video: s3c-fb: correct window osd size offset values
[deliverable/linux.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
9745512c 26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
864616ee 29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 30 *
21805085 31 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
bf0f6f24 35 *
d274a4ce
IM
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 38 */
21406928
MG
39unsigned int sysctl_sched_latency = 6000000ULL;
40unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 41
1983a922
CE
42/*
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 *
46 * Options are:
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 */
51enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG;
53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
864616ee 56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 57 */
0bf377bb
IM
58unsigned int sysctl_sched_min_granularity = 750000ULL;
59unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
60
61/*
b2be5e96
PZ
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 */
0bf377bb 64static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
65
66/*
2bba22c5 67 * After fork, child runs first. If set to 0 (default) then
b2be5e96 68 * parent will (try to) run first.
21805085 69 */
2bba22c5 70unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 71
bf0f6f24
IM
72/*
73 * SCHED_OTHER wake-up granularity.
172e082a 74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 */
172e082a 80unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 81unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 82
da84d961
IM
83const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
84
a7a4f8a7
PT
85/*
86 * The exponential sliding window over which load is averaged for shares
87 * distribution.
88 * (default: 10msec)
89 */
90unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
91
a4c2f00f
PZ
92static const struct sched_class fair_sched_class;
93
bf0f6f24
IM
94/**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
62160e3f 98#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 99
62160e3f 100/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
101static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102{
62160e3f 103 return cfs_rq->rq;
bf0f6f24
IM
104}
105
62160e3f
IM
106/* An entity is a task if it doesn't "own" a runqueue */
107#define entity_is_task(se) (!se->my_q)
bf0f6f24 108
8f48894f
PZ
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111#ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113#endif
114 return container_of(se, struct task_struct, se);
115}
116
b758149c
PZ
117/* Walk up scheduling entities hierarchy */
118#define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122{
123 return p->se.cfs_rq;
124}
125
126/* runqueue on which this entity is (to be) queued */
127static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128{
129 return se->cfs_rq;
130}
131
132/* runqueue "owned" by this group */
133static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134{
135 return grp->my_q;
136}
137
138/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142{
143 return cfs_rq->tg->cfs_rq[this_cpu];
144}
145
3d4b47b4
PZ
146static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
147{
148 if (!cfs_rq->on_list) {
67e86250
PT
149 /*
150 * Ensure we either appear before our parent (if already
151 * enqueued) or force our parent to appear after us when it is
152 * enqueued. The fact that we always enqueue bottom-up
153 * reduces this to two cases.
154 */
155 if (cfs_rq->tg->parent &&
156 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
157 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
158 &rq_of(cfs_rq)->leaf_cfs_rq_list);
159 } else {
160 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 161 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 162 }
3d4b47b4
PZ
163
164 cfs_rq->on_list = 1;
165 }
166}
167
168static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
169{
170 if (cfs_rq->on_list) {
171 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
172 cfs_rq->on_list = 0;
173 }
174}
175
b758149c
PZ
176/* Iterate thr' all leaf cfs_rq's on a runqueue */
177#define for_each_leaf_cfs_rq(rq, cfs_rq) \
178 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
179
180/* Do the two (enqueued) entities belong to the same group ? */
181static inline int
182is_same_group(struct sched_entity *se, struct sched_entity *pse)
183{
184 if (se->cfs_rq == pse->cfs_rq)
185 return 1;
186
187 return 0;
188}
189
190static inline struct sched_entity *parent_entity(struct sched_entity *se)
191{
192 return se->parent;
193}
194
464b7527
PZ
195/* return depth at which a sched entity is present in the hierarchy */
196static inline int depth_se(struct sched_entity *se)
197{
198 int depth = 0;
199
200 for_each_sched_entity(se)
201 depth++;
202
203 return depth;
204}
205
206static void
207find_matching_se(struct sched_entity **se, struct sched_entity **pse)
208{
209 int se_depth, pse_depth;
210
211 /*
212 * preemption test can be made between sibling entities who are in the
213 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
214 * both tasks until we find their ancestors who are siblings of common
215 * parent.
216 */
217
218 /* First walk up until both entities are at same depth */
219 se_depth = depth_se(*se);
220 pse_depth = depth_se(*pse);
221
222 while (se_depth > pse_depth) {
223 se_depth--;
224 *se = parent_entity(*se);
225 }
226
227 while (pse_depth > se_depth) {
228 pse_depth--;
229 *pse = parent_entity(*pse);
230 }
231
232 while (!is_same_group(*se, *pse)) {
233 *se = parent_entity(*se);
234 *pse = parent_entity(*pse);
235 }
236}
237
8f48894f
PZ
238#else /* !CONFIG_FAIR_GROUP_SCHED */
239
240static inline struct task_struct *task_of(struct sched_entity *se)
241{
242 return container_of(se, struct task_struct, se);
243}
bf0f6f24 244
62160e3f
IM
245static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
246{
247 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
248}
249
250#define entity_is_task(se) 1
251
b758149c
PZ
252#define for_each_sched_entity(se) \
253 for (; se; se = NULL)
bf0f6f24 254
b758149c 255static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 256{
b758149c 257 return &task_rq(p)->cfs;
bf0f6f24
IM
258}
259
b758149c
PZ
260static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
261{
262 struct task_struct *p = task_of(se);
263 struct rq *rq = task_rq(p);
264
265 return &rq->cfs;
266}
267
268/* runqueue "owned" by this group */
269static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
270{
271 return NULL;
272}
273
274static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
275{
276 return &cpu_rq(this_cpu)->cfs;
277}
278
3d4b47b4
PZ
279static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
280{
281}
282
283static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
284{
285}
286
b758149c
PZ
287#define for_each_leaf_cfs_rq(rq, cfs_rq) \
288 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
289
290static inline int
291is_same_group(struct sched_entity *se, struct sched_entity *pse)
292{
293 return 1;
294}
295
296static inline struct sched_entity *parent_entity(struct sched_entity *se)
297{
298 return NULL;
299}
300
464b7527
PZ
301static inline void
302find_matching_se(struct sched_entity **se, struct sched_entity **pse)
303{
304}
305
b758149c
PZ
306#endif /* CONFIG_FAIR_GROUP_SCHED */
307
bf0f6f24
IM
308
309/**************************************************************
310 * Scheduling class tree data structure manipulation methods:
311 */
312
0702e3eb 313static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 314{
368059a9
PZ
315 s64 delta = (s64)(vruntime - min_vruntime);
316 if (delta > 0)
02e0431a
PZ
317 min_vruntime = vruntime;
318
319 return min_vruntime;
320}
321
0702e3eb 322static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
323{
324 s64 delta = (s64)(vruntime - min_vruntime);
325 if (delta < 0)
326 min_vruntime = vruntime;
327
328 return min_vruntime;
329}
330
54fdc581
FC
331static inline int entity_before(struct sched_entity *a,
332 struct sched_entity *b)
333{
334 return (s64)(a->vruntime - b->vruntime) < 0;
335}
336
0702e3eb 337static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 338{
30cfdcfc 339 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
340}
341
1af5f730
PZ
342static void update_min_vruntime(struct cfs_rq *cfs_rq)
343{
344 u64 vruntime = cfs_rq->min_vruntime;
345
346 if (cfs_rq->curr)
347 vruntime = cfs_rq->curr->vruntime;
348
349 if (cfs_rq->rb_leftmost) {
350 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
351 struct sched_entity,
352 run_node);
353
e17036da 354 if (!cfs_rq->curr)
1af5f730
PZ
355 vruntime = se->vruntime;
356 else
357 vruntime = min_vruntime(vruntime, se->vruntime);
358 }
359
360 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
361#ifndef CONFIG_64BIT
362 smp_wmb();
363 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
364#endif
1af5f730
PZ
365}
366
bf0f6f24
IM
367/*
368 * Enqueue an entity into the rb-tree:
369 */
0702e3eb 370static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
371{
372 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
373 struct rb_node *parent = NULL;
374 struct sched_entity *entry;
9014623c 375 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
376 int leftmost = 1;
377
378 /*
379 * Find the right place in the rbtree:
380 */
381 while (*link) {
382 parent = *link;
383 entry = rb_entry(parent, struct sched_entity, run_node);
384 /*
385 * We dont care about collisions. Nodes with
386 * the same key stay together.
387 */
9014623c 388 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
389 link = &parent->rb_left;
390 } else {
391 link = &parent->rb_right;
392 leftmost = 0;
393 }
394 }
395
396 /*
397 * Maintain a cache of leftmost tree entries (it is frequently
398 * used):
399 */
1af5f730 400 if (leftmost)
57cb499d 401 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
402
403 rb_link_node(&se->run_node, parent, link);
404 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
405}
406
0702e3eb 407static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 408{
3fe69747
PZ
409 if (cfs_rq->rb_leftmost == &se->run_node) {
410 struct rb_node *next_node;
3fe69747
PZ
411
412 next_node = rb_next(&se->run_node);
413 cfs_rq->rb_leftmost = next_node;
3fe69747 414 }
e9acbff6 415
bf0f6f24 416 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
417}
418
ac53db59 419static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 420{
f4b6755f
PZ
421 struct rb_node *left = cfs_rq->rb_leftmost;
422
423 if (!left)
424 return NULL;
425
426 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
427}
428
ac53db59
RR
429static struct sched_entity *__pick_next_entity(struct sched_entity *se)
430{
431 struct rb_node *next = rb_next(&se->run_node);
432
433 if (!next)
434 return NULL;
435
436 return rb_entry(next, struct sched_entity, run_node);
437}
438
439#ifdef CONFIG_SCHED_DEBUG
f4b6755f 440static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 441{
7eee3e67 442 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 443
70eee74b
BS
444 if (!last)
445 return NULL;
7eee3e67
IM
446
447 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
448}
449
bf0f6f24
IM
450/**************************************************************
451 * Scheduling class statistics methods:
452 */
453
acb4a848 454int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 455 void __user *buffer, size_t *lenp,
b2be5e96
PZ
456 loff_t *ppos)
457{
8d65af78 458 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 459 int factor = get_update_sysctl_factor();
b2be5e96
PZ
460
461 if (ret || !write)
462 return ret;
463
464 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
465 sysctl_sched_min_granularity);
466
acb4a848
CE
467#define WRT_SYSCTL(name) \
468 (normalized_sysctl_##name = sysctl_##name / (factor))
469 WRT_SYSCTL(sched_min_granularity);
470 WRT_SYSCTL(sched_latency);
471 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
472#undef WRT_SYSCTL
473
b2be5e96
PZ
474 return 0;
475}
476#endif
647e7cac 477
a7be37ac 478/*
f9c0b095 479 * delta /= w
a7be37ac
PZ
480 */
481static inline unsigned long
482calc_delta_fair(unsigned long delta, struct sched_entity *se)
483{
f9c0b095
PZ
484 if (unlikely(se->load.weight != NICE_0_LOAD))
485 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
486
487 return delta;
488}
489
647e7cac
IM
490/*
491 * The idea is to set a period in which each task runs once.
492 *
493 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
494 * this period because otherwise the slices get too small.
495 *
496 * p = (nr <= nl) ? l : l*nr/nl
497 */
4d78e7b6
PZ
498static u64 __sched_period(unsigned long nr_running)
499{
500 u64 period = sysctl_sched_latency;
b2be5e96 501 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
502
503 if (unlikely(nr_running > nr_latency)) {
4bf0b771 504 period = sysctl_sched_min_granularity;
4d78e7b6 505 period *= nr_running;
4d78e7b6
PZ
506 }
507
508 return period;
509}
510
647e7cac
IM
511/*
512 * We calculate the wall-time slice from the period by taking a part
513 * proportional to the weight.
514 *
f9c0b095 515 * s = p*P[w/rw]
647e7cac 516 */
6d0f0ebd 517static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 518{
0a582440 519 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 520
0a582440 521 for_each_sched_entity(se) {
6272d68c 522 struct load_weight *load;
3104bf03 523 struct load_weight lw;
6272d68c
LM
524
525 cfs_rq = cfs_rq_of(se);
526 load = &cfs_rq->load;
f9c0b095 527
0a582440 528 if (unlikely(!se->on_rq)) {
3104bf03 529 lw = cfs_rq->load;
0a582440
MG
530
531 update_load_add(&lw, se->load.weight);
532 load = &lw;
533 }
534 slice = calc_delta_mine(slice, se->load.weight, load);
535 }
536 return slice;
bf0f6f24
IM
537}
538
647e7cac 539/*
ac884dec 540 * We calculate the vruntime slice of a to be inserted task
647e7cac 541 *
f9c0b095 542 * vs = s/w
647e7cac 543 */
f9c0b095 544static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 545{
f9c0b095 546 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
547}
548
d6b55918 549static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 550static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 551
bf0f6f24
IM
552/*
553 * Update the current task's runtime statistics. Skip current tasks that
554 * are not in our scheduling class.
555 */
556static inline void
8ebc91d9
IM
557__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
558 unsigned long delta_exec)
bf0f6f24 559{
bbdba7c0 560 unsigned long delta_exec_weighted;
bf0f6f24 561
41acab88
LDM
562 schedstat_set(curr->statistics.exec_max,
563 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
564
565 curr->sum_exec_runtime += delta_exec;
7a62eabc 566 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 567 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 568
e9acbff6 569 curr->vruntime += delta_exec_weighted;
1af5f730 570 update_min_vruntime(cfs_rq);
3b3d190e 571
70caf8a6 572#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 573 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 574#endif
bf0f6f24
IM
575}
576
b7cc0896 577static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 578{
429d43bc 579 struct sched_entity *curr = cfs_rq->curr;
305e6835 580 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
581 unsigned long delta_exec;
582
583 if (unlikely(!curr))
584 return;
585
586 /*
587 * Get the amount of time the current task was running
588 * since the last time we changed load (this cannot
589 * overflow on 32 bits):
590 */
8ebc91d9 591 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
592 if (!delta_exec)
593 return;
bf0f6f24 594
8ebc91d9
IM
595 __update_curr(cfs_rq, curr, delta_exec);
596 curr->exec_start = now;
d842de87
SV
597
598 if (entity_is_task(curr)) {
599 struct task_struct *curtask = task_of(curr);
600
f977bb49 601 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 602 cpuacct_charge(curtask, delta_exec);
f06febc9 603 account_group_exec_runtime(curtask, delta_exec);
d842de87 604 }
bf0f6f24
IM
605}
606
607static inline void
5870db5b 608update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 609{
41acab88 610 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
611}
612
bf0f6f24
IM
613/*
614 * Task is being enqueued - update stats:
615 */
d2417e5a 616static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 617{
bf0f6f24
IM
618 /*
619 * Are we enqueueing a waiting task? (for current tasks
620 * a dequeue/enqueue event is a NOP)
621 */
429d43bc 622 if (se != cfs_rq->curr)
5870db5b 623 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
624}
625
bf0f6f24 626static void
9ef0a961 627update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 628{
41acab88
LDM
629 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
630 rq_of(cfs_rq)->clock - se->statistics.wait_start));
631 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
632 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
633 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
634#ifdef CONFIG_SCHEDSTATS
635 if (entity_is_task(se)) {
636 trace_sched_stat_wait(task_of(se),
41acab88 637 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
638 }
639#endif
41acab88 640 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
641}
642
643static inline void
19b6a2e3 644update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 645{
bf0f6f24
IM
646 /*
647 * Mark the end of the wait period if dequeueing a
648 * waiting task:
649 */
429d43bc 650 if (se != cfs_rq->curr)
9ef0a961 651 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
652}
653
654/*
655 * We are picking a new current task - update its stats:
656 */
657static inline void
79303e9e 658update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
659{
660 /*
661 * We are starting a new run period:
662 */
305e6835 663 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
664}
665
bf0f6f24
IM
666/**************************************************
667 * Scheduling class queueing methods:
668 */
669
c09595f6
PZ
670#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
671static void
672add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
673{
674 cfs_rq->task_weight += weight;
675}
676#else
677static inline void
678add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
679{
680}
681#endif
682
30cfdcfc
DA
683static void
684account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
685{
686 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
687 if (!parent_entity(se))
688 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 689 if (entity_is_task(se)) {
c09595f6 690 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
691 list_add(&se->group_node, &cfs_rq->tasks);
692 }
30cfdcfc 693 cfs_rq->nr_running++;
30cfdcfc
DA
694}
695
696static void
697account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
698{
699 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
700 if (!parent_entity(se))
701 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 702 if (entity_is_task(se)) {
c09595f6 703 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
704 list_del_init(&se->group_node);
705 }
30cfdcfc 706 cfs_rq->nr_running--;
30cfdcfc
DA
707}
708
3ff6dcac
YZ
709#ifdef CONFIG_FAIR_GROUP_SCHED
710# ifdef CONFIG_SMP
d6b55918
PT
711static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
712 int global_update)
713{
714 struct task_group *tg = cfs_rq->tg;
715 long load_avg;
716
717 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
718 load_avg -= cfs_rq->load_contribution;
719
720 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
721 atomic_add(load_avg, &tg->load_weight);
722 cfs_rq->load_contribution += load_avg;
723 }
724}
725
726static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 727{
a7a4f8a7 728 u64 period = sysctl_sched_shares_window;
2069dd75 729 u64 now, delta;
e33078ba 730 unsigned long load = cfs_rq->load.weight;
2069dd75 731
b815f196 732 if (cfs_rq->tg == &root_task_group)
2069dd75
PZ
733 return;
734
05ca62c6 735 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
736 delta = now - cfs_rq->load_stamp;
737
e33078ba
PT
738 /* truncate load history at 4 idle periods */
739 if (cfs_rq->load_stamp > cfs_rq->load_last &&
740 now - cfs_rq->load_last > 4 * period) {
741 cfs_rq->load_period = 0;
742 cfs_rq->load_avg = 0;
f07333bf 743 delta = period - 1;
e33078ba
PT
744 }
745
2069dd75 746 cfs_rq->load_stamp = now;
3b3d190e 747 cfs_rq->load_unacc_exec_time = 0;
2069dd75 748 cfs_rq->load_period += delta;
e33078ba
PT
749 if (load) {
750 cfs_rq->load_last = now;
751 cfs_rq->load_avg += delta * load;
752 }
2069dd75 753
d6b55918
PT
754 /* consider updating load contribution on each fold or truncate */
755 if (global_update || cfs_rq->load_period > period
756 || !cfs_rq->load_period)
757 update_cfs_rq_load_contribution(cfs_rq, global_update);
758
2069dd75
PZ
759 while (cfs_rq->load_period > period) {
760 /*
761 * Inline assembly required to prevent the compiler
762 * optimising this loop into a divmod call.
