rq->clock is already updated */
2802 update_rq_clock(busiest);
43010659 2803 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2804 imbalance, sd, CPU_NEWLY_IDLE,
2805 &all_pinned);
d6d5cfaf 2806 spin_unlock(&busiest->lock);
0a2966b4 2807
969bb4e4 2808 if (unlikely(all_pinned)) {
0a2966b4
CL
2809 cpu_clear(cpu_of(busiest), cpus);
2810 if (!cpus_empty(cpus))
2811 goto redo;
2812 }
d6d5cfaf
NP
2813 }
2814
43010659 2815 if (!ld_moved) {
d15bcfdb 2816 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2817 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2818 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2819 return -1;
2820 } else
16cfb1c0 2821 sd->nr_balance_failed = 0;
1da177e4 2822
43010659 2823 return ld_moved;
16cfb1c0
NP
2824
2825out_balanced:
d15bcfdb 2826 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2827 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2828 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2829 return -1;
16cfb1c0 2830 sd->nr_balance_failed = 0;
48f24c4d 2831
16cfb1c0 2832 return 0;
1da177e4
LT
2833}
2834
2835/*
2836 * idle_balance is called by schedule() if this_cpu is about to become
2837 * idle. Attempts to pull tasks from other CPUs.
2838 */
70b97a7f 2839static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2840{
2841 struct sched_domain *sd;
dd41f596
IM
2842 int pulled_task = -1;
2843 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2844
2845 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2846 unsigned long interval;
2847
2848 if (!(sd->flags & SD_LOAD_BALANCE))
2849 continue;
2850
2851 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2852 /* If we've pulled tasks over stop searching: */
1bd77f2d 2853 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2854 this_rq, sd);
2855
2856 interval = msecs_to_jiffies(sd->balance_interval);
2857 if (time_after(next_balance, sd->last_balance + interval))
2858 next_balance = sd->last_balance + interval;
2859 if (pulled_task)
2860 break;
1da177e4 2861 }
dd41f596 2862 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2863 /*
2864 * We are going idle. next_balance may be set based on
2865 * a busy processor. So reset next_balance.
2866 */
2867 this_rq->next_balance = next_balance;
dd41f596 2868 }
1da177e4
LT
2869}
2870
2871/*
2872 * active_load_balance is run by migration threads. It pushes running tasks
2873 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2874 * running on each physical CPU where possible, and avoids physical /
2875 * logical imbalances.
2876 *
2877 * Called with busiest_rq locked.
2878 */
70b97a7f 2879static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2880{
39507451 2881 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2882 struct sched_domain *sd;
2883 struct rq *target_rq;
39507451 2884
48f24c4d 2885 /* Is there any task to move? */
39507451 2886 if (busiest_rq->nr_running <= 1)
39507451
NP
2887 return;
2888
2889 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2890
2891 /*
39507451
NP
2892 * This condition is "impossible", if it occurs
2893 * we need to fix it. Originally reported by
2894 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2895 */
39507451 2896 BUG_ON(busiest_rq == target_rq);
1da177e4 2897
39507451
NP
2898 /* move a task from busiest_rq to target_rq */
2899 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2900 update_rq_clock(busiest_rq);
2901 update_rq_clock(target_rq);
39507451
NP
2902
2903 /* Search for an sd spanning us and the target CPU. */
c96d145e 2904 for_each_domain(target_cpu, sd) {
39507451 2905 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2906 cpu_isset(busiest_cpu, sd->span))
39507451 2907 break;
c96d145e 2908 }
39507451 2909
48f24c4d
IM
2910 if (likely(sd)) {
2911 schedstat_inc(sd, alb_cnt);
39507451 2912
43010659
PW
2913 if (move_one_task(target_rq, target_cpu, busiest_rq,
2914 sd, CPU_IDLE))
48f24c4d
IM
2915 schedstat_inc(sd, alb_pushed);
2916 else
2917 schedstat_inc(sd, alb_failed);
2918 }
39507451 2919 spin_unlock(&target_rq->lock);
1da177e4
LT
2920}
2921
46cb4b7c
SS
2922#ifdef CONFIG_NO_HZ
2923static struct {
2924 atomic_t load_balancer;
2925 cpumask_t cpu_mask;
2926} nohz ____cacheline_aligned = {
2927 .load_balancer = ATOMIC_INIT(-1),
2928 .cpu_mask = CPU_MASK_NONE,
2929};
2930
7835b98b 2931/*
46cb4b7c
SS
2932 * This routine will try to nominate the ilb (idle load balancing)
2933 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2934 * load balancing on behalf of all those cpus. If all the cpus in the system
2935 * go into this tickless mode, then there will be no ilb owner (as there is
2936 * no need for one) and all the cpus will sleep till the next wakeup event
2937 * arrives...
2938 *
2939 * For the ilb owner, tick is not stopped. And this tick will be used
2940 * for idle load balancing. ilb owner will still be part of
2941 * nohz.cpu_mask..
7835b98b 2942 *
46cb4b7c
SS
2943 * While stopping the tick, this cpu will become the ilb owner if there
2944 * is no other owner. And will be the owner till that cpu becomes busy
2945 * or if all cpus in the system stop their ticks at which point
2946 * there is no need for ilb owner.
2947 *
2948 * When the ilb owner becomes busy, it nominates another owner, during the
2949 * next busy scheduler_tick()
2950 */
2951int select_nohz_load_balancer(int stop_tick)
2952{
2953 int cpu = smp_processor_id();
2954
2955 if (stop_tick) {
2956 cpu_set(cpu, nohz.cpu_mask);
2957 cpu_rq(cpu)->in_nohz_recently = 1;
2958
2959 /*
2960 * If we are going offline and still the leader, give up!
2961 */
2962 if (cpu_is_offline(cpu) &&
2963 atomic_read(&nohz.load_balancer) == cpu) {
2964 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2965 BUG();
2966 return 0;
2967 }
2968
2969 /* time for ilb owner also to sleep */
2970 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2971 if (atomic_read(&nohz.load_balancer) == cpu)
2972 atomic_set(&nohz.load_balancer, -1);
2973 return 0;
2974 }
2975
2976 if (atomic_read(&nohz.load_balancer) == -1) {
2977 /* make me the ilb owner */
2978 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2979 return 1;
2980 } else if (atomic_read(&nohz.load_balancer) == cpu)
2981 return 1;
2982 } else {
2983 if (!cpu_isset(cpu, nohz.cpu_mask))
2984 return 0;
2985
2986 cpu_clear(cpu, nohz.cpu_mask);
2987
2988 if (atomic_read(&nohz.load_balancer) == cpu)
2989 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2990 BUG();
2991 }
2992 return 0;
2993}
2994#endif
2995
2996static DEFINE_SPINLOCK(balancing);
2997
2998/*
7835b98b
CL
2999 * It checks each scheduling domain to see if it is due to be balanced,
3000 * and initiates a balancing operation if so.
3001 *
3002 * Balancing parameters are set up in arch_init_sched_domains.
3003 */
d15bcfdb 3004static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3005{
46cb4b7c
SS
3006 int balance = 1;
3007 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3008 unsigned long interval;
3009 struct sched_domain *sd;
46cb4b7c 3010 /* Earliest time when we have to do rebalance again */
c9819f45 3011 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3012 int update_next_balance = 0;
1da177e4 3013
46cb4b7c 3014 for_each_domain(cpu, sd) {
1da177e4
LT
3015 if (!(sd->flags & SD_LOAD_BALANCE))
3016 continue;
3017
3018 interval = sd->balance_interval;
d15bcfdb 3019 if (idle != CPU_IDLE)
1da177e4
LT
3020 interval *= sd->busy_factor;
3021
3022 /* scale ms to jiffies */
3023 interval = msecs_to_jiffies(interval);
3024 if (unlikely(!interval))
3025 interval = 1;
dd41f596
IM
3026 if (interval > HZ*NR_CPUS/10)
3027 interval = HZ*NR_CPUS/10;
3028
1da177e4 3029
08c183f3
CL
3030 if (sd->flags & SD_SERIALIZE) {
3031 if (!spin_trylock(&balancing))
3032 goto out;
3033 }
3034
c9819f45 3035 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3036 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3037 /*
3038 * We've pulled tasks over so either we're no
5969fe06
NP
3039 * longer idle, or one of our SMT siblings is
3040 * not idle.
3041 */
d15bcfdb 3042 idle = CPU_NOT_IDLE;
1da177e4 3043 }
1bd77f2d 3044 sd->last_balance = jiffies;
1da177e4 3045 }
08c183f3
CL
3046 if (sd->flags & SD_SERIALIZE)
3047 spin_unlock(&balancing);
3048out:
f549da84 3049 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3050 next_balance = sd->last_balance + interval;
f549da84
SS
3051 update_next_balance = 1;
3052 }
783609c6
SS
3053
3054 /*
3055 * Stop the load balance at this level. There is another
3056 * CPU in our sched group which is doing load balancing more
3057 * actively.
3058 */
3059 if (!balance)
3060 break;
1da177e4 3061 }
f549da84
SS
3062
3063 /*
3064 * next_balance will be updated only when there is a need.
3065 * When the cpu is attached to null domain for ex, it will not be
3066 * updated.
3067 */
3068 if (likely(update_next_balance))
3069 rq->next_balance = next_balance;
46cb4b7c
SS
3070}
3071
3072/*
3073 * run_rebalance_domains is triggered when needed from the scheduler tick.
3074 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3075 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3076 */
3077static void run_rebalance_domains(struct softirq_action *h)
3078{
dd41f596
IM
3079 int this_cpu = smp_processor_id();
3080 struct rq *this_rq = cpu_rq(this_cpu);
3081 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3082 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3083
dd41f596 3084 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3085
3086#ifdef CONFIG_NO_HZ
3087 /*
3088 * If this cpu is the owner for idle load balancing, then do the
3089 * balancing on behalf of the other idle cpus whose ticks are
3090 * stopped.
3091 */
dd41f596
IM
3092 if (this_rq->idle_at_tick &&
3093 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3094 cpumask_t cpus = nohz.cpu_mask;
3095 struct rq *rq;
3096 int balance_cpu;
3097
dd41f596 3098 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3099 for_each_cpu_mask(balance_cpu, cpus) {
3100 /*
3101 * If this cpu gets work to do, stop the load balancing
3102 * work being done for other cpus. Next load
3103 * balancing owner will pick it up.
3104 */
3105 if (need_resched())
3106 break;
3107
de0cf899 3108 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3109
3110 rq = cpu_rq(balance_cpu);
dd41f596
IM
3111 if (time_after(this_rq->next_balance, rq->next_balance))
3112 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3113 }
3114 }
3115#endif
3116}
3117
3118/*
3119 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3120 *
3121 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3122 * idle load balancing owner or decide to stop the periodic load balancing,
3123 * if the whole system is idle.
3124 */
dd41f596 3125static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3126{
46cb4b7c
SS
3127#ifdef CONFIG_NO_HZ
3128 /*
3129 * If we were in the nohz mode recently and busy at the current
3130 * scheduler tick, then check if we need to nominate new idle
3131 * load balancer.
3132 */
3133 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3134 rq->in_nohz_recently = 0;
3135
3136 if (atomic_read(&nohz.load_balancer) == cpu) {
3137 cpu_clear(cpu, nohz.cpu_mask);
3138 atomic_set(&nohz.load_balancer, -1);
3139 }
3140
3141 if (atomic_read(&nohz.load_balancer) == -1) {
3142 /*
3143 * simple selection for now: Nominate the
3144 * first cpu in the nohz list to be the next
3145 * ilb owner.
3146 *
3147 * TBD: Traverse the sched domains and nominate
3148 * the nearest cpu in the nohz.cpu_mask.
3149 */
3150 int ilb = first_cpu(nohz.cpu_mask);
3151
3152 if (ilb != NR_CPUS)
3153 resched_cpu(ilb);
3154 }
3155 }
3156
3157 /*
3158 * If this cpu is idle and doing idle load balancing for all the
3159 * cpus with ticks stopped, is it time for that to stop?
3160 */
3161 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3162 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3163 resched_cpu(cpu);
3164 return;
3165 }
3166
3167 /*
3168 * If this cpu is idle and the idle load balancing is done by
3169 * someone else, then no need raise the SCHED_SOFTIRQ
3170 */
3171 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3172 cpu_isset(cpu, nohz.cpu_mask))
3173 return;
3174#endif
3175 if (time_after_eq(jiffies, rq->next_balance))
3176 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3177}
dd41f596
IM
3178
3179#else /* CONFIG_SMP */
3180
1da177e4
LT
3181/*
3182 * on UP we do not need to balance between CPUs:
3183 */
70b97a7f 3184static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3185{
3186}
dd41f596
IM
3187
3188/* Avoid "used but not defined" warning on UP */
3189static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3190 unsigned long max_nr_move, unsigned long max_load_move,
3191 struct sched_domain *sd, enum cpu_idle_type idle,
3192 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3193 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3194{
3195 *load_moved = 0;
3196
3197 return 0;
3198}
3199
1da177e4
LT
3200#endif
3201
1da177e4
LT
3202DEFINE_PER_CPU(struct kernel_stat, kstat);
3203
3204EXPORT_PER_CPU_SYMBOL(kstat);
3205
3206/*
41b86e9c
IM
3207 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3208 * that have not yet been banked in case the task is currently running.
1da177e4 3209 */
41b86e9c 3210unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3211{
1da177e4 3212 unsigned long flags;
41b86e9c
IM
3213 u64 ns, delta_exec;
3214 struct rq *rq;
48f24c4d 3215
41b86e9c
IM
3216 rq = task_rq_lock(p, &flags);
3217 ns = p->se.sum_exec_runtime;
3218 if (rq->curr == p) {
a8e504d2
IM
3219 update_rq_clock(rq);
3220 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3221 if ((s64)delta_exec > 0)
3222 ns += delta_exec;
3223 }
3224 task_rq_unlock(rq, &flags);
48f24c4d 3225
1da177e4
LT
3226 return ns;
3227}
3228
1da177e4
LT
3229/*
3230 * Account user cpu time to a process.
3231 * @p: the process that the cpu time gets accounted to
3232 * @hardirq_offset: the offset to subtract from hardirq_count()
3233 * @cputime: the cpu time spent in user space since the last update
3234 */
3235void account_user_time(struct task_struct *p, cputime_t cputime)
3236{
3237 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3238 cputime64_t tmp;
3239
3240 p->utime = cputime_add(p->utime, cputime);
3241
3242 /* Add user time to cpustat. */
3243 tmp = cputime_to_cputime64(cputime);
3244 if (TASK_NICE(p) > 0)
3245 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3246 else
3247 cpustat->user = cputime64_add(cpustat->user, tmp);
3248}
3249
3250/*
3251 * Account system cpu time to a process.
3252 * @p: the process that the cpu time gets accounted to
3253 * @hardirq_offset: the offset to subtract from hardirq_count()
3254 * @cputime: the cpu time spent in kernel space since the last update
3255 */
3256void account_system_time(struct task_struct *p, int hardirq_offset,
3257 cputime_t cputime)
3258{
3259 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3260 struct rq *rq = this_rq();
1da177e4
LT
3261 cputime64_t tmp;
3262
3263 p->stime = cputime_add(p->stime, cputime);
3264
3265 /* Add system time to cpustat. */
3266 tmp = cputime_to_cputime64(cputime);
3267 if (hardirq_count() - hardirq_offset)
3268 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3269 else if (softirq_count())
3270 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3271 else if (p != rq->idle)
3272 cpustat->system = cputime64_add(cpustat->system, tmp);
3273 else if (atomic_read(&rq->nr_iowait) > 0)
3274 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3275 else
3276 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3277 /* Account for system time used */
3278 acct_update_integrals(p);
1da177e4
LT
3279}
3280
3281/*
3282 * Account for involuntary wait time.
