sched: Make task dump print all 15 chars of proc comm
[deliverable/linux.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
9745512c 25
bf0f6f24 26/*
21805085 27 * Targeted preemption latency for CPU-bound tasks:
864616ee 28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 37 */
21406928
MG
38unsigned int sysctl_sched_latency = 6000000ULL;
39unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
2bd8e6d4 53/*
b2be5e96 54 * Minimal preemption granularity for CPU-bound tasks:
864616ee 55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 56 */
0bf377bb
IM
57unsigned int sysctl_sched_min_granularity = 750000ULL;
58unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
59
60/*
b2be5e96
PZ
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
0bf377bb 63static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
64
65/*
2bba22c5 66 * After fork, child runs first. If set to 0 (default) then
b2be5e96 67 * parent will (try to) run first.
21805085 68 */
2bba22c5 69unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 70
1799e35d
IM
71/*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77unsigned int __read_mostly sysctl_sched_compat_yield;
78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a7a4f8a7
PT
92/*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
a4c2f00f
PZ
99static const struct sched_class fair_sched_class;
100
bf0f6f24
IM
101/**************************************************************
102 * CFS operations on generic schedulable entities:
103 */
104
62160e3f 105#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 106
62160e3f 107/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
108static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
109{
62160e3f 110 return cfs_rq->rq;
bf0f6f24
IM
111}
112
62160e3f
IM
113/* An entity is a task if it doesn't "own" a runqueue */
114#define entity_is_task(se) (!se->my_q)
bf0f6f24 115
8f48894f
PZ
116static inline struct task_struct *task_of(struct sched_entity *se)
117{
118#ifdef CONFIG_SCHED_DEBUG
119 WARN_ON_ONCE(!entity_is_task(se));
120#endif
121 return container_of(se, struct task_struct, se);
122}
123
b758149c
PZ
124/* Walk up scheduling entities hierarchy */
125#define for_each_sched_entity(se) \
126 for (; se; se = se->parent)
127
128static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
129{
130 return p->se.cfs_rq;
131}
132
133/* runqueue on which this entity is (to be) queued */
134static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
135{
136 return se->cfs_rq;
137}
138
139/* runqueue "owned" by this group */
140static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
141{
142 return grp->my_q;
143}
144
145/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
146 * another cpu ('this_cpu')
147 */
148static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
149{
150 return cfs_rq->tg->cfs_rq[this_cpu];
151}
152
3d4b47b4
PZ
153static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
154{
155 if (!cfs_rq->on_list) {
67e86250
PT
156 /*
157 * Ensure we either appear before our parent (if already
158 * enqueued) or force our parent to appear after us when it is
159 * enqueued. The fact that we always enqueue bottom-up
160 * reduces this to two cases.
161 */
162 if (cfs_rq->tg->parent &&
163 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
164 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
165 &rq_of(cfs_rq)->leaf_cfs_rq_list);
166 } else {
167 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 168 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 169 }
3d4b47b4
PZ
170
171 cfs_rq->on_list = 1;
172 }
173}
174
175static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
176{
177 if (cfs_rq->on_list) {
178 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
179 cfs_rq->on_list = 0;
180 }
181}
182
b758149c
PZ
183/* Iterate thr' all leaf cfs_rq's on a runqueue */
184#define for_each_leaf_cfs_rq(rq, cfs_rq) \
185 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
186
187/* Do the two (enqueued) entities belong to the same group ? */
188static inline int
189is_same_group(struct sched_entity *se, struct sched_entity *pse)
190{
191 if (se->cfs_rq == pse->cfs_rq)
192 return 1;
193
194 return 0;
195}
196
197static inline struct sched_entity *parent_entity(struct sched_entity *se)
198{
199 return se->parent;
200}
201
464b7527
PZ
202/* return depth at which a sched entity is present in the hierarchy */
203static inline int depth_se(struct sched_entity *se)
204{
205 int depth = 0;
206
207 for_each_sched_entity(se)
208 depth++;
209
210 return depth;
211}
212
213static void
214find_matching_se(struct sched_entity **se, struct sched_entity **pse)
215{
216 int se_depth, pse_depth;
217
218 /*
219 * preemption test can be made between sibling entities who are in the
220 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
221 * both tasks until we find their ancestors who are siblings of common
222 * parent.
223 */
224
225 /* First walk up until both entities are at same depth */
226 se_depth = depth_se(*se);
227 pse_depth = depth_se(*pse);
228
229 while (se_depth > pse_depth) {
230 se_depth--;
231 *se = parent_entity(*se);
232 }
233
234 while (pse_depth > se_depth) {
235 pse_depth--;
236 *pse = parent_entity(*pse);
237 }
238
239 while (!is_same_group(*se, *pse)) {
240 *se = parent_entity(*se);
241 *pse = parent_entity(*pse);
242 }
243}
244
8f48894f
PZ
245#else /* !CONFIG_FAIR_GROUP_SCHED */
246
247static inline struct task_struct *task_of(struct sched_entity *se)
248{
249 return container_of(se, struct task_struct, se);
250}
bf0f6f24 251
62160e3f
IM
252static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
253{
254 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
255}
256
257#define entity_is_task(se) 1
258
b758149c
PZ
259#define for_each_sched_entity(se) \
260 for (; se; se = NULL)
bf0f6f24 261
b758149c 262static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 263{
b758149c 264 return &task_rq(p)->cfs;
bf0f6f24
IM
265}
266
b758149c
PZ
267static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268{
269 struct task_struct *p = task_of(se);
270 struct rq *rq = task_rq(p);
271
272 return &rq->cfs;
273}
274
275/* runqueue "owned" by this group */
276static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
277{
278 return NULL;
279}
280
281static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
282{
283 return &cpu_rq(this_cpu)->cfs;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288}
289
290static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
291{
292}
293
b758149c
PZ
294#define for_each_leaf_cfs_rq(rq, cfs_rq) \
295 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
296
297static inline int
298is_same_group(struct sched_entity *se, struct sched_entity *pse)
299{
300 return 1;
301}
302
303static inline struct sched_entity *parent_entity(struct sched_entity *se)
304{
305 return NULL;
306}
307
464b7527
PZ
308static inline void
309find_matching_se(struct sched_entity **se, struct sched_entity **pse)
310{
311}
312
b758149c
PZ
313#endif /* CONFIG_FAIR_GROUP_SCHED */
314
bf0f6f24
IM
315
316/**************************************************************
317 * Scheduling class tree data structure manipulation methods:
318 */
319
0702e3eb 320static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 321{
368059a9
PZ
322 s64 delta = (s64)(vruntime - min_vruntime);
323 if (delta > 0)
02e0431a
PZ
324 min_vruntime = vruntime;
325
326 return min_vruntime;
327}
328
0702e3eb 329static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
330{
331 s64 delta = (s64)(vruntime - min_vruntime);
332 if (delta < 0)
333 min_vruntime = vruntime;
334
335 return min_vruntime;
336}
337
54fdc581
FC
338static inline int entity_before(struct sched_entity *a,
339 struct sched_entity *b)
340{
341 return (s64)(a->vruntime - b->vruntime) < 0;
342}
343
0702e3eb 344static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 345{
30cfdcfc 346 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
347}
348
1af5f730
PZ
349static void update_min_vruntime(struct cfs_rq *cfs_rq)
350{
351 u64 vruntime = cfs_rq->min_vruntime;
352
353 if (cfs_rq->curr)
354 vruntime = cfs_rq->curr->vruntime;
355
356 if (cfs_rq->rb_leftmost) {
357 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
358 struct sched_entity,
359 run_node);
360
e17036da 361 if (!cfs_rq->curr)
1af5f730
PZ
362 vruntime = se->vruntime;
363 else
364 vruntime = min_vruntime(vruntime, se->vruntime);
365 }
366
367 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
368}
369
bf0f6f24
IM
370/*
371 * Enqueue an entity into the rb-tree:
372 */
0702e3eb 373static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
374{
375 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
376 struct rb_node *parent = NULL;
377 struct sched_entity *entry;
9014623c 378 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
379 int leftmost = 1;
380
381 /*
382 * Find the right place in the rbtree:
383 */
384 while (*link) {
385 parent = *link;
386 entry = rb_entry(parent, struct sched_entity, run_node);
387 /*
388 * We dont care about collisions. Nodes with
389 * the same key stay together.
390 */
9014623c 391 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
392 link = &parent->rb_left;
393 } else {
394 link = &parent->rb_right;
395 leftmost = 0;
396 }
397 }
398
399 /*
400 * Maintain a cache of leftmost tree entries (it is frequently
401 * used):
402 */
1af5f730 403 if (leftmost)
57cb499d 404 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
405
406 rb_link_node(&se->run_node, parent, link);
407 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
408}
409
0702e3eb 410static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 411{
3fe69747
PZ
412 if (cfs_rq->rb_leftmost == &se->run_node) {
413 struct rb_node *next_node;
3fe69747
PZ
414
415 next_node = rb_next(&se->run_node);
416 cfs_rq->rb_leftmost = next_node;
3fe69747 417 }
e9acbff6 418
bf0f6f24 419 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
420}
421
bf0f6f24
IM
422static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
423{
f4b6755f
PZ
424 struct rb_node *left = cfs_rq->rb_leftmost;
425
426 if (!left)
427 return NULL;
428
429 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
430}
431
f4b6755f 432static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 433{
7eee3e67 434 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 435
70eee74b
BS
436 if (!last)
437 return NULL;
7eee3e67
IM
438
439 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
440}
441
bf0f6f24
IM
442/**************************************************************
443 * Scheduling class statistics methods:
444 */
445
b2be5e96 446#ifdef CONFIG_SCHED_DEBUG
acb4a848 447int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 448 void __user *buffer, size_t *lenp,
b2be5e96
PZ
449 loff_t *ppos)
450{
8d65af78 451 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 452 int factor = get_update_sysctl_factor();
b2be5e96
PZ
453
454 if (ret || !write)
455 return ret;
456
457 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
458 sysctl_sched_min_granularity);
459
acb4a848
CE
460#define WRT_SYSCTL(name) \
461 (normalized_sysctl_##name = sysctl_##name / (factor))
462 WRT_SYSCTL(sched_min_granularity);
463 WRT_SYSCTL(sched_latency);
464 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
465#undef WRT_SYSCTL
466
b2be5e96
PZ
467 return 0;
468}
469#endif
647e7cac 470
a7be37ac 471/*
f9c0b095 472 * delta /= w
a7be37ac
PZ
473 */
474static inline unsigned long
475calc_delta_fair(unsigned long delta, struct sched_entity *se)
476{
f9c0b095
PZ
477 if (unlikely(se->load.weight != NICE_0_LOAD))
478 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
479
480 return delta;
481}
482
647e7cac
IM
483/*
484 * The idea is to set a period in which each task runs once.
