sched_clock: Add local_clock() API and improve documentation
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
6e0534f2 81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
7c941438 238#ifdef CONFIG_CGROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
68318b8e 248 struct cgroup_subsys_state css;
6c415b92 249
052f1dc7 250#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
052f1dc7
PZ
256#endif
257
258#ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
d0b27fa7 262 struct rt_bandwidth rt_bandwidth;
052f1dc7 263#endif
6b2d7700 264
ae8393e5 265 struct rcu_head rcu;
6f505b16 266 struct list_head list;
f473aa5e
PZ
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
29f59db3
SV
271};
272
eff766a6 273#define root_task_group init_task_group
6f505b16 274
8ed36996 275/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
276 * a task group's cpu shares.
277 */
8ed36996 278static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 279
e9036b36
CG
280#ifdef CONFIG_FAIR_GROUP_SCHED
281
57310a98
PZ
282#ifdef CONFIG_SMP
283static int root_task_group_empty(void)
284{
285 return list_empty(&root_task_group.children);
286}
287#endif
288
052f1dc7 289# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 290
cb4ad1ff 291/*
2e084786
LJ
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
cb4ad1ff
MX
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
18d95a28 299#define MIN_SHARES 2
2e084786 300#define MAX_SHARES (1UL << 18)
18d95a28 301
052f1dc7
PZ
302static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303#endif
304
29f59db3 305/* Default task group.
3a252015 306 * Every task in system belong to this group at bootup.
29f59db3 307 */
434d53b0 308struct task_group init_task_group;
29f59db3 309
7c941438 310#endif /* CONFIG_CGROUP_SCHED */
29f59db3 311
6aa645ea
IM
312/* CFS-related fields in a runqueue */
313struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
6aa645ea 317 u64 exec_clock;
e9acbff6 318 u64 min_vruntime;
6aa645ea
IM
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
4a55bd5e
PZ
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
4793241b 330 struct sched_entity *curr, *next, *last;
ddc97297 331
5ac5c4d6 332 unsigned int nr_spread_over;
ddc97297 333
62160e3f 334#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
41a2d6cf
IM
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857
PZ
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
f1d239f7
PZ
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
c6c4927b
RR
420 cpumask_var_t span;
421 cpumask_var_t online;
637f5085 422
0eab9146 423 /*
637f5085
GH
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
c6c4927b 427 cpumask_var_t rto_mask;
0eab9146 428 atomic_t rto_count;
6e0534f2
GH
429#ifdef CONFIG_SMP
430 struct cpupri cpupri;
431#endif
57d885fe
GH
432};
433
dc938520
GH
434/*
435 * By default the system creates a single root-domain with all cpus as
436 * members (mimicking the global state we have today).
437 */
57d885fe
GH
438static struct root_domain def_root_domain;
439
440#endif
441
1da177e4
LT
442/*
443 * This is the main, per-CPU runqueue data structure.
444 *
445 * Locking rule: those places that want to lock multiple runqueues
446 * (such as the load balancing or the thread migration code), lock
447 * acquire operations must be ordered by ascending &runqueue.
448 */
70b97a7f 449struct rq {
d8016491 450 /* runqueue lock: */
05fa785c 451 raw_spinlock_t lock;
1da177e4
LT
452
453 /*
454 * nr_running and cpu_load should be in the same cacheline because
455 * remote CPUs use both these fields when doing load calculation.
456 */
457 unsigned long nr_running;
6aa645ea
IM
458 #define CPU_LOAD_IDX_MAX 5
459 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 460#ifdef CONFIG_NO_HZ
39c0cbe2 461 u64 nohz_stamp;
46cb4b7c
SS
462 unsigned char in_nohz_recently;
463#endif
a64692a3
MG
464 unsigned int skip_clock_update;
465
d8016491
IM
466 /* capture load from *all* tasks on this cpu: */
467 struct load_weight load;
6aa645ea
IM
468 unsigned long nr_load_updates;
469 u64 nr_switches;
470
471 struct cfs_rq cfs;
6f505b16 472 struct rt_rq rt;
6f505b16 473
6aa645ea 474#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
475 /* list of leaf cfs_rq on this cpu: */
476 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
477#endif
478#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 479 struct list_head leaf_rt_rq_list;
1da177e4 480#endif
1da177e4
LT
481
482 /*
483 * This is part of a global counter where only the total sum
484 * over all CPUs matters. A task can increase this counter on
485 * one CPU and if it got migrated afterwards it may decrease
486 * it on another CPU. Always updated under the runqueue lock:
487 */
488 unsigned long nr_uninterruptible;
489
36c8b586 490 struct task_struct *curr, *idle;
c9819f45 491 unsigned long next_balance;
1da177e4 492 struct mm_struct *prev_mm;
6aa645ea 493
3e51f33f 494 u64 clock;
6aa645ea 495
1da177e4
LT
496 atomic_t nr_iowait;
497
498#ifdef CONFIG_SMP
0eab9146 499 struct root_domain *rd;
1da177e4
LT
500 struct sched_domain *sd;
501
e51fd5e2
PZ
502 unsigned long cpu_power;
503
a0a522ce 504 unsigned char idle_at_tick;
1da177e4 505 /* For active balancing */
3f029d3c 506 int post_schedule;
1da177e4
LT
507 int active_balance;
508 int push_cpu;
969c7921 509 struct cpu_stop_work active_balance_work;
d8016491
IM
510 /* cpu of this runqueue: */
511 int cpu;
1f11eb6a 512 int online;
1da177e4 513
a8a51d5e 514 unsigned long avg_load_per_task;
1da177e4 515
e9e9250b
PZ
516 u64 rt_avg;
517 u64 age_stamp;
1b9508f6
MG
518 u64 idle_stamp;
519 u64 avg_idle;
1da177e4
LT
520#endif
521
dce48a84
TG
522 /* calc_load related fields */
523 unsigned long calc_load_update;
524 long calc_load_active;
525
8f4d37ec 526#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
527#ifdef CONFIG_SMP
528 int hrtick_csd_pending;
529 struct call_single_data hrtick_csd;
530#endif
8f4d37ec
PZ
531 struct hrtimer hrtick_timer;
532#endif
533
1da177e4
LT
534#ifdef CONFIG_SCHEDSTATS
535 /* latency stats */
536 struct sched_info rq_sched_info;
9c2c4802
KC
537 unsigned long long rq_cpu_time;
538 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
539
540 /* sys_sched_yield() stats */
480b9434 541 unsigned int yld_count;
1da177e4
LT
542
543 /* schedule() stats */
480b9434
KC
544 unsigned int sched_switch;
545 unsigned int sched_count;
546 unsigned int sched_goidle;
1da177e4
LT
547
548 /* try_to_wake_up() stats */
480b9434
KC
549 unsigned int ttwu_count;
550 unsigned int ttwu_local;
b8efb561
IM
551
552 /* BKL stats */
480b9434 553 unsigned int bkl_count;
1da177e4
LT
554#endif
555};
556
f34e3b61 557static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 558
7d478721
PZ
559static inline
560void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 561{
7d478721 562 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
563
564 /*
565 * A queue event has occurred, and we're going to schedule. In
566 * this case, we can save a useless back to back clock update.
567 */
568 if (test_tsk_need_resched(p))
569 rq->skip_clock_update = 1;
dd41f596
IM
570}
571
0a2966b4
CL
572static inline int cpu_of(struct rq *rq)
573{
574#ifdef CONFIG_SMP
575 return rq->cpu;
576#else
577 return 0;
578#endif
579}
580
497f0ab3 581#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
582 rcu_dereference_check((p), \
583 rcu_read_lock_sched_held() || \
584 lockdep_is_held(&sched_domains_mutex))
585
674311d5
NP
586/*
587 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 588 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
589 *
590 * The domain tree of any CPU may only be accessed from within
591 * preempt-disabled sections.
592 */
48f24c4d 593#define for_each_domain(cpu, __sd) \
497f0ab3 594 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
595
596#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
597#define this_rq() (&__get_cpu_var(runqueues))
598#define task_rq(p) cpu_rq(task_cpu(p))
599#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 600#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 601
dc61b1d6
PZ
602#ifdef CONFIG_CGROUP_SCHED
603
604/*
605 * Return the group to which this tasks belongs.
606 *
607 * We use task_subsys_state_check() and extend the RCU verification
608 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
609 * holds that lock for each task it moves into the cgroup. Therefore
610 * by holding that lock, we pin the task to the current cgroup.
611 */
612static inline struct task_group *task_group(struct task_struct *p)
613{
614 struct cgroup_subsys_state *css;
615
616 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
617 lockdep_is_held(&task_rq(p)->lock));
618 return container_of(css, struct task_group, css);
619}
620
621/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
622static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
623{
624#ifdef CONFIG_FAIR_GROUP_SCHED
625 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
626 p->se.parent = task_group(p)->se[cpu];
627#endif
628
629#ifdef CONFIG_RT_GROUP_SCHED
630 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
631 p->rt.parent = task_group(p)->rt_se[cpu];
632#endif
633}
634
635#else /* CONFIG_CGROUP_SCHED */
636
637static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
638static inline struct task_group *task_group(struct task_struct *p)
639{
640 return NULL;
641}
642
643#endif /* CONFIG_CGROUP_SCHED */
644
aa9c4c0f 645inline void update_rq_clock(struct rq *rq)
3e51f33f 646{
a64692a3
MG
647 if (!rq->skip_clock_update)
648 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
649}
650
bf5c91ba
IM
651/*
652 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
653 */
654#ifdef CONFIG_SCHED_DEBUG
655# define const_debug __read_mostly
656#else
657# define const_debug static const
658#endif
659
017730c1
IM
660/**
661 * runqueue_is_locked
e17b38bf 662 * @cpu: the processor in question.
017730c1
IM
663 *
664 * Returns true if the current cpu runqueue is locked.
665 * This interface allows printk to be called with the runqueue lock
666 * held and know whether or not it is OK to wake up the klogd.
667 */
89f19f04 668int runqueue_is_locked(int cpu)
017730c1 669{
05fa785c 670 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
671}
672
bf5c91ba
IM
673/*
674 * Debugging: various feature bits
675 */
f00b45c1
PZ
676
677#define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
679
bf5c91ba 680enum {
f00b45c1 681#include "sched_features.h"
bf5c91ba
IM
682};
683
f00b45c1
PZ
684#undef SCHED_FEAT
685
686#define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
688
bf5c91ba 689const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
690#include "sched_features.h"
691 0;
692
693#undef SCHED_FEAT
694
695#ifdef CONFIG_SCHED_DEBUG
696#define SCHED_FEAT(name, enabled) \
697 #name ,
698
983ed7a6 699static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
700#include "sched_features.h"
701 NULL
702};
703
704#undef SCHED_FEAT
705
34f3a814 706static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 707{
f00b45c1
PZ
708 int i;
709
710 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
711 if (!(sysctl_sched_features & (1UL << i)))
712 seq_puts(m, "NO_");
713 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 714 }
34f3a814 715 seq_puts(m, "\n");
f00b45c1 716
34f3a814 717 return 0;
f00b45c1
PZ
718}
719
720static ssize_t
721sched_feat_write(struct file *filp, const char __user *ubuf,
722 size_t cnt, loff_t *ppos)
723{
724 char buf[64];
725 char *cmp = buf;
726 int neg = 0;
727 int i;
728
729 if (cnt > 63)
730 cnt = 63;
731
732 if (copy_from_user(&buf, ubuf, cnt))
733 return -EFAULT;
734
735 buf[cnt] = 0;
736
c24b7c52 737 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
738 neg = 1;
739 cmp += 3;
740 }
741
742 for (i = 0; sched_feat_names[i]; i++) {
743 int len = strlen(sched_feat_names[i]);
744
745 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
751 }
752 }
753
754 if (!sched_feat_names[i])
755 return -EINVAL;
756
42994724 757 *ppos += cnt;
f00b45c1
PZ
758
759 return cnt;
760}
761
34f3a814
LZ
762static int sched_feat_open(struct inode *inode, struct file *filp)
763{
764 return single_open(filp, sched_feat_show, NULL);
765}
766
828c0950 767static const struct file_operations sched_feat_fops = {
34f3a814
LZ
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
f00b45c1
PZ
773};
774
775static __init int sched_init_debug(void)
776{
f00b45c1
PZ
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
779
780 return 0;
781}
782late_initcall(sched_init_debug);
783
784#endif
785
786#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 787
b82d9fdd
PZ
788/*
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
791 */
792const_debug unsigned int sysctl_sched_nr_migrate = 32;
793
2398f2c6
PZ
794/*
795 * ratelimit for updating the group shares.
55cd5340 796 * default: 0.25ms
2398f2c6 797 */
55cd5340 798unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 799unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 800
ffda12a1
PZ
801/*
802 * Inject some fuzzyness into changing the per-cpu group shares
803 * this avoids remote rq-locks at the expense of fairness.
804 * default: 4
805 */
806unsigned int sysctl_sched_shares_thresh = 4;
807
e9e9250b
PZ
808/*
809 * period over which we average the RT time consumption, measured
810 * in ms.
811 *
812 * default: 1s
813 */
814const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
815
fa85ae24 816/*
9f0c1e56 817 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
818 * default: 1s
819 */
9f0c1e56 820unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 821
6892b75e
IM
822static __read_mostly int scheduler_running;
823
9f0c1e56
PZ
824/*
825 * part of the period that we allow rt tasks to run in us.
826 * default: 0.95s
827 */
828int sysctl_sched_rt_runtime = 950000;
fa85ae24 829
d0b27fa7
PZ
830static inline u64 global_rt_period(void)
831{
832 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
833}
834
835static inline u64 global_rt_runtime(void)
836{
e26873bb 837 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
838 return RUNTIME_INF;
839
840 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
841}
fa85ae24 842
1da177e4 843#ifndef prepare_arch_switch
4866cde0
NP
844# define prepare_arch_switch(next) do { } while (0)
845#endif
846#ifndef finish_arch_switch
847# define finish_arch_switch(prev) do { } while (0)
848#endif
849
051a1d1a
DA
850static inline int task_current(struct rq *rq, struct task_struct *p)
851{
852 return rq->curr == p;
853}
854
4866cde0 855#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 856static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 857{
051a1d1a 858 return task_current(rq, p);
4866cde0
NP
859}
860
70b97a7f 861static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
862{
863}
864
70b97a7f 865static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 866{
da04c035
IM
867#ifdef CONFIG_DEBUG_SPINLOCK
868 /* this is a valid case when another task releases the spinlock */
869 rq->lock.owner = current;
870#endif
8a25d5de
IM
871 /*
872 * If we are tracking spinlock dependencies then we have to
873 * fix up the runqueue lock - which gets 'carried over' from
874 * prev into current:
875 */
876 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
877
05fa785c 878 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
879}
880
881#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 882static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
883{
884#ifdef CONFIG_SMP
885 return p->oncpu;
886#else
051a1d1a 887 return task_current(rq, p);
4866cde0
NP
888#endif
889}
890
70b97a7f 891static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
892{
893#ifdef CONFIG_SMP
894 /*
895 * We can optimise this out completely for !SMP, because the
896 * SMP rebalancing from interrupt is the only thing that cares
897 * here.
898 */
899 next->oncpu = 1;
900#endif
901#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 902 raw_spin_unlock_irq(&rq->lock);
4866cde0 903#else
05fa785c 904 raw_spin_unlock(&rq->lock);
4866cde0
NP
905#endif
906}
907
70b97a7f 908static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
909{
910#ifdef CONFIG_SMP
911 /*
912 * After ->oncpu is cleared, the task can be moved to a different CPU.
913 * We must ensure this doesn't happen until the switch is completely
914 * finished.
915 */
916 smp_wmb();
917 prev->oncpu = 0;
918#endif
919#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 local_irq_enable();
1da177e4 921#endif
4866cde0
NP
922}
923#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 924
0970d299 925/*
65cc8e48
PZ
926 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
927 * against ttwu().
0970d299
PZ
928 */
929static inline int task_is_waking(struct task_struct *p)
930{
0017d735 931 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
932}
933
b29739f9
IM
934/*
935 * __task_rq_lock - lock the runqueue a given task resides on.
936 * Must be called interrupts disabled.
937 */
70b97a7f 938static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
939 __acquires(rq->lock)
940{
0970d299
PZ
941 struct rq *rq;
942
3a5c359a 943 for (;;) {
0970d299 944 rq = task_rq(p);
05fa785c 945 raw_spin_lock(&rq->lock);
65cc8e48 946 if (likely(rq == task_rq(p)))
3a5c359a 947 return rq;
05fa785c 948 raw_spin_unlock(&rq->lock);
b29739f9 949 }
b29739f9
IM
950}
951
1da177e4
LT
952/*
953 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 954 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
955 * explicitly disabling preemption.
956 */
70b97a7f 957static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
958 __acquires(rq->lock)
959{
70b97a7f 960 struct rq *rq;
1da177e4 961
3a5c359a
AK
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
05fa785c 965 raw_spin_lock(&rq->lock);
65cc8e48 966 if (likely(rq == task_rq(p)))
3a5c359a 967 return rq;
05fa785c 968 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 969 }
1da177e4
LT
970}
971
a9957449 972static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
973 __releases(rq->lock)
974{
05fa785c 975 raw_spin_unlock(&rq->lock);
b29739f9
IM
976}
977
70b97a7f 978static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
979 __releases(rq->lock)
980{
05fa785c 981 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
982}
983
1da177e4 984/*
cc2a73b5 985 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 986 */
a9957449 987static struct rq *this_rq_lock(void)
1da177e4
LT
988 __acquires(rq->lock)
989{
70b97a7f 990 struct rq *rq;
1da177e4
LT
991
992 local_irq_disable();
993 rq = this_rq();
05fa785c 994 raw_spin_lock(&rq->lock);
1da177e4
LT
995
996 return rq;
997}
998
8f4d37ec
PZ
999#ifdef CONFIG_SCHED_HRTICK
1000/*
1001 * Use HR-timers to deliver accurate preemption points.
1002 *
1003 * Its all a bit involved since we cannot program an hrt while holding the
1004 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1005 * reschedule event.
1006 *
1007 * When we get rescheduled we reprogram the hrtick_timer outside of the
1008 * rq->lock.
1009 */
8f4d37ec
PZ
1010
1011/*
1012 * Use hrtick when:
1013 * - enabled by features
1014 * - hrtimer is actually high res
1015 */
1016static inline int hrtick_enabled(struct rq *rq)
1017{
1018 if (!sched_feat(HRTICK))
1019 return 0;
ba42059f 1020 if (!cpu_active(cpu_of(rq)))
b328ca18 1021 return 0;
8f4d37ec
PZ
1022 return hrtimer_is_hres_active(&rq->hrtick_timer);
1023}
1024
8f4d37ec
PZ
1025static void hrtick_clear(struct rq *rq)
1026{
1027 if (hrtimer_active(&rq->hrtick_timer))
1028 hrtimer_cancel(&rq->hrtick_timer);
1029}
1030
8f4d37ec
PZ
1031/*
1032 * High-resolution timer tick.
1033 * Runs from hardirq context with interrupts disabled.
1034 */
1035static enum hrtimer_restart hrtick(struct hrtimer *timer)
1036{
1037 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1038
1039 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1040
05fa785c 1041 raw_spin_lock(&rq->lock);
3e51f33f 1042 update_rq_clock(rq);
8f4d37ec 1043 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1044 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1045
1046 return HRTIMER_NORESTART;
1047}
1048
95e904c7 1049#ifdef CONFIG_SMP
31656519
PZ
1050/*
1051 * called from hardirq (IPI) context
1052 */
1053static void __hrtick_start(void *arg)
b328ca18 1054{
31656519 1055 struct rq *rq = arg;
b328ca18 1056
05fa785c 1057 raw_spin_lock(&rq->lock);
31656519
PZ
1058 hrtimer_restart(&rq->hrtick_timer);
1059 rq->hrtick_csd_pending = 0;
05fa785c 1060 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1061}
1062
31656519
PZ
1063/*
1064 * Called to set the hrtick timer state.
1065 *
1066 * called with rq->lock held and irqs disabled
1067 */
1068static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1069{
31656519
PZ
1070 struct hrtimer *timer = &rq->hrtick_timer;
1071 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1072
cc584b21 1073 hrtimer_set_expires(timer, time);
31656519
PZ
1074
1075 if (rq == this_rq()) {
1076 hrtimer_restart(timer);
1077 } else if (!rq->hrtick_csd_pending) {
6e275637 1078 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1079 rq->hrtick_csd_pending = 1;
1080 }
b328ca18
PZ
1081}
1082
1083static int
1084hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1085{
1086 int cpu = (int)(long)hcpu;
1087
1088 switch (action) {
1089 case CPU_UP_CANCELED:
1090 case CPU_UP_CANCELED_FROZEN:
1091 case CPU_DOWN_PREPARE:
1092 case CPU_DOWN_PREPARE_FROZEN:
1093 case CPU_DEAD:
1094 case CPU_DEAD_FROZEN:
31656519 1095 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1096 return NOTIFY_OK;
1097 }
1098
1099 return NOTIFY_DONE;
1100}
1101
fa748203 1102static __init void init_hrtick(void)
b328ca18
PZ
1103{
1104 hotcpu_notifier(hotplug_hrtick, 0);
1105}
31656519
PZ
1106#else
1107/*
1108 * Called to set the hrtick timer state.
1109 *
1110 * called with rq->lock held and irqs disabled
1111 */
1112static void hrtick_start(struct rq *rq, u64 delay)
1113{
7f1e2ca9 1114 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1115 HRTIMER_MODE_REL_PINNED, 0);
31656519 1116}
b328ca18 1117
006c75f1 1118static inline void init_hrtick(void)
8f4d37ec 1119{
8f4d37ec 1120}
31656519 1121#endif /* CONFIG_SMP */
8f4d37ec 1122
31656519 1123static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1124{
31656519
PZ
1125#ifdef CONFIG_SMP
1126 rq->hrtick_csd_pending = 0;
8f4d37ec 1127
31656519
PZ
1128 rq->hrtick_csd.flags = 0;
1129 rq->hrtick_csd.func = __hrtick_start;
1130 rq->hrtick_csd.info = rq;
1131#endif
8f4d37ec 1132
31656519
PZ
1133 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1134 rq->hrtick_timer.function = hrtick;
8f4d37ec 1135}
006c75f1 1136#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1137static inline void hrtick_clear(struct rq *rq)
1138{
1139}
1140
8f4d37ec
PZ
1141static inline void init_rq_hrtick(struct rq *rq)
1142{
1143}
1144
b328ca18
PZ
1145static inline void init_hrtick(void)
1146{
1147}
006c75f1 1148#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1149
c24d20db
IM
1150/*
1151 * resched_task - mark a task 'to be rescheduled now'.
1152 *
1153 * On UP this means the setting of the need_resched flag, on SMP it
1154 * might also involve a cross-CPU call to trigger the scheduler on
1155 * the target CPU.
1156 */
1157#ifdef CONFIG_SMP
1158
1159#ifndef tsk_is_polling
1160#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1161#endif
1162
31656519 1163static void resched_task(struct task_struct *p)
c24d20db
IM
1164{
1165 int cpu;
1166
05fa785c 1167 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1168
5ed0cec0 1169 if (test_tsk_need_resched(p))
c24d20db
IM
1170 return;
1171
5ed0cec0 1172 set_tsk_need_resched(p);
c24d20db
IM
1173
1174 cpu = task_cpu(p);
1175 if (cpu == smp_processor_id())
1176 return;
1177
1178 /* NEED_RESCHED must be visible before we test polling */
1179 smp_mb();
1180 if (!tsk_is_polling(p))
1181 smp_send_reschedule(cpu);
1182}
1183
1184static void resched_cpu(int cpu)
1185{
1186 struct rq *rq = cpu_rq(cpu);
1187 unsigned long flags;
1188
05fa785c 1189 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1190 return;
1191 resched_task(cpu_curr(cpu));
05fa785c 1192 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1193}
06d8308c
TG
1194
1195#ifdef CONFIG_NO_HZ
1196/*
1197 * When add_timer_on() enqueues a timer into the timer wheel of an
1198 * idle CPU then this timer might expire before the next timer event
1199 * which is scheduled to wake up that CPU. In case of a completely
1200 * idle system the next event might even be infinite time into the
1201 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1202 * leaves the inner idle loop so the newly added timer is taken into
1203 * account when the CPU goes back to idle and evaluates the timer
1204 * wheel for the next timer event.
1205 */
1206void wake_up_idle_cpu(int cpu)
1207{
1208 struct rq *rq = cpu_rq(cpu);
1209
1210 if (cpu == smp_processor_id())
1211 return;
1212
1213 /*
1214 * This is safe, as this function is called with the timer
1215 * wheel base lock of (cpu) held. When the CPU is on the way
1216 * to idle and has not yet set rq->curr to idle then it will
1217 * be serialized on the timer wheel base lock and take the new
1218 * timer into account automatically.
1219 */
1220 if (rq->curr != rq->idle)
1221 return;
1222
1223 /*
1224 * We can set TIF_RESCHED on the idle task of the other CPU
1225 * lockless. The worst case is that the other CPU runs the
1226 * idle task through an additional NOOP schedule()
1227 */
5ed0cec0 1228 set_tsk_need_resched(rq->idle);
06d8308c
TG
1229
1230 /* NEED_RESCHED must be visible before we test polling */
1231 smp_mb();
1232 if (!tsk_is_polling(rq->idle))
1233 smp_send_reschedule(cpu);
1234}
39c0cbe2
MG
1235
1236int nohz_ratelimit(int cpu)
1237{
1238 struct rq *rq = cpu_rq(cpu);
1239 u64 diff = rq->clock - rq->nohz_stamp;
1240
1241 rq->nohz_stamp = rq->clock;
1242
1243 return diff < (NSEC_PER_SEC / HZ) >> 1;
1244}
1245
6d6bc0ad 1246#endif /* CONFIG_NO_HZ */
06d8308c 1247
e9e9250b
PZ
1248static u64 sched_avg_period(void)
1249{
1250 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1251}
1252
1253static void sched_avg_update(struct rq *rq)
1254{
1255 s64 period = sched_avg_period();
1256
1257 while ((s64)(rq->clock - rq->age_stamp) > period) {
1258 rq->age_stamp += period;
1259 rq->rt_avg /= 2;
1260 }
1261}
1262
1263static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1264{
1265 rq->rt_avg += rt_delta;
1266 sched_avg_update(rq);
1267}
1268
6d6bc0ad 1269#else /* !CONFIG_SMP */
31656519 1270static void resched_task(struct task_struct *p)
c24d20db 1271{
05fa785c 1272 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1273 set_tsk_need_resched(p);
c24d20db 1274}
e9e9250b
PZ
1275
1276static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1277{
1278}
6d6bc0ad 1279#endif /* CONFIG_SMP */
c24d20db 1280
45bf76df
IM
1281#if BITS_PER_LONG == 32
1282# define WMULT_CONST (~0UL)
1283#else
1284# define WMULT_CONST (1UL << 32)
1285#endif
1286
1287#define WMULT_SHIFT 32
1288
194081eb
IM
1289/*
1290 * Shift right and round:
1291 */
cf2ab469 1292#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1293
a7be37ac
PZ
1294/*
1295 * delta *= weight / lw
1296 */
cb1c4fc9 1297static unsigned long
45bf76df
IM
1298calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1299 struct load_weight *lw)
1300{
1301 u64 tmp;
1302
7a232e03
LJ
1303 if (!lw->inv_weight) {
1304 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1305 lw->inv_weight = 1;
1306 else
1307 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1308 / (lw->weight+1);
1309 }
45bf76df
IM
1310
1311 tmp = (u64)delta_exec * weight;
1312 /*
1313 * Check whether we'd overflow the 64-bit multiplication:
1314 */
194081eb 1315 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1316 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1317 WMULT_SHIFT/2);
1318 else
cf2ab469 1319 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1320
ecf691da 1321 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1322}
1323
1091985b 1324static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1325{
1326 lw->weight += inc;
e89996ae 1327 lw->inv_weight = 0;
45bf76df
IM
1328}
1329
1091985b 1330static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1331{
1332 lw->weight -= dec;
e89996ae 1333 lw->inv_weight = 0;
45bf76df
IM
1334}
1335
2dd73a4f
PW
1336/*
1337 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1338 * of tasks with abnormal "nice" values across CPUs the contribution that
1339 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1340 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1341 * scaled version of the new time slice allocation that they receive on time
1342 * slice expiry etc.
1343 */
1344
cce7ade8
PZ
1345#define WEIGHT_IDLEPRIO 3
1346#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1347
1348/*
1349 * Nice levels are multiplicative, with a gentle 10% change for every
1350 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1351 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1352 * that remained on nice 0.
1353 *
1354 * The "10% effect" is relative and cumulative: from _any_ nice level,
1355 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1356 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1357 * If a task goes up by ~10% and another task goes down by ~10% then
1358 * the relative distance between them is ~25%.)
dd41f596
IM
1359 */
1360static const int prio_to_weight[40] = {
254753dc
IM
1361 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1362 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1363 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1364 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1365 /* 0 */ 1024, 820, 655, 526, 423,
1366 /* 5 */ 335, 272, 215, 172, 137,
1367 /* 10 */ 110, 87, 70, 56, 45,
1368 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1369};
1370
5714d2de
IM
1371/*
1372 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1373 *
1374 * In cases where the weight does not change often, we can use the
1375 * precalculated inverse to speed up arithmetics by turning divisions
1376 * into multiplications:
1377 */
dd41f596 1378static const u32 prio_to_wmult[40] = {
254753dc
IM
1379 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1380 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1381 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1382 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1383 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1384 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1385 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1386 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1387};
2dd73a4f 1388
ef12fefa
BR
1389/* Time spent by the tasks of the cpu accounting group executing in ... */
1390enum cpuacct_stat_index {
1391 CPUACCT_STAT_USER, /* ... user mode */
1392 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1393
1394 CPUACCT_STAT_NSTATS,
1395};
1396
d842de87
SV
1397#ifdef CONFIG_CGROUP_CPUACCT
1398static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1399static void cpuacct_update_stats(struct task_struct *tsk,
1400 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1401#else
1402static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1403static inline void cpuacct_update_stats(struct task_struct *tsk,
1404 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1405#endif
1406
18d95a28
PZ
1407static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1408{
1409 update_load_add(&rq->load, load);
1410}
1411
1412static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1413{
1414 update_load_sub(&rq->load, load);
1415}
1416
7940ca36 1417#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1418typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1419
1420/*
1421 * Iterate the full tree, calling @down when first entering a node and @up when
1422 * leaving it for the final time.
1423 */
eb755805 1424static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1425{
1426 struct task_group *parent, *child;
eb755805 1427 int ret;
c09595f6
PZ
1428
1429 rcu_read_lock();
1430 parent = &root_task_group;
1431down:
eb755805
PZ
1432 ret = (*down)(parent, data);
1433 if (ret)
1434 goto out_unlock;
c09595f6
PZ
1435 list_for_each_entry_rcu(child, &parent->children, siblings) {
1436 parent = child;
1437 goto down;
1438
1439up:
1440 continue;
1441 }
eb755805
PZ
1442 ret = (*up)(parent, data);
1443 if (ret)
1444 goto out_unlock;
c09595f6
PZ
1445
1446 child = parent;
1447 parent = parent->parent;
1448 if (parent)
1449 goto up;
eb755805 1450out_unlock:
c09595f6 1451 rcu_read_unlock();
eb755805
PZ
1452
1453 return ret;
c09595f6
PZ
1454}
1455
eb755805
PZ
1456static int tg_nop(struct task_group *tg, void *data)
1457{
1458 return 0;
c09595f6 1459}
eb755805
PZ
1460#endif
1461
1462#ifdef CONFIG_SMP
f5f08f39
PZ
1463/* Used instead of source_load when we know the type == 0 */
1464static unsigned long weighted_cpuload(const int cpu)
1465{
1466 return cpu_rq(cpu)->load.weight;
1467}
1468
1469/*
1470 * Return a low guess at the load of a migration-source cpu weighted
1471 * according to the scheduling class and "nice" value.
1472 *
1473 * We want to under-estimate the load of migration sources, to
1474 * balance conservatively.
1475 */
1476static unsigned long source_load(int cpu, int type)
1477{
1478 struct rq *rq = cpu_rq(cpu);
1479 unsigned long total = weighted_cpuload(cpu);
1480
1481 if (type == 0 || !sched_feat(LB_BIAS))
1482 return total;
1483
1484 return min(rq->cpu_load[type-1], total);
1485}
1486
1487/*
1488 * Return a high guess at the load of a migration-target cpu weighted
1489 * according to the scheduling class and "nice" value.
1490 */
1491static unsigned long target_load(int cpu, int type)
1492{
1493 struct rq *rq = cpu_rq(cpu);
1494 unsigned long total = weighted_cpuload(cpu);
1495
1496 if (type == 0 || !sched_feat(LB_BIAS))
1497 return total;
1498
1499 return max(rq->cpu_load[type-1], total);
1500}
1501
ae154be1
PZ
1502static unsigned long power_of(int cpu)
1503{
e51fd5e2 1504 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1505}
1506
eb755805
PZ
1507static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1508
1509static unsigned long cpu_avg_load_per_task(int cpu)
1510{
1511 struct rq *rq = cpu_rq(cpu);
af6d596f 1512 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1513
4cd42620
SR
1514 if (nr_running)
1515 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1516 else
1517 rq->avg_load_per_task = 0;
eb755805
PZ
1518
1519 return rq->avg_load_per_task;
1520}
1521
1522#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1523
43cf38eb 1524static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1525
c09595f6
PZ
1526static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1527
1528/*
1529 * Calculate and set the cpu's group shares.