3283 * @p: the process from which the cpu time has been stolen
3284 * @steal: the cpu time spent in involuntary wait
3285 */
3286void account_steal_time(struct task_struct *p, cputime_t steal)
3287{
3288 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3289 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3290 struct rq *rq = this_rq();
1da177e4
LT
3291
3292 if (p == rq->idle) {
3293 p->stime = cputime_add(p->stime, steal);
3294 if (atomic_read(&rq->nr_iowait) > 0)
3295 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3296 else
3297 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3298 } else
3299 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3300}
3301
7835b98b
CL
3302/*
3303 * This function gets called by the timer code, with HZ frequency.
3304 * We call it with interrupts disabled.
3305 *
3306 * It also gets called by the fork code, when changing the parent's
3307 * timeslices.
3308 */
3309void scheduler_tick(void)
3310{
7835b98b
CL
3311 int cpu = smp_processor_id();
3312 struct rq *rq = cpu_rq(cpu);
dd41f596 3313 struct task_struct *curr = rq->curr;
529c7726 3314 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3315
3316 spin_lock(&rq->lock);
546fe3c9 3317 __update_rq_clock(rq);
529c7726
IM
3318 /*
3319 * Let rq->clock advance by at least TICK_NSEC:
3320 */
3321 if (unlikely(rq->clock < next_tick))
3322 rq->clock = next_tick;
3323 rq->tick_timestamp = rq->clock;
f1a438d8 3324 update_cpu_load(rq);
dd41f596
IM
3325 if (curr != rq->idle) /* FIXME: needed? */
3326 curr->sched_class->task_tick(rq, curr);
dd41f596 3327 spin_unlock(&rq->lock);
7835b98b 3328
e418e1c2 3329#ifdef CONFIG_SMP
dd41f596
IM
3330 rq->idle_at_tick = idle_cpu(cpu);
3331 trigger_load_balance(rq, cpu);
e418e1c2 3332#endif
1da177e4
LT
3333}
3334
1da177e4
LT
3335#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3336
3337void fastcall add_preempt_count(int val)
3338{
3339 /*
3340 * Underflow?
3341 */
9a11b49a
IM
3342 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3343 return;
1da177e4
LT
3344 preempt_count() += val;
3345 /*
3346 * Spinlock count overflowing soon?
3347 */
33859f7f
MOS
3348 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3349 PREEMPT_MASK - 10);
1da177e4
LT
3350}
3351EXPORT_SYMBOL(add_preempt_count);
3352
3353void fastcall sub_preempt_count(int val)
3354{
3355 /*
3356 * Underflow?
3357 */
9a11b49a
IM
3358 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3359 return;
1da177e4
LT
3360 /*
3361 * Is the spinlock portion underflowing?
3362 */
9a11b49a
IM
3363 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3364 !(preempt_count() & PREEMPT_MASK)))
3365 return;
3366
1da177e4
LT
3367 preempt_count() -= val;
3368}
3369EXPORT_SYMBOL(sub_preempt_count);
3370
3371#endif
3372
3373/*
dd41f596 3374 * Print scheduling while atomic bug:
1da177e4 3375 */
dd41f596 3376static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3377{
dd41f596
IM
3378 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3379 prev->comm, preempt_count(), prev->pid);
3380 debug_show_held_locks(prev);
3381 if (irqs_disabled())
3382 print_irqtrace_events(prev);
3383 dump_stack();
3384}
1da177e4 3385
dd41f596
IM
3386/*
3387 * Various schedule()-time debugging checks and statistics:
3388 */
3389static inline void schedule_debug(struct task_struct *prev)
3390{
1da177e4
LT
3391 /*
3392 * Test if we are atomic. Since do_exit() needs to call into
3393 * schedule() atomically, we ignore that path for now.
3394 * Otherwise, whine if we are scheduling when we should not be.
3395 */
dd41f596
IM
3396 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3397 __schedule_bug(prev);
3398
1da177e4
LT
3399 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3400
dd41f596
IM
3401 schedstat_inc(this_rq(), sched_cnt);
3402}
3403
3404/*
3405 * Pick up the highest-prio task:
3406 */
3407static inline struct task_struct *
ff95f3df 3408pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596
IM
3409{
3410 struct sched_class *class;
3411 struct task_struct *p;
1da177e4
LT
3412
3413 /*
dd41f596
IM
3414 * Optimization: we know that if all tasks are in
3415 * the fair class we can call that function directly:
1da177e4 3416 */
dd41f596 3417 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3418 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3419 if (likely(p))
3420 return p;
1da177e4
LT
3421 }
3422
dd41f596
IM
3423 class = sched_class_highest;
3424 for ( ; ; ) {
fb8d4724 3425 p = class->pick_next_task(rq);
dd41f596
IM
3426 if (p)
3427 return p;
3428 /*
3429 * Will never be NULL as the idle class always
3430 * returns a non-NULL p:
3431 */
3432 class = class->next;
3433 }
3434}
1da177e4 3435
dd41f596
IM
3436/*
3437 * schedule() is the main scheduler function.
3438 */
3439asmlinkage void __sched schedule(void)
3440{
3441 struct task_struct *prev, *next;
3442 long *switch_count;
3443 struct rq *rq;
dd41f596
IM
3444 int cpu;
3445
3446need_resched:
3447 preempt_disable();
3448 cpu = smp_processor_id();
3449 rq = cpu_rq(cpu);
3450 rcu_qsctr_inc(cpu);
3451 prev = rq->curr;
3452 switch_count = &prev->nivcsw;
3453
3454 release_kernel_lock(prev);
3455need_resched_nonpreemptible:
3456
3457 schedule_debug(prev);
1da177e4
LT
3458
3459 spin_lock_irq(&rq->lock);
dd41f596 3460 clear_tsk_need_resched(prev);
c1b3da3e 3461 __update_rq_clock(rq);
1da177e4 3462
1da177e4 3463 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3464 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3465 unlikely(signal_pending(prev)))) {
1da177e4 3466 prev->state = TASK_RUNNING;
dd41f596 3467 } else {
2e1cb74a 3468 deactivate_task(rq, prev, 1);
1da177e4 3469 }
dd41f596 3470 switch_count = &prev->nvcsw;
1da177e4
LT
3471 }
3472
dd41f596 3473 if (unlikely(!rq->nr_running))
1da177e4 3474 idle_balance(cpu, rq);
1da177e4 3475
31ee529c 3476 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3477 next = pick_next_task(rq, prev);
1da177e4
LT
3478
3479 sched_info_switch(prev, next);
dd41f596 3480
1da177e4 3481 if (likely(prev != next)) {
1da177e4
LT
3482 rq->nr_switches++;
3483 rq->curr = next;
3484 ++*switch_count;
3485
dd41f596 3486 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3487 } else
3488 spin_unlock_irq(&rq->lock);
3489
dd41f596
IM
3490 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3491 cpu = smp_processor_id();
3492 rq = cpu_rq(cpu);
1da177e4 3493 goto need_resched_nonpreemptible;
dd41f596 3494 }
1da177e4
LT
3495 preempt_enable_no_resched();
3496 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3497 goto need_resched;
3498}
1da177e4
LT
3499EXPORT_SYMBOL(schedule);
3500
3501#ifdef CONFIG_PREEMPT
3502/*
2ed6e34f 3503 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3504 * off of preempt_enable. Kernel preemptions off return from interrupt
3505 * occur there and call schedule directly.
3506 */
3507asmlinkage void __sched preempt_schedule(void)
3508{
3509 struct thread_info *ti = current_thread_info();
3510#ifdef CONFIG_PREEMPT_BKL
3511 struct task_struct *task = current;
3512 int saved_lock_depth;
3513#endif
3514 /*
3515 * If there is a non-zero preempt_count or interrupts are disabled,
3516 * we do not want to preempt the current task. Just return..
3517 */
beed33a8 3518 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3519 return;
3520
3521need_resched:
3522 add_preempt_count(PREEMPT_ACTIVE);
3523 /*
3524 * We keep the big kernel semaphore locked, but we
3525 * clear ->lock_depth so that schedule() doesnt
3526 * auto-release the semaphore:
3527 */
3528#ifdef CONFIG_PREEMPT_BKL
3529 saved_lock_depth = task->lock_depth;
3530 task->lock_depth = -1;
3531#endif
3532 schedule();
3533#ifdef CONFIG_PREEMPT_BKL
3534 task->lock_depth = saved_lock_depth;
3535#endif
3536 sub_preempt_count(PREEMPT_ACTIVE);
3537
3538 /* we could miss a preemption opportunity between schedule and now */
3539 barrier();
3540 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3541 goto need_resched;
3542}
1da177e4
LT
3543EXPORT_SYMBOL(preempt_schedule);
3544
3545/*
2ed6e34f 3546 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3547 * off of irq context.
3548 * Note, that this is called and return with irqs disabled. This will
3549 * protect us against recursive calling from irq.
3550 */
3551asmlinkage void __sched preempt_schedule_irq(void)
3552{
3553 struct thread_info *ti = current_thread_info();
3554#ifdef CONFIG_PREEMPT_BKL
3555 struct task_struct *task = current;
3556 int saved_lock_depth;
3557#endif
2ed6e34f 3558 /* Catch callers which need to be fixed */
1da177e4
LT
3559 BUG_ON(ti->preempt_count || !irqs_disabled());
3560
3561need_resched:
3562 add_preempt_count(PREEMPT_ACTIVE);
3563 /*
3564 * We keep the big kernel semaphore locked, but we
3565 * clear ->lock_depth so that schedule() doesnt
3566 * auto-release the semaphore:
3567 */
3568#ifdef CONFIG_PREEMPT_BKL
3569 saved_lock_depth = task->lock_depth;
3570 task->lock_depth = -1;
3571#endif
3572 local_irq_enable();
3573 schedule();
3574 local_irq_disable();
3575#ifdef CONFIG_PREEMPT_BKL
3576 task->lock_depth = saved_lock_depth;
3577#endif
3578 sub_preempt_count(PREEMPT_ACTIVE);
3579
3580 /* we could miss a preemption opportunity between schedule and now */
3581 barrier();
3582 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3583 goto need_resched;
3584}
3585
3586#endif /* CONFIG_PREEMPT */
3587
95cdf3b7
IM
3588int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3589 void *key)
1da177e4 3590{
48f24c4d 3591 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3592}
1da177e4
LT
3593EXPORT_SYMBOL(default_wake_function);
3594
3595/*
3596 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3597 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3598 * number) then we wake all the non-exclusive tasks and one exclusive task.
3599 *
3600 * There are circumstances in which we can try to wake a task which has already
3601 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3602 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3603 */
3604static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3605 int nr_exclusive, int sync, void *key)
3606{
2e45874c 3607 wait_queue_t *curr, *next;
1da177e4 3608
2e45874c 3609 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3610 unsigned flags = curr->flags;
3611
1da177e4 3612 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3613 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3614 break;
3615 }
3616}
3617
3618/**
3619 * __wake_up - wake up threads blocked on a waitqueue.
3620 * @q: the waitqueue
3621 * @mode: which threads
3622 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3623 * @key: is directly passed to the wakeup function
1da177e4
LT
3624 */
3625void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3626 int nr_exclusive, void *key)
1da177e4
LT
3627{
3628 unsigned long flags;
3629
3630 spin_lock_irqsave(&q->lock, flags);
3631 __wake_up_common(q, mode, nr_exclusive, 0, key);
3632 spin_unlock_irqrestore(&q->lock, flags);
3633}
1da177e4
LT
3634EXPORT_SYMBOL(__wake_up);
3635
3636/*
3637 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3638 */
3639void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3640{
3641 __wake_up_common(q, mode, 1, 0, NULL);
3642}
3643
3644/**
67be2dd1 3645 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3646 * @q: the waitqueue
3647 * @mode: which threads
3648 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3649 *
3650 * The sync wakeup differs that the waker knows that it will schedule
3651 * away soon, so while the target thread will be woken up, it will not
3652 * be migrated to another CPU - ie. the two threads are 'synchronized'
3653 * with each other. This can prevent needless bouncing between CPUs.
3654 *
3655 * On UP it can prevent extra preemption.
