fix endian lossage in forcedeth
[deliverable/linux.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_BATCH wake-up granularity.
722aab0c 66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
19978ca6 72unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
bf0f6f24
IM
73
74/*
75 * SCHED_OTHER wake-up granularity.
74e3cd7f 76 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
81 */
74e3cd7f 82unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
bf0f6f24 83
da84d961
IM
84const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
85
bf0f6f24
IM
86/**************************************************************
87 * CFS operations on generic schedulable entities:
88 */
89
62160e3f 90#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 91
62160e3f 92/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
93static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94{
62160e3f 95 return cfs_rq->rq;
bf0f6f24
IM
96}
97
62160e3f
IM
98/* An entity is a task if it doesn't "own" a runqueue */
99#define entity_is_task(se) (!se->my_q)
bf0f6f24 100
62160e3f 101#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 102
62160e3f
IM
103static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
104{
105 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
106}
107
108#define entity_is_task(se) 1
109
bf0f6f24
IM
110#endif /* CONFIG_FAIR_GROUP_SCHED */
111
112static inline struct task_struct *task_of(struct sched_entity *se)
113{
114 return container_of(se, struct task_struct, se);
115}
116
117
118/**************************************************************
119 * Scheduling class tree data structure manipulation methods:
120 */
121
0702e3eb 122static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 123{
368059a9
PZ
124 s64 delta = (s64)(vruntime - min_vruntime);
125 if (delta > 0)
02e0431a
PZ
126 min_vruntime = vruntime;
127
128 return min_vruntime;
129}
130
0702e3eb 131static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
132{
133 s64 delta = (s64)(vruntime - min_vruntime);
134 if (delta < 0)
135 min_vruntime = vruntime;
136
137 return min_vruntime;
138}
139
0702e3eb 140static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 141{
30cfdcfc 142 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
143}
144
bf0f6f24
IM
145/*
146 * Enqueue an entity into the rb-tree:
147 */
0702e3eb 148static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
149{
150 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
151 struct rb_node *parent = NULL;
152 struct sched_entity *entry;
9014623c 153 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
154 int leftmost = 1;
155
156 /*
157 * Find the right place in the rbtree:
158 */
159 while (*link) {
160 parent = *link;
161 entry = rb_entry(parent, struct sched_entity, run_node);
162 /*
163 * We dont care about collisions. Nodes with
164 * the same key stay together.
165 */
9014623c 166 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
167 link = &parent->rb_left;
168 } else {
169 link = &parent->rb_right;
170 leftmost = 0;
171 }
172 }
173
174 /*
175 * Maintain a cache of leftmost tree entries (it is frequently
176 * used):
177 */
3fe69747 178 if (leftmost) {
57cb499d 179 cfs_rq->rb_leftmost = &se->run_node;
3fe69747
PZ
180 /*
181 * maintain cfs_rq->min_vruntime to be a monotonic increasing
182 * value tracking the leftmost vruntime in the tree.
183 */
184 cfs_rq->min_vruntime =
185 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
186 }
bf0f6f24
IM
187
188 rb_link_node(&se->run_node, parent, link);
189 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
190}
191
0702e3eb 192static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 193{
3fe69747
PZ
194 if (cfs_rq->rb_leftmost == &se->run_node) {
195 struct rb_node *next_node;
196 struct sched_entity *next;
197
198 next_node = rb_next(&se->run_node);
199 cfs_rq->rb_leftmost = next_node;
200
201 if (next_node) {
202 next = rb_entry(next_node,
203 struct sched_entity, run_node);
204 cfs_rq->min_vruntime =
205 max_vruntime(cfs_rq->min_vruntime,
206 next->vruntime);
207 }
208 }
e9acbff6 209
aa2ac252
PZ
210 if (cfs_rq->next == se)
211 cfs_rq->next = NULL;
212
bf0f6f24 213 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
214}
215
216static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
217{
218 return cfs_rq->rb_leftmost;
219}
220
221static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
222{
223 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
224}
225
aeb73b04
PZ
226static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
227{
7eee3e67 228 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 229
70eee74b
BS
230 if (!last)
231 return NULL;
7eee3e67
IM
232
233 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
234}
235
bf0f6f24
IM
236/**************************************************************
237 * Scheduling class statistics methods:
238 */
239
b2be5e96
PZ
240#ifdef CONFIG_SCHED_DEBUG
241int sched_nr_latency_handler(struct ctl_table *table, int write,
242 struct file *filp, void __user *buffer, size_t *lenp,
243 loff_t *ppos)
244{
245 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
246
247 if (ret || !write)
248 return ret;
249
250 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
251 sysctl_sched_min_granularity);
252
253 return 0;
254}
255#endif
647e7cac
IM
256
257/*
258 * The idea is to set a period in which each task runs once.
259 *
260 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
261 * this period because otherwise the slices get too small.
262 *
263 * p = (nr <= nl) ? l : l*nr/nl
264 */
4d78e7b6
PZ
265static u64 __sched_period(unsigned long nr_running)
266{
267 u64 period = sysctl_sched_latency;
b2be5e96 268 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
269
270 if (unlikely(nr_running > nr_latency)) {
4bf0b771 271 period = sysctl_sched_min_granularity;
4d78e7b6 272 period *= nr_running;
4d78e7b6
PZ
273 }
274
275 return period;
276}
277
647e7cac
IM
278/*
279 * We calculate the wall-time slice from the period by taking a part
280 * proportional to the weight.