485 *
486 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
487 * this period because otherwise the slices get too small.
488 *
489 * p = (nr <= nl) ? l : l*nr/nl
490 */
4d78e7b6
PZ
491static u64 __sched_period(unsigned long nr_running)
492{
493 u64 period = sysctl_sched_latency;
b2be5e96 494 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
495
496 if (unlikely(nr_running > nr_latency)) {
4bf0b771 497 period = sysctl_sched_min_granularity;
4d78e7b6 498 period *= nr_running;
4d78e7b6
PZ
499 }
500
501 return period;
502}
503
647e7cac
IM
504/*
505 * We calculate the wall-time slice from the period by taking a part
506 * proportional to the weight.
507 *
f9c0b095 508 * s = p*P[w/rw]
647e7cac 509 */
6d0f0ebd 510static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 511{
0a582440 512 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 513
0a582440 514 for_each_sched_entity(se) {
6272d68c 515 struct load_weight *load;
3104bf03 516 struct load_weight lw;
6272d68c
LM
517
518 cfs_rq = cfs_rq_of(se);
519 load = &cfs_rq->load;
f9c0b095 520
0a582440 521 if (unlikely(!se->on_rq)) {
3104bf03 522 lw = cfs_rq->load;
0a582440
MG
523
524 update_load_add(&lw, se->load.weight);
525 load = &lw;
526 }
527 slice = calc_delta_mine(slice, se->load.weight, load);
528 }
529 return slice;
bf0f6f24
IM
530}
531
647e7cac 532/*
ac884dec 533 * We calculate the vruntime slice of a to be inserted task
647e7cac 534 *
f9c0b095 535 * vs = s/w
647e7cac 536 */
f9c0b095 537static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 538{
f9c0b095 539 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
540}
541
d6b55918 542static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
3b3d190e
PT
543static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta);
544
bf0f6f24
IM
545/*
546 * Update the current task's runtime statistics. Skip current tasks that
547 * are not in our scheduling class.
548 */
549static inline void
8ebc91d9
IM
550__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
551 unsigned long delta_exec)
bf0f6f24 552{
bbdba7c0 553 unsigned long delta_exec_weighted;
bf0f6f24 554
41acab88
LDM
555 schedstat_set(curr->statistics.exec_max,
556 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
557
558 curr->sum_exec_runtime += delta_exec;
7a62eabc 559 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 560 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 561
e9acbff6 562 curr->vruntime += delta_exec_weighted;
1af5f730 563 update_min_vruntime(cfs_rq);
3b3d190e
PT
564
565#ifdef CONFIG_FAIR_GROUP_SCHED
566 cfs_rq->load_unacc_exec_time += delta_exec;
567 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
d6b55918 568 update_cfs_load(cfs_rq, 0);
3b3d190e
PT
569 update_cfs_shares(cfs_rq, 0);
570 }
571#endif
bf0f6f24
IM
572}
573
b7cc0896 574static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 575{
429d43bc 576 struct sched_entity *curr = cfs_rq->curr;
305e6835 577 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
578 unsigned long delta_exec;
579
580 if (unlikely(!curr))
581 return;
582
583 /*
584 * Get the amount of time the current task was running
585 * since the last time we changed load (this cannot
586 * overflow on 32 bits):
587 */
8ebc91d9 588 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
589 if (!delta_exec)
590 return;
bf0f6f24 591
8ebc91d9
IM
592 __update_curr(cfs_rq, curr, delta_exec);
593 curr->exec_start = now;
d842de87
SV
594
595 if (entity_is_task(curr)) {
596 struct task_struct *curtask = task_of(curr);
597
f977bb49 598 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 599 cpuacct_charge(curtask, delta_exec);
f06febc9 600 account_group_exec_runtime(curtask, delta_exec);
d842de87 601 }
bf0f6f24
IM
602}
603
604static inline void
5870db5b 605update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 606{
41acab88 607 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
608}
609
bf0f6f24
IM
610/*
611 * Task is being enqueued - update stats:
612 */
d2417e5a 613static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 614{
bf0f6f24
IM
615 /*
616 * Are we enqueueing a waiting task? (for current tasks
617 * a dequeue/enqueue event is a NOP)
618 */
429d43bc 619 if (se != cfs_rq->curr)
5870db5b 620 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
621}
622
bf0f6f24 623static void
9ef0a961 624update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 625{
41acab88
LDM
626 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
627 rq_of(cfs_rq)->clock - se->statistics.wait_start));
628 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
629 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
630 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
631#ifdef CONFIG_SCHEDSTATS
632 if (entity_is_task(se)) {
633 trace_sched_stat_wait(task_of(se),
41acab88 634 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
635 }
636#endif
41acab88 637 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
638}
639
640static inline void
19b6a2e3 641update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 642{
bf0f6f24
IM
643 /*
644 * Mark the end of the wait period if dequeueing a
645 * waiting task:
646 */
429d43bc 647 if (se != cfs_rq->curr)
9ef0a961 648 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
649}
650
651/*
652 * We are picking a new current task - update its stats:
653 */
654static inline void
79303e9e 655update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
656{
657 /*
658 * We are starting a new run period:
659 */
305e6835 660 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
661}
662
bf0f6f24
IM
663/**************************************************
664 * Scheduling class queueing methods:
665 */
666
c09595f6
PZ
667#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
668static void
669add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
670{
671 cfs_rq->task_weight += weight;
672}
673#else
674static inline void
675add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
676{
677}
678#endif
679
30cfdcfc
DA
680static void
681account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
682{
683 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
684 if (!parent_entity(se))
685 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 686 if (entity_is_task(se)) {
c09595f6 687 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
688 list_add(&se->group_node, &cfs_rq->tasks);
689 }
30cfdcfc 690 cfs_rq->nr_running++;
30cfdcfc
DA
691}
692
693static void
694account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
695{
696 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
697 if (!parent_entity(se))
698 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 699 if (entity_is_task(se)) {
c09595f6 700 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
701 list_del_init(&se->group_node);
702 }
30cfdcfc 703 cfs_rq->nr_running--;
30cfdcfc
DA
704}
705
2069dd75 706#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
d6b55918
PT
707static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
708 int global_update)
709{
710 struct task_group *tg = cfs_rq->tg;
711 long load_avg;
712
713 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
714 load_avg -= cfs_rq->load_contribution;
715
716 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
717 atomic_add(load_avg, &tg->load_weight);
718 cfs_rq->load_contribution += load_avg;
719 }
720}
721
722static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 723{
a7a4f8a7 724 u64 period = sysctl_sched_shares_window;
2069dd75 725 u64 now, delta;
e33078ba 726 unsigned long load = cfs_rq->load.weight;
2069dd75
PZ
727
728 if (!cfs_rq)
729 return;
730
731 now = rq_of(cfs_rq)->clock;
732 delta = now - cfs_rq->load_stamp;
733
e33078ba
PT
734 /* truncate load history at 4 idle periods */
735 if (cfs_rq->load_stamp > cfs_rq->load_last &&
736 now - cfs_rq->load_last > 4 * period) {
737 cfs_rq->load_period = 0;
738 cfs_rq->load_avg = 0;
739 }
740
2069dd75 741 cfs_rq->load_stamp = now;
3b3d190e 742 cfs_rq->load_unacc_exec_time = 0;
2069dd75 743 cfs_rq->load_period += delta;
e33078ba
PT
744 if (load) {
745 cfs_rq->load_last = now;
746 cfs_rq->load_avg += delta * load;
747 }
2069dd75 748
d6b55918
PT
749 /* consider updating load contribution on each fold or truncate */
750 if (global_update || cfs_rq->load_period > period
751 || !cfs_rq->load_period)
752 update_cfs_rq_load_contribution(cfs_rq, global_update);
753
2069dd75
PZ
754 while (cfs_rq->load_period > period) {
755 /*
756 * Inline assembly required to prevent the compiler
757 * optimising this loop into a divmod call.
758 * See __iter_div_u64_rem() for another example of this.
