sched: nominate preferred wakeup cpu, fix
[deliverable/linux.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
103638d9 66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
103638d9 72unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
a4c2f00f
PZ
76static const struct sched_class fair_sched_class;
77
bf0f6f24
IM
78/**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
b758149c
PZ
82static inline struct task_struct *task_of(struct sched_entity *se)
83{
84 return container_of(se, struct task_struct, se);
85}
86
62160e3f 87#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 88
62160e3f 89/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
90static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91{
62160e3f 92 return cfs_rq->rq;
bf0f6f24
IM
93}
94
62160e3f
IM
95/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q)
bf0f6f24 97
b758149c
PZ
98/* Walk up scheduling entities hierarchy */
99#define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
101
102static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
103{
104 return p->se.cfs_rq;
105}
106
107/* runqueue on which this entity is (to be) queued */
108static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
109{
110 return se->cfs_rq;
111}
112
113/* runqueue "owned" by this group */
114static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
115{
116 return grp->my_q;
117}
118
119/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
121 */
122static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
123{
124 return cfs_rq->tg->cfs_rq[this_cpu];
125}
126
127/* Iterate thr' all leaf cfs_rq's on a runqueue */
128#define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
130
131/* Do the two (enqueued) entities belong to the same group ? */
132static inline int
133is_same_group(struct sched_entity *se, struct sched_entity *pse)
134{
135 if (se->cfs_rq == pse->cfs_rq)
136 return 1;
137
138 return 0;
139}
140
141static inline struct sched_entity *parent_entity(struct sched_entity *se)
142{
143 return se->parent;
144}
145
464b7527
PZ
146/* return depth at which a sched entity is present in the hierarchy */
147static inline int depth_se(struct sched_entity *se)
148{
149 int depth = 0;
150
151 for_each_sched_entity(se)
152 depth++;
153
154 return depth;
155}
156
157static void
158find_matching_se(struct sched_entity **se, struct sched_entity **pse)
159{
160 int se_depth, pse_depth;
161
162 /*
163 * preemption test can be made between sibling entities who are in the
164 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
165 * both tasks until we find their ancestors who are siblings of common
166 * parent.
167 */
168
169 /* First walk up until both entities are at same depth */
170 se_depth = depth_se(*se);
171 pse_depth = depth_se(*pse);
172
173 while (se_depth > pse_depth) {
174 se_depth--;
175 *se = parent_entity(*se);
176 }
177
178 while (pse_depth > se_depth) {
179 pse_depth--;
180 *pse = parent_entity(*pse);
181 }
182
183 while (!is_same_group(*se, *pse)) {
184 *se = parent_entity(*se);
185 *pse = parent_entity(*pse);
186 }
187}
188
62160e3f 189#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 190
62160e3f
IM
191static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
192{
193 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
194}
195
196#define entity_is_task(se) 1
197
b758149c
PZ
198#define for_each_sched_entity(se) \
199 for (; se; se = NULL)
bf0f6f24 200
b758149c 201static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 202{
b758149c 203 return &task_rq(p)->cfs;
bf0f6f24
IM
204}
205
b758149c
PZ
206static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
207{
208 struct task_struct *p = task_of(se);
209 struct rq *rq = task_rq(p);
210
211 return &rq->cfs;
212}
213
214/* runqueue "owned" by this group */
215static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
216{
217 return NULL;
218}
219
220static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
221{
222 return &cpu_rq(this_cpu)->cfs;
223}
224
225#define for_each_leaf_cfs_rq(rq, cfs_rq) \
226 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
227
228static inline int
229is_same_group(struct sched_entity *se, struct sched_entity *pse)
230{
231 return 1;
232}
233
234static inline struct sched_entity *parent_entity(struct sched_entity *se)
235{
236 return NULL;
237}
238
464b7527
PZ
239static inline void
240find_matching_se(struct sched_entity **se, struct sched_entity **pse)
241{
242}
243
b758149c
PZ
244#endif /* CONFIG_FAIR_GROUP_SCHED */
245
bf0f6f24
IM
246
247/**************************************************************
248 * Scheduling class tree data structure manipulation methods:
249 */
250
0702e3eb 251static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 252{
368059a9
PZ
253 s64 delta = (s64)(vruntime - min_vruntime);
254 if (delta > 0)
02e0431a
PZ
255 min_vruntime = vruntime;
256
257 return min_vruntime;
258}
259
0702e3eb 260static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
261{
262 s64 delta = (s64)(vruntime - min_vruntime);
263 if (delta < 0)
264 min_vruntime = vruntime;
265
266 return min_vruntime;
267}
268
0702e3eb 269static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 270{
30cfdcfc 271 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
272}
273
1af5f730
PZ
274static void update_min_vruntime(struct cfs_rq *cfs_rq)
275{
276 u64 vruntime = cfs_rq->min_vruntime;
277
278 if (cfs_rq->curr)
279 vruntime = cfs_rq->curr->vruntime;
280
281 if (cfs_rq->rb_leftmost) {
282 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
283 struct sched_entity,
284 run_node);
285
286 if (vruntime == cfs_rq->min_vruntime)
287 vruntime = se->vruntime;
288 else
289 vruntime = min_vruntime(vruntime, se->vruntime);
290 }
291
292 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
293}
294
bf0f6f24
IM
295/*
296 * Enqueue an entity into the rb-tree:
297 */
0702e3eb 298static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
299{
300 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
301 struct rb_node *parent = NULL;
302 struct sched_entity *entry;
9014623c 303 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
304 int leftmost = 1;
305
306 /*
307 * Find the right place in the rbtree:
308 */
309 while (*link) {
310 parent = *link;
311 entry = rb_entry(parent, struct sched_entity, run_node);
312 /*
313 * We dont care about collisions. Nodes with
314 * the same key stay together.