281 *
282 * s = p*w/rw
283 */
6d0f0ebd 284static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 285{
6a6029b8
IM
286 return calc_delta_mine(__sched_period(cfs_rq->nr_running),
287 se->load.weight, &cfs_rq->load);
bf0f6f24
IM
288}
289
647e7cac
IM
290/*
291 * We calculate the vruntime slice.
292 *
293 * vs = s/w = p/rw
294 */
295static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
67e9fb2a 296{
647e7cac 297 u64 vslice = __sched_period(nr_running);
67e9fb2a 298
10b77724 299 vslice *= NICE_0_LOAD;
647e7cac 300 do_div(vslice, rq_weight);
67e9fb2a 301
647e7cac
IM
302 return vslice;
303}
5f6d858e 304
647e7cac
IM
305static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
306{
307 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
308 cfs_rq->nr_running + 1);
67e9fb2a
PZ
309}
310
bf0f6f24
IM
311/*
312 * Update the current task's runtime statistics. Skip current tasks that
313 * are not in our scheduling class.
314 */
315static inline void
8ebc91d9
IM
316__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
317 unsigned long delta_exec)
bf0f6f24 318{
bbdba7c0 319 unsigned long delta_exec_weighted;
bf0f6f24 320
8179ca23 321 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
322
323 curr->sum_exec_runtime += delta_exec;
7a62eabc 324 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
325 delta_exec_weighted = delta_exec;
326 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
327 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
328 &curr->load);
329 }
330 curr->vruntime += delta_exec_weighted;
bf0f6f24
IM
331}
332
b7cc0896 333static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 334{
429d43bc 335 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 336 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
337 unsigned long delta_exec;
338
339 if (unlikely(!curr))
340 return;
341
342 /*
343 * Get the amount of time the current task was running
344 * since the last time we changed load (this cannot
345 * overflow on 32 bits):
346 */
8ebc91d9 347 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 348
8ebc91d9
IM
349 __update_curr(cfs_rq, curr, delta_exec);
350 curr->exec_start = now;
d842de87
SV
351
352 if (entity_is_task(curr)) {
353 struct task_struct *curtask = task_of(curr);
354
355 cpuacct_charge(curtask, delta_exec);
356 }
bf0f6f24
IM
357}
358
359static inline void
5870db5b 360update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 361{
d281918d 362 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
363}
364
bf0f6f24
IM
365/*
366 * Task is being enqueued - update stats:
367 */
d2417e5a 368static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 369{
bf0f6f24
IM
370 /*
371 * Are we enqueueing a waiting task? (for current tasks
372 * a dequeue/enqueue event is a NOP)
373 */
429d43bc 374 if (se != cfs_rq->curr)
5870db5b 375 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
376}
377
bf0f6f24 378static void
9ef0a961 379update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 380{
bbdba7c0
IM
381 schedstat_set(se->wait_max, max(se->wait_max,
382 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
383 schedstat_set(se->wait_count, se->wait_count + 1);
384 schedstat_set(se->wait_sum, se->wait_sum +
385 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 386 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
387}
388
389static inline void
19b6a2e3 390update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 391{
bf0f6f24
IM
392 /*
393 * Mark the end of the wait period if dequeueing a
394 * waiting task:
395 */
429d43bc 396 if (se != cfs_rq->curr)
9ef0a961 397 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
398}
399
400/*
401 * We are picking a new current task - update its stats:
402 */
403static inline void
79303e9e 404update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
405{
406 /*
407 * We are starting a new run period:
408 */
d281918d 409 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
410}
411
bf0f6f24
IM
412/**************************************************
413 * Scheduling class queueing methods:
414 */
415
30cfdcfc
DA
416static void
417account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
418{
419 update_load_add(&cfs_rq->load, se->load.weight);
420 cfs_rq->nr_running++;
421 se->on_rq = 1;
422}
423
424static void
425account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
426{
427 update_load_sub(&cfs_rq->load, se->load.weight);
428 cfs_rq->nr_running--;
429 se->on_rq = 0;
430}
431
2396af69 432static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 433{
bf0f6f24
IM
434#ifdef CONFIG_SCHEDSTATS
435 if (se->sleep_start) {
d281918d 436 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 437 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
438
439 if ((s64)delta < 0)
440 delta = 0;
441
442 if (unlikely(delta > se->sleep_max))
443 se->sleep_max = delta;
444
445 se->sleep_start = 0;
446 se->sum_sleep_runtime += delta;
9745512c
AV
447
448 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
449 }
450 if (se->block_start) {
d281918d 451 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 452 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
453
454 if ((s64)delta < 0)
455 delta = 0;
456
457 if (unlikely(delta > se->block_max))
458 se->block_max = delta;
459
460 se->block_start = 0;
461 se->sum_sleep_runtime += delta;
30084fbd
IM
462
463 /*
464 * Blocking time is in units of nanosecs, so shift by 20 to
465 * get a milliseconds-range estimation of the amount of
466 * time that the task spent sleeping:
467 */
468 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 469
30084fbd
IM
470 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
471 delta >> 20);
472 }
9745512c 473 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
474 }
475#endif
476}
477
ddc97297
PZ
478static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
479{
480#ifdef CONFIG_SCHED_DEBUG
481 s64 d = se->vruntime - cfs_rq->min_vruntime;
482
483 if (d < 0)
484 d = -d;
485
486 if (d > 3*sysctl_sched_latency)
487 schedstat_inc(cfs_rq, nr_spread_over);
488#endif
489}
490
aeb73b04
PZ
491static void
492place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
493{
67e9fb2a 494 u64 vruntime;
aeb73b04 495
3fe69747
PZ
496 if (first_fair(cfs_rq)) {
497 vruntime = min_vruntime(cfs_rq->min_vruntime,
498 __pick_next_entity(cfs_rq)->vruntime);
499 } else
500 vruntime = cfs_rq->min_vruntime;
94dfb5e7 501
2cb8600e
PZ
502 /*
503 * The 'current' period is already promised to the current tasks,
504 * however the extra weight of the new task will slow them down a
505 * little, place the new task so that it fits in the slot that
506 * stays open at the end.