759 */
760 asm("" : "+rm" (cfs_rq->load_period));
761 cfs_rq->load_period /= 2;
762 cfs_rq->load_avg /= 2;
763 }
3d4b47b4 764
e33078ba
PT
765 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
766 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
767}
768
769static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
770 unsigned long weight)
771{
772 if (se->on_rq)
773 account_entity_dequeue(cfs_rq, se);
774
775 update_load_set(&se->load, weight);
776
777 if (se->on_rq)
778 account_entity_enqueue(cfs_rq, se);
779}
780
f0d7442a 781static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
2069dd75
PZ
782{
783 struct task_group *tg;
784 struct sched_entity *se;
785 long load_weight, load, shares;
786
787 if (!cfs_rq)
788 return;
789
790 tg = cfs_rq->tg;
791 se = tg->se[cpu_of(rq_of(cfs_rq))];
792 if (!se)
793 return;
794
f0d7442a 795 load = cfs_rq->load.weight + weight_delta;
2069dd75
PZ
796
797 load_weight = atomic_read(&tg->load_weight);
798 load_weight -= cfs_rq->load_contribution;
799 load_weight += load;
800
801 shares = (tg->shares * load);
802 if (load_weight)
803 shares /= load_weight;
804
805 if (shares < MIN_SHARES)
806 shares = MIN_SHARES;
807 if (shares > tg->shares)
808 shares = tg->shares;
809
810 reweight_entity(cfs_rq_of(se), se, shares);
811}
812#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 813static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
814{
815}
816
f0d7442a 817static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
2069dd75
PZ
818{
819}
820#endif /* CONFIG_FAIR_GROUP_SCHED */
821
2396af69 822static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 823{
bf0f6f24 824#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
825 struct task_struct *tsk = NULL;
826
827 if (entity_is_task(se))
828 tsk = task_of(se);
829
41acab88
LDM
830 if (se->statistics.sleep_start) {
831 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
832
833 if ((s64)delta < 0)
834 delta = 0;
835
41acab88
LDM
836 if (unlikely(delta > se->statistics.sleep_max))
837 se->statistics.sleep_max = delta;
bf0f6f24 838
41acab88
LDM
839 se->statistics.sleep_start = 0;
840 se->statistics.sum_sleep_runtime += delta;
9745512c 841
768d0c27 842 if (tsk) {
e414314c 843 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
844 trace_sched_stat_sleep(tsk, delta);
845 }
bf0f6f24 846 }
41acab88
LDM
847 if (se->statistics.block_start) {
848 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
849
850 if ((s64)delta < 0)
851 delta = 0;
852
41acab88
LDM
853 if (unlikely(delta > se->statistics.block_max))
854 se->statistics.block_max = delta;
bf0f6f24 855
41acab88
LDM
856 se->statistics.block_start = 0;
857 se->statistics.sum_sleep_runtime += delta;
30084fbd 858
e414314c 859 if (tsk) {
8f0dfc34 860 if (tsk->in_iowait) {
41acab88
LDM
861 se->statistics.iowait_sum += delta;
862 se->statistics.iowait_count++;
768d0c27 863 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
864 }
865
e414314c
PZ
866 /*
867 * Blocking time is in units of nanosecs, so shift by
868 * 20 to get a milliseconds-range estimation of the
869 * amount of time that the task spent sleeping:
870 */
871 if (unlikely(prof_on == SLEEP_PROFILING)) {
872 profile_hits(SLEEP_PROFILING,
873 (void *)get_wchan(tsk),
874 delta >> 20);
875 }
876 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 877 }
bf0f6f24
IM
878 }
879#endif
880}
881
ddc97297
PZ
882static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
883{
884#ifdef CONFIG_SCHED_DEBUG
885 s64 d = se->vruntime - cfs_rq->min_vruntime;
886
887 if (d < 0)
888 d = -d;
889
890 if (d > 3*sysctl_sched_latency)
891 schedstat_inc(cfs_rq, nr_spread_over);
892#endif
893}
894
aeb73b04
PZ
895static void
896place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
897{
1af5f730 898 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 899
2cb8600e
PZ
900 /*
901 * The 'current' period is already promised to the current tasks,
902 * however the extra weight of the new task will slow them down a
903 * little, place the new task so that it fits in the slot that
904 * stays open at the end.
905 */
94dfb5e7 906 if (initial && sched_feat(START_DEBIT))
f9c0b095 907 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 908
a2e7a7eb 909 /* sleeps up to a single latency don't count. */
5ca9880c 910 if (!initial) {
a2e7a7eb 911 unsigned long thresh = sysctl_sched_latency;
a7be37ac 912
a2e7a7eb
MG
913 /*
914 * Halve their sleep time's effect, to allow
915 * for a gentler effect of sleepers:
916 */
917 if (sched_feat(GENTLE_FAIR_SLEEPERS))
918 thresh >>= 1;
51e0304c 919
a2e7a7eb 920 vruntime -= thresh;
aeb73b04
PZ
921 }
922
b5d9d734
MG
923 /* ensure we never gain time by being placed backwards. */
924 vruntime = max_vruntime(se->vruntime, vruntime);
925
67e9fb2a 926 se->vruntime = vruntime;
aeb73b04
PZ
927}
928
bf0f6f24 929static void
88ec22d3 930enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 931{
88ec22d3
PZ
932 /*
933 * Update the normalized vruntime before updating min_vruntime
934 * through callig update_curr().
935 */
371fd7e7 936 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
937 se->vruntime += cfs_rq->min_vruntime;
938
bf0f6f24 939 /*
a2a2d680 940 * Update run-time statistics of the 'current'.
bf0f6f24 941 */
b7cc0896 942 update_curr(cfs_rq);
d6b55918 943 update_cfs_load(cfs_rq, 0);
f0d7442a 944 update_cfs_shares(cfs_rq, se->load.weight);
a992241d 945 account_entity_enqueue(cfs_rq, se);
bf0f6f24 946
88ec22d3 947 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 948 place_entity(cfs_rq, se, 0);
2396af69 949 enqueue_sleeper(cfs_rq, se);
e9acbff6 950 }
bf0f6f24 951
d2417e5a 952 update_stats_enqueue(cfs_rq, se);
ddc97297 953 check_spread(cfs_rq, se);
83b699ed
SV
954 if (se != cfs_rq->curr)
955 __enqueue_entity(cfs_rq, se);
2069dd75 956 se->on_rq = 1;
3d4b47b4
PZ
957
958 if (cfs_rq->nr_running == 1)
959 list_add_leaf_cfs_rq(cfs_rq);
bf0f6f24
IM
960}
961
a571bbea 962static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695 963{
de69a80b 964 if (!se || cfs_rq->last == se)
2002c695
PZ
965 cfs_rq->last = NULL;
966
de69a80b 967 if (!se || cfs_rq->next == se)
2002c695
PZ
968 cfs_rq->next = NULL;
969}
970
a571bbea
PZ
971static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
972{
973 for_each_sched_entity(se)
974 __clear_buddies(cfs_rq_of(se), se);
975}
976
bf0f6f24 977static void
371fd7e7 978dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 979{
a2a2d680
DA
980 /*
981 * Update run-time statistics of the 'current'.
982 */
983 update_curr(cfs_rq);
984
19b6a2e3 985 update_stats_dequeue(cfs_rq, se);
371fd7e7 986 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 987#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
988 if (entity_is_task(se)) {
989 struct task_struct *tsk = task_of(se);
990
991 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 992 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 993 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 994 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 995 }
db36cc7d 996#endif
67e9fb2a
PZ
997 }
998
2002c695 999 clear_buddies(cfs_rq, se);
4793241b 1000
83b699ed 1001 if (se != cfs_rq->curr)
30cfdcfc 1002 __dequeue_entity(cfs_rq, se);
2069dd75 1003 se->on_rq = 0;
d6b55918 1004 update_cfs_load(cfs_rq, 0);
30cfdcfc 1005 account_entity_dequeue(cfs_rq, se);
1af5f730 1006 update_min_vruntime(cfs_rq);
f0d7442a 1007 update_cfs_shares(cfs_rq, 0);
88ec22d3
PZ
1008
1009 /*
1010 * Normalize the entity after updating the min_vruntime because the
1011 * update can refer to the ->curr item and we need to reflect this
1012 * movement in our normalized position.
1013 */
371fd7e7 1014 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1015 se->vruntime -= cfs_rq->min_vruntime;
bf0f6f24
IM
1016}
1017
1018/*
1019 * Preempt the current task with a newly woken task if needed:
1020 */
7c92e54f 1021static void
2e09bf55 1022check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1023{
11697830
PZ
1024 unsigned long ideal_runtime, delta_exec;
1025
6d0f0ebd 1026 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1027 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1028 if (delta_exec > ideal_runtime) {
bf0f6f24 1029 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1030 /*
1031 * The current task ran long enough, ensure it doesn't get
1032 * re-elected due to buddy favours.
1033 */
1034 clear_buddies(cfs_rq, curr);
f685ceac
MG
1035 return;
1036 }
1037
1038 /*
1039 * Ensure that a task that missed wakeup preemption by a
1040 * narrow margin doesn't have to wait for a full slice.
1041 * This also mitigates buddy induced latencies under load.
1042 */
1043 if (!sched_feat(WAKEUP_PREEMPT))
1044 return;
1045
1046 if (delta_exec < sysctl_sched_min_granularity)
1047 return;
1048
1049 if (cfs_rq->nr_running > 1) {
1050 struct sched_entity *se = __pick_next_entity(cfs_rq);
1051 s64 delta = curr->vruntime - se->vruntime;
1052
1053 if (delta > ideal_runtime)
1054 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 1055 }
bf0f6f24
IM
1056}
1057
83b699ed 1058static void
8494f412 1059set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1060{
83b699ed
SV
1061 /* 'current' is not kept within the tree. */
1062 if (se->on_rq) {
1063 /*
1064 * Any task has to be enqueued before it get to execute on
1065 * a CPU. So account for the time it spent waiting on the
1066 * runqueue.
1067 */
1068 update_stats_wait_end(cfs_rq, se);
1069 __dequeue_entity(cfs_rq, se);
1070 }
1071
79303e9e 1072 update_stats_curr_start(cfs_rq, se);
429d43bc 1073 cfs_rq->curr = se;
eba1ed4b
IM
1074#ifdef CONFIG_SCHEDSTATS
1075 /*
1076 * Track our maximum slice length, if the CPU's load is at
1077 * least twice that of our own weight (i.e. dont track it
1078 * when there are only lesser-weight tasks around):
1079 */
495eca49 1080 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1081 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1082 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1083 }
1084#endif
4a55b450 1085 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1086}
1087
3f3a4904
PZ
1088static int
1089wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1090
f4b6755f 1091static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1092{
f4b6755f 1093 struct sched_entity *se = __pick_next_entity(cfs_rq);
f685ceac 1094 struct sched_entity *left = se;
f4b6755f 1095
f685ceac
MG
1096 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1097 se = cfs_rq->next;
aa2ac252 1098
f685ceac
MG
1099 /*
1100 * Prefer last buddy, try to return the CPU to a preempted task.