1530 */
34d76c41
PZ
1531static void update_group_shares_cpu(struct task_group *tg, int cpu,
1532 unsigned long sd_shares,
1533 unsigned long sd_rq_weight,
4a6cc4bd 1534 unsigned long *usd_rq_weight)
18d95a28 1535{
34d76c41 1536 unsigned long shares, rq_weight;
a5004278 1537 int boost = 0;
c09595f6 1538
4a6cc4bd 1539 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1540 if (!rq_weight) {
1541 boost = 1;
1542 rq_weight = NICE_0_LOAD;
1543 }
c8cba857 1544
c09595f6 1545 /*
a8af7246
PZ
1546 * \Sum_j shares_j * rq_weight_i
1547 * shares_i = -----------------------------
1548 * \Sum_j rq_weight_j
c09595f6 1549 */
ec4e0e2f 1550 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1551 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1552
ffda12a1
PZ
1553 if (abs(shares - tg->se[cpu]->load.weight) >
1554 sysctl_sched_shares_thresh) {
1555 struct rq *rq = cpu_rq(cpu);
1556 unsigned long flags;
c09595f6 1557
05fa785c 1558 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1559 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1560 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1561 __set_se_shares(tg->se[cpu], shares);
05fa785c 1562 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1563 }
18d95a28 1564}
c09595f6
PZ
1565
1566/*
c8cba857
PZ
1567 * Re-compute the task group their per cpu shares over the given domain.
1568 * This needs to be done in a bottom-up fashion because the rq weight of a
1569 * parent group depends on the shares of its child groups.
c09595f6 1570 */
eb755805 1571static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1572{
cd8ad40d 1573 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1574 unsigned long *usd_rq_weight;
eb755805 1575 struct sched_domain *sd = data;
34d76c41 1576 unsigned long flags;
c8cba857 1577 int i;
c09595f6 1578
34d76c41
PZ
1579 if (!tg->se[0])
1580 return 0;
1581
1582 local_irq_save(flags);
4a6cc4bd 1583 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1584
758b2cdc 1585 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1586 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1587 usd_rq_weight[i] = weight;
34d76c41 1588
cd8ad40d 1589 rq_weight += weight;
ec4e0e2f
KC
1590 /*
1591 * If there are currently no tasks on the cpu pretend there
1592 * is one of average load so that when a new task gets to
1593 * run here it will not get delayed by group starvation.
1594 */
ec4e0e2f
KC
1595 if (!weight)
1596 weight = NICE_0_LOAD;
1597
cd8ad40d 1598 sum_weight += weight;
c8cba857 1599 shares += tg->cfs_rq[i]->shares;
c09595f6 1600 }
c09595f6 1601
cd8ad40d
PZ
1602 if (!rq_weight)
1603 rq_weight = sum_weight;
1604
c8cba857
PZ
1605 if ((!shares && rq_weight) || shares > tg->shares)
1606 shares = tg->shares;
1607
1608 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1609 shares = tg->shares;
c09595f6 1610
758b2cdc 1611 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1612 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1613
1614 local_irq_restore(flags);
eb755805
PZ
1615
1616 return 0;
c09595f6
PZ
1617}
1618
1619/*
c8cba857
PZ
1620 * Compute the cpu's hierarchical load factor for each task group.
1621 * This needs to be done in a top-down fashion because the load of a child
1622 * group is a fraction of its parents load.
c09595f6 1623 */
eb755805 1624static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1625{
c8cba857 1626 unsigned long load;
eb755805 1627 long cpu = (long)data;
c09595f6 1628
c8cba857
PZ
1629 if (!tg->parent) {
1630 load = cpu_rq(cpu)->load.weight;
1631 } else {
1632 load = tg->parent->cfs_rq[cpu]->h_load;
1633 load *= tg->cfs_rq[cpu]->shares;
1634 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1635 }
c09595f6 1636
c8cba857 1637 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1638
eb755805 1639 return 0;
c09595f6
PZ
1640}
1641
c8cba857 1642static void update_shares(struct sched_domain *sd)
4d8d595d 1643{
e7097159
PZ
1644 s64 elapsed;
1645 u64 now;
1646
1647 if (root_task_group_empty())
1648 return;
1649
c676329a 1650 now = local_clock();
e7097159 1651 elapsed = now - sd->last_update;
2398f2c6
PZ
1652
1653 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1654 sd->last_update = now;
eb755805 1655 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1656 }
4d8d595d
PZ
1657}
1658
eb755805 1659static void update_h_load(long cpu)
c09595f6 1660{
e7097159
PZ
1661 if (root_task_group_empty())
1662 return;
1663
eb755805 1664 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1665}
1666
c09595f6
PZ
1667#else
1668
c8cba857 1669static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1670{
1671}
1672
18d95a28
PZ
1673#endif
1674
8f45e2b5
GH
1675#ifdef CONFIG_PREEMPT
1676
b78bb868
PZ
1677static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1678
70574a99 1679/*
8f45e2b5
GH
1680 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1681 * way at the expense of forcing extra atomic operations in all
1682 * invocations. This assures that the double_lock is acquired using the
1683 * same underlying policy as the spinlock_t on this architecture, which
1684 * reduces latency compared to the unfair variant below. However, it
1685 * also adds more overhead and therefore may reduce throughput.
70574a99 1686 */
8f45e2b5
GH
1687static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1688 __releases(this_rq->lock)
1689 __acquires(busiest->lock)
1690 __acquires(this_rq->lock)
1691{
05fa785c 1692 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1693 double_rq_lock(this_rq, busiest);
1694
1695 return 1;
1696}
1697
1698#else
1699/*
1700 * Unfair double_lock_balance: Optimizes throughput at the expense of
1701 * latency by eliminating extra atomic operations when the locks are
1702 * already in proper order on entry. This favors lower cpu-ids and will
1703 * grant the double lock to lower cpus over higher ids under contention,
1704 * regardless of entry order into the function.
1705 */
1706static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1707 __releases(this_rq->lock)
1708 __acquires(busiest->lock)
1709 __acquires(this_rq->lock)
1710{
1711 int ret = 0;
1712
05fa785c 1713 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1714 if (busiest < this_rq) {
05fa785c
TG
1715 raw_spin_unlock(&this_rq->lock);
1716 raw_spin_lock(&busiest->lock);
1717 raw_spin_lock_nested(&this_rq->lock,
1718 SINGLE_DEPTH_NESTING);
70574a99
AD
1719 ret = 1;
1720 } else
05fa785c
TG
1721 raw_spin_lock_nested(&busiest->lock,
1722 SINGLE_DEPTH_NESTING);
70574a99
AD
1723 }
1724 return ret;
1725}
1726
8f45e2b5
GH
1727#endif /* CONFIG_PREEMPT */
1728
1729/*
1730 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1731 */
1732static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1733{
1734 if (unlikely(!irqs_disabled())) {
1735 /* printk() doesn't work good under rq->lock */
05fa785c 1736 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1737 BUG_ON(1);
1738 }
1739
1740 return _double_lock_balance(this_rq, busiest);
1741}
1742
70574a99
AD
1743static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1744 __releases(busiest->lock)
1745{
05fa785c 1746 raw_spin_unlock(&busiest->lock);
70574a99
AD
1747 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1748}
1e3c88bd
PZ
1749
1750/*
1751 * double_rq_lock - safely lock two runqueues
1752 *
1753 * Note this does not disable interrupts like task_rq_lock,
1754 * you need to do so manually before calling.
1755 */
1756static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1757 __acquires(rq1->lock)
1758 __acquires(rq2->lock)
1759{
1760 BUG_ON(!irqs_disabled());
1761 if (rq1 == rq2) {
1762 raw_spin_lock(&rq1->lock);
1763 __acquire(rq2->lock); /* Fake it out ;) */
1764 } else {
1765 if (rq1 < rq2) {
1766 raw_spin_lock(&rq1->lock);
1767 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1768 } else {
1769 raw_spin_lock(&rq2->lock);
1770 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1771 }
1772 }
1e3c88bd
PZ
1773}
1774
1775/*
1776 * double_rq_unlock - safely unlock two runqueues
1777 *
1778 * Note this does not restore interrupts like task_rq_unlock,
1779 * you need to do so manually after calling.
1780 */
1781static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1782 __releases(rq1->lock)
1783 __releases(rq2->lock)
1784{
1785 raw_spin_unlock(&rq1->lock);
1786 if (rq1 != rq2)
1787 raw_spin_unlock(&rq2->lock);
1788 else
1789 __release(rq2->lock);
1790}
1791
18d95a28
PZ
1792#endif
1793
30432094 1794#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1795static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1796{
30432094 1797#ifdef CONFIG_SMP
34e83e85
IM
1798 cfs_rq->shares = shares;
1799#endif
1800}
30432094 1801#endif
e7693a36 1802
74f5187a 1803static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1804static void update_sysctl(void);
acb4a848 1805static int get_update_sysctl_factor(void);
dce48a84 1806
cd29fe6f
PZ
1807static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1808{
1809 set_task_rq(p, cpu);
1810#ifdef CONFIG_SMP
1811 /*
1812 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1813 * successfuly executed on another CPU. We must ensure that updates of
1814 * per-task data have been completed by this moment.
1815 */
1816 smp_wmb();
1817 task_thread_info(p)->cpu = cpu;
1818#endif
1819}
dce48a84 1820
1e3c88bd 1821static const struct sched_class rt_sched_class;
dd41f596
IM
1822
1823#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1824#define for_each_class(class) \
1825 for (class = sched_class_highest; class; class = class->next)
dd41f596 1826
1e3c88bd
PZ
1827#include "sched_stats.h"
1828
c09595f6 1829static void inc_nr_running(struct rq *rq)
9c217245
IM
1830{
1831 rq->nr_running++;
9c217245
IM
1832}
1833
c09595f6 1834static void dec_nr_running(struct rq *rq)
9c217245
IM
1835{
1836 rq->nr_running--;
9c217245
IM
1837}
1838
45bf76df
IM
1839static void set_load_weight(struct task_struct *p)
1840{
1841 if (task_has_rt_policy(p)) {
e51fd5e2
PZ
1842 p->se.load.weight = 0;
1843 p->se.load.inv_weight = WMULT_CONST;
dd41f596
IM
1844 return;
1845 }
45bf76df 1846
dd41f596
IM
1847 /*
1848 * SCHED_IDLE tasks get minimal weight:
1849 */
1850 if (p->policy == SCHED_IDLE) {
1851 p->se.load.weight = WEIGHT_IDLEPRIO;
1852 p->se.load.inv_weight = WMULT_IDLEPRIO;
1853 return;
1854 }
71f8bd46 1855
dd41f596
IM
1856 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1857 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1858}
1859
371fd7e7 1860static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1861{
a64692a3 1862 update_rq_clock(rq);
dd41f596 1863 sched_info_queued(p);
371fd7e7 1864 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1865 p->se.on_rq = 1;
71f8bd46
IM
1866}
1867
371fd7e7 1868static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1869{
a64692a3 1870 update_rq_clock(rq);
46ac22ba 1871 sched_info_dequeued(p);
371fd7e7 1872 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1873 p->se.on_rq = 0;
71f8bd46
IM
1874}
1875
1e3c88bd
PZ
1876/*
1877 * activate_task - move a task to the runqueue.
1878 */
371fd7e7 1879static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1880{
1881 if (task_contributes_to_load(p))
1882 rq->nr_uninterruptible--;
1883
371fd7e7 1884 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1885 inc_nr_running(rq);
1886}
1887
1888/*
1889 * deactivate_task - remove a task from the runqueue.
1890 */
371fd7e7 1891static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1892{
1893 if (task_contributes_to_load(p))
1894 rq->nr_uninterruptible++;
1895
371fd7e7 1896 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1897 dec_nr_running(rq);
1898}
1899
1900#include "sched_idletask.c"
1901#include "sched_fair.c"
1902#include "sched_rt.c"
1903#ifdef CONFIG_SCHED_DEBUG
1904# include "sched_debug.c"
1905#endif
1906
14531189 1907/*
dd41f596 1908 * __normal_prio - return the priority that is based on the static prio
14531189 1909 */
14531189
IM
1910static inline int __normal_prio(struct task_struct *p)
1911{
dd41f596 1912 return p->static_prio;
14531189
IM
1913}
1914
b29739f9
IM
1915/*
1916 * Calculate the expected normal priority: i.e. priority
1917 * without taking RT-inheritance into account. Might be
1918 * boosted by interactivity modifiers. Changes upon fork,
1919 * setprio syscalls, and whenever the interactivity
1920 * estimator recalculates.
1921 */
36c8b586 1922static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1923{
1924 int prio;
1925
e05606d3 1926 if (task_has_rt_policy(p))
b29739f9
IM
1927 prio = MAX_RT_PRIO-1 - p->rt_priority;
1928 else
1929 prio = __normal_prio(p);
1930 return prio;
1931}
1932
1933/*
1934 * Calculate the current priority, i.e. the priority
1935 * taken into account by the scheduler. This value might
1936 * be boosted by RT tasks, or might be boosted by
1937 * interactivity modifiers. Will be RT if the task got
1938 * RT-boosted. If not then it returns p->normal_prio.
1939 */
36c8b586 1940static int effective_prio(struct task_struct *p)
b29739f9
IM
1941{
1942 p->normal_prio = normal_prio(p);
1943 /*
1944 * If we are RT tasks or we were boosted to RT priority,
1945 * keep the priority unchanged. Otherwise, update priority
1946 * to the normal priority:
1947 */
1948 if (!rt_prio(p->prio))
1949 return p->normal_prio;
1950 return p->prio;
1951}
1952
1da177e4
LT
1953/**
1954 * task_curr - is this task currently executing on a CPU?
1955 * @p: the task in question.
1956 */
36c8b586 1957inline int task_curr(const struct task_struct *p)
1da177e4
LT
1958{
1959 return cpu_curr(task_cpu(p)) == p;
1960}
1961
cb469845
SR
1962static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1963 const struct sched_class *prev_class,
1964 int oldprio, int running)
1965{
1966 if (prev_class != p->sched_class) {
1967 if (prev_class->switched_from)
1968 prev_class->switched_from(rq, p, running);
1969 p->sched_class->switched_to(rq, p, running);
1970 } else
1971 p->sched_class->prio_changed(rq, p, oldprio, running);
1972}
1973
1da177e4 1974#ifdef CONFIG_SMP
cc367732
IM
1975/*
1976 * Is this task likely cache-hot:
1977 */
e7693a36 1978static int
cc367732
IM
1979task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1980{
1981 s64 delta;
1982
e6c8fba7
PZ
1983 if (p->sched_class != &fair_sched_class)
1984 return 0;
1985
f540a608
IM
1986 /*
1987 * Buddy candidates are cache hot:
1988 */
f685ceac 1989 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
1990 (&p->se == cfs_rq_of(&p->se)->next ||
1991 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1992 return 1;
1993
6bc1665b
IM
1994 if (sysctl_sched_migration_cost == -1)
1995 return 1;
1996 if (sysctl_sched_migration_cost == 0)
1997 return 0;
1998
cc367732
IM
1999 delta = now - p->se.exec_start;
2000
2001 return delta < (s64)sysctl_sched_migration_cost;
2002}
2003
dd41f596 2004void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2005{
e2912009
PZ
2006#ifdef CONFIG_SCHED_DEBUG
2007 /*
2008 * We should never call set_task_cpu() on a blocked task,
2009 * ttwu() will sort out the placement.
2010 */
077614ee
PZ
2011 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2012 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2013#endif
2014
de1d7286 2015 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2016
0c69774e
PZ
2017 if (task_cpu(p) != new_cpu) {
2018 p->se.nr_migrations++;
2019 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2020 }
dd41f596
IM
2021
2022 __set_task_cpu(p, new_cpu);
c65cc870
IM
2023}
2024
969c7921 2025struct migration_arg {
36c8b586 2026 struct task_struct *task;
1da177e4 2027 int dest_cpu;
70b97a7f 2028};
1da177e4 2029
969c7921
TH
2030static int migration_cpu_stop(void *data);
2031
1da177e4
LT
2032/*
2033 * The task's runqueue lock must be held.
2034 * Returns true if you have to wait for migration thread.
2035 */
969c7921 2036static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2037{
70b97a7f 2038 struct rq *rq = task_rq(p);
1da177e4
LT
2039
2040 /*
2041 * If the task is not on a runqueue (and not running), then
e2912009 2042 * the next wake-up will properly place the task.
1da177e4 2043 */
969c7921 2044 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2045}
2046
2047/*
2048 * wait_task_inactive - wait for a thread to unschedule.
2049 *
85ba2d86
RM
2050 * If @match_state is nonzero, it's the @p->state value just checked and
2051 * not expected to change. If it changes, i.e. @p might have woken up,
2052 * then return zero. When we succeed in waiting for @p to be off its CPU,
2053 * we return a positive number (its total switch count). If a second call
2054 * a short while later returns the same number, the caller can be sure that
2055 * @p has remained unscheduled the whole time.
2056 *
1da177e4
LT
2057 * The caller must ensure that the task *will* unschedule sometime soon,
2058 * else this function might spin for a *long* time. This function can't
2059 * be called with interrupts off, or it may introduce deadlock with
2060 * smp_call_function() if an IPI is sent by the same process we are
2061 * waiting to become inactive.
2062 */
85ba2d86 2063unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2064{
2065 unsigned long flags;
dd41f596 2066 int running, on_rq;
85ba2d86 2067 unsigned long ncsw;
70b97a7f 2068 struct rq *rq;
1da177e4 2069
3a5c359a
AK
2070 for (;;) {
2071 /*
2072 * We do the initial early heuristics without holding
2073 * any task-queue locks at all. We'll only try to get
2074 * the runqueue lock when things look like they will
2075 * work out!
2076 */
2077 rq = task_rq(p);
fa490cfd 2078
3a5c359a
AK
2079 /*
2080 * If the task is actively running on another CPU
2081 * still, just relax and busy-wait without holding
2082 * any locks.
2083 *
2084 * NOTE! Since we don't hold any locks, it's not
2085 * even sure that "rq" stays as the right runqueue!
2086 * But we don't care, since "task_running()" will
2087 * return false if the runqueue has changed and p
2088 * is actually now running somewhere else!
2089 */
85ba2d86
RM
2090 while (task_running(rq, p)) {
2091 if (match_state && unlikely(p->state != match_state))
2092 return 0;
3a5c359a 2093 cpu_relax();
85ba2d86 2094 }
fa490cfd 2095
3a5c359a
AK
2096 /*
2097 * Ok, time to look more closely! We need the rq
2098 * lock now, to be *sure*. If we're wrong, we'll
2099 * just go back and repeat.
2100 */
2101 rq = task_rq_lock(p, &flags);
27a9da65 2102 trace_sched_wait_task(p);
3a5c359a
AK
2103 running = task_running(rq, p);
2104 on_rq = p->se.on_rq;
85ba2d86 2105 ncsw = 0;
f31e11d8 2106 if (!match_state || p->state == match_state)
93dcf55f 2107 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2108 task_rq_unlock(rq, &flags);
fa490cfd 2109
85ba2d86
RM
2110 /*
2111 * If it changed from the expected state, bail out now.
2112 */
2113 if (unlikely(!ncsw))
2114 break;
2115
3a5c359a
AK
2116 /*
2117 * Was it really running after all now that we
2118 * checked with the proper locks actually held?
2119 *
2120 * Oops. Go back and try again..
2121 */
2122 if (unlikely(running)) {
2123 cpu_relax();
2124 continue;
2125 }
fa490cfd 2126
3a5c359a
AK
2127 /*
2128 * It's not enough that it's not actively running,
2129 * it must be off the runqueue _entirely_, and not
2130 * preempted!
2131 *
80dd99b3 2132 * So if it was still runnable (but just not actively
3a5c359a
AK
2133 * running right now), it's preempted, and we should
2134 * yield - it could be a while.
2135 */
2136 if (unlikely(on_rq)) {
2137 schedule_timeout_uninterruptible(1);
2138 continue;
2139 }
fa490cfd 2140
3a5c359a
AK
2141 /*
2142 * Ahh, all good. It wasn't running, and it wasn't
2143 * runnable, which means that it will never become
2144 * running in the future either. We're all done!
2145 */
2146 break;
2147 }
85ba2d86
RM
2148
2149 return ncsw;
1da177e4
LT
2150}
2151
2152/***
2153 * kick_process - kick a running thread to enter/exit the kernel
2154 * @p: the to-be-kicked thread
2155 *
2156 * Cause a process which is running on another CPU to enter
2157 * kernel-mode, without any delay. (to get signals handled.)
2158 *
2159 * NOTE: this function doesnt have to take the runqueue lock,
2160 * because all it wants to ensure is that the remote task enters
2161 * the kernel. If the IPI races and the task has been migrated
2162 * to another CPU then no harm is done and the purpose has been
2163 * achieved as well.
2164 */
36c8b586 2165void kick_process(struct task_struct *p)
1da177e4
LT
2166{
2167 int cpu;
2168
2169 preempt_disable();
2170 cpu = task_cpu(p);
2171 if ((cpu != smp_processor_id()) && task_curr(p))
2172 smp_send_reschedule(cpu);
2173 preempt_enable();
2174}
b43e3521 2175EXPORT_SYMBOL_GPL(kick_process);
476d139c 2176#endif /* CONFIG_SMP */
1da177e4 2177
0793a61d
TG
2178/**
2179 * task_oncpu_function_call - call a function on the cpu on which a task runs
2180 * @p: the task to evaluate
2181 * @func: the function to be called
2182 * @info: the function call argument
2183 *
2184 * Calls the function @func when the task is currently running. This might
2185 * be on the current CPU, which just calls the function directly
2186 */
2187void task_oncpu_function_call(struct task_struct *p,
2188 void (*func) (void *info), void *info)
2189{
2190 int cpu;
2191
2192 preempt_disable();
2193 cpu = task_cpu(p);
2194 if (task_curr(p))
2195 smp_call_function_single(cpu, func, info, 1);
2196 preempt_enable();
2197}
2198
970b13ba 2199#ifdef CONFIG_SMP
30da688e
ON
2200/*
2201 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2202 */
5da9a0fb
PZ
2203static int select_fallback_rq(int cpu, struct task_struct *p)
2204{
2205 int dest_cpu;
2206 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2207
2208 /* Look for allowed, online CPU in same node. */
2209 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2210 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2211 return dest_cpu;
2212
2213 /* Any allowed, online CPU? */
2214 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2215 if (dest_cpu < nr_cpu_ids)
2216 return dest_cpu;
2217
2218 /* No more Mr. Nice Guy. */
897f0b3c 2219 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2220 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2221 /*
2222 * Don't tell them about moving exiting tasks or
2223 * kernel threads (both mm NULL), since they never
2224 * leave kernel.
2225 */
2226 if (p->mm && printk_ratelimit()) {
2227 printk(KERN_INFO "process %d (%s) no "
2228 "longer affine to cpu%d\n",
2229 task_pid_nr(p), p->comm, cpu);
2230 }
2231 }
2232
2233 return dest_cpu;
2234}
2235
e2912009 2236/*
30da688e 2237 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2238 */
970b13ba 2239static inline
0017d735 2240int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2241{
0017d735 2242 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2243
2244 /*
2245 * In order not to call set_task_cpu() on a blocking task we need
2246 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2247 * cpu.
2248 *
2249 * Since this is common to all placement strategies, this lives here.
2250 *
2251 * [ this allows ->select_task() to simply return task_cpu(p) and
2252 * not worry about this generic constraint ]
2253 */
2254 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2255 !cpu_online(cpu)))
5da9a0fb 2256 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2257
2258 return cpu;
970b13ba 2259}
09a40af5
MG
2260
2261static void update_avg(u64 *avg, u64 sample)
2262{
2263 s64 diff = sample - *avg;
2264 *avg += diff >> 3;
2265}
970b13ba
PZ
2266#endif
2267
9ed3811a
TH
2268static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2269 bool is_sync, bool is_migrate, bool is_local,
2270 unsigned long en_flags)
2271{
2272 schedstat_inc(p, se.statistics.nr_wakeups);
2273 if (is_sync)
2274 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2275 if (is_migrate)
2276 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2277 if (is_local)
2278 schedstat_inc(p, se.statistics.nr_wakeups_local);
2279 else
2280 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2281
2282 activate_task(rq, p, en_flags);
2283}
2284
2285static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2286 int wake_flags, bool success)
2287{
2288 trace_sched_wakeup(p, success);
2289 check_preempt_curr(rq, p, wake_flags);
2290
2291 p->state = TASK_RUNNING;
2292#ifdef CONFIG_SMP
2293 if (p->sched_class->task_woken)
2294 p->sched_class->task_woken(rq, p);
2295
2296 if (unlikely(rq->idle_stamp)) {
2297 u64 delta = rq->clock - rq->idle_stamp;
2298 u64 max = 2*sysctl_sched_migration_cost;
2299
2300 if (delta > max)
2301 rq->avg_idle = max;
2302 else
2303 update_avg(&rq->avg_idle, delta);
2304 rq->idle_stamp = 0;
2305 }
2306#endif
21aa9af0
TH
2307 /* if a worker is waking up, notify workqueue */
2308 if ((p->flags & PF_WQ_WORKER) && success)
2309 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2310}
2311
2312/**
1da177e4 2313 * try_to_wake_up - wake up a thread
9ed3811a 2314 * @p: the thread to be awakened
1da177e4 2315 * @state: the mask of task states that can be woken
9ed3811a 2316 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2317 *
2318 * Put it on the run-queue if it's not already there. The "current"
2319 * thread is always on the run-queue (except when the actual
2320 * re-schedule is in progress), and as such you're allowed to do
2321 * the simpler "current->state = TASK_RUNNING" to mark yourself
2322 * runnable without the overhead of this.
2323 *
9ed3811a
TH
2324 * Returns %true if @p was woken up, %false if it was already running
2325 * or @state didn't match @p's state.
1da177e4 2326 */
7d478721
PZ
2327static int try_to_wake_up(struct task_struct *p, unsigned int state,
2328 int wake_flags)
1da177e4 2329{
cc367732 2330 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2331 unsigned long flags;
371fd7e7 2332 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2333 struct rq *rq;
1da177e4 2334
e9c84311 2335 this_cpu = get_cpu();
2398f2c6 2336
04e2f174 2337 smp_wmb();
ab3b3aa5 2338 rq = task_rq_lock(p, &flags);
e9c84311 2339 if (!(p->state & state))
1da177e4
LT
2340 goto out;
2341
dd41f596 2342 if (p->se.on_rq)
1da177e4
LT
2343 goto out_running;
2344
2345 cpu = task_cpu(p);
cc367732 2346 orig_cpu = cpu;
1da177e4
LT
2347
2348#ifdef CONFIG_SMP
2349 if (unlikely(task_running(rq, p)))
2350 goto out_activate;
2351
e9c84311
PZ
2352 /*
2353 * In order to handle concurrent wakeups and release the rq->lock
2354 * we put the task in TASK_WAKING state.
eb24073b
IM
2355 *
2356 * First fix up the nr_uninterruptible count:
e9c84311 2357 */
cc87f76a
PZ
2358 if (task_contributes_to_load(p)) {
2359 if (likely(cpu_online(orig_cpu)))
2360 rq->nr_uninterruptible--;
2361 else
2362 this_rq()->nr_uninterruptible--;
2363 }
e9c84311 2364 p->state = TASK_WAKING;
efbbd05a 2365
371fd7e7 2366 if (p->sched_class->task_waking) {
efbbd05a 2367 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2368 en_flags |= ENQUEUE_WAKING;
2369 }
efbbd05a 2370
0017d735
PZ
2371 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2372 if (cpu != orig_cpu)
5d2f5a61 2373 set_task_cpu(p, cpu);
0017d735 2374 __task_rq_unlock(rq);
ab19cb23 2375
0970d299
PZ
2376 rq = cpu_rq(cpu);
2377 raw_spin_lock(&rq->lock);
f5dc3753 2378
0970d299
PZ
2379 /*
2380 * We migrated the task without holding either rq->lock, however
2381 * since the task is not on the task list itself, nobody else
2382 * will try and migrate the task, hence the rq should match the
2383 * cpu we just moved it to.
2384 */
2385 WARN_ON(task_cpu(p) != cpu);
e9c84311 2386 WARN_ON(p->state != TASK_WAKING);
1da177e4 2387
e7693a36
GH
2388#ifdef CONFIG_SCHEDSTATS
2389 schedstat_inc(rq, ttwu_count);
2390 if (cpu == this_cpu)
2391 schedstat_inc(rq, ttwu_local);
2392 else {
2393 struct sched_domain *sd;
2394 for_each_domain(this_cpu, sd) {
758b2cdc 2395 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2396 schedstat_inc(sd, ttwu_wake_remote);
2397 break;
2398 }
2399 }
2400 }
6d6bc0ad 2401#endif /* CONFIG_SCHEDSTATS */
e7693a36 2402
1da177e4
LT
2403out_activate:
2404#endif /* CONFIG_SMP */
9ed3811a
TH
2405 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2406 cpu == this_cpu, en_flags);
1da177e4 2407 success = 1;
1da177e4 2408out_running:
9ed3811a 2409 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2410out:
2411 task_rq_unlock(rq, &flags);
e9c84311 2412 put_cpu();
1da177e4
LT
2413
2414 return success;
2415}
2416
21aa9af0
TH
2417/**
2418 * try_to_wake_up_local - try to wake up a local task with rq lock held
2419 * @p: the thread to be awakened
2420 *
2421 * Put @p on the run-queue if it's not alredy there. The caller must
2422 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2423 * the current task. this_rq() stays locked over invocation.
2424 */
2425static void try_to_wake_up_local(struct task_struct *p)
2426{
2427 struct rq *rq = task_rq(p);
2428 bool success = false;
2429
2430 BUG_ON(rq != this_rq());
2431 BUG_ON(p == current);
2432 lockdep_assert_held(&rq->lock);
2433
2434 if (!(p->state & TASK_NORMAL))
2435 return;
2436
2437 if (!p->se.on_rq) {
2438 if (likely(!task_running(rq, p))) {
2439 schedstat_inc(rq, ttwu_count);
2440 schedstat_inc(rq, ttwu_local);
2441 }
2442 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2443 success = true;
2444 }
2445 ttwu_post_activation(p, rq, 0, success);
2446}
2447
50fa610a
DH
2448/**
2449 * wake_up_process - Wake up a specific process
2450 * @p: The process to be woken up.
2451 *
2452 * Attempt to wake up the nominated process and move it to the set of runnable
2453 * processes. Returns 1 if the process was woken up, 0 if it was already
2454 * running.
2455 *
2456 * It may be assumed that this function implies a write memory barrier before
2457 * changing the task state if and only if any tasks are woken up.
2458 */
7ad5b3a5 2459int wake_up_process(struct task_struct *p)
1da177e4 2460{
d9514f6c 2461 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2462}
1da177e4
LT
2463EXPORT_SYMBOL(wake_up_process);
2464
7ad5b3a5 2465int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2466{
2467 return try_to_wake_up(p, state, 0);
2468}
2469
1da177e4
LT
2470/*
2471 * Perform scheduler related setup for a newly forked process p.
2472 * p is forked by current.
dd41f596
IM
2473 *
2474 * __sched_fork() is basic setup used by init_idle() too:
2475 */
2476static void __sched_fork(struct task_struct *p)
2477{
dd41f596
IM
2478 p->se.exec_start = 0;
2479 p->se.sum_exec_runtime = 0;
f6cf891c 2480 p->se.prev_sum_exec_runtime = 0;
6c594c21 2481 p->se.nr_migrations = 0;
6cfb0d5d
IM
2482
2483#ifdef CONFIG_SCHEDSTATS
41acab88 2484 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2485#endif
476d139c 2486
fa717060 2487 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2488 p->se.on_rq = 0;
4a55bd5e 2489 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2490
e107be36
AK
2491#ifdef CONFIG_PREEMPT_NOTIFIERS
2492 INIT_HLIST_HEAD(&p->preempt_notifiers);
2493#endif
dd41f596
IM
2494}
2495
2496/*
2497 * fork()/clone()-time setup:
2498 */
2499void sched_fork(struct task_struct *p, int clone_flags)
2500{
2501 int cpu = get_cpu();
2502
2503 __sched_fork(p);
06b83b5f 2504 /*
0017d735 2505 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2506 * nobody will actually run it, and a signal or other external
2507 * event cannot wake it up and insert it on the runqueue either.
2508 */
0017d735 2509 p->state = TASK_RUNNING;
dd41f596 2510
b9dc29e7
MG
2511 /*
2512 * Revert to default priority/policy on fork if requested.
2513 */
2514 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2515 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2516 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2517 p->normal_prio = p->static_prio;
2518 }
b9dc29e7 2519
6c697bdf
MG
2520 if (PRIO_TO_NICE(p->static_prio) < 0) {
2521 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2522 p->normal_prio = p->static_prio;
6c697bdf
MG
2523 set_load_weight(p);
2524 }
2525
b9dc29e7
MG
2526 /*
2527 * We don't need the reset flag anymore after the fork. It has
2528 * fulfilled its duty:
2529 */
2530 p->sched_reset_on_fork = 0;
2531 }
ca94c442 2532
f83f9ac2
PW
2533 /*
2534 * Make sure we do not leak PI boosting priority to the child.
