initrd: cast `initrd_start' to `void *'
[deliverable/linux.git] / kernel / sched_clock.c
CommitLineData
3e51f33f
PZ
1/*
2 * sched_clock for unstable cpu clocks
3 *
4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
5 *
c300ba25
SR
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8 *
3e51f33f
PZ
9 * Based on code by:
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
12 *
13 * Create a semi stable clock from a mixture of other events, including:
14 * - gtod
15 * - jiffies
16 * - sched_clock()
17 * - explicit idle events
18 *
19 * We use gtod as base and the unstable clock deltas. The deltas are filtered,
20 * making it monotonic and keeping it within an expected window. This window
21 * is set up using jiffies.
22 *
23 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
24 * that is otherwise invisible (TSC gets stopped).
25 *
26 * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat
27 * consistent between cpus (never more than 1 jiffies difference).
28 */
29#include <linux/sched.h>
30#include <linux/percpu.h>
31#include <linux/spinlock.h>
32#include <linux/ktime.h>
33#include <linux/module.h>
34
35
36#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
37
c300ba25
SR
38#define MULTI_SHIFT 15
39/* Max is double, Min is 1/2 */
40#define MAX_MULTI (2LL << MULTI_SHIFT)
41#define MIN_MULTI (1LL << (MULTI_SHIFT-1))
42
3e51f33f
PZ
43struct sched_clock_data {
44 /*
45 * Raw spinlock - this is a special case: this might be called
46 * from within instrumentation code so we dont want to do any
47 * instrumentation ourselves.
48 */
49 raw_spinlock_t lock;
50
62c43dd9 51 unsigned long tick_jiffies;
3e51f33f
PZ
52 u64 prev_raw;
53 u64 tick_raw;
54 u64 tick_gtod;
55 u64 clock;
c300ba25 56 s64 multi;
af52a90a
SR
57#ifdef CONFIG_NO_HZ
58 int check_max;
59#endif
3e51f33f
PZ
60};
61
62static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
63
64static inline struct sched_clock_data *this_scd(void)
65{
66 return &__get_cpu_var(sched_clock_data);
67}
68
69static inline struct sched_clock_data *cpu_sdc(int cpu)
70{
71 return &per_cpu(sched_clock_data, cpu);
72}
73
a381759d
PZ
74static __read_mostly int sched_clock_running;
75
3e51f33f
PZ
76void sched_clock_init(void)
77{
78 u64 ktime_now = ktime_to_ns(ktime_get());
a381759d 79 unsigned long now_jiffies = jiffies;
3e51f33f
PZ
80 int cpu;
81
82 for_each_possible_cpu(cpu) {
83 struct sched_clock_data *scd = cpu_sdc(cpu);
84
85 scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
62c43dd9 86 scd->tick_jiffies = now_jiffies;
a381759d
PZ
87 scd->prev_raw = 0;
88 scd->tick_raw = 0;
3e51f33f
PZ
89 scd->tick_gtod = ktime_now;
90 scd->clock = ktime_now;
c300ba25 91 scd->multi = 1 << MULTI_SHIFT;
af52a90a
SR
92#ifdef CONFIG_NO_HZ
93 scd->check_max = 1;
94#endif
3e51f33f 95 }
a381759d
PZ
96
97 sched_clock_running = 1;
3e51f33f
PZ
98}
99
af52a90a
SR
100#ifdef CONFIG_NO_HZ
101/*
102 * The dynamic ticks makes the delta jiffies inaccurate. This
103 * prevents us from checking the maximum time update.
104 * Disable the maximum check during stopped ticks.
