sched: cache hot buddy
[deliverable/linux.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_BATCH wake-up granularity.
722aab0c 66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
19978ca6 72unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
bf0f6f24
IM
73
74/*
75 * SCHED_OTHER wake-up granularity.
0bbd3336 76 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
81 */
0bbd3336 82unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
bf0f6f24 83
da84d961
IM
84const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
85
bf0f6f24
IM
86/**************************************************************
87 * CFS operations on generic schedulable entities:
88 */
89
62160e3f 90#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 91
62160e3f 92/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
93static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94{
62160e3f 95 return cfs_rq->rq;
bf0f6f24
IM
96}
97
62160e3f
IM
98/* An entity is a task if it doesn't "own" a runqueue */
99#define entity_is_task(se) (!se->my_q)
bf0f6f24 100
62160e3f 101#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 102
62160e3f
IM
103static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
104{
105 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
106}
107
108#define entity_is_task(se) 1
109
bf0f6f24
IM
110#endif /* CONFIG_FAIR_GROUP_SCHED */
111
112static inline struct task_struct *task_of(struct sched_entity *se)
113{
114 return container_of(se, struct task_struct, se);
115}
116
117
118/**************************************************************
119 * Scheduling class tree data structure manipulation methods:
120 */
121
0702e3eb 122static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 123{
368059a9
PZ
124 s64 delta = (s64)(vruntime - min_vruntime);
125 if (delta > 0)
02e0431a
PZ
126 min_vruntime = vruntime;
127
128 return min_vruntime;
129}
130
0702e3eb 131static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
132{
133 s64 delta = (s64)(vruntime - min_vruntime);
134 if (delta < 0)
135 min_vruntime = vruntime;
136
137 return min_vruntime;
138}
139
0702e3eb 140static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 141{
30cfdcfc 142 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
143}
144
bf0f6f24
IM
145/*
146 * Enqueue an entity into the rb-tree:
147 */
0702e3eb 148static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
149{
150 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
151 struct rb_node *parent = NULL;
152 struct sched_entity *entry;
9014623c 153 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
154 int leftmost = 1;
155
156 /*
157 * Find the right place in the rbtree:
158 */
159 while (*link) {
160 parent = *link;
161 entry = rb_entry(parent, struct sched_entity, run_node);
162 /*
163 * We dont care about collisions. Nodes with
164 * the same key stay together.
165 */
9014623c 166 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
167 link = &parent->rb_left;
168 } else {
169 link = &parent->rb_right;
170 leftmost = 0;
171 }
172 }
173
174 /*
175 * Maintain a cache of leftmost tree entries (it is frequently
176 * used):
177 */
3fe69747 178 if (leftmost) {
57cb499d 179 cfs_rq->rb_leftmost = &se->run_node;
3fe69747
PZ
180 /*
181 * maintain cfs_rq->min_vruntime to be a monotonic increasing
182 * value tracking the leftmost vruntime in the tree.
183 */
184 cfs_rq->min_vruntime =
185 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
186 }
bf0f6f24
IM
187
188 rb_link_node(&se->run_node, parent, link);
189 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
190}
191
0702e3eb 192static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 193{
3fe69747
PZ
194 if (cfs_rq->rb_leftmost == &se->run_node) {
195 struct rb_node *next_node;
196 struct sched_entity *next;
197
198 next_node = rb_next(&se->run_node);
199 cfs_rq->rb_leftmost = next_node;
200
201 if (next_node) {
202 next = rb_entry(next_node,
203 struct sched_entity, run_node);
204 cfs_rq->min_vruntime =
205 max_vruntime(cfs_rq->min_vruntime,
206 next->vruntime);
207 }
208 }
e9acbff6 209
aa2ac252
PZ
210 if (cfs_rq->next == se)
211 cfs_rq->next = NULL;
212
bf0f6f24 213 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
214}
215
216static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
217{
218 return cfs_rq->rb_leftmost;
219}
220
221static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
222{
223 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
224}
225
aeb73b04
PZ
226static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
227{
7eee3e67 228 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 229
70eee74b
BS
230 if (!last)
231 return NULL;
7eee3e67
IM
232
233 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
234}
235
bf0f6f24
IM
236/**************************************************************
237 * Scheduling class statistics methods:
238 */
239
b2be5e96
PZ
240#ifdef CONFIG_SCHED_DEBUG
241int sched_nr_latency_handler(struct ctl_table *table, int write,
242 struct file *filp, void __user *buffer, size_t *lenp,
243 loff_t *ppos)
244{
245 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
246
247 if (ret || !write)
248 return ret;
249
250 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
251 sysctl_sched_min_granularity);
252
253 return 0;
254}
255#endif
647e7cac
IM
256
257/*
258 * The idea is to set a period in which each task runs once.
259 *
260 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
261 * this period because otherwise the slices get too small.
262 *
263 * p = (nr <= nl) ? l : l*nr/nl
264 */
4d78e7b6
PZ
265static u64 __sched_period(unsigned long nr_running)
266{
267 u64 period = sysctl_sched_latency;
b2be5e96 268 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
269
270 if (unlikely(nr_running > nr_latency)) {
4bf0b771 271 period = sysctl_sched_min_granularity;
4d78e7b6 272 period *= nr_running;
4d78e7b6
PZ
273 }
274
275 return period;
276}
277
647e7cac
IM
278/*
279 * We calculate the wall-time slice from the period by taking a part
280 * proportional to the weight.