315 */
9014623c 316 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
317 link = &parent->rb_left;
318 } else {
319 link = &parent->rb_right;
320 leftmost = 0;
321 }
322 }
323
324 /*
325 * Maintain a cache of leftmost tree entries (it is frequently
326 * used):
327 */
1af5f730 328 if (leftmost)
57cb499d 329 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
330
331 rb_link_node(&se->run_node, parent, link);
332 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
333}
334
0702e3eb 335static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 336{
3fe69747
PZ
337 if (cfs_rq->rb_leftmost == &se->run_node) {
338 struct rb_node *next_node;
3fe69747
PZ
339
340 next_node = rb_next(&se->run_node);
341 cfs_rq->rb_leftmost = next_node;
3fe69747 342 }
e9acbff6 343
bf0f6f24 344 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
345}
346
bf0f6f24
IM
347static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
348{
f4b6755f
PZ
349 struct rb_node *left = cfs_rq->rb_leftmost;
350
351 if (!left)
352 return NULL;
353
354 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
355}
356
f4b6755f 357static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 358{
7eee3e67 359 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 360
70eee74b
BS
361 if (!last)
362 return NULL;
7eee3e67
IM
363
364 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
365}
366
bf0f6f24
IM
367/**************************************************************
368 * Scheduling class statistics methods:
369 */
370
b2be5e96
PZ
371#ifdef CONFIG_SCHED_DEBUG
372int sched_nr_latency_handler(struct ctl_table *table, int write,
373 struct file *filp, void __user *buffer, size_t *lenp,
374 loff_t *ppos)
375{
376 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
377
378 if (ret || !write)
379 return ret;
380
381 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
382 sysctl_sched_min_granularity);
383
384 return 0;
385}
386#endif
647e7cac 387
a7be37ac 388/*
f9c0b095 389 * delta *= P[w / rw]
a7be37ac
PZ
390 */
391static inline unsigned long
392calc_delta_weight(unsigned long delta, struct sched_entity *se)
393{
394 for_each_sched_entity(se) {
395 delta = calc_delta_mine(delta,
396 se->load.weight, &cfs_rq_of(se)->load);
397 }
398
399 return delta;
400}
401
402/*
f9c0b095 403 * delta /= w
a7be37ac
PZ
404 */
405static inline unsigned long
406calc_delta_fair(unsigned long delta, struct sched_entity *se)
407{
f9c0b095
PZ
408 if (unlikely(se->load.weight != NICE_0_LOAD))
409 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
410
411 return delta;
412}
413
647e7cac
IM
414/*
415 * The idea is to set a period in which each task runs once.
416 *
417 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418 * this period because otherwise the slices get too small.
419 *
420 * p = (nr <= nl) ? l : l*nr/nl
421 */
4d78e7b6
PZ
422static u64 __sched_period(unsigned long nr_running)
423{
424 u64 period = sysctl_sched_latency;
b2be5e96 425 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
426
427 if (unlikely(nr_running > nr_latency)) {
4bf0b771 428 period = sysctl_sched_min_granularity;
4d78e7b6 429 period *= nr_running;
4d78e7b6
PZ
430 }
431
432 return period;
433}
434
647e7cac
IM
435/*
436 * We calculate the wall-time slice from the period by taking a part
437 * proportional to the weight.
438 *
f9c0b095 439 * s = p*P[w/rw]
647e7cac 440 */
6d0f0ebd 441static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 442{
f9c0b095
PZ
443 unsigned long nr_running = cfs_rq->nr_running;
444
445 if (unlikely(!se->on_rq))
446 nr_running++;
447
448 return calc_delta_weight(__sched_period(nr_running), se);
bf0f6f24
IM
449}
450
647e7cac 451/*
ac884dec 452 * We calculate the vruntime slice of a to be inserted task
647e7cac 453 *
f9c0b095 454 * vs = s/w
647e7cac 455 */
f9c0b095 456static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 457{
f9c0b095 458 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
459}
460
bf0f6f24
IM
461/*
462 * Update the current task's runtime statistics. Skip current tasks that
463 * are not in our scheduling class.
464 */
465static inline void
8ebc91d9
IM
466__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
467 unsigned long delta_exec)
bf0f6f24 468{
bbdba7c0 469 unsigned long delta_exec_weighted;
bf0f6f24 470
8179ca23 471 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
472
473 curr->sum_exec_runtime += delta_exec;
7a62eabc 474 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 475 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 476 curr->vruntime += delta_exec_weighted;
1af5f730 477 update_min_vruntime(cfs_rq);
bf0f6f24
IM
478}
479
b7cc0896 480static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 481{
429d43bc 482 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 483 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
484 unsigned long delta_exec;
485
486 if (unlikely(!curr))
487 return;
488
489 /*
490 * Get the amount of time the current task was running
491 * since the last time we changed load (this cannot
492 * overflow on 32 bits):
493 */
8ebc91d9 494 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 495
8ebc91d9
IM
496 __update_curr(cfs_rq, curr, delta_exec);
497 curr->exec_start = now;
d842de87
SV
498
499 if (entity_is_task(curr)) {
500 struct task_struct *curtask = task_of(curr);
501
502 cpuacct_charge(curtask, delta_exec);
f06febc9 503 account_group_exec_runtime(curtask, delta_exec);
d842de87 504 }
bf0f6f24
IM
505}
506
507static inline void
5870db5b 508update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 509{
d281918d 510 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
511}
512
bf0f6f24
IM
513/*
514 * Task is being enqueued - update stats:
515 */
d2417e5a 516static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 517{
bf0f6f24
IM
518 /*
519 * Are we enqueueing a waiting task? (for current tasks
520 * a dequeue/enqueue event is a NOP)
521 */
429d43bc 522 if (se != cfs_rq->curr)
5870db5b 523 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
524}
525
bf0f6f24 526static void
9ef0a961 527update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
bbdba7c0
IM
529 schedstat_set(se->wait_max, max(se->wait_max,
530 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
531 schedstat_set(se->wait_count, se->wait_count + 1);
532 schedstat_set(se->wait_sum, se->wait_sum +
533 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 534 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
535}
536
537static inline void
19b6a2e3 538update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 539{
bf0f6f24
IM
540 /*
541 * Mark the end of the wait period if dequeueing a
542 * waiting task:
543 */
429d43bc 544 if (se != cfs_rq->curr)
9ef0a961 545 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
546}
547
548/*
549 * We are picking a new current task - update its stats:
550 */
551static inline void
79303e9e 552update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
553{
554 /*
555 * We are starting a new run period:
556 */
d281918d 557 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
558}
559
bf0f6f24
IM
560/**************************************************
561 * Scheduling class queueing methods:
562 */
563
c09595f6
PZ
564#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
565static void
566add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
567{
568 cfs_rq->task_weight += weight;
569}
570#else
571static inline void
572add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
573{
574}
575#endif
576
30cfdcfc
DA
577static void
578account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
579{
580 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
581 if (!parent_entity(se))
582 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 583 if (entity_is_task(se)) {
c09595f6 584 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
585 list_add(&se->group_node, &cfs_rq->tasks);
586 }
30cfdcfc
DA
587 cfs_rq->nr_running++;
588 se->on_rq = 1;
589}
590
591static void
592account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
593{
594 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
595 if (!parent_entity(se))
596 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 597 if (entity_is_task(se)) {
c09595f6 598 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
599 list_del_init(&se->group_node);
600 }
30cfdcfc
DA
601 cfs_rq->nr_running--;
602 se->on_rq = 0;
603}
604
2396af69 605static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 606{
bf0f6f24
IM
607#ifdef CONFIG_SCHEDSTATS
608 if (se->sleep_start) {
d281918d 609 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 610 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
611
612 if ((s64)delta < 0)
613 delta = 0;
614
615 if (unlikely(delta > se->sleep_max))
616 se->sleep_max = delta;
617
618 se->sleep_start = 0;
619 se->sum_sleep_runtime += delta;
9745512c
AV
620
621 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
622 }
623 if (se->block_start) {
d281918d 624 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 625 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
626
627 if ((s64)delta < 0)
628 delta = 0;
629
630 if (unlikely(delta > se->block_max))
631 se->block_max = delta;
632
633 se->block_start = 0;
634 se->sum_sleep_runtime += delta;
30084fbd
IM
635
636 /*
637 * Blocking time is in units of nanosecs, so shift by 20 to
638 * get a milliseconds-range estimation of the amount of
639 * time that the task spent sleeping:
640 */
641 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 642
30084fbd
IM
643 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
644 delta >> 20);
645 }
9745512c 646 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
647 }
648#endif
649}
650
ddc97297
PZ
651static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
652{
653#ifdef CONFIG_SCHED_DEBUG
654 s64 d = se->vruntime - cfs_rq->min_vruntime;
655
656 if (d < 0)
657 d = -d;
658
659 if (d > 3*sysctl_sched_latency)
660 schedstat_inc(cfs_rq, nr_spread_over);
661#endif
662}
663
aeb73b04
PZ
664static void
665place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
666{
1af5f730 667 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 668
2cb8600e
PZ
669 /*
670 * The 'current' period is already promised to the current tasks,
671 * however the extra weight of the new task will slow them down a
672 * little, place the new task so that it fits in the slot that
673 * stays open at the end.
674 */
94dfb5e7 675 if (initial && sched_feat(START_DEBIT))
f9c0b095 676 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 677
8465e792 678 if (!initial) {
2cb8600e 679 /* sleeps upto a single latency don't count. */
a7be37ac
PZ
680 if (sched_feat(NEW_FAIR_SLEEPERS)) {
681 unsigned long thresh = sysctl_sched_latency;
682
683 /*
684 * convert the sleeper threshold into virtual time
685 */
686 if (sched_feat(NORMALIZED_SLEEPER))
687 thresh = calc_delta_fair(thresh, se);
688
689 vruntime -= thresh;
690 }
94359f05 691
2cb8600e
PZ
692 /* ensure we never gain time by being placed backwards. */
693 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
694 }
695
67e9fb2a 696 se->vruntime = vruntime;
aeb73b04
PZ
697}
698
bf0f6f24 699static void
83b699ed 700enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
701{
702 /*
a2a2d680 703 * Update run-time statistics of the 'current'.
bf0f6f24 704 */
b7cc0896 705 update_curr(cfs_rq);
a992241d 706 account_entity_enqueue(cfs_rq, se);
bf0f6f24 707
e9acbff6 708 if (wakeup) {
aeb73b04 709 place_entity(cfs_rq, se, 0);
2396af69 710 enqueue_sleeper(cfs_rq, se);
e9acbff6 711 }
bf0f6f24 712
d2417e5a 713 update_stats_enqueue(cfs_rq, se);
ddc97297 714 check_spread(cfs_rq, se);
83b699ed
SV
715 if (se != cfs_rq->curr)
716 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
717}
718
2002c695
PZ
719static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
720{
721 if (cfs_rq->last == se)
722 cfs_rq->last = NULL;
723
724 if (cfs_rq->next == se)
725 cfs_rq->next = NULL;
726}
727
bf0f6f24 728static void
525c2716 729dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 730{
a2a2d680
DA
731 /*
732 * Update run-time statistics of the 'current'.
733 */
734 update_curr(cfs_rq);
735
19b6a2e3 736 update_stats_dequeue(cfs_rq, se);
db36cc7d 737 if (sleep) {
67e9fb2a 738#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
739 if (entity_is_task(se)) {
740 struct task_struct *tsk = task_of(se);
741
742 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 743 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 744 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 745 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 746 }
db36cc7d 747#endif
67e9fb2a
PZ
748 }
749
2002c695 750 clear_buddies(cfs_rq, se);
4793241b 751
83b699ed 752 if (se != cfs_rq->curr)
30cfdcfc
DA
753 __dequeue_entity(cfs_rq, se);
754 account_entity_dequeue(cfs_rq, se);
1af5f730 755 update_min_vruntime(cfs_rq);
bf0f6f24
IM
756}
757
758/*
759 * Preempt the current task with a newly woken task if needed:
760 */
7c92e54f 761static void
2e09bf55 762check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 763{
11697830
PZ
764 unsigned long ideal_runtime, delta_exec;
765
6d0f0ebd 766 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 767 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 768 if (delta_exec > ideal_runtime)
bf0f6f24
IM
769 resched_task(rq_of(cfs_rq)->curr);
770}
771
83b699ed 772static void
8494f412 773set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 774{
83b699ed
SV
775 /* 'current' is not kept within the tree. */
776 if (se->on_rq) {
777 /*
778 * Any task has to be enqueued before it get to execute on
779 * a CPU. So account for the time it spent waiting on the
780 * runqueue.