3656 */
95cdf3b7
IM
3657void fastcall
3658__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3659{
3660 unsigned long flags;
3661 int sync = 1;
3662
3663 if (unlikely(!q))
3664 return;
3665
3666 if (unlikely(!nr_exclusive))
3667 sync = 0;
3668
3669 spin_lock_irqsave(&q->lock, flags);
3670 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3671 spin_unlock_irqrestore(&q->lock, flags);
3672}
3673EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3674
3675void fastcall complete(struct completion *x)
3676{
3677 unsigned long flags;
3678
3679 spin_lock_irqsave(&x->wait.lock, flags);
3680 x->done++;
3681 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3682 1, 0, NULL);
3683 spin_unlock_irqrestore(&x->wait.lock, flags);
3684}
3685EXPORT_SYMBOL(complete);
3686
3687void fastcall complete_all(struct completion *x)
3688{
3689 unsigned long flags;
3690
3691 spin_lock_irqsave(&x->wait.lock, flags);
3692 x->done += UINT_MAX/2;
3693 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3694 0, 0, NULL);
3695 spin_unlock_irqrestore(&x->wait.lock, flags);
3696}
3697EXPORT_SYMBOL(complete_all);
3698
3699void fastcall __sched wait_for_completion(struct completion *x)
3700{
3701 might_sleep();
48f24c4d 3702
1da177e4
LT
3703 spin_lock_irq(&x->wait.lock);
3704 if (!x->done) {
3705 DECLARE_WAITQUEUE(wait, current);
3706
3707 wait.flags |= WQ_FLAG_EXCLUSIVE;
3708 __add_wait_queue_tail(&x->wait, &wait);
3709 do {
3710 __set_current_state(TASK_UNINTERRUPTIBLE);
3711 spin_unlock_irq(&x->wait.lock);
3712 schedule();
3713 spin_lock_irq(&x->wait.lock);
3714 } while (!x->done);
3715 __remove_wait_queue(&x->wait, &wait);
3716 }
3717 x->done--;
3718 spin_unlock_irq(&x->wait.lock);
3719}
3720EXPORT_SYMBOL(wait_for_completion);
3721
3722unsigned long fastcall __sched
3723wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3724{
3725 might_sleep();
3726
3727 spin_lock_irq(&x->wait.lock);
3728 if (!x->done) {
3729 DECLARE_WAITQUEUE(wait, current);
3730
3731 wait.flags |= WQ_FLAG_EXCLUSIVE;
3732 __add_wait_queue_tail(&x->wait, &wait);
3733 do {
3734 __set_current_state(TASK_UNINTERRUPTIBLE);
3735 spin_unlock_irq(&x->wait.lock);
3736 timeout = schedule_timeout(timeout);
3737 spin_lock_irq(&x->wait.lock);
3738 if (!timeout) {
3739 __remove_wait_queue(&x->wait, &wait);
3740 goto out;
3741 }
3742 } while (!x->done);
3743 __remove_wait_queue(&x->wait, &wait);
3744 }
3745 x->done--;
3746out:
3747 spin_unlock_irq(&x->wait.lock);
3748 return timeout;
3749}
3750EXPORT_SYMBOL(wait_for_completion_timeout);
3751
3752int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3753{
3754 int ret = 0;
3755
3756 might_sleep();
3757
3758 spin_lock_irq(&x->wait.lock);
3759 if (!x->done) {
3760 DECLARE_WAITQUEUE(wait, current);
3761
3762 wait.flags |= WQ_FLAG_EXCLUSIVE;
3763 __add_wait_queue_tail(&x->wait, &wait);
3764 do {
3765 if (signal_pending(current)) {
3766 ret = -ERESTARTSYS;
3767 __remove_wait_queue(&x->wait, &wait);
3768 goto out;
3769 }
3770 __set_current_state(TASK_INTERRUPTIBLE);
3771 spin_unlock_irq(&x->wait.lock);
3772 schedule();
3773 spin_lock_irq(&x->wait.lock);
3774 } while (!x->done);
3775 __remove_wait_queue(&x->wait, &wait);
3776 }
3777 x->done--;
3778out:
3779 spin_unlock_irq(&x->wait.lock);
3780
3781 return ret;
3782}
3783EXPORT_SYMBOL(wait_for_completion_interruptible);
3784
3785unsigned long fastcall __sched
3786wait_for_completion_interruptible_timeout(struct completion *x,
3787 unsigned long timeout)
3788{
3789 might_sleep();
3790
3791 spin_lock_irq(&x->wait.lock);
3792 if (!x->done) {
3793 DECLARE_WAITQUEUE(wait, current);
3794
3795 wait.flags |= WQ_FLAG_EXCLUSIVE;
3796 __add_wait_queue_tail(&x->wait, &wait);
3797 do {
3798 if (signal_pending(current)) {
3799 timeout = -ERESTARTSYS;
3800 __remove_wait_queue(&x->wait, &wait);
3801 goto out;
3802 }
3803 __set_current_state(TASK_INTERRUPTIBLE);
3804 spin_unlock_irq(&x->wait.lock);
3805 timeout = schedule_timeout(timeout);
3806 spin_lock_irq(&x->wait.lock);
3807 if (!timeout) {
3808 __remove_wait_queue(&x->wait, &wait);
3809 goto out;
3810 }
3811 } while (!x->done);
3812 __remove_wait_queue(&x->wait, &wait);
3813 }
3814 x->done--;
3815out:
3816 spin_unlock_irq(&x->wait.lock);
3817 return timeout;
3818}
3819EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3820
0fec171c
IM
3821static inline void
3822sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3823{
3824 spin_lock_irqsave(&q->lock, *flags);
3825 __add_wait_queue(q, wait);
1da177e4 3826 spin_unlock(&q->lock);
0fec171c 3827}
1da177e4 3828
0fec171c
IM
3829static inline void
3830sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3831{
3832 spin_lock_irq(&q->lock);
3833 __remove_wait_queue(q, wait);
3834 spin_unlock_irqrestore(&q->lock, *flags);
3835}
1da177e4 3836
0fec171c 3837void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3838{
0fec171c
IM
3839 unsigned long flags;
3840 wait_queue_t wait;
3841
3842 init_waitqueue_entry(&wait, current);
1da177e4
LT
3843
3844 current->state = TASK_INTERRUPTIBLE;
3845
0fec171c 3846 sleep_on_head(q, &wait, &flags);
1da177e4 3847 schedule();
0fec171c 3848 sleep_on_tail(q, &wait, &flags);
1da177e4 3849}
1da177e4
LT
3850EXPORT_SYMBOL(interruptible_sleep_on);
3851
0fec171c 3852long __sched
95cdf3b7 3853interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3854{
0fec171c
IM
3855 unsigned long flags;
3856 wait_queue_t wait;
3857
3858 init_waitqueue_entry(&wait, current);
1da177e4
LT
3859
3860 current->state = TASK_INTERRUPTIBLE;
3861
0fec171c 3862 sleep_on_head(q, &wait, &flags);
1da177e4 3863 timeout = schedule_timeout(timeout);
0fec171c 3864 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3865
3866 return timeout;
3867}
1da177e4
LT
3868EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3869
0fec171c 3870void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3871{
0fec171c
IM
3872 unsigned long flags;
3873 wait_queue_t wait;
3874
3875 init_waitqueue_entry(&wait, current);
1da177e4
LT
3876
3877 current->state = TASK_UNINTERRUPTIBLE;
3878
0fec171c 3879 sleep_on_head(q, &wait, &flags);
1da177e4 3880 schedule();
0fec171c 3881 sleep_on_tail(q, &wait, &flags);
1da177e4 3882}
1da177e4
LT
3883EXPORT_SYMBOL(sleep_on);
3884
0fec171c 3885long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3886{
0fec171c
IM
3887 unsigned long flags;
3888 wait_queue_t wait;
3889
3890 init_waitqueue_entry(&wait, current);
1da177e4
LT
3891
3892 current->state = TASK_UNINTERRUPTIBLE;
3893
0fec171c 3894 sleep_on_head(q, &wait, &flags);
1da177e4 3895 timeout = schedule_timeout(timeout);
0fec171c 3896 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3897
3898 return timeout;
3899}
1da177e4
LT
3900EXPORT_SYMBOL(sleep_on_timeout);
3901
b29739f9
IM
3902#ifdef CONFIG_RT_MUTEXES
3903
3904/*
3905 * rt_mutex_setprio - set the current priority of a task
3906 * @p: task
3907 * @prio: prio value (kernel-internal form)
3908 *
3909 * This function changes the 'effective' priority of a task. It does
3910 * not touch ->normal_prio like __setscheduler().
3911 *
3912 * Used by the rt_mutex code to implement priority inheritance logic.
3913 */
36c8b586 3914void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3915{
3916 unsigned long flags;
dd41f596 3917 int oldprio, on_rq;
70b97a7f 3918 struct rq *rq;
b29739f9
IM
3919
3920 BUG_ON(prio < 0 || prio > MAX_PRIO);
3921
3922 rq = task_rq_lock(p, &flags);
a8e504d2 3923 update_rq_clock(rq);
b29739f9 3924
d5f9f942 3925 oldprio = p->prio;
dd41f596
IM
3926 on_rq = p->se.on_rq;
3927 if (on_rq)
69be72c1 3928 dequeue_task(rq, p, 0);
dd41f596
IM
3929
3930 if (rt_prio(prio))
3931 p->sched_class = &rt_sched_class;
3932 else
3933 p->sched_class = &fair_sched_class;
3934
b29739f9
IM
3935 p->prio = prio;
3936
dd41f596 3937 if (on_rq) {
8159f87e 3938 enqueue_task(rq, p, 0);
b29739f9
IM
3939 /*
3940 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3941 * our priority decreased, or if we are not currently running on
3942 * this runqueue and our priority is higher than the current's
b29739f9 3943 */
d5f9f942
AM
3944 if (task_running(rq, p)) {
3945 if (p->prio > oldprio)
3946 resched_task(rq->curr);
dd41f596
IM
3947 } else {
3948 check_preempt_curr(rq, p);
3949 }
b29739f9
IM
3950 }
3951 task_rq_unlock(rq, &flags);
3952}
3953
3954#endif
3955
36c8b586 3956void set_user_nice(struct task_struct *p, long nice)
1da177e4 3957{
dd41f596 3958 int old_prio, delta, on_rq;
1da177e4 3959 unsigned long flags;
70b97a7f 3960 struct rq *rq;
1da177e4
LT
3961
3962 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3963 return;
3964 /*
3965 * We have to be careful, if called from sys_setpriority(),
3966 * the task might be in the middle of scheduling on another CPU.
3967 */
3968 rq = task_rq_lock(p, &flags);
a8e504d2 3969 update_rq_clock(rq);
1da177e4
LT
3970 /*
3971 * The RT priorities are set via sched_setscheduler(), but we still
3972 * allow the 'normal' nice value to be set - but as expected
3973 * it wont have any effect on scheduling until the task is
dd41f596 3974 * SCHED_FIFO/SCHED_RR:
1da177e4 3975 */
e05606d3 3976 if (task_has_rt_policy(p)) {
1da177e4
LT
3977 p->static_prio = NICE_TO_PRIO(nice);
3978 goto out_unlock;
3979 }
dd41f596
IM
3980 on_rq = p->se.on_rq;
3981 if (on_rq) {
69be72c1 3982 dequeue_task(rq, p, 0);
79b5dddf 3983 dec_load(rq, p);
2dd73a4f 3984 }
1da177e4 3985
1da177e4 3986 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3987 set_load_weight(p);
b29739f9
IM
3988 old_prio = p->prio;
3989 p->prio = effective_prio(p);
3990 delta = p->prio - old_prio;
1da177e4 3991
dd41f596 3992 if (on_rq) {
8159f87e 3993 enqueue_task(rq, p, 0);
29b4b623 3994 inc_load(rq, p);
1da177e4 3995 /*
d5f9f942
AM
3996 * If the task increased its priority or is running and
3997 * lowered its priority, then reschedule its CPU:
1da177e4 3998 */
d5f9f942 3999 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4000 resched_task(rq->curr);
4001 }
4002out_unlock:
4003 task_rq_unlock(rq, &flags);
4004}
1da177e4
LT
4005EXPORT_SYMBOL(set_user_nice);
4006
e43379f1
MM
4007/*
4008 * can_nice - check if a task can reduce its nice value
4009 * @p: task
4010 * @nice: nice value
4011 */
36c8b586 4012int can_nice(const struct task_struct *p, const int nice)
e43379f1 4013{
024f4747
MM
4014 /* convert nice value [19,-20] to rlimit style value [1,40] */
4015 int nice_rlim = 20 - nice;
48f24c4d 4016
e43379f1
MM
4017 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4018 capable(CAP_SYS_NICE));
4019}
4020
1da177e4
LT
4021#ifdef __ARCH_WANT_SYS_NICE
4022
4023/*
4024 * sys_nice - change the priority of the current process.
4025 * @increment: priority increment
4026 *
4027 * sys_setpriority is a more generic, but much slower function that
4028 * does similar things.
4029 */
4030asmlinkage long sys_nice(int increment)
4031{
48f24c4d 4032 long nice, retval;
1da177e4
LT
4033
4034 /*
4035 * Setpriority might change our priority at the same moment.
4036 * We don't have to worry. Conceptually one call occurs first
4037 * and we have a single winner.
4038 */
e43379f1
MM
4039 if (increment < -40)
4040 increment = -40;
1da177e4
LT
4041 if (increment > 40)
4042 increment = 40;
4043
4044 nice = PRIO_TO_NICE(current->static_prio) + increment;
4045 if (nice < -20)
4046 nice = -20;
4047 if (nice > 19)
4048 nice = 19;
4049
e43379f1
MM
4050 if (increment < 0 && !can_nice(current, nice))
4051 return -EPERM;
4052
1da177e4
LT
4053 retval = security_task_setnice(current, nice);
4054 if (retval)
4055 return retval;
4056
4057 set_user_nice(current, nice);
4058 return 0;
4059}
4060
4061#endif
4062
4063/**
4064 * task_prio - return the priority value of a given task.
4065 * @p: the task in question.
4066 *
4067 * This is the priority value as seen by users in /proc.
4068 * RT tasks are offset by -200. Normal tasks are centered
4069 * around 0, value goes from -16 to +15.
4070 */
36c8b586 4071int task_prio(const struct task_struct *p)
1da177e4
LT
4072{
4073 return p->prio - MAX_RT_PRIO;
4074}
4075
4076/**
4077 * task_nice - return the nice value of a given task.
4078 * @p: the task in question.
4079 */
36c8b586 4080int task_nice(const struct task_struct *p)
1da177e4
LT
4081{
4082 return TASK_NICE(p);
4083}
1da177e4 4084EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4085
4086/**
4087 * idle_cpu - is a given cpu idle currently?
4088 * @cpu: the processor in question.
4089 */
4090int idle_cpu(int cpu)
4091{
4092 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4093}
4094
1da177e4
LT
4095/**
4096 * idle_task - return the idle task for a given cpu.
4097 * @cpu: the processor in question.
4098 */
36c8b586 4099struct task_struct *idle_task(int cpu)
1da177e4
LT
4100{
4101 return cpu_rq(cpu)->idle;
4102}
4103
4104/**
4105 * find_process_by_pid - find a process with a matching PID value.
4106 * @pid: the pid in question.
4107 */
36c8b586 4108static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4109{
4110 return pid ? find_task_by_pid(pid) : current;
4111}
4112
4113/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4114static void
4115__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4116{
dd41f596 4117 BUG_ON(p->se.on_rq);
48f24c4d 4118
1da177e4 4119 p->policy = policy;
dd41f596
IM
4120 switch (p->policy) {
4121 case SCHED_NORMAL:
4122 case SCHED_BATCH:
4123 case SCHED_IDLE:
4124 p->sched_class = &fair_sched_class;
4125 break;
4126 case SCHED_FIFO:
4127 case SCHED_RR:
4128 p->sched_class = &rt_sched_class;
4129 break;
4130 }
4131
1da177e4 4132 p->rt_priority = prio;
b29739f9
IM
4133 p->normal_prio = normal_prio(p);
4134 /* we are holding p->pi_lock already */
4135 p->prio = rt_mutex_getprio(p);
2dd73a4f 4136 set_load_weight(p);
1da177e4
LT
4137}
4138
4139/**
72fd4a35 4140 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4141 * @p: the task in question.
4142 * @policy: new policy.
4143 * @param: structure containing the new RT priority.
5fe1d75f 4144 *
72fd4a35 4145 * NOTE that the task may be already dead.
1da177e4 4146 */
95cdf3b7
IM
4147int sched_setscheduler(struct task_struct *p, int policy,
4148 struct sched_param *param)
1da177e4 4149{
dd41f596 4150 int retval, oldprio, oldpolicy = -1, on_rq;
1da177e4 4151 unsigned long flags;
70b97a7f 4152 struct rq *rq;
1da177e4 4153
66e5393a
SR
4154 /* may grab non-irq protected spin_locks */
4155 BUG_ON(in_interrupt());
1da177e4
LT
4156recheck:
4157 /* double check policy once rq lock held */
4158 if (policy < 0)
4159 policy = oldpolicy = p->policy;
4160 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4161 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4162 policy != SCHED_IDLE)
b0a9499c 4163 return -EINVAL;
1da177e4
LT
4164 /*
4165 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4166 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4167 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4168 */
4169 if (param->sched_priority < 0 ||
95cdf3b7 4170 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4171 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4172 return -EINVAL;
e05606d3 4173 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4174 return -EINVAL;
4175
37e4ab3f
OC
4176 /*
4177 * Allow unprivileged RT tasks to decrease priority:
4178 */
4179 if (!capable(CAP_SYS_NICE)) {
e05606d3 4180 if (rt_policy(policy)) {
8dc3e909 4181 unsigned long rlim_rtprio;
8dc3e909
ON
4182
4183 if (!lock_task_sighand(p, &flags))
4184 return -ESRCH;
4185 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4186 unlock_task_sighand(p, &flags);
4187
4188 /* can't set/change the rt policy */
4189 if (policy != p->policy && !rlim_rtprio)
4190 return -EPERM;
4191
4192 /* can't increase priority */
4193 if (param->sched_priority > p->rt_priority &&
4194 param->sched_priority > rlim_rtprio)
4195 return -EPERM;
4196 }
dd41f596
IM
4197 /*
4198 * Like positive nice levels, dont allow tasks to
4199 * move out of SCHED_IDLE either:
4200 */
4201 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4202 return -EPERM;
5fe1d75f 4203
37e4ab3f
OC
4204 /* can't change other user's priorities */
4205 if ((current->euid != p->euid) &&
4206 (current->euid != p->uid))
4207 return -EPERM;
4208 }
1da177e4
LT
4209
4210 retval = security_task_setscheduler(p, policy, param);
4211 if (retval)
4212 return retval;
b29739f9
IM
4213 /*
4214 * make sure no PI-waiters arrive (or leave) while we are
4215 * changing the priority of the task:
4216 */
4217 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4218 /*
4219 * To be able to change p->policy safely, the apropriate
4220 * runqueue lock must be held.