281 *
282 * s = p*w/rw
283 */
6d0f0ebd 284static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 285{
6a6029b8
IM
286 return calc_delta_mine(__sched_period(cfs_rq->nr_running),
287 se->load.weight, &cfs_rq->load);
bf0f6f24
IM
288}
289
647e7cac
IM
290/*
291 * We calculate the vruntime slice.
292 *
293 * vs = s/w = p/rw
294 */
295static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
67e9fb2a 296{
647e7cac 297 u64 vslice = __sched_period(nr_running);
67e9fb2a 298
10b77724 299 vslice *= NICE_0_LOAD;
647e7cac 300 do_div(vslice, rq_weight);
67e9fb2a 301
647e7cac
IM
302 return vslice;
303}
5f6d858e 304
647e7cac
IM
305static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
306{
307 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
308 cfs_rq->nr_running + 1);
67e9fb2a
PZ
309}
310
bf0f6f24
IM
311/*
312 * Update the current task's runtime statistics. Skip current tasks that
313 * are not in our scheduling class.
314 */
315static inline void
8ebc91d9
IM
316__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
317 unsigned long delta_exec)
bf0f6f24 318{
bbdba7c0 319 unsigned long delta_exec_weighted;
bf0f6f24 320
8179ca23 321 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
322
323 curr->sum_exec_runtime += delta_exec;
7a62eabc 324 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
325 delta_exec_weighted = delta_exec;
326 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
327 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
328 &curr->load);
329 }
330 curr->vruntime += delta_exec_weighted;
bf0f6f24
IM
331}
332
b7cc0896 333static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 334{
429d43bc 335 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 336 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
337 unsigned long delta_exec;
338
339 if (unlikely(!curr))
340 return;
341
342 /*
343 * Get the amount of time the current task was running
344 * since the last time we changed load (this cannot
345 * overflow on 32 bits):
346 */
8ebc91d9 347 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 348
8ebc91d9
IM
349 __update_curr(cfs_rq, curr, delta_exec);
350 curr->exec_start = now;
d842de87
SV
351
352 if (entity_is_task(curr)) {
353 struct task_struct *curtask = task_of(curr);
354
355 cpuacct_charge(curtask, delta_exec);
356 }
bf0f6f24
IM
357}
358
359static inline void
5870db5b 360update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 361{
d281918d 362 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
363}
364
bf0f6f24
IM
365/*
366 * Task is being enqueued - update stats:
367 */
d2417e5a 368static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 369{
bf0f6f24
IM
370 /*
371 * Are we enqueueing a waiting task? (for current tasks
372 * a dequeue/enqueue event is a NOP)
373 */
429d43bc 374 if (se != cfs_rq->curr)
5870db5b 375 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
376}
377
bf0f6f24 378static void
9ef0a961 379update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 380{
bbdba7c0
IM
381 schedstat_set(se->wait_max, max(se->wait_max,
382 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
383 schedstat_set(se->wait_count, se->wait_count + 1);
384 schedstat_set(se->wait_sum, se->wait_sum +
385 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 386 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
387}
388
389static inline void
19b6a2e3 390update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 391{
bf0f6f24
IM
392 /*
393 * Mark the end of the wait period if dequeueing a
394 * waiting task:
395 */
429d43bc 396 if (se != cfs_rq->curr)
9ef0a961 397 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
398}
399
400/*
401 * We are picking a new current task - update its stats:
402 */
403static inline void
79303e9e 404update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
405{
406 /*
407 * We are starting a new run period:
408 */
d281918d 409 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
410}
411
bf0f6f24
IM
412/**************************************************
413 * Scheduling class queueing methods:
414 */
415
30cfdcfc
DA
416static void
417account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
418{
419 update_load_add(&cfs_rq->load, se->load.weight);
420 cfs_rq->nr_running++;
421 se->on_rq = 1;
422}
423
424static void
425account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
426{
427 update_load_sub(&cfs_rq->load, se->load.weight);
428 cfs_rq->nr_running--;
429 se->on_rq = 0;
430}
431
2396af69 432static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 433{
bf0f6f24
IM
434#ifdef CONFIG_SCHEDSTATS
435 if (se->sleep_start) {
d281918d 436 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 437 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
438
439 if ((s64)delta < 0)
440 delta = 0;
441
442 if (unlikely(delta > se->sleep_max))
443 se->sleep_max = delta;
444
445 se->sleep_start = 0;
446 se->sum_sleep_runtime += delta;
9745512c
AV
447
448 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
449 }
450 if (se->block_start) {
d281918d 451 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 452 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
453
454 if ((s64)delta < 0)
455 delta = 0;
456
457 if (unlikely(delta > se->block_max))
458 se->block_max = delta;
459
460 se->block_start = 0;
461 se->sum_sleep_runtime += delta;
30084fbd
IM
462
463 /*
464 * Blocking time is in units of nanosecs, so shift by 20 to
465 * get a milliseconds-range estimation of the amount of
466 * time that the task spent sleeping:
467 */
468 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 469
30084fbd
IM
470 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
471 delta >> 20);
472 }
9745512c 473 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
474 }
475#endif
476}
477
ddc97297
PZ
478static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
479{
480#ifdef CONFIG_SCHED_DEBUG
481 s64 d = se->vruntime - cfs_rq->min_vruntime;
482
483 if (d < 0)
484 d = -d;
485
486 if (d > 3*sysctl_sched_latency)
487 schedstat_inc(cfs_rq, nr_spread_over);
488#endif
489}
490
aeb73b04
PZ
491static void
492place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
493{
67e9fb2a 494 u64 vruntime;
aeb73b04 495
3fe69747
PZ
496 if (first_fair(cfs_rq)) {
497 vruntime = min_vruntime(cfs_rq->min_vruntime,
498 __pick_next_entity(cfs_rq)->vruntime);
499 } else
500 vruntime = cfs_rq->min_vruntime;
94dfb5e7 501
2cb8600e
PZ
502 /*
503 * The 'current' period is already promised to the current tasks,
504 * however the extra weight of the new task will slow them down a
505 * little, place the new task so that it fits in the slot that
506 * stays open at the end.