763 * See __iter_div_u64_rem() for another example of this.
764 */
765 asm("" : "+rm" (cfs_rq->load_period));
766 cfs_rq->load_period /= 2;
767 cfs_rq->load_avg /= 2;
768 }
3d4b47b4 769
e33078ba
PT
770 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
771 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
772}
773
6d5ab293 774static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
775{
776 long load_weight, load, shares;
777
6d5ab293 778 load = cfs_rq->load.weight;
3ff6dcac
YZ
779
780 load_weight = atomic_read(&tg->load_weight);
3ff6dcac 781 load_weight += load;
6d5ab293 782 load_weight -= cfs_rq->load_contribution;
3ff6dcac
YZ
783
784 shares = (tg->shares * load);
785 if (load_weight)
786 shares /= load_weight;
787
788 if (shares < MIN_SHARES)
789 shares = MIN_SHARES;
790 if (shares > tg->shares)
791 shares = tg->shares;
792
793 return shares;
794}
795
796static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
797{
798 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
799 update_cfs_load(cfs_rq, 0);
6d5ab293 800 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
801 }
802}
803# else /* CONFIG_SMP */
804static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
805{
806}
807
6d5ab293 808static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
809{
810 return tg->shares;
811}
812
813static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
814{
815}
816# endif /* CONFIG_SMP */
2069dd75
PZ
817static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
818 unsigned long weight)
819{
19e5eebb
PT
820 if (se->on_rq) {
821 /* commit outstanding execution time */
822 if (cfs_rq->curr == se)
823 update_curr(cfs_rq);
2069dd75 824 account_entity_dequeue(cfs_rq, se);
19e5eebb 825 }
2069dd75
PZ
826
827 update_load_set(&se->load, weight);
828
829 if (se->on_rq)
830 account_entity_enqueue(cfs_rq, se);
831}
832
6d5ab293 833static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
834{
835 struct task_group *tg;
836 struct sched_entity *se;
3ff6dcac 837 long shares;
2069dd75 838
2069dd75
PZ
839 tg = cfs_rq->tg;
840 se = tg->se[cpu_of(rq_of(cfs_rq))];
841 if (!se)
842 return;
3ff6dcac
YZ
843#ifndef CONFIG_SMP
844 if (likely(se->load.weight == tg->shares))
845 return;
846#endif
6d5ab293 847 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
848
849 reweight_entity(cfs_rq_of(se), se, shares);
850}
851#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 852static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
853{
854}
855
6d5ab293 856static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
857{
858}
43365bd7
PT
859
860static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
861{
862}
2069dd75
PZ
863#endif /* CONFIG_FAIR_GROUP_SCHED */
864
2396af69 865static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 866{
bf0f6f24 867#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
868 struct task_struct *tsk = NULL;
869
870 if (entity_is_task(se))
871 tsk = task_of(se);
872
41acab88
LDM
873 if (se->statistics.sleep_start) {
874 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
875
876 if ((s64)delta < 0)
877 delta = 0;
878
41acab88
LDM
879 if (unlikely(delta > se->statistics.sleep_max))
880 se->statistics.sleep_max = delta;
bf0f6f24 881
41acab88
LDM
882 se->statistics.sleep_start = 0;
883 se->statistics.sum_sleep_runtime += delta;
9745512c 884
768d0c27 885 if (tsk) {
e414314c 886 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
887 trace_sched_stat_sleep(tsk, delta);
888 }
bf0f6f24 889 }
41acab88
LDM
890 if (se->statistics.block_start) {
891 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
892
893 if ((s64)delta < 0)
894 delta = 0;
895
41acab88
LDM
896 if (unlikely(delta > se->statistics.block_max))
897 se->statistics.block_max = delta;
bf0f6f24 898
41acab88
LDM
899 se->statistics.block_start = 0;
900 se->statistics.sum_sleep_runtime += delta;
30084fbd 901
e414314c 902 if (tsk) {
8f0dfc34 903 if (tsk->in_iowait) {
41acab88
LDM
904 se->statistics.iowait_sum += delta;
905 se->statistics.iowait_count++;
768d0c27 906 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
907 }
908
e414314c
PZ
909 /*
910 * Blocking time is in units of nanosecs, so shift by
911 * 20 to get a milliseconds-range estimation of the
912 * amount of time that the task spent sleeping:
913 */
914 if (unlikely(prof_on == SLEEP_PROFILING)) {
915 profile_hits(SLEEP_PROFILING,
916 (void *)get_wchan(tsk),
917 delta >> 20);
918 }
919 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 920 }
bf0f6f24
IM
921 }
922#endif
923}
924
ddc97297
PZ
925static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
926{
927#ifdef CONFIG_SCHED_DEBUG
928 s64 d = se->vruntime - cfs_rq->min_vruntime;
929
930 if (d < 0)
931 d = -d;
932
933 if (d > 3*sysctl_sched_latency)
934 schedstat_inc(cfs_rq, nr_spread_over);
935#endif
936}
937
aeb73b04
PZ
938static void
939place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
940{
1af5f730 941 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 942
2cb8600e
PZ
943 /*
944 * The 'current' period is already promised to the current tasks,
945 * however the extra weight of the new task will slow them down a
946 * little, place the new task so that it fits in the slot that
947 * stays open at the end.
948 */
94dfb5e7 949 if (initial && sched_feat(START_DEBIT))
f9c0b095 950 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 951
a2e7a7eb 952 /* sleeps up to a single latency don't count. */
5ca9880c 953 if (!initial) {
a2e7a7eb 954 unsigned long thresh = sysctl_sched_latency;
a7be37ac 955
a2e7a7eb
MG
956 /*
957 * Halve their sleep time's effect, to allow
958 * for a gentler effect of sleepers:
959 */
960 if (sched_feat(GENTLE_FAIR_SLEEPERS))
961 thresh >>= 1;
51e0304c 962
a2e7a7eb 963 vruntime -= thresh;
aeb73b04
PZ
964 }
965
b5d9d734
MG
966 /* ensure we never gain time by being placed backwards. */
967 vruntime = max_vruntime(se->vruntime, vruntime);
968
67e9fb2a 969 se->vruntime = vruntime;
aeb73b04
PZ
970}
971
bf0f6f24 972static void
88ec22d3 973enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 974{
88ec22d3
PZ
975 /*
976 * Update the normalized vruntime before updating min_vruntime
977 * through callig update_curr().
978 */
371fd7e7 979 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
980 se->vruntime += cfs_rq->min_vruntime;
981
bf0f6f24 982 /*
a2a2d680 983 * Update run-time statistics of the 'current'.
bf0f6f24 984 */
b7cc0896 985 update_curr(cfs_rq);
d6b55918 986 update_cfs_load(cfs_rq, 0);
a992241d 987 account_entity_enqueue(cfs_rq, se);
6d5ab293 988 update_cfs_shares(cfs_rq);
bf0f6f24 989
88ec22d3 990 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 991 place_entity(cfs_rq, se, 0);
2396af69 992 enqueue_sleeper(cfs_rq, se);
e9acbff6 993 }
bf0f6f24 994
d2417e5a 995 update_stats_enqueue(cfs_rq, se);
ddc97297 996 check_spread(cfs_rq, se);
83b699ed
SV
997 if (se != cfs_rq->curr)
998 __enqueue_entity(cfs_rq, se);
2069dd75 999 se->on_rq = 1;
3d4b47b4
PZ
1000
1001 if (cfs_rq->nr_running == 1)
1002 list_add_leaf_cfs_rq(cfs_rq);
bf0f6f24
IM
1003}
1004
2c13c919 1005static void __clear_buddies_last(struct sched_entity *se)
2002c695 1006{
2c13c919
RR
1007 for_each_sched_entity(se) {
1008 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1009 if (cfs_rq->last == se)
1010 cfs_rq->last = NULL;
1011 else
1012 break;
1013 }
1014}
2002c695 1015
2c13c919
RR
1016static void __clear_buddies_next(struct sched_entity *se)
1017{
1018 for_each_sched_entity(se) {
1019 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1020 if (cfs_rq->next == se)
1021 cfs_rq->next = NULL;
1022 else
1023 break;
1024 }
2002c695
PZ
1025}
1026
ac53db59
RR
1027static void __clear_buddies_skip(struct sched_entity *se)
1028{
1029 for_each_sched_entity(se) {
1030 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1031 if (cfs_rq->skip == se)
1032 cfs_rq->skip = NULL;
1033 else
1034 break;
1035 }
1036}
1037
a571bbea
PZ
1038static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1039{
2c13c919
RR
1040 if (cfs_rq->last == se)
1041 __clear_buddies_last(se);
1042
1043 if (cfs_rq->next == se)
1044 __clear_buddies_next(se);
ac53db59
RR
1045
1046 if (cfs_rq->skip == se)
1047 __clear_buddies_skip(se);
a571bbea
PZ
1048}
1049
bf0f6f24 1050static void
371fd7e7 1051dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1052{
a2a2d680
DA
1053 /*
1054 * Update run-time statistics of the 'current'.
1055 */
1056 update_curr(cfs_rq);
1057
19b6a2e3 1058 update_stats_dequeue(cfs_rq, se);
371fd7e7 1059 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1060#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1061 if (entity_is_task(se)) {
1062 struct task_struct *tsk = task_of(se);
1063
1064 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1065 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1066 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1067 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1068 }
db36cc7d 1069#endif
67e9fb2a
PZ
1070 }
1071
2002c695 1072 clear_buddies(cfs_rq, se);
4793241b 1073
83b699ed 1074 if (se != cfs_rq->curr)
30cfdcfc 1075 __dequeue_entity(cfs_rq, se);
2069dd75 1076 se->on_rq = 0;
d6b55918 1077 update_cfs_load(cfs_rq, 0);
30cfdcfc 1078 account_entity_dequeue(cfs_rq, se);
1af5f730 1079 update_min_vruntime(cfs_rq);
6d5ab293 1080 update_cfs_shares(cfs_rq);
88ec22d3
PZ
1081
1082 /*
1083 * Normalize the entity after updating the min_vruntime because the
1084 * update can refer to the ->curr item and we need to reflect this
1085 * movement in our normalized position.
1086 */
371fd7e7 1087 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1088 se->vruntime -= cfs_rq->min_vruntime;
bf0f6f24
IM
1089}
1090
1091/*
1092 * Preempt the current task with a newly woken task if needed:
1093 */
7c92e54f 1094static void
2e09bf55 1095check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1096{
11697830
PZ
1097 unsigned long ideal_runtime, delta_exec;
1098
6d0f0ebd 1099 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1100 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1101 if (delta_exec > ideal_runtime) {
bf0f6f24 1102 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1103 /*
1104 * The current task ran long enough, ensure it doesn't get
1105 * re-elected due to buddy favours.
1106 */
1107 clear_buddies(cfs_rq, curr);
f685ceac
MG
1108 return;
1109 }
1110
1111 /*
1112 * Ensure that a task that missed wakeup preemption by a
1113 * narrow margin doesn't have to wait for a full slice.
1114 * This also mitigates buddy induced latencies under load.
1115 */
1116 if (!sched_feat(WAKEUP_PREEMPT))
1117 return;
1118
1119 if (delta_exec < sysctl_sched_min_granularity)
1120 return;
1121
1122 if (cfs_rq->nr_running > 1) {
ac53db59 1123 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac
MG
1124 s64 delta = curr->vruntime - se->vruntime;
1125
d7d82944
MG
1126 if (delta < 0)
1127 return;
1128
f685ceac
MG
1129 if (delta > ideal_runtime)
1130 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 1131 }
bf0f6f24
IM
1132}
1133
83b699ed 1134static void
8494f412 1135set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1136{
83b699ed
SV
1137 /* 'current' is not kept within the tree. */
1138 if (se->on_rq) {
1139 /*
1140 * Any task has to be enqueued before it get to execute on
1141 * a CPU. So account for the time it spent waiting on the
1142 * runqueue.
1143 */
1144 update_stats_wait_end(cfs_rq, se);
1145 __dequeue_entity(cfs_rq, se);
1146 }
1147
79303e9e 1148 update_stats_curr_start(cfs_rq, se);
429d43bc 1149 cfs_rq->curr = se;
eba1ed4b
IM
1150#ifdef CONFIG_SCHEDSTATS
1151 /*
1152 * Track our maximum slice length, if the CPU's load is at
1153 * least twice that of our own weight (i.e. dont track it
1154 * when there are only lesser-weight tasks around):
1155 */
495eca49 1156 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1157 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1158 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1159 }
1160#endif
4a55b450 1161 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1162}
1163
3f3a4904
PZ
1164static int
1165wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1166
ac53db59
RR
1167/*
1168 * Pick the next process, keeping these things in mind, in this order:
1169 * 1) keep things fair between processes/task groups
1170 * 2) pick the "next" process, since someone really wants that to run
1171 * 3) pick the "last" process, for cache locality
1172 * 4) do not run the "skip" process, if something else is available
1173 */
f4b6755f 1174static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1175{
ac53db59 1176 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1177 struct sched_entity *left = se;
f4b6755f 1178
ac53db59
RR
1179 /*
1180 * Avoid running the skip buddy, if running something else can
1181 * be done without getting too unfair.
1182 */
1183 if (cfs_rq->skip == se) {
1184 struct sched_entity *second = __pick_next_entity(se);
1185 if (second && wakeup_preempt_entity(second, left) < 1)
1186 se = second;
1187 }
aa2ac252 1188
f685ceac
MG
1189 /*
1190 * Prefer last buddy, try to return the CPU to a preempted task.
1191 */
1192 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1193 se = cfs_rq->last;
1194
ac53db59
RR
1195 /*
1196 * Someone really wants this to run. If it's not unfair, run it.
1197 */
1198 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1199 se = cfs_rq->next;
1200
f685ceac 1201 clear_buddies(cfs_rq, se);
4793241b
PZ
1202
1203 return se;
aa2ac252
PZ
1204}
1205
ab6cde26 1206static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1207{
1208 /*
1209 * If still on the runqueue then deactivate_task()
1210 * was not called and update_curr() has to be done:
1211 */
1212 if (prev->on_rq)
b7cc0896 1213 update_curr(cfs_rq);
bf0f6f24 1214
ddc97297 1215 check_spread(cfs_rq, prev);
30cfdcfc 1216 if (prev->on_rq) {
5870db5b 1217 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1218 /* Put 'current' back into the tree. */
1219 __enqueue_entity(cfs_rq, prev);
1220 }
429d43bc 1221 cfs_rq->curr = NULL;
bf0f6f24
IM
1222}
1223
8f4d37ec
PZ
1224static void
1225entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1226{
bf0f6f24 1227 /*
30cfdcfc 1228 * Update run-time statistics of the 'current'.
bf0f6f24 1229 */
30cfdcfc 1230 update_curr(cfs_rq);
bf0f6f24 1231
43365bd7
PT
1232 /*
1233 * Update share accounting for long-running entities.
1234 */
1235 update_entity_shares_tick(cfs_rq);
1236
8f4d37ec
PZ
1237#ifdef CONFIG_SCHED_HRTICK
1238 /*
1239 * queued ticks are scheduled to match the slice, so don't bother
1240 * validating it and just reschedule.