1101 */
1102 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1103 se = cfs_rq->last;
1104
1105 clear_buddies(cfs_rq, se);
4793241b
PZ
1106
1107 return se;
aa2ac252
PZ
1108}
1109
ab6cde26 1110static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1111{
1112 /*
1113 * If still on the runqueue then deactivate_task()
1114 * was not called and update_curr() has to be done:
1115 */
1116 if (prev->on_rq)
b7cc0896 1117 update_curr(cfs_rq);
bf0f6f24 1118
ddc97297 1119 check_spread(cfs_rq, prev);
30cfdcfc 1120 if (prev->on_rq) {
5870db5b 1121 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1122 /* Put 'current' back into the tree. */
1123 __enqueue_entity(cfs_rq, prev);
1124 }
429d43bc 1125 cfs_rq->curr = NULL;
bf0f6f24
IM
1126}
1127
8f4d37ec
PZ
1128static void
1129entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1130{
bf0f6f24 1131 /*
30cfdcfc 1132 * Update run-time statistics of the 'current'.
bf0f6f24 1133 */
30cfdcfc 1134 update_curr(cfs_rq);
bf0f6f24 1135
8f4d37ec
PZ
1136#ifdef CONFIG_SCHED_HRTICK
1137 /*
1138 * queued ticks are scheduled to match the slice, so don't bother
1139 * validating it and just reschedule.
1140 */
983ed7a6
HH
1141 if (queued) {
1142 resched_task(rq_of(cfs_rq)->curr);
1143 return;
1144 }
8f4d37ec
PZ
1145 /*
1146 * don't let the period tick interfere with the hrtick preemption
1147 */
1148 if (!sched_feat(DOUBLE_TICK) &&
1149 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1150 return;
1151#endif
1152
ce6c1311 1153 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 1154 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1155}
1156
1157/**************************************************
1158 * CFS operations on tasks:
1159 */
1160
8f4d37ec
PZ
1161#ifdef CONFIG_SCHED_HRTICK
1162static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1163{
8f4d37ec
PZ
1164 struct sched_entity *se = &p->se;
1165 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1166
1167 WARN_ON(task_rq(p) != rq);
1168
1169 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1170 u64 slice = sched_slice(cfs_rq, se);
1171 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1172 s64 delta = slice - ran;
1173
1174 if (delta < 0) {
1175 if (rq->curr == p)
1176 resched_task(p);
1177 return;
1178 }
1179
1180 /*
1181 * Don't schedule slices shorter than 10000ns, that just
1182 * doesn't make sense. Rely on vruntime for fairness.
1183 */
31656519 1184 if (rq->curr != p)
157124c1 1185 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1186
31656519 1187 hrtick_start(rq, delta);
8f4d37ec
PZ
1188 }
1189}
a4c2f00f
PZ
1190
1191/*
1192 * called from enqueue/dequeue and updates the hrtick when the
1193 * current task is from our class and nr_running is low enough
1194 * to matter.
1195 */
1196static void hrtick_update(struct rq *rq)
1197{
1198 struct task_struct *curr = rq->curr;
1199
1200 if (curr->sched_class != &fair_sched_class)
1201 return;
1202
1203 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1204 hrtick_start_fair(rq, curr);
1205}
55e12e5e 1206#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1207static inline void
1208hrtick_start_fair(struct rq *rq, struct task_struct *p)
1209{
1210}
a4c2f00f
PZ
1211
1212static inline void hrtick_update(struct rq *rq)
1213{
1214}
8f4d37ec
PZ
1215#endif
1216
bf0f6f24
IM
1217/*
1218 * The enqueue_task method is called before nr_running is
1219 * increased. Here we update the fair scheduling stats and
1220 * then put the task into the rbtree:
1221 */
ea87bb78 1222static void
371fd7e7 1223enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1224{
1225 struct cfs_rq *cfs_rq;
62fb1851 1226 struct sched_entity *se = &p->se;
bf0f6f24
IM
1227
1228 for_each_sched_entity(se) {
62fb1851 1229 if (se->on_rq)
bf0f6f24
IM
1230 break;
1231 cfs_rq = cfs_rq_of(se);
88ec22d3
PZ
1232 enqueue_entity(cfs_rq, se, flags);
1233 flags = ENQUEUE_WAKEUP;
bf0f6f24 1234 }
8f4d37ec 1235
2069dd75
PZ
1236 for_each_sched_entity(se) {
1237 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1238
d6b55918 1239 update_cfs_load(cfs_rq, 0);
f0d7442a 1240 update_cfs_shares(cfs_rq, 0);
2069dd75
PZ
1241 }
1242
a4c2f00f 1243 hrtick_update(rq);
bf0f6f24
IM
1244}
1245
1246/*
1247 * The dequeue_task method is called before nr_running is
1248 * decreased. We remove the task from the rbtree and
1249 * update the fair scheduling stats:
1250 */
371fd7e7 1251static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1252{
1253 struct cfs_rq *cfs_rq;
62fb1851 1254 struct sched_entity *se = &p->se;
bf0f6f24
IM
1255
1256 for_each_sched_entity(se) {
1257 cfs_rq = cfs_rq_of(se);
371fd7e7 1258 dequeue_entity(cfs_rq, se, flags);
2069dd75 1259
bf0f6f24 1260 /* Don't dequeue parent if it has other entities besides us */
62fb1851 1261 if (cfs_rq->load.weight)
bf0f6f24 1262 break;
371fd7e7 1263 flags |= DEQUEUE_SLEEP;
bf0f6f24 1264 }
8f4d37ec 1265
2069dd75
PZ
1266 for_each_sched_entity(se) {
1267 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1268
d6b55918 1269 update_cfs_load(cfs_rq, 0);
f0d7442a 1270 update_cfs_shares(cfs_rq, 0);
2069dd75
PZ
1271 }
1272
a4c2f00f 1273 hrtick_update(rq);
bf0f6f24
IM
1274}
1275
1276/*
1799e35d
IM
1277 * sched_yield() support is very simple - we dequeue and enqueue.
1278 *
1279 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 1280 */
4530d7ab 1281static void yield_task_fair(struct rq *rq)
bf0f6f24 1282{
db292ca3
IM
1283 struct task_struct *curr = rq->curr;
1284 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1285 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1286
1287 /*
1799e35d
IM
1288 * Are we the only task in the tree?
1289 */
1290 if (unlikely(cfs_rq->nr_running == 1))
1291 return;
1292
2002c695
PZ
1293 clear_buddies(cfs_rq, se);
1294
db292ca3 1295 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1296 update_rq_clock(rq);
1799e35d 1297 /*
a2a2d680 1298 * Update run-time statistics of the 'current'.
1799e35d 1299 */
2b1e315d 1300 update_curr(cfs_rq);
1799e35d
IM
1301
1302 return;
1303 }
1304 /*
1305 * Find the rightmost entry in the rbtree:
bf0f6f24 1306 */
2b1e315d 1307 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1308 /*
1309 * Already in the rightmost position?
1310 */
54fdc581 1311 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1312 return;
1313
1314 /*
1315 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1316 * Upon rescheduling, sched_class::put_prev_task() will place
1317 * 'current' within the tree based on its new key value.
1799e35d 1318 */
30cfdcfc 1319 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1320}
1321
e7693a36 1322#ifdef CONFIG_SMP
098fb9db 1323
88ec22d3
PZ
1324static void task_waking_fair(struct rq *rq, struct task_struct *p)
1325{
1326 struct sched_entity *se = &p->se;
1327 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1328
1329 se->vruntime -= cfs_rq->min_vruntime;
1330}
1331
bb3469ac 1332#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1333/*
1334 * effective_load() calculates the load change as seen from the root_task_group
1335 *
1336 * Adding load to a group doesn't make a group heavier, but can cause movement
1337 * of group shares between cpus. Assuming the shares were perfectly aligned one
1338 * can calculate the shift in shares.
f5bfb7d9 1339 */
2069dd75 1340static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 1341{
4be9daaa 1342 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1343
1344 if (!tg->parent)
1345 return wl;
1346
4be9daaa 1347 for_each_sched_entity(se) {
cb5ef42a 1348 long S, rw, s, a, b;
4be9daaa
PZ
1349
1350 S = se->my_q->tg->shares;
2069dd75
PZ
1351 s = se->load.weight;
1352 rw = se->my_q->load.weight;
bb3469ac 1353
cb5ef42a
PZ
1354 a = S*(rw + wl);
1355 b = S*rw + s*wg;
4be9daaa 1356
940959e9
PZ
1357 wl = s*(a-b);
1358
1359 if (likely(b))
1360 wl /= b;
1361
83378269
PZ
1362 /*
1363 * Assume the group is already running and will
1364 * thus already be accounted for in the weight.
1365 *
1366 * That is, moving shares between CPUs, does not
1367 * alter the group weight.