781 */
782 update_stats_wait_end(cfs_rq, se);
783 __dequeue_entity(cfs_rq, se);
784 }
785
79303e9e 786 update_stats_curr_start(cfs_rq, se);
429d43bc 787 cfs_rq->curr = se;
eba1ed4b
IM
788#ifdef CONFIG_SCHEDSTATS
789 /*
790 * Track our maximum slice length, if the CPU's load is at
791 * least twice that of our own weight (i.e. dont track it
792 * when there are only lesser-weight tasks around):
793 */
495eca49 794 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
795 se->slice_max = max(se->slice_max,
796 se->sum_exec_runtime - se->prev_sum_exec_runtime);
797 }
798#endif
4a55b450 799 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
800}
801
3f3a4904
PZ
802static int
803wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
804
f4b6755f 805static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 806{
f4b6755f
PZ
807 struct sched_entity *se = __pick_next_entity(cfs_rq);
808
4793241b
PZ
809 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
810 return cfs_rq->next;
aa2ac252 811
4793241b
PZ
812 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
813 return cfs_rq->last;
814
815 return se;
aa2ac252
PZ
816}
817
ab6cde26 818static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
819{
820 /*
821 * If still on the runqueue then deactivate_task()
822 * was not called and update_curr() has to be done:
823 */
824 if (prev->on_rq)
b7cc0896 825 update_curr(cfs_rq);
bf0f6f24 826
ddc97297 827 check_spread(cfs_rq, prev);
30cfdcfc 828 if (prev->on_rq) {
5870db5b 829 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
830 /* Put 'current' back into the tree. */
831 __enqueue_entity(cfs_rq, prev);
832 }
429d43bc 833 cfs_rq->curr = NULL;
bf0f6f24
IM
834}
835
8f4d37ec
PZ
836static void
837entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 838{
bf0f6f24 839 /*
30cfdcfc 840 * Update run-time statistics of the 'current'.
bf0f6f24 841 */
30cfdcfc 842 update_curr(cfs_rq);
bf0f6f24 843
8f4d37ec
PZ
844#ifdef CONFIG_SCHED_HRTICK
845 /*
846 * queued ticks are scheduled to match the slice, so don't bother
847 * validating it and just reschedule.
848 */
983ed7a6
HH
849 if (queued) {
850 resched_task(rq_of(cfs_rq)->curr);
851 return;
852 }
8f4d37ec
PZ
853 /*
854 * don't let the period tick interfere with the hrtick preemption
855 */
856 if (!sched_feat(DOUBLE_TICK) &&
857 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
858 return;
859#endif
860
ce6c1311 861 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 862 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
863}
864
865/**************************************************
866 * CFS operations on tasks:
867 */
868
8f4d37ec
PZ
869#ifdef CONFIG_SCHED_HRTICK
870static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
871{
8f4d37ec
PZ
872 struct sched_entity *se = &p->se;
873 struct cfs_rq *cfs_rq = cfs_rq_of(se);
874
875 WARN_ON(task_rq(p) != rq);
876
877 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
878 u64 slice = sched_slice(cfs_rq, se);
879 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
880 s64 delta = slice - ran;
881
882 if (delta < 0) {
883 if (rq->curr == p)
884 resched_task(p);
885 return;
886 }
887
888 /*
889 * Don't schedule slices shorter than 10000ns, that just
890 * doesn't make sense. Rely on vruntime for fairness.
891 */
31656519 892 if (rq->curr != p)
157124c1 893 delta = max_t(s64, 10000LL, delta);
8f4d37ec 894
31656519 895 hrtick_start(rq, delta);
8f4d37ec
PZ
896 }
897}
a4c2f00f
PZ
898
899/*
900 * called from enqueue/dequeue and updates the hrtick when the
901 * current task is from our class and nr_running is low enough
902 * to matter.
903 */
904static void hrtick_update(struct rq *rq)
905{
906 struct task_struct *curr = rq->curr;
907
908 if (curr->sched_class != &fair_sched_class)
909 return;
910
911 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
912 hrtick_start_fair(rq, curr);
913}
55e12e5e 914#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
915static inline void
916hrtick_start_fair(struct rq *rq, struct task_struct *p)
917{
918}
a4c2f00f
PZ
919
920static inline void hrtick_update(struct rq *rq)
921{
922}
8f4d37ec
PZ
923#endif
924
bf0f6f24
IM
925/*
926 * The enqueue_task method is called before nr_running is
927 * increased. Here we update the fair scheduling stats and
928 * then put the task into the rbtree:
929 */
fd390f6a 930static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
931{
932 struct cfs_rq *cfs_rq;
62fb1851 933 struct sched_entity *se = &p->se;
bf0f6f24
IM
934
935 for_each_sched_entity(se) {
62fb1851 936 if (se->on_rq)
bf0f6f24
IM
937 break;
938 cfs_rq = cfs_rq_of(se);
83b699ed 939 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 940 wakeup = 1;
bf0f6f24 941 }
8f4d37ec 942
a4c2f00f 943 hrtick_update(rq);
bf0f6f24
IM
944}
945
946/*
947 * The dequeue_task method is called before nr_running is
948 * decreased. We remove the task from the rbtree and
949 * update the fair scheduling stats:
950 */
f02231e5 951static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
952{
953 struct cfs_rq *cfs_rq;
62fb1851 954 struct sched_entity *se = &p->se;
bf0f6f24
IM
955
956 for_each_sched_entity(se) {
957 cfs_rq = cfs_rq_of(se);
525c2716 958 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 959 /* Don't dequeue parent if it has other entities besides us */
62fb1851 960 if (cfs_rq->load.weight)
bf0f6f24 961 break;
b9fa3df3 962 sleep = 1;
bf0f6f24 963 }
8f4d37ec 964
a4c2f00f 965 hrtick_update(rq);
bf0f6f24
IM
966}
967
968/*
1799e35d
IM
969 * sched_yield() support is very simple - we dequeue and enqueue.
970 *
971 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 972 */
4530d7ab 973static void yield_task_fair(struct rq *rq)
bf0f6f24 974{
db292ca3
IM
975 struct task_struct *curr = rq->curr;
976 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
977 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
978
979 /*
1799e35d
IM
980 * Are we the only task in the tree?
981 */
982 if (unlikely(cfs_rq->nr_running == 1))
983 return;
984
2002c695
PZ
985 clear_buddies(cfs_rq, se);
986
db292ca3 987 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 988 update_rq_clock(rq);
1799e35d 989 /*
a2a2d680 990 * Update run-time statistics of the 'current'.
1799e35d 991 */
2b1e315d 992 update_curr(cfs_rq);
1799e35d
IM
993
994 return;
995 }
996 /*
997 * Find the rightmost entry in the rbtree:
bf0f6f24 998 */
2b1e315d 999 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1000 /*
1001 * Already in the rightmost position?
1002 */
79b3feff 1003 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1799e35d
IM
1004 return;
1005
1006 /*
1007 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1008 * Upon rescheduling, sched_class::put_prev_task() will place
1009 * 'current' within the tree based on its new key value.