1241 */
983ed7a6
HH
1242 if (queued) {
1243 resched_task(rq_of(cfs_rq)->curr);
1244 return;
1245 }
8f4d37ec
PZ
1246 /*
1247 * don't let the period tick interfere with the hrtick preemption
1248 */
1249 if (!sched_feat(DOUBLE_TICK) &&
1250 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1251 return;
1252#endif
1253
ce6c1311 1254 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 1255 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1256}
1257
1258/**************************************************
1259 * CFS operations on tasks:
1260 */
1261
8f4d37ec
PZ
1262#ifdef CONFIG_SCHED_HRTICK
1263static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1264{
8f4d37ec
PZ
1265 struct sched_entity *se = &p->se;
1266 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1267
1268 WARN_ON(task_rq(p) != rq);
1269
1270 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1271 u64 slice = sched_slice(cfs_rq, se);
1272 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1273 s64 delta = slice - ran;
1274
1275 if (delta < 0) {
1276 if (rq->curr == p)
1277 resched_task(p);
1278 return;
1279 }
1280
1281 /*
1282 * Don't schedule slices shorter than 10000ns, that just
1283 * doesn't make sense. Rely on vruntime for fairness.
1284 */
31656519 1285 if (rq->curr != p)
157124c1 1286 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1287
31656519 1288 hrtick_start(rq, delta);
8f4d37ec
PZ
1289 }
1290}
a4c2f00f
PZ
1291
1292/*
1293 * called from enqueue/dequeue and updates the hrtick when the
1294 * current task is from our class and nr_running is low enough
1295 * to matter.
1296 */
1297static void hrtick_update(struct rq *rq)
1298{
1299 struct task_struct *curr = rq->curr;
1300
1301 if (curr->sched_class != &fair_sched_class)
1302 return;
1303
1304 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1305 hrtick_start_fair(rq, curr);
1306}
55e12e5e 1307#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1308static inline void
1309hrtick_start_fair(struct rq *rq, struct task_struct *p)
1310{
1311}
a4c2f00f
PZ
1312
1313static inline void hrtick_update(struct rq *rq)
1314{
1315}
8f4d37ec
PZ
1316#endif
1317
bf0f6f24
IM
1318/*
1319 * The enqueue_task method is called before nr_running is
1320 * increased. Here we update the fair scheduling stats and
1321 * then put the task into the rbtree:
1322 */
ea87bb78 1323static void
371fd7e7 1324enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1325{
1326 struct cfs_rq *cfs_rq;
62fb1851 1327 struct sched_entity *se = &p->se;
bf0f6f24
IM
1328
1329 for_each_sched_entity(se) {
62fb1851 1330 if (se->on_rq)
bf0f6f24
IM
1331 break;
1332 cfs_rq = cfs_rq_of(se);
88ec22d3
PZ
1333 enqueue_entity(cfs_rq, se, flags);
1334 flags = ENQUEUE_WAKEUP;
bf0f6f24 1335 }
8f4d37ec 1336
2069dd75
PZ
1337 for_each_sched_entity(se) {
1338 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1339
d6b55918 1340 update_cfs_load(cfs_rq, 0);
6d5ab293 1341 update_cfs_shares(cfs_rq);
2069dd75
PZ
1342 }
1343
a4c2f00f 1344 hrtick_update(rq);
bf0f6f24
IM
1345}
1346
2f36825b
VP
1347static void set_next_buddy(struct sched_entity *se);
1348
bf0f6f24
IM
1349/*
1350 * The dequeue_task method is called before nr_running is
1351 * decreased. We remove the task from the rbtree and
1352 * update the fair scheduling stats:
1353 */
371fd7e7 1354static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1355{
1356 struct cfs_rq *cfs_rq;
62fb1851 1357 struct sched_entity *se = &p->se;
2f36825b 1358 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
1359
1360 for_each_sched_entity(se) {
1361 cfs_rq = cfs_rq_of(se);
371fd7e7 1362 dequeue_entity(cfs_rq, se, flags);
2069dd75 1363
bf0f6f24 1364 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
1365 if (cfs_rq->load.weight) {
1366 /*
1367 * Bias pick_next to pick a task from this cfs_rq, as
1368 * p is sleeping when it is within its sched_slice.
1369 */
1370 if (task_sleep && parent_entity(se))
1371 set_next_buddy(parent_entity(se));
bf0f6f24 1372 break;
2f36825b 1373 }
371fd7e7 1374 flags |= DEQUEUE_SLEEP;
bf0f6f24 1375 }
8f4d37ec 1376
2069dd75
PZ
1377 for_each_sched_entity(se) {
1378 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1379
d6b55918 1380 update_cfs_load(cfs_rq, 0);
6d5ab293 1381 update_cfs_shares(cfs_rq);
2069dd75
PZ
1382 }
1383
a4c2f00f 1384 hrtick_update(rq);
bf0f6f24
IM
1385}
1386
e7693a36 1387#ifdef CONFIG_SMP
098fb9db 1388
74f8e4b2 1389static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
1390{
1391 struct sched_entity *se = &p->se;
1392 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
1393 u64 min_vruntime;
1394
1395#ifndef CONFIG_64BIT
1396 u64 min_vruntime_copy;
88ec22d3 1397
3fe1698b
PZ
1398 do {
1399 min_vruntime_copy = cfs_rq->min_vruntime_copy;
1400 smp_rmb();
1401 min_vruntime = cfs_rq->min_vruntime;
1402 } while (min_vruntime != min_vruntime_copy);
1403#else
1404 min_vruntime = cfs_rq->min_vruntime;
1405#endif
88ec22d3 1406
3fe1698b 1407 se->vruntime -= min_vruntime;
88ec22d3
PZ
1408}
1409
bb3469ac 1410#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1411/*
1412 * effective_load() calculates the load change as seen from the root_task_group
1413 *
1414 * Adding load to a group doesn't make a group heavier, but can cause movement
1415 * of group shares between cpus. Assuming the shares were perfectly aligned one
1416 * can calculate the shift in shares.
f5bfb7d9 1417 */
2069dd75 1418static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 1419{
4be9daaa 1420 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1421
1422 if (!tg->parent)
1423 return wl;
1424
4be9daaa 1425 for_each_sched_entity(se) {
977dda7c 1426 long lw, w;
4be9daaa 1427
977dda7c
PT
1428 tg = se->my_q->tg;
1429 w = se->my_q->load.weight;
bb3469ac 1430
977dda7c
PT
1431 /* use this cpu's instantaneous contribution */
1432 lw = atomic_read(&tg->load_weight);
1433 lw -= se->my_q->load_contribution;
1434 lw += w + wg;
4be9daaa 1435
977dda7c 1436 wl += w;
940959e9 1437
977dda7c
PT
1438 if (lw > 0 && wl < lw)
1439 wl = (wl * tg->shares) / lw;
1440 else
1441 wl = tg->shares;
940959e9 1442
977dda7c
PT
1443 /* zero point is MIN_SHARES */
1444 if (wl < MIN_SHARES)
1445 wl = MIN_SHARES;
1446 wl -= se->load.weight;
4be9daaa 1447 wg = 0;
4be9daaa 1448 }
bb3469ac 1449
4be9daaa 1450 return wl;
bb3469ac 1451}
4be9daaa 1452
bb3469ac 1453#else
4be9daaa 1454
83378269
PZ
1455static inline unsigned long effective_load(struct task_group *tg, int cpu,
1456 unsigned long wl, unsigned long wg)
4be9daaa 1457{
83378269 1458 return wl;
bb3469ac 1459}
4be9daaa 1460
bb3469ac
PZ
1461#endif
1462
c88d5910 1463static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1464{
e37b6a7b 1465 s64 this_load, load;
c88d5910 1466 int idx, this_cpu, prev_cpu;
098fb9db 1467 unsigned long tl_per_task;
c88d5910 1468 struct task_group *tg;
83378269 1469 unsigned long weight;
b3137bc8 1470 int balanced;
098fb9db 1471
c88d5910
PZ
1472 idx = sd->wake_idx;
1473 this_cpu = smp_processor_id();
1474 prev_cpu = task_cpu(p);
1475 load = source_load(prev_cpu, idx);
1476 this_load = target_load(this_cpu, idx);
098fb9db 1477
b3137bc8
MG
1478 /*
1479 * If sync wakeup then subtract the (maximum possible)
1480 * effect of the currently running task from the load
1481 * of the current CPU:
1482 */
f3b577de 1483 rcu_read_lock();
83378269
PZ
1484 if (sync) {
1485 tg = task_group(current);
1486 weight = current->se.load.weight;
1487
c88d5910 1488 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1489 load += effective_load(tg, prev_cpu, 0, -weight);
1490 }
b3137bc8 1491
83378269
PZ
1492 tg = task_group(p);
1493 weight = p->se.load.weight;
b3137bc8 1494
71a29aa7
PZ
1495 /*
1496 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1497 * due to the sync cause above having dropped this_load to 0, we'll
1498 * always have an imbalance, but there's really nothing you can do
1499 * about that, so that's good too.
71a29aa7
PZ
1500 *
1501 * Otherwise check if either cpus are near enough in load to allow this
1502 * task to be woken on this_cpu.
1503 */
e37b6a7b
PT
1504 if (this_load > 0) {
1505 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
1506
1507 this_eff_load = 100;
1508 this_eff_load *= power_of(prev_cpu);
1509 this_eff_load *= this_load +
1510 effective_load(tg, this_cpu, weight, weight);
1511
1512 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1513 prev_eff_load *= power_of(this_cpu);
1514 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1515
1516 balanced = this_eff_load <= prev_eff_load;
1517 } else
1518 balanced = true;
f3b577de 1519 rcu_read_unlock();
b3137bc8 1520
098fb9db 1521 /*
4ae7d5ce
IM
1522 * If the currently running task will sleep within
1523 * a reasonable amount of time then attract this newly
1524 * woken task:
098fb9db 1525 */
2fb7635c
PZ
1526 if (sync && balanced)
1527 return 1;
098fb9db 1528
41acab88 1529 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
1530 tl_per_task = cpu_avg_load_per_task(this_cpu);
1531
c88d5910
PZ
1532 if (balanced ||
1533 (this_load <= load &&
1534 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1535 /*
1536 * This domain has SD_WAKE_AFFINE and
1537 * p is cache cold in this domain, and
1538 * there is no bad imbalance.
1539 */
c88d5910 1540 schedstat_inc(sd, ttwu_move_affine);
41acab88 1541 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
1542
1543 return 1;
1544 }
1545 return 0;
1546}
1547
aaee1203
PZ
1548/*
1549 * find_idlest_group finds and returns the least busy CPU group within the
1550 * domain.
1551 */
1552static struct sched_group *
78e7ed53 1553find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1554 int this_cpu, int load_idx)
e7693a36 1555{
b3bd3de6 1556 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 1557 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1558 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1559
aaee1203
PZ
1560 do {
1561 unsigned long load, avg_load;
1562 int local_group;
1563 int i;
e7693a36 1564
aaee1203
PZ
1565 /* Skip over this group if it has no CPUs allowed */
1566 if (!cpumask_intersects(sched_group_cpus(group),
1567 &p->cpus_allowed))
1568 continue;
1569
1570 local_group = cpumask_test_cpu(this_cpu,
1571 sched_group_cpus(group));
1572
1573 /* Tally up the load of all CPUs in the group */
1574 avg_load = 0;
1575
1576 for_each_cpu(i, sched_group_cpus(group)) {
1577 /* Bias balancing toward cpus of our domain */
1578 if (local_group)
1579 load = source_load(i, load_idx);
1580 else
1581 load = target_load(i, load_idx);
1582
1583 avg_load += load;
1584 }
1585
1586 /* Adjust by relative CPU power of the group */
1399fa78 1587 avg_load = (avg_load * SCHED_POWER_SCALE) / group->cpu_power;
aaee1203
PZ
1588
1589 if (local_group) {
1590 this_load = avg_load;
aaee1203
PZ
1591 } else if (avg_load < min_load) {
1592 min_load = avg_load;
1593 idlest = group;
1594 }
1595 } while (group = group->next, group != sd->groups);
1596
1597 if (!idlest || 100*this_load < imbalance*min_load)
1598 return NULL;
1599 return idlest;
1600}
1601
1602/*
1603 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1604 */
1605static int
1606find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1607{
1608 unsigned long load, min_load = ULONG_MAX;
1609 int idlest = -1;
1610 int i;
1611
1612 /* Traverse only the allowed CPUs */
1613 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1614 load = weighted_cpuload(i);
1615
1616 if (load < min_load || (load == min_load && i == this_cpu)) {
1617 min_load = load;
1618 idlest = i;
e7693a36
GH
1619 }
1620 }
1621
aaee1203
PZ
1622 return idlest;
1623}
e7693a36 1624
a50bde51
PZ
1625/*
1626 * Try and locate an idle CPU in the sched_domain.
1627 */
99bd5e2f 1628static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
1629{
1630 int cpu = smp_processor_id();
1631 int prev_cpu = task_cpu(p);
99bd5e2f 1632 struct sched_domain *sd;
a50bde51
PZ
1633 int i;
1634
1635 /*
99bd5e2f
SS
1636 * If the task is going to be woken-up on this cpu and if it is
1637 * already idle, then it is the right target.
a50bde51 1638 */
99bd5e2f
SS
1639 if (target == cpu && idle_cpu(cpu))
1640 return cpu;
1641
1642 /*
1643 * If the task is going to be woken-up on the cpu where it previously
1644 * ran and if it is currently idle, then it the right target.
1645 */
1646 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 1647 return prev_cpu;
a50bde51
PZ
1648
1649 /*
99bd5e2f 1650 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 1651 */
dce840a0 1652 rcu_read_lock();
99bd5e2f
SS
1653 for_each_domain(target, sd) {
1654 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
fe3bcfe1 1655 break;
99bd5e2f
SS
1656
1657 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1658 if (idle_cpu(i)) {
1659 target = i;
1660 break;
1661 }
a50bde51 1662 }
99bd5e2f
SS
1663
1664 /*
1665 * Lets stop looking for an idle sibling when we reached
1666 * the domain that spans the current cpu and prev_cpu.
1667 */
1668 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1669 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1670 break;
a50bde51 1671 }
dce840a0 1672 rcu_read_unlock();
a50bde51
PZ
1673
1674 return target;
1675}
1676
aaee1203
PZ
1677/*
1678 * sched_balance_self: balance the current task (running on cpu) in domains
1679 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1680 * SD_BALANCE_EXEC.
1681 *
1682 * Balance, ie. select the least loaded group.
1683 *
1684 * Returns the target CPU number, or the same CPU if no balancing is needed.
1685 *
1686 * preempt must be disabled.
1687 */
0017d735 1688static int
7608dec2 1689select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1690{
29cd8bae 1691 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1692 int cpu = smp_processor_id();
1693 int prev_cpu = task_cpu(p);
1694 int new_cpu = cpu;
99bd5e2f 1695 int want_affine = 0;
29cd8bae 1696 int want_sd = 1;
5158f4e4 1697 int sync = wake_flags & WF_SYNC;
c88d5910 1698
0763a660 1699 if (sd_flag & SD_BALANCE_WAKE) {
beac4c7e 1700 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1701 want_affine = 1;
1702 new_cpu = prev_cpu;
1703 }
aaee1203 1704
dce840a0 1705 rcu_read_lock();
aaee1203 1706 for_each_domain(cpu, tmp) {
e4f42888
PZ
1707 if (!(tmp->flags & SD_LOAD_BALANCE))
1708 continue;
1709
aaee1203 1710 /*
ae154be1
PZ
1711 * If power savings logic is enabled for a domain, see if we
1712 * are not overloaded, if so, don't balance wider.
aaee1203 1713 */
59abf026 1714 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1715 unsigned long power = 0;
1716 unsigned long nr_running = 0;
1717 unsigned long capacity;
1718 int i;
1719
1720 for_each_cpu(i, sched_domain_span(tmp)) {
1721 power += power_of(i);
1722 nr_running += cpu_rq(i)->cfs.nr_running;
1723 }
1724
1399fa78 1725 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
ae154be1 1726
59abf026
PZ
1727 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1728 nr_running /= 2;
1729
1730 if (nr_running < capacity)
29cd8bae 1731 want_sd = 0;
ae154be1 1732 }
aaee1203 1733
fe3bcfe1 1734 /*
99bd5e2f
SS
1735 * If both cpu and prev_cpu are part of this domain,
1736 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 1737 */
99bd5e2f
SS
1738 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1739 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1740 affine_sd = tmp;
1741 want_affine = 0;
c88d5910
PZ
1742 }
1743
29cd8bae
PZ
1744 if (!want_sd && !want_affine)
1745 break;
1746
0763a660 1747 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1748 continue;
1749
29cd8bae
PZ
1750 if (want_sd)
1751 sd = tmp;
1752 }
1753
8b911acd 1754 if (affine_sd) {
99bd5e2f 1755 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
dce840a0
PZ
1756 prev_cpu = cpu;
1757
1758 new_cpu = select_idle_sibling(p, prev_cpu);
1759 goto unlock;
8b911acd 1760 }
e7693a36 1761
aaee1203 1762 while (sd) {
5158f4e4 1763 int load_idx = sd->forkexec_idx;
aaee1203 1764 struct sched_group *group;
c88d5910 1765 int weight;
098fb9db 1766
0763a660 1767 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1768 sd = sd->child;
1769 continue;
1770 }
098fb9db 1771
5158f4e4
PZ
1772 if (sd_flag & SD_BALANCE_WAKE)
1773 load_idx = sd->wake_idx;
098fb9db 1774
5158f4e4 1775 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1776 if (!group) {
1777 sd = sd->child;
1778 continue;
1779 }
4ae7d5ce 1780
d7c33c49 1781 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1782 if (new_cpu == -1 || new_cpu == cpu) {
1783 /* Now try balancing at a lower domain level of cpu */
1784 sd = sd->child;
1785 continue;
e7693a36 1786 }
aaee1203
PZ
1787
1788 /* Now try balancing at a lower domain level of new_cpu */
1789 cpu = new_cpu;
669c55e9 1790 weight = sd->span_weight;
aaee1203
PZ
1791 sd = NULL;
1792 for_each_domain(cpu, tmp) {
669c55e9 1793 if (weight <= tmp->span_weight)
aaee1203 1794 break;
0763a660 1795 if (tmp->flags & sd_flag)
aaee1203
PZ
1796 sd = tmp;
1797 }
1798 /* while loop will break here if sd == NULL */
e7693a36 1799 }
dce840a0
PZ
1800unlock:
1801 rcu_read_unlock();
e7693a36 1802
c88d5910 1803 return new_cpu;
e7693a36
GH
1804}
1805#endif /* CONFIG_SMP */
1806
e52fb7c0
PZ
1807static unsigned long
1808wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1809{
1810 unsigned long gran = sysctl_sched_wakeup_granularity;
1811
1812 /*
e52fb7c0
PZ
1813 * Since its curr running now, convert the gran from real-time
1814 * to virtual-time in his units.