4221 */
b29739f9 4222 rq = __task_rq_lock(p);
1da177e4
LT
4223 /* recheck policy now with rq lock held */
4224 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4225 policy = oldpolicy = -1;
b29739f9
IM
4226 __task_rq_unlock(rq);
4227 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4228 goto recheck;
4229 }
2daa3577 4230 update_rq_clock(rq);
dd41f596 4231 on_rq = p->se.on_rq;
2daa3577 4232 if (on_rq)
2e1cb74a 4233 deactivate_task(rq, p, 0);
1da177e4 4234 oldprio = p->prio;
dd41f596
IM
4235 __setscheduler(rq, p, policy, param->sched_priority);
4236 if (on_rq) {
4237 activate_task(rq, p, 0);
1da177e4
LT
4238 /*
4239 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4240 * our priority decreased, or if we are not currently running on
4241 * this runqueue and our priority is higher than the current's
1da177e4 4242 */
d5f9f942
AM
4243 if (task_running(rq, p)) {
4244 if (p->prio > oldprio)
4245 resched_task(rq->curr);
dd41f596
IM
4246 } else {
4247 check_preempt_curr(rq, p);
4248 }
1da177e4 4249 }
b29739f9
IM
4250 __task_rq_unlock(rq);
4251 spin_unlock_irqrestore(&p->pi_lock, flags);
4252
95e02ca9
TG
4253 rt_mutex_adjust_pi(p);
4254
1da177e4
LT
4255 return 0;
4256}
4257EXPORT_SYMBOL_GPL(sched_setscheduler);
4258
95cdf3b7
IM
4259static int
4260do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4261{
1da177e4
LT
4262 struct sched_param lparam;
4263 struct task_struct *p;
36c8b586 4264 int retval;
1da177e4
LT
4265
4266 if (!param || pid < 0)
4267 return -EINVAL;
4268 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4269 return -EFAULT;
5fe1d75f
ON
4270
4271 rcu_read_lock();
4272 retval = -ESRCH;
1da177e4 4273 p = find_process_by_pid(pid);
5fe1d75f
ON
4274 if (p != NULL)
4275 retval = sched_setscheduler(p, policy, &lparam);
4276 rcu_read_unlock();
36c8b586 4277
1da177e4
LT
4278 return retval;
4279}
4280
4281/**
4282 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4283 * @pid: the pid in question.
4284 * @policy: new policy.
4285 * @param: structure containing the new RT priority.
4286 */
4287asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4288 struct sched_param __user *param)
4289{
c21761f1
JB
4290 /* negative values for policy are not valid */
4291 if (policy < 0)
4292 return -EINVAL;
4293
1da177e4
LT
4294 return do_sched_setscheduler(pid, policy, param);
4295}
4296
4297/**
4298 * sys_sched_setparam - set/change the RT priority of a thread
4299 * @pid: the pid in question.
4300 * @param: structure containing the new RT priority.
4301 */
4302asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4303{
4304 return do_sched_setscheduler(pid, -1, param);
4305}
4306
4307/**
4308 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4309 * @pid: the pid in question.
4310 */
4311asmlinkage long sys_sched_getscheduler(pid_t pid)
4312{
36c8b586 4313 struct task_struct *p;
1da177e4 4314 int retval = -EINVAL;
1da177e4
LT
4315
4316 if (pid < 0)
4317 goto out_nounlock;
4318
4319 retval = -ESRCH;
4320 read_lock(&tasklist_lock);
4321 p = find_process_by_pid(pid);
4322 if (p) {
4323 retval = security_task_getscheduler(p);
4324 if (!retval)
4325 retval = p->policy;
4326 }
4327 read_unlock(&tasklist_lock);
4328
4329out_nounlock:
4330 return retval;
4331}
4332
4333/**
4334 * sys_sched_getscheduler - get the RT priority of a thread
4335 * @pid: the pid in question.
4336 * @param: structure containing the RT priority.
4337 */
4338asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4339{
4340 struct sched_param lp;
36c8b586 4341 struct task_struct *p;
1da177e4 4342 int retval = -EINVAL;
1da177e4
LT
4343
4344 if (!param || pid < 0)
4345 goto out_nounlock;
4346
4347 read_lock(&tasklist_lock);
4348 p = find_process_by_pid(pid);
4349 retval = -ESRCH;
4350 if (!p)
4351 goto out_unlock;
4352
4353 retval = security_task_getscheduler(p);
4354 if (retval)
4355 goto out_unlock;
4356
4357 lp.sched_priority = p->rt_priority;
4358 read_unlock(&tasklist_lock);
4359
4360 /*
4361 * This one might sleep, we cannot do it with a spinlock held ...
4362 */
4363 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4364
4365out_nounlock:
4366 return retval;
4367
4368out_unlock:
4369 read_unlock(&tasklist_lock);
4370 return retval;
4371}
4372
4373long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4374{
1da177e4 4375 cpumask_t cpus_allowed;
36c8b586
IM
4376 struct task_struct *p;
4377 int retval;
1da177e4 4378
5be9361c 4379 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4380 read_lock(&tasklist_lock);
4381
4382 p = find_process_by_pid(pid);
4383 if (!p) {
4384 read_unlock(&tasklist_lock);
5be9361c 4385 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4386 return -ESRCH;
4387 }
4388
4389 /*
4390 * It is not safe to call set_cpus_allowed with the
4391 * tasklist_lock held. We will bump the task_struct's
4392 * usage count and then drop tasklist_lock.
4393 */
4394 get_task_struct(p);
4395 read_unlock(&tasklist_lock);
4396
4397 retval = -EPERM;
4398 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4399 !capable(CAP_SYS_NICE))
4400 goto out_unlock;
4401
e7834f8f
DQ
4402 retval = security_task_setscheduler(p, 0, NULL);
4403 if (retval)
4404 goto out_unlock;
4405
1da177e4
LT
4406 cpus_allowed = cpuset_cpus_allowed(p);
4407 cpus_and(new_mask, new_mask, cpus_allowed);
4408 retval = set_cpus_allowed(p, new_mask);
4409
4410out_unlock:
4411 put_task_struct(p);
5be9361c 4412 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4413 return retval;
4414}
4415
4416static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4417 cpumask_t *new_mask)
4418{
4419 if (len < sizeof(cpumask_t)) {
4420 memset(new_mask, 0, sizeof(cpumask_t));
4421 } else if (len > sizeof(cpumask_t)) {
4422 len = sizeof(cpumask_t);
4423 }
4424 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4425}
4426
4427/**
4428 * sys_sched_setaffinity - set the cpu affinity of a process
4429 * @pid: pid of the process
4430 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4431 * @user_mask_ptr: user-space pointer to the new cpu mask
4432 */
4433asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4434 unsigned long __user *user_mask_ptr)
4435{
4436 cpumask_t new_mask;
4437 int retval;
4438
4439 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4440 if (retval)
4441 return retval;
4442
4443 return sched_setaffinity(pid, new_mask);
4444}
4445
4446/*
4447 * Represents all cpu's present in the system
4448 * In systems capable of hotplug, this map could dynamically grow
4449 * as new cpu's are detected in the system via any platform specific
4450 * method, such as ACPI for e.g.
4451 */
4452
4cef0c61 4453cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4454EXPORT_SYMBOL(cpu_present_map);
4455
4456#ifndef CONFIG_SMP
4cef0c61 4457cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4458EXPORT_SYMBOL(cpu_online_map);
4459
4cef0c61 4460cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4461EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4462#endif
4463
4464long sched_getaffinity(pid_t pid, cpumask_t *mask)
4465{
36c8b586 4466 struct task_struct *p;
1da177e4 4467 int retval;
1da177e4 4468
5be9361c 4469 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4470 read_lock(&tasklist_lock);
4471
4472 retval = -ESRCH;
4473 p = find_process_by_pid(pid);
4474 if (!p)
4475 goto out_unlock;
4476
e7834f8f
DQ
4477 retval = security_task_getscheduler(p);
4478 if (retval)
4479 goto out_unlock;
4480
2f7016d9 4481 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4482
4483out_unlock:
4484 read_unlock(&tasklist_lock);
5be9361c 4485 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4486
9531b62f 4487 return retval;
1da177e4
LT
4488}
4489
4490/**
4491 * sys_sched_getaffinity - get the cpu affinity of a process
4492 * @pid: pid of the process
4493 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4494 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4495 */
4496asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4497 unsigned long __user *user_mask_ptr)
4498{
4499 int ret;
4500 cpumask_t mask;
4501
4502 if (len < sizeof(cpumask_t))
4503 return -EINVAL;
4504
4505 ret = sched_getaffinity(pid, &mask);
4506 if (ret < 0)
4507 return ret;
4508
4509 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4510 return -EFAULT;
4511
4512 return sizeof(cpumask_t);
4513}
4514
4515/**
4516 * sys_sched_yield - yield the current processor to other threads.
4517 *
dd41f596
IM
4518 * This function yields the current CPU to other tasks. If there are no
4519 * other threads running on this CPU then this function will return.
1da177e4
LT
4520 */
4521asmlinkage long sys_sched_yield(void)
4522{
70b97a7f 4523 struct rq *rq = this_rq_lock();
1da177e4
LT
4524
4525 schedstat_inc(rq, yld_cnt);
1799e35d 4526 current->sched_class->yield_task(rq, current);
1da177e4
LT
4527
4528 /*
4529 * Since we are going to call schedule() anyway, there's
4530 * no need to preempt or enable interrupts:
4531 */
4532 __release(rq->lock);
8a25d5de 4533 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4534 _raw_spin_unlock(&rq->lock);
4535 preempt_enable_no_resched();
4536
4537 schedule();
4538
4539 return 0;
4540}
4541
e7b38404 4542static void __cond_resched(void)
1da177e4 4543{
8e0a43d8
IM
4544#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4545 __might_sleep(__FILE__, __LINE__);
4546#endif
5bbcfd90
IM
4547 /*
4548 * The BKS might be reacquired before we have dropped
4549 * PREEMPT_ACTIVE, which could trigger a second
4550 * cond_resched() call.
4551 */
1da177e4
LT
4552 do {
4553 add_preempt_count(PREEMPT_ACTIVE);
4554 schedule();
4555 sub_preempt_count(PREEMPT_ACTIVE);
4556 } while (need_resched());
4557}
4558
4559int __sched cond_resched(void)
4560{
9414232f
IM
4561 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4562 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4563 __cond_resched();
4564 return 1;
4565 }
4566 return 0;
4567}
1da177e4
LT
4568EXPORT_SYMBOL(cond_resched);
4569
4570/*
4571 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4572 * call schedule, and on return reacquire the lock.
4573 *
4574 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4575 * operations here to prevent schedule() from being called twice (once via
4576 * spin_unlock(), once by hand).
4577 */
95cdf3b7 4578int cond_resched_lock(spinlock_t *lock)
1da177e4 4579{
6df3cecb
JK
4580 int ret = 0;
4581
1da177e4
LT
4582 if (need_lockbreak(lock)) {
4583 spin_unlock(lock);
4584 cpu_relax();
6df3cecb 4585 ret = 1;
1da177e4
LT
4586 spin_lock(lock);
4587 }
9414232f 4588 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4589 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4590 _raw_spin_unlock(lock);
4591 preempt_enable_no_resched();
4592 __cond_resched();
6df3cecb 4593 ret = 1;
1da177e4 4594 spin_lock(lock);
1da177e4 4595 }
6df3cecb 4596 return ret;
1da177e4 4597}
1da177e4
LT
4598EXPORT_SYMBOL(cond_resched_lock);
4599
4600int __sched cond_resched_softirq(void)
4601{
4602 BUG_ON(!in_softirq());
4603
9414232f 4604 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4605 local_bh_enable();
1da177e4
LT
4606 __cond_resched();
4607 local_bh_disable();
4608 return 1;
4609 }
4610 return 0;
4611}
1da177e4
LT
4612EXPORT_SYMBOL(cond_resched_softirq);
4613
1da177e4
LT
4614/**
4615 * yield - yield the current processor to other threads.
4616 *
72fd4a35 4617 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4618 * thread runnable and calls sys_sched_yield().
4619 */
4620void __sched yield(void)
4621{
4622 set_current_state(TASK_RUNNING);
4623 sys_sched_yield();
4624}
1da177e4
LT
4625EXPORT_SYMBOL(yield);
4626
4627/*
4628 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4629 * that process accounting knows that this is a task in IO wait state.
4630 *
4631 * But don't do that if it is a deliberate, throttling IO wait (this task
4632 * has set its backing_dev_info: the queue against which it should throttle)
4633 */
4634void __sched io_schedule(void)
4635{
70b97a7f 4636 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4637
0ff92245 4638 delayacct_blkio_start();
1da177e4
LT
4639 atomic_inc(&rq->nr_iowait);
4640 schedule();
4641 atomic_dec(&rq->nr_iowait);
0ff92245 4642 delayacct_blkio_end();
1da177e4 4643}
1da177e4
LT
4644EXPORT_SYMBOL(io_schedule);
4645
4646long __sched io_schedule_timeout(long timeout)
4647{
70b97a7f 4648 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4649 long ret;
4650
0ff92245 4651 delayacct_blkio_start();
1da177e4
LT
4652 atomic_inc(&rq->nr_iowait);
4653 ret = schedule_timeout(timeout);
4654 atomic_dec(&rq->nr_iowait);
0ff92245 4655 delayacct_blkio_end();
1da177e4
LT
4656 return ret;
4657}
4658
4659/**
4660 * sys_sched_get_priority_max - return maximum RT priority.
4661 * @policy: scheduling class.
4662 *
4663 * this syscall returns the maximum rt_priority that can be used
4664 * by a given scheduling class.
4665 */
4666asmlinkage long sys_sched_get_priority_max(int policy)
4667{
4668 int ret = -EINVAL;
4669
4670 switch (policy) {
4671 case SCHED_FIFO:
4672 case SCHED_RR:
4673 ret = MAX_USER_RT_PRIO-1;
4674 break;
4675 case SCHED_NORMAL:
b0a9499c 4676 case SCHED_BATCH:
dd41f596 4677 case SCHED_IDLE:
1da177e4
LT
4678 ret = 0;
4679 break;
4680 }
4681 return ret;
4682}
4683
4684/**
4685 * sys_sched_get_priority_min - return minimum RT priority.
4686 * @policy: scheduling class.
4687 *
4688 * this syscall returns the minimum rt_priority that can be used
4689 * by a given scheduling class.
4690 */
4691asmlinkage long sys_sched_get_priority_min(int policy)
4692{
4693 int ret = -EINVAL;
4694
4695 switch (policy) {
4696 case SCHED_FIFO:
4697 case SCHED_RR:
4698 ret = 1;
4699 break;
4700 case SCHED_NORMAL:
b0a9499c 4701 case SCHED_BATCH:
dd41f596 4702 case SCHED_IDLE:
1da177e4
LT
4703 ret = 0;
4704 }
4705 return ret;
4706}
4707
4708/**
4709 * sys_sched_rr_get_interval - return the default timeslice of a process.
4710 * @pid: pid of the process.
4711 * @interval: userspace pointer to the timeslice value.
4712 *
4713 * this syscall writes the default timeslice value of a given process
4714 * into the user-space timespec buffer. A value of '0' means infinity.