2535 */
2536 p->prio = current->normal_prio;
2537
2ddbf952
HS
2538 if (!rt_prio(p->prio))
2539 p->sched_class = &fair_sched_class;
b29739f9 2540
cd29fe6f
PZ
2541 if (p->sched_class->task_fork)
2542 p->sched_class->task_fork(p);
2543
5f3edc1b
PZ
2544 set_task_cpu(p, cpu);
2545
52f17b6c 2546#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2547 if (likely(sched_info_on()))
52f17b6c 2548 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2549#endif
d6077cb8 2550#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2551 p->oncpu = 0;
2552#endif
1da177e4 2553#ifdef CONFIG_PREEMPT
4866cde0 2554 /* Want to start with kernel preemption disabled. */
a1261f54 2555 task_thread_info(p)->preempt_count = 1;
1da177e4 2556#endif
917b627d
GH
2557 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2558
476d139c 2559 put_cpu();
1da177e4
LT
2560}
2561
2562/*
2563 * wake_up_new_task - wake up a newly created task for the first time.
2564 *
2565 * This function will do some initial scheduler statistics housekeeping
2566 * that must be done for every newly created context, then puts the task
2567 * on the runqueue and wakes it.
2568 */
7ad5b3a5 2569void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2570{
2571 unsigned long flags;
dd41f596 2572 struct rq *rq;
c890692b 2573 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2574
2575#ifdef CONFIG_SMP
0017d735
PZ
2576 rq = task_rq_lock(p, &flags);
2577 p->state = TASK_WAKING;
2578
fabf318e
PZ
2579 /*
2580 * Fork balancing, do it here and not earlier because:
2581 * - cpus_allowed can change in the fork path
2582 * - any previously selected cpu might disappear through hotplug
2583 *
0017d735
PZ
2584 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2585 * without people poking at ->cpus_allowed.
fabf318e 2586 */
0017d735 2587 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2588 set_task_cpu(p, cpu);
1da177e4 2589
06b83b5f 2590 p->state = TASK_RUNNING;
0017d735
PZ
2591 task_rq_unlock(rq, &flags);
2592#endif
2593
2594 rq = task_rq_lock(p, &flags);
cd29fe6f 2595 activate_task(rq, p, 0);
27a9da65 2596 trace_sched_wakeup_new(p, 1);
a7558e01 2597 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2598#ifdef CONFIG_SMP
efbbd05a
PZ
2599 if (p->sched_class->task_woken)
2600 p->sched_class->task_woken(rq, p);
9a897c5a 2601#endif
dd41f596 2602 task_rq_unlock(rq, &flags);
fabf318e 2603 put_cpu();
1da177e4
LT
2604}
2605
e107be36
AK
2606#ifdef CONFIG_PREEMPT_NOTIFIERS
2607
2608/**
80dd99b3 2609 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2610 * @notifier: notifier struct to register
e107be36
AK
2611 */
2612void preempt_notifier_register(struct preempt_notifier *notifier)
2613{
2614 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2615}
2616EXPORT_SYMBOL_GPL(preempt_notifier_register);
2617
2618/**
2619 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2620 * @notifier: notifier struct to unregister
e107be36
AK
2621 *
2622 * This is safe to call from within a preemption notifier.
2623 */
2624void preempt_notifier_unregister(struct preempt_notifier *notifier)
2625{
2626 hlist_del(&notifier->link);
2627}
2628EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2629
2630static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2631{
2632 struct preempt_notifier *notifier;
2633 struct hlist_node *node;
2634
2635 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2636 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2637}
2638
2639static void
2640fire_sched_out_preempt_notifiers(struct task_struct *curr,
2641 struct task_struct *next)
2642{
2643 struct preempt_notifier *notifier;
2644 struct hlist_node *node;
2645
2646 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2647 notifier->ops->sched_out(notifier, next);
2648}
2649
6d6bc0ad 2650#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2651
2652static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2653{
2654}
2655
2656static void
2657fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658 struct task_struct *next)
2659{
2660}
2661
6d6bc0ad 2662#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2663
4866cde0
NP
2664/**
2665 * prepare_task_switch - prepare to switch tasks
2666 * @rq: the runqueue preparing to switch
421cee29 2667 * @prev: the current task that is being switched out
4866cde0
NP
2668 * @next: the task we are going to switch to.
2669 *
2670 * This is called with the rq lock held and interrupts off. It must
2671 * be paired with a subsequent finish_task_switch after the context
2672 * switch.
2673 *
2674 * prepare_task_switch sets up locking and calls architecture specific
2675 * hooks.
2676 */
e107be36
AK
2677static inline void
2678prepare_task_switch(struct rq *rq, struct task_struct *prev,
2679 struct task_struct *next)
4866cde0 2680{
e107be36 2681 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2682 prepare_lock_switch(rq, next);
2683 prepare_arch_switch(next);
2684}
2685
1da177e4
LT
2686/**
2687 * finish_task_switch - clean up after a task-switch
344babaa 2688 * @rq: runqueue associated with task-switch
1da177e4
LT
2689 * @prev: the thread we just switched away from.
2690 *
4866cde0
NP
2691 * finish_task_switch must be called after the context switch, paired
2692 * with a prepare_task_switch call before the context switch.
2693 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2694 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2695 *
2696 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2697 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2698 * with the lock held can cause deadlocks; see schedule() for
2699 * details.)
2700 */
a9957449 2701static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2702 __releases(rq->lock)
2703{
1da177e4 2704 struct mm_struct *mm = rq->prev_mm;
55a101f8 2705 long prev_state;
1da177e4
LT
2706
2707 rq->prev_mm = NULL;
2708
2709 /*
2710 * A task struct has one reference for the use as "current".
c394cc9f 2711 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2712 * schedule one last time. The schedule call will never return, and
2713 * the scheduled task must drop that reference.
c394cc9f 2714 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2715 * still held, otherwise prev could be scheduled on another cpu, die
2716 * there before we look at prev->state, and then the reference would
2717 * be dropped twice.
2718 * Manfred Spraul <manfred@colorfullife.com>
2719 */
55a101f8 2720 prev_state = prev->state;
4866cde0 2721 finish_arch_switch(prev);
8381f65d
JI
2722#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2723 local_irq_disable();
2724#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2725 perf_event_task_sched_in(current);
8381f65d
JI
2726#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2727 local_irq_enable();
2728#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2729 finish_lock_switch(rq, prev);
e8fa1362 2730
e107be36 2731 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2732 if (mm)
2733 mmdrop(mm);
c394cc9f 2734 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2735 /*
2736 * Remove function-return probe instances associated with this
2737 * task and put them back on the free list.
9761eea8 2738 */
c6fd91f0 2739 kprobe_flush_task(prev);
1da177e4 2740 put_task_struct(prev);
c6fd91f0 2741 }
1da177e4
LT
2742}
2743
3f029d3c
GH
2744#ifdef CONFIG_SMP
2745
2746/* assumes rq->lock is held */
2747static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2748{
2749 if (prev->sched_class->pre_schedule)
2750 prev->sched_class->pre_schedule(rq, prev);
2751}
2752
2753/* rq->lock is NOT held, but preemption is disabled */
2754static inline void post_schedule(struct rq *rq)
2755{
2756 if (rq->post_schedule) {
2757 unsigned long flags;
2758
05fa785c 2759 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2760 if (rq->curr->sched_class->post_schedule)
2761 rq->curr->sched_class->post_schedule(rq);
05fa785c 2762 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2763
2764 rq->post_schedule = 0;
2765 }
2766}
2767
2768#else
da19ab51 2769
3f029d3c
GH
2770static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2771{
2772}
2773
2774static inline void post_schedule(struct rq *rq)
2775{
1da177e4
LT
2776}
2777
3f029d3c
GH
2778#endif
2779
1da177e4
LT
2780/**
2781 * schedule_tail - first thing a freshly forked thread must call.
2782 * @prev: the thread we just switched away from.
2783 */
36c8b586 2784asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2785 __releases(rq->lock)
2786{
70b97a7f
IM
2787 struct rq *rq = this_rq();
2788
4866cde0 2789 finish_task_switch(rq, prev);
da19ab51 2790
3f029d3c
GH
2791 /*
2792 * FIXME: do we need to worry about rq being invalidated by the
2793 * task_switch?
2794 */
2795 post_schedule(rq);
70b97a7f 2796
4866cde0
NP
2797#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2798 /* In this case, finish_task_switch does not reenable preemption */
2799 preempt_enable();
2800#endif
1da177e4 2801 if (current->set_child_tid)
b488893a 2802 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2803}
2804
2805/*
2806 * context_switch - switch to the new MM and the new
2807 * thread's register state.
2808 */
dd41f596 2809static inline void
70b97a7f 2810context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2811 struct task_struct *next)
1da177e4 2812{
dd41f596 2813 struct mm_struct *mm, *oldmm;
1da177e4 2814
e107be36 2815 prepare_task_switch(rq, prev, next);
27a9da65 2816 trace_sched_switch(prev, next);
dd41f596
IM
2817 mm = next->mm;
2818 oldmm = prev->active_mm;
9226d125
ZA
2819 /*
2820 * For paravirt, this is coupled with an exit in switch_to to
2821 * combine the page table reload and the switch backend into
2822 * one hypercall.
2823 */
224101ed 2824 arch_start_context_switch(prev);
9226d125 2825
710390d9 2826 if (likely(!mm)) {
1da177e4
LT
2827 next->active_mm = oldmm;
2828 atomic_inc(&oldmm->mm_count);
2829 enter_lazy_tlb(oldmm, next);
2830 } else
2831 switch_mm(oldmm, mm, next);
2832
710390d9 2833 if (likely(!prev->mm)) {
1da177e4 2834 prev->active_mm = NULL;
1da177e4
LT
2835 rq->prev_mm = oldmm;
2836 }
3a5f5e48
IM
2837 /*
2838 * Since the runqueue lock will be released by the next
2839 * task (which is an invalid locking op but in the case
2840 * of the scheduler it's an obvious special-case), so we
2841 * do an early lockdep release here:
2842 */
2843#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2844 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2845#endif
1da177e4
LT
2846
2847 /* Here we just switch the register state and the stack. */
2848 switch_to(prev, next, prev);
2849
dd41f596
IM
2850 barrier();
2851 /*
2852 * this_rq must be evaluated again because prev may have moved
2853 * CPUs since it called schedule(), thus the 'rq' on its stack
2854 * frame will be invalid.
2855 */
2856 finish_task_switch(this_rq(), prev);
1da177e4
LT
2857}
2858
2859/*
2860 * nr_running, nr_uninterruptible and nr_context_switches:
2861 *
2862 * externally visible scheduler statistics: current number of runnable
2863 * threads, current number of uninterruptible-sleeping threads, total
2864 * number of context switches performed since bootup.
2865 */
2866unsigned long nr_running(void)
2867{
2868 unsigned long i, sum = 0;
2869
2870 for_each_online_cpu(i)
2871 sum += cpu_rq(i)->nr_running;
2872
2873 return sum;
f711f609 2874}
1da177e4
LT
2875
2876unsigned long nr_uninterruptible(void)
f711f609 2877{
1da177e4 2878 unsigned long i, sum = 0;
f711f609 2879
0a945022 2880 for_each_possible_cpu(i)
1da177e4 2881 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2882
2883 /*
1da177e4
LT
2884 * Since we read the counters lockless, it might be slightly
2885 * inaccurate. Do not allow it to go below zero though:
f711f609 2886 */
1da177e4
LT
2887 if (unlikely((long)sum < 0))
2888 sum = 0;
f711f609 2889
1da177e4 2890 return sum;
f711f609 2891}
f711f609 2892
1da177e4 2893unsigned long long nr_context_switches(void)
46cb4b7c 2894{
cc94abfc
SR
2895 int i;
2896 unsigned long long sum = 0;
46cb4b7c 2897
0a945022 2898 for_each_possible_cpu(i)
1da177e4 2899 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2900
1da177e4
LT
2901 return sum;
2902}
483b4ee6 2903
1da177e4
LT
2904unsigned long nr_iowait(void)
2905{
2906 unsigned long i, sum = 0;
483b4ee6 2907
0a945022 2908 for_each_possible_cpu(i)
1da177e4 2909 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2910
1da177e4
LT
2911 return sum;
2912}
483b4ee6 2913
69d25870
AV
2914unsigned long nr_iowait_cpu(void)
2915{
2916 struct rq *this = this_rq();
2917 return atomic_read(&this->nr_iowait);
2918}
46cb4b7c 2919
69d25870
AV
2920unsigned long this_cpu_load(void)
2921{
2922 struct rq *this = this_rq();
2923 return this->cpu_load[0];
2924}
e790fb0b 2925
46cb4b7c 2926
dce48a84
TG
2927/* Variables and functions for calc_load */
2928static atomic_long_t calc_load_tasks;
2929static unsigned long calc_load_update;
2930unsigned long avenrun[3];
2931EXPORT_SYMBOL(avenrun);
46cb4b7c 2932
74f5187a
PZ
2933static long calc_load_fold_active(struct rq *this_rq)
2934{
2935 long nr_active, delta = 0;
2936
2937 nr_active = this_rq->nr_running;
2938 nr_active += (long) this_rq->nr_uninterruptible;
2939
2940 if (nr_active != this_rq->calc_load_active) {
2941 delta = nr_active - this_rq->calc_load_active;
2942 this_rq->calc_load_active = nr_active;
2943 }
2944
2945 return delta;
2946}
2947
2948#ifdef CONFIG_NO_HZ
2949/*
2950 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2951 *
2952 * When making the ILB scale, we should try to pull this in as well.
2953 */
2954static atomic_long_t calc_load_tasks_idle;
2955
2956static void calc_load_account_idle(struct rq *this_rq)
2957{
2958 long delta;
2959
2960 delta = calc_load_fold_active(this_rq);
2961 if (delta)
2962 atomic_long_add(delta, &calc_load_tasks_idle);
2963}
2964
2965static long calc_load_fold_idle(void)
2966{
2967 long delta = 0;
2968
2969 /*
2970 * Its got a race, we don't care...
2971 */
2972 if (atomic_long_read(&calc_load_tasks_idle))
2973 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2974
2975 return delta;
2976}
2977#else
2978static void calc_load_account_idle(struct rq *this_rq)
2979{
2980}
2981
2982static inline long calc_load_fold_idle(void)
2983{
2984 return 0;
2985}
2986#endif
2987
2d02494f
TG
2988/**
2989 * get_avenrun - get the load average array
2990 * @loads: pointer to dest load array
2991 * @offset: offset to add
2992 * @shift: shift count to shift the result left
2993 *
2994 * These values are estimates at best, so no need for locking.
2995 */
2996void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2997{
2998 loads[0] = (avenrun[0] + offset) << shift;
2999 loads[1] = (avenrun[1] + offset) << shift;
3000 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3001}
46cb4b7c 3002
dce48a84
TG
3003static unsigned long
3004calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3005{
dce48a84
TG
3006 load *= exp;
3007 load += active * (FIXED_1 - exp);
3008 return load >> FSHIFT;
3009}
46cb4b7c
SS
3010
3011/*
dce48a84
TG
3012 * calc_load - update the avenrun load estimates 10 ticks after the
3013 * CPUs have updated calc_load_tasks.
7835b98b 3014 */
dce48a84 3015void calc_global_load(void)
7835b98b 3016{
dce48a84
TG
3017 unsigned long upd = calc_load_update + 10;
3018 long active;
1da177e4 3019
dce48a84
TG
3020 if (time_before(jiffies, upd))
3021 return;
1da177e4 3022
dce48a84
TG
3023 active = atomic_long_read(&calc_load_tasks);
3024 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3025
dce48a84
TG
3026 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3027 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3028 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3029
dce48a84
TG
3030 calc_load_update += LOAD_FREQ;
3031}
1da177e4 3032
dce48a84 3033/*
74f5187a
PZ
3034 * Called from update_cpu_load() to periodically update this CPU's
3035 * active count.
dce48a84
TG
3036 */
3037static void calc_load_account_active(struct rq *this_rq)
3038{
74f5187a 3039 long delta;
08c183f3 3040
74f5187a
PZ
3041 if (time_before(jiffies, this_rq->calc_load_update))
3042 return;
783609c6 3043
74f5187a
PZ
3044 delta = calc_load_fold_active(this_rq);
3045 delta += calc_load_fold_idle();
3046 if (delta)
dce48a84 3047 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3048
3049 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3050}
3051
3052/*
dd41f596
IM
3053 * Update rq->cpu_load[] statistics. This function is usually called every
3054 * scheduler tick (TICK_NSEC).
46cb4b7c 3055 */
dd41f596 3056static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3057{
495eca49 3058 unsigned long this_load = this_rq->load.weight;
dd41f596 3059 int i, scale;
46cb4b7c 3060
dd41f596 3061 this_rq->nr_load_updates++;
46cb4b7c 3062
dd41f596
IM
3063 /* Update our load: */
3064 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3065 unsigned long old_load, new_load;
7d1e6a9b 3066
dd41f596 3067 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3068
dd41f596
IM
3069 old_load = this_rq->cpu_load[i];
3070 new_load = this_load;
a25707f3
IM
3071 /*
3072 * Round up the averaging division if load is increasing. This
3073 * prevents us from getting stuck on 9 if the load is 10, for
3074 * example.
3075 */
3076 if (new_load > old_load)
3077 new_load += scale-1;
dd41f596
IM
3078 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3079 }
46cb4b7c 3080
74f5187a 3081 calc_load_account_active(this_rq);
46cb4b7c
SS
3082}
3083
dd41f596 3084#ifdef CONFIG_SMP
8a0be9ef 3085
46cb4b7c 3086/*
38022906
PZ
3087 * sched_exec - execve() is a valuable balancing opportunity, because at
3088 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3089 */
38022906 3090void sched_exec(void)
46cb4b7c 3091{
38022906 3092 struct task_struct *p = current;
1da177e4 3093 unsigned long flags;
70b97a7f 3094 struct rq *rq;
0017d735 3095 int dest_cpu;
46cb4b7c 3096
1da177e4 3097 rq = task_rq_lock(p, &flags);
0017d735
PZ
3098 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3099 if (dest_cpu == smp_processor_id())
3100 goto unlock;
38022906 3101
46cb4b7c 3102 /*
38022906 3103 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3104 */
30da688e 3105 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3106 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3107 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3108
1da177e4 3109 task_rq_unlock(rq, &flags);
969c7921 3110 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3111 return;
3112 }
0017d735 3113unlock:
1da177e4 3114 task_rq_unlock(rq, &flags);
1da177e4 3115}
dd41f596 3116
1da177e4
LT
3117#endif
3118
1da177e4
LT
3119DEFINE_PER_CPU(struct kernel_stat, kstat);
3120
3121EXPORT_PER_CPU_SYMBOL(kstat);
3122
3123/*
c5f8d995 3124 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3125 * @p in case that task is currently running.
c5f8d995
HS
3126 *
3127 * Called with task_rq_lock() held on @rq.
1da177e4 3128 */
c5f8d995
HS
3129static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3130{
3131 u64 ns = 0;
3132
3133 if (task_current(rq, p)) {
3134 update_rq_clock(rq);
3135 ns = rq->clock - p->se.exec_start;
3136 if ((s64)ns < 0)
3137 ns = 0;
3138 }
3139
3140 return ns;
3141}
3142
bb34d92f 3143unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3144{
1da177e4 3145 unsigned long flags;
41b86e9c 3146 struct rq *rq;
bb34d92f 3147 u64 ns = 0;
48f24c4d 3148
41b86e9c 3149 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3150 ns = do_task_delta_exec(p, rq);
3151 task_rq_unlock(rq, &flags);
1508487e 3152
c5f8d995
HS
3153 return ns;
3154}
f06febc9 3155
c5f8d995
HS
3156/*
3157 * Return accounted runtime for the task.
3158 * In case the task is currently running, return the runtime plus current's
3159 * pending runtime that have not been accounted yet.
3160 */
3161unsigned long long task_sched_runtime(struct task_struct *p)
3162{
3163 unsigned long flags;
3164 struct rq *rq;
3165 u64 ns = 0;
3166
3167 rq = task_rq_lock(p, &flags);
3168 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3169 task_rq_unlock(rq, &flags);
3170
3171 return ns;
3172}
48f24c4d 3173
c5f8d995
HS
3174/*
3175 * Return sum_exec_runtime for the thread group.
3176 * In case the task is currently running, return the sum plus current's
3177 * pending runtime that have not been accounted yet.
3178 *
3179 * Note that the thread group might have other running tasks as well,
3180 * so the return value not includes other pending runtime that other
3181 * running tasks might have.
3182 */
3183unsigned long long thread_group_sched_runtime(struct task_struct *p)
3184{
3185 struct task_cputime totals;
3186 unsigned long flags;
3187 struct rq *rq;
3188 u64 ns;
3189
3190 rq = task_rq_lock(p, &flags);
3191 thread_group_cputime(p, &totals);
3192 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3193 task_rq_unlock(rq, &flags);
48f24c4d 3194
1da177e4
LT
3195 return ns;
3196}
3197
1da177e4
LT
3198/*
3199 * Account user cpu time to a process.
3200 * @p: the process that the cpu time gets accounted to
1da177e4 3201 * @cputime: the cpu time spent in user space since the last update
457533a7 3202 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3203 */
457533a7
MS
3204void account_user_time(struct task_struct *p, cputime_t cputime,
3205 cputime_t cputime_scaled)
1da177e4
LT
3206{
3207 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3208 cputime64_t tmp;
3209
457533a7 3210 /* Add user time to process. */
1da177e4 3211 p->utime = cputime_add(p->utime, cputime);
457533a7 3212 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3213 account_group_user_time(p, cputime);
1da177e4
LT
3214
3215 /* Add user time to cpustat. */
3216 tmp = cputime_to_cputime64(cputime);
3217 if (TASK_NICE(p) > 0)
3218 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3219 else
3220 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3221
3222 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3223 /* Account for user time used */
3224 acct_update_integrals(p);
1da177e4
LT
3225}
3226
94886b84
LV
3227/*
3228 * Account guest cpu time to a process.
3229 * @p: the process that the cpu time gets accounted to
3230 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3231 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3232 */
457533a7
MS
3233static void account_guest_time(struct task_struct *p, cputime_t cputime,
3234 cputime_t cputime_scaled)
94886b84
LV
3235{
3236 cputime64_t tmp;
3237 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3238
3239 tmp = cputime_to_cputime64(cputime);
3240
457533a7 3241 /* Add guest time to process. */
94886b84 3242 p->utime = cputime_add(p->utime, cputime);
457533a7 3243 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3244 account_group_user_time(p, cputime);
94886b84
LV
3245 p->gtime = cputime_add(p->gtime, cputime);
3246
457533a7 3247 /* Add guest time to cpustat. */
ce0e7b28
RO
3248 if (TASK_NICE(p) > 0) {
3249 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3250 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3251 } else {
3252 cpustat->user = cputime64_add(cpustat->user, tmp);
3253 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3254 }
94886b84
LV
3255}
3256
1da177e4
LT
3257/*
3258 * Account system cpu time to a process.
3259 * @p: the process that the cpu time gets accounted to
3260 * @hardirq_offset: the offset to subtract from hardirq_count()
3261 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3262 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3263 */
3264void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3265 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3266{
3267 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3268 cputime64_t tmp;
3269
983ed7a6 3270 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3271 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3272 return;
3273 }
94886b84 3274
457533a7 3275 /* Add system time to process. */
1da177e4 3276 p->stime = cputime_add(p->stime, cputime);
457533a7 3277 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3278 account_group_system_time(p, cputime);
1da177e4
LT
3279
3280 /* Add system time to cpustat. */
3281 tmp = cputime_to_cputime64(cputime);
3282 if (hardirq_count() - hardirq_offset)
3283 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3284 else if (softirq_count())
3285 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3286 else
79741dd3
MS
3287 cpustat->system = cputime64_add(cpustat->system, tmp);
3288
ef12fefa
BR
3289 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3290
1da177e4
LT
3291 /* Account for system time used */
3292 acct_update_integrals(p);
1da177e4
LT
3293}
3294
c66f08be 3295/*
1da177e4 3296 * Account for involuntary wait time.
1da177e4 3297 * @steal: the cpu time spent in involuntary wait
c66f08be 3298 */
79741dd3 3299void account_steal_time(cputime_t cputime)
c66f08be 3300{
79741dd3
MS
3301 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3302 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3303
3304 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3305}
3306
1da177e4 3307/*
79741dd3
MS
3308 * Account for idle time.
3309 * @cputime: the cpu time spent in idle wait
1da177e4 3310 */
79741dd3 3311void account_idle_time(cputime_t cputime)
1da177e4
LT
3312{
3313 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3314 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3315 struct rq *rq = this_rq();
1da177e4 3316
79741dd3
MS
3317 if (atomic_read(&rq->nr_iowait) > 0)
3318 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3319 else
3320 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3321}
3322
79741dd3
MS
3323#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3324
3325/*
3326 * Account a single tick of cpu time.
3327 * @p: the process that the cpu time gets accounted to
3328 * @user_tick: indicates if the tick is a user or a system tick
3329 */
3330void account_process_tick(struct task_struct *p, int user_tick)
3331{
a42548a1 3332 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3333 struct rq *rq = this_rq();
3334
3335 if (user_tick)
a42548a1 3336 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3337 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3338 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3339 one_jiffy_scaled);
3340 else
a42548a1 3341 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3342}
3343
3344/*
3345 * Account multiple ticks of steal time.
3346 * @p: the process from which the cpu time has been stolen
3347 * @ticks: number of stolen ticks
3348 */
3349void account_steal_ticks(unsigned long ticks)
3350{
3351 account_steal_time(jiffies_to_cputime(ticks));
3352}
3353
3354/*
3355 * Account multiple ticks of idle time.
3356 * @ticks: number of stolen ticks
3357 */
3358void account_idle_ticks(unsigned long ticks)
3359{
3360 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3361}
3362
79741dd3
MS
3363#endif
3364
49048622
BS
3365/*
3366 * Use precise platform statistics if available:
3367 */
3368#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3369void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3370{
d99ca3b9
HS
3371 *ut = p->utime;
3372 *st = p->stime;
49048622
BS
3373}
3374
0cf55e1e 3375void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3376{
0cf55e1e
HS
3377 struct task_cputime cputime;
3378
3379 thread_group_cputime(p, &cputime);
3380
3381 *ut = cputime.utime;
3382 *st = cputime.stime;
49048622
BS
3383}
3384#else
761b1d26
HS
3385
3386#ifndef nsecs_to_cputime
b7b20df9 3387# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3388#endif
3389
d180c5bc 3390void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3391{
d99ca3b9 3392 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3393
3394 /*
3395 * Use CFS's precise accounting:
3396 */
d180c5bc 3397 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3398
3399 if (total) {
d180c5bc
HS
3400 u64 temp;
3401
3402 temp = (u64)(rtime * utime);
49048622 3403 do_div(temp, total);
d180c5bc
HS
3404 utime = (cputime_t)temp;
3405 } else
3406 utime = rtime;
49048622 3407
d180c5bc
HS
3408 /*
3409 * Compare with previous values, to keep monotonicity:
3410 */
761b1d26 3411 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3412 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3413
d99ca3b9
HS
3414 *ut = p->prev_utime;
3415 *st = p->prev_stime;
49048622
BS
3416}
3417
0cf55e1e
HS
3418/*
3419 * Must be called with siglock held.
3420 */
3421void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3422{
0cf55e1e
HS
3423 struct signal_struct *sig = p->signal;
3424 struct task_cputime cputime;
3425 cputime_t rtime, utime, total;
49048622 3426
0cf55e1e 3427 thread_group_cputime(p, &cputime);
49048622 3428
0cf55e1e
HS
3429 total = cputime_add(cputime.utime, cputime.stime);
3430 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3431
0cf55e1e
HS
3432 if (total) {
3433 u64 temp;
49048622 3434
0cf55e1e
HS
3435 temp = (u64)(rtime * cputime.utime);
3436 do_div(temp, total);
3437 utime = (cputime_t)temp;
3438 } else
3439 utime = rtime;
3440
3441 sig->prev_utime = max(sig->prev_utime, utime);
3442 sig->prev_stime = max(sig->prev_stime,
3443 cputime_sub(rtime, sig->prev_utime));
3444
3445 *ut = sig->prev_utime;
3446 *st = sig->prev_stime;
49048622 3447}
49048622 3448#endif
49048622 3449
7835b98b
CL
3450/*
3451 * This function gets called by the timer code, with HZ frequency.
3452 * We call it with interrupts disabled.
3453 *
3454 * It also gets called by the fork code, when changing the parent's
3455 * timeslices.
3456 */
3457void scheduler_tick(void)
3458{
7835b98b
CL
3459 int cpu = smp_processor_id();
3460 struct rq *rq = cpu_rq(cpu);
dd41f596 3461 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3462
3463 sched_clock_tick();
dd41f596 3464
05fa785c 3465 raw_spin_lock(&rq->lock);
3e51f33f 3466 update_rq_clock(rq);
f1a438d8 3467 update_cpu_load(rq);
fa85ae24 3468 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3469 raw_spin_unlock(&rq->lock);
7835b98b 3470
49f47433 3471 perf_event_task_tick(curr);
e220d2dc 3472
e418e1c2 3473#ifdef CONFIG_SMP
dd41f596
IM
3474 rq->idle_at_tick = idle_cpu(cpu);
3475 trigger_load_balance(rq, cpu);
e418e1c2 3476#endif
1da177e4
LT
3477}
3478
132380a0 3479notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3480{
3481 if (in_lock_functions(addr)) {
3482 addr = CALLER_ADDR2;
3483 if (in_lock_functions(addr))
3484 addr = CALLER_ADDR3;
3485 }
3486 return addr;
3487}
1da177e4 3488
7e49fcce
SR
3489#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3490 defined(CONFIG_PREEMPT_TRACER))
3491
43627582 3492void __kprobes add_preempt_count(int val)
1da177e4 3493{
6cd8a4bb 3494#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3495 /*
3496 * Underflow?
3497 */
9a11b49a
IM
3498 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3499 return;
6cd8a4bb 3500#endif
1da177e4 3501 preempt_count() += val;
6cd8a4bb 3502#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3503 /*
3504 * Spinlock count overflowing soon?
3505 */
33859f7f
MOS
3506 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3507 PREEMPT_MASK - 10);
6cd8a4bb
SR
3508#endif
3509 if (preempt_count() == val)
3510 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3511}
3512EXPORT_SYMBOL(add_preempt_count);
3513
43627582 3514void __kprobes sub_preempt_count(int val)
1da177e4 3515{
6cd8a4bb 3516#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3517 /*
3518 * Underflow?
3519 */
01e3eb82 3520 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3521 return;
1da177e4
LT
3522 /*
3523 * Is the spinlock portion underflowing?
3524 */
9a11b49a
IM
3525 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3526 !(preempt_count() & PREEMPT_MASK)))
3527 return;
6cd8a4bb 3528#endif
9a11b49a 3529
6cd8a4bb
SR
3530 if (preempt_count() == val)
3531 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3532 preempt_count() -= val;
3533}
3534EXPORT_SYMBOL(sub_preempt_count);
3535
3536#endif
3537
3538/*
dd41f596 3539 * Print scheduling while atomic bug:
1da177e4 3540 */
dd41f596 3541static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3542{
838225b4
SS
3543 struct pt_regs *regs = get_irq_regs();
3544
3df0fc5b
PZ
3545 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3546 prev->comm, prev->pid, preempt_count());
838225b4 3547
dd41f596 3548 debug_show_held_locks(prev);
e21f5b15 3549 print_modules();
dd41f596
IM
3550 if (irqs_disabled())
3551 print_irqtrace_events(prev);
838225b4
SS
3552
3553 if (regs)
3554 show_regs(regs);
3555 else
3556 dump_stack();
dd41f596 3557}
1da177e4 3558
dd41f596
IM
3559/*
3560 * Various schedule()-time debugging checks and statistics:
3561 */
3562static inline void schedule_debug(struct task_struct *prev)
3563{
1da177e4 3564 /*
41a2d6cf 3565 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3566 * schedule() atomically, we ignore that path for now.
3567 * Otherwise, whine if we are scheduling when we should not be.
3568 */
3f33a7ce 3569 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3570 __schedule_bug(prev);
3571
1da177e4
LT
3572 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3573
2d72376b 3574 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3575#ifdef CONFIG_SCHEDSTATS
3576 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3577 schedstat_inc(this_rq(), bkl_count);
3578 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3579 }
3580#endif
dd41f596
IM
3581}
3582
6cecd084 3583static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3584{
a64692a3
MG
3585 if (prev->se.on_rq)
3586 update_rq_clock(rq);
3587 rq->skip_clock_update = 0;
6cecd084 3588 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3589}
3590
dd41f596
IM
3591/*
3592 * Pick up the highest-prio task:
3593 */
3594static inline struct task_struct *
b67802ea 3595pick_next_task(struct rq *rq)
dd41f596 3596{
5522d5d5 3597 const struct sched_class *class;
dd41f596 3598 struct task_struct *p;
1da177e4
LT
3599
3600 /*
dd41f596
IM
3601 * Optimization: we know that if all tasks are in
3602 * the fair class we can call that function directly:
1da177e4 3603 */
dd41f596 3604 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3605 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3606 if (likely(p))
3607 return p;
1da177e4
LT
3608 }
3609
dd41f596
IM
3610 class = sched_class_highest;
3611 for ( ; ; ) {
fb8d4724 3612 p = class->pick_next_task(rq);
dd41f596
IM
3613 if (p)
3614 return p;
3615 /*
3616 * Will never be NULL as the idle class always
3617 * returns a non-NULL p:
3618 */
3619 class = class->next;
3620 }
3621}
1da177e4 3622
dd41f596
IM
3623/*
3624 * schedule() is the main scheduler function.