13814d42
MG
1815 *
1816 * By using 'se' instead of 'curr' we penalize light tasks, so
1817 * they get preempted easier. That is, if 'se' < 'curr' then
1818 * the resulting gran will be larger, therefore penalizing the
1819 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1820 * be smaller, again penalizing the lighter task.
1821 *
1822 * This is especially important for buddies when the leftmost
1823 * task is higher priority than the buddy.
0bbd3336 1824 */
f4ad9bd2 1825 return calc_delta_fair(gran, se);
0bbd3336
PZ
1826}
1827
464b7527
PZ
1828/*
1829 * Should 'se' preempt 'curr'.
1830 *
1831 * |s1
1832 * |s2
1833 * |s3
1834 * g
1835 * |<--->|c
1836 *
1837 * w(c, s1) = -1
1838 * w(c, s2) = 0
1839 * w(c, s3) = 1
1840 *
1841 */
1842static int
1843wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1844{
1845 s64 gran, vdiff = curr->vruntime - se->vruntime;
1846
1847 if (vdiff <= 0)
1848 return -1;
1849
e52fb7c0 1850 gran = wakeup_gran(curr, se);
464b7527
PZ
1851 if (vdiff > gran)
1852 return 1;
1853
1854 return 0;
1855}
1856
02479099
PZ
1857static void set_last_buddy(struct sched_entity *se)
1858{
69c80f3e
VP
1859 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
1860 return;
1861
1862 for_each_sched_entity(se)
1863 cfs_rq_of(se)->last = se;
02479099
PZ
1864}
1865
1866static void set_next_buddy(struct sched_entity *se)
1867{
69c80f3e
VP
1868 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
1869 return;
1870
1871 for_each_sched_entity(se)
1872 cfs_rq_of(se)->next = se;
02479099
PZ
1873}
1874
ac53db59
RR
1875static void set_skip_buddy(struct sched_entity *se)
1876{
69c80f3e
VP
1877 for_each_sched_entity(se)
1878 cfs_rq_of(se)->skip = se;
ac53db59
RR
1879}
1880
bf0f6f24
IM
1881/*
1882 * Preempt the current task with a newly woken task if needed:
1883 */
5a9b86f6 1884static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
1885{
1886 struct task_struct *curr = rq->curr;
8651a86c 1887 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1888 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 1889 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 1890 int next_buddy_marked = 0;
bf0f6f24 1891
4ae7d5ce
IM
1892 if (unlikely(se == pse))
1893 return;
1894
2f36825b 1895 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 1896 set_next_buddy(pse);
2f36825b
VP
1897 next_buddy_marked = 1;
1898 }
57fdc26d 1899
aec0a514
BR
1900 /*
1901 * We can come here with TIF_NEED_RESCHED already set from new task
1902 * wake up path.
1903 */
1904 if (test_tsk_need_resched(curr))
1905 return;
1906
a2f5c9ab
DH
1907 /* Idle tasks are by definition preempted by non-idle tasks. */
1908 if (unlikely(curr->policy == SCHED_IDLE) &&
1909 likely(p->policy != SCHED_IDLE))
1910 goto preempt;
1911
91c234b4 1912 /*
a2f5c9ab
DH
1913 * Batch and idle tasks do not preempt non-idle tasks (their preemption
1914 * is driven by the tick):
91c234b4 1915 */
6bc912b7 1916 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1917 return;
bf0f6f24 1918
bf0f6f24 1919
ad4b78bb
PZ
1920 if (!sched_feat(WAKEUP_PREEMPT))
1921 return;
1922
3a7e73a2 1923 update_curr(cfs_rq);
464b7527 1924 find_matching_se(&se, &pse);
002f128b 1925 BUG_ON(!pse);
2f36825b
VP
1926 if (wakeup_preempt_entity(se, pse) == 1) {
1927 /*
1928 * Bias pick_next to pick the sched entity that is
1929 * triggering this preemption.
1930 */
1931 if (!next_buddy_marked)
1932 set_next_buddy(pse);
3a7e73a2 1933 goto preempt;
2f36825b 1934 }
464b7527 1935
3a7e73a2 1936 return;
a65ac745 1937
3a7e73a2
PZ
1938preempt:
1939 resched_task(curr);
1940 /*
1941 * Only set the backward buddy when the current task is still
1942 * on the rq. This can happen when a wakeup gets interleaved
1943 * with schedule on the ->pre_schedule() or idle_balance()
1944 * point, either of which can * drop the rq lock.
1945 *
1946 * Also, during early boot the idle thread is in the fair class,
1947 * for obvious reasons its a bad idea to schedule back to it.
1948 */
1949 if (unlikely(!se->on_rq || curr == rq->idle))
1950 return;
1951
1952 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1953 set_last_buddy(se);
bf0f6f24
IM
1954}
1955
fb8d4724 1956static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1957{
8f4d37ec 1958 struct task_struct *p;
bf0f6f24
IM
1959 struct cfs_rq *cfs_rq = &rq->cfs;
1960 struct sched_entity *se;
1961
36ace27e 1962 if (!cfs_rq->nr_running)
bf0f6f24
IM
1963 return NULL;
1964
1965 do {
9948f4b2 1966 se = pick_next_entity(cfs_rq);
f4b6755f 1967 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1968 cfs_rq = group_cfs_rq(se);
1969 } while (cfs_rq);
1970
8f4d37ec
PZ
1971 p = task_of(se);
1972 hrtick_start_fair(rq, p);
1973
1974 return p;
bf0f6f24
IM
1975}
1976
1977/*
1978 * Account for a descheduled task:
1979 */
31ee529c 1980static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1981{
1982 struct sched_entity *se = &prev->se;
1983 struct cfs_rq *cfs_rq;
1984
1985 for_each_sched_entity(se) {
1986 cfs_rq = cfs_rq_of(se);
ab6cde26 1987 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1988 }
1989}
1990
ac53db59
RR
1991/*
1992 * sched_yield() is very simple
1993 *
1994 * The magic of dealing with the ->skip buddy is in pick_next_entity.
1995 */
1996static void yield_task_fair(struct rq *rq)
1997{
1998 struct task_struct *curr = rq->curr;
1999 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2000 struct sched_entity *se = &curr->se;
2001
2002 /*
2003 * Are we the only task in the tree?
2004 */
2005 if (unlikely(rq->nr_running == 1))
2006 return;
2007
2008 clear_buddies(cfs_rq, se);
2009
2010 if (curr->policy != SCHED_BATCH) {
2011 update_rq_clock(rq);
2012 /*
2013 * Update run-time statistics of the 'current'.
2014 */
2015 update_curr(cfs_rq);
2016 }
2017
2018 set_skip_buddy(se);
2019}
2020
d95f4122
MG
2021static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
2022{
2023 struct sched_entity *se = &p->se;
2024
2025 if (!se->on_rq)
2026 return false;
2027
2028 /* Tell the scheduler that we'd really like pse to run next. */
2029 set_next_buddy(se);
2030
d95f4122
MG
2031 yield_task_fair(rq);
2032
2033 return true;
2034}
2035
681f3e68 2036#ifdef CONFIG_SMP
bf0f6f24
IM
2037/**************************************************
2038 * Fair scheduling class load-balancing methods:
2039 */
2040
1e3c88bd
PZ
2041/*
2042 * pull_task - move a task from a remote runqueue to the local runqueue.
2043 * Both runqueues must be locked.
2044 */
2045static void pull_task(struct rq *src_rq, struct task_struct *p,
2046 struct rq *this_rq, int this_cpu)
2047{
2048 deactivate_task(src_rq, p, 0);
2049 set_task_cpu(p, this_cpu);
2050 activate_task(this_rq, p, 0);
2051 check_preempt_curr(this_rq, p, 0);
2052}
2053
2054/*
2055 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2056 */
2057static
2058int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2059 struct sched_domain *sd, enum cpu_idle_type idle,
2060 int *all_pinned)
2061{
2062 int tsk_cache_hot = 0;
2063 /*
2064 * We do not migrate tasks that are:
2065 * 1) running (obviously), or
2066 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2067 * 3) are cache-hot on their current CPU.
2068 */
2069 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
41acab88 2070 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
2071 return 0;
2072 }
2073 *all_pinned = 0;
2074
2075 if (task_running(rq, p)) {
41acab88 2076 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
2077 return 0;
2078 }
2079
2080 /*
2081 * Aggressive migration if:
2082 * 1) task is cache cold, or
2083 * 2) too many balance attempts have failed.
2084 */
2085
305e6835 2086 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
2087 if (!tsk_cache_hot ||
2088 sd->nr_balance_failed > sd->cache_nice_tries) {
2089#ifdef CONFIG_SCHEDSTATS
2090 if (tsk_cache_hot) {
2091 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 2092 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
2093 }
2094#endif
2095 return 1;
2096 }
2097
2098 if (tsk_cache_hot) {
41acab88 2099 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
2100 return 0;
2101 }
2102 return 1;
2103}
2104
897c395f
PZ
2105/*
2106 * move_one_task tries to move exactly one task from busiest to this_rq, as
2107 * part of active balancing operations within "domain".
2108 * Returns 1 if successful and 0 otherwise.
2109 *
2110 * Called with both runqueues locked.
2111 */
2112static int
2113move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2114 struct sched_domain *sd, enum cpu_idle_type idle)
2115{
2116 struct task_struct *p, *n;
2117 struct cfs_rq *cfs_rq;
2118 int pinned = 0;
2119
2120 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2121 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2122
2123 if (!can_migrate_task(p, busiest, this_cpu,
2124 sd, idle, &pinned))
2125 continue;
2126
2127 pull_task(busiest, p, this_rq, this_cpu);
2128 /*
2129 * Right now, this is only the second place pull_task()
2130 * is called, so we can safely collect pull_task()
2131 * stats here rather than inside pull_task().
2132 */
2133 schedstat_inc(sd, lb_gained[idle]);
2134 return 1;
2135 }
2136 }
2137
2138 return 0;
2139}
2140
1e3c88bd
PZ
2141static unsigned long
2142balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2143 unsigned long max_load_move, struct sched_domain *sd,
2144 enum cpu_idle_type idle, int *all_pinned,
931aeeda 2145 struct cfs_rq *busiest_cfs_rq)
1e3c88bd 2146{
b30aef17 2147 int loops = 0, pulled = 0;
1e3c88bd 2148 long rem_load_move = max_load_move;
ee00e66f 2149 struct task_struct *p, *n;
1e3c88bd
PZ
2150
2151 if (max_load_move == 0)
2152 goto out;
2153
ee00e66f
PZ
2154 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2155 if (loops++ > sysctl_sched_nr_migrate)
2156 break;
1e3c88bd 2157
ee00e66f 2158 if ((p->se.load.weight >> 1) > rem_load_move ||
b30aef17
KC
2159 !can_migrate_task(p, busiest, this_cpu, sd, idle,
2160 all_pinned))
ee00e66f 2161 continue;
1e3c88bd 2162
ee00e66f
PZ
2163 pull_task(busiest, p, this_rq, this_cpu);
2164 pulled++;
2165 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
2166
2167#ifdef CONFIG_PREEMPT
ee00e66f
PZ
2168 /*
2169 * NEWIDLE balancing is a source of latency, so preemptible
2170 * kernels will stop after the first task is pulled to minimize
2171 * the critical section.
2172 */
2173 if (idle == CPU_NEWLY_IDLE)
2174 break;
1e3c88bd
PZ
2175#endif
2176
ee00e66f
PZ
2177 /*
2178 * We only want to steal up to the prescribed amount of
2179 * weighted load.
2180 */
2181 if (rem_load_move <= 0)
2182 break;
1e3c88bd
PZ
2183 }
2184out:
2185 /*
2186 * Right now, this is one of only two places pull_task() is called,
2187 * so we can safely collect pull_task() stats here rather than
2188 * inside pull_task().
2189 */
2190 schedstat_add(sd, lb_gained[idle], pulled);
2191
1e3c88bd
PZ
2192 return max_load_move - rem_load_move;
2193}
2194
230059de 2195#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
2196/*
2197 * update tg->load_weight by folding this cpu's load_avg
2198 */
67e86250 2199static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
2200{
2201 struct cfs_rq *cfs_rq;
2202 unsigned long flags;
2203 struct rq *rq;
9e3081ca
PZ
2204
2205 if (!tg->se[cpu])
2206 return 0;
2207
2208 rq = cpu_rq(cpu);
2209 cfs_rq = tg->cfs_rq[cpu];
2210
2211 raw_spin_lock_irqsave(&rq->lock, flags);
2212
2213 update_rq_clock(rq);
d6b55918 2214 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
2215
2216 /*
2217 * We need to update shares after updating tg->load_weight in
2218 * order to adjust the weight of groups with long running tasks.
2219 */
6d5ab293 2220 update_cfs_shares(cfs_rq);
9e3081ca
PZ
2221
2222 raw_spin_unlock_irqrestore(&rq->lock, flags);
2223
2224 return 0;
2225}
2226
2227static void update_shares(int cpu)
2228{
2229 struct cfs_rq *cfs_rq;
2230 struct rq *rq = cpu_rq(cpu);
2231
2232 rcu_read_lock();
67e86250
PT
2233 for_each_leaf_cfs_rq(rq, cfs_rq)
2234 update_shares_cpu(cfs_rq->tg, cpu);
9e3081ca
PZ
2235 rcu_read_unlock();
2236}
2237
230059de
PZ
2238static unsigned long
2239load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2240 unsigned long max_load_move,
2241 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 2242 int *all_pinned)
230059de
PZ
2243{
2244 long rem_load_move = max_load_move;
2245 int busiest_cpu = cpu_of(busiest);
2246 struct task_group *tg;
2247
2248 rcu_read_lock();
2249 update_h_load(busiest_cpu);
2250
2251 list_for_each_entry_rcu(tg, &task_groups, list) {
2252 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2253 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2254 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2255 u64 rem_load, moved_load;
2256
2257 /*
2258 * empty group
2259 */
2260 if (!busiest_cfs_rq->task_weight)
2261 continue;
2262
2263 rem_load = (u64)rem_load_move * busiest_weight;
2264 rem_load = div_u64(rem_load, busiest_h_load + 1);
2265
2266 moved_load = balance_tasks(this_rq, this_cpu, busiest,
931aeeda 2267 rem_load, sd, idle, all_pinned,
230059de
PZ
2268 busiest_cfs_rq);
2269
2270 if (!moved_load)
2271 continue;
2272
2273 moved_load *= busiest_h_load;
2274 moved_load = div_u64(moved_load, busiest_weight + 1);
2275
2276 rem_load_move -= moved_load;
2277 if (rem_load_move < 0)
2278 break;
2279 }
2280 rcu_read_unlock();
2281
2282 return max_load_move - rem_load_move;
2283}
2284#else
9e3081ca
PZ
2285static inline void update_shares(int cpu)
2286{
2287}
2288
230059de
PZ
2289static unsigned long
2290load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2291 unsigned long max_load_move,
2292 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 2293 int *all_pinned)
230059de
PZ
2294{
2295 return balance_tasks(this_rq, this_cpu, busiest,
2296 max_load_move, sd, idle, all_pinned,
931aeeda 2297 &busiest->cfs);
230059de
PZ
2298}
2299#endif
2300
1e3c88bd
PZ
2301/*
2302 * move_tasks tries to move up to max_load_move weighted load from busiest to
2303 * this_rq, as part of a balancing operation within domain "sd".
2304 * Returns 1 if successful and 0 otherwise.
2305 *
2306 * Called with both runqueues locked.