4715 */
4716asmlinkage
4717long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4718{
36c8b586 4719 struct task_struct *p;
1da177e4
LT
4720 int retval = -EINVAL;
4721 struct timespec t;
1da177e4
LT
4722
4723 if (pid < 0)
4724 goto out_nounlock;
4725
4726 retval = -ESRCH;
4727 read_lock(&tasklist_lock);
4728 p = find_process_by_pid(pid);
4729 if (!p)
4730 goto out_unlock;
4731
4732 retval = security_task_getscheduler(p);
4733 if (retval)
4734 goto out_unlock;
4735
b78709cf 4736 jiffies_to_timespec(p->policy == SCHED_FIFO ?
dd41f596 4737 0 : static_prio_timeslice(p->static_prio), &t);
1da177e4
LT
4738 read_unlock(&tasklist_lock);
4739 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4740out_nounlock:
4741 return retval;
4742out_unlock:
4743 read_unlock(&tasklist_lock);
4744 return retval;
4745}
4746
2ed6e34f 4747static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4748
4749static void show_task(struct task_struct *p)
1da177e4 4750{
1da177e4 4751 unsigned long free = 0;
36c8b586 4752 unsigned state;
1da177e4 4753
1da177e4 4754 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4755 printk("%-13.13s %c", p->comm,
4756 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4757#if BITS_PER_LONG == 32
1da177e4 4758 if (state == TASK_RUNNING)
4bd77321 4759 printk(" running ");
1da177e4 4760 else
4bd77321 4761 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4762#else
4763 if (state == TASK_RUNNING)
4bd77321 4764 printk(" running task ");
1da177e4
LT
4765 else
4766 printk(" %016lx ", thread_saved_pc(p));
4767#endif
4768#ifdef CONFIG_DEBUG_STACK_USAGE
4769 {
10ebffde 4770 unsigned long *n = end_of_stack(p);
1da177e4
LT
4771 while (!*n)
4772 n++;
10ebffde 4773 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4774 }
4775#endif
4bd77321 4776 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4777
4778 if (state != TASK_RUNNING)
4779 show_stack(p, NULL);
4780}
4781
e59e2ae2 4782void show_state_filter(unsigned long state_filter)
1da177e4 4783{
36c8b586 4784 struct task_struct *g, *p;
1da177e4 4785
4bd77321
IM
4786#if BITS_PER_LONG == 32
4787 printk(KERN_INFO
4788 " task PC stack pid father\n");
1da177e4 4789#else
4bd77321
IM
4790 printk(KERN_INFO
4791 " task PC stack pid father\n");
1da177e4
LT
4792#endif
4793 read_lock(&tasklist_lock);
4794 do_each_thread(g, p) {
4795 /*
4796 * reset the NMI-timeout, listing all files on a slow
4797 * console might take alot of time:
4798 */
4799 touch_nmi_watchdog();
39bc89fd 4800 if (!state_filter || (p->state & state_filter))
e59e2ae2 4801 show_task(p);
1da177e4
LT
4802 } while_each_thread(g, p);
4803
04c9167f
JF
4804 touch_all_softlockup_watchdogs();
4805
dd41f596
IM
4806#ifdef CONFIG_SCHED_DEBUG
4807 sysrq_sched_debug_show();
4808#endif
1da177e4 4809 read_unlock(&tasklist_lock);
e59e2ae2
IM
4810 /*
4811 * Only show locks if all tasks are dumped:
4812 */
4813 if (state_filter == -1)
4814 debug_show_all_locks();
1da177e4
LT
4815}
4816
1df21055
IM
4817void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4818{
dd41f596 4819 idle->sched_class = &idle_sched_class;
1df21055
IM
4820}
4821
f340c0d1
IM
4822/**
4823 * init_idle - set up an idle thread for a given CPU
4824 * @idle: task in question
4825 * @cpu: cpu the idle task belongs to
4826 *
4827 * NOTE: this function does not set the idle thread's NEED_RESCHED
4828 * flag, to make booting more robust.
4829 */
5c1e1767 4830void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4831{
70b97a7f 4832 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4833 unsigned long flags;
4834
dd41f596
IM
4835 __sched_fork(idle);
4836 idle->se.exec_start = sched_clock();
4837
b29739f9 4838 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4839 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4840 __set_task_cpu(idle, cpu);
1da177e4
LT
4841
4842 spin_lock_irqsave(&rq->lock, flags);
4843 rq->curr = rq->idle = idle;
4866cde0
NP
4844#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4845 idle->oncpu = 1;
4846#endif
1da177e4
LT
4847 spin_unlock_irqrestore(&rq->lock, flags);
4848
4849 /* Set the preempt count _outside_ the spinlocks! */
4850#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4851 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4852#else
a1261f54 4853 task_thread_info(idle)->preempt_count = 0;
1da177e4 4854#endif
dd41f596
IM
4855 /*
4856 * The idle tasks have their own, simple scheduling class:
4857 */
4858 idle->sched_class = &idle_sched_class;
1da177e4
LT
4859}
4860
4861/*
4862 * In a system that switches off the HZ timer nohz_cpu_mask
4863 * indicates which cpus entered this state. This is used
4864 * in the rcu update to wait only for active cpus. For system
4865 * which do not switch off the HZ timer nohz_cpu_mask should
4866 * always be CPU_MASK_NONE.
4867 */
4868cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4869
4870#ifdef CONFIG_SMP
4871/*
4872 * This is how migration works:
4873 *
70b97a7f 4874 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4875 * runqueue and wake up that CPU's migration thread.
4876 * 2) we down() the locked semaphore => thread blocks.
4877 * 3) migration thread wakes up (implicitly it forces the migrated
4878 * thread off the CPU)
4879 * 4) it gets the migration request and checks whether the migrated
4880 * task is still in the wrong runqueue.
4881 * 5) if it's in the wrong runqueue then the migration thread removes
4882 * it and puts it into the right queue.
4883 * 6) migration thread up()s the semaphore.
4884 * 7) we wake up and the migration is done.
4885 */
4886
4887/*
4888 * Change a given task's CPU affinity. Migrate the thread to a
4889 * proper CPU and schedule it away if the CPU it's executing on
4890 * is removed from the allowed bitmask.
4891 *
4892 * NOTE: the caller must have a valid reference to the task, the
4893 * task must not exit() & deallocate itself prematurely. The
4894 * call is not atomic; no spinlocks may be held.
4895 */
36c8b586 4896int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4897{
70b97a7f 4898 struct migration_req req;
1da177e4 4899 unsigned long flags;
70b97a7f 4900 struct rq *rq;
48f24c4d 4901 int ret = 0;
1da177e4
LT
4902
4903 rq = task_rq_lock(p, &flags);
4904 if (!cpus_intersects(new_mask, cpu_online_map)) {
4905 ret = -EINVAL;
4906 goto out;
4907 }
4908
4909 p->cpus_allowed = new_mask;
4910 /* Can the task run on the task's current CPU? If so, we're done */
4911 if (cpu_isset(task_cpu(p), new_mask))
4912 goto out;
4913
4914 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4915 /* Need help from migration thread: drop lock and wait. */
4916 task_rq_unlock(rq, &flags);
4917 wake_up_process(rq->migration_thread);
4918 wait_for_completion(&req.done);
4919 tlb_migrate_finish(p->mm);
4920 return 0;
4921 }
4922out:
4923 task_rq_unlock(rq, &flags);
48f24c4d 4924
1da177e4
LT
4925 return ret;
4926}
1da177e4
LT
4927EXPORT_SYMBOL_GPL(set_cpus_allowed);
4928
4929/*
4930 * Move (not current) task off this cpu, onto dest cpu. We're doing
4931 * this because either it can't run here any more (set_cpus_allowed()
4932 * away from this CPU, or CPU going down), or because we're
4933 * attempting to rebalance this task on exec (sched_exec).
4934 *
4935 * So we race with normal scheduler movements, but that's OK, as long
4936 * as the task is no longer on this CPU.
efc30814
KK
4937 *
4938 * Returns non-zero if task was successfully migrated.
1da177e4 4939 */
efc30814 4940static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4941{
70b97a7f 4942 struct rq *rq_dest, *rq_src;
dd41f596 4943 int ret = 0, on_rq;
1da177e4
LT
4944
4945 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4946 return ret;
1da177e4
LT
4947
4948 rq_src = cpu_rq(src_cpu);
4949 rq_dest = cpu_rq(dest_cpu);
4950
4951 double_rq_lock(rq_src, rq_dest);
4952 /* Already moved. */
4953 if (task_cpu(p) != src_cpu)
4954 goto out;
4955 /* Affinity changed (again). */
4956 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4957 goto out;
4958
dd41f596 4959 on_rq = p->se.on_rq;
6e82a3be 4960 if (on_rq)
2e1cb74a 4961 deactivate_task(rq_src, p, 0);
6e82a3be 4962
1da177e4 4963 set_task_cpu(p, dest_cpu);
dd41f596
IM
4964 if (on_rq) {
4965 activate_task(rq_dest, p, 0);
4966 check_preempt_curr(rq_dest, p);
1da177e4 4967 }
efc30814 4968 ret = 1;
1da177e4
LT
4969out:
4970 double_rq_unlock(rq_src, rq_dest);
efc30814 4971 return ret;
1da177e4
LT
4972}
4973
4974/*
4975 * migration_thread - this is a highprio system thread that performs
4976 * thread migration by bumping thread off CPU then 'pushing' onto
4977 * another runqueue.
4978 */
95cdf3b7 4979static int migration_thread(void *data)
1da177e4 4980{
1da177e4 4981 int cpu = (long)data;
70b97a7f 4982 struct rq *rq;
1da177e4
LT
4983
4984 rq = cpu_rq(cpu);
4985 BUG_ON(rq->migration_thread != current);
4986
4987 set_current_state(TASK_INTERRUPTIBLE);
4988 while (!kthread_should_stop()) {
70b97a7f 4989 struct migration_req *req;
1da177e4 4990 struct list_head *head;
1da177e4 4991
1da177e4
LT
4992 spin_lock_irq(&rq->lock);
4993
4994 if (cpu_is_offline(cpu)) {
4995 spin_unlock_irq(&rq->lock);
4996 goto wait_to_die;
4997 }
4998
4999 if (rq->active_balance) {
5000 active_load_balance(rq, cpu);
5001 rq->active_balance = 0;
5002 }
5003
5004 head = &rq->migration_queue;
5005
5006 if (list_empty(head)) {
5007 spin_unlock_irq(&rq->lock);
5008 schedule();
5009 set_current_state(TASK_INTERRUPTIBLE);
5010 continue;
5011 }
70b97a7f 5012 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5013 list_del_init(head->next);
5014
674311d5
NP
5015 spin_unlock(&rq->lock);
5016 __migrate_task(req->task, cpu, req->dest_cpu);
5017 local_irq_enable();
1da177e4
LT
5018
5019 complete(&req->done);
5020 }
5021 __set_current_state(TASK_RUNNING);
5022 return 0;
5023
5024wait_to_die:
5025 /* Wait for kthread_stop */
5026 set_current_state(TASK_INTERRUPTIBLE);
5027 while (!kthread_should_stop()) {
5028 schedule();
5029 set_current_state(TASK_INTERRUPTIBLE);
5030 }
5031 __set_current_state(TASK_RUNNING);
5032 return 0;
5033}
5034
5035#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5036/*
5037 * Figure out where task on dead CPU should go, use force if neccessary.
5038 * NOTE: interrupts should be disabled by the caller
5039 */
48f24c4d 5040static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5041{
efc30814 5042 unsigned long flags;
1da177e4 5043 cpumask_t mask;
70b97a7f
IM
5044 struct rq *rq;
5045 int dest_cpu;
1da177e4 5046
efc30814 5047restart:
1da177e4
LT
5048 /* On same node? */
5049 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5050 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5051 dest_cpu = any_online_cpu(mask);
5052
5053 /* On any allowed CPU? */
5054 if (dest_cpu == NR_CPUS)
48f24c4d 5055 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5056
5057 /* No more Mr. Nice Guy. */
5058 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5059 rq = task_rq_lock(p, &flags);
5060 cpus_setall(p->cpus_allowed);
5061 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5062 task_rq_unlock(rq, &flags);
1da177e4
LT
5063
5064 /*
5065 * Don't tell them about moving exiting tasks or
5066 * kernel threads (both mm NULL), since they never
5067 * leave kernel.
5068 */
48f24c4d 5069 if (p->mm && printk_ratelimit())
1da177e4
LT
5070 printk(KERN_INFO "process %d (%s) no "
5071 "longer affine to cpu%d\n",
48f24c4d 5072 p->pid, p->comm, dead_cpu);
1da177e4 5073 }
48f24c4d 5074 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5075 goto restart;
1da177e4
LT
5076}
5077
5078/*
5079 * While a dead CPU has no uninterruptible tasks queued at this point,
5080 * it might still have a nonzero ->nr_uninterruptible counter, because
5081 * for performance reasons the counter is not stricly tracking tasks to
5082 * their home CPUs. So we just add the counter to another CPU's counter,
5083 * to keep the global sum constant after CPU-down:
5084 */
70b97a7f 5085static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5086{
70b97a7f 5087 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5088 unsigned long flags;
5089
5090 local_irq_save(flags);
5091 double_rq_lock(rq_src, rq_dest);
5092 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5093 rq_src->nr_uninterruptible = 0;
5094 double_rq_unlock(rq_src, rq_dest);
5095 local_irq_restore(flags);
5096}
5097
5098/* Run through task list and migrate tasks from the dead cpu. */
5099static void migrate_live_tasks(int src_cpu)
5100{
48f24c4d 5101 struct task_struct *p, *t;
1da177e4
LT
5102
5103 write_lock_irq(&tasklist_lock);
5104
48f24c4d
IM
5105 do_each_thread(t, p) {
5106 if (p == current)
1da177e4
LT
5107 continue;
5108
48f24c4d
IM
5109 if (task_cpu(p) == src_cpu)
5110 move_task_off_dead_cpu(src_cpu, p);
5111 } while_each_thread(t, p);
1da177e4
LT
5112
5113 write_unlock_irq(&tasklist_lock);
5114}
5115
dd41f596
IM
5116/*
5117 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5118 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5119 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5120 */
5121void sched_idle_next(void)
5122{
48f24c4d 5123 int this_cpu = smp_processor_id();
70b97a7f 5124 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5125 struct task_struct *p = rq->idle;
5126 unsigned long flags;
5127
5128 /* cpu has to be offline */
48f24c4d 5129 BUG_ON(cpu_online(this_cpu));
1da177e4 5130
48f24c4d
IM
5131 /*
5132 * Strictly not necessary since rest of the CPUs are stopped by now
5133 * and interrupts disabled on the current cpu.
1da177e4
LT
5134 */
5135 spin_lock_irqsave(&rq->lock, flags);
5136
dd41f596 5137 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5138
5139 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5140 activate_idle_task(p, rq);
1da177e4
LT
5141
5142 spin_unlock_irqrestore(&rq->lock, flags);
5143}
5144
48f24c4d
IM
5145/*
5146 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5147 * offline.
5148 */
5149void idle_task_exit(void)
5150{
5151 struct mm_struct *mm = current->active_mm;
5152
5153 BUG_ON(cpu_online(smp_processor_id()));
5154
5155 if (mm != &init_mm)
5156 switch_mm(mm, &init_mm, current);
5157 mmdrop(mm);
5158}
5159
054b9108 5160/* called under rq->lock with disabled interrupts */
36c8b586 5161static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5162{
70b97a7f 5163 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5164
5165 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5166 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5167
5168 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5169 BUG_ON(p->state == TASK_DEAD);
1da177e4 5170
48f24c4d 5171 get_task_struct(p);
1da177e4
LT
5172
5173 /*
5174 * Drop lock around migration; if someone else moves it,
5175 * that's OK. No task can be added to this CPU, so iteration is
5176 * fine.