3625 */
ff743345 3626asmlinkage void __sched schedule(void)
dd41f596
IM
3627{
3628 struct task_struct *prev, *next;
67ca7bde 3629 unsigned long *switch_count;
dd41f596 3630 struct rq *rq;
31656519 3631 int cpu;
dd41f596 3632
ff743345
PZ
3633need_resched:
3634 preempt_disable();
dd41f596
IM
3635 cpu = smp_processor_id();
3636 rq = cpu_rq(cpu);
25502a6c 3637 rcu_note_context_switch(cpu);
dd41f596
IM
3638 prev = rq->curr;
3639 switch_count = &prev->nivcsw;
3640
3641 release_kernel_lock(prev);
3642need_resched_nonpreemptible:
3643
3644 schedule_debug(prev);
1da177e4 3645
31656519 3646 if (sched_feat(HRTICK))
f333fdc9 3647 hrtick_clear(rq);
8f4d37ec 3648
05fa785c 3649 raw_spin_lock_irq(&rq->lock);
1e819950 3650 clear_tsk_need_resched(prev);
1da177e4 3651
1da177e4 3652 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3653 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3654 prev->state = TASK_RUNNING;
21aa9af0
TH
3655 } else {
3656 /*
3657 * If a worker is going to sleep, notify and
3658 * ask workqueue whether it wants to wake up a
3659 * task to maintain concurrency. If so, wake
3660 * up the task.
3661 */
3662 if (prev->flags & PF_WQ_WORKER) {
3663 struct task_struct *to_wakeup;
3664
3665 to_wakeup = wq_worker_sleeping(prev, cpu);
3666 if (to_wakeup)
3667 try_to_wake_up_local(to_wakeup);
3668 }
371fd7e7 3669 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 3670 }
dd41f596 3671 switch_count = &prev->nvcsw;
1da177e4
LT
3672 }
3673
3f029d3c 3674 pre_schedule(rq, prev);
f65eda4f 3675
dd41f596 3676 if (unlikely(!rq->nr_running))
1da177e4 3677 idle_balance(cpu, rq);
1da177e4 3678
df1c99d4 3679 put_prev_task(rq, prev);
b67802ea 3680 next = pick_next_task(rq);
1da177e4 3681
1da177e4 3682 if (likely(prev != next)) {
673a90a1 3683 sched_info_switch(prev, next);
49f47433 3684 perf_event_task_sched_out(prev, next);
673a90a1 3685
1da177e4
LT
3686 rq->nr_switches++;
3687 rq->curr = next;
3688 ++*switch_count;
3689
dd41f596 3690 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3691 /*
3692 * the context switch might have flipped the stack from under
3693 * us, hence refresh the local variables.
3694 */
3695 cpu = smp_processor_id();
3696 rq = cpu_rq(cpu);
1da177e4 3697 } else
05fa785c 3698 raw_spin_unlock_irq(&rq->lock);
1da177e4 3699
3f029d3c 3700 post_schedule(rq);
1da177e4 3701
6d558c3a
YZ
3702 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3703 prev = rq->curr;
3704 switch_count = &prev->nivcsw;
1da177e4 3705 goto need_resched_nonpreemptible;
6d558c3a 3706 }
8f4d37ec 3707
1da177e4 3708 preempt_enable_no_resched();
ff743345 3709 if (need_resched())
1da177e4
LT
3710 goto need_resched;
3711}
1da177e4
LT
3712EXPORT_SYMBOL(schedule);
3713
c08f7829 3714#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3715/*
3716 * Look out! "owner" is an entirely speculative pointer
3717 * access and not reliable.
3718 */
3719int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3720{
3721 unsigned int cpu;
3722 struct rq *rq;
3723
3724 if (!sched_feat(OWNER_SPIN))
3725 return 0;
3726
3727#ifdef CONFIG_DEBUG_PAGEALLOC
3728 /*
3729 * Need to access the cpu field knowing that
3730 * DEBUG_PAGEALLOC could have unmapped it if
3731 * the mutex owner just released it and exited.
3732 */
3733 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3734 return 0;
0d66bf6d
PZ
3735#else
3736 cpu = owner->cpu;
3737#endif
3738
3739 /*
3740 * Even if the access succeeded (likely case),
3741 * the cpu field may no longer be valid.
3742 */
3743 if (cpu >= nr_cpumask_bits)
4b402210 3744 return 0;
0d66bf6d
PZ
3745
3746 /*
3747 * We need to validate that we can do a
3748 * get_cpu() and that we have the percpu area.
3749 */
3750 if (!cpu_online(cpu))
4b402210 3751 return 0;
0d66bf6d
PZ
3752
3753 rq = cpu_rq(cpu);
3754
3755 for (;;) {
3756 /*
3757 * Owner changed, break to re-assess state.
3758 */
3759 if (lock->owner != owner)
3760 break;
3761
3762 /*
3763 * Is that owner really running on that cpu?
3764 */
3765 if (task_thread_info(rq->curr) != owner || need_resched())
3766 return 0;
3767
3768 cpu_relax();
3769 }
4b402210 3770
0d66bf6d
PZ
3771 return 1;
3772}
3773#endif
3774
1da177e4
LT
3775#ifdef CONFIG_PREEMPT
3776/*
2ed6e34f 3777 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3778 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3779 * occur there and call schedule directly.
3780 */
3781asmlinkage void __sched preempt_schedule(void)
3782{
3783 struct thread_info *ti = current_thread_info();
6478d880 3784
1da177e4
LT
3785 /*
3786 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3787 * we do not want to preempt the current task. Just return..
1da177e4 3788 */
beed33a8 3789 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3790 return;
3791
3a5c359a
AK
3792 do {
3793 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3794 schedule();
3a5c359a 3795 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3796
3a5c359a
AK
3797 /*
3798 * Check again in case we missed a preemption opportunity
3799 * between schedule and now.
3800 */
3801 barrier();
5ed0cec0 3802 } while (need_resched());
1da177e4 3803}
1da177e4
LT
3804EXPORT_SYMBOL(preempt_schedule);
3805
3806/*
2ed6e34f 3807 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3808 * off of irq context.
3809 * Note, that this is called and return with irqs disabled. This will
3810 * protect us against recursive calling from irq.
3811 */
3812asmlinkage void __sched preempt_schedule_irq(void)
3813{
3814 struct thread_info *ti = current_thread_info();
6478d880 3815
2ed6e34f 3816 /* Catch callers which need to be fixed */
1da177e4
LT
3817 BUG_ON(ti->preempt_count || !irqs_disabled());
3818
3a5c359a
AK
3819 do {
3820 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3821 local_irq_enable();
3822 schedule();
3823 local_irq_disable();
3a5c359a 3824 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3825
3a5c359a
AK
3826 /*
3827 * Check again in case we missed a preemption opportunity
3828 * between schedule and now.
3829 */
3830 barrier();
5ed0cec0 3831 } while (need_resched());
1da177e4
LT
3832}
3833
3834#endif /* CONFIG_PREEMPT */
3835
63859d4f 3836int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3837 void *key)
1da177e4 3838{
63859d4f 3839 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3840}
1da177e4
LT
3841EXPORT_SYMBOL(default_wake_function);
3842
3843/*
41a2d6cf
IM
3844 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3845 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3846 * number) then we wake all the non-exclusive tasks and one exclusive task.
3847 *
3848 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3849 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3850 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3851 */
78ddb08f 3852static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3853 int nr_exclusive, int wake_flags, void *key)
1da177e4 3854{
2e45874c 3855 wait_queue_t *curr, *next;
1da177e4 3856
2e45874c 3857 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3858 unsigned flags = curr->flags;
3859
63859d4f 3860 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3861 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3862 break;
3863 }
3864}
3865
3866/**
3867 * __wake_up - wake up threads blocked on a waitqueue.
3868 * @q: the waitqueue
3869 * @mode: which threads
3870 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3871 * @key: is directly passed to the wakeup function
50fa610a
DH
3872 *
3873 * It may be assumed that this function implies a write memory barrier before
3874 * changing the task state if and only if any tasks are woken up.
1da177e4 3875 */
7ad5b3a5 3876void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3877 int nr_exclusive, void *key)
1da177e4
LT
3878{
3879 unsigned long flags;
3880
3881 spin_lock_irqsave(&q->lock, flags);
3882 __wake_up_common(q, mode, nr_exclusive, 0, key);
3883 spin_unlock_irqrestore(&q->lock, flags);
3884}
1da177e4
LT
3885EXPORT_SYMBOL(__wake_up);
3886
3887/*
3888 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3889 */
7ad5b3a5 3890void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3891{
3892 __wake_up_common(q, mode, 1, 0, NULL);
3893}
22c43c81 3894EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3895
4ede816a
DL
3896void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3897{
3898 __wake_up_common(q, mode, 1, 0, key);
3899}
3900
1da177e4 3901/**
4ede816a 3902 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3903 * @q: the waitqueue
3904 * @mode: which threads
3905 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3906 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3907 *
3908 * The sync wakeup differs that the waker knows that it will schedule
3909 * away soon, so while the target thread will be woken up, it will not
3910 * be migrated to another CPU - ie. the two threads are 'synchronized'
3911 * with each other. This can prevent needless bouncing between CPUs.
3912 *
3913 * On UP it can prevent extra preemption.
50fa610a
DH
3914 *
3915 * It may be assumed that this function implies a write memory barrier before
3916 * changing the task state if and only if any tasks are woken up.
1da177e4 3917 */
4ede816a
DL
3918void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3919 int nr_exclusive, void *key)
1da177e4
LT
3920{
3921 unsigned long flags;
7d478721 3922 int wake_flags = WF_SYNC;
1da177e4
LT
3923
3924 if (unlikely(!q))
3925 return;
3926
3927 if (unlikely(!nr_exclusive))
7d478721 3928 wake_flags = 0;
1da177e4
LT
3929
3930 spin_lock_irqsave(&q->lock, flags);
7d478721 3931 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3932 spin_unlock_irqrestore(&q->lock, flags);
3933}
4ede816a
DL
3934EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3935
3936/*
3937 * __wake_up_sync - see __wake_up_sync_key()
3938 */
3939void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3940{
3941 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3942}
1da177e4
LT
3943EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3944
65eb3dc6
KD
3945/**
3946 * complete: - signals a single thread waiting on this completion
3947 * @x: holds the state of this particular completion
3948 *
3949 * This will wake up a single thread waiting on this completion. Threads will be
3950 * awakened in the same order in which they were queued.
3951 *
3952 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3953 *
3954 * It may be assumed that this function implies a write memory barrier before
3955 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3956 */
b15136e9 3957void complete(struct completion *x)
1da177e4
LT
3958{
3959 unsigned long flags;
3960
3961 spin_lock_irqsave(&x->wait.lock, flags);
3962 x->done++;
d9514f6c 3963 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3964 spin_unlock_irqrestore(&x->wait.lock, flags);
3965}
3966EXPORT_SYMBOL(complete);
3967
65eb3dc6
KD
3968/**
3969 * complete_all: - signals all threads waiting on this completion
3970 * @x: holds the state of this particular completion
3971 *
3972 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3973 *
3974 * It may be assumed that this function implies a write memory barrier before
3975 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3976 */
b15136e9 3977void complete_all(struct completion *x)
1da177e4
LT
3978{
3979 unsigned long flags;
3980
3981 spin_lock_irqsave(&x->wait.lock, flags);
3982 x->done += UINT_MAX/2;
d9514f6c 3983 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3984 spin_unlock_irqrestore(&x->wait.lock, flags);
3985}
3986EXPORT_SYMBOL(complete_all);
3987
8cbbe86d
AK
3988static inline long __sched
3989do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3990{
1da177e4
LT
3991 if (!x->done) {
3992 DECLARE_WAITQUEUE(wait, current);
3993
a93d2f17 3994 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3995 do {
94d3d824 3996 if (signal_pending_state(state, current)) {
ea71a546
ON
3997 timeout = -ERESTARTSYS;
3998 break;
8cbbe86d
AK
3999 }
4000 __set_current_state(state);
1da177e4
LT
4001 spin_unlock_irq(&x->wait.lock);
4002 timeout = schedule_timeout(timeout);
4003 spin_lock_irq(&x->wait.lock);
ea71a546 4004 } while (!x->done && timeout);
1da177e4 4005 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4006 if (!x->done)
4007 return timeout;
1da177e4
LT
4008 }
4009 x->done--;
ea71a546 4010 return timeout ?: 1;
1da177e4 4011}
1da177e4 4012
8cbbe86d
AK
4013static long __sched
4014wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4015{
1da177e4
LT
4016 might_sleep();
4017
4018 spin_lock_irq(&x->wait.lock);
8cbbe86d 4019 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4020 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4021 return timeout;
4022}
1da177e4 4023
65eb3dc6
KD
4024/**
4025 * wait_for_completion: - waits for completion of a task
4026 * @x: holds the state of this particular completion
4027 *
4028 * This waits to be signaled for completion of a specific task. It is NOT
4029 * interruptible and there is no timeout.
4030 *
4031 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4032 * and interrupt capability. Also see complete().
4033 */
b15136e9 4034void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4035{
4036 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4037}
8cbbe86d 4038EXPORT_SYMBOL(wait_for_completion);
1da177e4 4039
65eb3dc6
KD
4040/**
4041 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4042 * @x: holds the state of this particular completion
4043 * @timeout: timeout value in jiffies
4044 *
4045 * This waits for either a completion of a specific task to be signaled or for a
4046 * specified timeout to expire. The timeout is in jiffies. It is not
4047 * interruptible.
4048 */
b15136e9 4049unsigned long __sched
8cbbe86d 4050wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4051{
8cbbe86d 4052 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4053}
8cbbe86d 4054EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4055
65eb3dc6
KD
4056/**
4057 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4058 * @x: holds the state of this particular completion
4059 *
4060 * This waits for completion of a specific task to be signaled. It is
4061 * interruptible.
4062 */
8cbbe86d 4063int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4064{
51e97990
AK
4065 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4066 if (t == -ERESTARTSYS)
4067 return t;
4068 return 0;
0fec171c 4069}
8cbbe86d 4070EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4071
65eb3dc6
KD
4072/**
4073 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4074 * @x: holds the state of this particular completion
4075 * @timeout: timeout value in jiffies
4076 *
4077 * This waits for either a completion of a specific task to be signaled or for a
4078 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4079 */
b15136e9 4080unsigned long __sched
8cbbe86d
AK
4081wait_for_completion_interruptible_timeout(struct completion *x,
4082 unsigned long timeout)
0fec171c 4083{
8cbbe86d 4084 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4085}
8cbbe86d 4086EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4087
65eb3dc6
KD
4088/**
4089 * wait_for_completion_killable: - waits for completion of a task (killable)
4090 * @x: holds the state of this particular completion
4091 *
4092 * This waits to be signaled for completion of a specific task. It can be
4093 * interrupted by a kill signal.
4094 */
009e577e
MW
4095int __sched wait_for_completion_killable(struct completion *x)
4096{
4097 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4098 if (t == -ERESTARTSYS)
4099 return t;
4100 return 0;
4101}
4102EXPORT_SYMBOL(wait_for_completion_killable);
4103
0aa12fb4
SW
4104/**
4105 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4106 * @x: holds the state of this particular completion
4107 * @timeout: timeout value in jiffies
4108 *
4109 * This waits for either a completion of a specific task to be
4110 * signaled or for a specified timeout to expire. It can be
4111 * interrupted by a kill signal. The timeout is in jiffies.
4112 */
4113unsigned long __sched
4114wait_for_completion_killable_timeout(struct completion *x,
4115 unsigned long timeout)
4116{
4117 return wait_for_common(x, timeout, TASK_KILLABLE);
4118}
4119EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4120
be4de352
DC
4121/**
4122 * try_wait_for_completion - try to decrement a completion without blocking
4123 * @x: completion structure
4124 *
4125 * Returns: 0 if a decrement cannot be done without blocking
4126 * 1 if a decrement succeeded.
4127 *
4128 * If a completion is being used as a counting completion,
4129 * attempt to decrement the counter without blocking. This
4130 * enables us to avoid waiting if the resource the completion
4131 * is protecting is not available.
4132 */
4133bool try_wait_for_completion(struct completion *x)
4134{
7539a3b3 4135 unsigned long flags;
be4de352
DC
4136 int ret = 1;
4137
7539a3b3 4138 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4139 if (!x->done)
4140 ret = 0;
4141 else
4142 x->done--;
7539a3b3 4143 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4144 return ret;
4145}
4146EXPORT_SYMBOL(try_wait_for_completion);
4147
4148/**
4149 * completion_done - Test to see if a completion has any waiters
4150 * @x: completion structure
4151 *
4152 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4153 * 1 if there are no waiters.
4154 *
4155 */
4156bool completion_done(struct completion *x)
4157{
7539a3b3 4158 unsigned long flags;
be4de352
DC
4159 int ret = 1;
4160
7539a3b3 4161 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4162 if (!x->done)
4163 ret = 0;
7539a3b3 4164 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4165 return ret;
4166}
4167EXPORT_SYMBOL(completion_done);
4168
8cbbe86d
AK
4169static long __sched
4170sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4171{
0fec171c
IM
4172 unsigned long flags;
4173 wait_queue_t wait;
4174
4175 init_waitqueue_entry(&wait, current);
1da177e4 4176
8cbbe86d 4177 __set_current_state(state);
1da177e4 4178
8cbbe86d
AK
4179 spin_lock_irqsave(&q->lock, flags);
4180 __add_wait_queue(q, &wait);
4181 spin_unlock(&q->lock);
4182 timeout = schedule_timeout(timeout);
4183 spin_lock_irq(&q->lock);
4184 __remove_wait_queue(q, &wait);
4185 spin_unlock_irqrestore(&q->lock, flags);
4186
4187 return timeout;
4188}
4189
4190void __sched interruptible_sleep_on(wait_queue_head_t *q)
4191{
4192 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4193}
1da177e4
LT
4194EXPORT_SYMBOL(interruptible_sleep_on);
4195
0fec171c 4196long __sched
95cdf3b7 4197interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4198{
8cbbe86d 4199 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4200}
1da177e4
LT
4201EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4202
0fec171c 4203void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4204{
8cbbe86d 4205 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4206}
1da177e4
LT
4207EXPORT_SYMBOL(sleep_on);
4208
0fec171c 4209long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4210{
8cbbe86d 4211 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4212}
1da177e4
LT
4213EXPORT_SYMBOL(sleep_on_timeout);
4214
b29739f9
IM
4215#ifdef CONFIG_RT_MUTEXES
4216
4217/*
4218 * rt_mutex_setprio - set the current priority of a task
4219 * @p: task
4220 * @prio: prio value (kernel-internal form)
4221 *
4222 * This function changes the 'effective' priority of a task. It does
4223 * not touch ->normal_prio like __setscheduler().
4224 *
4225 * Used by the rt_mutex code to implement priority inheritance logic.
4226 */
36c8b586 4227void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4228{
4229 unsigned long flags;
83b699ed 4230 int oldprio, on_rq, running;
70b97a7f 4231 struct rq *rq;
83ab0aa0 4232 const struct sched_class *prev_class;
b29739f9
IM
4233
4234 BUG_ON(prio < 0 || prio > MAX_PRIO);
4235
4236 rq = task_rq_lock(p, &flags);
4237
d5f9f942 4238 oldprio = p->prio;
83ab0aa0 4239 prev_class = p->sched_class;
dd41f596 4240 on_rq = p->se.on_rq;
051a1d1a 4241 running = task_current(rq, p);
0e1f3483 4242 if (on_rq)
69be72c1 4243 dequeue_task(rq, p, 0);
0e1f3483
HS
4244 if (running)
4245 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4246
4247 if (rt_prio(prio))
4248 p->sched_class = &rt_sched_class;
4249 else
4250 p->sched_class = &fair_sched_class;
4251
b29739f9
IM
4252 p->prio = prio;
4253
0e1f3483
HS
4254 if (running)
4255 p->sched_class->set_curr_task(rq);
dd41f596 4256 if (on_rq) {
371fd7e7 4257 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4258
4259 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4260 }
4261 task_rq_unlock(rq, &flags);
4262}
4263
4264#endif
4265
36c8b586 4266void set_user_nice(struct task_struct *p, long nice)
1da177e4 4267{
dd41f596 4268 int old_prio, delta, on_rq;
1da177e4 4269 unsigned long flags;
70b97a7f 4270 struct rq *rq;
1da177e4
LT
4271
4272 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4273 return;
4274 /*
4275 * We have to be careful, if called from sys_setpriority(),
4276 * the task might be in the middle of scheduling on another CPU.
4277 */
4278 rq = task_rq_lock(p, &flags);
4279 /*
4280 * The RT priorities are set via sched_setscheduler(), but we still
4281 * allow the 'normal' nice value to be set - but as expected
4282 * it wont have any effect on scheduling until the task is
dd41f596 4283 * SCHED_FIFO/SCHED_RR:
1da177e4 4284 */
e05606d3 4285 if (task_has_rt_policy(p)) {
1da177e4
LT
4286 p->static_prio = NICE_TO_PRIO(nice);
4287 goto out_unlock;
4288 }
dd41f596 4289 on_rq = p->se.on_rq;
c09595f6 4290 if (on_rq)
69be72c1 4291 dequeue_task(rq, p, 0);
1da177e4 4292
1da177e4 4293 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4294 set_load_weight(p);
b29739f9
IM
4295 old_prio = p->prio;
4296 p->prio = effective_prio(p);
4297 delta = p->prio - old_prio;
1da177e4 4298
dd41f596 4299 if (on_rq) {
371fd7e7 4300 enqueue_task(rq, p, 0);
1da177e4 4301 /*
d5f9f942
AM
4302 * If the task increased its priority or is running and
4303 * lowered its priority, then reschedule its CPU:
1da177e4 4304 */
d5f9f942 4305 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4306 resched_task(rq->curr);
4307 }
4308out_unlock:
4309 task_rq_unlock(rq, &flags);
4310}
1da177e4
LT
4311EXPORT_SYMBOL(set_user_nice);
4312
e43379f1
MM
4313/*
4314 * can_nice - check if a task can reduce its nice value
4315 * @p: task
4316 * @nice: nice value
4317 */
36c8b586 4318int can_nice(const struct task_struct *p, const int nice)
e43379f1 4319{
024f4747
MM
4320 /* convert nice value [19,-20] to rlimit style value [1,40] */
4321 int nice_rlim = 20 - nice;
48f24c4d 4322
78d7d407 4323 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4324 capable(CAP_SYS_NICE));
4325}
4326
1da177e4
LT
4327#ifdef __ARCH_WANT_SYS_NICE
4328
4329/*
4330 * sys_nice - change the priority of the current process.
4331 * @increment: priority increment
4332 *
4333 * sys_setpriority is a more generic, but much slower function that
4334 * does similar things.
4335 */
5add95d4 4336SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4337{
48f24c4d 4338 long nice, retval;
1da177e4
LT
4339
4340 /*
4341 * Setpriority might change our priority at the same moment.
4342 * We don't have to worry. Conceptually one call occurs first
4343 * and we have a single winner.
4344 */
e43379f1
MM
4345 if (increment < -40)
4346 increment = -40;
1da177e4
LT
4347 if (increment > 40)
4348 increment = 40;
4349
2b8f836f 4350 nice = TASK_NICE(current) + increment;
1da177e4
LT
4351 if (nice < -20)
4352 nice = -20;
4353 if (nice > 19)
4354 nice = 19;
4355
e43379f1
MM
4356 if (increment < 0 && !can_nice(current, nice))
4357 return -EPERM;
4358
1da177e4
LT
4359 retval = security_task_setnice(current, nice);
4360 if (retval)
4361 return retval;
4362
4363 set_user_nice(current, nice);
4364 return 0;
4365}
4366
4367#endif
4368
4369/**
4370 * task_prio - return the priority value of a given task.
4371 * @p: the task in question.
4372 *
4373 * This is the priority value as seen by users in /proc.
4374 * RT tasks are offset by -200. Normal tasks are centered
4375 * around 0, value goes from -16 to +15.
4376 */
36c8b586 4377int task_prio(const struct task_struct *p)
1da177e4
LT
4378{
4379 return p->prio - MAX_RT_PRIO;
4380}
4381
4382/**
4383 * task_nice - return the nice value of a given task.
4384 * @p: the task in question.
4385 */
36c8b586 4386int task_nice(const struct task_struct *p)
1da177e4
LT
4387{
4388 return TASK_NICE(p);
4389}
150d8bed 4390EXPORT_SYMBOL(task_nice);
1da177e4
LT
4391
4392/**
4393 * idle_cpu - is a given cpu idle currently?
4394 * @cpu: the processor in question.
4395 */
4396int idle_cpu(int cpu)
4397{
4398 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4399}
4400
1da177e4
LT
4401/**
4402 * idle_task - return the idle task for a given cpu.
4403 * @cpu: the processor in question.
4404 */
36c8b586 4405struct task_struct *idle_task(int cpu)
1da177e4
LT
4406{
4407 return cpu_rq(cpu)->idle;
4408}
4409
4410/**
4411 * find_process_by_pid - find a process with a matching PID value.
4412 * @pid: the pid in question.
4413 */
a9957449 4414static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4415{
228ebcbe 4416 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4417}
4418
4419/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4420static void
4421__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4422{
dd41f596 4423 BUG_ON(p->se.on_rq);
48f24c4d 4424
1da177e4
LT
4425 p->policy = policy;
4426 p->rt_priority = prio;
b29739f9
IM
4427 p->normal_prio = normal_prio(p);
4428 /* we are holding p->pi_lock already */
4429 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4430 if (rt_prio(p->prio))
4431 p->sched_class = &rt_sched_class;
4432 else
4433 p->sched_class = &fair_sched_class;
2dd73a4f 4434 set_load_weight(p);
1da177e4
LT
4435}
4436
c69e8d9c
DH
4437/*
4438 * check the target process has a UID that matches the current process's
4439 */
4440static bool check_same_owner(struct task_struct *p)
4441{
4442 const struct cred *cred = current_cred(), *pcred;
4443 bool match;
4444
4445 rcu_read_lock();
4446 pcred = __task_cred(p);
4447 match = (cred->euid == pcred->euid ||
4448 cred->euid == pcred->uid);
4449 rcu_read_unlock();
4450 return match;
4451}
4452
961ccddd
RR
4453static int __sched_setscheduler(struct task_struct *p, int policy,
4454 struct sched_param *param, bool user)
1da177e4 4455{
83b699ed 4456 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4457 unsigned long flags;
83ab0aa0 4458 const struct sched_class *prev_class;
70b97a7f 4459 struct rq *rq;
ca94c442 4460 int reset_on_fork;
1da177e4 4461
66e5393a
SR
4462 /* may grab non-irq protected spin_locks */
4463 BUG_ON(in_interrupt());
1da177e4
LT
4464recheck:
4465 /* double check policy once rq lock held */
ca94c442
LP
4466 if (policy < 0) {
4467 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4468 policy = oldpolicy = p->policy;
ca94c442
LP
4469 } else {
4470 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4471 policy &= ~SCHED_RESET_ON_FORK;
4472
4473 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4474 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4475 policy != SCHED_IDLE)
4476 return -EINVAL;
4477 }
4478
1da177e4
LT
4479 /*
4480 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4481 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4482 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4483 */
4484 if (param->sched_priority < 0 ||
95cdf3b7 4485 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4486 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4487 return -EINVAL;
e05606d3 4488 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4489 return -EINVAL;
4490
37e4ab3f
OC
4491 /*
4492 * Allow unprivileged RT tasks to decrease priority:
4493 */
961ccddd 4494 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4495 if (rt_policy(policy)) {
8dc3e909 4496 unsigned long rlim_rtprio;
8dc3e909
ON
4497
4498 if (!lock_task_sighand(p, &flags))
4499 return -ESRCH;
78d7d407 4500 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4501 unlock_task_sighand(p, &flags);
4502
4503 /* can't set/change the rt policy */
4504 if (policy != p->policy && !rlim_rtprio)
4505 return -EPERM;
4506
4507 /* can't increase priority */
4508 if (param->sched_priority > p->rt_priority &&
4509 param->sched_priority > rlim_rtprio)
4510 return -EPERM;
4511 }
dd41f596
IM
4512 /*
4513 * Like positive nice levels, dont allow tasks to
4514 * move out of SCHED_IDLE either:
4515 */
4516 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4517 return -EPERM;
5fe1d75f 4518
37e4ab3f 4519 /* can't change other user's priorities */
c69e8d9c 4520 if (!check_same_owner(p))
37e4ab3f 4521 return -EPERM;
ca94c442
LP
4522
4523 /* Normal users shall not reset the sched_reset_on_fork flag */
4524 if (p->sched_reset_on_fork && !reset_on_fork)
4525 return -EPERM;
37e4ab3f 4526 }
1da177e4 4527
725aad24 4528 if (user) {
725aad24
JF
4529 retval = security_task_setscheduler(p, policy, param);
4530 if (retval)
4531 return retval;
4532 }
4533
b29739f9
IM
4534 /*
4535 * make sure no PI-waiters arrive (or leave) while we are
4536 * changing the priority of the task:
4537 */
1d615482 4538 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4539 /*
4540 * To be able to change p->policy safely, the apropriate
4541 * runqueue lock must be held.
4542 */
b29739f9 4543 rq = __task_rq_lock(p);
dc61b1d6
PZ
4544
4545#ifdef CONFIG_RT_GROUP_SCHED
4546 if (user) {
4547 /*
4548 * Do not allow realtime tasks into groups that have no runtime
4549 * assigned.
4550 */
4551 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4552 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4553 __task_rq_unlock(rq);
4554 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4555 return -EPERM;
4556 }
4557 }
4558#endif
4559
1da177e4
LT
4560 /* recheck policy now with rq lock held */
4561 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4562 policy = oldpolicy = -1;
b29739f9 4563 __task_rq_unlock(rq);
1d615482 4564 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4565 goto recheck;
4566 }
dd41f596 4567 on_rq = p->se.on_rq;
051a1d1a 4568 running = task_current(rq, p);
0e1f3483 4569 if (on_rq)
2e1cb74a 4570 deactivate_task(rq, p, 0);
0e1f3483
HS
4571 if (running)
4572 p->sched_class->put_prev_task(rq, p);
f6b53205 4573
ca94c442
LP
4574 p->sched_reset_on_fork = reset_on_fork;
4575
1da177e4 4576 oldprio = p->prio;
83ab0aa0 4577 prev_class = p->sched_class;
dd41f596 4578 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4579
0e1f3483
HS
4580 if (running)
4581 p->sched_class->set_curr_task(rq);
dd41f596
IM
4582 if (on_rq) {
4583 activate_task(rq, p, 0);
cb469845
SR
4584
4585 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4586 }
b29739f9 4587 __task_rq_unlock(rq);
1d615482 4588 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4589
95e02ca9
TG
4590 rt_mutex_adjust_pi(p);
4591
1da177e4
LT
4592 return 0;
4593}
961ccddd
RR
4594
4595/**
4596 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4597 * @p: the task in question.
4598 * @policy: new policy.
4599 * @param: structure containing the new RT priority.
4600 *
4601 * NOTE that the task may be already dead.
4602 */
4603int sched_setscheduler(struct task_struct *p, int policy,
4604 struct sched_param *param)
4605{
4606 return __sched_setscheduler(p, policy, param, true);
4607}
1da177e4
LT
4608EXPORT_SYMBOL_GPL(sched_setscheduler);
4609
961ccddd
RR
4610/**
4611 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4612 * @p: the task in question.
4613 * @policy: new policy.
4614 * @param: structure containing the new RT priority.
4615 *
4616 * Just like sched_setscheduler, only don't bother checking if the
4617 * current context has permission. For example, this is needed in
4618 * stop_machine(): we create temporary high priority worker threads,
4619 * but our caller might not have that capability.
4620 */
4621int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4622 struct sched_param *param)
4623{
4624 return __sched_setscheduler(p, policy, param, false);
4625}
4626
95cdf3b7
IM
4627static int
4628do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4629{
1da177e4
LT
4630 struct sched_param lparam;
4631 struct task_struct *p;
36c8b586 4632 int retval;
1da177e4
LT
4633
4634 if (!param || pid < 0)
4635 return -EINVAL;
4636 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4637 return -EFAULT;
5fe1d75f
ON
4638
4639 rcu_read_lock();
4640 retval = -ESRCH;
1da177e4 4641 p = find_process_by_pid(pid);
5fe1d75f
ON
4642 if (p != NULL)
4643 retval = sched_setscheduler(p, policy, &lparam);
4644 rcu_read_unlock();
36c8b586 4645
1da177e4
LT
4646 return retval;
4647}
4648
4649/**
4650 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4651 * @pid: the pid in question.
4652 * @policy: new policy.
4653 * @param: structure containing the new RT priority.
4654 */
5add95d4
HC
4655SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4656 struct sched_param __user *, param)
1da177e4 4657{
c21761f1
JB
4658 /* negative values for policy are not valid */
4659 if (policy < 0)
4660 return -EINVAL;
4661
1da177e4
LT
4662 return do_sched_setscheduler(pid, policy, param);
4663}
4664
4665/**
4666 * sys_sched_setparam - set/change the RT priority of a thread
4667 * @pid: the pid in question.
4668 * @param: structure containing the new RT priority.
4669 */
5add95d4 4670SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4671{
4672 return do_sched_setscheduler(pid, -1, param);
4673}
4674
4675/**
4676 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4677 * @pid: the pid in question.
4678 */
5add95d4 4679SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4680{
36c8b586 4681 struct task_struct *p;
3a5c359a 4682 int retval;
1da177e4
LT
4683
4684 if (pid < 0)
3a5c359a 4685 return -EINVAL;
1da177e4
LT
4686
4687 retval = -ESRCH;
5fe85be0 4688 rcu_read_lock();
1da177e4
LT
4689 p = find_process_by_pid(pid);
4690 if (p) {
4691 retval = security_task_getscheduler(p);
4692 if (!retval)
ca94c442
LP
4693 retval = p->policy
4694 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4695 }
5fe85be0 4696 rcu_read_unlock();
1da177e4
LT
4697 return retval;
4698}
4699
4700/**
ca94c442 4701 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4702 * @pid: the pid in question.