2307 */
2308static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2309 unsigned long max_load_move,
2310 struct sched_domain *sd, enum cpu_idle_type idle,
2311 int *all_pinned)
2312{
3d45fd80 2313 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
2314
2315 do {
3d45fd80 2316 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd 2317 max_load_move - total_load_moved,
931aeeda 2318 sd, idle, all_pinned);
3d45fd80
PZ
2319
2320 total_load_moved += load_moved;
1e3c88bd
PZ
2321
2322#ifdef CONFIG_PREEMPT
2323 /*
2324 * NEWIDLE balancing is a source of latency, so preemptible
2325 * kernels will stop after the first task is pulled to minimize
2326 * the critical section.
2327 */
2328 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2329 break;
baa8c110
PZ
2330
2331 if (raw_spin_is_contended(&this_rq->lock) ||
2332 raw_spin_is_contended(&busiest->lock))
2333 break;
1e3c88bd 2334#endif
3d45fd80 2335 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
2336
2337 return total_load_moved > 0;
2338}
2339
1e3c88bd
PZ
2340/********** Helpers for find_busiest_group ************************/
2341/*
2342 * sd_lb_stats - Structure to store the statistics of a sched_domain
2343 * during load balancing.
2344 */
2345struct sd_lb_stats {
2346 struct sched_group *busiest; /* Busiest group in this sd */
2347 struct sched_group *this; /* Local group in this sd */
2348 unsigned long total_load; /* Total load of all groups in sd */
2349 unsigned long total_pwr; /* Total power of all groups in sd */
2350 unsigned long avg_load; /* Average load across all groups in sd */
2351
2352 /** Statistics of this group */
2353 unsigned long this_load;
2354 unsigned long this_load_per_task;
2355 unsigned long this_nr_running;
fab47622 2356 unsigned long this_has_capacity;
aae6d3dd 2357 unsigned int this_idle_cpus;
1e3c88bd
PZ
2358
2359 /* Statistics of the busiest group */
aae6d3dd 2360 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
2361 unsigned long max_load;
2362 unsigned long busiest_load_per_task;
2363 unsigned long busiest_nr_running;
dd5feea1 2364 unsigned long busiest_group_capacity;
fab47622 2365 unsigned long busiest_has_capacity;
aae6d3dd 2366 unsigned int busiest_group_weight;
1e3c88bd
PZ
2367
2368 int group_imb; /* Is there imbalance in this sd */
2369#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2370 int power_savings_balance; /* Is powersave balance needed for this sd */
2371 struct sched_group *group_min; /* Least loaded group in sd */
2372 struct sched_group *group_leader; /* Group which relieves group_min */
2373 unsigned long min_load_per_task; /* load_per_task in group_min */
2374 unsigned long leader_nr_running; /* Nr running of group_leader */
2375 unsigned long min_nr_running; /* Nr running of group_min */
2376#endif
2377};
2378
2379/*
2380 * sg_lb_stats - stats of a sched_group required for load_balancing
2381 */
2382struct sg_lb_stats {
2383 unsigned long avg_load; /*Avg load across the CPUs of the group */
2384 unsigned long group_load; /* Total load over the CPUs of the group */
2385 unsigned long sum_nr_running; /* Nr tasks running in the group */
2386 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2387 unsigned long group_capacity;
aae6d3dd
SS
2388 unsigned long idle_cpus;
2389 unsigned long group_weight;
1e3c88bd 2390 int group_imb; /* Is there an imbalance in the group ? */
fab47622 2391 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
2392};
2393
2394/**
2395 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2396 * @group: The group whose first cpu is to be returned.
2397 */
2398static inline unsigned int group_first_cpu(struct sched_group *group)
2399{
2400 return cpumask_first(sched_group_cpus(group));
2401}
2402
2403/**
2404 * get_sd_load_idx - Obtain the load index for a given sched domain.
2405 * @sd: The sched_domain whose load_idx is to be obtained.
2406 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2407 */
2408static inline int get_sd_load_idx(struct sched_domain *sd,
2409 enum cpu_idle_type idle)
2410{
2411 int load_idx;
2412
2413 switch (idle) {
2414 case CPU_NOT_IDLE:
2415 load_idx = sd->busy_idx;
2416 break;
2417
2418 case CPU_NEWLY_IDLE:
2419 load_idx = sd->newidle_idx;
2420 break;
2421 default:
2422 load_idx = sd->idle_idx;
2423 break;
2424 }
2425
2426 return load_idx;
2427}
2428
2429
2430#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2431/**
2432 * init_sd_power_savings_stats - Initialize power savings statistics for
2433 * the given sched_domain, during load balancing.
2434 *
2435 * @sd: Sched domain whose power-savings statistics are to be initialized.
2436 * @sds: Variable containing the statistics for sd.
2437 * @idle: Idle status of the CPU at which we're performing load-balancing.
2438 */
2439static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2440 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2441{
2442 /*
2443 * Busy processors will not participate in power savings
2444 * balance.
2445 */
2446 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2447 sds->power_savings_balance = 0;
2448 else {
2449 sds->power_savings_balance = 1;
2450 sds->min_nr_running = ULONG_MAX;
2451 sds->leader_nr_running = 0;
2452 }
2453}
2454
2455/**
2456 * update_sd_power_savings_stats - Update the power saving stats for a
2457 * sched_domain while performing load balancing.
2458 *
2459 * @group: sched_group belonging to the sched_domain under consideration.
2460 * @sds: Variable containing the statistics of the sched_domain
2461 * @local_group: Does group contain the CPU for which we're performing
2462 * load balancing ?
2463 * @sgs: Variable containing the statistics of the group.
2464 */
2465static inline void update_sd_power_savings_stats(struct sched_group *group,
2466 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2467{
2468
2469 if (!sds->power_savings_balance)
2470 return;
2471
2472 /*
2473 * If the local group is idle or completely loaded
2474 * no need to do power savings balance at this domain
2475 */
2476 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2477 !sds->this_nr_running))
2478 sds->power_savings_balance = 0;
2479
2480 /*
2481 * If a group is already running at full capacity or idle,
2482 * don't include that group in power savings calculations
2483 */
2484 if (!sds->power_savings_balance ||
2485 sgs->sum_nr_running >= sgs->group_capacity ||
2486 !sgs->sum_nr_running)
2487 return;
2488
2489 /*
2490 * Calculate the group which has the least non-idle load.
2491 * This is the group from where we need to pick up the load
2492 * for saving power
2493 */
2494 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2495 (sgs->sum_nr_running == sds->min_nr_running &&
2496 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2497 sds->group_min = group;
2498 sds->min_nr_running = sgs->sum_nr_running;
2499 sds->min_load_per_task = sgs->sum_weighted_load /
2500 sgs->sum_nr_running;
2501 }
2502
2503 /*
2504 * Calculate the group which is almost near its
2505 * capacity but still has some space to pick up some load
2506 * from other group and save more power
2507 */
2508 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2509 return;
2510
2511 if (sgs->sum_nr_running > sds->leader_nr_running ||
2512 (sgs->sum_nr_running == sds->leader_nr_running &&
2513 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2514 sds->group_leader = group;
2515 sds->leader_nr_running = sgs->sum_nr_running;
2516 }
2517}
2518
2519/**
2520 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2521 * @sds: Variable containing the statistics of the sched_domain
2522 * under consideration.
2523 * @this_cpu: Cpu at which we're currently performing load-balancing.
2524 * @imbalance: Variable to store the imbalance.
2525 *
2526 * Description:
2527 * Check if we have potential to perform some power-savings balance.
2528 * If yes, set the busiest group to be the least loaded group in the
2529 * sched_domain, so that it's CPUs can be put to idle.
2530 *
2531 * Returns 1 if there is potential to perform power-savings balance.
2532 * Else returns 0.
2533 */
2534static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2535 int this_cpu, unsigned long *imbalance)
2536{
2537 if (!sds->power_savings_balance)
2538 return 0;
2539
2540 if (sds->this != sds->group_leader ||
2541 sds->group_leader == sds->group_min)
2542 return 0;
2543
2544 *imbalance = sds->min_load_per_task;
2545 sds->busiest = sds->group_min;
2546
2547 return 1;
2548
2549}
2550#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2551static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2552 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2553{
2554 return;
2555}
2556
2557static inline void update_sd_power_savings_stats(struct sched_group *group,
2558 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2559{
2560 return;
2561}
2562
2563static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2564 int this_cpu, unsigned long *imbalance)
2565{
2566 return 0;
2567}
2568#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2569
2570
2571unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2572{
1399fa78 2573 return SCHED_POWER_SCALE;
1e3c88bd
PZ
2574}
2575
2576unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2577{
2578 return default_scale_freq_power(sd, cpu);
2579}
2580
2581unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2582{
669c55e9 2583 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2584 unsigned long smt_gain = sd->smt_gain;
2585
2586 smt_gain /= weight;
2587
2588 return smt_gain;
2589}
2590
2591unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2592{
2593 return default_scale_smt_power(sd, cpu);
2594}
2595
2596unsigned long scale_rt_power(int cpu)
2597{
2598 struct rq *rq = cpu_rq(cpu);
2599 u64 total, available;
2600
1e3c88bd 2601 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
2602
2603 if (unlikely(total < rq->rt_avg)) {
2604 /* Ensures that power won't end up being negative */
2605 available = 0;
2606 } else {
2607 available = total - rq->rt_avg;
2608 }
1e3c88bd 2609
1399fa78
NR
2610 if (unlikely((s64)total < SCHED_POWER_SCALE))
2611 total = SCHED_POWER_SCALE;
1e3c88bd 2612
1399fa78 2613 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
2614
2615 return div_u64(available, total);
2616}
2617
2618static void update_cpu_power(struct sched_domain *sd, int cpu)
2619{
669c55e9 2620 unsigned long weight = sd->span_weight;
1399fa78 2621 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
2622 struct sched_group *sdg = sd->groups;
2623
1e3c88bd
PZ
2624 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2625 if (sched_feat(ARCH_POWER))
2626 power *= arch_scale_smt_power(sd, cpu);
2627 else
2628 power *= default_scale_smt_power(sd, cpu);
2629
1399fa78 2630 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
2631 }
2632
9d5efe05
SV
2633 sdg->cpu_power_orig = power;
2634
2635 if (sched_feat(ARCH_POWER))
2636 power *= arch_scale_freq_power(sd, cpu);
2637 else
2638 power *= default_scale_freq_power(sd, cpu);
2639
1399fa78 2640 power >>= SCHED_POWER_SHIFT;
9d5efe05 2641
1e3c88bd 2642 power *= scale_rt_power(cpu);
1399fa78 2643 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
2644
2645 if (!power)
2646 power = 1;
2647
e51fd5e2 2648 cpu_rq(cpu)->cpu_power = power;
1e3c88bd
PZ
2649 sdg->cpu_power = power;
2650}
2651
2652static void update_group_power(struct sched_domain *sd, int cpu)
2653{
2654 struct sched_domain *child = sd->child;
2655 struct sched_group *group, *sdg = sd->groups;
2656 unsigned long power;
2657
2658 if (!child) {
2659 update_cpu_power(sd, cpu);
2660 return;
2661 }
2662
2663 power = 0;
2664
2665 group = child->groups;
2666 do {
2667 power += group->cpu_power;
2668 group = group->next;
2669 } while (group != child->groups);
2670
2671 sdg->cpu_power = power;
2672}
2673
9d5efe05
SV
2674/*
2675 * Try and fix up capacity for tiny siblings, this is needed when
2676 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2677 * which on its own isn't powerful enough.
2678 *
2679 * See update_sd_pick_busiest() and check_asym_packing().
2680 */
2681static inline int
2682fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2683{
2684 /*
1399fa78 2685 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 2686 */
a6c75f2f 2687 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
2688 return 0;
2689
2690 /*
2691 * If ~90% of the cpu_power is still there, we're good.
2692 */
694f5a11 2693 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
9d5efe05
SV
2694 return 1;
2695
2696 return 0;
2697}
2698
1e3c88bd
PZ
2699/**
2700 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2701 * @sd: The sched_domain whose statistics are to be updated.
2702 * @group: sched_group whose statistics are to be updated.
2703 * @this_cpu: Cpu for which load balance is currently performed.
2704 * @idle: Idle status of this_cpu
2705 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd
PZ
2706 * @local_group: Does group contain this_cpu.
2707 * @cpus: Set of cpus considered for load balancing.
2708 * @balance: Should we balance.
2709 * @sgs: variable to hold the statistics for this group.
2710 */
2711static inline void update_sg_lb_stats(struct sched_domain *sd,
2712 struct sched_group *group, int this_cpu,
46e49b38 2713 enum cpu_idle_type idle, int load_idx,
1e3c88bd
PZ
2714 int local_group, const struct cpumask *cpus,
2715 int *balance, struct sg_lb_stats *sgs)
2716{
2582f0eb 2717 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
2718 int i;
2719 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 2720 unsigned long avg_load_per_task = 0;
1e3c88bd 2721
871e35bc 2722 if (local_group)
1e3c88bd 2723 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
2724
2725 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
2726 max_cpu_load = 0;
2727 min_cpu_load = ~0UL;
2582f0eb 2728 max_nr_running = 0;
1e3c88bd
PZ
2729
2730 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2731 struct rq *rq = cpu_rq(i);
2732
1e3c88bd
PZ
2733 /* Bias balancing toward cpus of our domain */
2734 if (local_group) {
2735 if (idle_cpu(i) && !first_idle_cpu) {
2736 first_idle_cpu = 1;
2737 balance_cpu = i;
2738 }
2739
2740 load = target_load(i, load_idx);
2741 } else {
2742 load = source_load(i, load_idx);
2582f0eb 2743 if (load > max_cpu_load) {
1e3c88bd 2744 max_cpu_load = load;
2582f0eb
NR
2745 max_nr_running = rq->nr_running;
2746 }
1e3c88bd
PZ
2747 if (min_cpu_load > load)
2748 min_cpu_load = load;
2749 }
2750
2751 sgs->group_load += load;
2752 sgs->sum_nr_running += rq->nr_running;
2753 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
2754 if (idle_cpu(i))
2755 sgs->idle_cpus++;
1e3c88bd
PZ
2756 }
2757
2758 /*
2759 * First idle cpu or the first cpu(busiest) in this sched group
2760 * is eligible for doing load balancing at this and above
2761 * domains. In the newly idle case, we will allow all the cpu's
2762 * to do the newly idle load balance.
2763 */
bbc8cb5b
PZ
2764 if (idle != CPU_NEWLY_IDLE && local_group) {
2765 if (balance_cpu != this_cpu) {
2766 *balance = 0;
2767 return;
2768 }
2769 update_group_power(sd, this_cpu);
1e3c88bd
PZ
2770 }
2771
2772 /* Adjust by relative CPU power of the group */
1399fa78 2773 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->cpu_power;
1e3c88bd 2774
1e3c88bd
PZ
2775 /*
2776 * Consider the group unbalanced when the imbalance is larger
866ab43e 2777 * than the average weight of a task.
1e3c88bd
PZ
2778 *
2779 * APZ: with cgroup the avg task weight can vary wildly and
2780 * might not be a suitable number - should we keep a
2781 * normalized nr_running number somewhere that negates
2782 * the hierarchy?
2783 */
dd5feea1
SS
2784 if (sgs->sum_nr_running)
2785 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 2786
866ab43e 2787 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
2788 sgs->group_imb = 1;
2789
1399fa78
NR
2790 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power,
2791 SCHED_POWER_SCALE);
9d5efe05
SV
2792 if (!sgs->group_capacity)
2793 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 2794 sgs->group_weight = group->group_weight;
fab47622
NR
2795
2796 if (sgs->group_capacity > sgs->sum_nr_running)
2797 sgs->group_has_capacity = 1;
1e3c88bd
PZ
2798}
2799
532cb4c4
MN
2800/**
2801 * update_sd_pick_busiest - return 1 on busiest group
2802 * @sd: sched_domain whose statistics are to be checked
2803 * @sds: sched_domain statistics
2804 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
2805 * @sgs: sched_group statistics
2806 * @this_cpu: the current cpu
532cb4c4
MN
2807 *
2808 * Determine if @sg is a busier group than the previously selected
2809 * busiest group.
2810 */
2811static bool update_sd_pick_busiest(struct sched_domain *sd,
2812 struct sd_lb_stats *sds,
2813 struct sched_group *sg,
2814 struct sg_lb_stats *sgs,
2815 int this_cpu)
2816{
2817 if (sgs->avg_load <= sds->max_load)
2818 return false;
2819
2820 if (sgs->sum_nr_running > sgs->group_capacity)
2821 return true;
2822
2823 if (sgs->group_imb)
2824 return true;
2825
2826 /*
2827 * ASYM_PACKING needs to move all the work to the lowest
2828 * numbered CPUs in the group, therefore mark all groups
2829 * higher than ourself as busy.
2830 */
2831 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2832 this_cpu < group_first_cpu(sg)) {
2833 if (!sds->busiest)
2834 return true;
2835
2836 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2837 return true;
2838 }
2839
2840 return false;
2841}
2842
1e3c88bd
PZ
2843/**
2844 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2845 * @sd: sched_domain whose statistics are to be updated.