507 */
94dfb5e7 508 if (initial && sched_feat(START_DEBIT))
647e7cac 509 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 510
8465e792 511 if (!initial) {
2cb8600e 512 /* sleeps upto a single latency don't count. */
018d6db4
IM
513 if (sched_feat(NEW_FAIR_SLEEPERS)) {
514 vruntime -= calc_delta_fair(sysctl_sched_latency,
515 &cfs_rq->load);
516 }
94359f05 517
2cb8600e
PZ
518 /* ensure we never gain time by being placed backwards. */
519 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
520 }
521
67e9fb2a 522 se->vruntime = vruntime;
aeb73b04
PZ
523}
524
bf0f6f24 525static void
83b699ed 526enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
527{
528 /*
a2a2d680 529 * Update run-time statistics of the 'current'.
bf0f6f24 530 */
b7cc0896 531 update_curr(cfs_rq);
bf0f6f24 532
e9acbff6 533 if (wakeup) {
aeb73b04 534 place_entity(cfs_rq, se, 0);
2396af69 535 enqueue_sleeper(cfs_rq, se);
e9acbff6 536 }
bf0f6f24 537
d2417e5a 538 update_stats_enqueue(cfs_rq, se);
ddc97297 539 check_spread(cfs_rq, se);
83b699ed
SV
540 if (se != cfs_rq->curr)
541 __enqueue_entity(cfs_rq, se);
30cfdcfc 542 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
543}
544
4ae7d5ce
IM
545static void update_avg(u64 *avg, u64 sample)
546{
547 s64 diff = sample - *avg;
548 *avg += diff >> 3;
549}
550
551static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
552{
553 if (!se->last_wakeup)
554 return;
555
556 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
557 se->last_wakeup = 0;
558}
559
bf0f6f24 560static void
525c2716 561dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 562{
a2a2d680
DA
563 /*
564 * Update run-time statistics of the 'current'.
565 */
566 update_curr(cfs_rq);
567
19b6a2e3 568 update_stats_dequeue(cfs_rq, se);
db36cc7d 569 if (sleep) {
4ae7d5ce 570 update_avg_stats(cfs_rq, se);
67e9fb2a 571#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
572 if (entity_is_task(se)) {
573 struct task_struct *tsk = task_of(se);
574
575 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 576 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 577 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 578 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 579 }
db36cc7d 580#endif
67e9fb2a
PZ
581 }
582
83b699ed 583 if (se != cfs_rq->curr)
30cfdcfc
DA
584 __dequeue_entity(cfs_rq, se);
585 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
586}
587
588/*
589 * Preempt the current task with a newly woken task if needed:
590 */
7c92e54f 591static void
2e09bf55 592check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 593{
11697830
PZ
594 unsigned long ideal_runtime, delta_exec;
595
6d0f0ebd 596 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 597 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 598 if (delta_exec > ideal_runtime)
bf0f6f24
IM
599 resched_task(rq_of(cfs_rq)->curr);
600}
601
83b699ed 602static void
8494f412 603set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 604{
83b699ed
SV
605 /* 'current' is not kept within the tree. */
606 if (se->on_rq) {
607 /*
608 * Any task has to be enqueued before it get to execute on
609 * a CPU. So account for the time it spent waiting on the
610 * runqueue.
611 */
612 update_stats_wait_end(cfs_rq, se);
613 __dequeue_entity(cfs_rq, se);
614 }
615
79303e9e 616 update_stats_curr_start(cfs_rq, se);
429d43bc 617 cfs_rq->curr = se;
eba1ed4b
IM
618#ifdef CONFIG_SCHEDSTATS
619 /*
620 * Track our maximum slice length, if the CPU's load is at
621 * least twice that of our own weight (i.e. dont track it
622 * when there are only lesser-weight tasks around):
623 */
495eca49 624 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
625 se->slice_max = max(se->slice_max,
626 se->sum_exec_runtime - se->prev_sum_exec_runtime);
627 }
628#endif
4a55b450 629 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
630}
631
0bbd3336
PZ
632static int
633wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
634
aa2ac252
PZ
635static struct sched_entity *
636pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
637{
aa2ac252
PZ
638 if (!cfs_rq->next)
639 return se;
640
0bbd3336 641 if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
aa2ac252
PZ
642 return se;
643
644 return cfs_rq->next;
645}
646
9948f4b2 647static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 648{
08ec3df5 649 struct sched_entity *se = NULL;
bf0f6f24 650
08ec3df5
DA
651 if (first_fair(cfs_rq)) {
652 se = __pick_next_entity(cfs_rq);
aa2ac252 653 se = pick_next(cfs_rq, se);
08ec3df5
DA
654 set_next_entity(cfs_rq, se);
655 }
bf0f6f24
IM
656
657 return se;
658}
659
ab6cde26 660static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
661{
662 /*
663 * If still on the runqueue then deactivate_task()
664 * was not called and update_curr() has to be done:
665 */
666 if (prev->on_rq)
b7cc0896 667 update_curr(cfs_rq);
bf0f6f24 668
ddc97297 669 check_spread(cfs_rq, prev);
30cfdcfc 670 if (prev->on_rq) {
5870db5b 671 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
672 /* Put 'current' back into the tree. */
673 __enqueue_entity(cfs_rq, prev);
674 }
429d43bc 675 cfs_rq->curr = NULL;
bf0f6f24
IM
676}
677
8f4d37ec
PZ
678static void
679entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 680{
bf0f6f24 681 /*
30cfdcfc 682 * Update run-time statistics of the 'current'.