1799e35d 1010 */
30cfdcfc 1011 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1012}
1013
e7693a36
GH
1014/*
1015 * wake_idle() will wake a task on an idle cpu if task->cpu is
1016 * not idle and an idle cpu is available. The span of cpus to
1017 * search starts with cpus closest then further out as needed,
1018 * so we always favor a closer, idle cpu.
e761b772 1019 * Domains may include CPUs that are not usable for migration,
96f874e2 1020 * hence we need to mask them out (cpu_active_mask)
e7693a36
GH
1021 *
1022 * Returns the CPU we should wake onto.
1023 */
1024#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1025static int wake_idle(int cpu, struct task_struct *p)
1026{
e7693a36
GH
1027 struct sched_domain *sd;
1028 int i;
7eb52dfa
VS
1029 unsigned int chosen_wakeup_cpu;
1030 int this_cpu;
1031
1032 /*
1033 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1034 * are idle and this is not a kernel thread and this task's affinity
1035 * allows it to be moved to preferred cpu, then just move!
1036 */
1037
1038 this_cpu = smp_processor_id();
1039 chosen_wakeup_cpu =
1040 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1041
1042 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1043 idle_cpu(cpu) && idle_cpu(this_cpu) &&
1044 p->mm && !(p->flags & PF_KTHREAD) &&
1045 cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1046 return chosen_wakeup_cpu;
e7693a36
GH
1047
1048 /*
1049 * If it is idle, then it is the best cpu to run this task.
1050 *
1051 * This cpu is also the best, if it has more than one task already.
1052 * Siblings must be also busy(in most cases) as they didn't already
1053 * pickup the extra load from this cpu and hence we need not check
1054 * sibling runqueue info. This will avoid the checks and cache miss
1055 * penalities associated with that.
1056 */
104f6454 1057 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
e7693a36
GH
1058 return cpu;
1059
1060 for_each_domain(cpu, sd) {
1d3504fc
HS
1061 if ((sd->flags & SD_WAKE_IDLE)
1062 || ((sd->flags & SD_WAKE_IDLE_FAR)
1063 && !task_hot(p, task_rq(p)->clock, sd))) {
758b2cdc
RR
1064 for_each_cpu_and(i, sched_domain_span(sd),
1065 &p->cpus_allowed) {
1066 if (cpu_active(i) && idle_cpu(i)) {
e7693a36
GH
1067 if (i != task_cpu(p)) {
1068 schedstat_inc(p,
1069 se.nr_wakeups_idle);
1070 }
1071 return i;
1072 }
1073 }
1074 } else {
1075 break;
1076 }
1077 }
1078 return cpu;
1079}
55e12e5e 1080#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
e7693a36
GH
1081static inline int wake_idle(int cpu, struct task_struct *p)
1082{
1083 return cpu;
1084}
1085#endif
1086
1087#ifdef CONFIG_SMP
098fb9db 1088
bb3469ac 1089#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1090/*
1091 * effective_load() calculates the load change as seen from the root_task_group
1092 *
1093 * Adding load to a group doesn't make a group heavier, but can cause movement
1094 * of group shares between cpus. Assuming the shares were perfectly aligned one
1095 * can calculate the shift in shares.
1096 *
1097 * The problem is that perfectly aligning the shares is rather expensive, hence
1098 * we try to avoid doing that too often - see update_shares(), which ratelimits
1099 * this change.
1100 *
1101 * We compensate this by not only taking the current delta into account, but
1102 * also considering the delta between when the shares were last adjusted and
1103 * now.
1104 *
1105 * We still saw a performance dip, some tracing learned us that between
1106 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1107 * significantly. Therefore try to bias the error in direction of failing
1108 * the affine wakeup.
1109 *
1110 */
f1d239f7
PZ
1111static long effective_load(struct task_group *tg, int cpu,
1112 long wl, long wg)
bb3469ac 1113{
4be9daaa 1114 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1115
1116 if (!tg->parent)
1117 return wl;
1118
f5bfb7d9
PZ
1119 /*
1120 * By not taking the decrease of shares on the other cpu into
1121 * account our error leans towards reducing the affine wakeups.
1122 */
1123 if (!wl && sched_feat(ASYM_EFF_LOAD))
1124 return wl;
1125
4be9daaa 1126 for_each_sched_entity(se) {
cb5ef42a 1127 long S, rw, s, a, b;
940959e9
PZ
1128 long more_w;
1129
1130 /*
1131 * Instead of using this increment, also add the difference
1132 * between when the shares were last updated and now.
1133 */
1134 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1135 wl += more_w;
1136 wg += more_w;
4be9daaa
PZ
1137
1138 S = se->my_q->tg->shares;
1139 s = se->my_q->shares;
f1d239f7 1140 rw = se->my_q->rq_weight;
bb3469ac 1141
cb5ef42a
PZ
1142 a = S*(rw + wl);
1143 b = S*rw + s*wg;
4be9daaa 1144
940959e9
PZ
1145 wl = s*(a-b);
1146
1147 if (likely(b))
1148 wl /= b;
1149
83378269
PZ
1150 /*
1151 * Assume the group is already running and will
1152 * thus already be accounted for in the weight.
1153 *
1154 * That is, moving shares between CPUs, does not
1155 * alter the group weight.
1156 */
4be9daaa 1157 wg = 0;
4be9daaa 1158 }
bb3469ac 1159
4be9daaa 1160 return wl;
bb3469ac 1161}
4be9daaa 1162
bb3469ac 1163#else
4be9daaa 1164
83378269
PZ
1165static inline unsigned long effective_load(struct task_group *tg, int cpu,
1166 unsigned long wl, unsigned long wg)
4be9daaa 1167{
83378269 1168 return wl;
bb3469ac 1169}
4be9daaa 1170
bb3469ac
PZ
1171#endif
1172
098fb9db 1173static int
64b9e029 1174wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
4ae7d5ce
IM
1175 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1176 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
1177 unsigned int imbalance)
1178{
4ae7d5ce 1179 struct task_struct *curr = this_rq->curr;
83378269 1180 struct task_group *tg;
098fb9db
IM
1181 unsigned long tl = this_load;
1182 unsigned long tl_per_task;
83378269 1183 unsigned long weight;
b3137bc8 1184 int balanced;
098fb9db 1185
b3137bc8 1186 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
098fb9db
IM
1187 return 0;
1188
0d13033b
MG
1189 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1190 p->se.avg_overlap > sysctl_sched_migration_cost))
1191 sync = 0;
2fb7635c 1192
b3137bc8
MG
1193 /*
1194 * If sync wakeup then subtract the (maximum possible)
1195 * effect of the currently running task from the load
1196 * of the current CPU:
1197 */
83378269
PZ
1198 if (sync) {
1199 tg = task_group(current);
1200 weight = current->se.load.weight;
1201
1202 tl += effective_load(tg, this_cpu, -weight, -weight);
1203 load += effective_load(tg, prev_cpu, 0, -weight);
1204 }
b3137bc8 1205
83378269
PZ
1206 tg = task_group(p);
1207 weight = p->se.load.weight;
b3137bc8 1208
83378269
PZ
1209 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1210 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1211
098fb9db 1212 /*
4ae7d5ce
IM
1213 * If the currently running task will sleep within
1214 * a reasonable amount of time then attract this newly
1215 * woken task:
098fb9db 1216 */
2fb7635c
PZ
1217 if (sync && balanced)
1218 return 1;
098fb9db
IM
1219
1220 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1221 tl_per_task = cpu_avg_load_per_task(this_cpu);
1222
64b9e029
AA
1223 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1224 tl_per_task)) {
098fb9db
IM
1225 /*
1226 * This domain has SD_WAKE_AFFINE and
1227 * p is cache cold in this domain, and
1228 * there is no bad imbalance.