2846 * @this_cpu: Cpu for which load balance is currently performed.
2847 * @idle: Idle status of this_cpu
1e3c88bd
PZ
2848 * @cpus: Set of cpus considered for load balancing.
2849 * @balance: Should we balance.
2850 * @sds: variable to hold the statistics for this sched_domain.
2851 */
2852static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
46e49b38
VP
2853 enum cpu_idle_type idle, const struct cpumask *cpus,
2854 int *balance, struct sd_lb_stats *sds)
1e3c88bd
PZ
2855{
2856 struct sched_domain *child = sd->child;
532cb4c4 2857 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
2858 struct sg_lb_stats sgs;
2859 int load_idx, prefer_sibling = 0;
2860
2861 if (child && child->flags & SD_PREFER_SIBLING)
2862 prefer_sibling = 1;
2863
2864 init_sd_power_savings_stats(sd, sds, idle);
2865 load_idx = get_sd_load_idx(sd, idle);
2866
2867 do {
2868 int local_group;
2869
532cb4c4 2870 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 2871 memset(&sgs, 0, sizeof(sgs));
46e49b38 2872 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
1e3c88bd
PZ
2873 local_group, cpus, balance, &sgs);
2874
8f190fb3 2875 if (local_group && !(*balance))
1e3c88bd
PZ
2876 return;
2877
2878 sds->total_load += sgs.group_load;
532cb4c4 2879 sds->total_pwr += sg->cpu_power;
1e3c88bd
PZ
2880
2881 /*
2882 * In case the child domain prefers tasks go to siblings
532cb4c4 2883 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
2884 * and move all the excess tasks away. We lower the capacity
2885 * of a group only if the local group has the capacity to fit
2886 * these excess tasks, i.e. nr_running < group_capacity. The
2887 * extra check prevents the case where you always pull from the
2888 * heaviest group when it is already under-utilized (possible
2889 * with a large weight task outweighs the tasks on the system).
1e3c88bd 2890 */
75dd321d 2891 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
2892 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2893
2894 if (local_group) {
2895 sds->this_load = sgs.avg_load;
532cb4c4 2896 sds->this = sg;
1e3c88bd
PZ
2897 sds->this_nr_running = sgs.sum_nr_running;
2898 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 2899 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 2900 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 2901 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 2902 sds->max_load = sgs.avg_load;
532cb4c4 2903 sds->busiest = sg;
1e3c88bd 2904 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 2905 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 2906 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 2907 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 2908 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 2909 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
2910 sds->group_imb = sgs.group_imb;
2911 }
2912
532cb4c4
MN
2913 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2914 sg = sg->next;
2915 } while (sg != sd->groups);
2916}
2917
2ec57d44 2918int __weak arch_sd_sibling_asym_packing(void)
532cb4c4
MN
2919{
2920 return 0*SD_ASYM_PACKING;
2921}
2922
2923/**
2924 * check_asym_packing - Check to see if the group is packed into the
2925 * sched doman.
2926 *
2927 * This is primarily intended to used at the sibling level. Some
2928 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2929 * case of POWER7, it can move to lower SMT modes only when higher
2930 * threads are idle. When in lower SMT modes, the threads will
2931 * perform better since they share less core resources. Hence when we
2932 * have idle threads, we want them to be the higher ones.
2933 *
2934 * This packing function is run on idle threads. It checks to see if
2935 * the busiest CPU in this domain (core in the P7 case) has a higher
2936 * CPU number than the packing function is being run on. Here we are
2937 * assuming lower CPU number will be equivalent to lower a SMT thread
2938 * number.
2939 *
b6b12294
MN
2940 * Returns 1 when packing is required and a task should be moved to
2941 * this CPU. The amount of the imbalance is returned in *imbalance.
2942 *
532cb4c4
MN
2943 * @sd: The sched_domain whose packing is to be checked.
2944 * @sds: Statistics of the sched_domain which is to be packed
2945 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2946 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
2947 */
2948static int check_asym_packing(struct sched_domain *sd,
2949 struct sd_lb_stats *sds,
2950 int this_cpu, unsigned long *imbalance)
2951{
2952 int busiest_cpu;
2953
2954 if (!(sd->flags & SD_ASYM_PACKING))
2955 return 0;
2956
2957 if (!sds->busiest)
2958 return 0;
2959
2960 busiest_cpu = group_first_cpu(sds->busiest);
2961 if (this_cpu > busiest_cpu)
2962 return 0;
2963
2964 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
1399fa78 2965 SCHED_POWER_SCALE);
532cb4c4 2966 return 1;
1e3c88bd
PZ
2967}
2968
2969/**
2970 * fix_small_imbalance - Calculate the minor imbalance that exists
2971 * amongst the groups of a sched_domain, during
2972 * load balancing.
2973 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2974 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2975 * @imbalance: Variable to store the imbalance.
2976 */
2977static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2978 int this_cpu, unsigned long *imbalance)
2979{
2980 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2981 unsigned int imbn = 2;
dd5feea1 2982 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
2983
2984 if (sds->this_nr_running) {
2985 sds->this_load_per_task /= sds->this_nr_running;
2986 if (sds->busiest_load_per_task >
2987 sds->this_load_per_task)
2988 imbn = 1;
2989 } else
2990 sds->this_load_per_task =
2991 cpu_avg_load_per_task(this_cpu);
2992
dd5feea1 2993 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 2994 * SCHED_POWER_SCALE;
dd5feea1
SS
2995 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2996
2997 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2998 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
2999 *imbalance = sds->busiest_load_per_task;
3000 return;
3001 }
3002
3003 /*
3004 * OK, we don't have enough imbalance to justify moving tasks,
3005 * however we may be able to increase total CPU power used by
3006 * moving them.
3007 */
3008
3009 pwr_now += sds->busiest->cpu_power *
3010 min(sds->busiest_load_per_task, sds->max_load);
3011 pwr_now += sds->this->cpu_power *
3012 min(sds->this_load_per_task, sds->this_load);
1399fa78 3013 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3014
3015 /* Amount of load we'd subtract */
1399fa78 3016 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
1e3c88bd
PZ
3017 sds->busiest->cpu_power;
3018 if (sds->max_load > tmp)
3019 pwr_move += sds->busiest->cpu_power *
3020 min(sds->busiest_load_per_task, sds->max_load - tmp);
3021
3022 /* Amount of load we'd add */
3023 if (sds->max_load * sds->busiest->cpu_power <
1399fa78 3024 sds->busiest_load_per_task * SCHED_POWER_SCALE)
1e3c88bd
PZ
3025 tmp = (sds->max_load * sds->busiest->cpu_power) /
3026 sds->this->cpu_power;
3027 else
1399fa78 3028 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
1e3c88bd
PZ
3029 sds->this->cpu_power;
3030 pwr_move += sds->this->cpu_power *
3031 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 3032 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3033
3034 /* Move if we gain throughput */
3035 if (pwr_move > pwr_now)
3036 *imbalance = sds->busiest_load_per_task;
3037}
3038
3039/**
3040 * calculate_imbalance - Calculate the amount of imbalance present within the
3041 * groups of a given sched_domain during load balance.
3042 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3043 * @this_cpu: Cpu for which currently load balance is being performed.
3044 * @imbalance: The variable to store the imbalance.
3045 */
3046static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3047 unsigned long *imbalance)
3048{
dd5feea1
SS
3049 unsigned long max_pull, load_above_capacity = ~0UL;
3050
3051 sds->busiest_load_per_task /= sds->busiest_nr_running;
3052 if (sds->group_imb) {
3053 sds->busiest_load_per_task =
3054 min(sds->busiest_load_per_task, sds->avg_load);
3055 }
3056
1e3c88bd
PZ
3057 /*
3058 * In the presence of smp nice balancing, certain scenarios can have
3059 * max load less than avg load(as we skip the groups at or below
3060 * its cpu_power, while calculating max_load..)
3061 */
3062 if (sds->max_load < sds->avg_load) {
3063 *imbalance = 0;
3064 return fix_small_imbalance(sds, this_cpu, imbalance);
3065 }
3066
dd5feea1
SS
3067 if (!sds->group_imb) {
3068 /*
3069 * Don't want to pull so many tasks that a group would go idle.
3070 */
3071 load_above_capacity = (sds->busiest_nr_running -
3072 sds->busiest_group_capacity);
3073
1399fa78 3074 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1
SS
3075
3076 load_above_capacity /= sds->busiest->cpu_power;
3077 }
3078
3079 /*
3080 * We're trying to get all the cpus to the average_load, so we don't
3081 * want to push ourselves above the average load, nor do we wish to
3082 * reduce the max loaded cpu below the average load. At the same time,
3083 * we also don't want to reduce the group load below the group capacity
3084 * (so that we can implement power-savings policies etc). Thus we look
3085 * for the minimum possible imbalance.
3086 * Be careful of negative numbers as they'll appear as very large values
3087 * with unsigned longs.
3088 */
3089 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
3090
3091 /* How much load to actually move to equalise the imbalance */
3092 *imbalance = min(max_pull * sds->busiest->cpu_power,
3093 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1399fa78 3094 / SCHED_POWER_SCALE;
1e3c88bd
PZ
3095
3096 /*
3097 * if *imbalance is less than the average load per runnable task
25985edc 3098 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
3099 * a think about bumping its value to force at least one task to be
3100 * moved
3101 */
3102 if (*imbalance < sds->busiest_load_per_task)
3103 return fix_small_imbalance(sds, this_cpu, imbalance);
3104
3105}
fab47622 3106
1e3c88bd
PZ
3107/******* find_busiest_group() helpers end here *********************/
3108
3109/**
3110 * find_busiest_group - Returns the busiest group within the sched_domain
3111 * if there is an imbalance. If there isn't an imbalance, and
3112 * the user has opted for power-savings, it returns a group whose
3113 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3114 * such a group exists.
3115 *
3116 * Also calculates the amount of weighted load which should be moved
3117 * to restore balance.
3118 *
3119 * @sd: The sched_domain whose busiest group is to be returned.
3120 * @this_cpu: The cpu for which load balancing is currently being performed.
3121 * @imbalance: Variable which stores amount of weighted load which should
3122 * be moved to restore balance/put a group to idle.
3123 * @idle: The idle status of this_cpu.
1e3c88bd
PZ
3124 * @cpus: The set of CPUs under consideration for load-balancing.
3125 * @balance: Pointer to a variable indicating if this_cpu
3126 * is the appropriate cpu to perform load balancing at this_level.
3127 *
3128 * Returns: - the busiest group if imbalance exists.
3129 * - If no imbalance and user has opted for power-savings balance,
3130 * return the least loaded group whose CPUs can be
3131 * put to idle by rebalancing its tasks onto our group.
3132 */
3133static struct sched_group *
3134find_busiest_group(struct sched_domain *sd, int this_cpu,
3135 unsigned long *imbalance, enum cpu_idle_type idle,
46e49b38 3136 const struct cpumask *cpus, int *balance)
1e3c88bd
PZ
3137{
3138 struct sd_lb_stats sds;
3139
3140 memset(&sds, 0, sizeof(sds));
3141
3142 /*
3143 * Compute the various statistics relavent for load balancing at
3144 * this level.
3145 */
46e49b38 3146 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
1e3c88bd 3147
cc57aa8f
PZ
3148 /*
3149 * this_cpu is not the appropriate cpu to perform load balancing at
3150 * this level.
1e3c88bd 3151 */
8f190fb3 3152 if (!(*balance))
1e3c88bd
PZ
3153 goto ret;
3154
532cb4c4
MN
3155 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3156 check_asym_packing(sd, &sds, this_cpu, imbalance))
3157 return sds.busiest;
3158
cc57aa8f 3159 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
3160 if (!sds.busiest || sds.busiest_nr_running == 0)
3161 goto out_balanced;
3162
1399fa78 3163 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 3164
866ab43e
PZ
3165 /*
3166 * If the busiest group is imbalanced the below checks don't
3167 * work because they assumes all things are equal, which typically
3168 * isn't true due to cpus_allowed constraints and the like.
3169 */
3170 if (sds.group_imb)
3171 goto force_balance;
3172
cc57aa8f 3173 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
fab47622
NR
3174 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3175 !sds.busiest_has_capacity)
3176 goto force_balance;
3177
cc57aa8f
PZ
3178 /*
3179 * If the local group is more busy than the selected busiest group
3180 * don't try and pull any tasks.
3181 */
1e3c88bd
PZ
3182 if (sds.this_load >= sds.max_load)
3183 goto out_balanced;
3184
cc57aa8f
PZ
3185 /*
3186 * Don't pull any tasks if this group is already above the domain
3187 * average load.
3188 */
1e3c88bd
PZ
3189 if (sds.this_load >= sds.avg_load)
3190 goto out_balanced;
3191
c186fafe 3192 if (idle == CPU_IDLE) {
aae6d3dd
SS
3193 /*
3194 * This cpu is idle. If the busiest group load doesn't
3195 * have more tasks than the number of available cpu's and
3196 * there is no imbalance between this and busiest group
3197 * wrt to idle cpu's, it is balanced.
3198 */
c186fafe 3199 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
3200 sds.busiest_nr_running <= sds.busiest_group_weight)
3201 goto out_balanced;
c186fafe
PZ
3202 } else {
3203 /*
3204 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3205 * imbalance_pct to be conservative.
3206 */
3207 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3208 goto out_balanced;
aae6d3dd 3209 }
1e3c88bd 3210
fab47622 3211force_balance:
1e3c88bd
PZ
3212 /* Looks like there is an imbalance. Compute it */
3213 calculate_imbalance(&sds, this_cpu, imbalance);
3214 return sds.busiest;
3215
3216out_balanced:
3217 /*
3218 * There is no obvious imbalance. But check if we can do some balancing
3219 * to save power.
3220 */
3221 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3222 return sds.busiest;
3223ret:
3224 *imbalance = 0;
3225 return NULL;
3226}
3227
3228/*
3229 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3230 */
3231static struct rq *
9d5efe05
SV
3232find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3233 enum cpu_idle_type idle, unsigned long imbalance,
3234 const struct cpumask *cpus)
1e3c88bd
PZ
3235{
3236 struct rq *busiest = NULL, *rq;
3237 unsigned long max_load = 0;
3238 int i;
3239
3240 for_each_cpu(i, sched_group_cpus(group)) {
3241 unsigned long power = power_of(i);
1399fa78
NR
3242 unsigned long capacity = DIV_ROUND_CLOSEST(power,
3243 SCHED_POWER_SCALE);
1e3c88bd
PZ
3244 unsigned long wl;
3245
9d5efe05
SV
3246 if (!capacity)
3247 capacity = fix_small_capacity(sd, group);
3248
1e3c88bd
PZ
3249 if (!cpumask_test_cpu(i, cpus))
3250 continue;
3251
3252 rq = cpu_rq(i);
6e40f5bb 3253 wl = weighted_cpuload(i);
1e3c88bd 3254
6e40f5bb
TG
3255 /*
3256 * When comparing with imbalance, use weighted_cpuload()
3257 * which is not scaled with the cpu power.
3258 */
1e3c88bd
PZ
3259 if (capacity && rq->nr_running == 1 && wl > imbalance)
3260 continue;
3261
6e40f5bb
TG
3262 /*
3263 * For the load comparisons with the other cpu's, consider
3264 * the weighted_cpuload() scaled with the cpu power, so that
3265 * the load can be moved away from the cpu that is potentially
3266 * running at a lower capacity.
3267 */
1399fa78 3268 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 3269
1e3c88bd
PZ
3270 if (wl > max_load) {
3271 max_load = wl;
3272 busiest = rq;
3273 }
3274 }
3275
3276 return busiest;
3277}
3278
3279/*
3280 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3281 * so long as it is large enough.
3282 */
3283#define MAX_PINNED_INTERVAL 512
3284
3285/* Working cpumask for load_balance and load_balance_newidle. */
3286static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3287
46e49b38 3288static int need_active_balance(struct sched_domain *sd, int idle,
532cb4c4 3289 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
3290{
3291 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
3292
3293 /*
3294 * ASYM_PACKING needs to force migrate tasks from busy but
3295 * higher numbered CPUs in order to pack all tasks in the
3296 * lowest numbered CPUs.
3297 */
3298 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3299 return 1;
3300
1af3ed3d
PZ
3301 /*
3302 * The only task running in a non-idle cpu can be moved to this
3303 * cpu in an attempt to completely freeup the other CPU
3304 * package.
3305 *
3306 * The package power saving logic comes from
3307 * find_busiest_group(). If there are no imbalance, then
3308 * f_b_g() will return NULL. However when sched_mc={1,2} then
3309 * f_b_g() will select a group from which a running task may be
3310 * pulled to this cpu in order to make the other package idle.
3311 * If there is no opportunity to make a package idle and if
3312 * there are no imbalance, then f_b_g() will return NULL and no
3313 * action will be taken in load_balance_newidle().
3314 *
3315 * Under normal task pull operation due to imbalance, there
3316 * will be more than one task in the source run queue and
3317 * move_tasks() will succeed. ld_moved will be true and this
3318 * active balance code will not be triggered.