4703 * @param: structure containing the RT priority.
4704 */
5add95d4 4705SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4706{
4707 struct sched_param lp;
36c8b586 4708 struct task_struct *p;
3a5c359a 4709 int retval;
1da177e4
LT
4710
4711 if (!param || pid < 0)
3a5c359a 4712 return -EINVAL;
1da177e4 4713
5fe85be0 4714 rcu_read_lock();
1da177e4
LT
4715 p = find_process_by_pid(pid);
4716 retval = -ESRCH;
4717 if (!p)
4718 goto out_unlock;
4719
4720 retval = security_task_getscheduler(p);
4721 if (retval)
4722 goto out_unlock;
4723
4724 lp.sched_priority = p->rt_priority;
5fe85be0 4725 rcu_read_unlock();
1da177e4
LT
4726
4727 /*
4728 * This one might sleep, we cannot do it with a spinlock held ...
4729 */
4730 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4731
1da177e4
LT
4732 return retval;
4733
4734out_unlock:
5fe85be0 4735 rcu_read_unlock();
1da177e4
LT
4736 return retval;
4737}
4738
96f874e2 4739long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4740{
5a16f3d3 4741 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4742 struct task_struct *p;
4743 int retval;
1da177e4 4744
95402b38 4745 get_online_cpus();
23f5d142 4746 rcu_read_lock();
1da177e4
LT
4747
4748 p = find_process_by_pid(pid);
4749 if (!p) {
23f5d142 4750 rcu_read_unlock();
95402b38 4751 put_online_cpus();
1da177e4
LT
4752 return -ESRCH;
4753 }
4754
23f5d142 4755 /* Prevent p going away */
1da177e4 4756 get_task_struct(p);
23f5d142 4757 rcu_read_unlock();
1da177e4 4758
5a16f3d3
RR
4759 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4760 retval = -ENOMEM;
4761 goto out_put_task;
4762 }
4763 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4764 retval = -ENOMEM;
4765 goto out_free_cpus_allowed;
4766 }
1da177e4 4767 retval = -EPERM;
c69e8d9c 4768 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4769 goto out_unlock;
4770
e7834f8f
DQ
4771 retval = security_task_setscheduler(p, 0, NULL);
4772 if (retval)
4773 goto out_unlock;
4774
5a16f3d3
RR
4775 cpuset_cpus_allowed(p, cpus_allowed);
4776 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4777 again:
5a16f3d3 4778 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4779
8707d8b8 4780 if (!retval) {
5a16f3d3
RR
4781 cpuset_cpus_allowed(p, cpus_allowed);
4782 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4783 /*
4784 * We must have raced with a concurrent cpuset
4785 * update. Just reset the cpus_allowed to the
4786 * cpuset's cpus_allowed
4787 */
5a16f3d3 4788 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4789 goto again;
4790 }
4791 }
1da177e4 4792out_unlock:
5a16f3d3
RR
4793 free_cpumask_var(new_mask);
4794out_free_cpus_allowed:
4795 free_cpumask_var(cpus_allowed);
4796out_put_task:
1da177e4 4797 put_task_struct(p);
95402b38 4798 put_online_cpus();
1da177e4
LT
4799 return retval;
4800}
4801
4802static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4803 struct cpumask *new_mask)
1da177e4 4804{
96f874e2
RR
4805 if (len < cpumask_size())
4806 cpumask_clear(new_mask);
4807 else if (len > cpumask_size())
4808 len = cpumask_size();
4809
1da177e4
LT
4810 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4811}
4812
4813/**
4814 * sys_sched_setaffinity - set the cpu affinity of a process
4815 * @pid: pid of the process
4816 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4817 * @user_mask_ptr: user-space pointer to the new cpu mask
4818 */
5add95d4
HC
4819SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4820 unsigned long __user *, user_mask_ptr)
1da177e4 4821{
5a16f3d3 4822 cpumask_var_t new_mask;
1da177e4
LT
4823 int retval;
4824
5a16f3d3
RR
4825 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4826 return -ENOMEM;
1da177e4 4827
5a16f3d3
RR
4828 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4829 if (retval == 0)
4830 retval = sched_setaffinity(pid, new_mask);
4831 free_cpumask_var(new_mask);
4832 return retval;
1da177e4
LT
4833}
4834
96f874e2 4835long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4836{
36c8b586 4837 struct task_struct *p;
31605683
TG
4838 unsigned long flags;
4839 struct rq *rq;
1da177e4 4840 int retval;
1da177e4 4841
95402b38 4842 get_online_cpus();
23f5d142 4843 rcu_read_lock();
1da177e4
LT
4844
4845 retval = -ESRCH;
4846 p = find_process_by_pid(pid);
4847 if (!p)
4848 goto out_unlock;
4849
e7834f8f
DQ
4850 retval = security_task_getscheduler(p);
4851 if (retval)
4852 goto out_unlock;
4853
31605683 4854 rq = task_rq_lock(p, &flags);
96f874e2 4855 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4856 task_rq_unlock(rq, &flags);
1da177e4
LT
4857
4858out_unlock:
23f5d142 4859 rcu_read_unlock();
95402b38 4860 put_online_cpus();
1da177e4 4861
9531b62f 4862 return retval;
1da177e4
LT
4863}
4864
4865/**
4866 * sys_sched_getaffinity - get the cpu affinity of a process
4867 * @pid: pid of the process
4868 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4869 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4870 */
5add95d4
HC
4871SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4872 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4873{
4874 int ret;
f17c8607 4875 cpumask_var_t mask;
1da177e4 4876
84fba5ec 4877 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4878 return -EINVAL;
4879 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4880 return -EINVAL;
4881
f17c8607
RR
4882 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4883 return -ENOMEM;
1da177e4 4884
f17c8607
RR
4885 ret = sched_getaffinity(pid, mask);
4886 if (ret == 0) {
8bc037fb 4887 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4888
4889 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4890 ret = -EFAULT;
4891 else
cd3d8031 4892 ret = retlen;
f17c8607
RR
4893 }
4894 free_cpumask_var(mask);
1da177e4 4895
f17c8607 4896 return ret;
1da177e4
LT
4897}
4898
4899/**
4900 * sys_sched_yield - yield the current processor to other threads.
4901 *
dd41f596
IM
4902 * This function yields the current CPU to other tasks. If there are no
4903 * other threads running on this CPU then this function will return.
1da177e4 4904 */
5add95d4 4905SYSCALL_DEFINE0(sched_yield)
1da177e4 4906{
70b97a7f 4907 struct rq *rq = this_rq_lock();
1da177e4 4908
2d72376b 4909 schedstat_inc(rq, yld_count);
4530d7ab 4910 current->sched_class->yield_task(rq);
1da177e4
LT
4911
4912 /*
4913 * Since we are going to call schedule() anyway, there's
4914 * no need to preempt or enable interrupts:
4915 */
4916 __release(rq->lock);
8a25d5de 4917 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4918 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4919 preempt_enable_no_resched();
4920
4921 schedule();
4922
4923 return 0;
4924}
4925
d86ee480
PZ
4926static inline int should_resched(void)
4927{
4928 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4929}
4930
e7b38404 4931static void __cond_resched(void)
1da177e4 4932{
e7aaaa69
FW
4933 add_preempt_count(PREEMPT_ACTIVE);
4934 schedule();
4935 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4936}
4937
02b67cc3 4938int __sched _cond_resched(void)
1da177e4 4939{
d86ee480 4940 if (should_resched()) {
1da177e4
LT
4941 __cond_resched();
4942 return 1;
4943 }
4944 return 0;
4945}
02b67cc3 4946EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4947
4948/*
613afbf8 4949 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4950 * call schedule, and on return reacquire the lock.
4951 *
41a2d6cf 4952 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4953 * operations here to prevent schedule() from being called twice (once via
4954 * spin_unlock(), once by hand).
4955 */
613afbf8 4956int __cond_resched_lock(spinlock_t *lock)
1da177e4 4957{
d86ee480 4958 int resched = should_resched();
6df3cecb
JK
4959 int ret = 0;
4960
f607c668
PZ
4961 lockdep_assert_held(lock);
4962
95c354fe 4963 if (spin_needbreak(lock) || resched) {
1da177e4 4964 spin_unlock(lock);
d86ee480 4965 if (resched)
95c354fe
NP
4966 __cond_resched();
4967 else
4968 cpu_relax();
6df3cecb 4969 ret = 1;
1da177e4 4970 spin_lock(lock);
1da177e4 4971 }
6df3cecb 4972 return ret;
1da177e4 4973}
613afbf8 4974EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4975
613afbf8 4976int __sched __cond_resched_softirq(void)
1da177e4
LT
4977{
4978 BUG_ON(!in_softirq());
4979
d86ee480 4980 if (should_resched()) {
98d82567 4981 local_bh_enable();
1da177e4
LT
4982 __cond_resched();
4983 local_bh_disable();
4984 return 1;
4985 }
4986 return 0;
4987}
613afbf8 4988EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4989
1da177e4
LT
4990/**
4991 * yield - yield the current processor to other threads.
4992 *
72fd4a35 4993 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4994 * thread runnable and calls sys_sched_yield().
4995 */
4996void __sched yield(void)
4997{
4998 set_current_state(TASK_RUNNING);
4999 sys_sched_yield();
5000}
1da177e4
LT
5001EXPORT_SYMBOL(yield);
5002
5003/*
41a2d6cf 5004 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5005 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5006 */
5007void __sched io_schedule(void)
5008{
54d35f29 5009 struct rq *rq = raw_rq();
1da177e4 5010
0ff92245 5011 delayacct_blkio_start();
1da177e4 5012 atomic_inc(&rq->nr_iowait);
8f0dfc34 5013 current->in_iowait = 1;
1da177e4 5014 schedule();
8f0dfc34 5015 current->in_iowait = 0;
1da177e4 5016 atomic_dec(&rq->nr_iowait);
0ff92245 5017 delayacct_blkio_end();
1da177e4 5018}
1da177e4
LT
5019EXPORT_SYMBOL(io_schedule);
5020
5021long __sched io_schedule_timeout(long timeout)
5022{
54d35f29 5023 struct rq *rq = raw_rq();
1da177e4
LT
5024 long ret;
5025
0ff92245 5026 delayacct_blkio_start();
1da177e4 5027 atomic_inc(&rq->nr_iowait);
8f0dfc34 5028 current->in_iowait = 1;
1da177e4 5029 ret = schedule_timeout(timeout);
8f0dfc34 5030 current->in_iowait = 0;
1da177e4 5031 atomic_dec(&rq->nr_iowait);
0ff92245 5032 delayacct_blkio_end();
1da177e4
LT
5033 return ret;
5034}
5035
5036/**
5037 * sys_sched_get_priority_max - return maximum RT priority.
5038 * @policy: scheduling class.
5039 *
5040 * this syscall returns the maximum rt_priority that can be used
5041 * by a given scheduling class.
5042 */
5add95d4 5043SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5044{
5045 int ret = -EINVAL;
5046
5047 switch (policy) {
5048 case SCHED_FIFO:
5049 case SCHED_RR:
5050 ret = MAX_USER_RT_PRIO-1;
5051 break;
5052 case SCHED_NORMAL:
b0a9499c 5053 case SCHED_BATCH:
dd41f596 5054 case SCHED_IDLE:
1da177e4
LT
5055 ret = 0;
5056 break;
5057 }
5058 return ret;
5059}
5060
5061/**
5062 * sys_sched_get_priority_min - return minimum RT priority.
5063 * @policy: scheduling class.
5064 *
5065 * this syscall returns the minimum rt_priority that can be used
5066 * by a given scheduling class.
5067 */
5add95d4 5068SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5069{
5070 int ret = -EINVAL;
5071
5072 switch (policy) {
5073 case SCHED_FIFO:
5074 case SCHED_RR:
5075 ret = 1;
5076 break;
5077 case SCHED_NORMAL:
b0a9499c 5078 case SCHED_BATCH:
dd41f596 5079 case SCHED_IDLE:
1da177e4
LT
5080 ret = 0;
5081 }
5082 return ret;
5083}
5084
5085/**
5086 * sys_sched_rr_get_interval - return the default timeslice of a process.
5087 * @pid: pid of the process.
5088 * @interval: userspace pointer to the timeslice value.
5089 *
5090 * this syscall writes the default timeslice value of a given process
5091 * into the user-space timespec buffer. A value of '0' means infinity.
5092 */
17da2bd9 5093SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5094 struct timespec __user *, interval)
1da177e4 5095{
36c8b586 5096 struct task_struct *p;
a4ec24b4 5097 unsigned int time_slice;
dba091b9
TG
5098 unsigned long flags;
5099 struct rq *rq;
3a5c359a 5100 int retval;
1da177e4 5101 struct timespec t;
1da177e4
LT
5102
5103 if (pid < 0)
3a5c359a 5104 return -EINVAL;
1da177e4
LT
5105
5106 retval = -ESRCH;
1a551ae7 5107 rcu_read_lock();
1da177e4
LT
5108 p = find_process_by_pid(pid);
5109 if (!p)
5110 goto out_unlock;
5111
5112 retval = security_task_getscheduler(p);
5113 if (retval)
5114 goto out_unlock;
5115
dba091b9
TG
5116 rq = task_rq_lock(p, &flags);
5117 time_slice = p->sched_class->get_rr_interval(rq, p);
5118 task_rq_unlock(rq, &flags);
a4ec24b4 5119
1a551ae7 5120 rcu_read_unlock();
a4ec24b4 5121 jiffies_to_timespec(time_slice, &t);
1da177e4 5122 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5123 return retval;
3a5c359a 5124
1da177e4 5125out_unlock:
1a551ae7 5126 rcu_read_unlock();
1da177e4
LT
5127 return retval;
5128}
5129
7c731e0a 5130static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5131
82a1fcb9 5132void sched_show_task(struct task_struct *p)
1da177e4 5133{
1da177e4 5134 unsigned long free = 0;
36c8b586 5135 unsigned state;
1da177e4 5136
1da177e4 5137 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5138 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5139 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5140#if BITS_PER_LONG == 32
1da177e4 5141 if (state == TASK_RUNNING)
3df0fc5b 5142 printk(KERN_CONT " running ");
1da177e4 5143 else
3df0fc5b 5144 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5145#else
5146 if (state == TASK_RUNNING)
3df0fc5b 5147 printk(KERN_CONT " running task ");
1da177e4 5148 else
3df0fc5b 5149 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5150#endif
5151#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5152 free = stack_not_used(p);
1da177e4 5153#endif
3df0fc5b 5154 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5155 task_pid_nr(p), task_pid_nr(p->real_parent),
5156 (unsigned long)task_thread_info(p)->flags);
1da177e4 5157
5fb5e6de 5158 show_stack(p, NULL);
1da177e4
LT
5159}
5160
e59e2ae2 5161void show_state_filter(unsigned long state_filter)
1da177e4 5162{
36c8b586 5163 struct task_struct *g, *p;
1da177e4 5164
4bd77321 5165#if BITS_PER_LONG == 32
3df0fc5b
PZ
5166 printk(KERN_INFO
5167 " task PC stack pid father\n");
1da177e4 5168#else
3df0fc5b
PZ
5169 printk(KERN_INFO
5170 " task PC stack pid father\n");
1da177e4
LT
5171#endif
5172 read_lock(&tasklist_lock);
5173 do_each_thread(g, p) {
5174 /*
5175 * reset the NMI-timeout, listing all files on a slow
5176 * console might take alot of time:
5177 */
5178 touch_nmi_watchdog();
39bc89fd 5179 if (!state_filter || (p->state & state_filter))
82a1fcb9 5180 sched_show_task(p);
1da177e4
LT
5181 } while_each_thread(g, p);
5182
04c9167f
JF
5183 touch_all_softlockup_watchdogs();
5184
dd41f596
IM
5185#ifdef CONFIG_SCHED_DEBUG
5186 sysrq_sched_debug_show();
5187#endif
1da177e4 5188 read_unlock(&tasklist_lock);
e59e2ae2
IM
5189 /*
5190 * Only show locks if all tasks are dumped:
5191 */
93335a21 5192 if (!state_filter)
e59e2ae2 5193 debug_show_all_locks();
1da177e4
LT
5194}
5195
1df21055
IM
5196void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5197{
dd41f596 5198 idle->sched_class = &idle_sched_class;
1df21055
IM
5199}
5200
f340c0d1
IM
5201/**
5202 * init_idle - set up an idle thread for a given CPU
5203 * @idle: task in question
5204 * @cpu: cpu the idle task belongs to
5205 *
5206 * NOTE: this function does not set the idle thread's NEED_RESCHED
5207 * flag, to make booting more robust.
5208 */
5c1e1767 5209void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5210{
70b97a7f 5211 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5212 unsigned long flags;
5213
05fa785c 5214 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5215
dd41f596 5216 __sched_fork(idle);
06b83b5f 5217 idle->state = TASK_RUNNING;
dd41f596
IM
5218 idle->se.exec_start = sched_clock();
5219
96f874e2 5220 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5221 __set_task_cpu(idle, cpu);
1da177e4 5222
1da177e4 5223 rq->curr = rq->idle = idle;
4866cde0
NP
5224#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5225 idle->oncpu = 1;
5226#endif
05fa785c 5227 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5228
5229 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5230#if defined(CONFIG_PREEMPT)
5231 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5232#else
a1261f54 5233 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5234#endif
dd41f596
IM
5235 /*
5236 * The idle tasks have their own, simple scheduling class:
5237 */
5238 idle->sched_class = &idle_sched_class;
fb52607a 5239 ftrace_graph_init_task(idle);
1da177e4
LT
5240}
5241
5242/*
5243 * In a system that switches off the HZ timer nohz_cpu_mask
5244 * indicates which cpus entered this state. This is used
5245 * in the rcu update to wait only for active cpus. For system
5246 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5247 * always be CPU_BITS_NONE.
1da177e4 5248 */
6a7b3dc3 5249cpumask_var_t nohz_cpu_mask;
1da177e4 5250
19978ca6
IM
5251/*
5252 * Increase the granularity value when there are more CPUs,
5253 * because with more CPUs the 'effective latency' as visible
5254 * to users decreases. But the relationship is not linear,
5255 * so pick a second-best guess by going with the log2 of the
5256 * number of CPUs.
5257 *
5258 * This idea comes from the SD scheduler of Con Kolivas:
5259 */
acb4a848 5260static int get_update_sysctl_factor(void)
19978ca6 5261{
4ca3ef71 5262 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5263 unsigned int factor;
5264
5265 switch (sysctl_sched_tunable_scaling) {
5266 case SCHED_TUNABLESCALING_NONE:
5267 factor = 1;
5268 break;
5269 case SCHED_TUNABLESCALING_LINEAR:
5270 factor = cpus;
5271 break;
5272 case SCHED_TUNABLESCALING_LOG:
5273 default:
5274 factor = 1 + ilog2(cpus);
5275 break;
5276 }
19978ca6 5277
acb4a848
CE
5278 return factor;
5279}
19978ca6 5280
acb4a848
CE
5281static void update_sysctl(void)
5282{
5283 unsigned int factor = get_update_sysctl_factor();
19978ca6 5284
0bcdcf28
CE
5285#define SET_SYSCTL(name) \
5286 (sysctl_##name = (factor) * normalized_sysctl_##name)
5287 SET_SYSCTL(sched_min_granularity);
5288 SET_SYSCTL(sched_latency);
5289 SET_SYSCTL(sched_wakeup_granularity);
5290 SET_SYSCTL(sched_shares_ratelimit);
5291#undef SET_SYSCTL
5292}
55cd5340 5293
0bcdcf28
CE
5294static inline void sched_init_granularity(void)
5295{
5296 update_sysctl();
19978ca6
IM
5297}
5298
1da177e4
LT
5299#ifdef CONFIG_SMP
5300/*
5301 * This is how migration works:
5302 *
969c7921
TH
5303 * 1) we invoke migration_cpu_stop() on the target CPU using
5304 * stop_one_cpu().
5305 * 2) stopper starts to run (implicitly forcing the migrated thread
5306 * off the CPU)
5307 * 3) it checks whether the migrated task is still in the wrong runqueue.
5308 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5309 * it and puts it into the right queue.
969c7921
TH
5310 * 5) stopper completes and stop_one_cpu() returns and the migration
5311 * is done.
1da177e4
LT
5312 */
5313
5314/*
5315 * Change a given task's CPU affinity. Migrate the thread to a
5316 * proper CPU and schedule it away if the CPU it's executing on
5317 * is removed from the allowed bitmask.
5318 *
5319 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5320 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5321 * call is not atomic; no spinlocks may be held.
5322 */
96f874e2 5323int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5324{
5325 unsigned long flags;
70b97a7f 5326 struct rq *rq;
969c7921 5327 unsigned int dest_cpu;
48f24c4d 5328 int ret = 0;
1da177e4 5329
65cc8e48
PZ
5330 /*
5331 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5332 * drop the rq->lock and still rely on ->cpus_allowed.
5333 */
5334again:
5335 while (task_is_waking(p))
5336 cpu_relax();
1da177e4 5337 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5338 if (task_is_waking(p)) {
5339 task_rq_unlock(rq, &flags);
5340 goto again;
5341 }
e2912009 5342
6ad4c188 5343 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5344 ret = -EINVAL;
5345 goto out;
5346 }
5347
9985b0ba 5348 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5349 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5350 ret = -EINVAL;
5351 goto out;
5352 }
5353
73fe6aae 5354 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5355 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5356 else {
96f874e2
RR
5357 cpumask_copy(&p->cpus_allowed, new_mask);
5358 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5359 }
5360
1da177e4 5361 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5362 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5363 goto out;
5364
969c7921
TH
5365 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5366 if (migrate_task(p, dest_cpu)) {
5367 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5368 /* Need help from migration thread: drop lock and wait. */
5369 task_rq_unlock(rq, &flags);
969c7921 5370 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5371 tlb_migrate_finish(p->mm);
5372 return 0;
5373 }
5374out:
5375 task_rq_unlock(rq, &flags);
48f24c4d 5376
1da177e4
LT
5377 return ret;
5378}
cd8ba7cd 5379EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5380
5381/*
41a2d6cf 5382 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5383 * this because either it can't run here any more (set_cpus_allowed()
5384 * away from this CPU, or CPU going down), or because we're
5385 * attempting to rebalance this task on exec (sched_exec).
5386 *
5387 * So we race with normal scheduler movements, but that's OK, as long
5388 * as the task is no longer on this CPU.
efc30814
KK
5389 *
5390 * Returns non-zero if task was successfully migrated.
1da177e4 5391 */
efc30814 5392static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5393{
70b97a7f 5394 struct rq *rq_dest, *rq_src;
e2912009 5395 int ret = 0;
1da177e4 5396
e761b772 5397 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5398 return ret;
1da177e4
LT
5399
5400 rq_src = cpu_rq(src_cpu);
5401 rq_dest = cpu_rq(dest_cpu);
5402
5403 double_rq_lock(rq_src, rq_dest);
5404 /* Already moved. */
5405 if (task_cpu(p) != src_cpu)
b1e38734 5406 goto done;
1da177e4 5407 /* Affinity changed (again). */
96f874e2 5408 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5409 goto fail;
1da177e4 5410
e2912009
PZ
5411 /*
5412 * If we're not on a rq, the next wake-up will ensure we're
5413 * placed properly.
5414 */
5415 if (p->se.on_rq) {
2e1cb74a 5416 deactivate_task(rq_src, p, 0);
e2912009 5417 set_task_cpu(p, dest_cpu);
dd41f596 5418 activate_task(rq_dest, p, 0);
15afe09b 5419 check_preempt_curr(rq_dest, p, 0);
1da177e4 5420 }
b1e38734 5421done:
efc30814 5422 ret = 1;
b1e38734 5423fail:
1da177e4 5424 double_rq_unlock(rq_src, rq_dest);
efc30814 5425 return ret;
1da177e4
LT
5426}
5427
5428/*
969c7921
TH
5429 * migration_cpu_stop - this will be executed by a highprio stopper thread
5430 * and performs thread migration by bumping thread off CPU then
5431 * 'pushing' onto another runqueue.
1da177e4 5432 */
969c7921 5433static int migration_cpu_stop(void *data)
1da177e4 5434{
969c7921 5435 struct migration_arg *arg = data;
f7b4cddc 5436
969c7921
TH
5437 /*
5438 * The original target cpu might have gone down and we might
5439 * be on another cpu but it doesn't matter.
5440 */
f7b4cddc 5441 local_irq_disable();
969c7921 5442 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5443 local_irq_enable();
1da177e4 5444 return 0;
f7b4cddc
ON
5445}
5446
1da177e4 5447#ifdef CONFIG_HOTPLUG_CPU
054b9108 5448/*
3a4fa0a2 5449 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5450 */
6a1bdc1b 5451void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5452{
1445c08d
ON
5453 struct rq *rq = cpu_rq(dead_cpu);
5454 int needs_cpu, uninitialized_var(dest_cpu);
5455 unsigned long flags;
e76bd8d9 5456
1445c08d 5457 local_irq_save(flags);
e76bd8d9 5458
1445c08d
ON
5459 raw_spin_lock(&rq->lock);
5460 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5461 if (needs_cpu)
5462 dest_cpu = select_fallback_rq(dead_cpu, p);
5463 raw_spin_unlock(&rq->lock);
c1804d54
ON
5464 /*
5465 * It can only fail if we race with set_cpus_allowed(),
5466 * in the racer should migrate the task anyway.
5467 */
1445c08d 5468 if (needs_cpu)
c1804d54 5469 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5470 local_irq_restore(flags);
1da177e4
LT
5471}
5472
5473/*
5474 * While a dead CPU has no uninterruptible tasks queued at this point,
5475 * it might still have a nonzero ->nr_uninterruptible counter, because
5476 * for performance reasons the counter is not stricly tracking tasks to
5477 * their home CPUs. So we just add the counter to another CPU's counter,
5478 * to keep the global sum constant after CPU-down:
5479 */
70b97a7f 5480static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5481{
6ad4c188 5482 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5483 unsigned long flags;
5484
5485 local_irq_save(flags);
5486 double_rq_lock(rq_src, rq_dest);
5487 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5488 rq_src->nr_uninterruptible = 0;
5489 double_rq_unlock(rq_src, rq_dest);
5490 local_irq_restore(flags);
5491}
5492
5493/* Run through task list and migrate tasks from the dead cpu. */
5494static void migrate_live_tasks(int src_cpu)
5495{
48f24c4d 5496 struct task_struct *p, *t;
1da177e4 5497
f7b4cddc 5498 read_lock(&tasklist_lock);
1da177e4 5499
48f24c4d
IM
5500 do_each_thread(t, p) {
5501 if (p == current)
1da177e4
LT
5502 continue;
5503
48f24c4d
IM
5504 if (task_cpu(p) == src_cpu)
5505 move_task_off_dead_cpu(src_cpu, p);
5506 } while_each_thread(t, p);
1da177e4 5507
f7b4cddc 5508 read_unlock(&tasklist_lock);
1da177e4
LT
5509}
5510
dd41f596
IM
5511/*
5512 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5513 * It does so by boosting its priority to highest possible.
5514 * Used by CPU offline code.
1da177e4
LT
5515 */
5516void sched_idle_next(void)
5517{
48f24c4d 5518 int this_cpu = smp_processor_id();
70b97a7f 5519 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5520 struct task_struct *p = rq->idle;
5521 unsigned long flags;
5522
5523 /* cpu has to be offline */
48f24c4d 5524 BUG_ON(cpu_online(this_cpu));
1da177e4 5525
48f24c4d
IM
5526 /*
5527 * Strictly not necessary since rest of the CPUs are stopped by now
5528 * and interrupts disabled on the current cpu.
1da177e4 5529 */
05fa785c 5530 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5531
dd41f596 5532 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5533
94bc9a7b 5534 activate_task(rq, p, 0);
1da177e4 5535
05fa785c 5536 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5537}
5538
48f24c4d
IM
5539/*
5540 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5541 * offline.
5542 */
5543void idle_task_exit(void)
5544{
5545 struct mm_struct *mm = current->active_mm;
5546
5547 BUG_ON(cpu_online(smp_processor_id()));
5548
5549 if (mm != &init_mm)
5550 switch_mm(mm, &init_mm, current);
5551 mmdrop(mm);
5552}
5553
054b9108 5554/* called under rq->lock with disabled interrupts */
36c8b586 5555static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5556{
70b97a7f 5557 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5558
5559 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5560 BUG_ON(!p->exit_state);
1da177e4
LT
5561
5562 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5563 BUG_ON(p->state == TASK_DEAD);
1da177e4 5564
48f24c4d 5565 get_task_struct(p);
1da177e4
LT
5566
5567 /*
5568 * Drop lock around migration; if someone else moves it,
41a2d6cf 5569 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5570 * fine.
5571 */
05fa785c 5572 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5573 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5574 raw_spin_lock_irq(&rq->lock);
1da177e4 5575
48f24c4d 5576 put_task_struct(p);
1da177e4
LT
5577}
5578
5579/* release_task() removes task from tasklist, so we won't find dead tasks. */
5580static void migrate_dead_tasks(unsigned int dead_cpu)
5581{
70b97a7f 5582 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5583 struct task_struct *next;
48f24c4d 5584
dd41f596
IM
5585 for ( ; ; ) {
5586 if (!rq->nr_running)
5587 break;
b67802ea 5588 next = pick_next_task(rq);
dd41f596
IM
5589 if (!next)
5590 break;
79c53799 5591 next->sched_class->put_prev_task(rq, next);
dd41f596 5592 migrate_dead(dead_cpu, next);
e692ab53 5593
1da177e4
LT
5594 }
5595}
dce48a84
TG
5596
5597/*
5598 * remove the tasks which were accounted by rq from calc_load_tasks.
5599 */
5600static void calc_global_load_remove(struct rq *rq)
5601{
5602 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5603 rq->calc_load_active = 0;
dce48a84 5604}
1da177e4
LT
5605#endif /* CONFIG_HOTPLUG_CPU */
5606
e692ab53
NP
5607#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5608
5609static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5610 {
5611 .procname = "sched_domain",
c57baf1e 5612 .mode = 0555,
e0361851 5613 },
56992309 5614 {}
e692ab53
NP
5615};
5616
5617static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5618 {
5619 .procname = "kernel",
c57baf1e 5620 .mode = 0555,
e0361851
AD
5621 .child = sd_ctl_dir,
5622 },
56992309 5623 {}
e692ab53
NP
5624};
5625
5626static struct ctl_table *sd_alloc_ctl_entry(int n)
5627{
5628 struct ctl_table *entry =
5cf9f062 5629 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5630
e692ab53
NP
5631 return entry;
5632}
5633
6382bc90
MM
5634static void sd_free_ctl_entry(struct ctl_table **tablep)
5635{
cd790076 5636 struct ctl_table *entry;
6382bc90 5637
cd790076
MM
5638 /*
5639 * In the intermediate directories, both the child directory and
5640 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5641 * will always be set. In the lowest directory the names are
cd790076
MM
5642 * static strings and all have proc handlers.
5643 */
5644 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5645 if (entry->child)
5646 sd_free_ctl_entry(&entry->child);
cd790076
MM
5647 if (entry->proc_handler == NULL)
5648 kfree(entry->procname);
5649 }
6382bc90
MM
5650
5651 kfree(*tablep);
5652 *tablep = NULL;
5653}
5654
e692ab53 5655static void
e0361851 5656set_table_entry(struct ctl_table *entry,
e692ab53
NP
5657 const char *procname, void *data, int maxlen,
5658 mode_t mode, proc_handler *proc_handler)
5659{
e692ab53
NP
5660 entry->procname = procname;
5661 entry->data = data;
5662 entry->maxlen = maxlen;
5663 entry->mode = mode;
5664 entry->proc_handler = proc_handler;
5665}
5666
5667static struct ctl_table *
5668sd_alloc_ctl_domain_table(struct sched_domain *sd)
5669{
a5d8c348 5670 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5671
ad1cdc1d
MM
5672 if (table == NULL)
5673 return NULL;
5674
e0361851 5675 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5676 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5677 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5678 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5679 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5680 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5681 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5682 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5683 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5684 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5685 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5686 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5687 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5688 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5689 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5690 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5691 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5692 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5693 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5694 &sd->cache_nice_tries,
5695 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5696 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5697 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5698 set_table_entry(&table[11], "name", sd->name,
5699 CORENAME_MAX_SIZE, 0444, proc_dostring);
5700 /* &table[12] is terminator */
e692ab53
NP
5701
5702 return table;
5703}
5704
9a4e7159 5705static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5706{
5707 struct ctl_table *entry, *table;
5708 struct sched_domain *sd;
5709 int domain_num = 0, i;
5710 char buf[32];
5711
5712 for_each_domain(cpu, sd)
5713 domain_num++;
5714 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5715 if (table == NULL)
5716 return NULL;
e692ab53
NP
5717
5718 i = 0;
5719 for_each_domain(cpu, sd) {
5720 snprintf(buf, 32, "domain%d", i);
e692ab53 5721 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5722 entry->mode = 0555;
e692ab53
NP
5723 entry->child = sd_alloc_ctl_domain_table(sd);
5724 entry++;
5725 i++;
5726 }
5727 return table;
5728}
5729
5730static struct ctl_table_header *sd_sysctl_header;
6382bc90 5731static void register_sched_domain_sysctl(void)
e692ab53 5732{
6ad4c188 5733 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5734 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5735 char buf[32];
5736
7378547f
MM
5737 WARN_ON(sd_ctl_dir[0].child);
5738 sd_ctl_dir[0].child = entry;
5739
ad1cdc1d
MM
5740 if (entry == NULL)
5741 return;
5742
6ad4c188 5743 for_each_possible_cpu(i) {
e692ab53 5744 snprintf(buf, 32, "cpu%d", i);
e692ab53 5745 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5746 entry->mode = 0555;
e692ab53 5747 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5748 entry++;
e692ab53 5749 }
7378547f
MM
5750
5751 WARN_ON(sd_sysctl_header);
e692ab53
NP
5752 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5753}
6382bc90 5754
7378547f 5755/* may be called multiple times per register */
6382bc90
MM
5756static void unregister_sched_domain_sysctl(void)
5757{
7378547f
MM
5758 if (sd_sysctl_header)
5759 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5760 sd_sysctl_header = NULL;
7378547f
MM
5761 if (sd_ctl_dir[0].child)
5762 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5763}
e692ab53 5764#else
6382bc90
MM
5765static void register_sched_domain_sysctl(void)
5766{
5767}
5768static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5769{
5770}
5771#endif
5772
1f11eb6a
GH
5773static void set_rq_online(struct rq *rq)
5774{
5775 if (!rq->online) {
5776 const struct sched_class *class;
5777
c6c4927b 5778 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5779 rq->online = 1;
5780
5781 for_each_class(class) {
5782 if (class->rq_online)
5783 class->rq_online(rq);
5784 }
5785 }
5786}
5787
5788static void set_rq_offline(struct rq *rq)
5789{
5790 if (rq->online) {
5791 const struct sched_class *class;
5792
5793 for_each_class(class) {
5794 if (class->rq_offline)
5795 class->rq_offline(rq);
5796 }
5797
c6c4927b 5798 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5799 rq->online = 0;
5800 }
5801}
5802
1da177e4
LT
5803/*
5804 * migration_call - callback that gets triggered when a CPU is added.