1368 */
4be9daaa 1369 wg = 0;
4be9daaa 1370 }
bb3469ac 1371
4be9daaa 1372 return wl;
bb3469ac 1373}
4be9daaa 1374
bb3469ac 1375#else
4be9daaa 1376
83378269
PZ
1377static inline unsigned long effective_load(struct task_group *tg, int cpu,
1378 unsigned long wl, unsigned long wg)
4be9daaa 1379{
83378269 1380 return wl;
bb3469ac 1381}
4be9daaa 1382
bb3469ac
PZ
1383#endif
1384
c88d5910 1385static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1386{
c88d5910
PZ
1387 unsigned long this_load, load;
1388 int idx, this_cpu, prev_cpu;
098fb9db 1389 unsigned long tl_per_task;
c88d5910 1390 struct task_group *tg;
83378269 1391 unsigned long weight;
b3137bc8 1392 int balanced;
098fb9db 1393
c88d5910
PZ
1394 idx = sd->wake_idx;
1395 this_cpu = smp_processor_id();
1396 prev_cpu = task_cpu(p);
1397 load = source_load(prev_cpu, idx);
1398 this_load = target_load(this_cpu, idx);
098fb9db 1399
b3137bc8
MG
1400 /*
1401 * If sync wakeup then subtract the (maximum possible)
1402 * effect of the currently running task from the load
1403 * of the current CPU:
1404 */
f3b577de 1405 rcu_read_lock();
83378269
PZ
1406 if (sync) {
1407 tg = task_group(current);
1408 weight = current->se.load.weight;
1409
c88d5910 1410 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1411 load += effective_load(tg, prev_cpu, 0, -weight);
1412 }
b3137bc8 1413
83378269
PZ
1414 tg = task_group(p);
1415 weight = p->se.load.weight;
b3137bc8 1416
71a29aa7
PZ
1417 /*
1418 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1419 * due to the sync cause above having dropped this_load to 0, we'll
1420 * always have an imbalance, but there's really nothing you can do
1421 * about that, so that's good too.
71a29aa7
PZ
1422 *
1423 * Otherwise check if either cpus are near enough in load to allow this
1424 * task to be woken on this_cpu.
1425 */
e51fd5e2
PZ
1426 if (this_load) {
1427 unsigned long this_eff_load, prev_eff_load;
1428
1429 this_eff_load = 100;
1430 this_eff_load *= power_of(prev_cpu);
1431 this_eff_load *= this_load +
1432 effective_load(tg, this_cpu, weight, weight);
1433
1434 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1435 prev_eff_load *= power_of(this_cpu);
1436 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1437
1438 balanced = this_eff_load <= prev_eff_load;
1439 } else
1440 balanced = true;
f3b577de 1441 rcu_read_unlock();
b3137bc8 1442
098fb9db 1443 /*
4ae7d5ce
IM
1444 * If the currently running task will sleep within
1445 * a reasonable amount of time then attract this newly
1446 * woken task:
098fb9db 1447 */
2fb7635c
PZ
1448 if (sync && balanced)
1449 return 1;
098fb9db 1450
41acab88 1451 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
1452 tl_per_task = cpu_avg_load_per_task(this_cpu);
1453
c88d5910
PZ
1454 if (balanced ||
1455 (this_load <= load &&
1456 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1457 /*
1458 * This domain has SD_WAKE_AFFINE and
1459 * p is cache cold in this domain, and
1460 * there is no bad imbalance.
1461 */
c88d5910 1462 schedstat_inc(sd, ttwu_move_affine);
41acab88 1463 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
1464
1465 return 1;
1466 }
1467 return 0;
1468}
1469
aaee1203
PZ
1470/*
1471 * find_idlest_group finds and returns the least busy CPU group within the
1472 * domain.
1473 */
1474static struct sched_group *
78e7ed53 1475find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1476 int this_cpu, int load_idx)
e7693a36 1477{
b3bd3de6 1478 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 1479 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1480 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1481
aaee1203
PZ
1482 do {
1483 unsigned long load, avg_load;
1484 int local_group;
1485 int i;
e7693a36 1486
aaee1203
PZ
1487 /* Skip over this group if it has no CPUs allowed */
1488 if (!cpumask_intersects(sched_group_cpus(group),
1489 &p->cpus_allowed))
1490 continue;
1491
1492 local_group = cpumask_test_cpu(this_cpu,
1493 sched_group_cpus(group));
1494
1495 /* Tally up the load of all CPUs in the group */
1496 avg_load = 0;
1497
1498 for_each_cpu(i, sched_group_cpus(group)) {
1499 /* Bias balancing toward cpus of our domain */
1500 if (local_group)
1501 load = source_load(i, load_idx);
1502 else
1503 load = target_load(i, load_idx);
1504
1505 avg_load += load;
1506 }
1507
1508 /* Adjust by relative CPU power of the group */
1509 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1510
1511 if (local_group) {
1512 this_load = avg_load;
aaee1203
PZ
1513 } else if (avg_load < min_load) {
1514 min_load = avg_load;
1515 idlest = group;
1516 }
1517 } while (group = group->next, group != sd->groups);
1518
1519 if (!idlest || 100*this_load < imbalance*min_load)
1520 return NULL;
1521 return idlest;
1522}
1523
1524/*
1525 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1526 */
1527static int
1528find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1529{
1530 unsigned long load, min_load = ULONG_MAX;
1531 int idlest = -1;
1532 int i;
1533
1534 /* Traverse only the allowed CPUs */
1535 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1536 load = weighted_cpuload(i);
1537
1538 if (load < min_load || (load == min_load && i == this_cpu)) {
1539 min_load = load;
1540 idlest = i;
e7693a36
GH
1541 }
1542 }
1543
aaee1203
PZ
1544 return idlest;
1545}
e7693a36 1546
a50bde51
PZ
1547/*
1548 * Try and locate an idle CPU in the sched_domain.
1549 */
99bd5e2f 1550static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
1551{
1552 int cpu = smp_processor_id();
1553 int prev_cpu = task_cpu(p);
99bd5e2f 1554 struct sched_domain *sd;
a50bde51
PZ
1555 int i;
1556
1557 /*
99bd5e2f
SS
1558 * If the task is going to be woken-up on this cpu and if it is
1559 * already idle, then it is the right target.
a50bde51 1560 */
99bd5e2f
SS
1561 if (target == cpu && idle_cpu(cpu))
1562 return cpu;
1563
1564 /*
1565 * If the task is going to be woken-up on the cpu where it previously
1566 * ran and if it is currently idle, then it the right target.
1567 */
1568 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 1569 return prev_cpu;
a50bde51
PZ
1570
1571 /*
99bd5e2f 1572 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 1573 */
99bd5e2f
SS
1574 for_each_domain(target, sd) {
1575 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
fe3bcfe1 1576 break;
99bd5e2f
SS
1577
1578 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1579 if (idle_cpu(i)) {
1580 target = i;
1581 break;
1582 }
a50bde51 1583 }
99bd5e2f
SS
1584
1585 /*
1586 * Lets stop looking for an idle sibling when we reached
1587 * the domain that spans the current cpu and prev_cpu.
1588 */
1589 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1590 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1591 break;
a50bde51
PZ
1592 }
1593
1594 return target;
1595}
1596
aaee1203
PZ
1597/*
1598 * sched_balance_self: balance the current task (running on cpu) in domains
1599 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1600 * SD_BALANCE_EXEC.
1601 *
1602 * Balance, ie. select the least loaded group.
1603 *
1604 * Returns the target CPU number, or the same CPU if no balancing is needed.
1605 *
1606 * preempt must be disabled.
1607 */
0017d735
PZ
1608static int
1609select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1610{
29cd8bae 1611 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1612 int cpu = smp_processor_id();
1613 int prev_cpu = task_cpu(p);
1614 int new_cpu = cpu;
99bd5e2f 1615 int want_affine = 0;
29cd8bae 1616 int want_sd = 1;
5158f4e4 1617 int sync = wake_flags & WF_SYNC;
c88d5910 1618
0763a660 1619 if (sd_flag & SD_BALANCE_WAKE) {
beac4c7e 1620 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1621 want_affine = 1;
1622 new_cpu = prev_cpu;
1623 }
aaee1203
PZ
1624
1625 for_each_domain(cpu, tmp) {
e4f42888
PZ
1626 if (!(tmp->flags & SD_LOAD_BALANCE))
1627 continue;
1628
aaee1203 1629 /*
ae154be1
PZ
1630 * If power savings logic is enabled for a domain, see if we
1631 * are not overloaded, if so, don't balance wider.
aaee1203 1632 */
59abf026 1633 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1634 unsigned long power = 0;
1635 unsigned long nr_running = 0;
1636 unsigned long capacity;
1637 int i;
1638
1639 for_each_cpu(i, sched_domain_span(tmp)) {
1640 power += power_of(i);
1641 nr_running += cpu_rq(i)->cfs.nr_running;
1642 }
1643
1644 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1645
59abf026
PZ
1646 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1647 nr_running /= 2;
1648
1649 if (nr_running < capacity)
29cd8bae 1650 want_sd = 0;
ae154be1 1651 }
aaee1203 1652
fe3bcfe1 1653 /*
99bd5e2f
SS
1654 * If both cpu and prev_cpu are part of this domain,
1655 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 1656 */
99bd5e2f
SS
1657 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1658 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1659 affine_sd = tmp;
1660 want_affine = 0;
c88d5910
PZ
1661 }
1662
29cd8bae
PZ
1663 if (!want_sd && !want_affine)
1664 break;
1665
0763a660 1666 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1667 continue;
1668
29cd8bae
PZ
1669 if (want_sd)
1670 sd = tmp;
1671 }
1672
8b911acd 1673 if (affine_sd) {
99bd5e2f
SS
1674 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1675 return select_idle_sibling(p, cpu);
1676 else
1677 return select_idle_sibling(p, prev_cpu);
8b911acd 1678 }
e7693a36 1679
aaee1203 1680 while (sd) {
5158f4e4 1681 int load_idx = sd->forkexec_idx;
aaee1203 1682 struct sched_group *group;
c88d5910 1683 int weight;
098fb9db 1684
0763a660 1685 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1686 sd = sd->child;
1687 continue;
1688 }
098fb9db 1689
5158f4e4
PZ
1690 if (sd_flag & SD_BALANCE_WAKE)
1691 load_idx = sd->wake_idx;
098fb9db 1692
5158f4e4 1693 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1694 if (!group) {
1695 sd = sd->child;
1696 continue;
1697 }
4ae7d5ce 1698
d7c33c49 1699 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1700 if (new_cpu == -1 || new_cpu == cpu) {
1701 /* Now try balancing at a lower domain level of cpu */
1702 sd = sd->child;
1703 continue;
e7693a36 1704 }
aaee1203
PZ
1705
1706 /* Now try balancing at a lower domain level of new_cpu */
1707 cpu = new_cpu;
669c55e9 1708 weight = sd->span_weight;
aaee1203
PZ
1709 sd = NULL;
1710 for_each_domain(cpu, tmp) {
669c55e9 1711 if (weight <= tmp->span_weight)
aaee1203 1712 break;
0763a660 1713 if (tmp->flags & sd_flag)
aaee1203
PZ
1714 sd = tmp;
1715 }
1716 /* while loop will break here if sd == NULL */
e7693a36
GH
1717 }
1718
c88d5910 1719 return new_cpu;
e7693a36
GH
1720}
1721#endif /* CONFIG_SMP */
1722
e52fb7c0
PZ
1723static unsigned long
1724wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1725{
1726 unsigned long gran = sysctl_sched_wakeup_granularity;
1727
1728 /*
e52fb7c0
PZ
1729 * Since its curr running now, convert the gran from real-time
1730 * to virtual-time in his units.