105 */
106void sched_clock_tick_stop(int cpu)
107{
108 struct sched_clock_data *scd = cpu_sdc(cpu);
109
110 scd->check_max = 0;
111}
112
113void sched_clock_tick_start(int cpu)
114{
115 struct sched_clock_data *scd = cpu_sdc(cpu);
116
117 scd->check_max = 1;
118}
119
120static int check_max(struct sched_clock_data *scd)
121{
122 return scd->check_max;
123}
124#else
125static int check_max(struct sched_clock_data *scd)
126{
127 return 1;
128}
129#endif /* CONFIG_NO_HZ */
130
3e51f33f
PZ
131/*
132 * update the percpu scd from the raw @now value
133 *
134 * - filter out backward motion
135 * - use jiffies to generate a min,max window to clip the raw values
136 */
c0c87734 137static void __update_sched_clock(struct sched_clock_data *scd, u64 now, u64 *time)
3e51f33f
PZ
138{
139 unsigned long now_jiffies = jiffies;
62c43dd9 140 long delta_jiffies = now_jiffies - scd->tick_jiffies;
3e51f33f
PZ
141 u64 clock = scd->clock;
142 u64 min_clock, max_clock;
143 s64 delta = now - scd->prev_raw;
144
145 WARN_ON_ONCE(!irqs_disabled());
f7cce27f 146
c300ba25
SR
147 /*
148 * At schedule tick the clock can be just under the gtod. We don't
149 * want to push it too prematurely.
150 */
151 min_clock = scd->tick_gtod + (delta_jiffies * TICK_NSEC);
152 if (min_clock > TICK_NSEC)
153 min_clock -= TICK_NSEC / 2;
3e51f33f
PZ
154
155 if (unlikely(delta < 0)) {
156 clock++;
157 goto out;
158 }
159
f7cce27f
SR
160 /*
161 * The clock must stay within a jiffie of the gtod.
162 * But since we may be at the start of a jiffy or the end of one
163 * we add another jiffy buffer.
164 */
165 max_clock = scd->tick_gtod + (2 + delta_jiffies) * TICK_NSEC;
3e51f33f 166
c300ba25
SR
167 delta *= scd->multi;
168 delta >>= MULTI_SHIFT;
3e51f33f 169
af52a90a 170 if (unlikely(clock + delta > max_clock) && check_max(scd)) {
3e51f33f
PZ
171 if (clock < max_clock)
172 clock = max_clock;
173 else
174 clock++;
175 } else {
176 clock += delta;
177 }
178
179 out:
180 if (unlikely(clock < min_clock))
181 clock = min_clock;
182
c0c87734
SR
183 if (time)
184 *time = clock;
185 else {
186 scd->prev_raw = now;
187 scd->clock = clock;
188 }
3e51f33f
PZ
189}
190
191static void lock_double_clock(struct sched_clock_data *data1,
192 struct sched_clock_data *data2)
193{
194 if (data1 < data2) {
195 __raw_spin_lock(&data1->lock);
196 __raw_spin_lock(&data2->lock);
197 } else {
198 __raw_spin_lock(&data2->lock);
199 __raw_spin_lock(&data1->lock);
200 }
201}
202
203u64 sched_clock_cpu(int cpu)
204{
205 struct sched_clock_data *scd = cpu_sdc(cpu);
206 u64 now, clock;
207
a381759d
PZ
208 if (unlikely(!sched_clock_running))
209 return 0ull;
210
3e51f33f
PZ
211 WARN_ON_ONCE(!irqs_disabled());
212 now = sched_clock();
213
214 if (cpu != raw_smp_processor_id()) {
215 /*
216 * in order to update a remote cpu's clock based on our
217 * unstable raw time rebase it against:
218 * tick_raw (offset between raw counters)
219 * tick_gotd (tick offset between cpus)
220 */
221 struct sched_clock_data *my_scd = this_scd();
222
223 lock_double_clock(scd, my_scd);
224
225 now -= my_scd->tick_raw;
226 now += scd->tick_raw;
227
2b8a0cf4
SR
228 now += my_scd->tick_gtod;
229 now -= scd->tick_gtod;
3e51f33f
PZ
230
231 __raw_spin_unlock(&my_scd->lock);
c0c87734