3319 */
1af3ed3d
PZ
3320 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3321 return 0;
3322 }
3323
3324 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3325}
3326
969c7921
TH
3327static int active_load_balance_cpu_stop(void *data);
3328
1e3c88bd
PZ
3329/*
3330 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3331 * tasks if there is an imbalance.
3332 */
3333static int load_balance(int this_cpu, struct rq *this_rq,
3334 struct sched_domain *sd, enum cpu_idle_type idle,
3335 int *balance)
3336{
46e49b38 3337 int ld_moved, all_pinned = 0, active_balance = 0;
1e3c88bd
PZ
3338 struct sched_group *group;
3339 unsigned long imbalance;
3340 struct rq *busiest;
3341 unsigned long flags;
3342 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3343
3344 cpumask_copy(cpus, cpu_active_mask);
3345
1e3c88bd
PZ
3346 schedstat_inc(sd, lb_count[idle]);
3347
3348redo:
46e49b38 3349 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
1e3c88bd
PZ
3350 cpus, balance);
3351
3352 if (*balance == 0)
3353 goto out_balanced;
3354
3355 if (!group) {
3356 schedstat_inc(sd, lb_nobusyg[idle]);
3357 goto out_balanced;
3358 }
3359
9d5efe05 3360 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
3361 if (!busiest) {
3362 schedstat_inc(sd, lb_nobusyq[idle]);
3363 goto out_balanced;
3364 }
3365
3366 BUG_ON(busiest == this_rq);
3367
3368 schedstat_add(sd, lb_imbalance[idle], imbalance);
3369
3370 ld_moved = 0;
3371 if (busiest->nr_running > 1) {
3372 /*
3373 * Attempt to move tasks. If find_busiest_group has found
3374 * an imbalance but busiest->nr_running <= 1, the group is
3375 * still unbalanced. ld_moved simply stays zero, so it is
3376 * correctly treated as an imbalance.
3377 */
b30aef17 3378 all_pinned = 1;
1e3c88bd
PZ
3379 local_irq_save(flags);
3380 double_rq_lock(this_rq, busiest);
3381 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3382 imbalance, sd, idle, &all_pinned);
3383 double_rq_unlock(this_rq, busiest);
3384 local_irq_restore(flags);
3385
3386 /*
3387 * some other cpu did the load balance for us.
3388 */
3389 if (ld_moved && this_cpu != smp_processor_id())
3390 resched_cpu(this_cpu);
3391
3392 /* All tasks on this runqueue were pinned by CPU affinity */
3393 if (unlikely(all_pinned)) {
3394 cpumask_clear_cpu(cpu_of(busiest), cpus);
3395 if (!cpumask_empty(cpus))
3396 goto redo;
3397 goto out_balanced;
3398 }
3399 }
3400
3401 if (!ld_moved) {
3402 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
3403 /*
3404 * Increment the failure counter only on periodic balance.
3405 * We do not want newidle balance, which can be very
3406 * frequent, pollute the failure counter causing
3407 * excessive cache_hot migrations and active balances.
3408 */
3409 if (idle != CPU_NEWLY_IDLE)
3410 sd->nr_balance_failed++;
1e3c88bd 3411
46e49b38 3412 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
1e3c88bd
PZ
3413 raw_spin_lock_irqsave(&busiest->lock, flags);
3414
969c7921
TH
3415 /* don't kick the active_load_balance_cpu_stop,
3416 * if the curr task on busiest cpu can't be
3417 * moved to this_cpu
1e3c88bd
PZ
3418 */
3419 if (!cpumask_test_cpu(this_cpu,
3420 &busiest->curr->cpus_allowed)) {
3421 raw_spin_unlock_irqrestore(&busiest->lock,
3422 flags);
3423 all_pinned = 1;
3424 goto out_one_pinned;
3425 }
3426
969c7921
TH
3427 /*
3428 * ->active_balance synchronizes accesses to
3429 * ->active_balance_work. Once set, it's cleared
3430 * only after active load balance is finished.
3431 */
1e3c88bd
PZ
3432 if (!busiest->active_balance) {
3433 busiest->active_balance = 1;
3434 busiest->push_cpu = this_cpu;
3435 active_balance = 1;
3436 }
3437 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 3438
1e3c88bd 3439 if (active_balance)
969c7921
TH
3440 stop_one_cpu_nowait(cpu_of(busiest),
3441 active_load_balance_cpu_stop, busiest,
3442 &busiest->active_balance_work);
1e3c88bd
PZ
3443
3444 /*
3445 * We've kicked active balancing, reset the failure
3446 * counter.
3447 */
3448 sd->nr_balance_failed = sd->cache_nice_tries+1;
3449 }
3450 } else
3451 sd->nr_balance_failed = 0;
3452
3453 if (likely(!active_balance)) {
3454 /* We were unbalanced, so reset the balancing interval */
3455 sd->balance_interval = sd->min_interval;
3456 } else {
3457 /*
3458 * If we've begun active balancing, start to back off. This
3459 * case may not be covered by the all_pinned logic if there
3460 * is only 1 task on the busy runqueue (because we don't call
3461 * move_tasks).
3462 */
3463 if (sd->balance_interval < sd->max_interval)
3464 sd->balance_interval *= 2;
3465 }
3466
1e3c88bd
PZ
3467 goto out;
3468
3469out_balanced:
3470 schedstat_inc(sd, lb_balanced[idle]);
3471
3472 sd->nr_balance_failed = 0;
3473
3474out_one_pinned:
3475 /* tune up the balancing interval */
3476 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3477 (sd->balance_interval < sd->max_interval))
3478 sd->balance_interval *= 2;
3479
46e49b38 3480 ld_moved = 0;
1e3c88bd 3481out:
1e3c88bd
PZ
3482 return ld_moved;
3483}
3484
1e3c88bd
PZ
3485/*
3486 * idle_balance is called by schedule() if this_cpu is about to become
3487 * idle. Attempts to pull tasks from other CPUs.
3488 */
3489static void idle_balance(int this_cpu, struct rq *this_rq)
3490{
3491 struct sched_domain *sd;
3492 int pulled_task = 0;
3493 unsigned long next_balance = jiffies + HZ;
3494
3495 this_rq->idle_stamp = this_rq->clock;
3496
3497 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3498 return;
3499
f492e12e
PZ
3500 /*
3501 * Drop the rq->lock, but keep IRQ/preempt disabled.
3502 */
3503 raw_spin_unlock(&this_rq->lock);
3504
c66eaf61 3505 update_shares(this_cpu);
dce840a0 3506 rcu_read_lock();
1e3c88bd
PZ
3507 for_each_domain(this_cpu, sd) {
3508 unsigned long interval;
f492e12e 3509 int balance = 1;
1e3c88bd
PZ
3510
3511 if (!(sd->flags & SD_LOAD_BALANCE))
3512 continue;
3513
f492e12e 3514 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 3515 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
3516 pulled_task = load_balance(this_cpu, this_rq,
3517 sd, CPU_NEWLY_IDLE, &balance);
3518 }
1e3c88bd
PZ
3519
3520 interval = msecs_to_jiffies(sd->balance_interval);
3521 if (time_after(next_balance, sd->last_balance + interval))
3522 next_balance = sd->last_balance + interval;
d5ad140b
NR
3523 if (pulled_task) {
3524 this_rq->idle_stamp = 0;
1e3c88bd 3525 break;
d5ad140b 3526 }
1e3c88bd 3527 }
dce840a0 3528 rcu_read_unlock();
f492e12e
PZ
3529
3530 raw_spin_lock(&this_rq->lock);
3531
1e3c88bd
PZ
3532 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3533 /*
3534 * We are going idle. next_balance may be set based on
3535 * a busy processor. So reset next_balance.
3536 */
3537 this_rq->next_balance = next_balance;
3538 }
3539}
3540
3541/*
969c7921
TH
3542 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3543 * running tasks off the busiest CPU onto idle CPUs. It requires at
3544 * least 1 task to be running on each physical CPU where possible, and
3545 * avoids physical / logical imbalances.
1e3c88bd 3546 */
969c7921 3547static int active_load_balance_cpu_stop(void *data)
1e3c88bd 3548{
969c7921
TH
3549 struct rq *busiest_rq = data;
3550 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 3551 int target_cpu = busiest_rq->push_cpu;
969c7921 3552 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 3553 struct sched_domain *sd;
969c7921
TH
3554
3555 raw_spin_lock_irq(&busiest_rq->lock);
3556
3557 /* make sure the requested cpu hasn't gone down in the meantime */
3558 if (unlikely(busiest_cpu != smp_processor_id() ||
3559 !busiest_rq->active_balance))
3560 goto out_unlock;
1e3c88bd
PZ
3561
3562 /* Is there any task to move? */
3563 if (busiest_rq->nr_running <= 1)
969c7921 3564 goto out_unlock;
1e3c88bd
PZ
3565
3566 /*
3567 * This condition is "impossible", if it occurs
3568 * we need to fix it. Originally reported by
3569 * Bjorn Helgaas on a 128-cpu setup.
3570 */
3571 BUG_ON(busiest_rq == target_rq);
3572
3573 /* move a task from busiest_rq to target_rq */
3574 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
3575
3576 /* Search for an sd spanning us and the target CPU. */
dce840a0 3577 rcu_read_lock();
1e3c88bd
PZ
3578 for_each_domain(target_cpu, sd) {
3579 if ((sd->flags & SD_LOAD_BALANCE) &&
3580 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3581 break;
3582 }
3583
3584 if (likely(sd)) {
3585 schedstat_inc(sd, alb_count);
3586
3587 if (move_one_task(target_rq, target_cpu, busiest_rq,
3588 sd, CPU_IDLE))
3589 schedstat_inc(sd, alb_pushed);
3590 else
3591 schedstat_inc(sd, alb_failed);
3592 }
dce840a0 3593 rcu_read_unlock();
1e3c88bd 3594 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
3595out_unlock:
3596 busiest_rq->active_balance = 0;
3597 raw_spin_unlock_irq(&busiest_rq->lock);
3598 return 0;
1e3c88bd
PZ
3599}
3600
3601#ifdef CONFIG_NO_HZ
83cd4fe2
VP
3602
3603static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3604
3605static void trigger_sched_softirq(void *data)
3606{
3607 raise_softirq_irqoff(SCHED_SOFTIRQ);
3608}
3609
3610static inline void init_sched_softirq_csd(struct call_single_data *csd)
3611{
3612 csd->func = trigger_sched_softirq;
3613 csd->info = NULL;
3614 csd->flags = 0;
3615 csd->priv = 0;
3616}
3617
3618/*
3619 * idle load balancing details
3620 * - One of the idle CPUs nominates itself as idle load_balancer, while
3621 * entering idle.
3622 * - This idle load balancer CPU will also go into tickless mode when
3623 * it is idle, just like all other idle CPUs
3624 * - When one of the busy CPUs notice that there may be an idle rebalancing
3625 * needed, they will kick the idle load balancer, which then does idle
3626 * load balancing for all the idle CPUs.
3627 */
1e3c88bd
PZ
3628static struct {
3629 atomic_t load_balancer;
83cd4fe2
VP
3630 atomic_t first_pick_cpu;
3631 atomic_t second_pick_cpu;
3632 cpumask_var_t idle_cpus_mask;
3633 cpumask_var_t grp_idle_mask;
3634 unsigned long next_balance; /* in jiffy units */
3635} nohz ____cacheline_aligned;
1e3c88bd
PZ
3636
3637int get_nohz_load_balancer(void)
3638{
3639 return atomic_read(&nohz.load_balancer);
3640}
3641
3642#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3643/**
3644 * lowest_flag_domain - Return lowest sched_domain containing flag.
3645 * @cpu: The cpu whose lowest level of sched domain is to
3646 * be returned.
3647 * @flag: The flag to check for the lowest sched_domain
3648 * for the given cpu.
3649 *
3650 * Returns the lowest sched_domain of a cpu which contains the given flag.
3651 */
3652static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3653{
3654 struct sched_domain *sd;
3655
3656 for_each_domain(cpu, sd)
3657 if (sd && (sd->flags & flag))
3658 break;
3659
3660 return sd;
3661}
3662
3663/**
3664 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3665 * @cpu: The cpu whose domains we're iterating over.
3666 * @sd: variable holding the value of the power_savings_sd
3667 * for cpu.
3668 * @flag: The flag to filter the sched_domains to be iterated.
3669 *
3670 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3671 * set, starting from the lowest sched_domain to the highest.
3672 */
3673#define for_each_flag_domain(cpu, sd, flag) \
3674 for (sd = lowest_flag_domain(cpu, flag); \
3675 (sd && (sd->flags & flag)); sd = sd->parent)
3676
3677/**
3678 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3679 * @ilb_group: group to be checked for semi-idleness
3680 *
3681 * Returns: 1 if the group is semi-idle. 0 otherwise.
3682 *
3683 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3684 * and atleast one non-idle CPU. This helper function checks if the given
3685 * sched_group is semi-idle or not.
3686 */
3687static inline int is_semi_idle_group(struct sched_group *ilb_group)
3688{
83cd4fe2 3689 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
1e3c88bd
PZ
3690 sched_group_cpus(ilb_group));
3691
3692 /*
3693 * A sched_group is semi-idle when it has atleast one busy cpu
3694 * and atleast one idle cpu.
3695 */
83cd4fe2 3696 if (cpumask_empty(nohz.grp_idle_mask))
1e3c88bd
PZ
3697 return 0;
3698
83cd4fe2 3699 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
1e3c88bd
PZ
3700 return 0;
3701
3702 return 1;
3703}
3704/**
3705 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3706 * @cpu: The cpu which is nominating a new idle_load_balancer.
3707 *
3708 * Returns: Returns the id of the idle load balancer if it exists,
3709 * Else, returns >= nr_cpu_ids.
3710 *
3711 * This algorithm picks the idle load balancer such that it belongs to a
3712 * semi-idle powersavings sched_domain. The idea is to try and avoid
3713 * completely idle packages/cores just for the purpose of idle load balancing
3714 * when there are other idle cpu's which are better suited for that job.
3715 */
3716static int find_new_ilb(int cpu)
3717{
3718 struct sched_domain *sd;
3719 struct sched_group *ilb_group;
dce840a0 3720 int ilb = nr_cpu_ids;
1e3c88bd
PZ
3721
3722 /*
3723 * Have idle load balancer selection from semi-idle packages only
3724 * when power-aware load balancing is enabled
3725 */
3726 if (!(sched_smt_power_savings || sched_mc_power_savings))
3727 goto out_done;
3728
3729 /*
3730 * Optimize for the case when we have no idle CPUs or only one
3731 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3732 */
83cd4fe2 3733 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
3734 goto out_done;
3735
dce840a0 3736 rcu_read_lock();
1e3c88bd
PZ
3737 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3738 ilb_group = sd->groups;
3739
3740 do {
dce840a0
PZ
3741 if (is_semi_idle_group(ilb_group)) {
3742 ilb = cpumask_first(nohz.grp_idle_mask);
3743 goto unlock;
3744 }
1e3c88bd
PZ
3745
3746 ilb_group = ilb_group->next;
3747
3748 } while (ilb_group != sd->groups);
3749 }
dce840a0
PZ
3750unlock:
3751 rcu_read_unlock();
1e3c88bd
PZ
3752
3753out_done:
dce840a0 3754 return ilb;
1e3c88bd
PZ
3755}
3756#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3757static inline int find_new_ilb(int call_cpu)
3758{
83cd4fe2 3759 return nr_cpu_ids;
1e3c88bd
PZ
3760}
3761#endif
3762
83cd4fe2
VP
3763/*
3764 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3765 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3766 * CPU (if there is one).
3767 */
3768static void nohz_balancer_kick(int cpu)
3769{
3770 int ilb_cpu;
3771
3772 nohz.next_balance++;
3773
3774 ilb_cpu = get_nohz_load_balancer();
3775
3776 if (ilb_cpu >= nr_cpu_ids) {
3777 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3778 if (ilb_cpu >= nr_cpu_ids)
3779 return;
3780 }
3781
3782 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3783 struct call_single_data *cp;
3784
3785 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3786 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3787 __smp_call_function_single(ilb_cpu, cp, 0);
3788 }
3789 return;
3790}
3791
1e3c88bd
PZ
3792/*
3793 * This routine will try to nominate the ilb (idle load balancing)
3794 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
83cd4fe2 3795 * load balancing on behalf of all those cpus.
1e3c88bd 3796 *
83cd4fe2
VP
3797 * When the ilb owner becomes busy, we will not have new ilb owner until some
3798 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3799 * idle load balancing by kicking one of the idle CPUs.
1e3c88bd 3800 *
83cd4fe2
VP
3801 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3802 * ilb owner CPU in future (when there is a need for idle load balancing on
3803 * behalf of all idle CPUs).
1e3c88bd 3804 */
83cd4fe2 3805void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
3806{
3807 int cpu = smp_processor_id();
3808
3809 if (stop_tick) {
1e3c88bd
PZ
3810 if (!cpu_active(cpu)) {
3811 if (atomic_read(&nohz.load_balancer) != cpu)
83cd4fe2 3812 return;
1e3c88bd
PZ
3813
3814 /*
3815 * If we are going offline and still the leader,
3816 * give up!