13814d42
MG
1731 *
1732 * By using 'se' instead of 'curr' we penalize light tasks, so
1733 * they get preempted easier. That is, if 'se' < 'curr' then
1734 * the resulting gran will be larger, therefore penalizing the
1735 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1736 * be smaller, again penalizing the lighter task.
1737 *
1738 * This is especially important for buddies when the leftmost
1739 * task is higher priority than the buddy.
0bbd3336 1740 */
13814d42
MG
1741 if (unlikely(se->load.weight != NICE_0_LOAD))
1742 gran = calc_delta_fair(gran, se);
0bbd3336
PZ
1743
1744 return gran;
1745}
1746
464b7527
PZ
1747/*
1748 * Should 'se' preempt 'curr'.
1749 *
1750 * |s1
1751 * |s2
1752 * |s3
1753 * g
1754 * |<--->|c
1755 *
1756 * w(c, s1) = -1
1757 * w(c, s2) = 0
1758 * w(c, s3) = 1
1759 *
1760 */
1761static int
1762wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1763{
1764 s64 gran, vdiff = curr->vruntime - se->vruntime;
1765
1766 if (vdiff <= 0)
1767 return -1;
1768
e52fb7c0 1769 gran = wakeup_gran(curr, se);
464b7527
PZ
1770 if (vdiff > gran)
1771 return 1;
1772
1773 return 0;
1774}
1775
02479099
PZ
1776static void set_last_buddy(struct sched_entity *se)
1777{
6bc912b7
PZ
1778 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1779 for_each_sched_entity(se)
1780 cfs_rq_of(se)->last = se;
1781 }
02479099
PZ
1782}
1783
1784static void set_next_buddy(struct sched_entity *se)
1785{
6bc912b7
PZ
1786 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1787 for_each_sched_entity(se)
1788 cfs_rq_of(se)->next = se;
1789 }
02479099
PZ
1790}
1791
bf0f6f24
IM
1792/*
1793 * Preempt the current task with a newly woken task if needed:
1794 */
5a9b86f6 1795static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
1796{
1797 struct task_struct *curr = rq->curr;
8651a86c 1798 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1799 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 1800 int scale = cfs_rq->nr_running >= sched_nr_latency;
bf0f6f24 1801
3a7e73a2
PZ
1802 if (unlikely(rt_prio(p->prio)))
1803 goto preempt;
aa2ac252 1804
d95f98d0
PZ
1805 if (unlikely(p->sched_class != &fair_sched_class))
1806 return;
1807
4ae7d5ce
IM
1808 if (unlikely(se == pse))
1809 return;
1810
f685ceac 1811 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
3cb63d52 1812 set_next_buddy(pse);
57fdc26d 1813
aec0a514
BR
1814 /*
1815 * We can come here with TIF_NEED_RESCHED already set from new task
1816 * wake up path.
1817 */
1818 if (test_tsk_need_resched(curr))
1819 return;
1820
91c234b4 1821 /*
6bc912b7 1822 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1823 * the tick):
1824 */
6bc912b7 1825 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1826 return;
bf0f6f24 1827
6bc912b7 1828 /* Idle tasks are by definition preempted by everybody. */
3a7e73a2
PZ
1829 if (unlikely(curr->policy == SCHED_IDLE))
1830 goto preempt;
bf0f6f24 1831
ad4b78bb
PZ
1832 if (!sched_feat(WAKEUP_PREEMPT))
1833 return;
1834
3a7e73a2 1835 update_curr(cfs_rq);
464b7527 1836 find_matching_se(&se, &pse);
002f128b 1837 BUG_ON(!pse);
3a7e73a2
PZ
1838 if (wakeup_preempt_entity(se, pse) == 1)
1839 goto preempt;
464b7527 1840
3a7e73a2 1841 return;
a65ac745 1842
3a7e73a2
PZ
1843preempt:
1844 resched_task(curr);
1845 /*
1846 * Only set the backward buddy when the current task is still
1847 * on the rq. This can happen when a wakeup gets interleaved
1848 * with schedule on the ->pre_schedule() or idle_balance()
1849 * point, either of which can * drop the rq lock.
1850 *
1851 * Also, during early boot the idle thread is in the fair class,
1852 * for obvious reasons its a bad idea to schedule back to it.
1853 */
1854 if (unlikely(!se->on_rq || curr == rq->idle))
1855 return;
1856
1857 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1858 set_last_buddy(se);
bf0f6f24
IM
1859}
1860
fb8d4724 1861static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1862{
8f4d37ec 1863 struct task_struct *p;
bf0f6f24
IM
1864 struct cfs_rq *cfs_rq = &rq->cfs;
1865 struct sched_entity *se;
1866
36ace27e 1867 if (!cfs_rq->nr_running)
bf0f6f24
IM
1868 return NULL;
1869
1870 do {
9948f4b2 1871 se = pick_next_entity(cfs_rq);
f4b6755f 1872 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1873 cfs_rq = group_cfs_rq(se);
1874 } while (cfs_rq);
1875
8f4d37ec
PZ
1876 p = task_of(se);
1877 hrtick_start_fair(rq, p);
1878
1879 return p;
bf0f6f24
IM
1880}
1881
1882/*
1883 * Account for a descheduled task:
1884 */
31ee529c 1885static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1886{
1887 struct sched_entity *se = &prev->se;
1888 struct cfs_rq *cfs_rq;
1889
1890 for_each_sched_entity(se) {
1891 cfs_rq = cfs_rq_of(se);
ab6cde26 1892 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1893 }
1894}
1895
681f3e68 1896#ifdef CONFIG_SMP
bf0f6f24
IM
1897/**************************************************
1898 * Fair scheduling class load-balancing methods:
1899 */
1900
1e3c88bd
PZ
1901/*
1902 * pull_task - move a task from a remote runqueue to the local runqueue.
1903 * Both runqueues must be locked.
1904 */
1905static void pull_task(struct rq *src_rq, struct task_struct *p,
1906 struct rq *this_rq, int this_cpu)
1907{
1908 deactivate_task(src_rq, p, 0);
1909 set_task_cpu(p, this_cpu);
1910 activate_task(this_rq, p, 0);
1911 check_preempt_curr(this_rq, p, 0);
fab47622
NR
1912
1913 /* re-arm NEWIDLE balancing when moving tasks */
1914 src_rq->avg_idle = this_rq->avg_idle = 2*sysctl_sched_migration_cost;
1915 this_rq->idle_stamp = 0;
1e3c88bd
PZ
1916}
1917
1918/*
1919 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1920 */
1921static
1922int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1923 struct sched_domain *sd, enum cpu_idle_type idle,
1924 int *all_pinned)
1925{
1926 int tsk_cache_hot = 0;
1927 /*
1928 * We do not migrate tasks that are:
1929 * 1) running (obviously), or
1930 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1931 * 3) are cache-hot on their current CPU.
1932 */
1933 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
41acab88 1934 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
1935 return 0;
1936 }
1937 *all_pinned = 0;
1938
1939 if (task_running(rq, p)) {
41acab88 1940 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
1941 return 0;
1942 }
1943
1944 /*
1945 * Aggressive migration if:
1946 * 1) task is cache cold, or
1947 * 2) too many balance attempts have failed.
1948 */
1949
305e6835 1950 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
1951 if (!tsk_cache_hot ||
1952 sd->nr_balance_failed > sd->cache_nice_tries) {
1953#ifdef CONFIG_SCHEDSTATS
1954 if (tsk_cache_hot) {
1955 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 1956 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
1957 }
1958#endif
1959 return 1;
1960 }
1961
1962 if (tsk_cache_hot) {
41acab88 1963 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
1964 return 0;
1965 }
1966 return 1;
1967}
1968
897c395f
PZ
1969/*
1970 * move_one_task tries to move exactly one task from busiest to this_rq, as
1971 * part of active balancing operations within "domain".
1972 * Returns 1 if successful and 0 otherwise.
1973 *
1974 * Called with both runqueues locked.
1975 */
1976static int
1977move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1978 struct sched_domain *sd, enum cpu_idle_type idle)
1979{
1980 struct task_struct *p, *n;
1981 struct cfs_rq *cfs_rq;
1982 int pinned = 0;
1983
1984 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1985 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1986
1987 if (!can_migrate_task(p, busiest, this_cpu,
1988 sd, idle, &pinned))
1989 continue;
1990
1991 pull_task(busiest, p, this_rq, this_cpu);
1992 /*
1993 * Right now, this is only the second place pull_task()
1994 * is called, so we can safely collect pull_task()
1995 * stats here rather than inside pull_task().