054b9108 5177 * NOTE: interrupts should be left disabled --dev@
1da177e4 5178 */
054b9108 5179 spin_unlock(&rq->lock);
48f24c4d 5180 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5181 spin_lock(&rq->lock);
1da177e4 5182
48f24c4d 5183 put_task_struct(p);
1da177e4
LT
5184}
5185
5186/* release_task() removes task from tasklist, so we won't find dead tasks. */
5187static void migrate_dead_tasks(unsigned int dead_cpu)
5188{
70b97a7f 5189 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5190 struct task_struct *next;
48f24c4d 5191
dd41f596
IM
5192 for ( ; ; ) {
5193 if (!rq->nr_running)
5194 break;
a8e504d2 5195 update_rq_clock(rq);
ff95f3df 5196 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5197 if (!next)
5198 break;
5199 migrate_dead(dead_cpu, next);
e692ab53 5200
1da177e4
LT
5201 }
5202}
5203#endif /* CONFIG_HOTPLUG_CPU */
5204
e692ab53
NP
5205#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5206
5207static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5208 {
5209 .procname = "sched_domain",
c57baf1e 5210 .mode = 0555,
e0361851 5211 },
e692ab53
NP
5212 {0,},
5213};
5214
5215static struct ctl_table sd_ctl_root[] = {
e0361851 5216 {
c57baf1e 5217 .ctl_name = CTL_KERN,
e0361851 5218 .procname = "kernel",
c57baf1e 5219 .mode = 0555,
e0361851
AD
5220 .child = sd_ctl_dir,
5221 },
e692ab53
NP
5222 {0,},
5223};
5224
5225static struct ctl_table *sd_alloc_ctl_entry(int n)
5226{
5227 struct ctl_table *entry =
5228 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5229
5230 BUG_ON(!entry);
5231 memset(entry, 0, n * sizeof(struct ctl_table));
5232
5233 return entry;
5234}
5235
5236static void
e0361851 5237set_table_entry(struct ctl_table *entry,
e692ab53
NP
5238 const char *procname, void *data, int maxlen,
5239 mode_t mode, proc_handler *proc_handler)
5240{
e692ab53
NP
5241 entry->procname = procname;
5242 entry->data = data;
5243 entry->maxlen = maxlen;
5244 entry->mode = mode;
5245 entry->proc_handler = proc_handler;
5246}
5247
5248static struct ctl_table *
5249sd_alloc_ctl_domain_table(struct sched_domain *sd)
5250{
5251 struct ctl_table *table = sd_alloc_ctl_entry(14);
5252
e0361851 5253 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5254 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5255 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5256 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5257 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5258 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5259 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5260 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5261 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5262 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5263 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5264 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5265 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5266 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5267 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5268 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5269 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5270 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5271 set_table_entry(&table[10], "cache_nice_tries",
e692ab53
NP
5272 &sd->cache_nice_tries,
5273 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5274 set_table_entry(&table[12], "flags", &sd->flags,
e692ab53
NP
5275 sizeof(int), 0644, proc_dointvec_minmax);
5276
5277 return table;
5278}
5279
5280static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5281{
5282 struct ctl_table *entry, *table;
5283 struct sched_domain *sd;
5284 int domain_num = 0, i;
5285 char buf[32];
5286
5287 for_each_domain(cpu, sd)
5288 domain_num++;
5289 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5290
5291 i = 0;
5292 for_each_domain(cpu, sd) {
5293 snprintf(buf, 32, "domain%d", i);
e692ab53 5294 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5295 entry->mode = 0555;
e692ab53
NP
5296 entry->child = sd_alloc_ctl_domain_table(sd);
5297 entry++;
5298 i++;
5299 }
5300 return table;
5301}
5302
5303static struct ctl_table_header *sd_sysctl_header;
5304static void init_sched_domain_sysctl(void)
5305{
5306 int i, cpu_num = num_online_cpus();
5307 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5308 char buf[32];
5309
5310 sd_ctl_dir[0].child = entry;
5311
5312 for (i = 0; i < cpu_num; i++, entry++) {
5313 snprintf(buf, 32, "cpu%d", i);
e692ab53 5314 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5315 entry->mode = 0555;
e692ab53
NP
5316 entry->child = sd_alloc_ctl_cpu_table(i);
5317 }
5318 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5319}
5320#else
5321static void init_sched_domain_sysctl(void)
5322{
5323}
5324#endif
5325
1da177e4
LT
5326/*
5327 * migration_call - callback that gets triggered when a CPU is added.
5328 * Here we can start up the necessary migration thread for the new CPU.
5329 */
48f24c4d
IM
5330static int __cpuinit
5331migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5332{
1da177e4 5333 struct task_struct *p;
48f24c4d 5334 int cpu = (long)hcpu;
1da177e4 5335 unsigned long flags;
70b97a7f 5336 struct rq *rq;
1da177e4
LT
5337
5338 switch (action) {
5be9361c
GS
5339 case CPU_LOCK_ACQUIRE:
5340 mutex_lock(&sched_hotcpu_mutex);
5341 break;
5342
1da177e4 5343 case CPU_UP_PREPARE:
8bb78442 5344 case CPU_UP_PREPARE_FROZEN:
dd41f596 5345 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5346 if (IS_ERR(p))
5347 return NOTIFY_BAD;
1da177e4
LT
5348 kthread_bind(p, cpu);
5349 /* Must be high prio: stop_machine expects to yield to it. */
5350 rq = task_rq_lock(p, &flags);
dd41f596 5351 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5352 task_rq_unlock(rq, &flags);
5353 cpu_rq(cpu)->migration_thread = p;
5354 break;
48f24c4d 5355
1da177e4 5356 case CPU_ONLINE:
8bb78442 5357 case CPU_ONLINE_FROZEN:
1da177e4
LT
5358 /* Strictly unneccessary, as first user will wake it. */
5359 wake_up_process(cpu_rq(cpu)->migration_thread);
5360 break;
48f24c4d 5361
1da177e4
LT
5362#ifdef CONFIG_HOTPLUG_CPU
5363 case CPU_UP_CANCELED:
8bb78442 5364 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5365 if (!cpu_rq(cpu)->migration_thread)
5366 break;
1da177e4 5367 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5368 kthread_bind(cpu_rq(cpu)->migration_thread,
5369 any_online_cpu(cpu_online_map));
1da177e4
LT
5370 kthread_stop(cpu_rq(cpu)->migration_thread);
5371 cpu_rq(cpu)->migration_thread = NULL;
5372 break;
48f24c4d 5373
1da177e4 5374 case CPU_DEAD:
8bb78442 5375 case CPU_DEAD_FROZEN:
1da177e4
LT
5376 migrate_live_tasks(cpu);
5377 rq = cpu_rq(cpu);
5378 kthread_stop(rq->migration_thread);
5379 rq->migration_thread = NULL;
5380 /* Idle task back to normal (off runqueue, low prio) */
5381 rq = task_rq_lock(rq->idle, &flags);
a8e504d2 5382 update_rq_clock(rq);
2e1cb74a 5383 deactivate_task(rq, rq->idle, 0);
1da177e4 5384 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5385 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5386 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5387 migrate_dead_tasks(cpu);
5388 task_rq_unlock(rq, &flags);
5389 migrate_nr_uninterruptible(rq);
5390 BUG_ON(rq->nr_running != 0);
5391
5392 /* No need to migrate the tasks: it was best-effort if
5be9361c 5393 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5394 * the requestors. */
5395 spin_lock_irq(&rq->lock);
5396 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5397 struct migration_req *req;
5398
1da177e4 5399 req = list_entry(rq->migration_queue.next,
70b97a7f 5400 struct migration_req, list);
1da177e4
LT
5401 list_del_init(&req->list);
5402 complete(&req->done);
5403 }
5404 spin_unlock_irq(&rq->lock);
5405 break;
5406#endif
5be9361c
GS
5407 case CPU_LOCK_RELEASE:
5408 mutex_unlock(&sched_hotcpu_mutex);
5409 break;
1da177e4
LT
5410 }
5411 return NOTIFY_OK;
5412}
5413
5414/* Register at highest priority so that task migration (migrate_all_tasks)
5415 * happens before everything else.
5416 */
26c2143b 5417static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5418 .notifier_call = migration_call,
5419 .priority = 10
5420};
5421
5422int __init migration_init(void)
5423{
5424 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5425 int err;
48f24c4d
IM
5426
5427 /* Start one for the boot CPU: */
07dccf33
AM
5428 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5429 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5430 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5431 register_cpu_notifier(&migration_notifier);
48f24c4d 5432
1da177e4
LT
5433 return 0;
5434}
5435#endif
5436
5437#ifdef CONFIG_SMP
476f3534
CL
5438
5439/* Number of possible processor ids */
5440int nr_cpu_ids __read_mostly = NR_CPUS;
5441EXPORT_SYMBOL(nr_cpu_ids);
5442
1a20ff27 5443#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5444#ifdef SCHED_DOMAIN_DEBUG
5445static void sched_domain_debug(struct sched_domain *sd, int cpu)
5446{
5447 int level = 0;
5448
41c7ce9a
NP
5449 if (!sd) {
5450 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5451 return;
5452 }
5453
1da177e4
LT
5454 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5455
5456 do {
5457 int i;
5458 char str[NR_CPUS];
5459 struct sched_group *group = sd->groups;
5460 cpumask_t groupmask;
5461
5462 cpumask_scnprintf(str, NR_CPUS, sd->span);
5463 cpus_clear(groupmask);
5464
5465 printk(KERN_DEBUG);
5466 for (i = 0; i < level + 1; i++)
5467 printk(" ");
5468 printk("domain %d: ", level);
5469
5470 if (!(sd->flags & SD_LOAD_BALANCE)) {
5471 printk("does not load-balance\n");
5472 if (sd->parent)
33859f7f
MOS
5473 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5474 " has parent");
1da177e4
LT
5475 break;
5476 }
5477
5478 printk("span %s\n", str);
5479
5480 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5481 printk(KERN_ERR "ERROR: domain->span does not contain "
5482 "CPU%d\n", cpu);
1da177e4 5483 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5484 printk(KERN_ERR "ERROR: domain->groups does not contain"
5485 " CPU%d\n", cpu);
1da177e4
LT
5486
5487 printk(KERN_DEBUG);
5488 for (i = 0; i < level + 2; i++)
5489 printk(" ");
5490 printk("groups:");
5491 do {
5492 if (!group) {
5493 printk("\n");
5494 printk(KERN_ERR "ERROR: group is NULL\n");
5495 break;
5496 }
5497
5517d86b 5498 if (!group->__cpu_power) {
1da177e4 5499 printk("\n");
33859f7f
MOS
5500 printk(KERN_ERR "ERROR: domain->cpu_power not "
5501 "set\n");
1da177e4
LT
5502 }
5503
5504 if (!cpus_weight(group->cpumask)) {
5505 printk("\n");
5506 printk(KERN_ERR "ERROR: empty group\n");
5507 }
5508
5509 if (cpus_intersects(groupmask, group->cpumask)) {
5510 printk("\n");
5511 printk(KERN_ERR "ERROR: repeated CPUs\n");
5512 }
5513
5514 cpus_or(groupmask, groupmask, group->cpumask);
5515
5516 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5517 printk(" %s", str);
5518
5519 group = group->next;
5520 } while (group != sd->groups);
5521 printk("\n");
5522
5523 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5524 printk(KERN_ERR "ERROR: groups don't span "
5525 "domain->span\n");
1da177e4
LT
5526
5527 level++;
5528 sd = sd->parent;
33859f7f
MOS
5529 if (!sd)
5530 continue;
1da177e4 5531
33859f7f
MOS
5532 if (!cpus_subset(groupmask, sd->span))
5533 printk(KERN_ERR "ERROR: parent span is not a superset "
5534 "of domain->span\n");
1da177e4
LT
5535
5536 } while (sd);
5537}
5538#else
48f24c4d 5539# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5540#endif
5541
1a20ff27 5542static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5543{
5544 if (cpus_weight(sd->span) == 1)
5545 return 1;
5546
5547 /* Following flags need at least 2 groups */
5548 if (sd->flags & (SD_LOAD_BALANCE |
5549 SD_BALANCE_NEWIDLE |
5550 SD_BALANCE_FORK |
89c4710e
SS
5551 SD_BALANCE_EXEC |
5552 SD_SHARE_CPUPOWER |
5553 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5554 if (sd->groups != sd->groups->next)
5555 return 0;
5556 }
5557
5558 /* Following flags don't use groups */
5559 if (sd->flags & (SD_WAKE_IDLE |
5560 SD_WAKE_AFFINE |
5561 SD_WAKE_BALANCE))
5562 return 0;
5563
5564 return 1;
5565}
5566
48f24c4d
IM
5567static int
5568sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5569{
5570 unsigned long cflags = sd->flags, pflags = parent->flags;
5571
5572 if (sd_degenerate(parent))
5573 return 1;
5574
5575 if (!cpus_equal(sd->span, parent->span))
5576 return 0;
5577
5578 /* Does parent contain flags not in child? */
5579 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5580 if (cflags & SD_WAKE_AFFINE)
5581 pflags &= ~SD_WAKE_BALANCE;
5582 /* Flags needing groups don't count if only 1 group in parent */
5583 if (parent->groups == parent->groups->next) {
5584 pflags &= ~(SD_LOAD_BALANCE |
5585 SD_BALANCE_NEWIDLE |
5586 SD_BALANCE_FORK |
89c4710e
SS
5587 SD_BALANCE_EXEC |
5588 SD_SHARE_CPUPOWER |
5589 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5590 }
5591 if (~cflags & pflags)
5592 return 0;
5593
5594 return 1;
5595}
5596
1da177e4
LT
5597/*
5598 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5599 * hold the hotplug lock.
5600 */
9c1cfda2 5601static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5602{
70b97a7f 5603 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5604 struct sched_domain *tmp;
5605
5606 /* Remove the sched domains which do not contribute to scheduling. */
5607 for (tmp = sd; tmp; tmp = tmp->parent) {
5608 struct sched_domain *parent = tmp->parent;
5609 if (!parent)
5610 break;
1a848870 5611 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5612 tmp->parent = parent->parent;
1a848870
SS
5613 if (parent->parent)
5614 parent->parent->child = tmp;
5615 }
245af2c7
SS
5616 }
5617
1a848870 5618 if (sd && sd_degenerate(sd)) {
245af2c7 5619 sd = sd->parent;
1a848870
SS
5620 if (sd)
5621 sd->child = NULL;
5622 }
1da177e4
LT
5623
5624 sched_domain_debug(sd, cpu);
5625
674311d5 5626 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5627}
5628
5629/* cpus with isolated domains */
67af63a6 5630static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5631
5632/* Setup the mask of cpus configured for isolated domains */
5633static int __init isolated_cpu_setup(char *str)
5634{
5635 int ints[NR_CPUS], i;
5636
5637 str = get_options(str, ARRAY_SIZE(ints), ints);
5638 cpus_clear(cpu_isolated_map);
5639 for (i = 1; i <= ints[0]; i++)
5640 if (ints[i] < NR_CPUS)
5641 cpu_set(ints[i], cpu_isolated_map);
5642 return 1;
5643}
5644
5645__setup ("isolcpus=", isolated_cpu_setup);
5646
5647/*
6711cab4
SS
5648 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5649 * to a function which identifies what group(along with sched group) a CPU
5650 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5651 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5652 *
5653 * init_sched_build_groups will build a circular linked list of the groups
5654 * covered by the given span, and will set each group's ->cpumask correctly,
5655 * and ->cpu_power to 0.
5656 */
a616058b 5657static void
6711cab4
SS
5658init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5659 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5660 struct sched_group **sg))
1da177e4
LT
5661{
5662 struct sched_group *first = NULL, *last = NULL;
5663 cpumask_t covered = CPU_MASK_NONE;
5664 int i;
5665
5666 for_each_cpu_mask(i, span) {
6711cab4
SS
5667 struct sched_group *sg;
5668 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5669 int j;
5670
5671 if (cpu_isset(i, covered))
5672 continue;
5673
5674 sg->cpumask = CPU_MASK_NONE;
5517d86b 5675 sg->__cpu_power = 0;
1da177e4
LT
5676
5677 for_each_cpu_mask(j, span) {
6711cab4 5678 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5679 continue;
5680
5681 cpu_set(j, covered);
5682 cpu_set(j, sg->cpumask);
5683 }
5684 if (!first)
5685 first = sg;
5686 if (last)
5687 last->next = sg;
5688 last = sg;
5689 }
5690 last->next = first;
5691}
5692
9c1cfda2 5693#define SD_NODES_PER_DOMAIN 16
1da177e4 5694
9c1cfda2 5695#ifdef CONFIG_NUMA
198e2f18 5696
9c1cfda2
JH
5697/**
5698 * find_next_best_node - find the next node to include in a sched_domain
5699 * @node: node whose sched_domain we're building
5700 * @used_nodes: nodes already in the sched_domain
5701 *
5702 * Find the next node to include in a given scheduling domain. Simply
5703 * finds the closest node not already in the @used_nodes map.
5704 *
5705 * Should use nodemask_t.