bf0f6f24 683 */
30cfdcfc 684 update_curr(cfs_rq);
bf0f6f24 685
8f4d37ec
PZ
686#ifdef CONFIG_SCHED_HRTICK
687 /*
688 * queued ticks are scheduled to match the slice, so don't bother
689 * validating it and just reschedule.
690 */
691 if (queued)
692 return resched_task(rq_of(cfs_rq)->curr);
693 /*
694 * don't let the period tick interfere with the hrtick preemption
695 */
696 if (!sched_feat(DOUBLE_TICK) &&
697 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
698 return;
699#endif
700
ce6c1311 701 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 702 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
703}
704
705/**************************************************
706 * CFS operations on tasks:
707 */
708
709#ifdef CONFIG_FAIR_GROUP_SCHED
710
711/* Walk up scheduling entities hierarchy */
712#define for_each_sched_entity(se) \
713 for (; se; se = se->parent)
714
715static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
716{
717 return p->se.cfs_rq;
718}
719
720/* runqueue on which this entity is (to be) queued */
721static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
722{
723 return se->cfs_rq;
724}
725
726/* runqueue "owned" by this group */
727static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
728{
729 return grp->my_q;
730}
731
732/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
733 * another cpu ('this_cpu')
734 */
735static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
736{
29f59db3 737 return cfs_rq->tg->cfs_rq[this_cpu];
bf0f6f24
IM
738}
739
740/* Iterate thr' all leaf cfs_rq's on a runqueue */
741#define for_each_leaf_cfs_rq(rq, cfs_rq) \
ec2c507f 742 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
bf0f6f24 743
fad095a7
SV
744/* Do the two (enqueued) entities belong to the same group ? */
745static inline int
746is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24 747{
fad095a7 748 if (se->cfs_rq == pse->cfs_rq)
bf0f6f24
IM
749 return 1;
750
751 return 0;
752}
753
fad095a7
SV
754static inline struct sched_entity *parent_entity(struct sched_entity *se)
755{
756 return se->parent;
757}
758
bf0f6f24
IM
759#else /* CONFIG_FAIR_GROUP_SCHED */
760
761#define for_each_sched_entity(se) \
762 for (; se; se = NULL)
763
764static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
765{
766 return &task_rq(p)->cfs;
767}
768
769static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
770{
771 struct task_struct *p = task_of(se);
772 struct rq *rq = task_rq(p);
773
774 return &rq->cfs;
775}
776
777/* runqueue "owned" by this group */
778static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
779{
780 return NULL;
781}
782
783static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
784{
785 return &cpu_rq(this_cpu)->cfs;
786}
787
788#define for_each_leaf_cfs_rq(rq, cfs_rq) \
789 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
790
fad095a7
SV
791static inline int
792is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24
IM
793{
794 return 1;
795}
796
fad095a7
SV
797static inline struct sched_entity *parent_entity(struct sched_entity *se)
798{
799 return NULL;
800}
801
bf0f6f24
IM
802#endif /* CONFIG_FAIR_GROUP_SCHED */
803
8f4d37ec
PZ
804#ifdef CONFIG_SCHED_HRTICK
805static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
806{
807 int requeue = rq->curr == p;
808 struct sched_entity *se = &p->se;
809 struct cfs_rq *cfs_rq = cfs_rq_of(se);
810
811 WARN_ON(task_rq(p) != rq);
812
813 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
814 u64 slice = sched_slice(cfs_rq, se);
815 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
816 s64 delta = slice - ran;
817
818 if (delta < 0) {
819 if (rq->curr == p)
820 resched_task(p);
821 return;
822 }
823
824 /*
825 * Don't schedule slices shorter than 10000ns, that just
826 * doesn't make sense. Rely on vruntime for fairness.