1996 */
1997 schedstat_inc(sd, lb_gained[idle]);
1998 return 1;
1999 }
2000 }
2001
2002 return 0;
2003}
2004
1e3c88bd
PZ
2005static unsigned long
2006balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2007 unsigned long max_load_move, struct sched_domain *sd,
2008 enum cpu_idle_type idle, int *all_pinned,
ee00e66f 2009 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1e3c88bd
PZ
2010{
2011 int loops = 0, pulled = 0, pinned = 0;
1e3c88bd 2012 long rem_load_move = max_load_move;
ee00e66f 2013 struct task_struct *p, *n;
1e3c88bd
PZ
2014
2015 if (max_load_move == 0)
2016 goto out;
2017
2018 pinned = 1;
2019
ee00e66f
PZ
2020 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2021 if (loops++ > sysctl_sched_nr_migrate)
2022 break;
1e3c88bd 2023
ee00e66f
PZ
2024 if ((p->se.load.weight >> 1) > rem_load_move ||
2025 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
2026 continue;
1e3c88bd 2027
ee00e66f
PZ
2028 pull_task(busiest, p, this_rq, this_cpu);
2029 pulled++;
2030 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
2031
2032#ifdef CONFIG_PREEMPT
ee00e66f
PZ
2033 /*
2034 * NEWIDLE balancing is a source of latency, so preemptible
2035 * kernels will stop after the first task is pulled to minimize
2036 * the critical section.
2037 */
2038 if (idle == CPU_NEWLY_IDLE)
2039 break;
1e3c88bd
PZ
2040#endif
2041
ee00e66f
PZ
2042 /*
2043 * We only want to steal up to the prescribed amount of
2044 * weighted load.
2045 */
2046 if (rem_load_move <= 0)
2047 break;
2048
1e3c88bd
PZ
2049 if (p->prio < *this_best_prio)
2050 *this_best_prio = p->prio;
1e3c88bd
PZ
2051 }
2052out:
2053 /*
2054 * Right now, this is one of only two places pull_task() is called,
2055 * so we can safely collect pull_task() stats here rather than
2056 * inside pull_task().
2057 */
2058 schedstat_add(sd, lb_gained[idle], pulled);
2059
2060 if (all_pinned)
2061 *all_pinned = pinned;
2062
2063 return max_load_move - rem_load_move;
2064}
2065
230059de 2066#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
2067/*
2068 * update tg->load_weight by folding this cpu's load_avg
2069 */
67e86250 2070static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
2071{
2072 struct cfs_rq *cfs_rq;
2073 unsigned long flags;
2074 struct rq *rq;
9e3081ca
PZ
2075
2076 if (!tg->se[cpu])
2077 return 0;
2078
2079 rq = cpu_rq(cpu);
2080 cfs_rq = tg->cfs_rq[cpu];
2081
2082 raw_spin_lock_irqsave(&rq->lock, flags);
2083
2084 update_rq_clock(rq);
d6b55918 2085 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
2086
2087 /*
2088 * We need to update shares after updating tg->load_weight in
2089 * order to adjust the weight of groups with long running tasks.
2090 */
f0d7442a 2091 update_cfs_shares(cfs_rq, 0);
9e3081ca
PZ
2092
2093 raw_spin_unlock_irqrestore(&rq->lock, flags);
2094
2095 return 0;
2096}
2097
2098static void update_shares(int cpu)
2099{
2100 struct cfs_rq *cfs_rq;
2101 struct rq *rq = cpu_rq(cpu);
2102
2103 rcu_read_lock();
67e86250
PT
2104 for_each_leaf_cfs_rq(rq, cfs_rq)
2105 update_shares_cpu(cfs_rq->tg, cpu);
9e3081ca
PZ
2106 rcu_read_unlock();
2107}
2108
230059de
PZ
2109static unsigned long
2110load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2111 unsigned long max_load_move,
2112 struct sched_domain *sd, enum cpu_idle_type idle,
2113 int *all_pinned, int *this_best_prio)
2114{
2115 long rem_load_move = max_load_move;
2116 int busiest_cpu = cpu_of(busiest);
2117 struct task_group *tg;
2118
2119 rcu_read_lock();
2120 update_h_load(busiest_cpu);
2121
2122 list_for_each_entry_rcu(tg, &task_groups, list) {
2123 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2124 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2125 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2126 u64 rem_load, moved_load;
2127
2128 /*
2129 * empty group
2130 */
2131 if (!busiest_cfs_rq->task_weight)
2132 continue;
2133
2134 rem_load = (u64)rem_load_move * busiest_weight;
2135 rem_load = div_u64(rem_load, busiest_h_load + 1);
2136
2137 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2138 rem_load, sd, idle, all_pinned, this_best_prio,
2139 busiest_cfs_rq);
2140
2141 if (!moved_load)
2142 continue;
2143
2144 moved_load *= busiest_h_load;
2145 moved_load = div_u64(moved_load, busiest_weight + 1);
2146
2147 rem_load_move -= moved_load;
2148 if (rem_load_move < 0)
2149 break;
2150 }
2151 rcu_read_unlock();
2152
2153 return max_load_move - rem_load_move;
2154}
2155#else
9e3081ca
PZ
2156static inline void update_shares(int cpu)
2157{
2158}
2159
230059de
PZ
2160static unsigned long
2161load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2162 unsigned long max_load_move,
2163 struct sched_domain *sd, enum cpu_idle_type idle,
2164 int *all_pinned, int *this_best_prio)
2165{
2166 return balance_tasks(this_rq, this_cpu, busiest,
2167 max_load_move, sd, idle, all_pinned,
2168 this_best_prio, &busiest->cfs);
2169}
2170#endif
2171
1e3c88bd
PZ
2172/*
2173 * move_tasks tries to move up to max_load_move weighted load from busiest to
2174 * this_rq, as part of a balancing operation within domain "sd".
2175 * Returns 1 if successful and 0 otherwise.
2176 *
2177 * Called with both runqueues locked.
2178 */
2179static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2180 unsigned long max_load_move,
2181 struct sched_domain *sd, enum cpu_idle_type idle,
2182 int *all_pinned)
2183{
3d45fd80 2184 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
2185 int this_best_prio = this_rq->curr->prio;
2186
2187 do {
3d45fd80 2188 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd
PZ
2189 max_load_move - total_load_moved,
2190 sd, idle, all_pinned, &this_best_prio);
3d45fd80
PZ
2191
2192 total_load_moved += load_moved;
1e3c88bd
PZ
2193
2194#ifdef CONFIG_PREEMPT
2195 /*
2196 * NEWIDLE balancing is a source of latency, so preemptible
2197 * kernels will stop after the first task is pulled to minimize
2198 * the critical section.
2199 */
2200 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2201 break;
baa8c110
PZ
2202
2203 if (raw_spin_is_contended(&this_rq->lock) ||
2204 raw_spin_is_contended(&busiest->lock))
2205 break;
1e3c88bd 2206#endif
3d45fd80 2207 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
2208
2209 return total_load_moved > 0;
2210}
2211
1e3c88bd
PZ
2212/********** Helpers for find_busiest_group ************************/
2213/*
2214 * sd_lb_stats - Structure to store the statistics of a sched_domain
2215 * during load balancing.
2216 */
2217struct sd_lb_stats {
2218 struct sched_group *busiest; /* Busiest group in this sd */
2219 struct sched_group *this; /* Local group in this sd */
2220 unsigned long total_load; /* Total load of all groups in sd */
2221 unsigned long total_pwr; /* Total power of all groups in sd */
2222 unsigned long avg_load; /* Average load across all groups in sd */
2223
2224 /** Statistics of this group */
2225 unsigned long this_load;
2226 unsigned long this_load_per_task;
2227 unsigned long this_nr_running;
fab47622 2228 unsigned long this_has_capacity;
1e3c88bd
PZ
2229
2230 /* Statistics of the busiest group */
2231 unsigned long max_load;
2232 unsigned long busiest_load_per_task;
2233 unsigned long busiest_nr_running;
dd5feea1 2234 unsigned long busiest_group_capacity;
fab47622 2235 unsigned long busiest_has_capacity;
1e3c88bd
PZ
2236
2237 int group_imb; /* Is there imbalance in this sd */
2238#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2239 int power_savings_balance; /* Is powersave balance needed for this sd */
2240 struct sched_group *group_min; /* Least loaded group in sd */
2241 struct sched_group *group_leader; /* Group which relieves group_min */
2242 unsigned long min_load_per_task; /* load_per_task in group_min */
2243 unsigned long leader_nr_running; /* Nr running of group_leader */
2244 unsigned long min_nr_running; /* Nr running of group_min */
2245#endif
2246};
2247
2248/*
2249 * sg_lb_stats - stats of a sched_group required for load_balancing
2250 */
2251struct sg_lb_stats {
2252 unsigned long avg_load; /*Avg load across the CPUs of the group */
2253 unsigned long group_load; /* Total load over the CPUs of the group */
2254 unsigned long sum_nr_running; /* Nr tasks running in the group */
2255 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2256 unsigned long group_capacity;
2257 int group_imb; /* Is there an imbalance in the group ? */
fab47622 2258 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
2259};
2260
2261/**
2262 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2263 * @group: The group whose first cpu is to be returned.
2264 */
2265static inline unsigned int group_first_cpu(struct sched_group *group)
2266{
2267 return cpumask_first(sched_group_cpus(group));
2268}
2269
2270/**
2271 * get_sd_load_idx - Obtain the load index for a given sched domain.
2272 * @sd: The sched_domain whose load_idx is to be obtained.
2273 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2274 */
2275static inline int get_sd_load_idx(struct sched_domain *sd,
2276 enum cpu_idle_type idle)
2277{
2278 int load_idx;
2279
2280 switch (idle) {
2281 case CPU_NOT_IDLE:
2282 load_idx = sd->busy_idx;
2283 break;
2284
2285 case CPU_NEWLY_IDLE:
2286 load_idx = sd->newidle_idx;
2287 break;
2288 default:
2289 load_idx = sd->idle_idx;
2290 break;
2291 }
2292
2293 return load_idx;
2294}
2295
2296
2297#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2298/**
2299 * init_sd_power_savings_stats - Initialize power savings statistics for
2300 * the given sched_domain, during load balancing.