5805 * Here we can start up the necessary migration thread for the new CPU.
5806 */
48f24c4d
IM
5807static int __cpuinit
5808migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5809{
48f24c4d 5810 int cpu = (long)hcpu;
1da177e4 5811 unsigned long flags;
969c7921 5812 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5813
5814 switch (action) {
5be9361c 5815
1da177e4 5816 case CPU_UP_PREPARE:
8bb78442 5817 case CPU_UP_PREPARE_FROZEN:
a468d389 5818 rq->calc_load_update = calc_load_update;
1da177e4 5819 break;
48f24c4d 5820
1da177e4 5821 case CPU_ONLINE:
8bb78442 5822 case CPU_ONLINE_FROZEN:
1f94ef59 5823 /* Update our root-domain */
05fa785c 5824 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5825 if (rq->rd) {
c6c4927b 5826 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5827
5828 set_rq_online(rq);
1f94ef59 5829 }
05fa785c 5830 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5831 break;
48f24c4d 5832
1da177e4 5833#ifdef CONFIG_HOTPLUG_CPU
1da177e4 5834 case CPU_DEAD:
8bb78442 5835 case CPU_DEAD_FROZEN:
1da177e4 5836 migrate_live_tasks(cpu);
1da177e4 5837 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5838 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5839 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5840 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5841 rq->idle->sched_class = &idle_sched_class;
1da177e4 5842 migrate_dead_tasks(cpu);
05fa785c 5843 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5844 migrate_nr_uninterruptible(rq);
5845 BUG_ON(rq->nr_running != 0);
dce48a84 5846 calc_global_load_remove(rq);
1da177e4 5847 break;
57d885fe 5848
08f503b0
GH
5849 case CPU_DYING:
5850 case CPU_DYING_FROZEN:
57d885fe 5851 /* Update our root-domain */
05fa785c 5852 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5853 if (rq->rd) {
c6c4927b 5854 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5855 set_rq_offline(rq);
57d885fe 5856 }
05fa785c 5857 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5858 break;
1da177e4
LT
5859#endif
5860 }
5861 return NOTIFY_OK;
5862}
5863
f38b0820
PM
5864/*
5865 * Register at high priority so that task migration (migrate_all_tasks)
5866 * happens before everything else. This has to be lower priority than
cdd6c482 5867 * the notifier in the perf_event subsystem, though.
1da177e4 5868 */
26c2143b 5869static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5870 .notifier_call = migration_call,
50a323b7 5871 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5872};
5873
3a101d05
TH
5874static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5875 unsigned long action, void *hcpu)
5876{
5877 switch (action & ~CPU_TASKS_FROZEN) {
5878 case CPU_ONLINE:
5879 case CPU_DOWN_FAILED:
5880 set_cpu_active((long)hcpu, true);
5881 return NOTIFY_OK;
5882 default:
5883 return NOTIFY_DONE;
5884 }
5885}
5886
5887static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5888 unsigned long action, void *hcpu)
5889{
5890 switch (action & ~CPU_TASKS_FROZEN) {
5891 case CPU_DOWN_PREPARE:
5892 set_cpu_active((long)hcpu, false);
5893 return NOTIFY_OK;
5894 default:
5895 return NOTIFY_DONE;
5896 }
5897}
5898
7babe8db 5899static int __init migration_init(void)
1da177e4
LT
5900{
5901 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5902 int err;
48f24c4d 5903
3a101d05 5904 /* Initialize migration for the boot CPU */
07dccf33
AM
5905 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5906 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5907 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5908 register_cpu_notifier(&migration_notifier);
7babe8db 5909
3a101d05
TH
5910 /* Register cpu active notifiers */
5911 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5912 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5913
a004cd42 5914 return 0;
1da177e4 5915}
7babe8db 5916early_initcall(migration_init);
1da177e4
LT
5917#endif
5918
5919#ifdef CONFIG_SMP
476f3534 5920
3e9830dc 5921#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5922
f6630114
MT
5923static __read_mostly int sched_domain_debug_enabled;
5924
5925static int __init sched_domain_debug_setup(char *str)
5926{
5927 sched_domain_debug_enabled = 1;
5928
5929 return 0;
5930}
5931early_param("sched_debug", sched_domain_debug_setup);
5932
7c16ec58 5933static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5934 struct cpumask *groupmask)
1da177e4 5935{
4dcf6aff 5936 struct sched_group *group = sd->groups;
434d53b0 5937 char str[256];
1da177e4 5938
968ea6d8 5939 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5940 cpumask_clear(groupmask);
4dcf6aff
IM
5941
5942 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5943
5944 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5945 printk("does not load-balance\n");
4dcf6aff 5946 if (sd->parent)
3df0fc5b
PZ
5947 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5948 " has parent");
4dcf6aff 5949 return -1;
41c7ce9a
NP
5950 }
5951
3df0fc5b 5952 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5953
758b2cdc 5954 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5955 printk(KERN_ERR "ERROR: domain->span does not contain "
5956 "CPU%d\n", cpu);
4dcf6aff 5957 }
758b2cdc 5958 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5959 printk(KERN_ERR "ERROR: domain->groups does not contain"
5960 " CPU%d\n", cpu);
4dcf6aff 5961 }
1da177e4 5962
4dcf6aff 5963 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5964 do {
4dcf6aff 5965 if (!group) {
3df0fc5b
PZ
5966 printk("\n");
5967 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5968 break;
5969 }
5970
18a3885f 5971 if (!group->cpu_power) {
3df0fc5b
PZ
5972 printk(KERN_CONT "\n");
5973 printk(KERN_ERR "ERROR: domain->cpu_power not "
5974 "set\n");
4dcf6aff
IM
5975 break;
5976 }
1da177e4 5977
758b2cdc 5978 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5979 printk(KERN_CONT "\n");
5980 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5981 break;
5982 }
1da177e4 5983
758b2cdc 5984 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5985 printk(KERN_CONT "\n");
5986 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5987 break;
5988 }
1da177e4 5989
758b2cdc 5990 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5991
968ea6d8 5992 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5993
3df0fc5b 5994 printk(KERN_CONT " %s", str);
18a3885f 5995 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
5996 printk(KERN_CONT " (cpu_power = %d)",
5997 group->cpu_power);
381512cf 5998 }
1da177e4 5999
4dcf6aff
IM
6000 group = group->next;
6001 } while (group != sd->groups);
3df0fc5b 6002 printk(KERN_CONT "\n");
1da177e4 6003
758b2cdc 6004 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6005 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6006
758b2cdc
RR
6007 if (sd->parent &&
6008 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6009 printk(KERN_ERR "ERROR: parent span is not a superset "
6010 "of domain->span\n");
4dcf6aff
IM
6011 return 0;
6012}
1da177e4 6013
4dcf6aff
IM
6014static void sched_domain_debug(struct sched_domain *sd, int cpu)
6015{
d5dd3db1 6016 cpumask_var_t groupmask;
4dcf6aff 6017 int level = 0;
1da177e4 6018
f6630114
MT
6019 if (!sched_domain_debug_enabled)
6020 return;
6021
4dcf6aff
IM
6022 if (!sd) {
6023 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6024 return;
6025 }
1da177e4 6026
4dcf6aff
IM
6027 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6028
d5dd3db1 6029 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6030 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6031 return;
6032 }
6033
4dcf6aff 6034 for (;;) {
7c16ec58 6035 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6036 break;
1da177e4
LT
6037 level++;
6038 sd = sd->parent;
33859f7f 6039 if (!sd)
4dcf6aff
IM
6040 break;
6041 }
d5dd3db1 6042 free_cpumask_var(groupmask);
1da177e4 6043}
6d6bc0ad 6044#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6045# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6046#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6047
1a20ff27 6048static int sd_degenerate(struct sched_domain *sd)
245af2c7 6049{
758b2cdc 6050 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6051 return 1;
6052
6053 /* Following flags need at least 2 groups */
6054 if (sd->flags & (SD_LOAD_BALANCE |
6055 SD_BALANCE_NEWIDLE |
6056 SD_BALANCE_FORK |
89c4710e
SS
6057 SD_BALANCE_EXEC |
6058 SD_SHARE_CPUPOWER |
6059 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6060 if (sd->groups != sd->groups->next)
6061 return 0;
6062 }
6063
6064 /* Following flags don't use groups */
c88d5910 6065 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6066 return 0;
6067
6068 return 1;
6069}
6070
48f24c4d
IM
6071static int
6072sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6073{
6074 unsigned long cflags = sd->flags, pflags = parent->flags;
6075
6076 if (sd_degenerate(parent))
6077 return 1;
6078
758b2cdc 6079 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6080 return 0;
6081
245af2c7
SS
6082 /* Flags needing groups don't count if only 1 group in parent */
6083 if (parent->groups == parent->groups->next) {
6084 pflags &= ~(SD_LOAD_BALANCE |
6085 SD_BALANCE_NEWIDLE |
6086 SD_BALANCE_FORK |
89c4710e
SS
6087 SD_BALANCE_EXEC |
6088 SD_SHARE_CPUPOWER |
6089 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6090 if (nr_node_ids == 1)
6091 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6092 }
6093 if (~cflags & pflags)
6094 return 0;
6095
6096 return 1;
6097}
6098
c6c4927b
RR
6099static void free_rootdomain(struct root_domain *rd)
6100{
047106ad
PZ
6101 synchronize_sched();
6102
68e74568
RR
6103 cpupri_cleanup(&rd->cpupri);
6104
c6c4927b
RR
6105 free_cpumask_var(rd->rto_mask);
6106 free_cpumask_var(rd->online);
6107 free_cpumask_var(rd->span);
6108 kfree(rd);
6109}
6110
57d885fe
GH
6111static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6112{
a0490fa3 6113 struct root_domain *old_rd = NULL;
57d885fe 6114 unsigned long flags;
57d885fe 6115
05fa785c 6116 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6117
6118 if (rq->rd) {
a0490fa3 6119 old_rd = rq->rd;
57d885fe 6120
c6c4927b 6121 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6122 set_rq_offline(rq);
57d885fe 6123
c6c4927b 6124 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6125
a0490fa3
IM
6126 /*
6127 * If we dont want to free the old_rt yet then
6128 * set old_rd to NULL to skip the freeing later
6129 * in this function:
6130 */
6131 if (!atomic_dec_and_test(&old_rd->refcount))
6132 old_rd = NULL;
57d885fe
GH
6133 }
6134
6135 atomic_inc(&rd->refcount);
6136 rq->rd = rd;
6137
c6c4927b 6138 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6139 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6140 set_rq_online(rq);
57d885fe 6141
05fa785c 6142 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6143
6144 if (old_rd)
6145 free_rootdomain(old_rd);
57d885fe
GH
6146}
6147
fd5e1b5d 6148static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6149{
36b7b6d4
PE
6150 gfp_t gfp = GFP_KERNEL;
6151
57d885fe
GH
6152 memset(rd, 0, sizeof(*rd));
6153
36b7b6d4
PE
6154 if (bootmem)
6155 gfp = GFP_NOWAIT;
c6c4927b 6156
36b7b6d4 6157 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6158 goto out;
36b7b6d4 6159 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6160 goto free_span;
36b7b6d4 6161 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6162 goto free_online;
6e0534f2 6163
0fb53029 6164 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6165 goto free_rto_mask;
c6c4927b 6166 return 0;
6e0534f2 6167
68e74568
RR
6168free_rto_mask:
6169 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6170free_online:
6171 free_cpumask_var(rd->online);
6172free_span:
6173 free_cpumask_var(rd->span);
0c910d28 6174out:
c6c4927b 6175 return -ENOMEM;
57d885fe
GH
6176}
6177
6178static void init_defrootdomain(void)
6179{
c6c4927b
RR
6180 init_rootdomain(&def_root_domain, true);
6181
57d885fe
GH
6182 atomic_set(&def_root_domain.refcount, 1);
6183}
6184
dc938520 6185static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6186{
6187 struct root_domain *rd;
6188
6189 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6190 if (!rd)
6191 return NULL;
6192
c6c4927b
RR
6193 if (init_rootdomain(rd, false) != 0) {
6194 kfree(rd);
6195 return NULL;
6196 }
57d885fe
GH
6197
6198 return rd;
6199}
6200
1da177e4 6201/*
0eab9146 6202 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6203 * hold the hotplug lock.
6204 */
0eab9146
IM
6205static void
6206cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6207{
70b97a7f 6208 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6209 struct sched_domain *tmp;
6210
669c55e9
PZ
6211 for (tmp = sd; tmp; tmp = tmp->parent)
6212 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6213
245af2c7 6214 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6215 for (tmp = sd; tmp; ) {
245af2c7
SS
6216 struct sched_domain *parent = tmp->parent;
6217 if (!parent)
6218 break;
f29c9b1c 6219
1a848870 6220 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6221 tmp->parent = parent->parent;
1a848870
SS
6222 if (parent->parent)
6223 parent->parent->child = tmp;
f29c9b1c
LZ
6224 } else
6225 tmp = tmp->parent;
245af2c7
SS
6226 }
6227
1a848870 6228 if (sd && sd_degenerate(sd)) {
245af2c7 6229 sd = sd->parent;
1a848870
SS
6230 if (sd)
6231 sd->child = NULL;
6232 }
1da177e4
LT
6233
6234 sched_domain_debug(sd, cpu);
6235
57d885fe 6236 rq_attach_root(rq, rd);
674311d5 6237 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6238}
6239
6240/* cpus with isolated domains */
dcc30a35 6241static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6242
6243/* Setup the mask of cpus configured for isolated domains */
6244static int __init isolated_cpu_setup(char *str)
6245{
bdddd296 6246 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6247 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6248 return 1;
6249}
6250
8927f494 6251__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6252
6253/*
6711cab4
SS
6254 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6255 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6256 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6257 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6258 *
6259 * init_sched_build_groups will build a circular linked list of the groups
6260 * covered by the given span, and will set each group's ->cpumask correctly,
6261 * and ->cpu_power to 0.
6262 */
a616058b 6263static void
96f874e2
RR
6264init_sched_build_groups(const struct cpumask *span,
6265 const struct cpumask *cpu_map,
6266 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6267 struct sched_group **sg,
96f874e2
RR
6268 struct cpumask *tmpmask),
6269 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6270{
6271 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6272 int i;
6273
96f874e2 6274 cpumask_clear(covered);
7c16ec58 6275
abcd083a 6276 for_each_cpu(i, span) {
6711cab4 6277 struct sched_group *sg;
7c16ec58 6278 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6279 int j;
6280
758b2cdc 6281 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6282 continue;
6283
758b2cdc 6284 cpumask_clear(sched_group_cpus(sg));
18a3885f 6285 sg->cpu_power = 0;
1da177e4 6286
abcd083a 6287 for_each_cpu(j, span) {
7c16ec58 6288 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6289 continue;
6290
96f874e2 6291 cpumask_set_cpu(j, covered);
758b2cdc 6292 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6293 }
6294 if (!first)
6295 first = sg;
6296 if (last)
6297 last->next = sg;
6298 last = sg;
6299 }
6300 last->next = first;
6301}
6302
9c1cfda2 6303#define SD_NODES_PER_DOMAIN 16
1da177e4 6304
9c1cfda2 6305#ifdef CONFIG_NUMA
198e2f18 6306
9c1cfda2
JH
6307/**
6308 * find_next_best_node - find the next node to include in a sched_domain
6309 * @node: node whose sched_domain we're building
6310 * @used_nodes: nodes already in the sched_domain
6311 *
41a2d6cf 6312 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6313 * finds the closest node not already in the @used_nodes map.
6314 *
6315 * Should use nodemask_t.
6316 */
c5f59f08 6317static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6318{
6319 int i, n, val, min_val, best_node = 0;
6320
6321 min_val = INT_MAX;
6322
076ac2af 6323 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6324 /* Start at @node */
076ac2af 6325 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6326
6327 if (!nr_cpus_node(n))
6328 continue;
6329
6330 /* Skip already used nodes */
c5f59f08 6331 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6332 continue;
6333
6334 /* Simple min distance search */
6335 val = node_distance(node, n);
6336
6337 if (val < min_val) {
6338 min_val = val;
6339 best_node = n;
6340 }
6341 }
6342
c5f59f08 6343 node_set(best_node, *used_nodes);
9c1cfda2
JH
6344 return best_node;
6345}
6346
6347/**
6348 * sched_domain_node_span - get a cpumask for a node's sched_domain
6349 * @node: node whose cpumask we're constructing
73486722 6350 * @span: resulting cpumask
9c1cfda2 6351 *
41a2d6cf 6352 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6353 * should be one that prevents unnecessary balancing, but also spreads tasks
6354 * out optimally.
6355 */
96f874e2 6356static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6357{
c5f59f08 6358 nodemask_t used_nodes;
48f24c4d 6359 int i;
9c1cfda2 6360
6ca09dfc 6361 cpumask_clear(span);
c5f59f08 6362 nodes_clear(used_nodes);
9c1cfda2 6363
6ca09dfc 6364 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6365 node_set(node, used_nodes);
9c1cfda2
JH
6366
6367 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6368 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6369
6ca09dfc 6370 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6371 }
9c1cfda2 6372}
6d6bc0ad 6373#endif /* CONFIG_NUMA */
9c1cfda2 6374
5c45bf27 6375int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6376
6c99e9ad
RR
6377/*
6378 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6379 *
6380 * ( See the the comments in include/linux/sched.h:struct sched_group
6381 * and struct sched_domain. )
6c99e9ad
RR
6382 */
6383struct static_sched_group {
6384 struct sched_group sg;
6385 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6386};
6387
6388struct static_sched_domain {
6389 struct sched_domain sd;
6390 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6391};
6392
49a02c51
AH
6393struct s_data {
6394#ifdef CONFIG_NUMA
6395 int sd_allnodes;
6396 cpumask_var_t domainspan;
6397 cpumask_var_t covered;
6398 cpumask_var_t notcovered;
6399#endif
6400 cpumask_var_t nodemask;
6401 cpumask_var_t this_sibling_map;
6402 cpumask_var_t this_core_map;
6403 cpumask_var_t send_covered;
6404 cpumask_var_t tmpmask;
6405 struct sched_group **sched_group_nodes;
6406 struct root_domain *rd;
6407};
6408
2109b99e
AH
6409enum s_alloc {
6410 sa_sched_groups = 0,
6411 sa_rootdomain,
6412 sa_tmpmask,
6413 sa_send_covered,
6414 sa_this_core_map,
6415 sa_this_sibling_map,
6416 sa_nodemask,
6417 sa_sched_group_nodes,
6418#ifdef CONFIG_NUMA
6419 sa_notcovered,
6420 sa_covered,
6421 sa_domainspan,
6422#endif
6423 sa_none,
6424};
6425
9c1cfda2 6426/*
48f24c4d 6427 * SMT sched-domains:
9c1cfda2 6428 */
1da177e4 6429#ifdef CONFIG_SCHED_SMT
6c99e9ad 6430static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6431static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6432
41a2d6cf 6433static int
96f874e2
RR
6434cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6435 struct sched_group **sg, struct cpumask *unused)
1da177e4 6436{
6711cab4 6437 if (sg)
1871e52c 6438 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6439 return cpu;
6440}
6d6bc0ad 6441#endif /* CONFIG_SCHED_SMT */
1da177e4 6442
48f24c4d
IM
6443/*
6444 * multi-core sched-domains:
6445 */
1e9f28fa 6446#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6447static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6448static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6449#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6450
6451#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6452static int
96f874e2
RR
6453cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6454 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6455{
6711cab4 6456 int group;
7c16ec58 6457
c69fc56d 6458 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6459 group = cpumask_first(mask);
6711cab4 6460 if (sg)
6c99e9ad 6461 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6462 return group;
1e9f28fa
SS
6463}
6464#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6465static int
96f874e2
RR
6466cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6467 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6468{
6711cab4 6469 if (sg)
6c99e9ad 6470 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6471 return cpu;
6472}
6473#endif
6474
6c99e9ad
RR
6475static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6476static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6477
41a2d6cf 6478static int
96f874e2
RR
6479cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6480 struct sched_group **sg, struct cpumask *mask)
1da177e4 6481{
6711cab4 6482 int group;
48f24c4d 6483#ifdef CONFIG_SCHED_MC
6ca09dfc 6484 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6485 group = cpumask_first(mask);
1e9f28fa 6486#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6487 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6488 group = cpumask_first(mask);
1da177e4 6489#else
6711cab4 6490 group = cpu;
1da177e4 6491#endif
6711cab4 6492 if (sg)
6c99e9ad 6493 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6494 return group;
1da177e4
LT
6495}
6496
6497#ifdef CONFIG_NUMA
1da177e4 6498/*
9c1cfda2
JH
6499 * The init_sched_build_groups can't handle what we want to do with node
6500 * groups, so roll our own. Now each node has its own list of groups which
6501 * gets dynamically allocated.
1da177e4 6502 */
62ea9ceb 6503static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6504static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6505
62ea9ceb 6506static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6507static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6508
96f874e2
RR
6509static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6510 struct sched_group **sg,
6511 struct cpumask *nodemask)
9c1cfda2 6512{
6711cab4
SS
6513 int group;
6514
6ca09dfc 6515 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6516 group = cpumask_first(nodemask);
6711cab4
SS
6517
6518 if (sg)
6c99e9ad 6519 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6520 return group;
1da177e4 6521}
6711cab4 6522
08069033
SS
6523static void init_numa_sched_groups_power(struct sched_group *group_head)
6524{
6525 struct sched_group *sg = group_head;
6526 int j;
6527
6528 if (!sg)
6529 return;
3a5c359a 6530 do {
758b2cdc 6531 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6532 struct sched_domain *sd;
08069033 6533
6c99e9ad 6534 sd = &per_cpu(phys_domains, j).sd;
13318a71 6535 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6536 /*
6537 * Only add "power" once for each
6538 * physical package.
6539 */
6540 continue;
6541 }
08069033 6542
18a3885f 6543 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6544 }
6545 sg = sg->next;
6546 } while (sg != group_head);
08069033 6547}
0601a88d
AH
6548
6549static int build_numa_sched_groups(struct s_data *d,
6550 const struct cpumask *cpu_map, int num)
6551{
6552 struct sched_domain *sd;
6553 struct sched_group *sg, *prev;
6554 int n, j;
6555
6556 cpumask_clear(d->covered);
6557 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6558 if (cpumask_empty(d->nodemask)) {
6559 d->sched_group_nodes[num] = NULL;
6560 goto out;
6561 }
6562
6563 sched_domain_node_span(num, d->domainspan);
6564 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6565
6566 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6567 GFP_KERNEL, num);
6568 if (!sg) {
3df0fc5b
PZ
6569 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6570 num);
0601a88d
AH
6571 return -ENOMEM;
6572 }
6573 d->sched_group_nodes[num] = sg;
6574
6575 for_each_cpu(j, d->nodemask) {
6576 sd = &per_cpu(node_domains, j).sd;
6577 sd->groups = sg;
6578 }
6579
18a3885f 6580 sg->cpu_power = 0;
0601a88d
AH
6581 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6582 sg->next = sg;
6583 cpumask_or(d->covered, d->covered, d->nodemask);
6584
6585 prev = sg;
6586 for (j = 0; j < nr_node_ids; j++) {
6587 n = (num + j) % nr_node_ids;
6588 cpumask_complement(d->notcovered, d->covered);
6589 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6590 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6591 if (cpumask_empty(d->tmpmask))
6592 break;
6593 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6594 if (cpumask_empty(d->tmpmask))
6595 continue;
6596 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6597 GFP_KERNEL, num);
6598 if (!sg) {
3df0fc5b
PZ
6599 printk(KERN_WARNING
6600 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6601 return -ENOMEM;
6602 }
18a3885f 6603 sg->cpu_power = 0;
0601a88d
AH
6604 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6605 sg->next = prev->next;
6606 cpumask_or(d->covered, d->covered, d->tmpmask);
6607 prev->next = sg;
6608 prev = sg;
6609 }
6610out:
6611 return 0;
6612}
6d6bc0ad 6613#endif /* CONFIG_NUMA */
1da177e4 6614
a616058b 6615#ifdef CONFIG_NUMA
51888ca2 6616/* Free memory allocated for various sched_group structures */
96f874e2
RR
6617static void free_sched_groups(const struct cpumask *cpu_map,
6618 struct cpumask *nodemask)
51888ca2 6619{
a616058b 6620 int cpu, i;
51888ca2 6621
abcd083a 6622 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6623 struct sched_group **sched_group_nodes
6624 = sched_group_nodes_bycpu[cpu];
6625
51888ca2
SV
6626 if (!sched_group_nodes)
6627 continue;
6628
076ac2af 6629 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6630 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6631
6ca09dfc 6632 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6633 if (cpumask_empty(nodemask))
51888ca2
SV
6634 continue;
6635
6636 if (sg == NULL)
6637 continue;
6638 sg = sg->next;
6639next_sg:
6640 oldsg = sg;
6641 sg = sg->next;
6642 kfree(oldsg);
6643 if (oldsg != sched_group_nodes[i])
6644 goto next_sg;
6645 }
6646 kfree(sched_group_nodes);
6647 sched_group_nodes_bycpu[cpu] = NULL;
6648 }
51888ca2 6649}
6d6bc0ad 6650#else /* !CONFIG_NUMA */
96f874e2
RR
6651static void free_sched_groups(const struct cpumask *cpu_map,
6652 struct cpumask *nodemask)
a616058b
SS
6653{
6654}
6d6bc0ad 6655#endif /* CONFIG_NUMA */
51888ca2 6656
89c4710e
SS
6657/*
6658 * Initialize sched groups cpu_power.
6659 *
6660 * cpu_power indicates the capacity of sched group, which is used while
6661 * distributing the load between different sched groups in a sched domain.
6662 * Typically cpu_power for all the groups in a sched domain will be same unless
6663 * there are asymmetries in the topology. If there are asymmetries, group
6664 * having more cpu_power will pickup more load compared to the group having
6665 * less cpu_power.
89c4710e
SS
6666 */
6667static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6668{
6669 struct sched_domain *child;
6670 struct sched_group *group;
f93e65c1
PZ
6671 long power;
6672 int weight;
89c4710e
SS
6673
6674 WARN_ON(!sd || !sd->groups);
6675
13318a71 6676 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6677 return;
6678
6679 child = sd->child;
6680
18a3885f 6681 sd->groups->cpu_power = 0;
5517d86b 6682
f93e65c1
PZ
6683 if (!child) {
6684 power = SCHED_LOAD_SCALE;
6685 weight = cpumask_weight(sched_domain_span(sd));
6686 /*
6687 * SMT siblings share the power of a single core.
a52bfd73
PZ
6688 * Usually multiple threads get a better yield out of
6689 * that one core than a single thread would have,
6690 * reflect that in sd->smt_gain.
f93e65c1 6691 */
a52bfd73
PZ
6692 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6693 power *= sd->smt_gain;
f93e65c1 6694 power /= weight;
a52bfd73
PZ
6695 power >>= SCHED_LOAD_SHIFT;
6696 }
18a3885f 6697 sd->groups->cpu_power += power;
89c4710e
SS
6698 return;
6699 }
6700
89c4710e 6701 /*
f93e65c1 6702 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6703 */
6704 group = child->groups;
6705 do {
18a3885f 6706 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6707 group = group->next;
6708 } while (group != child->groups);
6709}
6710
7c16ec58
MT
6711/*
6712 * Initializers for schedule domains
6713 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6714 */
6715
a5d8c348
IM
6716#ifdef CONFIG_SCHED_DEBUG
6717# define SD_INIT_NAME(sd, type) sd->name = #type
6718#else
6719# define SD_INIT_NAME(sd, type) do { } while (0)
6720#endif
6721
7c16ec58 6722#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6723
7c16ec58
MT
6724#define SD_INIT_FUNC(type) \
6725static noinline void sd_init_##type(struct sched_domain *sd) \
6726{ \
6727 memset(sd, 0, sizeof(*sd)); \
6728 *sd = SD_##type##_INIT; \
1d3504fc 6729 sd->level = SD_LV_##type; \
a5d8c348 6730 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6731}
6732
6733SD_INIT_FUNC(CPU)
6734#ifdef CONFIG_NUMA
6735 SD_INIT_FUNC(ALLNODES)
6736 SD_INIT_FUNC(NODE)
6737#endif
6738#ifdef CONFIG_SCHED_SMT
6739 SD_INIT_FUNC(SIBLING)
6740#endif
6741#ifdef CONFIG_SCHED_MC
6742 SD_INIT_FUNC(MC)
6743#endif
6744
1d3504fc
HS
6745static int default_relax_domain_level = -1;
6746
6747static int __init setup_relax_domain_level(char *str)
6748{
30e0e178
LZ
6749 unsigned long val;
6750
6751 val = simple_strtoul(str, NULL, 0);
6752 if (val < SD_LV_MAX)
6753 default_relax_domain_level = val;
6754
1d3504fc
HS
6755 return 1;
6756}
6757__setup("relax_domain_level=", setup_relax_domain_level);
6758
6759static void set_domain_attribute(struct sched_domain *sd,
6760 struct sched_domain_attr *attr)
6761{
6762 int request;
6763
6764 if (!attr || attr->relax_domain_level < 0) {
6765 if (default_relax_domain_level < 0)
6766 return;
6767 else
6768 request = default_relax_domain_level;
6769 } else
6770 request = attr->relax_domain_level;
6771 if (request < sd->level) {
6772 /* turn off idle balance on this domain */
c88d5910 6773 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6774 } else {
6775 /* turn on idle balance on this domain */
c88d5910 6776 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6777 }
6778}
6779
2109b99e
AH
6780static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6781 const struct cpumask *cpu_map)
6782{
6783 switch (what) {
6784 case sa_sched_groups:
6785 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6786 d->sched_group_nodes = NULL;
6787 case sa_rootdomain:
6788 free_rootdomain(d->rd); /* fall through */
6789 case sa_tmpmask:
6790 free_cpumask_var(d->tmpmask); /* fall through */
6791 case sa_send_covered:
6792 free_cpumask_var(d->send_covered); /* fall through */
6793 case sa_this_core_map:
6794 free_cpumask_var(d->this_core_map); /* fall through */
6795 case sa_this_sibling_map:
6796 free_cpumask_var(d->this_sibling_map); /* fall through */
6797 case sa_nodemask:
6798 free_cpumask_var(d->nodemask); /* fall through */
6799 case sa_sched_group_nodes:
d1b55138 6800#ifdef CONFIG_NUMA
2109b99e
AH
6801 kfree(d->sched_group_nodes); /* fall through */
6802 case sa_notcovered:
6803 free_cpumask_var(d->notcovered); /* fall through */
6804 case sa_covered:
6805 free_cpumask_var(d->covered); /* fall through */
6806 case sa_domainspan:
6807 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6808#endif
2109b99e
AH
6809 case sa_none:
6810 break;
6811 }
6812}
3404c8d9 6813
2109b99e
AH
6814static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6815 const struct cpumask *cpu_map)
6816{
3404c8d9 6817#ifdef CONFIG_NUMA
2109b99e
AH
6818 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6819 return sa_none;
6820 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6821 return sa_domainspan;
6822 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6823 return sa_covered;
6824 /* Allocate the per-node list of sched groups */
6825 d->sched_group_nodes = kcalloc(nr_node_ids,
6826 sizeof(struct sched_group *), GFP_KERNEL);
6827 if (!d->sched_group_nodes) {
3df0fc5b 6828 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6829 return sa_notcovered;
d1b55138 6830 }
2109b99e 6831 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6832#endif
2109b99e
AH
6833 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6834 return sa_sched_group_nodes;
6835 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6836 return sa_nodemask;
6837 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6838 return sa_this_sibling_map;
6839 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6840 return sa_this_core_map;
6841 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6842 return sa_send_covered;
6843 d->rd = alloc_rootdomain();
6844 if (!d->rd) {
3df0fc5b 6845 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6846 return sa_tmpmask;
57d885fe 6847 }
2109b99e
AH
6848 return sa_rootdomain;
6849}
57d885fe 6850
7f4588f3
AH
6851static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6852 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6853{
6854 struct sched_domain *sd = NULL;
7c16ec58 6855#ifdef CONFIG_NUMA
7f4588f3 6856 struct sched_domain *parent;
1da177e4 6857
7f4588f3
AH
6858 d->sd_allnodes = 0;
6859 if (cpumask_weight(cpu_map) >
6860 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6861 sd = &per_cpu(allnodes_domains, i).sd;
6862 SD_INIT(sd, ALLNODES);
1d3504fc 6863 set_domain_attribute(sd, attr);
7f4588f3
AH
6864 cpumask_copy(sched_domain_span(sd), cpu_map);
6865 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6866 d->sd_allnodes = 1;
6867 }
6868 parent = sd;
6869
6870 sd = &per_cpu(node_domains, i).sd;
6871 SD_INIT(sd, NODE);
6872 set_domain_attribute(sd, attr);
6873 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6874 sd->parent = parent;
6875 if (parent)
6876 parent->child = sd;
6877 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6878#endif
7f4588f3
AH
6879 return sd;
6880}
1da177e4 6881
87cce662
AH
6882static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6883 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6884 struct sched_domain *parent, int i)
6885{
6886 struct sched_domain *sd;
6887 sd = &per_cpu(phys_domains, i).sd;
6888 SD_INIT(sd, CPU);
6889 set_domain_attribute(sd, attr);
6890 cpumask_copy(sched_domain_span(sd), d->nodemask);
6891 sd->parent = parent;
6892 if (parent)
6893 parent->child = sd;
6894 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6895 return sd;
6896}
1da177e4 6897
410c4081
AH
6898static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6899 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6900 struct sched_domain *parent, int i)
6901{
6902 struct sched_domain *sd = parent;
1e9f28fa 6903#ifdef CONFIG_SCHED_MC
410c4081
AH
6904 sd = &per_cpu(core_domains, i).sd;
6905 SD_INIT(sd, MC);
6906 set_domain_attribute(sd, attr);
6907 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6908 sd->parent = parent;
6909 parent->child = sd;
6910 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6911#endif
410c4081
AH
6912 return sd;
6913}
1e9f28fa 6914
d8173535
AH
6915static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6916 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6917 struct sched_domain *parent, int i)
6918{
6919 struct sched_domain *sd = parent;
1da177e4 6920#ifdef CONFIG_SCHED_SMT
d8173535
AH
6921 sd = &per_cpu(cpu_domains, i).sd;
6922 SD_INIT(sd, SIBLING);
6923 set_domain_attribute(sd, attr);
6924 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6925 sd->parent = parent;
6926 parent->child = sd;
6927 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6928#endif
d8173535
AH
6929 return sd;
6930}
1da177e4 6931
0e8e85c9
AH
6932static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6933 const struct cpumask *cpu_map, int cpu)
6934{
6935 switch (l) {
1da177e4 6936#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6937 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6938 cpumask_and(d->this_sibling_map, cpu_map,
6939 topology_thread_cpumask(cpu));
6940 if (cpu == cpumask_first(d->this_sibling_map))
6941 init_sched_build_groups(d->this_sibling_map, cpu_map,
6942 &cpu_to_cpu_group,
6943 d->send_covered, d->tmpmask);
6944 break;
1da177e4 6945#endif
1e9f28fa 6946#ifdef CONFIG_SCHED_MC
a2af04cd
AH
6947 case SD_LV_MC: /* set up multi-core groups */
6948 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6949 if (cpu == cpumask_first(d->this_core_map))
6950 init_sched_build_groups(d->this_core_map, cpu_map,
6951 &cpu_to_core_group,
6952 d->send_covered, d->tmpmask);
6953 break;
1e9f28fa 6954#endif
86548096
AH
6955 case SD_LV_CPU: /* set up physical groups */
6956 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6957 if (!cpumask_empty(d->nodemask))
6958 init_sched_build_groups(d->nodemask, cpu_map,
6959 &cpu_to_phys_group,
6960 d->send_covered, d->tmpmask);
6961 break;
1da177e4 6962#ifdef CONFIG_NUMA
de616e36
AH
6963 case SD_LV_ALLNODES:
6964 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6965 d->send_covered, d->tmpmask);
6966 break;
6967#endif
0e8e85c9
AH
6968 default:
6969 break;
7c16ec58 6970 }
0e8e85c9 6971}
9c1cfda2 6972
2109b99e
AH
6973/*
6974 * Build sched domains for a given set of cpus and attach the sched domains
6975 * to the individual cpus
6976 */
6977static int __build_sched_domains(const struct cpumask *cpu_map,
6978 struct sched_domain_attr *attr)
6979{
6980 enum s_alloc alloc_state = sa_none;
6981 struct s_data d;
294b0c96 6982 struct sched_domain *sd;
2109b99e 6983 int i;
7c16ec58 6984#ifdef CONFIG_NUMA
2109b99e 6985 d.sd_allnodes = 0;
7c16ec58 6986#endif
9c1cfda2 6987
2109b99e
AH
6988 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6989 if (alloc_state != sa_rootdomain)
6990 goto error;
6991 alloc_state = sa_sched_groups;
9c1cfda2 6992
1da177e4 6993 /*
1a20ff27 6994 * Set up domains for cpus specified by the cpu_map.