SR
232
233 __update_sched_clock(scd, now, &clock);
234
235 __raw_spin_unlock(&scd->lock);
236
3e51f33f
PZ
237 } else {
238 __raw_spin_lock(&scd->lock);
c0c87734
SR
239 __update_sched_clock(scd, now, NULL);
240 clock = scd->clock;
241 __raw_spin_unlock(&scd->lock);
3e51f33f
PZ
242 }
243
3e51f33f
PZ
244 return clock;
245}
246
247void sched_clock_tick(void)
248{
249 struct sched_clock_data *scd = this_scd();
62c43dd9 250 unsigned long now_jiffies = jiffies;
c300ba25 251 s64 mult, delta_gtod, delta_raw;
3e51f33f
PZ
252 u64 now, now_gtod;
253
a381759d
PZ
254 if (unlikely(!sched_clock_running))
255 return;
256
3e51f33f
PZ
257 WARN_ON_ONCE(!irqs_disabled());
258
3e51f33f 259 now_gtod = ktime_to_ns(ktime_get());
a83bc47c 260 now = sched_clock();
3e51f33f
PZ
261
262 __raw_spin_lock(&scd->lock);
c0c87734 263 __update_sched_clock(scd, now, NULL);
3e51f33f
PZ
264 /*
265 * update tick_gtod after __update_sched_clock() because that will
266 * already observe 1 new jiffy; adding a new tick_gtod to that would
267 * increase the clock 2 jiffies.
268 */
c300ba25
SR
269 delta_gtod = now_gtod - scd->tick_gtod;
270 delta_raw = now - scd->tick_raw;
271
272 if ((long)delta_raw > 0) {
273 mult = delta_gtod << MULTI_SHIFT;
274 do_div(mult, delta_raw);
275 scd->multi = mult;
276 if (scd->multi > MAX_MULTI)
277 scd->multi = MAX_MULTI;
278 else if (scd->multi < MIN_MULTI)
279 scd->multi = MIN_MULTI;
280 } else
281 scd->multi = 1 << MULTI_SHIFT;
282
3e51f33f
PZ
283 scd->tick_raw = now;
284 scd->tick_gtod = now_gtod;
c300ba25 285 scd->tick_jiffies = now_jiffies;
3e51f33f
PZ
286 __raw_spin_unlock(&scd->lock);
287}
288
289/*
290 * We are going deep-idle (irqs are disabled):
291 */
292void sched_clock_idle_sleep_event(void)
293{
294 sched_clock_cpu(smp_processor_id());
295}
296EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
297
298/*
299 * We just idled delta nanoseconds (called with irqs disabled):
300 */
301void sched_clock_idle_wakeup_event(u64 delta_ns)
302{
303 struct sched_clock_data *scd = this_scd();
304 u64 now = sched_clock();
305
306 /*
307 * Override the previous timestamp and ignore all
308 * sched_clock() deltas that occured while we idled,
309 * and use the PM-provided delta_ns to advance the
310 * rq clock:
311 */
312 __raw_spin_lock(&scd->lock);
313 scd->prev_raw = now;
314 scd->clock += delta_ns;
c300ba25 315 scd->multi = 1 << MULTI_SHIFT;
3e51f33f
PZ
316 __raw_spin_unlock(&scd->lock);
317
318 touch_softlockup_watchdog();
319}
320EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
321
322#endif
323
324/*
325 * Scheduler clock - returns current time in nanosec units.
326 * This is default implementation.
327 * Architectures and sub-architectures can override this.
328 */
329unsigned long long __attribute__((weak)) sched_clock(void)
330{
331 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
332}
76a2a6ee
PZ
333
334unsigned long long cpu_clock(int cpu)
335{
336 unsigned long long clock;
337 unsigned long flags;
338
2d452c9b 339 local_irq_save(flags);
76a2a6ee 340 clock = sched_clock_cpu(cpu);
2d452c9b 341 local_irq_restore(flags);
76a2a6ee
PZ
342
343 return clock;
344}
4c9fe8ad 345EXPORT_SYMBOL_GPL(cpu_clock);
This page took 0.064929 seconds and 5 git commands to generate.