827 */
828 if (!requeue)
829 delta = max(10000LL, delta);
830
831 hrtick_start(rq, delta, requeue);
832 }
833}
834#else
835static inline void
836hrtick_start_fair(struct rq *rq, struct task_struct *p)
837{
838}
839#endif
840
bf0f6f24
IM
841/*
842 * The enqueue_task method is called before nr_running is
843 * increased. Here we update the fair scheduling stats and
844 * then put the task into the rbtree:
845 */
fd390f6a 846static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
847{
848 struct cfs_rq *cfs_rq;
62fb1851 849 struct sched_entity *se = &p->se;
bf0f6f24
IM
850
851 for_each_sched_entity(se) {
62fb1851 852 if (se->on_rq)
bf0f6f24
IM
853 break;
854 cfs_rq = cfs_rq_of(se);
83b699ed 855 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 856 wakeup = 1;
bf0f6f24 857 }
8f4d37ec
PZ
858
859 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
860}
861
862/*
863 * The dequeue_task method is called before nr_running is
864 * decreased. We remove the task from the rbtree and
865 * update the fair scheduling stats:
866 */
f02231e5 867static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
868{
869 struct cfs_rq *cfs_rq;
62fb1851 870 struct sched_entity *se = &p->se;
bf0f6f24
IM
871
872 for_each_sched_entity(se) {
873 cfs_rq = cfs_rq_of(se);
525c2716 874 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 875 /* Don't dequeue parent if it has other entities besides us */
62fb1851 876 if (cfs_rq->load.weight)
bf0f6f24 877 break;
b9fa3df3 878 sleep = 1;
bf0f6f24 879 }
8f4d37ec
PZ
880
881 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
882}
883
884/*
1799e35d
IM
885 * sched_yield() support is very simple - we dequeue and enqueue.
886 *
887 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 888 */
4530d7ab 889static void yield_task_fair(struct rq *rq)
bf0f6f24 890{
db292ca3
IM
891 struct task_struct *curr = rq->curr;
892 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
893 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
894
895 /*
1799e35d
IM
896 * Are we the only task in the tree?
897 */
898 if (unlikely(cfs_rq->nr_running == 1))
899 return;
900
db292ca3 901 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1799e35d
IM
902 __update_rq_clock(rq);
903 /*
a2a2d680 904 * Update run-time statistics of the 'current'.
1799e35d 905 */
2b1e315d 906 update_curr(cfs_rq);
1799e35d
IM
907
908 return;
909 }
910 /*
911 * Find the rightmost entry in the rbtree:
bf0f6f24 912 */
2b1e315d 913 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
914 /*
915 * Already in the rightmost position?
916 */
2b1e315d 917 if (unlikely(rightmost->vruntime < se->vruntime))
1799e35d
IM
918 return;
919
920 /*
921 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
922 * Upon rescheduling, sched_class::put_prev_task() will place
923 * 'current' within the tree based on its new key value.
1799e35d 924 */
30cfdcfc 925 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
926}
927
e7693a36
GH
928/*
929 * wake_idle() will wake a task on an idle cpu if task->cpu is
930 * not idle and an idle cpu is available. The span of cpus to
931 * search starts with cpus closest then further out as needed,
932 * so we always favor a closer, idle cpu.
933 *
934 * Returns the CPU we should wake onto.
935 */
936#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
937static int wake_idle(int cpu, struct task_struct *p)
938{
939 cpumask_t tmp;
940 struct sched_domain *sd;
941 int i;
942
943 /*
944 * If it is idle, then it is the best cpu to run this task.
945 *
946 * This cpu is also the best, if it has more than one task already.
947 * Siblings must be also busy(in most cases) as they didn't already
948 * pickup the extra load from this cpu and hence we need not check
949 * sibling runqueue info. This will avoid the checks and cache miss
950 * penalities associated with that.
951 */
952 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
953 return cpu;
954
955 for_each_domain(cpu, sd) {
956 if (sd->flags & SD_WAKE_IDLE) {
957 cpus_and(tmp, sd->span, p->cpus_allowed);
958 for_each_cpu_mask(i, tmp) {
959 if (idle_cpu(i)) {
960 if (i != task_cpu(p)) {
961 schedstat_inc(p,
962 se.nr_wakeups_idle);
963 }
964 return i;
965 }
966 }
967 } else {
968 break;
969 }
970 }
971 return cpu;
972}
973#else
974static inline int wake_idle(int cpu, struct task_struct *p)
975{
976 return cpu;
977}
978#endif
979
980#ifdef CONFIG_SMP
098fb9db 981
4ae7d5ce
IM
982static const struct sched_class fair_sched_class;
983
098fb9db 984static int
4ae7d5ce
IM
985wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
986 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
987 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
988 unsigned int imbalance)
989{
4ae7d5ce 990 struct task_struct *curr = this_rq->curr;
098fb9db
IM
991 unsigned long tl = this_load;
992 unsigned long tl_per_task;
993
994 if (!(this_sd->flags & SD_WAKE_AFFINE))
995 return 0;
996
997 /*
4ae7d5ce
IM
998 * If the currently running task will sleep within
999 * a reasonable amount of time then attract this newly
1000 * woken task:
098fb9db 1001 */
4ae7d5ce
IM
1002 if (sync && curr->sched_class == &fair_sched_class) {
1003 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1004 p->se.avg_overlap < sysctl_sched_migration_cost)
1005 return 1;
1006 }
098fb9db
IM
1007
1008 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1009 tl_per_task = cpu_avg_load_per_task(this_cpu);
1010
1011 /*
1012 * If sync wakeup then subtract the (maximum possible)
1013 * effect of the currently running task from the load
1014 * of the current CPU:
1015 */
1016 if (sync)
1017 tl -= current->se.load.weight;
1018
ac192d39 1019 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
098fb9db
IM
1020 100*(tl + p->se.load.weight) <= imbalance*load) {
1021 /*
1022 * This domain has SD_WAKE_AFFINE and
1023 * p is cache cold in this domain, and
1024 * there is no bad imbalance.