1da177e4 6995 */
abcd083a 6996 for_each_cpu(i, cpu_map) {
49a02c51
AH
6997 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6998 cpu_map);
9761eea8 6999
7f4588f3 7000 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7001 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7002 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7003 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7004 }
9c1cfda2 7005
abcd083a 7006 for_each_cpu(i, cpu_map) {
0e8e85c9 7007 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7008 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7009 }
9c1cfda2 7010
1da177e4 7011 /* Set up physical groups */
86548096
AH
7012 for (i = 0; i < nr_node_ids; i++)
7013 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7014
1da177e4
LT
7015#ifdef CONFIG_NUMA
7016 /* Set up node groups */
de616e36
AH
7017 if (d.sd_allnodes)
7018 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7019
0601a88d
AH
7020 for (i = 0; i < nr_node_ids; i++)
7021 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7022 goto error;
1da177e4
LT
7023#endif
7024
7025 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7026#ifdef CONFIG_SCHED_SMT
abcd083a 7027 for_each_cpu(i, cpu_map) {
294b0c96 7028 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7029 init_sched_groups_power(i, sd);
5c45bf27 7030 }
1da177e4 7031#endif
1e9f28fa 7032#ifdef CONFIG_SCHED_MC
abcd083a 7033 for_each_cpu(i, cpu_map) {
294b0c96 7034 sd = &per_cpu(core_domains, i).sd;
89c4710e 7035 init_sched_groups_power(i, sd);
5c45bf27
SS
7036 }
7037#endif
1e9f28fa 7038
abcd083a 7039 for_each_cpu(i, cpu_map) {
294b0c96 7040 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7041 init_sched_groups_power(i, sd);
1da177e4
LT
7042 }
7043
9c1cfda2 7044#ifdef CONFIG_NUMA
076ac2af 7045 for (i = 0; i < nr_node_ids; i++)
49a02c51 7046 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7047
49a02c51 7048 if (d.sd_allnodes) {
6711cab4 7049 struct sched_group *sg;
f712c0c7 7050
96f874e2 7051 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7052 d.tmpmask);
f712c0c7
SS
7053 init_numa_sched_groups_power(sg);
7054 }
9c1cfda2
JH
7055#endif
7056
1da177e4 7057 /* Attach the domains */
abcd083a 7058 for_each_cpu(i, cpu_map) {
1da177e4 7059#ifdef CONFIG_SCHED_SMT
6c99e9ad 7060 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7061#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7062 sd = &per_cpu(core_domains, i).sd;
1da177e4 7063#else
6c99e9ad 7064 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7065#endif
49a02c51 7066 cpu_attach_domain(sd, d.rd, i);
1da177e4 7067 }
51888ca2 7068
2109b99e
AH
7069 d.sched_group_nodes = NULL; /* don't free this we still need it */
7070 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7071 return 0;
51888ca2 7072
51888ca2 7073error:
2109b99e
AH
7074 __free_domain_allocs(&d, alloc_state, cpu_map);
7075 return -ENOMEM;
1da177e4 7076}
029190c5 7077
96f874e2 7078static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7079{
7080 return __build_sched_domains(cpu_map, NULL);
7081}
7082
acc3f5d7 7083static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7084static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7085static struct sched_domain_attr *dattr_cur;
7086 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7087
7088/*
7089 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7090 * cpumask) fails, then fallback to a single sched domain,
7091 * as determined by the single cpumask fallback_doms.
029190c5 7092 */
4212823f 7093static cpumask_var_t fallback_doms;
029190c5 7094
ee79d1bd
HC
7095/*
7096 * arch_update_cpu_topology lets virtualized architectures update the
7097 * cpu core maps. It is supposed to return 1 if the topology changed
7098 * or 0 if it stayed the same.
7099 */
7100int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7101{
ee79d1bd 7102 return 0;
22e52b07
HC
7103}
7104
acc3f5d7
RR
7105cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7106{
7107 int i;
7108 cpumask_var_t *doms;
7109
7110 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7111 if (!doms)
7112 return NULL;
7113 for (i = 0; i < ndoms; i++) {
7114 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7115 free_sched_domains(doms, i);
7116 return NULL;
7117 }
7118 }
7119 return doms;
7120}
7121
7122void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7123{
7124 unsigned int i;
7125 for (i = 0; i < ndoms; i++)
7126 free_cpumask_var(doms[i]);
7127 kfree(doms);
7128}
7129
1a20ff27 7130/*
41a2d6cf 7131 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7132 * For now this just excludes isolated cpus, but could be used to
7133 * exclude other special cases in the future.
1a20ff27 7134 */
96f874e2 7135static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7136{
7378547f
MM
7137 int err;
7138
22e52b07 7139 arch_update_cpu_topology();
029190c5 7140 ndoms_cur = 1;
acc3f5d7 7141 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7142 if (!doms_cur)
acc3f5d7
RR
7143 doms_cur = &fallback_doms;
7144 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7145 dattr_cur = NULL;
acc3f5d7 7146 err = build_sched_domains(doms_cur[0]);
6382bc90 7147 register_sched_domain_sysctl();
7378547f
MM
7148
7149 return err;
1a20ff27
DG
7150}
7151
96f874e2
RR
7152static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7153 struct cpumask *tmpmask)
1da177e4 7154{
7c16ec58 7155 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7156}
1da177e4 7157
1a20ff27
DG
7158/*
7159 * Detach sched domains from a group of cpus specified in cpu_map
7160 * These cpus will now be attached to the NULL domain
7161 */
96f874e2 7162static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7163{
96f874e2
RR
7164 /* Save because hotplug lock held. */
7165 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7166 int i;
7167
abcd083a 7168 for_each_cpu(i, cpu_map)
57d885fe 7169 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7170 synchronize_sched();
96f874e2 7171 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7172}
7173
1d3504fc
HS
7174/* handle null as "default" */
7175static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7176 struct sched_domain_attr *new, int idx_new)
7177{
7178 struct sched_domain_attr tmp;
7179
7180 /* fast path */
7181 if (!new && !cur)
7182 return 1;
7183
7184 tmp = SD_ATTR_INIT;
7185 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7186 new ? (new + idx_new) : &tmp,
7187 sizeof(struct sched_domain_attr));
7188}
7189
029190c5
PJ
7190/*
7191 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7192 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7193 * doms_new[] to the current sched domain partitioning, doms_cur[].
7194 * It destroys each deleted domain and builds each new domain.
7195 *
acc3f5d7 7196 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7197 * The masks don't intersect (don't overlap.) We should setup one
7198 * sched domain for each mask. CPUs not in any of the cpumasks will
7199 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7200 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7201 * it as it is.
7202 *
acc3f5d7
RR
7203 * The passed in 'doms_new' should be allocated using
7204 * alloc_sched_domains. This routine takes ownership of it and will
7205 * free_sched_domains it when done with it. If the caller failed the
7206 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7207 * and partition_sched_domains() will fallback to the single partition
7208 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7209 *
96f874e2 7210 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7211 * ndoms_new == 0 is a special case for destroying existing domains,
7212 * and it will not create the default domain.
dfb512ec 7213 *
029190c5
PJ
7214 * Call with hotplug lock held
7215 */
acc3f5d7 7216void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7217 struct sched_domain_attr *dattr_new)
029190c5 7218{
dfb512ec 7219 int i, j, n;
d65bd5ec 7220 int new_topology;
029190c5 7221
712555ee 7222 mutex_lock(&sched_domains_mutex);
a1835615 7223
7378547f
MM
7224 /* always unregister in case we don't destroy any domains */
7225 unregister_sched_domain_sysctl();
7226
d65bd5ec
HC
7227 /* Let architecture update cpu core mappings. */
7228 new_topology = arch_update_cpu_topology();
7229
dfb512ec 7230 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7231
7232 /* Destroy deleted domains */
7233 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7234 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7235 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7236 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7237 goto match1;
7238 }
7239 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7240 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7241match1:
7242 ;
7243 }
7244
e761b772
MK
7245 if (doms_new == NULL) {
7246 ndoms_cur = 0;
acc3f5d7 7247 doms_new = &fallback_doms;
6ad4c188 7248 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7249 WARN_ON_ONCE(dattr_new);
e761b772
MK
7250 }
7251
029190c5
PJ
7252 /* Build new domains */
7253 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7254 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7255 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7256 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7257 goto match2;
7258 }
7259 /* no match - add a new doms_new */
acc3f5d7 7260 __build_sched_domains(doms_new[i],
1d3504fc 7261 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7262match2:
7263 ;
7264 }
7265
7266 /* Remember the new sched domains */
acc3f5d7
RR
7267 if (doms_cur != &fallback_doms)
7268 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7269 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7270 doms_cur = doms_new;
1d3504fc 7271 dattr_cur = dattr_new;
029190c5 7272 ndoms_cur = ndoms_new;
7378547f
MM
7273
7274 register_sched_domain_sysctl();
a1835615 7275
712555ee 7276 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7277}
7278
5c45bf27 7279#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7280static void arch_reinit_sched_domains(void)
5c45bf27 7281{
95402b38 7282 get_online_cpus();
dfb512ec
MK
7283
7284 /* Destroy domains first to force the rebuild */
7285 partition_sched_domains(0, NULL, NULL);
7286
e761b772 7287 rebuild_sched_domains();
95402b38 7288 put_online_cpus();
5c45bf27
SS
7289}
7290
7291static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7292{
afb8a9b7 7293 unsigned int level = 0;
5c45bf27 7294
afb8a9b7
GS
7295 if (sscanf(buf, "%u", &level) != 1)
7296 return -EINVAL;
7297
7298 /*
7299 * level is always be positive so don't check for
7300 * level < POWERSAVINGS_BALANCE_NONE which is 0
7301 * What happens on 0 or 1 byte write,
7302 * need to check for count as well?
7303 */
7304
7305 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7306 return -EINVAL;
7307
7308 if (smt)
afb8a9b7 7309 sched_smt_power_savings = level;
5c45bf27 7310 else
afb8a9b7 7311 sched_mc_power_savings = level;
5c45bf27 7312
c70f22d2 7313 arch_reinit_sched_domains();
5c45bf27 7314
c70f22d2 7315 return count;
5c45bf27
SS
7316}
7317
5c45bf27 7318#ifdef CONFIG_SCHED_MC
f718cd4a 7319static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7320 struct sysdev_class_attribute *attr,
f718cd4a 7321 char *page)
5c45bf27
SS
7322{
7323 return sprintf(page, "%u\n", sched_mc_power_savings);
7324}
f718cd4a 7325static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7326 struct sysdev_class_attribute *attr,
48f24c4d 7327 const char *buf, size_t count)
5c45bf27
SS
7328{
7329 return sched_power_savings_store(buf, count, 0);
7330}
f718cd4a
AK
7331static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7332 sched_mc_power_savings_show,
7333 sched_mc_power_savings_store);
5c45bf27
SS
7334#endif
7335
7336#ifdef CONFIG_SCHED_SMT
f718cd4a 7337static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7338 struct sysdev_class_attribute *attr,
f718cd4a 7339 char *page)
5c45bf27
SS
7340{
7341 return sprintf(page, "%u\n", sched_smt_power_savings);
7342}
f718cd4a 7343static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7344 struct sysdev_class_attribute *attr,
48f24c4d 7345 const char *buf, size_t count)
5c45bf27
SS
7346{
7347 return sched_power_savings_store(buf, count, 1);
7348}
f718cd4a
AK
7349static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7350 sched_smt_power_savings_show,
6707de00
AB
7351 sched_smt_power_savings_store);
7352#endif
7353
39aac648 7354int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7355{
7356 int err = 0;
7357
7358#ifdef CONFIG_SCHED_SMT
7359 if (smt_capable())
7360 err = sysfs_create_file(&cls->kset.kobj,
7361 &attr_sched_smt_power_savings.attr);
7362#endif
7363#ifdef CONFIG_SCHED_MC
7364 if (!err && mc_capable())
7365 err = sysfs_create_file(&cls->kset.kobj,
7366 &attr_sched_mc_power_savings.attr);
7367#endif
7368 return err;
7369}
6d6bc0ad 7370#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7371
1da177e4 7372/*
3a101d05
TH
7373 * Update cpusets according to cpu_active mask. If cpusets are
7374 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7375 * around partition_sched_domains().
1da177e4 7376 */
3a101d05
TH
7377static int __cpuexit cpuset_cpu_active(struct notifier_block *nfb,
7378 unsigned long action, void *hcpu)
e761b772 7379{
3a101d05 7380 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7381 case CPU_ONLINE:
6ad4c188 7382 case CPU_DOWN_FAILED:
3a101d05 7383 cpuset_update_active_cpus();
e761b772 7384 return NOTIFY_OK;
3a101d05
TH
7385 default:
7386 return NOTIFY_DONE;
7387 }
7388}
e761b772 7389
3a101d05
TH
7390static int __cpuexit cpuset_cpu_inactive(struct notifier_block *nfb,
7391 unsigned long action, void *hcpu)
7392{
7393 switch (action & ~CPU_TASKS_FROZEN) {
7394 case CPU_DOWN_PREPARE:
7395 cpuset_update_active_cpus();
7396 return NOTIFY_OK;
e761b772
MK
7397 default:
7398 return NOTIFY_DONE;
7399 }
7400}
e761b772
MK
7401
7402static int update_runtime(struct notifier_block *nfb,
7403 unsigned long action, void *hcpu)
1da177e4 7404{
7def2be1
PZ
7405 int cpu = (int)(long)hcpu;
7406
1da177e4 7407 switch (action) {
1da177e4 7408 case CPU_DOWN_PREPARE:
8bb78442 7409 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7410 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7411 return NOTIFY_OK;
7412
1da177e4 7413 case CPU_DOWN_FAILED:
8bb78442 7414 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7415 case CPU_ONLINE:
8bb78442 7416 case CPU_ONLINE_FROZEN:
7def2be1 7417 enable_runtime(cpu_rq(cpu));
e761b772
MK
7418 return NOTIFY_OK;
7419
1da177e4
LT
7420 default:
7421 return NOTIFY_DONE;
7422 }
1da177e4 7423}
1da177e4
LT
7424
7425void __init sched_init_smp(void)
7426{
dcc30a35
RR
7427 cpumask_var_t non_isolated_cpus;
7428
7429 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7430 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7431
434d53b0
MT
7432#if defined(CONFIG_NUMA)
7433 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7434 GFP_KERNEL);
7435 BUG_ON(sched_group_nodes_bycpu == NULL);
7436#endif
95402b38 7437 get_online_cpus();
712555ee 7438 mutex_lock(&sched_domains_mutex);
6ad4c188 7439 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7440 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7441 if (cpumask_empty(non_isolated_cpus))
7442 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7443 mutex_unlock(&sched_domains_mutex);
95402b38 7444 put_online_cpus();
e761b772 7445
3a101d05
TH
7446 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7447 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7448
7449 /* RT runtime code needs to handle some hotplug events */
7450 hotcpu_notifier(update_runtime, 0);
7451
b328ca18 7452 init_hrtick();
5c1e1767
NP
7453
7454 /* Move init over to a non-isolated CPU */
dcc30a35 7455 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7456 BUG();
19978ca6 7457 sched_init_granularity();
dcc30a35 7458 free_cpumask_var(non_isolated_cpus);
4212823f 7459
0e3900e6 7460 init_sched_rt_class();
1da177e4
LT
7461}
7462#else
7463void __init sched_init_smp(void)
7464{
19978ca6 7465 sched_init_granularity();
1da177e4
LT
7466}
7467#endif /* CONFIG_SMP */
7468
cd1bb94b
AB
7469const_debug unsigned int sysctl_timer_migration = 1;
7470
1da177e4
LT
7471int in_sched_functions(unsigned long addr)
7472{
1da177e4
LT
7473 return in_lock_functions(addr) ||
7474 (addr >= (unsigned long)__sched_text_start
7475 && addr < (unsigned long)__sched_text_end);
7476}
7477
a9957449 7478static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7479{
7480 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7481 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7482#ifdef CONFIG_FAIR_GROUP_SCHED
7483 cfs_rq->rq = rq;
7484#endif
67e9fb2a 7485 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7486}
7487
fa85ae24
PZ
7488static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7489{
7490 struct rt_prio_array *array;
7491 int i;
7492
7493 array = &rt_rq->active;
7494 for (i = 0; i < MAX_RT_PRIO; i++) {
7495 INIT_LIST_HEAD(array->queue + i);
7496 __clear_bit(i, array->bitmap);
7497 }
7498 /* delimiter for bitsearch: */
7499 __set_bit(MAX_RT_PRIO, array->bitmap);
7500
052f1dc7 7501#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7502 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7503#ifdef CONFIG_SMP
e864c499 7504 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7505#endif
48d5e258 7506#endif
fa85ae24
PZ
7507#ifdef CONFIG_SMP
7508 rt_rq->rt_nr_migratory = 0;
fa85ae24 7509 rt_rq->overloaded = 0;
05fa785c 7510 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7511#endif
7512
7513 rt_rq->rt_time = 0;
7514 rt_rq->rt_throttled = 0;
ac086bc2 7515 rt_rq->rt_runtime = 0;
0986b11b 7516 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7517
052f1dc7 7518#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7519 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7520 rt_rq->rq = rq;
7521#endif
fa85ae24
PZ
7522}
7523
6f505b16 7524#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7525static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7526 struct sched_entity *se, int cpu, int add,
7527 struct sched_entity *parent)
6f505b16 7528{
ec7dc8ac 7529 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7530 tg->cfs_rq[cpu] = cfs_rq;
7531 init_cfs_rq(cfs_rq, rq);
7532 cfs_rq->tg = tg;
7533 if (add)
7534 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7535
7536 tg->se[cpu] = se;
354d60c2
DG
7537 /* se could be NULL for init_task_group */
7538 if (!se)
7539 return;
7540
ec7dc8ac
DG
7541 if (!parent)
7542 se->cfs_rq = &rq->cfs;
7543 else
7544 se->cfs_rq = parent->my_q;
7545
6f505b16
PZ
7546 se->my_q = cfs_rq;
7547 se->load.weight = tg->shares;
e05510d0 7548 se->load.inv_weight = 0;
ec7dc8ac 7549 se->parent = parent;
6f505b16 7550}
052f1dc7 7551#endif
6f505b16 7552
052f1dc7 7553#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7554static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7555 struct sched_rt_entity *rt_se, int cpu, int add,
7556 struct sched_rt_entity *parent)
6f505b16 7557{
ec7dc8ac
DG
7558 struct rq *rq = cpu_rq(cpu);
7559
6f505b16
PZ
7560 tg->rt_rq[cpu] = rt_rq;
7561 init_rt_rq(rt_rq, rq);
7562 rt_rq->tg = tg;
ac086bc2 7563 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7564 if (add)
7565 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7566
7567 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7568 if (!rt_se)
7569 return;
7570
ec7dc8ac
DG
7571 if (!parent)
7572 rt_se->rt_rq = &rq->rt;
7573 else
7574 rt_se->rt_rq = parent->my_q;
7575
6f505b16 7576 rt_se->my_q = rt_rq;
ec7dc8ac 7577 rt_se->parent = parent;
6f505b16
PZ
7578 INIT_LIST_HEAD(&rt_se->run_list);
7579}
7580#endif
7581
1da177e4
LT
7582void __init sched_init(void)
7583{
dd41f596 7584 int i, j;
434d53b0
MT
7585 unsigned long alloc_size = 0, ptr;
7586
7587#ifdef CONFIG_FAIR_GROUP_SCHED
7588 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7589#endif
7590#ifdef CONFIG_RT_GROUP_SCHED
7591 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7592#endif
df7c8e84 7593#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7594 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7595#endif
434d53b0 7596 if (alloc_size) {
36b7b6d4 7597 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7598
7599#ifdef CONFIG_FAIR_GROUP_SCHED
7600 init_task_group.se = (struct sched_entity **)ptr;
7601 ptr += nr_cpu_ids * sizeof(void **);
7602
7603 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7604 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7605
6d6bc0ad 7606#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7607#ifdef CONFIG_RT_GROUP_SCHED
7608 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7609 ptr += nr_cpu_ids * sizeof(void **);
7610
7611 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7612 ptr += nr_cpu_ids * sizeof(void **);
7613
6d6bc0ad 7614#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7615#ifdef CONFIG_CPUMASK_OFFSTACK
7616 for_each_possible_cpu(i) {
7617 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7618 ptr += cpumask_size();
7619 }
7620#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7621 }
dd41f596 7622
57d885fe
GH
7623#ifdef CONFIG_SMP
7624 init_defrootdomain();
7625#endif
7626
d0b27fa7
PZ
7627 init_rt_bandwidth(&def_rt_bandwidth,
7628 global_rt_period(), global_rt_runtime());
7629
7630#ifdef CONFIG_RT_GROUP_SCHED
7631 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7632 global_rt_period(), global_rt_runtime());
6d6bc0ad 7633#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7634
7c941438 7635#ifdef CONFIG_CGROUP_SCHED
6f505b16 7636 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7637 INIT_LIST_HEAD(&init_task_group.children);
7638
7c941438 7639#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7640
4a6cc4bd
JK
7641#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7642 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7643 __alignof__(unsigned long));
7644#endif
0a945022 7645 for_each_possible_cpu(i) {
70b97a7f 7646 struct rq *rq;
1da177e4
LT
7647
7648 rq = cpu_rq(i);
05fa785c 7649 raw_spin_lock_init(&rq->lock);
7897986b 7650 rq->nr_running = 0;
dce48a84
TG
7651 rq->calc_load_active = 0;
7652 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7653 init_cfs_rq(&rq->cfs, rq);
6f505b16 7654 init_rt_rq(&rq->rt, rq);
dd41f596 7655#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7656 init_task_group.shares = init_task_group_load;
6f505b16 7657 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7658#ifdef CONFIG_CGROUP_SCHED
7659 /*
7660 * How much cpu bandwidth does init_task_group get?
7661 *
7662 * In case of task-groups formed thr' the cgroup filesystem, it
7663 * gets 100% of the cpu resources in the system. This overall
7664 * system cpu resource is divided among the tasks of
7665 * init_task_group and its child task-groups in a fair manner,
7666 * based on each entity's (task or task-group's) weight
7667 * (se->load.weight).
7668 *
7669 * In other words, if init_task_group has 10 tasks of weight
7670 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7671 * then A0's share of the cpu resource is:
7672 *
0d905bca 7673 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7674 *
7675 * We achieve this by letting init_task_group's tasks sit
7676 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7677 */
ec7dc8ac 7678 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7679#endif
354d60c2
DG
7680#endif /* CONFIG_FAIR_GROUP_SCHED */
7681
7682 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7683#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7684 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7685#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7686 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7687#endif
dd41f596 7688#endif
1da177e4 7689
dd41f596
IM
7690 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7691 rq->cpu_load[j] = 0;
1da177e4 7692#ifdef CONFIG_SMP
41c7ce9a 7693 rq->sd = NULL;
57d885fe 7694 rq->rd = NULL;
e51fd5e2 7695 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7696 rq->post_schedule = 0;
1da177e4 7697 rq->active_balance = 0;
dd41f596 7698 rq->next_balance = jiffies;
1da177e4 7699 rq->push_cpu = 0;
0a2966b4 7700 rq->cpu = i;
1f11eb6a 7701 rq->online = 0;
eae0c9df
MG
7702 rq->idle_stamp = 0;
7703 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7704 rq_attach_root(rq, &def_root_domain);
1da177e4 7705#endif
8f4d37ec 7706 init_rq_hrtick(rq);
1da177e4 7707 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7708 }
7709
2dd73a4f 7710 set_load_weight(&init_task);
b50f60ce 7711
e107be36
AK
7712#ifdef CONFIG_PREEMPT_NOTIFIERS
7713 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7714#endif
7715
c9819f45 7716#ifdef CONFIG_SMP
962cf36c 7717 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7718#endif
7719
b50f60ce 7720#ifdef CONFIG_RT_MUTEXES
1d615482 7721 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7722#endif
7723
1da177e4
LT
7724 /*
7725 * The boot idle thread does lazy MMU switching as well:
7726 */
7727 atomic_inc(&init_mm.mm_count);
7728 enter_lazy_tlb(&init_mm, current);
7729
7730 /*
7731 * Make us the idle thread. Technically, schedule() should not be
7732 * called from this thread, however somewhere below it might be,
7733 * but because we are the idle thread, we just pick up running again
7734 * when this runqueue becomes "idle".
7735 */
7736 init_idle(current, smp_processor_id());
dce48a84
TG
7737
7738 calc_load_update = jiffies + LOAD_FREQ;
7739
dd41f596
IM
7740 /*
7741 * During early bootup we pretend to be a normal task:
7742 */
7743 current->sched_class = &fair_sched_class;
6892b75e 7744
6a7b3dc3 7745 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7746 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7747#ifdef CONFIG_SMP
7d1e6a9b 7748#ifdef CONFIG_NO_HZ
49557e62 7749 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7750 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7751#endif
bdddd296
RR
7752 /* May be allocated at isolcpus cmdline parse time */
7753 if (cpu_isolated_map == NULL)
7754 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7755#endif /* SMP */
6a7b3dc3 7756
cdd6c482 7757 perf_event_init();
0d905bca 7758
6892b75e 7759 scheduler_running = 1;
1da177e4
LT
7760}
7761
7762#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7763static inline int preempt_count_equals(int preempt_offset)
7764{
234da7bc 7765 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7766
7767 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7768}
7769
d894837f 7770void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7771{
48f24c4d 7772#ifdef in_atomic
1da177e4
LT
7773 static unsigned long prev_jiffy; /* ratelimiting */
7774
e4aafea2
FW
7775 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7776 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7777 return;
7778 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7779 return;
7780 prev_jiffy = jiffies;
7781
3df0fc5b
PZ
7782 printk(KERN_ERR
7783 "BUG: sleeping function called from invalid context at %s:%d\n",
7784 file, line);
7785 printk(KERN_ERR
7786 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7787 in_atomic(), irqs_disabled(),
7788 current->pid, current->comm);
aef745fc
IM
7789
7790 debug_show_held_locks(current);
7791 if (irqs_disabled())
7792 print_irqtrace_events(current);
7793 dump_stack();
1da177e4
LT
7794#endif
7795}
7796EXPORT_SYMBOL(__might_sleep);
7797#endif
7798
7799#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7800static void normalize_task(struct rq *rq, struct task_struct *p)
7801{
7802 int on_rq;
3e51f33f 7803
3a5e4dc1
AK
7804 on_rq = p->se.on_rq;
7805 if (on_rq)
7806 deactivate_task(rq, p, 0);
7807 __setscheduler(rq, p, SCHED_NORMAL, 0);
7808 if (on_rq) {
7809 activate_task(rq, p, 0);
7810 resched_task(rq->curr);
7811 }
7812}
7813
1da177e4
LT
7814void normalize_rt_tasks(void)
7815{
a0f98a1c 7816 struct task_struct *g, *p;
1da177e4 7817 unsigned long flags;
70b97a7f 7818 struct rq *rq;
1da177e4 7819
4cf5d77a 7820 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7821 do_each_thread(g, p) {
178be793
IM
7822 /*
7823 * Only normalize user tasks:
7824 */
7825 if (!p->mm)
7826 continue;
7827
6cfb0d5d 7828 p->se.exec_start = 0;
6cfb0d5d 7829#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7830 p->se.statistics.wait_start = 0;
7831 p->se.statistics.sleep_start = 0;
7832 p->se.statistics.block_start = 0;
6cfb0d5d 7833#endif
dd41f596
IM
7834
7835 if (!rt_task(p)) {
7836 /*
7837 * Renice negative nice level userspace
7838 * tasks back to 0:
7839 */
7840 if (TASK_NICE(p) < 0 && p->mm)
7841 set_user_nice(p, 0);
1da177e4 7842 continue;
dd41f596 7843 }
1da177e4 7844
1d615482 7845 raw_spin_lock(&p->pi_lock);
b29739f9 7846 rq = __task_rq_lock(p);
1da177e4 7847
178be793 7848 normalize_task(rq, p);
3a5e4dc1 7849
b29739f9 7850 __task_rq_unlock(rq);
1d615482 7851 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7852 } while_each_thread(g, p);
7853
4cf5d77a 7854 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7855}
7856
7857#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7858
67fc4e0c 7859#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7860/*
67fc4e0c 7861 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7862 *
7863 * They can only be called when the whole system has been
7864 * stopped - every CPU needs to be quiescent, and no scheduling
7865 * activity can take place. Using them for anything else would
7866 * be a serious bug, and as a result, they aren't even visible
7867 * under any other configuration.
7868 */
7869
7870/**
7871 * curr_task - return the current task for a given cpu.
7872 * @cpu: the processor in question.