507 */
94dfb5e7 508 if (initial && sched_feat(START_DEBIT))
647e7cac 509 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 510
8465e792 511 if (!initial) {
2cb8600e 512 /* sleeps upto a single latency don't count. */
e22ecef1
IM
513 if (sched_feat(NEW_FAIR_SLEEPERS)) {
514 vruntime -= calc_delta_fair(sysctl_sched_latency,
515 &cfs_rq->load);
516 }
94359f05 517
2cb8600e
PZ
518 /* ensure we never gain time by being placed backwards. */
519 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
520 }
521
67e9fb2a 522 se->vruntime = vruntime;
aeb73b04
PZ
523}
524
bf0f6f24 525static void
83b699ed 526enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
527{
528 /*
a2a2d680 529 * Update run-time statistics of the 'current'.
bf0f6f24 530 */
b7cc0896 531 update_curr(cfs_rq);
bf0f6f24 532
e9acbff6 533 if (wakeup) {
aeb73b04 534 place_entity(cfs_rq, se, 0);
2396af69 535 enqueue_sleeper(cfs_rq, se);
e9acbff6 536 }
bf0f6f24 537
d2417e5a 538 update_stats_enqueue(cfs_rq, se);
ddc97297 539 check_spread(cfs_rq, se);
83b699ed
SV
540 if (se != cfs_rq->curr)
541 __enqueue_entity(cfs_rq, se);
30cfdcfc 542 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
543}
544
4ae7d5ce
IM
545static void update_avg(u64 *avg, u64 sample)
546{
547 s64 diff = sample - *avg;
548 *avg += diff >> 3;
549}
550
551static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
552{
553 if (!se->last_wakeup)
554 return;
555
556 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
557 se->last_wakeup = 0;
558}
559
bf0f6f24 560static void
525c2716 561dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 562{
a2a2d680
DA
563 /*
564 * Update run-time statistics of the 'current'.
565 */
566 update_curr(cfs_rq);
567
19b6a2e3 568 update_stats_dequeue(cfs_rq, se);
db36cc7d 569 if (sleep) {
4ae7d5ce 570 update_avg_stats(cfs_rq, se);
67e9fb2a 571#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
572 if (entity_is_task(se)) {
573 struct task_struct *tsk = task_of(se);
574
575 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 576 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 577 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 578 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 579 }
db36cc7d 580#endif
67e9fb2a
PZ
581 }
582
83b699ed 583 if (se != cfs_rq->curr)
30cfdcfc
DA
584 __dequeue_entity(cfs_rq, se);
585 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
586}
587
588/*
589 * Preempt the current task with a newly woken task if needed:
590 */
7c92e54f 591static void
2e09bf55 592check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 593{
11697830
PZ
594 unsigned long ideal_runtime, delta_exec;
595
6d0f0ebd 596 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 597 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 598 if (delta_exec > ideal_runtime)
bf0f6f24
IM
599 resched_task(rq_of(cfs_rq)->curr);
600}
601
83b699ed 602static void
8494f412 603set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 604{
83b699ed
SV
605 /* 'current' is not kept within the tree. */
606 if (se->on_rq) {
607 /*
608 * Any task has to be enqueued before it get to execute on
609 * a CPU. So account for the time it spent waiting on the
610 * runqueue.