1229 */
1230 schedstat_inc(this_sd, ttwu_move_affine);
1231 schedstat_inc(p, se.nr_wakeups_affine);
1232
1233 return 1;
1234 }
1235 return 0;
1236}
1237
e7693a36
GH
1238static int select_task_rq_fair(struct task_struct *p, int sync)
1239{
e7693a36 1240 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1241 int prev_cpu, this_cpu, new_cpu;
098fb9db 1242 unsigned long load, this_load;
64b9e029 1243 struct rq *this_rq;
098fb9db 1244 unsigned int imbalance;
098fb9db 1245 int idx;
e7693a36 1246
ac192d39 1247 prev_cpu = task_cpu(p);
ac192d39 1248 this_cpu = smp_processor_id();
4ae7d5ce 1249 this_rq = cpu_rq(this_cpu);
ac192d39 1250 new_cpu = prev_cpu;
e7693a36 1251
64b9e029
AA
1252 if (prev_cpu == this_cpu)
1253 goto out;
ac192d39
IM
1254 /*
1255 * 'this_sd' is the first domain that both
1256 * this_cpu and prev_cpu are present in:
1257 */
e7693a36 1258 for_each_domain(this_cpu, sd) {
758b2cdc 1259 if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
e7693a36
GH
1260 this_sd = sd;
1261 break;
1262 }
1263 }
1264
96f874e2 1265 if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
f4827386 1266 goto out;
e7693a36
GH
1267
1268 /*
1269 * Check for affine wakeup and passive balancing possibilities.
1270 */
098fb9db 1271 if (!this_sd)
f4827386 1272 goto out;
e7693a36 1273
098fb9db
IM
1274 idx = this_sd->wake_idx;
1275
1276 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1277
ac192d39 1278 load = source_load(prev_cpu, idx);
098fb9db
IM
1279 this_load = target_load(this_cpu, idx);
1280
64b9e029 1281 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
4ae7d5ce
IM
1282 load, this_load, imbalance))
1283 return this_cpu;
1284
098fb9db
IM
1285 /*
1286 * Start passive balancing when half the imbalance_pct
1287 * limit is reached.
1288 */
1289 if (this_sd->flags & SD_WAKE_BALANCE) {
1290 if (imbalance*this_load <= 100*load) {
1291 schedstat_inc(this_sd, ttwu_move_balance);
1292 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1293 return this_cpu;
e7693a36
GH
1294 }
1295 }
1296
f4827386 1297out:
e7693a36
GH
1298 return wake_idle(new_cpu, p);
1299}
1300#endif /* CONFIG_SMP */
1301
0bbd3336
PZ
1302static unsigned long wakeup_gran(struct sched_entity *se)
1303{
1304 unsigned long gran = sysctl_sched_wakeup_granularity;
1305
1306 /*
a7be37ac
PZ
1307 * More easily preempt - nice tasks, while not making it harder for
1308 * + nice tasks.
0bbd3336 1309 */
464b7527
PZ
1310 if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
1311 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
0bbd3336
PZ
1312
1313 return gran;
1314}
1315
464b7527
PZ
1316/*
1317 * Should 'se' preempt 'curr'.
1318 *
1319 * |s1
1320 * |s2
1321 * |s3
1322 * g
1323 * |<--->|c
1324 *
1325 * w(c, s1) = -1
1326 * w(c, s2) = 0
1327 * w(c, s3) = 1
1328 *
1329 */
1330static int
1331wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1332{
1333 s64 gran, vdiff = curr->vruntime - se->vruntime;
1334
1335 if (vdiff <= 0)
1336 return -1;
1337
1338 gran = wakeup_gran(curr);
1339 if (vdiff > gran)
1340 return 1;
1341
1342 return 0;
1343}
1344
02479099
PZ
1345static void set_last_buddy(struct sched_entity *se)
1346{
1347 for_each_sched_entity(se)
1348 cfs_rq_of(se)->last = se;
1349}
1350
1351static void set_next_buddy(struct sched_entity *se)
1352{
1353 for_each_sched_entity(se)
1354 cfs_rq_of(se)->next = se;
1355}
1356
bf0f6f24
IM
1357/*
1358 * Preempt the current task with a newly woken task if needed:
1359 */
15afe09b 1360static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
bf0f6f24
IM
1361{
1362 struct task_struct *curr = rq->curr;
8651a86c 1363 struct sched_entity *se = &curr->se, *pse = &p->se;
bf0f6f24
IM
1364
1365 if (unlikely(rt_prio(p->prio))) {
4793241b
PZ
1366 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1367
a8e504d2 1368 update_rq_clock(rq);
b7cc0896 1369 update_curr(cfs_rq);
bf0f6f24
IM
1370 resched_task(curr);
1371 return;
1372 }
aa2ac252 1373
d95f98d0
PZ
1374 if (unlikely(p->sched_class != &fair_sched_class))
1375 return;
1376
4ae7d5ce
IM
1377 if (unlikely(se == pse))
1378 return;
1379
4793241b
PZ
1380 /*
1381 * Only set the backward buddy when the current task is still on the
1382 * rq. This can happen when a wakeup gets interleaved with schedule on
1383 * the ->pre_schedule() or idle_balance() point, either of which can
1384 * drop the rq lock.