1025 */
1026 schedstat_inc(this_sd, ttwu_move_affine);
1027 schedstat_inc(p, se.nr_wakeups_affine);
1028
1029 return 1;
1030 }
1031 return 0;
1032}
1033
e7693a36
GH
1034static int select_task_rq_fair(struct task_struct *p, int sync)
1035{
e7693a36 1036 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1037 int prev_cpu, this_cpu, new_cpu;
098fb9db 1038 unsigned long load, this_load;
4ae7d5ce 1039 struct rq *rq, *this_rq;
098fb9db 1040 unsigned int imbalance;
098fb9db 1041 int idx;
e7693a36 1042
ac192d39
IM
1043 prev_cpu = task_cpu(p);
1044 rq = task_rq(p);
1045 this_cpu = smp_processor_id();
4ae7d5ce 1046 this_rq = cpu_rq(this_cpu);
ac192d39 1047 new_cpu = prev_cpu;
e7693a36 1048
ac192d39
IM
1049 /*
1050 * 'this_sd' is the first domain that both
1051 * this_cpu and prev_cpu are present in:
1052 */
e7693a36 1053 for_each_domain(this_cpu, sd) {
ac192d39 1054 if (cpu_isset(prev_cpu, sd->span)) {
e7693a36
GH
1055 this_sd = sd;
1056 break;
1057 }
1058 }
1059
1060 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
f4827386 1061 goto out;
e7693a36
GH
1062
1063 /*
1064 * Check for affine wakeup and passive balancing possibilities.
1065 */
098fb9db 1066 if (!this_sd)
f4827386 1067 goto out;
e7693a36 1068
098fb9db
IM
1069 idx = this_sd->wake_idx;
1070
1071 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1072
ac192d39 1073 load = source_load(prev_cpu, idx);
098fb9db
IM
1074 this_load = target_load(this_cpu, idx);
1075
4ae7d5ce
IM
1076 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1077 load, this_load, imbalance))
1078 return this_cpu;
1079
1080 if (prev_cpu == this_cpu)
f4827386 1081 goto out;
098fb9db
IM
1082
1083 /*
1084 * Start passive balancing when half the imbalance_pct
1085 * limit is reached.
1086 */
1087 if (this_sd->flags & SD_WAKE_BALANCE) {
1088 if (imbalance*this_load <= 100*load) {
1089 schedstat_inc(this_sd, ttwu_move_balance);
1090 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1091 return this_cpu;
e7693a36
GH
1092 }
1093 }
1094
f4827386 1095out:
e7693a36
GH
1096 return wake_idle(new_cpu, p);
1097}
1098#endif /* CONFIG_SMP */
1099
0bbd3336
PZ
1100static unsigned long wakeup_gran(struct sched_entity *se)
1101{
1102 unsigned long gran = sysctl_sched_wakeup_granularity;
1103
1104 /*
1105 * More easily preempt - nice tasks, while not making
1106 * it harder for + nice tasks.
1107 */
1108 if (unlikely(se->load.weight > NICE_0_LOAD))
1109 gran = calc_delta_fair(gran, &se->load);
1110
1111 return gran;
1112}
1113
1114/*
1115 * Should 'se' preempt 'curr'.
1116 *
1117 * |s1
1118 * |s2
1119 * |s3
1120 * g
1121 * |<--->|c
1122 *
1123 * w(c, s1) = -1
1124 * w(c, s2) = 0
1125 * w(c, s3) = 1
1126 *
1127 */
1128static int
1129wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1130{
1131 s64 gran, vdiff = curr->vruntime - se->vruntime;
1132
1133 if (vdiff < 0)
1134 return -1;
1135
1136 gran = wakeup_gran(curr);
1137 if (vdiff > gran)
1138 return 1;
1139
1140 return 0;
1141}
e7693a36 1142
bf0f6f24
IM
1143/*
1144 * Preempt the current task with a newly woken task if needed:
1145 */
2e09bf55 1146static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1147{
1148 struct task_struct *curr = rq->curr;
fad095a7 1149 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 1150 struct sched_entity *se = &curr->se, *pse = &p->se;
bf0f6f24
IM
1151
1152 if (unlikely(rt_prio(p->prio))) {
a8e504d2 1153 update_rq_clock(rq);
b7cc0896 1154 update_curr(cfs_rq);
bf0f6f24
IM
1155 resched_task(curr);
1156 return;
1157 }
aa2ac252 1158
4ae7d5ce
IM
1159 se->last_wakeup = se->sum_exec_runtime;
1160 if (unlikely(se == pse))
1161 return;
1162
aa2ac252
PZ
1163 cfs_rq_of(pse)->next = pse;
1164
91c234b4
IM
1165 /*
1166 * Batch tasks do not preempt (their preemption is driven by
1167 * the tick):
1168 */
1169 if (unlikely(p->policy == SCHED_BATCH))
1170 return;
bf0f6f24 1171
77d9cc44
IM
1172 if (!sched_feat(WAKEUP_PREEMPT))
1173 return;
8651a86c 1174
77d9cc44
IM
1175 while (!is_same_group(se, pse)) {
1176 se = parent_entity(se);
1177 pse = parent_entity(pse);
ce6c1311 1178 }
77d9cc44 1179
0bbd3336 1180 if (wakeup_preempt_entity(se, pse) == 1)
77d9cc44 1181 resched_task(curr);
bf0f6f24
IM
1182}
1183
fb8d4724 1184static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1185{
8f4d37ec 1186 struct task_struct *p;
bf0f6f24
IM
1187 struct cfs_rq *cfs_rq = &rq->cfs;
1188 struct sched_entity *se;
1189
1190 if (unlikely(!cfs_rq->nr_running))
1191 return NULL;
1192
1193 do {
9948f4b2 1194 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1195 cfs_rq = group_cfs_rq(se);
1196 } while (cfs_rq);
1197
8f4d37ec
PZ
1198 p = task_of(se);
1199 hrtick_start_fair(rq, p);
1200
1201 return p;
bf0f6f24
IM
1202}
1203
1204/*
1205 * Account for a descheduled task:
1206 */
31ee529c 1207static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1208{
1209 struct sched_entity *se = &prev->se;
1210 struct cfs_rq *cfs_rq;
1211
1212 for_each_sched_entity(se) {