611 */
612 update_stats_wait_end(cfs_rq, se);
613 __dequeue_entity(cfs_rq, se);
614 }
615
79303e9e 616 update_stats_curr_start(cfs_rq, se);
429d43bc 617 cfs_rq->curr = se;
eba1ed4b
IM
618#ifdef CONFIG_SCHEDSTATS
619 /*
620 * Track our maximum slice length, if the CPU's load is at
621 * least twice that of our own weight (i.e. dont track it
622 * when there are only lesser-weight tasks around):
623 */
495eca49 624 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
625 se->slice_max = max(se->slice_max,
626 se->sum_exec_runtime - se->prev_sum_exec_runtime);
627 }
628#endif
4a55b450 629 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
630}
631
aa2ac252
PZ
632static struct sched_entity *
633pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
634{
635 s64 diff, gran;
636
637 if (!cfs_rq->next)
638 return se;
639
640 diff = cfs_rq->next->vruntime - se->vruntime;
641 if (diff < 0)
642 return se;
643
644 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, &cfs_rq->load);
645 if (diff > gran)
646 return se;
647
648 return cfs_rq->next;
649}
650
9948f4b2 651static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 652{
08ec3df5 653 struct sched_entity *se = NULL;
bf0f6f24 654
08ec3df5
DA
655 if (first_fair(cfs_rq)) {
656 se = __pick_next_entity(cfs_rq);
aa2ac252 657 se = pick_next(cfs_rq, se);
08ec3df5
DA
658 set_next_entity(cfs_rq, se);
659 }
bf0f6f24
IM
660
661 return se;
662}
663
ab6cde26 664static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
665{
666 /*
667 * If still on the runqueue then deactivate_task()
668 * was not called and update_curr() has to be done:
669 */
670 if (prev->on_rq)
b7cc0896 671 update_curr(cfs_rq);
bf0f6f24 672
ddc97297 673 check_spread(cfs_rq, prev);
30cfdcfc 674 if (prev->on_rq) {
5870db5b 675 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
676 /* Put 'current' back into the tree. */
677 __enqueue_entity(cfs_rq, prev);
678 }
429d43bc 679 cfs_rq->curr = NULL;
bf0f6f24
IM
680}
681
8f4d37ec
PZ
682static void
683entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 684{
bf0f6f24 685 /*
30cfdcfc 686 * Update run-time statistics of the 'current'.
bf0f6f24 687 */
30cfdcfc 688 update_curr(cfs_rq);
bf0f6f24 689
8f4d37ec
PZ
690#ifdef CONFIG_SCHED_HRTICK
691 /*
692 * queued ticks are scheduled to match the slice, so don't bother
693 * validating it and just reschedule.
694 */
695 if (queued)
696 return resched_task(rq_of(cfs_rq)->curr);
697 /*
698 * don't let the period tick interfere with the hrtick preemption
699 */
700 if (!sched_feat(DOUBLE_TICK) &&
701 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
702 return;
703#endif
704
ce6c1311 705 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 706 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
707}
708
709/**************************************************
710 * CFS operations on tasks:
711 */
712
713#ifdef CONFIG_FAIR_GROUP_SCHED
714
715/* Walk up scheduling entities hierarchy */
716#define for_each_sched_entity(se) \
717 for (; se; se = se->parent)
718
719static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
720{
721 return p->se.cfs_rq;
722}
723
724/* runqueue on which this entity is (to be) queued */
725static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
726{
727 return se->cfs_rq;
728}
729
730/* runqueue "owned" by this group */
731static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
732{
733 return grp->my_q;
734}
735
736/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
737 * another cpu ('this_cpu')
738 */
739static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
740{
29f59db3 741 return cfs_rq->tg->cfs_rq[this_cpu];
bf0f6f24
IM
742}
743
744/* Iterate thr' all leaf cfs_rq's on a runqueue */
745#define for_each_leaf_cfs_rq(rq, cfs_rq) \
ec2c507f 746 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
bf0f6f24 747
fad095a7
SV
748/* Do the two (enqueued) entities belong to the same group ? */
749static inline int
750is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24 751{
fad095a7 752 if (se->cfs_rq == pse->cfs_rq)
bf0f6f24
IM
753 return 1;
754
755 return 0;
756}
757
fad095a7
SV
758static inline struct sched_entity *parent_entity(struct sched_entity *se)
759{
760 return se->parent;
761}
762
bf0f6f24
IM
763#else /* CONFIG_FAIR_GROUP_SCHED */
764
765#define for_each_sched_entity(se) \
766 for (; se; se = NULL)
767
768static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
769{
770 return &task_rq(p)->cfs;
771}
772
773static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
774{
775 struct task_struct *p = task_of(se);
776 struct rq *rq = task_rq(p);
777
778 return &rq->cfs;
779}
780
781/* runqueue "owned" by this group */
782static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
783{
784 return NULL;
785}
786
787static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
788{
789 return &cpu_rq(this_cpu)->cfs;
790}
791
792#define for_each_leaf_cfs_rq(rq, cfs_rq) \
793 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
794
fad095a7
SV
795static inline int
796is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24
IM
797{
798 return 1;
799}
800
fad095a7
SV
801static inline struct sched_entity *parent_entity(struct sched_entity *se)
802{
803 return NULL;
804}
805
bf0f6f24
IM
806#endif /* CONFIG_FAIR_GROUP_SCHED */
807
8f4d37ec
PZ
808#ifdef CONFIG_SCHED_HRTICK
809static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
810{
811 int requeue = rq->curr == p;
812 struct sched_entity *se = &p->se;
813 struct cfs_rq *cfs_rq = cfs_rq_of(se);
814
815 WARN_ON(task_rq(p) != rq);
816
817 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
818 u64 slice = sched_slice(cfs_rq, se);
819 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
820 s64 delta = slice - ran;
821
822 if (delta < 0) {
823 if (rq->curr == p)
824 resched_task(p);
825 return;
826 }
827
828 /*
829 * Don't schedule slices shorter than 10000ns, that just
830 * doesn't make sense. Rely on vruntime for fairness.