7873 *
7874 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7875 */
36c8b586 7876struct task_struct *curr_task(int cpu)
1df5c10a
LT
7877{
7878 return cpu_curr(cpu);
7879}
7880
67fc4e0c
JW
7881#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7882
7883#ifdef CONFIG_IA64
1df5c10a
LT
7884/**
7885 * set_curr_task - set the current task for a given cpu.
7886 * @cpu: the processor in question.
7887 * @p: the task pointer to set.
7888 *
7889 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7890 * are serviced on a separate stack. It allows the architecture to switch the
7891 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7892 * must be called with all CPU's synchronized, and interrupts disabled, the
7893 * and caller must save the original value of the current task (see
7894 * curr_task() above) and restore that value before reenabling interrupts and
7895 * re-starting the system.
7896 *
7897 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7898 */
36c8b586 7899void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7900{
7901 cpu_curr(cpu) = p;
7902}
7903
7904#endif
29f59db3 7905
bccbe08a
PZ
7906#ifdef CONFIG_FAIR_GROUP_SCHED
7907static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7908{
7909 int i;
7910
7911 for_each_possible_cpu(i) {
7912 if (tg->cfs_rq)
7913 kfree(tg->cfs_rq[i]);
7914 if (tg->se)
7915 kfree(tg->se[i]);
6f505b16
PZ
7916 }
7917
7918 kfree(tg->cfs_rq);
7919 kfree(tg->se);
6f505b16
PZ
7920}
7921
ec7dc8ac
DG
7922static
7923int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7924{
29f59db3 7925 struct cfs_rq *cfs_rq;
eab17229 7926 struct sched_entity *se;
9b5b7751 7927 struct rq *rq;
29f59db3
SV
7928 int i;
7929
434d53b0 7930 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7931 if (!tg->cfs_rq)
7932 goto err;
434d53b0 7933 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7934 if (!tg->se)
7935 goto err;
052f1dc7
PZ
7936
7937 tg->shares = NICE_0_LOAD;
29f59db3
SV
7938
7939 for_each_possible_cpu(i) {
9b5b7751 7940 rq = cpu_rq(i);
29f59db3 7941
eab17229
LZ
7942 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7943 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
7944 if (!cfs_rq)
7945 goto err;
7946
eab17229
LZ
7947 se = kzalloc_node(sizeof(struct sched_entity),
7948 GFP_KERNEL, cpu_to_node(i));
29f59db3 7949 if (!se)
dfc12eb2 7950 goto err_free_rq;
29f59db3 7951
eab17229 7952 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
7953 }
7954
7955 return 1;
7956
dfc12eb2
PC
7957 err_free_rq:
7958 kfree(cfs_rq);
bccbe08a
PZ
7959 err:
7960 return 0;
7961}
7962
7963static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7964{
7965 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7966 &cpu_rq(cpu)->leaf_cfs_rq_list);
7967}
7968
7969static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7970{
7971 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7972}
6d6bc0ad 7973#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
7974static inline void free_fair_sched_group(struct task_group *tg)
7975{
7976}
7977
ec7dc8ac
DG
7978static inline
7979int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7980{
7981 return 1;
7982}
7983
7984static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7985{
7986}
7987
7988static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7989{
7990}
6d6bc0ad 7991#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
7992
7993#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
7994static void free_rt_sched_group(struct task_group *tg)
7995{
7996 int i;
7997
d0b27fa7
PZ
7998 destroy_rt_bandwidth(&tg->rt_bandwidth);
7999
bccbe08a
PZ
8000 for_each_possible_cpu(i) {
8001 if (tg->rt_rq)
8002 kfree(tg->rt_rq[i]);
8003 if (tg->rt_se)
8004 kfree(tg->rt_se[i]);
8005 }
8006
8007 kfree(tg->rt_rq);
8008 kfree(tg->rt_se);
8009}
8010
ec7dc8ac
DG
8011static
8012int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8013{
8014 struct rt_rq *rt_rq;
eab17229 8015 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8016 struct rq *rq;
8017 int i;
8018
434d53b0 8019 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8020 if (!tg->rt_rq)
8021 goto err;
434d53b0 8022 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8023 if (!tg->rt_se)
8024 goto err;
8025
d0b27fa7
PZ
8026 init_rt_bandwidth(&tg->rt_bandwidth,
8027 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8028
8029 for_each_possible_cpu(i) {
8030 rq = cpu_rq(i);
8031
eab17229
LZ
8032 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8033 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8034 if (!rt_rq)
8035 goto err;
29f59db3 8036
eab17229
LZ
8037 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8038 GFP_KERNEL, cpu_to_node(i));
6f505b16 8039 if (!rt_se)
dfc12eb2 8040 goto err_free_rq;
29f59db3 8041
eab17229 8042 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8043 }
8044
bccbe08a
PZ
8045 return 1;
8046
dfc12eb2
PC
8047 err_free_rq:
8048 kfree(rt_rq);
bccbe08a
PZ
8049 err:
8050 return 0;
8051}
8052
8053static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8054{
8055 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8056 &cpu_rq(cpu)->leaf_rt_rq_list);
8057}
8058
8059static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8060{
8061 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8062}
6d6bc0ad 8063#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8064static inline void free_rt_sched_group(struct task_group *tg)
8065{
8066}
8067
ec7dc8ac
DG
8068static inline
8069int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8070{
8071 return 1;
8072}
8073
8074static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8075{
8076}
8077
8078static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8079{
8080}
6d6bc0ad 8081#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8082
7c941438 8083#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8084static void free_sched_group(struct task_group *tg)
8085{
8086 free_fair_sched_group(tg);
8087 free_rt_sched_group(tg);
8088 kfree(tg);
8089}
8090
8091/* allocate runqueue etc for a new task group */
ec7dc8ac 8092struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8093{
8094 struct task_group *tg;
8095 unsigned long flags;
8096 int i;
8097
8098 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8099 if (!tg)
8100 return ERR_PTR(-ENOMEM);
8101
ec7dc8ac 8102 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8103 goto err;
8104
ec7dc8ac 8105 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8106 goto err;
8107
8ed36996 8108 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8109 for_each_possible_cpu(i) {
bccbe08a
PZ
8110 register_fair_sched_group(tg, i);
8111 register_rt_sched_group(tg, i);
9b5b7751 8112 }
6f505b16 8113 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8114
8115 WARN_ON(!parent); /* root should already exist */
8116
8117 tg->parent = parent;
f473aa5e 8118 INIT_LIST_HEAD(&tg->children);
09f2724a 8119 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8120 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8121
9b5b7751 8122 return tg;
29f59db3
SV
8123
8124err:
6f505b16 8125 free_sched_group(tg);
29f59db3
SV
8126 return ERR_PTR(-ENOMEM);
8127}
8128
9b5b7751 8129/* rcu callback to free various structures associated with a task group */
6f505b16 8130static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8131{
29f59db3 8132 /* now it should be safe to free those cfs_rqs */
6f505b16 8133 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8134}
8135
9b5b7751 8136/* Destroy runqueue etc associated with a task group */
4cf86d77 8137void sched_destroy_group(struct task_group *tg)
29f59db3 8138{
8ed36996 8139 unsigned long flags;
9b5b7751 8140 int i;
29f59db3 8141
8ed36996 8142 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8143 for_each_possible_cpu(i) {
bccbe08a
PZ
8144 unregister_fair_sched_group(tg, i);
8145 unregister_rt_sched_group(tg, i);
9b5b7751 8146 }
6f505b16 8147 list_del_rcu(&tg->list);
f473aa5e 8148 list_del_rcu(&tg->siblings);
8ed36996 8149 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8150
9b5b7751 8151 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8152 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8153}
8154
9b5b7751 8155/* change task's runqueue when it moves between groups.
3a252015
IM
8156 * The caller of this function should have put the task in its new group
8157 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8158 * reflect its new group.
9b5b7751
SV
8159 */
8160void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8161{
8162 int on_rq, running;
8163 unsigned long flags;
8164 struct rq *rq;
8165
8166 rq = task_rq_lock(tsk, &flags);
8167
051a1d1a 8168 running = task_current(rq, tsk);
29f59db3
SV
8169 on_rq = tsk->se.on_rq;
8170
0e1f3483 8171 if (on_rq)
29f59db3 8172 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8173 if (unlikely(running))
8174 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8175
6f505b16 8176 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8177
810b3817
PZ
8178#ifdef CONFIG_FAIR_GROUP_SCHED
8179 if (tsk->sched_class->moved_group)
88ec22d3 8180 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8181#endif
8182
0e1f3483
HS
8183 if (unlikely(running))
8184 tsk->sched_class->set_curr_task(rq);
8185 if (on_rq)
371fd7e7 8186 enqueue_task(rq, tsk, 0);
29f59db3 8187
29f59db3
SV
8188 task_rq_unlock(rq, &flags);
8189}
7c941438 8190#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8191
052f1dc7 8192#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8193static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8194{
8195 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8196 int on_rq;
8197
29f59db3 8198 on_rq = se->on_rq;
62fb1851 8199 if (on_rq)
29f59db3
SV
8200 dequeue_entity(cfs_rq, se, 0);
8201
8202 se->load.weight = shares;
e05510d0 8203 se->load.inv_weight = 0;
29f59db3 8204
62fb1851 8205 if (on_rq)
29f59db3 8206 enqueue_entity(cfs_rq, se, 0);
c09595f6 8207}
62fb1851 8208
c09595f6
PZ
8209static void set_se_shares(struct sched_entity *se, unsigned long shares)
8210{
8211 struct cfs_rq *cfs_rq = se->cfs_rq;
8212 struct rq *rq = cfs_rq->rq;
8213 unsigned long flags;
8214
05fa785c 8215 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8216 __set_se_shares(se, shares);
05fa785c 8217 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8218}
8219
8ed36996
PZ
8220static DEFINE_MUTEX(shares_mutex);
8221
4cf86d77 8222int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8223{
8224 int i;
8ed36996 8225 unsigned long flags;
c61935fd 8226
ec7dc8ac
DG
8227 /*
8228 * We can't change the weight of the root cgroup.
8229 */
8230 if (!tg->se[0])
8231 return -EINVAL;
8232
18d95a28
PZ
8233 if (shares < MIN_SHARES)
8234 shares = MIN_SHARES;
cb4ad1ff
MX
8235 else if (shares > MAX_SHARES)
8236 shares = MAX_SHARES;
62fb1851 8237
8ed36996 8238 mutex_lock(&shares_mutex);
9b5b7751 8239 if (tg->shares == shares)
5cb350ba 8240 goto done;
29f59db3 8241
8ed36996 8242 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8243 for_each_possible_cpu(i)
8244 unregister_fair_sched_group(tg, i);
f473aa5e 8245 list_del_rcu(&tg->siblings);
8ed36996 8246 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8247
8248 /* wait for any ongoing reference to this group to finish */
8249 synchronize_sched();
8250
8251 /*
8252 * Now we are free to modify the group's share on each cpu
8253 * w/o tripping rebalance_share or load_balance_fair.
8254 */
9b5b7751 8255 tg->shares = shares;
c09595f6
PZ
8256 for_each_possible_cpu(i) {
8257 /*
8258 * force a rebalance
8259 */
8260 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8261 set_se_shares(tg->se[i], shares);
c09595f6 8262 }
29f59db3 8263
6b2d7700
SV
8264 /*
8265 * Enable load balance activity on this group, by inserting it back on
8266 * each cpu's rq->leaf_cfs_rq_list.
8267 */
8ed36996 8268 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8269 for_each_possible_cpu(i)
8270 register_fair_sched_group(tg, i);
f473aa5e 8271 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8272 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8273done:
8ed36996 8274 mutex_unlock(&shares_mutex);
9b5b7751 8275 return 0;
29f59db3
SV
8276}
8277
5cb350ba
DG
8278unsigned long sched_group_shares(struct task_group *tg)
8279{
8280 return tg->shares;
8281}
052f1dc7 8282#endif
5cb350ba 8283
052f1dc7 8284#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8285/*
9f0c1e56 8286 * Ensure that the real time constraints are schedulable.
6f505b16 8287 */
9f0c1e56
PZ
8288static DEFINE_MUTEX(rt_constraints_mutex);
8289
8290static unsigned long to_ratio(u64 period, u64 runtime)
8291{
8292 if (runtime == RUNTIME_INF)
9a7e0b18 8293 return 1ULL << 20;
9f0c1e56 8294
9a7e0b18 8295 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8296}
8297
9a7e0b18
PZ
8298/* Must be called with tasklist_lock held */
8299static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8300{
9a7e0b18 8301 struct task_struct *g, *p;
b40b2e8e 8302
9a7e0b18
PZ
8303 do_each_thread(g, p) {
8304 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8305 return 1;
8306 } while_each_thread(g, p);
b40b2e8e 8307
9a7e0b18
PZ
8308 return 0;
8309}
b40b2e8e 8310
9a7e0b18
PZ
8311struct rt_schedulable_data {
8312 struct task_group *tg;
8313 u64 rt_period;
8314 u64 rt_runtime;
8315};
b40b2e8e 8316
9a7e0b18
PZ
8317static int tg_schedulable(struct task_group *tg, void *data)
8318{
8319 struct rt_schedulable_data *d = data;
8320 struct task_group *child;
8321 unsigned long total, sum = 0;
8322 u64 period, runtime;
b40b2e8e 8323
9a7e0b18
PZ
8324 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8325 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8326
9a7e0b18
PZ
8327 if (tg == d->tg) {
8328 period = d->rt_period;
8329 runtime = d->rt_runtime;
b40b2e8e 8330 }
b40b2e8e 8331
4653f803
PZ
8332 /*
8333 * Cannot have more runtime than the period.
8334 */
8335 if (runtime > period && runtime != RUNTIME_INF)
8336 return -EINVAL;
6f505b16 8337
4653f803
PZ
8338 /*
8339 * Ensure we don't starve existing RT tasks.
8340 */
9a7e0b18
PZ
8341 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8342 return -EBUSY;
6f505b16 8343
9a7e0b18 8344 total = to_ratio(period, runtime);
6f505b16 8345
4653f803
PZ
8346 /*
8347 * Nobody can have more than the global setting allows.
8348 */
8349 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8350 return -EINVAL;
6f505b16 8351
4653f803
PZ
8352 /*
8353 * The sum of our children's runtime should not exceed our own.
8354 */
9a7e0b18
PZ
8355 list_for_each_entry_rcu(child, &tg->children, siblings) {
8356 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8357 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8358
9a7e0b18
PZ
8359 if (child == d->tg) {
8360 period = d->rt_period;
8361 runtime = d->rt_runtime;
8362 }
6f505b16 8363
9a7e0b18 8364 sum += to_ratio(period, runtime);
9f0c1e56 8365 }
6f505b16 8366
9a7e0b18
PZ
8367 if (sum > total)
8368 return -EINVAL;
8369
8370 return 0;
6f505b16
PZ
8371}
8372
9a7e0b18 8373static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8374{
9a7e0b18
PZ
8375 struct rt_schedulable_data data = {
8376 .tg = tg,
8377 .rt_period = period,
8378 .rt_runtime = runtime,
8379 };
8380
8381 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8382}
8383
d0b27fa7
PZ
8384static int tg_set_bandwidth(struct task_group *tg,
8385 u64 rt_period, u64 rt_runtime)
6f505b16 8386{
ac086bc2 8387 int i, err = 0;
9f0c1e56 8388
9f0c1e56 8389 mutex_lock(&rt_constraints_mutex);
521f1a24 8390 read_lock(&tasklist_lock);
9a7e0b18
PZ
8391 err = __rt_schedulable(tg, rt_period, rt_runtime);
8392 if (err)
9f0c1e56 8393 goto unlock;
ac086bc2 8394
0986b11b 8395 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8396 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8397 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8398
8399 for_each_possible_cpu(i) {
8400 struct rt_rq *rt_rq = tg->rt_rq[i];
8401
0986b11b 8402 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8403 rt_rq->rt_runtime = rt_runtime;
0986b11b 8404 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8405 }
0986b11b 8406 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8407 unlock:
521f1a24 8408 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8409 mutex_unlock(&rt_constraints_mutex);
8410
8411 return err;
6f505b16
PZ
8412}
8413
d0b27fa7
PZ
8414int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8415{
8416 u64 rt_runtime, rt_period;
8417
8418 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8419 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8420 if (rt_runtime_us < 0)
8421 rt_runtime = RUNTIME_INF;
8422
8423 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8424}
8425
9f0c1e56
PZ
8426long sched_group_rt_runtime(struct task_group *tg)
8427{
8428 u64 rt_runtime_us;
8429
d0b27fa7 8430 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8431 return -1;
8432
d0b27fa7 8433 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8434 do_div(rt_runtime_us, NSEC_PER_USEC);
8435 return rt_runtime_us;
8436}
d0b27fa7
PZ
8437
8438int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8439{
8440 u64 rt_runtime, rt_period;
8441
8442 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8443 rt_runtime = tg->rt_bandwidth.rt_runtime;
8444
619b0488
R
8445 if (rt_period == 0)
8446 return -EINVAL;
8447
d0b27fa7
PZ
8448 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8449}
8450
8451long sched_group_rt_period(struct task_group *tg)
8452{
8453 u64 rt_period_us;
8454
8455 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8456 do_div(rt_period_us, NSEC_PER_USEC);
8457 return rt_period_us;
8458}
8459
8460static int sched_rt_global_constraints(void)
8461{
4653f803 8462 u64 runtime, period;
d0b27fa7
PZ
8463 int ret = 0;
8464
ec5d4989
HS
8465 if (sysctl_sched_rt_period <= 0)
8466 return -EINVAL;
8467
4653f803
PZ
8468 runtime = global_rt_runtime();
8469 period = global_rt_period();
8470
8471 /*
8472 * Sanity check on the sysctl variables.
8473 */
8474 if (runtime > period && runtime != RUNTIME_INF)
8475 return -EINVAL;
10b612f4 8476
d0b27fa7 8477 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8478 read_lock(&tasklist_lock);
4653f803 8479 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8480 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8481 mutex_unlock(&rt_constraints_mutex);
8482
8483 return ret;
8484}
54e99124
DG
8485
8486int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8487{
8488 /* Don't accept realtime tasks when there is no way for them to run */
8489 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8490 return 0;
8491
8492 return 1;
8493}
8494
6d6bc0ad 8495#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8496static int sched_rt_global_constraints(void)
8497{
ac086bc2
PZ
8498 unsigned long flags;
8499 int i;
8500
ec5d4989
HS
8501 if (sysctl_sched_rt_period <= 0)
8502 return -EINVAL;
8503
60aa605d
PZ
8504 /*
8505 * There's always some RT tasks in the root group
8506 * -- migration, kstopmachine etc..
8507 */
8508 if (sysctl_sched_rt_runtime == 0)
8509 return -EBUSY;
8510
0986b11b 8511 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8512 for_each_possible_cpu(i) {
8513 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8514
0986b11b 8515 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8516 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8517 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8518 }
0986b11b 8519 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8520
d0b27fa7
PZ
8521 return 0;
8522}
6d6bc0ad 8523#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8524
8525int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8526 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8527 loff_t *ppos)
8528{
8529 int ret;
8530 int old_period, old_runtime;
8531 static DEFINE_MUTEX(mutex);
8532
8533 mutex_lock(&mutex);
8534 old_period = sysctl_sched_rt_period;
8535 old_runtime = sysctl_sched_rt_runtime;
8536
8d65af78 8537 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8538
8539 if (!ret && write) {
8540 ret = sched_rt_global_constraints();
8541 if (ret) {
8542 sysctl_sched_rt_period = old_period;
8543 sysctl_sched_rt_runtime = old_runtime;
8544 } else {
8545 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8546 def_rt_bandwidth.rt_period =
8547 ns_to_ktime(global_rt_period());
8548 }
8549 }
8550 mutex_unlock(&mutex);
8551
8552 return ret;
8553}
68318b8e 8554
052f1dc7 8555#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8556
8557/* return corresponding task_group object of a cgroup */
2b01dfe3 8558static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8559{
2b01dfe3
PM
8560 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8561 struct task_group, css);
68318b8e
SV
8562}
8563
8564static struct cgroup_subsys_state *
2b01dfe3 8565cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8566{
ec7dc8ac 8567 struct task_group *tg, *parent;
68318b8e 8568
2b01dfe3 8569 if (!cgrp->parent) {
68318b8e 8570 /* This is early initialization for the top cgroup */
68318b8e
SV
8571 return &init_task_group.css;
8572 }
8573
ec7dc8ac
DG
8574 parent = cgroup_tg(cgrp->parent);
8575 tg = sched_create_group(parent);
68318b8e
SV
8576 if (IS_ERR(tg))
8577 return ERR_PTR(-ENOMEM);
8578
68318b8e
SV
8579 return &tg->css;
8580}
8581
41a2d6cf
IM
8582static void
8583cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8584{
2b01dfe3 8585 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8586
8587 sched_destroy_group(tg);
8588}
8589
41a2d6cf 8590static int
be367d09 8591cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8592{
b68aa230 8593#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8594 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8595 return -EINVAL;
8596#else
68318b8e
SV
8597 /* We don't support RT-tasks being in separate groups */
8598 if (tsk->sched_class != &fair_sched_class)
8599 return -EINVAL;
b68aa230 8600#endif
be367d09
BB
8601 return 0;
8602}
68318b8e 8603
be367d09
BB
8604static int
8605cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8606 struct task_struct *tsk, bool threadgroup)
8607{
8608 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8609 if (retval)
8610 return retval;
8611 if (threadgroup) {
8612 struct task_struct *c;
8613 rcu_read_lock();
8614 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8615 retval = cpu_cgroup_can_attach_task(cgrp, c);
8616 if (retval) {
8617 rcu_read_unlock();
8618 return retval;
8619 }
8620 }
8621 rcu_read_unlock();
8622 }
68318b8e
SV
8623 return 0;
8624}
8625
8626static void
2b01dfe3 8627cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8628 struct cgroup *old_cont, struct task_struct *tsk,
8629 bool threadgroup)
68318b8e
SV
8630{
8631 sched_move_task(tsk);
be367d09
BB
8632 if (threadgroup) {
8633 struct task_struct *c;
8634 rcu_read_lock();
8635 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8636 sched_move_task(c);
8637 }
8638 rcu_read_unlock();
8639 }
68318b8e
SV
8640}
8641
052f1dc7 8642#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8643static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8644 u64 shareval)
68318b8e 8645{
2b01dfe3 8646 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8647}
8648
f4c753b7 8649static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8650{
2b01dfe3 8651 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8652
8653 return (u64) tg->shares;
8654}
6d6bc0ad 8655#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8656
052f1dc7 8657#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8658static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8659 s64 val)
6f505b16 8660{
06ecb27c 8661 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8662}
8663
06ecb27c 8664static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8665{
06ecb27c 8666 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8667}
d0b27fa7
PZ
8668
8669static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8670 u64 rt_period_us)
8671{
8672 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8673}
8674
8675static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8676{
8677 return sched_group_rt_period(cgroup_tg(cgrp));
8678}
6d6bc0ad 8679#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8680
fe5c7cc2 8681static struct cftype cpu_files[] = {
052f1dc7 8682#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8683 {
8684 .name = "shares",
f4c753b7
PM
8685 .read_u64 = cpu_shares_read_u64,
8686 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8687 },
052f1dc7
PZ
8688#endif
8689#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8690 {
9f0c1e56 8691 .name = "rt_runtime_us",
06ecb27c
PM
8692 .read_s64 = cpu_rt_runtime_read,
8693 .write_s64 = cpu_rt_runtime_write,
6f505b16 8694 },
d0b27fa7
PZ
8695 {
8696 .name = "rt_period_us",
f4c753b7
PM
8697 .read_u64 = cpu_rt_period_read_uint,
8698 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8699 },
052f1dc7 8700#endif
68318b8e
SV
8701};
8702
8703static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8704{
fe5c7cc2 8705 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8706}
8707
8708struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8709 .name = "cpu",
8710 .create = cpu_cgroup_create,
8711 .destroy = cpu_cgroup_destroy,
8712 .can_attach = cpu_cgroup_can_attach,
8713 .attach = cpu_cgroup_attach,
8714 .populate = cpu_cgroup_populate,
8715 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8716 .early_init = 1,
8717};
8718
052f1dc7 8719#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8720
8721#ifdef CONFIG_CGROUP_CPUACCT
8722
8723/*
8724 * CPU accounting code for task groups.
8725 *
8726 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8727 * (balbir@in.ibm.com).
8728 */
8729
934352f2 8730/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8731struct cpuacct {
8732 struct cgroup_subsys_state css;
8733 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8734 u64 __percpu *cpuusage;
ef12fefa 8735 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8736 struct cpuacct *parent;
d842de87
SV
8737};
8738
8739struct cgroup_subsys cpuacct_subsys;
8740
8741/* return cpu accounting group corresponding to this container */
32cd756a 8742static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8743{
32cd756a 8744 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8745 struct cpuacct, css);
8746}
8747
8748/* return cpu accounting group to which this task belongs */
8749static inline struct cpuacct *task_ca(struct task_struct *tsk)
8750{
8751 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8752 struct cpuacct, css);
8753}
8754
8755/* create a new cpu accounting group */
8756static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8757 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8758{
8759 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8760 int i;
d842de87
SV
8761
8762 if (!ca)
ef12fefa 8763 goto out;
d842de87
SV
8764
8765 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8766 if (!ca->cpuusage)
8767 goto out_free_ca;
8768
8769 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8770 if (percpu_counter_init(&ca->cpustat[i], 0))
8771 goto out_free_counters;
d842de87 8772
934352f2
BR
8773 if (cgrp->parent)
8774 ca->parent = cgroup_ca(cgrp->parent);
8775
d842de87 8776 return &ca->css;
ef12fefa
BR
8777
8778out_free_counters:
8779 while (--i >= 0)
8780 percpu_counter_destroy(&ca->cpustat[i]);
8781 free_percpu(ca->cpuusage);
8782out_free_ca:
8783 kfree(ca);
8784out:
8785 return ERR_PTR(-ENOMEM);
d842de87
SV
8786}
8787
8788/* destroy an existing cpu accounting group */
41a2d6cf 8789static void
32cd756a 8790cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8791{
32cd756a 8792 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8793 int i;
d842de87 8794
ef12fefa
BR
8795 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8796 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8797 free_percpu(ca->cpuusage);
8798 kfree(ca);
8799}
8800
720f5498
KC
8801static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8802{
b36128c8 8803 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8804 u64 data;
8805
8806#ifndef CONFIG_64BIT
8807 /*
8808 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8809 */
05fa785c 8810 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8811 data = *cpuusage;
05fa785c 8812 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8813#else
8814 data = *cpuusage;
8815#endif
8816
8817 return data;
8818}
8819
8820static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8821{
b36128c8 8822 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8823
8824#ifndef CONFIG_64BIT
8825 /*
8826 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8827 */
05fa785c 8828 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8829 *cpuusage = val;
05fa785c 8830 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8831#else
8832 *cpuusage = val;
8833#endif
8834}
8835
d842de87 8836/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8837static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8838{
32cd756a 8839 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8840 u64 totalcpuusage = 0;
8841 int i;
8842
720f5498
KC
8843 for_each_present_cpu(i)
8844 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8845
8846 return totalcpuusage;
8847}
8848
0297b803
DG
8849static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8850 u64 reset)
8851{
8852 struct cpuacct *ca = cgroup_ca(cgrp);
8853 int err = 0;
8854 int i;
8855
8856 if (reset) {
8857 err = -EINVAL;
8858 goto out;
8859 }
8860
720f5498
KC
8861 for_each_present_cpu(i)
8862 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8863
0297b803
DG
8864out:
8865 return err;
8866}
8867
e9515c3c
KC
8868static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8869 struct seq_file *m)
8870{
8871 struct cpuacct *ca = cgroup_ca(cgroup);
8872 u64 percpu;
8873 int i;
8874
8875 for_each_present_cpu(i) {
8876 percpu = cpuacct_cpuusage_read(ca, i);
8877 seq_printf(m, "%llu ", (unsigned long long) percpu);
8878 }
8879 seq_printf(m, "\n");
8880 return 0;
8881}
8882
ef12fefa
BR
8883static const char *cpuacct_stat_desc[] = {
8884 [CPUACCT_STAT_USER] = "user",
8885 [CPUACCT_STAT_SYSTEM] = "system",
8886};
8887
8888static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8889 struct cgroup_map_cb *cb)
8890{
8891 struct cpuacct *ca = cgroup_ca(cgrp);
8892 int i;
8893
8894 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8895 s64 val = percpu_counter_read(&ca->cpustat[i]);
8896 val = cputime64_to_clock_t(val);
8897 cb->fill(cb, cpuacct_stat_desc[i], val);
8898 }
8899 return 0;
8900}
8901
d842de87
SV
8902static struct cftype files[] = {
8903 {
8904 .name = "usage",
f4c753b7
PM
8905 .read_u64 = cpuusage_read,
8906 .write_u64 = cpuusage_write,
d842de87 8907 },
e9515c3c
KC
8908 {
8909 .name = "usage_percpu",
8910 .read_seq_string = cpuacct_percpu_seq_read,
8911 },
ef12fefa
BR
8912 {
8913 .name = "stat",
8914 .read_map = cpuacct_stats_show,
8915 },
d842de87
SV
8916};
8917
32cd756a 8918static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8919{
32cd756a 8920 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8921}
8922
8923/*
8924 * charge this task's execution time to its accounting group.
8925 *
8926 * called with rq->lock held.
8927 */
8928static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8929{
8930 struct cpuacct *ca;
934352f2 8931 int cpu;
d842de87 8932
c40c6f85 8933 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8934 return;
8935
934352f2 8936 cpu = task_cpu(tsk);
a18b83b7
BR
8937
8938 rcu_read_lock();
8939
d842de87 8940 ca = task_ca(tsk);
d842de87 8941
934352f2 8942 for (; ca; ca = ca->parent) {
b36128c8 8943 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8944 *cpuusage += cputime;
8945 }
a18b83b7
BR
8946
8947 rcu_read_unlock();
d842de87
SV
8948}
8949
fa535a77
AB
8950/*
8951 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8952 * in cputime_t units. As a result, cpuacct_update_stats calls
8953 * percpu_counter_add with values large enough to always overflow the
8954 * per cpu batch limit causing bad SMP scalability.
8955 *
8956 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8957 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8958 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8959 */
8960#ifdef CONFIG_SMP
8961#define CPUACCT_BATCH \
8962 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8963#else
8964#define CPUACCT_BATCH 0
8965#endif
8966
ef12fefa
BR
8967/*
8968 * Charge the system/user time to the task's accounting group.
8969 */
8970static void cpuacct_update_stats(struct task_struct *tsk,
8971 enum cpuacct_stat_index idx, cputime_t val)
8972{
8973 struct cpuacct *ca;
fa535a77 8974 int batch = CPUACCT_BATCH;
ef12fefa
BR
8975
8976 if (unlikely(!cpuacct_subsys.active))
8977 return;
8978
8979 rcu_read_lock();
8980 ca = task_ca(tsk);
8981
8982 do {
fa535a77 8983 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
8984 ca = ca->parent;
8985 } while (ca);
8986 rcu_read_unlock();
8987}
8988
d842de87
SV
8989struct cgroup_subsys cpuacct_subsys = {
8990 .name = "cpuacct",
8991 .create = cpuacct_create,
8992 .destroy = cpuacct_destroy,
8993 .populate = cpuacct_populate,
8994 .subsys_id = cpuacct_subsys_id,
8995};
8996#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
8997
8998#ifndef CONFIG_SMP
8999
03b042bf
PM
9000void synchronize_sched_expedited(void)
9001{
fc390cde 9002 barrier();
03b042bf
PM
9003}
9004EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9005
9006#else /* #ifndef CONFIG_SMP */
9007
cc631fb7 9008static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 9009
cc631fb7 9010static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 9011{
969c7921
TH
9012 /*
9013 * There must be a full memory barrier on each affected CPU
9014 * between the time that try_stop_cpus() is called and the
9015 * time that it returns.
9016 *
9017 * In the current initial implementation of cpu_stop, the
9018 * above condition is already met when the control reaches
9019 * this point and the following smp_mb() is not strictly
9020 * necessary. Do smp_mb() anyway for documentation and
9021 * robustness against future implementation changes.
9022 */
cc631fb7 9023 smp_mb(); /* See above comment block. */
969c7921 9024 return 0;
03b042bf 9025}
03b042bf
PM
9026
9027/*
9028 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9029 * approach to force grace period to end quickly. This consumes
9030 * significant time on all CPUs, and is thus not recommended for
9031 * any sort of common-case code.
9032 *
9033 * Note that it is illegal to call this function while holding any
9034 * lock that is acquired by a CPU-hotplug notifier. Failing to
9035 * observe this restriction will result in deadlock.
9036 */
9037void synchronize_sched_expedited(void)
9038{
969c7921 9039 int snap, trycount = 0;
03b042bf
PM
9040
9041 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 9042 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 9043 get_online_cpus();
969c7921
TH
9044 while (try_stop_cpus(cpu_online_mask,
9045 synchronize_sched_expedited_cpu_stop,
94458d5e 9046 NULL) == -EAGAIN) {
03b042bf
PM
9047 put_online_cpus();
9048 if (trycount++ < 10)
9049 udelay(trycount * num_online_cpus());
9050 else {
9051 synchronize_sched();
9052 return;
9053 }
969c7921 9054 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
9055 smp_mb(); /* ensure test happens before caller kfree */
9056 return;
9057 }
9058 get_online_cpus();
9059 }
969c7921 9060 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 9061 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 9062 put_online_cpus();
03b042bf
PM
9063}
9064EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9065
9066#endif /* #else #ifndef CONFIG_SMP */
This page took 2.423138 seconds and 5 git commands to generate.