1213 cfs_rq = cfs_rq_of(se);
ab6cde26 1214 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1215 }
1216}
1217
681f3e68 1218#ifdef CONFIG_SMP
bf0f6f24
IM
1219/**************************************************
1220 * Fair scheduling class load-balancing methods:
1221 */
1222
1223/*
1224 * Load-balancing iterator. Note: while the runqueue stays locked
1225 * during the whole iteration, the current task might be
1226 * dequeued so the iterator has to be dequeue-safe. Here we
1227 * achieve that by always pre-iterating before returning
1228 * the current task:
1229 */
a9957449 1230static struct task_struct *
bf0f6f24
IM
1231__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1232{
1233 struct task_struct *p;
1234
1235 if (!curr)
1236 return NULL;
1237
1238 p = rb_entry(curr, struct task_struct, se.run_node);
1239 cfs_rq->rb_load_balance_curr = rb_next(curr);
1240
1241 return p;
1242}
1243
1244static struct task_struct *load_balance_start_fair(void *arg)
1245{
1246 struct cfs_rq *cfs_rq = arg;
1247
1248 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1249}
1250
1251static struct task_struct *load_balance_next_fair(void *arg)
1252{
1253 struct cfs_rq *cfs_rq = arg;
1254
1255 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1256}
1257
62fb1851
PZ
1258#ifdef CONFIG_FAIR_GROUP_SCHED
1259static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1260{
1261 struct sched_entity *curr;
1262 struct task_struct *p;
1263
1264 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1265 return MAX_PRIO;
1266
1267 curr = cfs_rq->curr;
1268 if (!curr)
1269 curr = __pick_next_entity(cfs_rq);
1270
1271 p = task_of(curr);
1272
1273 return p->prio;
1274}
1275#endif
1276
43010659 1277static unsigned long
bf0f6f24 1278load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1279 unsigned long max_load_move,
a4ac01c3
PW
1280 struct sched_domain *sd, enum cpu_idle_type idle,
1281 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
1282{
1283 struct cfs_rq *busy_cfs_rq;
bf0f6f24
IM
1284 long rem_load_move = max_load_move;
1285 struct rq_iterator cfs_rq_iterator;
1286
1287 cfs_rq_iterator.start = load_balance_start_fair;
1288 cfs_rq_iterator.next = load_balance_next_fair;
1289
1290 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 1291#ifdef CONFIG_FAIR_GROUP_SCHED
62fb1851
PZ
1292 struct cfs_rq *this_cfs_rq;
1293 long imbalance;
1294 unsigned long maxload;
bf0f6f24 1295
62fb1851 1296 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
6b2d7700 1297
62fb1851
PZ
1298 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1299 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1300 if (imbalance <= 0)
bf0f6f24
IM
1301 continue;
1302
62fb1851
PZ
1303 /* Don't pull more than imbalance/2 */
1304 imbalance /= 2;
1305 maxload = min(rem_load_move, imbalance);
bf0f6f24 1306
62fb1851 1307 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
a4ac01c3 1308#else
e56f31aa 1309# define maxload rem_load_move
a4ac01c3 1310#endif
e1d1484f
PW
1311 /*
1312 * pass busy_cfs_rq argument into
bf0f6f24
IM
1313 * load_balance_[start|next]_fair iterators
1314 */
1315 cfs_rq_iterator.arg = busy_cfs_rq;
62fb1851 1316 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
e1d1484f
PW
1317 maxload, sd, idle, all_pinned,
1318 this_best_prio,
1319 &cfs_rq_iterator);
bf0f6f24 1320
e1d1484f 1321 if (rem_load_move <= 0)
bf0f6f24
IM
1322 break;
1323 }
1324
43010659 1325 return max_load_move - rem_load_move;
bf0f6f24
IM
1326}
1327
e1d1484f
PW
1328static int
1329move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1330 struct sched_domain *sd, enum cpu_idle_type idle)
1331{
1332 struct cfs_rq *busy_cfs_rq;
1333 struct rq_iterator cfs_rq_iterator;
1334
1335 cfs_rq_iterator.start = load_balance_start_fair;
1336 cfs_rq_iterator.next = load_balance_next_fair;
1337
1338 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1339 /*
1340 * pass busy_cfs_rq argument into
1341 * load_balance_[start|next]_fair iterators
1342 */
1343 cfs_rq_iterator.arg = busy_cfs_rq;
1344 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1345 &cfs_rq_iterator))
1346 return 1;
1347 }
1348
1349 return 0;
1350}
681f3e68 1351#endif
e1d1484f 1352
bf0f6f24
IM
1353/*
1354 * scheduler tick hitting a task of our scheduling class:
1355 */
8f4d37ec 1356static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1357{
1358 struct cfs_rq *cfs_rq;
1359 struct sched_entity *se = &curr->se;
1360
1361 for_each_sched_entity(se) {
1362 cfs_rq = cfs_rq_of(se);
8f4d37ec 1363 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1364 }
1365}
1366
8eb172d9 1367#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1368
bf0f6f24
IM
1369/*
1370 * Share the fairness runtime between parent and child, thus the
1371 * total amount of pressure for CPU stays equal - new tasks
1372 * get a chance to run but frequent forkers are not allowed to
1373 * monopolize the CPU. Note: the parent runqueue is locked,
1374 * the child is not running yet.