831 */
832 if (!requeue)
833 delta = max(10000LL, delta);
834
835 hrtick_start(rq, delta, requeue);
836 }
837}
838#else
839static inline void
840hrtick_start_fair(struct rq *rq, struct task_struct *p)
841{
842}
843#endif
844
bf0f6f24
IM
845/*
846 * The enqueue_task method is called before nr_running is
847 * increased. Here we update the fair scheduling stats and
848 * then put the task into the rbtree:
849 */
fd390f6a 850static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
851{
852 struct cfs_rq *cfs_rq;
62fb1851 853 struct sched_entity *se = &p->se;
bf0f6f24
IM
854
855 for_each_sched_entity(se) {
62fb1851 856 if (se->on_rq)
bf0f6f24
IM
857 break;
858 cfs_rq = cfs_rq_of(se);
83b699ed 859 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 860 wakeup = 1;
bf0f6f24 861 }
8f4d37ec
PZ
862
863 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
864}
865
866/*
867 * The dequeue_task method is called before nr_running is
868 * decreased. We remove the task from the rbtree and
869 * update the fair scheduling stats:
870 */
f02231e5 871static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
872{
873 struct cfs_rq *cfs_rq;
62fb1851 874 struct sched_entity *se = &p->se;
bf0f6f24
IM
875
876 for_each_sched_entity(se) {
877 cfs_rq = cfs_rq_of(se);
525c2716 878 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 879 /* Don't dequeue parent if it has other entities besides us */
62fb1851 880 if (cfs_rq->load.weight)
bf0f6f24 881 break;
b9fa3df3 882 sleep = 1;
bf0f6f24 883 }
8f4d37ec
PZ
884
885 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
886}
887
888/*
1799e35d
IM
889 * sched_yield() support is very simple - we dequeue and enqueue.
890 *
891 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 892 */
4530d7ab 893static void yield_task_fair(struct rq *rq)
bf0f6f24 894{
db292ca3
IM
895 struct task_struct *curr = rq->curr;
896 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
897 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
898
899 /*
1799e35d
IM
900 * Are we the only task in the tree?
901 */
902 if (unlikely(cfs_rq->nr_running == 1))
903 return;
904
db292ca3 905 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1799e35d
IM
906 __update_rq_clock(rq);
907 /*
a2a2d680 908 * Update run-time statistics of the 'current'.
1799e35d 909 */
2b1e315d 910 update_curr(cfs_rq);
1799e35d
IM
911
912 return;
913 }
914 /*
915 * Find the rightmost entry in the rbtree:
bf0f6f24 916 */
2b1e315d 917 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
918 /*
919 * Already in the rightmost position?
920 */
2b1e315d 921 if (unlikely(rightmost->vruntime < se->vruntime))
1799e35d
IM
922 return;
923
924 /*
925 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
926 * Upon rescheduling, sched_class::put_prev_task() will place
927 * 'current' within the tree based on its new key value.
1799e35d 928 */
30cfdcfc 929 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
930}
931
e7693a36
GH
932/*
933 * wake_idle() will wake a task on an idle cpu if task->cpu is
934 * not idle and an idle cpu is available. The span of cpus to
935 * search starts with cpus closest then further out as needed,
936 * so we always favor a closer, idle cpu.
937 *
938 * Returns the CPU we should wake onto.
939 */
940#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
941static int wake_idle(int cpu, struct task_struct *p)
942{
943 cpumask_t tmp;
944 struct sched_domain *sd;
945 int i;
946
947 /*
948 * If it is idle, then it is the best cpu to run this task.
949 *
950 * This cpu is also the best, if it has more than one task already.
951 * Siblings must be also busy(in most cases) as they didn't already
952 * pickup the extra load from this cpu and hence we need not check
953 * sibling runqueue info. This will avoid the checks and cache miss
954 * penalities associated with that.
955 */
956 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
957 return cpu;
958
959 for_each_domain(cpu, sd) {
960 if (sd->flags & SD_WAKE_IDLE) {
961 cpus_and(tmp, sd->span, p->cpus_allowed);
962 for_each_cpu_mask(i, tmp) {
963 if (idle_cpu(i)) {
964 if (i != task_cpu(p)) {
965 schedstat_inc(p,
966 se.nr_wakeups_idle);
967 }
968 return i;
969 }
970 }
971 } else {
972 break;
973 }
974 }
975 return cpu;
976}
977#else
978static inline int wake_idle(int cpu, struct task_struct *p)
979{
980 return cpu;
981}
982#endif
983
984#ifdef CONFIG_SMP
098fb9db 985
4ae7d5ce
IM
986static const struct sched_class fair_sched_class;
987
098fb9db 988static int
4ae7d5ce
IM
989wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
990 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
991 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
992 unsigned int imbalance)
993{
4ae7d5ce 994 struct task_struct *curr = this_rq->curr;
098fb9db
IM
995 unsigned long tl = this_load;
996 unsigned long tl_per_task;
997
998 if (!(this_sd->flags & SD_WAKE_AFFINE))
999 return 0;
1000
1001 /*
4ae7d5ce
IM
1002 * If the currently running task will sleep within
1003 * a reasonable amount of time then attract this newly
1004 * woken task:
098fb9db 1005 */
4ae7d5ce
IM
1006 if (sync && curr->sched_class == &fair_sched_class) {
1007 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1008 p->se.avg_overlap < sysctl_sched_migration_cost)
1009 return 1;
1010 }
098fb9db
IM
1011
1012 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1013 tl_per_task = cpu_avg_load_per_task(this_cpu);
1014
1015 /*
1016 * If sync wakeup then subtract the (maximum possible)
1017 * effect of the currently running task from the load
1018 * of the current CPU:
1019 */
1020 if (sync)
1021 tl -= current->se.load.weight;
1022
ac192d39 1023 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
098fb9db
IM
1024 100*(tl + p->se.load.weight) <= imbalance*load) {
1025 /*
1026 * This domain has SD_WAKE_AFFINE and
1027 * p is cache cold in this domain, and
1028 * there is no bad imbalance.