5706 */
5707static int find_next_best_node(int node, unsigned long *used_nodes)
5708{
5709 int i, n, val, min_val, best_node = 0;
5710
5711 min_val = INT_MAX;
5712
5713 for (i = 0; i < MAX_NUMNODES; i++) {
5714 /* Start at @node */
5715 n = (node + i) % MAX_NUMNODES;
5716
5717 if (!nr_cpus_node(n))
5718 continue;
5719
5720 /* Skip already used nodes */
5721 if (test_bit(n, used_nodes))
5722 continue;
5723
5724 /* Simple min distance search */
5725 val = node_distance(node, n);
5726
5727 if (val < min_val) {
5728 min_val = val;
5729 best_node = n;
5730 }
5731 }
5732
5733 set_bit(best_node, used_nodes);
5734 return best_node;
5735}
5736
5737/**
5738 * sched_domain_node_span - get a cpumask for a node's sched_domain
5739 * @node: node whose cpumask we're constructing
5740 * @size: number of nodes to include in this span
5741 *
5742 * Given a node, construct a good cpumask for its sched_domain to span. It
5743 * should be one that prevents unnecessary balancing, but also spreads tasks
5744 * out optimally.
5745 */
5746static cpumask_t sched_domain_node_span(int node)
5747{
9c1cfda2 5748 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5749 cpumask_t span, nodemask;
5750 int i;
9c1cfda2
JH
5751
5752 cpus_clear(span);
5753 bitmap_zero(used_nodes, MAX_NUMNODES);
5754
5755 nodemask = node_to_cpumask(node);
5756 cpus_or(span, span, nodemask);
5757 set_bit(node, used_nodes);
5758
5759 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5760 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5761
9c1cfda2
JH
5762 nodemask = node_to_cpumask(next_node);
5763 cpus_or(span, span, nodemask);
5764 }
5765
5766 return span;
5767}
5768#endif
5769
5c45bf27 5770int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5771
9c1cfda2 5772/*
48f24c4d 5773 * SMT sched-domains:
9c1cfda2 5774 */
1da177e4
LT
5775#ifdef CONFIG_SCHED_SMT
5776static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5777static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5778
6711cab4
SS
5779static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5780 struct sched_group **sg)
1da177e4 5781{
6711cab4
SS
5782 if (sg)
5783 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5784 return cpu;
5785}
5786#endif
5787
48f24c4d
IM
5788/*
5789 * multi-core sched-domains:
5790 */
1e9f28fa
SS
5791#ifdef CONFIG_SCHED_MC
5792static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5793static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5794#endif
5795
5796#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5797static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5798 struct sched_group **sg)
1e9f28fa 5799{
6711cab4 5800 int group;
a616058b
SS
5801 cpumask_t mask = cpu_sibling_map[cpu];
5802 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5803 group = first_cpu(mask);
5804 if (sg)
5805 *sg = &per_cpu(sched_group_core, group);
5806 return group;
1e9f28fa
SS
5807}
5808#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5809static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5810 struct sched_group **sg)
1e9f28fa 5811{
6711cab4
SS
5812 if (sg)
5813 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5814 return cpu;
5815}
5816#endif
5817
1da177e4 5818static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5819static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5820
6711cab4
SS
5821static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5822 struct sched_group **sg)
1da177e4 5823{
6711cab4 5824 int group;
48f24c4d 5825#ifdef CONFIG_SCHED_MC
1e9f28fa 5826 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5827 cpus_and(mask, mask, *cpu_map);
6711cab4 5828 group = first_cpu(mask);
1e9f28fa 5829#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5830 cpumask_t mask = cpu_sibling_map[cpu];
5831 cpus_and(mask, mask, *cpu_map);
6711cab4 5832 group = first_cpu(mask);
1da177e4 5833#else
6711cab4 5834 group = cpu;
1da177e4 5835#endif
6711cab4
SS
5836 if (sg)
5837 *sg = &per_cpu(sched_group_phys, group);
5838 return group;
1da177e4
LT
5839}
5840
5841#ifdef CONFIG_NUMA
1da177e4 5842/*
9c1cfda2
JH
5843 * The init_sched_build_groups can't handle what we want to do with node
5844 * groups, so roll our own. Now each node has its own list of groups which
5845 * gets dynamically allocated.
1da177e4 5846 */
9c1cfda2 5847static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5848static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5849
9c1cfda2 5850static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5851static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5852
6711cab4
SS
5853static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5854 struct sched_group **sg)
9c1cfda2 5855{
6711cab4
SS
5856 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5857 int group;
5858
5859 cpus_and(nodemask, nodemask, *cpu_map);
5860 group = first_cpu(nodemask);
5861
5862 if (sg)
5863 *sg = &per_cpu(sched_group_allnodes, group);
5864 return group;
1da177e4 5865}
6711cab4 5866
08069033
SS
5867static void init_numa_sched_groups_power(struct sched_group *group_head)
5868{
5869 struct sched_group *sg = group_head;
5870 int j;
5871
5872 if (!sg)
5873 return;
5874next_sg:
5875 for_each_cpu_mask(j, sg->cpumask) {
5876 struct sched_domain *sd;
5877
5878 sd = &per_cpu(phys_domains, j);
5879 if (j != first_cpu(sd->groups->cpumask)) {
5880 /*
5881 * Only add "power" once for each
5882 * physical package.
5883 */
5884 continue;
5885 }
5886
5517d86b 5887 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5888 }
5889 sg = sg->next;
5890 if (sg != group_head)
5891 goto next_sg;
5892}
1da177e4
LT
5893#endif
5894
a616058b 5895#ifdef CONFIG_NUMA
51888ca2
SV
5896/* Free memory allocated for various sched_group structures */
5897static void free_sched_groups(const cpumask_t *cpu_map)
5898{
a616058b 5899 int cpu, i;
51888ca2
SV
5900
5901 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5902 struct sched_group **sched_group_nodes
5903 = sched_group_nodes_bycpu[cpu];
5904
51888ca2
SV
5905 if (!sched_group_nodes)
5906 continue;
5907
5908 for (i = 0; i < MAX_NUMNODES; i++) {
5909 cpumask_t nodemask = node_to_cpumask(i);
5910 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5911
5912 cpus_and(nodemask, nodemask, *cpu_map);
5913 if (cpus_empty(nodemask))
5914 continue;
5915
5916 if (sg == NULL)
5917 continue;
5918 sg = sg->next;
5919next_sg:
5920 oldsg = sg;
5921 sg = sg->next;
5922 kfree(oldsg);
5923 if (oldsg != sched_group_nodes[i])
5924 goto next_sg;
5925 }
5926 kfree(sched_group_nodes);
5927 sched_group_nodes_bycpu[cpu] = NULL;
5928 }
51888ca2 5929}
a616058b
SS
5930#else
5931static void free_sched_groups(const cpumask_t *cpu_map)
5932{
5933}
5934#endif
51888ca2 5935
89c4710e
SS
5936/*
5937 * Initialize sched groups cpu_power.
5938 *
5939 * cpu_power indicates the capacity of sched group, which is used while
5940 * distributing the load between different sched groups in a sched domain.
5941 * Typically cpu_power for all the groups in a sched domain will be same unless
5942 * there are asymmetries in the topology. If there are asymmetries, group
5943 * having more cpu_power will pickup more load compared to the group having
5944 * less cpu_power.
5945 *
5946 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5947 * the maximum number of tasks a group can handle in the presence of other idle
5948 * or lightly loaded groups in the same sched domain.
5949 */
5950static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5951{
5952 struct sched_domain *child;
5953 struct sched_group *group;
5954
5955 WARN_ON(!sd || !sd->groups);
5956
5957 if (cpu != first_cpu(sd->groups->cpumask))
5958 return;
5959
5960 child = sd->child;
5961
5517d86b
ED
5962 sd->groups->__cpu_power = 0;
5963
89c4710e
SS
5964 /*
5965 * For perf policy, if the groups in child domain share resources
5966 * (for example cores sharing some portions of the cache hierarchy
5967 * or SMT), then set this domain groups cpu_power such that each group
5968 * can handle only one task, when there are other idle groups in the
5969 * same sched domain.
5970 */
5971 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5972 (child->flags &
5973 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 5974 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
5975 return;
5976 }
5977
89c4710e
SS
5978 /*
5979 * add cpu_power of each child group to this groups cpu_power
5980 */
5981 group = child->groups;
5982 do {
5517d86b 5983 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
5984 group = group->next;
5985 } while (group != child->groups);
5986}
5987
1da177e4 5988/*
1a20ff27
DG
5989 * Build sched domains for a given set of cpus and attach the sched domains
5990 * to the individual cpus
1da177e4 5991 */
51888ca2 5992static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5993{
5994 int i;
d1b55138
JH
5995#ifdef CONFIG_NUMA
5996 struct sched_group **sched_group_nodes = NULL;
6711cab4 5997 int sd_allnodes = 0;
d1b55138
JH
5998
5999 /*
6000 * Allocate the per-node list of sched groups
6001 */
dd41f596 6002 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 6003 GFP_KERNEL);
d1b55138
JH
6004 if (!sched_group_nodes) {
6005 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6006 return -ENOMEM;
d1b55138
JH
6007 }
6008 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6009#endif
1da177e4
LT
6010
6011 /*
1a20ff27 6012 * Set up domains for cpus specified by the cpu_map.
1da177e4 6013 */
1a20ff27 6014 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6015 struct sched_domain *sd = NULL, *p;
6016 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6017
1a20ff27 6018 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6019
6020#ifdef CONFIG_NUMA
dd41f596
IM
6021 if (cpus_weight(*cpu_map) >
6022 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6023 sd = &per_cpu(allnodes_domains, i);
6024 *sd = SD_ALLNODES_INIT;
6025 sd->span = *cpu_map;
6711cab4 6026 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6027 p = sd;
6711cab4 6028 sd_allnodes = 1;
9c1cfda2
JH
6029 } else
6030 p = NULL;
6031
1da177e4 6032 sd = &per_cpu(node_domains, i);
1da177e4 6033 *sd = SD_NODE_INIT;
9c1cfda2
JH
6034 sd->span = sched_domain_node_span(cpu_to_node(i));
6035 sd->parent = p;
1a848870
SS
6036 if (p)
6037 p->child = sd;
9c1cfda2 6038 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6039#endif
6040
6041 p = sd;
6042 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6043 *sd = SD_CPU_INIT;
6044 sd->span = nodemask;
6045 sd->parent = p;
1a848870
SS
6046 if (p)
6047 p->child = sd;
6711cab4 6048 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6049
1e9f28fa
SS
6050#ifdef CONFIG_SCHED_MC
6051 p = sd;
6052 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6053 *sd = SD_MC_INIT;
6054 sd->span = cpu_coregroup_map(i);
6055 cpus_and(sd->span, sd->span, *cpu_map);
6056 sd->parent = p;
1a848870 6057 p->child = sd;
6711cab4 6058 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6059#endif
6060
1da177e4
LT
6061#ifdef CONFIG_SCHED_SMT
6062 p = sd;
6063 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6064 *sd = SD_SIBLING_INIT;
6065 sd->span = cpu_sibling_map[i];
1a20ff27 6066 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6067 sd->parent = p;
1a848870 6068 p->child = sd;
6711cab4 6069 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6070#endif
6071 }
6072
6073#ifdef CONFIG_SCHED_SMT
6074 /* Set up CPU (sibling) groups */
9c1cfda2 6075 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6076 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6077 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6078 if (i != first_cpu(this_sibling_map))
6079 continue;
6080
dd41f596
IM
6081 init_sched_build_groups(this_sibling_map, cpu_map,
6082 &cpu_to_cpu_group);
1da177e4
LT
6083 }
6084#endif
6085
1e9f28fa
SS
6086#ifdef CONFIG_SCHED_MC
6087 /* Set up multi-core groups */
6088 for_each_cpu_mask(i, *cpu_map) {
6089 cpumask_t this_core_map = cpu_coregroup_map(i);
6090 cpus_and(this_core_map, this_core_map, *cpu_map);
6091 if (i != first_cpu(this_core_map))
6092 continue;
dd41f596
IM
6093 init_sched_build_groups(this_core_map, cpu_map,
6094 &cpu_to_core_group);
1e9f28fa
SS
6095 }
6096#endif
6097
1da177e4
LT
6098 /* Set up physical groups */
6099 for (i = 0; i < MAX_NUMNODES; i++) {
6100 cpumask_t nodemask = node_to_cpumask(i);
6101
1a20ff27 6102 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6103 if (cpus_empty(nodemask))
6104 continue;
6105
6711cab4 6106 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6107 }
6108
6109#ifdef CONFIG_NUMA
6110 /* Set up node groups */
6711cab4 6111 if (sd_allnodes)
dd41f596
IM
6112 init_sched_build_groups(*cpu_map, cpu_map,
6113 &cpu_to_allnodes_group);
9c1cfda2
JH
6114
6115 for (i = 0; i < MAX_NUMNODES; i++) {
6116 /* Set up node groups */
6117 struct sched_group *sg, *prev;
6118 cpumask_t nodemask = node_to_cpumask(i);
6119 cpumask_t domainspan;
6120 cpumask_t covered = CPU_MASK_NONE;
6121 int j;
6122
6123 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6124 if (cpus_empty(nodemask)) {
6125 sched_group_nodes[i] = NULL;
9c1cfda2 6126 continue;
d1b55138 6127 }
9c1cfda2
JH
6128
6129 domainspan = sched_domain_node_span(i);
6130 cpus_and(domainspan, domainspan, *cpu_map);
6131
15f0b676 6132 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6133 if (!sg) {
6134 printk(KERN_WARNING "Can not alloc domain group for "
6135 "node %d\n", i);
6136 goto error;
6137 }
9c1cfda2
JH
6138 sched_group_nodes[i] = sg;
6139 for_each_cpu_mask(j, nodemask) {
6140 struct sched_domain *sd;
9761eea8 6141
9c1cfda2
JH
6142 sd = &per_cpu(node_domains, j);
6143 sd->groups = sg;
9c1cfda2 6144 }
5517d86b 6145 sg->__cpu_power = 0;
9c1cfda2 6146 sg->cpumask = nodemask;
51888ca2 6147 sg->next = sg;
9c1cfda2
JH
6148 cpus_or(covered, covered, nodemask);
6149 prev = sg;
6150
6151 for (j = 0; j < MAX_NUMNODES; j++) {
6152 cpumask_t tmp, notcovered;
6153 int n = (i + j) % MAX_NUMNODES;
6154
6155 cpus_complement(notcovered, covered);
6156 cpus_and(tmp, notcovered, *cpu_map);
6157 cpus_and(tmp, tmp, domainspan);
6158 if (cpus_empty(tmp))
6159 break;
6160
6161 nodemask = node_to_cpumask(n);
6162 cpus_and(tmp, tmp, nodemask);
6163 if (cpus_empty(tmp))
6164 continue;
6165
15f0b676
SV
6166 sg = kmalloc_node(sizeof(struct sched_group),
6167 GFP_KERNEL, i);
9c1cfda2
JH
6168 if (!sg) {
6169 printk(KERN_WARNING
6170 "Can not alloc domain group for node %d\n", j);
51888ca2 6171 goto error;
9c1cfda2 6172 }
5517d86b 6173 sg->__cpu_power = 0;
9c1cfda2 6174 sg->cpumask = tmp;
51888ca2 6175 sg->next = prev->next;
9c1cfda2
JH
6176 cpus_or(covered, covered, tmp);
6177 prev->next = sg;
6178 prev = sg;
6179 }
9c1cfda2 6180 }
1da177e4
LT
6181#endif
6182
6183 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6184#ifdef CONFIG_SCHED_SMT
1a20ff27 6185 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6186 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6187
89c4710e 6188 init_sched_groups_power(i, sd);
5c45bf27 6189 }
1da177e4 6190#endif
1e9f28fa 6191#ifdef CONFIG_SCHED_MC
5c45bf27 6192 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6193 struct sched_domain *sd = &per_cpu(core_domains, i);
6194
89c4710e 6195 init_sched_groups_power(i, sd);
5c45bf27
SS
6196 }
6197#endif
1e9f28fa 6198
5c45bf27 6199 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6200 struct sched_domain *sd = &per_cpu(phys_domains, i);
6201
89c4710e 6202 init_sched_groups_power(i, sd);
1da177e4
LT
6203 }
6204
9c1cfda2 6205#ifdef CONFIG_NUMA
08069033
SS
6206 for (i = 0; i < MAX_NUMNODES; i++)
6207 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6208
6711cab4
SS
6209 if (sd_allnodes) {
6210 struct sched_group *sg;
f712c0c7 6211
6711cab4 6212 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6213 init_numa_sched_groups_power(sg);
6214 }
9c1cfda2
JH
6215#endif
6216
1da177e4 6217 /* Attach the domains */
1a20ff27 6218 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6219 struct sched_domain *sd;
6220#ifdef CONFIG_SCHED_SMT
6221 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6222#elif defined(CONFIG_SCHED_MC)
6223 sd = &per_cpu(core_domains, i);
1da177e4
LT
6224#else
6225 sd = &per_cpu(phys_domains, i);
6226#endif
6227 cpu_attach_domain(sd, i);
6228 }
51888ca2
SV
6229
6230 return 0;
6231
a616058b 6232#ifdef CONFIG_NUMA
51888ca2
SV
6233error:
6234 free_sched_groups(cpu_map);
6235 return -ENOMEM;
a616058b 6236#endif
1da177e4 6237}
1a20ff27
DG
6238/*
6239 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6240 */
51888ca2 6241static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6242{
6243 cpumask_t cpu_default_map;
51888ca2 6244 int err;
1da177e4 6245
1a20ff27
DG
6246 /*
6247 * Setup mask for cpus without special case scheduling requirements.