1385 *
1386 * Also, during early boot the idle thread is in the fair class, for
1387 * obvious reasons its a bad idea to schedule back to the idle thread.
1388 */
1389 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
02479099
PZ
1390 set_last_buddy(se);
1391 set_next_buddy(pse);
57fdc26d 1392
aec0a514
BR
1393 /*
1394 * We can come here with TIF_NEED_RESCHED already set from new task
1395 * wake up path.
1396 */
1397 if (test_tsk_need_resched(curr))
1398 return;
1399
91c234b4
IM
1400 /*
1401 * Batch tasks do not preempt (their preemption is driven by
1402 * the tick):
1403 */
1404 if (unlikely(p->policy == SCHED_BATCH))
1405 return;
bf0f6f24 1406
77d9cc44
IM
1407 if (!sched_feat(WAKEUP_PREEMPT))
1408 return;
8651a86c 1409
2fb7635c
PZ
1410 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1411 (se->avg_overlap < sysctl_sched_migration_cost &&
1412 pse->avg_overlap < sysctl_sched_migration_cost))) {
15afe09b
PZ
1413 resched_task(curr);
1414 return;
1415 }
1416
464b7527
PZ
1417 find_matching_se(&se, &pse);
1418
1419 while (se) {
1420 BUG_ON(!pse);
1421
1422 if (wakeup_preempt_entity(se, pse) == 1) {
1423 resched_task(curr);
1424 break;
1425 }
1426
1427 se = parent_entity(se);
1428 pse = parent_entity(pse);
1429 }
bf0f6f24
IM
1430}
1431
fb8d4724 1432static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1433{
8f4d37ec 1434 struct task_struct *p;
bf0f6f24
IM
1435 struct cfs_rq *cfs_rq = &rq->cfs;
1436 struct sched_entity *se;
1437
1438 if (unlikely(!cfs_rq->nr_running))
1439 return NULL;
1440
1441 do {
9948f4b2 1442 se = pick_next_entity(cfs_rq);
f4b6755f 1443 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1444 cfs_rq = group_cfs_rq(se);
1445 } while (cfs_rq);
1446
8f4d37ec
PZ
1447 p = task_of(se);
1448 hrtick_start_fair(rq, p);
1449
1450 return p;
bf0f6f24
IM
1451}
1452
1453/*
1454 * Account for a descheduled task:
1455 */
31ee529c 1456static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1457{
1458 struct sched_entity *se = &prev->se;
1459 struct cfs_rq *cfs_rq;
1460
1461 for_each_sched_entity(se) {
1462 cfs_rq = cfs_rq_of(se);
ab6cde26 1463 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1464 }
1465}
1466
681f3e68 1467#ifdef CONFIG_SMP
bf0f6f24
IM
1468/**************************************************
1469 * Fair scheduling class load-balancing methods:
1470 */
1471
1472/*
1473 * Load-balancing iterator. Note: while the runqueue stays locked
1474 * during the whole iteration, the current task might be
1475 * dequeued so the iterator has to be dequeue-safe. Here we
1476 * achieve that by always pre-iterating before returning
1477 * the current task:
1478 */
a9957449 1479static struct task_struct *
4a55bd5e 1480__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1481{
354d60c2
DG
1482 struct task_struct *p = NULL;
1483 struct sched_entity *se;
bf0f6f24 1484
77ae6513
MG
1485 if (next == &cfs_rq->tasks)
1486 return NULL;
1487
b87f1724
BR
1488 se = list_entry(next, struct sched_entity, group_node);
1489 p = task_of(se);
1490 cfs_rq->balance_iterator = next->next;
77ae6513 1491
bf0f6f24
IM
1492 return p;
1493}
1494
1495static struct task_struct *load_balance_start_fair(void *arg)
1496{
1497 struct cfs_rq *cfs_rq = arg;
1498
4a55bd5e 1499 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1500}
1501
1502static struct task_struct *load_balance_next_fair(void *arg)
1503{
1504 struct cfs_rq *cfs_rq = arg;
1505
4a55bd5e 1506 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1507}
1508
c09595f6
PZ
1509static unsigned long
1510__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1511 unsigned long max_load_move, struct sched_domain *sd,
1512 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1513 struct cfs_rq *cfs_rq)
62fb1851 1514{
c09595f6 1515 struct rq_iterator cfs_rq_iterator;
62fb1851 1516
c09595f6
PZ
1517 cfs_rq_iterator.start = load_balance_start_fair;
1518 cfs_rq_iterator.next = load_balance_next_fair;
1519 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1520
c09595f6
PZ
1521 return balance_tasks(this_rq, this_cpu, busiest,
1522 max_load_move, sd, idle, all_pinned,
1523 this_best_prio, &cfs_rq_iterator);
62fb1851 1524}
62fb1851 1525
c09595f6 1526#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1527static unsigned long
bf0f6f24 1528load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1529 unsigned long max_load_move,
a4ac01c3
PW
1530 struct sched_domain *sd, enum cpu_idle_type idle,
1531 int *all_pinned, int *this_best_prio)
bf0f6f24 1532{
bf0f6f24 1533 long rem_load_move = max_load_move;
c09595f6
PZ
1534 int busiest_cpu = cpu_of(busiest);
1535 struct task_group *tg;
18d95a28 1536
c09595f6 1537 rcu_read_lock();
c8cba857 1538 update_h_load(busiest_cpu);
18d95a28 1539
caea8a03 1540 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1541 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1542 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1543 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1544 u64 rem_load, moved_load;
18d95a28 1545
c09595f6
PZ
1546 /*
1547 * empty group
1548 */
c8cba857 1549 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1550 continue;
1551
243e0e7b
SV
1552 rem_load = (u64)rem_load_move * busiest_weight;
1553 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1554
c09595f6 1555 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1556 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1557 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1558
c09595f6 1559 if (!moved_load)
bf0f6f24
IM
1560 continue;
1561
42a3ac7d 1562 moved_load *= busiest_h_load;
243e0e7b 1563 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1564
c09595f6
PZ
1565 rem_load_move -= moved_load;
1566 if (rem_load_move < 0)
bf0f6f24
IM
1567 break;
1568 }
c09595f6 1569 rcu_read_unlock();
bf0f6f24 1570
43010659 1571 return max_load_move - rem_load_move;
bf0f6f24 1572}
c09595f6
PZ
1573#else
1574static unsigned long