1029 */
1030 schedstat_inc(this_sd, ttwu_move_affine);
1031 schedstat_inc(p, se.nr_wakeups_affine);
1032
1033 return 1;
1034 }
1035 return 0;
1036}
1037
e7693a36
GH
1038static int select_task_rq_fair(struct task_struct *p, int sync)
1039{
e7693a36 1040 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1041 int prev_cpu, this_cpu, new_cpu;
098fb9db 1042 unsigned long load, this_load;
4ae7d5ce 1043 struct rq *rq, *this_rq;
098fb9db 1044 unsigned int imbalance;
098fb9db 1045 int idx;
e7693a36 1046
ac192d39
IM
1047 prev_cpu = task_cpu(p);
1048 rq = task_rq(p);
1049 this_cpu = smp_processor_id();
4ae7d5ce 1050 this_rq = cpu_rq(this_cpu);
ac192d39 1051 new_cpu = prev_cpu;
e7693a36 1052
ac192d39
IM
1053 /*
1054 * 'this_sd' is the first domain that both
1055 * this_cpu and prev_cpu are present in:
1056 */
e7693a36 1057 for_each_domain(this_cpu, sd) {
ac192d39 1058 if (cpu_isset(prev_cpu, sd->span)) {
e7693a36
GH
1059 this_sd = sd;
1060 break;
1061 }
1062 }
1063
1064 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
f4827386 1065 goto out;
e7693a36
GH
1066
1067 /*
1068 * Check for affine wakeup and passive balancing possibilities.
1069 */
098fb9db 1070 if (!this_sd)
f4827386 1071 goto out;
e7693a36 1072
098fb9db
IM
1073 idx = this_sd->wake_idx;
1074
1075 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1076
ac192d39 1077 load = source_load(prev_cpu, idx);
098fb9db
IM
1078 this_load = target_load(this_cpu, idx);
1079
4ae7d5ce
IM
1080 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1081 load, this_load, imbalance))
1082 return this_cpu;
1083
1084 if (prev_cpu == this_cpu)
f4827386 1085 goto out;
098fb9db
IM
1086
1087 /*
1088 * Start passive balancing when half the imbalance_pct
1089 * limit is reached.
1090 */
1091 if (this_sd->flags & SD_WAKE_BALANCE) {
1092 if (imbalance*this_load <= 100*load) {
1093 schedstat_inc(this_sd, ttwu_move_balance);
1094 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1095 return this_cpu;
e7693a36
GH
1096 }
1097 }
1098
f4827386 1099out:
e7693a36
GH
1100 return wake_idle(new_cpu, p);
1101}
1102#endif /* CONFIG_SMP */
1103
1104
bf0f6f24
IM
1105/*
1106 * Preempt the current task with a newly woken task if needed:
1107 */
2e09bf55 1108static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1109{
1110 struct task_struct *curr = rq->curr;
fad095a7 1111 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 1112 struct sched_entity *se = &curr->se, *pse = &p->se;
502d26b5 1113 unsigned long gran;
bf0f6f24
IM
1114
1115 if (unlikely(rt_prio(p->prio))) {
a8e504d2 1116 update_rq_clock(rq);
b7cc0896 1117 update_curr(cfs_rq);
bf0f6f24
IM
1118 resched_task(curr);
1119 return;
1120 }
aa2ac252 1121
4ae7d5ce
IM
1122 se->last_wakeup = se->sum_exec_runtime;
1123 if (unlikely(se == pse))
1124 return;
1125
aa2ac252
PZ
1126 cfs_rq_of(pse)->next = pse;
1127
91c234b4
IM
1128 /*
1129 * Batch tasks do not preempt (their preemption is driven by
1130 * the tick):
1131 */
1132 if (unlikely(p->policy == SCHED_BATCH))
1133 return;
bf0f6f24 1134
77d9cc44
IM
1135 if (!sched_feat(WAKEUP_PREEMPT))
1136 return;
8651a86c 1137
77d9cc44
IM
1138 while (!is_same_group(se, pse)) {
1139 se = parent_entity(se);
1140 pse = parent_entity(pse);
ce6c1311 1141 }
77d9cc44 1142
77d9cc44 1143 gran = sysctl_sched_wakeup_granularity;
ef9884e6
PZ
1144 /*
1145 * More easily preempt - nice tasks, while not making
1146 * it harder for + nice tasks.