1375 */
ee0827d8 1376static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1377{
1378 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1379 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1380 int this_cpu = smp_processor_id();
bf0f6f24
IM
1381
1382 sched_info_queued(p);
1383
7109c442 1384 update_curr(cfs_rq);
aeb73b04 1385 place_entity(cfs_rq, se, 1);
4d78e7b6 1386
3c90e6e9 1387 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1388 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1389 curr && curr->vruntime < se->vruntime) {
87fefa38 1390 /*
edcb60a3
IM
1391 * Upon rescheduling, sched_class::put_prev_task() will place
1392 * 'current' within the tree based on its new key value.
1393 */
4d78e7b6 1394 swap(curr->vruntime, se->vruntime);
4d78e7b6 1395 }
bf0f6f24 1396
b9dca1e0 1397 enqueue_task_fair(rq, p, 0);
bb61c210 1398 resched_task(rq->curr);
bf0f6f24
IM
1399}
1400
cb469845
SR
1401/*
1402 * Priority of the task has changed. Check to see if we preempt
1403 * the current task.
1404 */
1405static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1406 int oldprio, int running)
1407{
1408 /*
1409 * Reschedule if we are currently running on this runqueue and
1410 * our priority decreased, or if we are not currently running on
1411 * this runqueue and our priority is higher than the current's
1412 */
1413 if (running) {
1414 if (p->prio > oldprio)
1415 resched_task(rq->curr);
1416 } else
1417 check_preempt_curr(rq, p);
1418}
1419
1420/*
1421 * We switched to the sched_fair class.
1422 */
1423static void switched_to_fair(struct rq *rq, struct task_struct *p,
1424 int running)
1425{
1426 /*
1427 * We were most likely switched from sched_rt, so
1428 * kick off the schedule if running, otherwise just see
1429 * if we can still preempt the current task.
1430 */
1431 if (running)
1432 resched_task(rq->curr);
1433 else
1434 check_preempt_curr(rq, p);
1435}
1436
83b699ed
SV
1437/* Account for a task changing its policy or group.
1438 *
1439 * This routine is mostly called to set cfs_rq->curr field when a task
1440 * migrates between groups/classes.
1441 */
1442static void set_curr_task_fair(struct rq *rq)
1443{
1444 struct sched_entity *se = &rq->curr->se;
1445
1446 for_each_sched_entity(se)
1447 set_next_entity(cfs_rq_of(se), se);
1448}
1449
810b3817
PZ
1450#ifdef CONFIG_FAIR_GROUP_SCHED
1451static void moved_group_fair(struct task_struct *p)
1452{
1453 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1454
1455 update_curr(cfs_rq);
1456 place_entity(cfs_rq, &p->se, 1);
1457}
1458#endif
1459
bf0f6f24
IM
1460/*
1461 * All the scheduling class methods:
1462 */
5522d5d5
IM
1463static const struct sched_class fair_sched_class = {
1464 .next = &idle_sched_class,
bf0f6f24
IM
1465 .enqueue_task = enqueue_task_fair,
1466 .dequeue_task = dequeue_task_fair,
1467 .yield_task = yield_task_fair,
e7693a36
GH
1468#ifdef CONFIG_SMP
1469 .select_task_rq = select_task_rq_fair,
1470#endif /* CONFIG_SMP */
bf0f6f24 1471
2e09bf55 1472 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1473
1474 .pick_next_task = pick_next_task_fair,
1475 .put_prev_task = put_prev_task_fair,
1476
681f3e68 1477#ifdef CONFIG_SMP
bf0f6f24 1478 .load_balance = load_balance_fair,
e1d1484f 1479 .move_one_task = move_one_task_fair,
681f3e68 1480#endif
bf0f6f24 1481
83b699ed 1482 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1483 .task_tick = task_tick_fair,
1484 .task_new = task_new_fair,
cb469845
SR
1485
1486 .prio_changed = prio_changed_fair,
1487 .switched_to = switched_to_fair,
810b3817
PZ
1488
1489#ifdef CONFIG_FAIR_GROUP_SCHED
1490 .moved_group = moved_group_fair,
1491#endif
bf0f6f24
IM
1492};
1493
1494#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1495static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1496{
bf0f6f24
IM
1497 struct cfs_rq *cfs_rq;
1498
75c28ace
SV
1499#ifdef CONFIG_FAIR_GROUP_SCHED
1500 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1501#endif
5973e5b9 1502 rcu_read_lock();
c3b64f1e 1503 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1504 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1505 rcu_read_unlock();
bf0f6f24
IM
1506}
1507#endif
This page took 0.254728 seconds and 5 git commands to generate.