6248 * For now this just excludes isolated cpus, but could be used to
6249 * exclude other special cases in the future.
6250 */
6251 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6252
51888ca2
SV
6253 err = build_sched_domains(&cpu_default_map);
6254
6255 return err;
1a20ff27
DG
6256}
6257
6258static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6259{
51888ca2 6260 free_sched_groups(cpu_map);
9c1cfda2 6261}
1da177e4 6262
1a20ff27
DG
6263/*
6264 * Detach sched domains from a group of cpus specified in cpu_map
6265 * These cpus will now be attached to the NULL domain
6266 */
858119e1 6267static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6268{
6269 int i;
6270
6271 for_each_cpu_mask(i, *cpu_map)
6272 cpu_attach_domain(NULL, i);
6273 synchronize_sched();
6274 arch_destroy_sched_domains(cpu_map);
6275}
6276
6277/*
6278 * Partition sched domains as specified by the cpumasks below.
6279 * This attaches all cpus from the cpumasks to the NULL domain,
6280 * waits for a RCU quiescent period, recalculates sched
6281 * domain information and then attaches them back to the
6282 * correct sched domains
6283 * Call with hotplug lock held
6284 */
51888ca2 6285int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6286{
6287 cpumask_t change_map;
51888ca2 6288 int err = 0;
1a20ff27
DG
6289
6290 cpus_and(*partition1, *partition1, cpu_online_map);
6291 cpus_and(*partition2, *partition2, cpu_online_map);
6292 cpus_or(change_map, *partition1, *partition2);
6293
6294 /* Detach sched domains from all of the affected cpus */
6295 detach_destroy_domains(&change_map);
6296 if (!cpus_empty(*partition1))
51888ca2
SV
6297 err = build_sched_domains(partition1);
6298 if (!err && !cpus_empty(*partition2))
6299 err = build_sched_domains(partition2);
6300
6301 return err;
1a20ff27
DG
6302}
6303
5c45bf27 6304#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6305static int arch_reinit_sched_domains(void)
5c45bf27
SS
6306{
6307 int err;
6308
5be9361c 6309 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6310 detach_destroy_domains(&cpu_online_map);
6311 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6312 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6313
6314 return err;
6315}
6316
6317static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6318{
6319 int ret;
6320
6321 if (buf[0] != '0' && buf[0] != '1')
6322 return -EINVAL;
6323
6324 if (smt)
6325 sched_smt_power_savings = (buf[0] == '1');
6326 else
6327 sched_mc_power_savings = (buf[0] == '1');
6328
6329 ret = arch_reinit_sched_domains();
6330
6331 return ret ? ret : count;
6332}
6333
5c45bf27
SS
6334#ifdef CONFIG_SCHED_MC
6335static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6336{
6337 return sprintf(page, "%u\n", sched_mc_power_savings);
6338}
48f24c4d
IM
6339static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6340 const char *buf, size_t count)
5c45bf27
SS
6341{
6342 return sched_power_savings_store(buf, count, 0);
6343}
6707de00
AB
6344static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6345 sched_mc_power_savings_store);
5c45bf27
SS
6346#endif
6347
6348#ifdef CONFIG_SCHED_SMT
6349static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6350{
6351 return sprintf(page, "%u\n", sched_smt_power_savings);
6352}
48f24c4d
IM
6353static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6354 const char *buf, size_t count)
5c45bf27
SS
6355{
6356 return sched_power_savings_store(buf, count, 1);
6357}
6707de00
AB
6358static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6359 sched_smt_power_savings_store);
6360#endif
6361
6362int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6363{
6364 int err = 0;
6365
6366#ifdef CONFIG_SCHED_SMT
6367 if (smt_capable())
6368 err = sysfs_create_file(&cls->kset.kobj,
6369 &attr_sched_smt_power_savings.attr);
6370#endif
6371#ifdef CONFIG_SCHED_MC
6372 if (!err && mc_capable())
6373 err = sysfs_create_file(&cls->kset.kobj,
6374 &attr_sched_mc_power_savings.attr);
6375#endif
6376 return err;
6377}
5c45bf27
SS
6378#endif
6379
1da177e4
LT
6380/*
6381 * Force a reinitialization of the sched domains hierarchy. The domains
6382 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6383 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6384 * which will prevent rebalancing while the sched domains are recalculated.
6385 */
6386static int update_sched_domains(struct notifier_block *nfb,
6387 unsigned long action, void *hcpu)
6388{
1da177e4
LT
6389 switch (action) {
6390 case CPU_UP_PREPARE:
8bb78442 6391 case CPU_UP_PREPARE_FROZEN:
1da177e4 6392 case CPU_DOWN_PREPARE:
8bb78442 6393 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6394 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6395 return NOTIFY_OK;
6396
6397 case CPU_UP_CANCELED:
8bb78442 6398 case CPU_UP_CANCELED_FROZEN:
1da177e4 6399 case CPU_DOWN_FAILED:
8bb78442 6400 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6401 case CPU_ONLINE:
8bb78442 6402 case CPU_ONLINE_FROZEN:
1da177e4 6403 case CPU_DEAD:
8bb78442 6404 case CPU_DEAD_FROZEN:
1da177e4
LT
6405 /*
6406 * Fall through and re-initialise the domains.
6407 */
6408 break;
6409 default:
6410 return NOTIFY_DONE;
6411 }
6412
6413 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6414 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6415
6416 return NOTIFY_OK;
6417}
1da177e4
LT
6418
6419void __init sched_init_smp(void)
6420{
5c1e1767
NP
6421 cpumask_t non_isolated_cpus;
6422
5be9361c 6423 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6424 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6425 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6426 if (cpus_empty(non_isolated_cpus))
6427 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6428 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6429 /* XXX: Theoretical race here - CPU may be hotplugged now */
6430 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6431
e692ab53
NP
6432 init_sched_domain_sysctl();
6433
5c1e1767
NP
6434 /* Move init over to a non-isolated CPU */
6435 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6436 BUG();
1da177e4
LT
6437}
6438#else
6439void __init sched_init_smp(void)
6440{
6441}
6442#endif /* CONFIG_SMP */
6443
6444int in_sched_functions(unsigned long addr)
6445{
6446 /* Linker adds these: start and end of __sched functions */
6447 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6448
1da177e4
LT
6449 return in_lock_functions(addr) ||
6450 (addr >= (unsigned long)__sched_text_start
6451 && addr < (unsigned long)__sched_text_end);
6452}
6453
dd41f596
IM
6454static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6455{
6456 cfs_rq->tasks_timeline = RB_ROOT;
6457 cfs_rq->fair_clock = 1;
6458#ifdef CONFIG_FAIR_GROUP_SCHED
6459 cfs_rq->rq = rq;
6460#endif
6461}
6462
1da177e4
LT
6463void __init sched_init(void)
6464{
476f3534 6465 int highest_cpu = 0;
dd41f596
IM
6466 int i, j;
6467
6468 /*
6469 * Link up the scheduling class hierarchy:
6470 */
6471 rt_sched_class.next = &fair_sched_class;
6472 fair_sched_class.next = &idle_sched_class;
6473 idle_sched_class.next = NULL;
1da177e4 6474
0a945022 6475 for_each_possible_cpu(i) {
dd41f596 6476 struct rt_prio_array *array;
70b97a7f 6477 struct rq *rq;
1da177e4
LT
6478
6479 rq = cpu_rq(i);
6480 spin_lock_init(&rq->lock);
fcb99371 6481 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6482 rq->nr_running = 0;
dd41f596
IM
6483 rq->clock = 1;
6484 init_cfs_rq(&rq->cfs, rq);
6485#ifdef CONFIG_FAIR_GROUP_SCHED
6486 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6487 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6488#endif
1da177e4 6489
dd41f596
IM
6490 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6491 rq->cpu_load[j] = 0;
1da177e4 6492#ifdef CONFIG_SMP
41c7ce9a 6493 rq->sd = NULL;
1da177e4 6494 rq->active_balance = 0;
dd41f596 6495 rq->next_balance = jiffies;
1da177e4 6496 rq->push_cpu = 0;
0a2966b4 6497 rq->cpu = i;
1da177e4
LT
6498 rq->migration_thread = NULL;
6499 INIT_LIST_HEAD(&rq->migration_queue);
6500#endif
6501 atomic_set(&rq->nr_iowait, 0);
6502
dd41f596
IM
6503 array = &rq->rt.active;
6504 for (j = 0; j < MAX_RT_PRIO; j++) {
6505 INIT_LIST_HEAD(array->queue + j);
6506 __clear_bit(j, array->bitmap);
1da177e4 6507 }
476f3534 6508 highest_cpu = i;
dd41f596
IM
6509 /* delimiter for bitsearch: */
6510 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6511 }
6512
2dd73a4f 6513 set_load_weight(&init_task);
b50f60ce 6514
e107be36
AK
6515#ifdef CONFIG_PREEMPT_NOTIFIERS
6516 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6517#endif
6518
c9819f45 6519#ifdef CONFIG_SMP
476f3534 6520 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6521 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6522#endif
6523
b50f60ce
HC
6524#ifdef CONFIG_RT_MUTEXES
6525 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6526#endif
6527
1da177e4
LT
6528 /*
6529 * The boot idle thread does lazy MMU switching as well:
6530 */
6531 atomic_inc(&init_mm.mm_count);
6532 enter_lazy_tlb(&init_mm, current);
6533
6534 /*
6535 * Make us the idle thread. Technically, schedule() should not be
6536 * called from this thread, however somewhere below it might be,
6537 * but because we are the idle thread, we just pick up running again
6538 * when this runqueue becomes "idle".
6539 */
6540 init_idle(current, smp_processor_id());
dd41f596
IM
6541 /*
6542 * During early bootup we pretend to be a normal task:
6543 */
6544 current->sched_class = &fair_sched_class;
1da177e4
LT
6545}
6546
6547#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6548void __might_sleep(char *file, int line)
6549{
48f24c4d 6550#ifdef in_atomic
1da177e4
LT
6551 static unsigned long prev_jiffy; /* ratelimiting */
6552
6553 if ((in_atomic() || irqs_disabled()) &&
6554 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6555 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6556 return;
6557 prev_jiffy = jiffies;
91368d73 6558 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6559 " context at %s:%d\n", file, line);
6560 printk("in_atomic():%d, irqs_disabled():%d\n",
6561 in_atomic(), irqs_disabled());
a4c410f0 6562 debug_show_held_locks(current);
3117df04
IM
6563 if (irqs_disabled())
6564 print_irqtrace_events(current);
1da177e4
LT
6565 dump_stack();
6566 }
6567#endif
6568}
6569EXPORT_SYMBOL(__might_sleep);
6570#endif
6571
6572#ifdef CONFIG_MAGIC_SYSRQ
6573void normalize_rt_tasks(void)
6574{
a0f98a1c 6575 struct task_struct *g, *p;
1da177e4 6576 unsigned long flags;
70b97a7f 6577 struct rq *rq;
dd41f596 6578 int on_rq;
1da177e4
LT
6579
6580 read_lock_irq(&tasklist_lock);
a0f98a1c 6581 do_each_thread(g, p) {
dd41f596
IM
6582 p->se.fair_key = 0;
6583 p->se.wait_runtime = 0;
6cfb0d5d 6584 p->se.exec_start = 0;
dd41f596 6585 p->se.wait_start_fair = 0;
6cfb0d5d
IM
6586 p->se.sleep_start_fair = 0;
6587#ifdef CONFIG_SCHEDSTATS
dd41f596 6588 p->se.wait_start = 0;
dd41f596 6589 p->se.sleep_start = 0;
dd41f596 6590 p->se.block_start = 0;
6cfb0d5d 6591#endif
dd41f596
IM
6592 task_rq(p)->cfs.fair_clock = 0;
6593 task_rq(p)->clock = 0;
6594
6595 if (!rt_task(p)) {
6596 /*
6597 * Renice negative nice level userspace
6598 * tasks back to 0:
6599 */
6600 if (TASK_NICE(p) < 0 && p->mm)
6601 set_user_nice(p, 0);
1da177e4 6602 continue;
dd41f596 6603 }
1da177e4 6604
b29739f9
IM
6605 spin_lock_irqsave(&p->pi_lock, flags);
6606 rq = __task_rq_lock(p);
dd41f596
IM
6607#ifdef CONFIG_SMP
6608 /*
6609 * Do not touch the migration thread:
6610 */
6611 if (p == rq->migration_thread)
6612 goto out_unlock;
6613#endif
1da177e4 6614
2daa3577 6615 update_rq_clock(rq);
dd41f596 6616 on_rq = p->se.on_rq;
2daa3577
IM
6617 if (on_rq)
6618 deactivate_task(rq, p, 0);
dd41f596
IM
6619 __setscheduler(rq, p, SCHED_NORMAL, 0);
6620 if (on_rq) {
2daa3577 6621 activate_task(rq, p, 0);
1da177e4
LT
6622 resched_task(rq->curr);
6623 }
dd41f596
IM
6624#ifdef CONFIG_SMP
6625 out_unlock:
6626#endif
b29739f9
IM
6627 __task_rq_unlock(rq);
6628 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6629 } while_each_thread(g, p);
6630
1da177e4
LT
6631 read_unlock_irq(&tasklist_lock);
6632}
6633
6634#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6635
6636#ifdef CONFIG_IA64
6637/*
6638 * These functions are only useful for the IA64 MCA handling.
6639 *
6640 * They can only be called when the whole system has been
6641 * stopped - every CPU needs to be quiescent, and no scheduling
6642 * activity can take place. Using them for anything else would
6643 * be a serious bug, and as a result, they aren't even visible
6644 * under any other configuration.
6645 */
6646
6647/**
6648 * curr_task - return the current task for a given cpu.
6649 * @cpu: the processor in question.
6650 *
6651 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6652 */
36c8b586 6653struct task_struct *curr_task(int cpu)
1df5c10a
LT
6654{
6655 return cpu_curr(cpu);
6656}
6657
6658/**
6659 * set_curr_task - set the current task for a given cpu.
6660 * @cpu: the processor in question.
6661 * @p: the task pointer to set.
6662 *
6663 * Description: This function must only be used when non-maskable interrupts
6664 * are serviced on a separate stack. It allows the architecture to switch the
6665 * notion of the current task on a cpu in a non-blocking manner. This function
6666 * must be called with all CPU's synchronized, and interrupts disabled, the
6667 * and caller must save the original value of the current task (see
6668 * curr_task() above) and restore that value before reenabling interrupts and
6669 * re-starting the system.
6670 *
6671 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6672 */
36c8b586 6673void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6674{
6675 cpu_curr(cpu) = p;
6676}
6677
6678#endif
This page took 0.833665 seconds and 5 git commands to generate.