1575load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1576 unsigned long max_load_move,
1577 struct sched_domain *sd, enum cpu_idle_type idle,
1578 int *all_pinned, int *this_best_prio)
1579{
1580 return __load_balance_fair(this_rq, this_cpu, busiest,
1581 max_load_move, sd, idle, all_pinned,
1582 this_best_prio, &busiest->cfs);
1583}
1584#endif
bf0f6f24 1585
e1d1484f
PW
1586static int
1587move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1588 struct sched_domain *sd, enum cpu_idle_type idle)
1589{
1590 struct cfs_rq *busy_cfs_rq;
1591 struct rq_iterator cfs_rq_iterator;
1592
1593 cfs_rq_iterator.start = load_balance_start_fair;
1594 cfs_rq_iterator.next = load_balance_next_fair;
1595
1596 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1597 /*
1598 * pass busy_cfs_rq argument into
1599 * load_balance_[start|next]_fair iterators
1600 */
1601 cfs_rq_iterator.arg = busy_cfs_rq;
1602 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1603 &cfs_rq_iterator))
1604 return 1;
1605 }
1606
1607 return 0;
1608}
55e12e5e 1609#endif /* CONFIG_SMP */
e1d1484f 1610
bf0f6f24
IM
1611/*
1612 * scheduler tick hitting a task of our scheduling class:
1613 */
8f4d37ec 1614static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1615{
1616 struct cfs_rq *cfs_rq;
1617 struct sched_entity *se = &curr->se;
1618
1619 for_each_sched_entity(se) {
1620 cfs_rq = cfs_rq_of(se);
8f4d37ec 1621 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1622 }
1623}
1624
8eb172d9 1625#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1626
bf0f6f24
IM
1627/*
1628 * Share the fairness runtime between parent and child, thus the
1629 * total amount of pressure for CPU stays equal - new tasks
1630 * get a chance to run but frequent forkers are not allowed to
1631 * monopolize the CPU. Note: the parent runqueue is locked,
1632 * the child is not running yet.
1633 */
ee0827d8 1634static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1635{
1636 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1637 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1638 int this_cpu = smp_processor_id();
bf0f6f24
IM
1639
1640 sched_info_queued(p);
1641
7109c442 1642 update_curr(cfs_rq);
aeb73b04 1643 place_entity(cfs_rq, se, 1);
4d78e7b6 1644
3c90e6e9 1645 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1646 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1647 curr && curr->vruntime < se->vruntime) {
87fefa38 1648 /*
edcb60a3
IM
1649 * Upon rescheduling, sched_class::put_prev_task() will place
1650 * 'current' within the tree based on its new key value.
1651 */
4d78e7b6 1652 swap(curr->vruntime, se->vruntime);
aec0a514 1653 resched_task(rq->curr);
4d78e7b6 1654 }
bf0f6f24 1655
b9dca1e0 1656 enqueue_task_fair(rq, p, 0);
bf0f6f24
IM
1657}
1658
cb469845
SR
1659/*
1660 * Priority of the task has changed. Check to see if we preempt
1661 * the current task.
1662 */
1663static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1664 int oldprio, int running)
1665{
1666 /*
1667 * Reschedule if we are currently running on this runqueue and
1668 * our priority decreased, or if we are not currently running on
1669 * this runqueue and our priority is higher than the current's
1670 */
1671 if (running) {
1672 if (p->prio > oldprio)
1673 resched_task(rq->curr);
1674 } else
15afe09b 1675 check_preempt_curr(rq, p, 0);
cb469845
SR
1676}
1677
1678/*
1679 * We switched to the sched_fair class.
1680 */
1681static void switched_to_fair(struct rq *rq, struct task_struct *p,
1682 int running)
1683{
1684 /*
1685 * We were most likely switched from sched_rt, so
1686 * kick off the schedule if running, otherwise just see
1687 * if we can still preempt the current task.
1688 */
1689 if (running)
1690 resched_task(rq->curr);
1691 else
15afe09b 1692 check_preempt_curr(rq, p, 0);
cb469845
SR
1693}
1694
83b699ed
SV
1695/* Account for a task changing its policy or group.
1696 *
1697 * This routine is mostly called to set cfs_rq->curr field when a task
1698 * migrates between groups/classes.
1699 */
1700static void set_curr_task_fair(struct rq *rq)
1701{
1702 struct sched_entity *se = &rq->curr->se;
1703
1704 for_each_sched_entity(se)
1705 set_next_entity(cfs_rq_of(se), se);
1706}
1707
810b3817
PZ
1708#ifdef CONFIG_FAIR_GROUP_SCHED
1709static void moved_group_fair(struct task_struct *p)
1710{
1711 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1712
1713 update_curr(cfs_rq);
1714 place_entity(cfs_rq, &p->se, 1);
1715}
1716#endif
1717
bf0f6f24
IM
1718/*
1719 * All the scheduling class methods:
1720 */
5522d5d5
IM
1721static const struct sched_class fair_sched_class = {
1722 .next = &idle_sched_class,
bf0f6f24
IM
1723 .enqueue_task = enqueue_task_fair,
1724 .dequeue_task = dequeue_task_fair,
1725 .yield_task = yield_task_fair,
1726
2e09bf55 1727 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1728
1729 .pick_next_task = pick_next_task_fair,
1730 .put_prev_task = put_prev_task_fair,
1731
681f3e68 1732#ifdef CONFIG_SMP
4ce72a2c
LZ
1733 .select_task_rq = select_task_rq_fair,
1734
bf0f6f24 1735 .load_balance = load_balance_fair,
e1d1484f 1736 .move_one_task = move_one_task_fair,
681f3e68 1737#endif
bf0f6f24 1738
83b699ed 1739 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1740 .task_tick = task_tick_fair,
1741 .task_new = task_new_fair,
cb469845
SR
1742
1743 .prio_changed = prio_changed_fair,
1744 .switched_to = switched_to_fair,
810b3817
PZ
1745
1746#ifdef CONFIG_FAIR_GROUP_SCHED
1747 .moved_group = moved_group_fair,
1748#endif
bf0f6f24
IM
1749};
1750
1751#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1752static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1753{
bf0f6f24
IM
1754 struct cfs_rq *cfs_rq;
1755
5973e5b9 1756 rcu_read_lock();
c3b64f1e 1757 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1758 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1759 rcu_read_unlock();
bf0f6f24
IM
1760}
1761#endif
This page took 0.336765 seconds and 5 git commands to generate.