3817 */
83cd4fe2
VP
3818 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3819 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3820 BUG();
3821
83cd4fe2 3822 return;
1e3c88bd
PZ
3823 }
3824
83cd4fe2 3825 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd 3826
83cd4fe2
VP
3827 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3828 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3829 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3830 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
1e3c88bd 3831
83cd4fe2 3832 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
1e3c88bd
PZ
3833 int new_ilb;
3834
83cd4fe2
VP
3835 /* make me the ilb owner */
3836 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3837 cpu) != nr_cpu_ids)
3838 return;
3839
1e3c88bd
PZ
3840 /*
3841 * Check to see if there is a more power-efficient
3842 * ilb.
3843 */
3844 new_ilb = find_new_ilb(cpu);
3845 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
83cd4fe2 3846 atomic_set(&nohz.load_balancer, nr_cpu_ids);
1e3c88bd 3847 resched_cpu(new_ilb);
83cd4fe2 3848 return;
1e3c88bd 3849 }
83cd4fe2 3850 return;
1e3c88bd
PZ
3851 }
3852 } else {
83cd4fe2
VP
3853 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3854 return;
1e3c88bd 3855
83cd4fe2 3856 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd
PZ
3857
3858 if (atomic_read(&nohz.load_balancer) == cpu)
83cd4fe2
VP
3859 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3860 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3861 BUG();
3862 }
83cd4fe2 3863 return;
1e3c88bd
PZ
3864}
3865#endif
3866
3867static DEFINE_SPINLOCK(balancing);
3868
49c022e6
PZ
3869static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3870
3871/*
3872 * Scale the max load_balance interval with the number of CPUs in the system.
3873 * This trades load-balance latency on larger machines for less cross talk.
3874 */
3875static void update_max_interval(void)
3876{
3877 max_load_balance_interval = HZ*num_online_cpus()/10;
3878}
3879
1e3c88bd
PZ
3880/*
3881 * It checks each scheduling domain to see if it is due to be balanced,
3882 * and initiates a balancing operation if so.
3883 *
3884 * Balancing parameters are set up in arch_init_sched_domains.
3885 */
3886static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3887{
3888 int balance = 1;
3889 struct rq *rq = cpu_rq(cpu);
3890 unsigned long interval;
3891 struct sched_domain *sd;
3892 /* Earliest time when we have to do rebalance again */
3893 unsigned long next_balance = jiffies + 60*HZ;
3894 int update_next_balance = 0;
3895 int need_serialize;
3896
2069dd75
PZ
3897 update_shares(cpu);
3898
dce840a0 3899 rcu_read_lock();
1e3c88bd
PZ
3900 for_each_domain(cpu, sd) {
3901 if (!(sd->flags & SD_LOAD_BALANCE))
3902 continue;
3903
3904 interval = sd->balance_interval;
3905 if (idle != CPU_IDLE)
3906 interval *= sd->busy_factor;
3907
3908 /* scale ms to jiffies */
3909 interval = msecs_to_jiffies(interval);
49c022e6 3910 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
3911
3912 need_serialize = sd->flags & SD_SERIALIZE;
3913
3914 if (need_serialize) {
3915 if (!spin_trylock(&balancing))
3916 goto out;
3917 }
3918
3919 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3920 if (load_balance(cpu, rq, sd, idle, &balance)) {
3921 /*
3922 * We've pulled tasks over so either we're no
c186fafe 3923 * longer idle.
1e3c88bd
PZ
3924 */
3925 idle = CPU_NOT_IDLE;
3926 }
3927 sd->last_balance = jiffies;
3928 }
3929 if (need_serialize)
3930 spin_unlock(&balancing);
3931out:
3932 if (time_after(next_balance, sd->last_balance + interval)) {
3933 next_balance = sd->last_balance + interval;
3934 update_next_balance = 1;
3935 }
3936
3937 /*
3938 * Stop the load balance at this level. There is another
3939 * CPU in our sched group which is doing load balancing more
3940 * actively.
3941 */
3942 if (!balance)
3943 break;
3944 }
dce840a0 3945 rcu_read_unlock();
1e3c88bd
PZ
3946
3947 /*
3948 * next_balance will be updated only when there is a need.
3949 * When the cpu is attached to null domain for ex, it will not be
3950 * updated.
3951 */
3952 if (likely(update_next_balance))
3953 rq->next_balance = next_balance;
3954}
3955
83cd4fe2 3956#ifdef CONFIG_NO_HZ
1e3c88bd 3957/*
83cd4fe2 3958 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
3959 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3960 */
83cd4fe2
VP
3961static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3962{
3963 struct rq *this_rq = cpu_rq(this_cpu);
3964 struct rq *rq;
3965 int balance_cpu;
3966
3967 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3968 return;
3969
3970 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3971 if (balance_cpu == this_cpu)
3972 continue;
3973
3974 /*
3975 * If this cpu gets work to do, stop the load balancing
3976 * work being done for other cpus. Next load
3977 * balancing owner will pick it up.
3978 */
3979 if (need_resched()) {
3980 this_rq->nohz_balance_kick = 0;
3981 break;
3982 }
3983
3984 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 3985 update_rq_clock(this_rq);
83cd4fe2
VP
3986 update_cpu_load(this_rq);
3987 raw_spin_unlock_irq(&this_rq->lock);
3988
3989 rebalance_domains(balance_cpu, CPU_IDLE);
3990
3991 rq = cpu_rq(balance_cpu);
3992 if (time_after(this_rq->next_balance, rq->next_balance))
3993 this_rq->next_balance = rq->next_balance;
3994 }
3995 nohz.next_balance = this_rq->next_balance;
3996 this_rq->nohz_balance_kick = 0;
3997}
3998
3999/*
4000 * Current heuristic for kicking the idle load balancer
4001 * - first_pick_cpu is the one of the busy CPUs. It will kick
4002 * idle load balancer when it has more than one process active. This
4003 * eliminates the need for idle load balancing altogether when we have
4004 * only one running process in the system (common case).
4005 * - If there are more than one busy CPU, idle load balancer may have
4006 * to run for active_load_balance to happen (i.e., two busy CPUs are
4007 * SMT or core siblings and can run better if they move to different
4008 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4009 * which will kick idle load balancer as soon as it has any load.
4010 */
4011static inline int nohz_kick_needed(struct rq *rq, int cpu)
4012{
4013 unsigned long now = jiffies;
4014 int ret;
4015 int first_pick_cpu, second_pick_cpu;
4016
4017 if (time_before(now, nohz.next_balance))
4018 return 0;
4019
f6c3f168 4020 if (rq->idle_at_tick)
83cd4fe2
VP
4021 return 0;
4022
4023 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
4024 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
4025
4026 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
4027 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
4028 return 0;
4029
4030 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
4031 if (ret == nr_cpu_ids || ret == cpu) {
4032 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4033 if (rq->nr_running > 1)
4034 return 1;
4035 } else {
4036 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
4037 if (ret == nr_cpu_ids || ret == cpu) {
4038 if (rq->nr_running)
4039 return 1;
4040 }
4041 }
4042 return 0;
4043}
4044#else
4045static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4046#endif
4047
4048/*
4049 * run_rebalance_domains is triggered when needed from the scheduler tick.
4050 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4051 */
1e3c88bd
PZ
4052static void run_rebalance_domains(struct softirq_action *h)
4053{
4054 int this_cpu = smp_processor_id();
4055 struct rq *this_rq = cpu_rq(this_cpu);
4056 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4057 CPU_IDLE : CPU_NOT_IDLE;
4058
4059 rebalance_domains(this_cpu, idle);
4060
1e3c88bd 4061 /*
83cd4fe2 4062 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
4063 * balancing on behalf of the other idle cpus whose ticks are
4064 * stopped.
4065 */
83cd4fe2 4066 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
4067}
4068
4069static inline int on_null_domain(int cpu)
4070{
90a6501f 4071 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
4072}
4073
4074/*
4075 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd
PZ
4076 */
4077static inline void trigger_load_balance(struct rq *rq, int cpu)
4078{
1e3c88bd
PZ
4079 /* Don't need to rebalance while attached to NULL domain */
4080 if (time_after_eq(jiffies, rq->next_balance) &&
4081 likely(!on_null_domain(cpu)))
4082 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2
VP
4083#ifdef CONFIG_NO_HZ
4084 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4085 nohz_balancer_kick(cpu);
4086#endif
1e3c88bd
PZ
4087}
4088
0bcdcf28
CE
4089static void rq_online_fair(struct rq *rq)
4090{
4091 update_sysctl();
4092}
4093
4094static void rq_offline_fair(struct rq *rq)
4095{
4096 update_sysctl();
4097}
4098
1e3c88bd
PZ
4099#else /* CONFIG_SMP */
4100
4101/*
4102 * on UP we do not need to balance between CPUs:
4103 */
4104static inline void idle_balance(int cpu, struct rq *rq)
4105{
4106}
4107
55e12e5e 4108#endif /* CONFIG_SMP */
e1d1484f 4109
bf0f6f24
IM
4110/*
4111 * scheduler tick hitting a task of our scheduling class:
4112 */
8f4d37ec 4113static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
4114{
4115 struct cfs_rq *cfs_rq;
4116 struct sched_entity *se = &curr->se;
4117
4118 for_each_sched_entity(se) {
4119 cfs_rq = cfs_rq_of(se);
8f4d37ec 4120 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
4121 }
4122}
4123
4124/*
cd29fe6f
PZ
4125 * called on fork with the child task as argument from the parent's context
4126 * - child not yet on the tasklist
4127 * - preemption disabled
bf0f6f24 4128 */
cd29fe6f 4129static void task_fork_fair(struct task_struct *p)
bf0f6f24 4130{
cd29fe6f 4131 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 4132 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 4133 int this_cpu = smp_processor_id();
cd29fe6f
PZ
4134 struct rq *rq = this_rq();
4135 unsigned long flags;
4136
05fa785c 4137 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 4138
861d034e
PZ
4139 update_rq_clock(rq);
4140
b0a0f667
PM
4141 if (unlikely(task_cpu(p) != this_cpu)) {
4142 rcu_read_lock();
cd29fe6f 4143 __set_task_cpu(p, this_cpu);
b0a0f667
PM
4144 rcu_read_unlock();
4145 }
bf0f6f24 4146
7109c442 4147 update_curr(cfs_rq);
cd29fe6f 4148
b5d9d734
MG
4149 if (curr)
4150 se->vruntime = curr->vruntime;
aeb73b04 4151 place_entity(cfs_rq, se, 1);
4d78e7b6 4152
cd29fe6f 4153 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 4154 /*
edcb60a3
IM
4155 * Upon rescheduling, sched_class::put_prev_task() will place
4156 * 'current' within the tree based on its new key value.
4157 */
4d78e7b6 4158 swap(curr->vruntime, se->vruntime);
aec0a514 4159 resched_task(rq->curr);
4d78e7b6 4160 }
bf0f6f24 4161
88ec22d3
PZ
4162 se->vruntime -= cfs_rq->min_vruntime;
4163
05fa785c 4164 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
4165}
4166
cb469845
SR
4167/*
4168 * Priority of the task has changed. Check to see if we preempt
4169 * the current task.
4170 */
da7a735e
PZ
4171static void
4172prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 4173{
da7a735e
PZ
4174 if (!p->se.on_rq)
4175 return;
4176
cb469845
SR
4177 /*
4178 * Reschedule if we are currently running on this runqueue and
4179 * our priority decreased, or if we are not currently running on
4180 * this runqueue and our priority is higher than the current's
4181 */
da7a735e 4182 if (rq->curr == p) {
cb469845
SR
4183 if (p->prio > oldprio)
4184 resched_task(rq->curr);
4185 } else
15afe09b 4186 check_preempt_curr(rq, p, 0);
cb469845
SR
4187}
4188
da7a735e
PZ
4189static void switched_from_fair(struct rq *rq, struct task_struct *p)
4190{
4191 struct sched_entity *se = &p->se;
4192 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4193
4194 /*
4195 * Ensure the task's vruntime is normalized, so that when its
4196 * switched back to the fair class the enqueue_entity(.flags=0) will
4197 * do the right thing.
4198 *
4199 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4200 * have normalized the vruntime, if it was !on_rq, then only when
4201 * the task is sleeping will it still have non-normalized vruntime.
4202 */
4203 if (!se->on_rq && p->state != TASK_RUNNING) {
4204 /*
4205 * Fix up our vruntime so that the current sleep doesn't
4206 * cause 'unlimited' sleep bonus.
4207 */
4208 place_entity(cfs_rq, se, 0);
4209 se->vruntime -= cfs_rq->min_vruntime;
4210 }
4211}
4212
cb469845
SR
4213/*
4214 * We switched to the sched_fair class.
4215 */
da7a735e 4216static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 4217{
da7a735e
PZ
4218 if (!p->se.on_rq)
4219 return;
4220
cb469845
SR
4221 /*
4222 * We were most likely switched from sched_rt, so
4223 * kick off the schedule if running, otherwise just see
4224 * if we can still preempt the current task.
4225 */
da7a735e 4226 if (rq->curr == p)
cb469845
SR
4227 resched_task(rq->curr);
4228 else
15afe09b 4229 check_preempt_curr(rq, p, 0);
cb469845
SR
4230}
4231
83b699ed
SV
4232/* Account for a task changing its policy or group.
4233 *
4234 * This routine is mostly called to set cfs_rq->curr field when a task
4235 * migrates between groups/classes.
4236 */
4237static void set_curr_task_fair(struct rq *rq)
4238{
4239 struct sched_entity *se = &rq->curr->se;
4240
4241 for_each_sched_entity(se)
4242 set_next_entity(cfs_rq_of(se), se);
4243}
4244
810b3817 4245#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4246static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 4247{
b2b5ce02
PZ
4248 /*
4249 * If the task was not on the rq at the time of this cgroup movement
4250 * it must have been asleep, sleeping tasks keep their ->vruntime
4251 * absolute on their old rq until wakeup (needed for the fair sleeper
4252 * bonus in place_entity()).
4253 *
4254 * If it was on the rq, we've just 'preempted' it, which does convert
4255 * ->vruntime to a relative base.
4256 *
4257 * Make sure both cases convert their relative position when migrating
4258 * to another cgroup's rq. This does somewhat interfere with the
4259 * fair sleeper stuff for the first placement, but who cares.
4260 */
4261 if (!on_rq)
4262 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4263 set_task_rq(p, task_cpu(p));
88ec22d3 4264 if (!on_rq)
b2b5ce02 4265 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817
PZ
4266}
4267#endif
4268
6d686f45 4269static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
4270{
4271 struct sched_entity *se = &task->se;
0d721cea
PW
4272 unsigned int rr_interval = 0;
4273
4274 /*
4275 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4276 * idle runqueue:
4277 */
0d721cea
PW
4278 if (rq->cfs.load.weight)
4279 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
4280
4281 return rr_interval;
4282}
4283
bf0f6f24
IM
4284/*
4285 * All the scheduling class methods:
4286 */
5522d5d5
IM
4287static const struct sched_class fair_sched_class = {
4288 .next = &idle_sched_class,
bf0f6f24
IM
4289 .enqueue_task = enqueue_task_fair,
4290 .dequeue_task = dequeue_task_fair,
4291 .yield_task = yield_task_fair,
d95f4122 4292 .yield_to_task = yield_to_task_fair,
bf0f6f24 4293
2e09bf55 4294 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
4295
4296 .pick_next_task = pick_next_task_fair,
4297 .put_prev_task = put_prev_task_fair,
4298
681f3e68 4299#ifdef CONFIG_SMP
4ce72a2c
LZ
4300 .select_task_rq = select_task_rq_fair,
4301
0bcdcf28
CE
4302 .rq_online = rq_online_fair,
4303 .rq_offline = rq_offline_fair,
88ec22d3
PZ
4304
4305 .task_waking = task_waking_fair,
681f3e68 4306#endif
bf0f6f24 4307
83b699ed 4308 .set_curr_task = set_curr_task_fair,
bf0f6f24 4309 .task_tick = task_tick_fair,
cd29fe6f 4310 .task_fork = task_fork_fair,
cb469845
SR
4311
4312 .prio_changed = prio_changed_fair,
da7a735e 4313 .switched_from = switched_from_fair,
cb469845 4314 .switched_to = switched_to_fair,
810b3817 4315
0d721cea
PW
4316 .get_rr_interval = get_rr_interval_fair,
4317
810b3817 4318#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4319 .task_move_group = task_move_group_fair,
810b3817 4320#endif
bf0f6f24
IM
4321};
4322
4323#ifdef CONFIG_SCHED_DEBUG
5cef9eca 4324static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 4325{
bf0f6f24
IM
4326 struct cfs_rq *cfs_rq;
4327
5973e5b9 4328 rcu_read_lock();
c3b64f1e 4329 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 4330 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 4331 rcu_read_unlock();
bf0f6f24
IM
4332}
4333#endif
This page took 0.662305 seconds and 5 git commands to generate.