1147 */
1148 if (unlikely(se->load.weight > NICE_0_LOAD))
77d9cc44
IM
1149 gran = calc_delta_fair(gran, &se->load);
1150
502d26b5 1151 if (pse->vruntime + gran < se->vruntime)
77d9cc44 1152 resched_task(curr);
bf0f6f24
IM
1153}
1154
fb8d4724 1155static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1156{
8f4d37ec 1157 struct task_struct *p;
bf0f6f24
IM
1158 struct cfs_rq *cfs_rq = &rq->cfs;
1159 struct sched_entity *se;
1160
1161 if (unlikely(!cfs_rq->nr_running))
1162 return NULL;
1163
1164 do {
9948f4b2 1165 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1166 cfs_rq = group_cfs_rq(se);
1167 } while (cfs_rq);
1168
8f4d37ec
PZ
1169 p = task_of(se);
1170 hrtick_start_fair(rq, p);
1171
1172 return p;
bf0f6f24
IM
1173}
1174
1175/*
1176 * Account for a descheduled task:
1177 */
31ee529c 1178static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1179{
1180 struct sched_entity *se = &prev->se;
1181 struct cfs_rq *cfs_rq;
1182
1183 for_each_sched_entity(se) {
1184 cfs_rq = cfs_rq_of(se);
ab6cde26 1185 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1186 }
1187}
1188
681f3e68 1189#ifdef CONFIG_SMP
bf0f6f24
IM
1190/**************************************************
1191 * Fair scheduling class load-balancing methods:
1192 */
1193
1194/*
1195 * Load-balancing iterator. Note: while the runqueue stays locked
1196 * during the whole iteration, the current task might be
1197 * dequeued so the iterator has to be dequeue-safe. Here we
1198 * achieve that by always pre-iterating before returning
1199 * the current task:
1200 */
a9957449 1201static struct task_struct *
bf0f6f24
IM
1202__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1203{
1204 struct task_struct *p;
1205
1206 if (!curr)
1207 return NULL;
1208
1209 p = rb_entry(curr, struct task_struct, se.run_node);
1210 cfs_rq->rb_load_balance_curr = rb_next(curr);
1211
1212 return p;
1213}
1214
1215static struct task_struct *load_balance_start_fair(void *arg)
1216{
1217 struct cfs_rq *cfs_rq = arg;
1218
1219 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1220}
1221
1222static struct task_struct *load_balance_next_fair(void *arg)
1223{
1224 struct cfs_rq *cfs_rq = arg;
1225
1226 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1227}
1228
62fb1851
PZ
1229#ifdef CONFIG_FAIR_GROUP_SCHED
1230static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1231{
1232 struct sched_entity *curr;
1233 struct task_struct *p;
1234
1235 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1236 return MAX_PRIO;
1237
1238 curr = cfs_rq->curr;
1239 if (!curr)
1240 curr = __pick_next_entity(cfs_rq);
1241
1242 p = task_of(curr);
1243
1244 return p->prio;
1245}
1246#endif
1247
43010659 1248static unsigned long
bf0f6f24 1249load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1250 unsigned long max_load_move,
a4ac01c3
PW
1251 struct sched_domain *sd, enum cpu_idle_type idle,
1252 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
1253{
1254 struct cfs_rq *busy_cfs_rq;
bf0f6f24
IM
1255 long rem_load_move = max_load_move;
1256 struct rq_iterator cfs_rq_iterator;
1257
1258 cfs_rq_iterator.start = load_balance_start_fair;
1259 cfs_rq_iterator.next = load_balance_next_fair;
1260
1261 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 1262#ifdef CONFIG_FAIR_GROUP_SCHED
62fb1851
PZ
1263 struct cfs_rq *this_cfs_rq;
1264 long imbalance;
1265 unsigned long maxload;
bf0f6f24 1266
62fb1851 1267 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
6b2d7700 1268
62fb1851
PZ
1269 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1270 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1271 if (imbalance <= 0)
bf0f6f24
IM
1272 continue;
1273
62fb1851
PZ
1274 /* Don't pull more than imbalance/2 */
1275 imbalance /= 2;
1276 maxload = min(rem_load_move, imbalance);
bf0f6f24 1277
62fb1851 1278 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
a4ac01c3 1279#else
e56f31aa 1280# define maxload rem_load_move
a4ac01c3 1281#endif
e1d1484f
PW
1282 /*
1283 * pass busy_cfs_rq argument into
bf0f6f24
IM
1284 * load_balance_[start|next]_fair iterators
1285 */
1286 cfs_rq_iterator.arg = busy_cfs_rq;
62fb1851 1287 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
e1d1484f
PW
1288 maxload, sd, idle, all_pinned,
1289 this_best_prio,
1290 &cfs_rq_iterator);
bf0f6f24 1291
e1d1484f 1292 if (rem_load_move <= 0)
bf0f6f24
IM
1293 break;
1294 }
1295
43010659 1296 return max_load_move - rem_load_move;
bf0f6f24
IM
1297}
1298
e1d1484f
PW
1299static int
1300move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1301 struct sched_domain *sd, enum cpu_idle_type idle)
1302{
1303 struct cfs_rq *busy_cfs_rq;
1304 struct rq_iterator cfs_rq_iterator;
1305
1306 cfs_rq_iterator.start = load_balance_start_fair;
1307 cfs_rq_iterator.next = load_balance_next_fair;
1308
1309 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1310 /*
1311 * pass busy_cfs_rq argument into
1312 * load_balance_[start|next]_fair iterators
1313 */
1314 cfs_rq_iterator.arg = busy_cfs_rq;
1315 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1316 &cfs_rq_iterator))
1317 return 1;
1318 }
1319
1320 return 0;
1321}
681f3e68 1322#endif
e1d1484f 1323
bf0f6f24
IM
1324/*
1325 * scheduler tick hitting a task of our scheduling class:
1326 */
8f4d37ec 1327static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1328{
1329 struct cfs_rq *cfs_rq;
1330 struct sched_entity *se = &curr->se;
1331
1332 for_each_sched_entity(se) {
1333 cfs_rq = cfs_rq_of(se);
8f4d37ec 1334 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1335 }
1336}
1337
8eb172d9 1338#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1339
bf0f6f24
IM
1340/*
1341 * Share the fairness runtime between parent and child, thus the
1342 * total amount of pressure for CPU stays equal - new tasks
1343 * get a chance to run but frequent forkers are not allowed to
1344 * monopolize the CPU. Note: the parent runqueue is locked,
1345 * the child is not running yet.
1346 */
ee0827d8 1347static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1348{
1349 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1350 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1351 int this_cpu = smp_processor_id();
bf0f6f24
IM
1352
1353 sched_info_queued(p);
1354
7109c442 1355 update_curr(cfs_rq);
aeb73b04 1356 place_entity(cfs_rq, se, 1);
4d78e7b6 1357
3c90e6e9 1358 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1359 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1360 curr && curr->vruntime < se->vruntime) {
87fefa38 1361 /*
edcb60a3
IM
1362 * Upon rescheduling, sched_class::put_prev_task() will place
1363 * 'current' within the tree based on its new key value.
1364 */
4d78e7b6 1365 swap(curr->vruntime, se->vruntime);
4d78e7b6 1366 }
bf0f6f24 1367
b9dca1e0 1368 enqueue_task_fair(rq, p, 0);
bb61c210 1369 resched_task(rq->curr);
bf0f6f24
IM
1370}
1371
cb469845
SR
1372/*
1373 * Priority of the task has changed. Check to see if we preempt
1374 * the current task.
1375 */
1376static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1377 int oldprio, int running)
1378{
1379 /*
1380 * Reschedule if we are currently running on this runqueue and
1381 * our priority decreased, or if we are not currently running on
1382 * this runqueue and our priority is higher than the current's
1383 */
1384 if (running) {
1385 if (p->prio > oldprio)
1386 resched_task(rq->curr);
1387 } else
1388 check_preempt_curr(rq, p);
1389}
1390
1391/*
1392 * We switched to the sched_fair class.
1393 */
1394static void switched_to_fair(struct rq *rq, struct task_struct *p,
1395 int running)
1396{
1397 /*
1398 * We were most likely switched from sched_rt, so
1399 * kick off the schedule if running, otherwise just see
1400 * if we can still preempt the current task.
1401 */
1402 if (running)
1403 resched_task(rq->curr);
1404 else
1405 check_preempt_curr(rq, p);
1406}
1407
83b699ed
SV
1408/* Account for a task changing its policy or group.
1409 *
1410 * This routine is mostly called to set cfs_rq->curr field when a task
1411 * migrates between groups/classes.
1412 */
1413static void set_curr_task_fair(struct rq *rq)
1414{
1415 struct sched_entity *se = &rq->curr->se;
1416
1417 for_each_sched_entity(se)
1418 set_next_entity(cfs_rq_of(se), se);
1419}
1420
810b3817
PZ
1421#ifdef CONFIG_FAIR_GROUP_SCHED
1422static void moved_group_fair(struct task_struct *p)
1423{
1424 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1425
1426 update_curr(cfs_rq);
1427 place_entity(cfs_rq, &p->se, 1);
1428}
1429#endif
1430
bf0f6f24
IM
1431/*
1432 * All the scheduling class methods:
1433 */
5522d5d5
IM
1434static const struct sched_class fair_sched_class = {
1435 .next = &idle_sched_class,
bf0f6f24
IM
1436 .enqueue_task = enqueue_task_fair,
1437 .dequeue_task = dequeue_task_fair,
1438 .yield_task = yield_task_fair,
e7693a36
GH
1439#ifdef CONFIG_SMP
1440 .select_task_rq = select_task_rq_fair,
1441#endif /* CONFIG_SMP */
bf0f6f24 1442
2e09bf55 1443 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1444
1445 .pick_next_task = pick_next_task_fair,
1446 .put_prev_task = put_prev_task_fair,
1447
681f3e68 1448#ifdef CONFIG_SMP
bf0f6f24 1449 .load_balance = load_balance_fair,
e1d1484f 1450 .move_one_task = move_one_task_fair,
681f3e68 1451#endif
bf0f6f24 1452
83b699ed 1453 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1454 .task_tick = task_tick_fair,
1455 .task_new = task_new_fair,
cb469845
SR
1456
1457 .prio_changed = prio_changed_fair,
1458 .switched_to = switched_to_fair,
810b3817
PZ
1459
1460#ifdef CONFIG_FAIR_GROUP_SCHED
1461 .moved_group = moved_group_fair,
1462#endif
bf0f6f24
IM
1463};
1464
1465#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1466static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1467{
bf0f6f24
IM
1468 struct cfs_rq *cfs_rq;
1469
75c28ace
SV
1470#ifdef CONFIG_FAIR_GROUP_SCHED
1471 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1472#endif
5973e5b9 1473 rcu_read_lock();
c3b64f1e 1474 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1475 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1476 rcu_read_unlock();
bf0f6f24
IM
1477}
1478#endif
This page took 0.281924 seconds and 5 git commands to generate.