2301 *
2302 * @sd: Sched domain whose power-savings statistics are to be initialized.
2303 * @sds: Variable containing the statistics for sd.
2304 * @idle: Idle status of the CPU at which we're performing load-balancing.
2305 */
2306static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2307 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2308{
2309 /*
2310 * Busy processors will not participate in power savings
2311 * balance.
2312 */
2313 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2314 sds->power_savings_balance = 0;
2315 else {
2316 sds->power_savings_balance = 1;
2317 sds->min_nr_running = ULONG_MAX;
2318 sds->leader_nr_running = 0;
2319 }
2320}
2321
2322/**
2323 * update_sd_power_savings_stats - Update the power saving stats for a
2324 * sched_domain while performing load balancing.
2325 *
2326 * @group: sched_group belonging to the sched_domain under consideration.
2327 * @sds: Variable containing the statistics of the sched_domain
2328 * @local_group: Does group contain the CPU for which we're performing
2329 * load balancing ?
2330 * @sgs: Variable containing the statistics of the group.
2331 */
2332static inline void update_sd_power_savings_stats(struct sched_group *group,
2333 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2334{
2335
2336 if (!sds->power_savings_balance)
2337 return;
2338
2339 /*
2340 * If the local group is idle or completely loaded
2341 * no need to do power savings balance at this domain
2342 */
2343 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2344 !sds->this_nr_running))
2345 sds->power_savings_balance = 0;
2346
2347 /*
2348 * If a group is already running at full capacity or idle,
2349 * don't include that group in power savings calculations
2350 */
2351 if (!sds->power_savings_balance ||
2352 sgs->sum_nr_running >= sgs->group_capacity ||
2353 !sgs->sum_nr_running)
2354 return;
2355
2356 /*
2357 * Calculate the group which has the least non-idle load.
2358 * This is the group from where we need to pick up the load
2359 * for saving power
2360 */
2361 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2362 (sgs->sum_nr_running == sds->min_nr_running &&
2363 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2364 sds->group_min = group;
2365 sds->min_nr_running = sgs->sum_nr_running;
2366 sds->min_load_per_task = sgs->sum_weighted_load /
2367 sgs->sum_nr_running;
2368 }
2369
2370 /*
2371 * Calculate the group which is almost near its
2372 * capacity but still has some space to pick up some load
2373 * from other group and save more power
2374 */
2375 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2376 return;
2377
2378 if (sgs->sum_nr_running > sds->leader_nr_running ||
2379 (sgs->sum_nr_running == sds->leader_nr_running &&
2380 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2381 sds->group_leader = group;
2382 sds->leader_nr_running = sgs->sum_nr_running;
2383 }
2384}
2385
2386/**
2387 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2388 * @sds: Variable containing the statistics of the sched_domain
2389 * under consideration.
2390 * @this_cpu: Cpu at which we're currently performing load-balancing.
2391 * @imbalance: Variable to store the imbalance.
2392 *
2393 * Description:
2394 * Check if we have potential to perform some power-savings balance.
2395 * If yes, set the busiest group to be the least loaded group in the
2396 * sched_domain, so that it's CPUs can be put to idle.
2397 *
2398 * Returns 1 if there is potential to perform power-savings balance.
2399 * Else returns 0.
2400 */
2401static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2402 int this_cpu, unsigned long *imbalance)
2403{
2404 if (!sds->power_savings_balance)
2405 return 0;
2406
2407 if (sds->this != sds->group_leader ||
2408 sds->group_leader == sds->group_min)
2409 return 0;
2410
2411 *imbalance = sds->min_load_per_task;
2412 sds->busiest = sds->group_min;
2413
2414 return 1;
2415
2416}
2417#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2418static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2419 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2420{
2421 return;
2422}
2423
2424static inline void update_sd_power_savings_stats(struct sched_group *group,
2425 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2426{
2427 return;
2428}
2429
2430static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2431 int this_cpu, unsigned long *imbalance)
2432{
2433 return 0;
2434}
2435#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2436
2437
2438unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2439{
2440 return SCHED_LOAD_SCALE;
2441}
2442
2443unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2444{
2445 return default_scale_freq_power(sd, cpu);
2446}
2447
2448unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2449{
669c55e9 2450 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2451 unsigned long smt_gain = sd->smt_gain;
2452
2453 smt_gain /= weight;
2454
2455 return smt_gain;
2456}
2457
2458unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2459{
2460 return default_scale_smt_power(sd, cpu);
2461}
2462
2463unsigned long scale_rt_power(int cpu)
2464{
2465 struct rq *rq = cpu_rq(cpu);
2466 u64 total, available;
2467
1e3c88bd 2468 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
2469
2470 if (unlikely(total < rq->rt_avg)) {
2471 /* Ensures that power won't end up being negative */
2472 available = 0;
2473 } else {
2474 available = total - rq->rt_avg;
2475 }
1e3c88bd
PZ
2476
2477 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2478 total = SCHED_LOAD_SCALE;
2479
2480 total >>= SCHED_LOAD_SHIFT;
2481
2482 return div_u64(available, total);
2483}
2484
2485static void update_cpu_power(struct sched_domain *sd, int cpu)
2486{
669c55e9 2487 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2488 unsigned long power = SCHED_LOAD_SCALE;
2489 struct sched_group *sdg = sd->groups;
2490
1e3c88bd
PZ
2491 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2492 if (sched_feat(ARCH_POWER))
2493 power *= arch_scale_smt_power(sd, cpu);
2494 else
2495 power *= default_scale_smt_power(sd, cpu);
2496
2497 power >>= SCHED_LOAD_SHIFT;
2498 }
2499
9d5efe05
SV
2500 sdg->cpu_power_orig = power;
2501
2502 if (sched_feat(ARCH_POWER))
2503 power *= arch_scale_freq_power(sd, cpu);
2504 else
2505 power *= default_scale_freq_power(sd, cpu);
2506
2507 power >>= SCHED_LOAD_SHIFT;
2508
1e3c88bd
PZ
2509 power *= scale_rt_power(cpu);
2510 power >>= SCHED_LOAD_SHIFT;
2511
2512 if (!power)
2513 power = 1;
2514
e51fd5e2 2515 cpu_rq(cpu)->cpu_power = power;
1e3c88bd
PZ
2516 sdg->cpu_power = power;
2517}
2518
2519static void update_group_power(struct sched_domain *sd, int cpu)
2520{
2521 struct sched_domain *child = sd->child;
2522 struct sched_group *group, *sdg = sd->groups;
2523 unsigned long power;
2524
2525 if (!child) {
2526 update_cpu_power(sd, cpu);
2527 return;
2528 }
2529
2530 power = 0;
2531
2532 group = child->groups;
2533 do {
2534 power += group->cpu_power;
2535 group = group->next;
2536 } while (group != child->groups);
2537
2538 sdg->cpu_power = power;
2539}
2540
9d5efe05
SV
2541/*
2542 * Try and fix up capacity for tiny siblings, this is needed when
2543 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2544 * which on its own isn't powerful enough.
2545 *
2546 * See update_sd_pick_busiest() and check_asym_packing().
2547 */
2548static inline int
2549fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2550{
2551 /*
2552 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2553 */
2554 if (sd->level != SD_LV_SIBLING)
2555 return 0;
2556
2557 /*
2558 * If ~90% of the cpu_power is still there, we're good.
2559 */
694f5a11 2560 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
9d5efe05
SV
2561 return 1;
2562
2563 return 0;
2564}
2565
1e3c88bd
PZ
2566/**
2567 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2568 * @sd: The sched_domain whose statistics are to be updated.
2569 * @group: sched_group whose statistics are to be updated.
2570 * @this_cpu: Cpu for which load balance is currently performed.
2571 * @idle: Idle status of this_cpu
2572 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2573 * @sd_idle: Idle status of the sched_domain containing group.
2574 * @local_group: Does group contain this_cpu.
2575 * @cpus: Set of cpus considered for load balancing.
2576 * @balance: Should we balance.
2577 * @sgs: variable to hold the statistics for this group.
2578 */
2579static inline void update_sg_lb_stats(struct sched_domain *sd,
2580 struct sched_group *group, int this_cpu,
2581 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2582 int local_group, const struct cpumask *cpus,
2583 int *balance, struct sg_lb_stats *sgs)
2584{
2582f0eb 2585 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
2586 int i;
2587 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 2588 unsigned long avg_load_per_task = 0;
1e3c88bd 2589
871e35bc 2590 if (local_group)
1e3c88bd 2591 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
2592
2593 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
2594 max_cpu_load = 0;
2595 min_cpu_load = ~0UL;
2582f0eb 2596 max_nr_running = 0;
1e3c88bd
PZ
2597
2598 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2599 struct rq *rq = cpu_rq(i);
2600
2601 if (*sd_idle && rq->nr_running)
2602 *sd_idle = 0;
2603
2604 /* Bias balancing toward cpus of our domain */
2605 if (local_group) {
2606 if (idle_cpu(i) && !first_idle_cpu) {
2607 first_idle_cpu = 1;
2608 balance_cpu = i;
2609 }
2610
2611 load = target_load(i, load_idx);
2612 } else {
2613 load = source_load(i, load_idx);
2582f0eb 2614 if (load > max_cpu_load) {
1e3c88bd 2615 max_cpu_load = load;
2582f0eb
NR
2616 max_nr_running = rq->nr_running;
2617 }
1e3c88bd
PZ
2618 if (min_cpu_load > load)
2619 min_cpu_load = load;
2620 }
2621
2622 sgs->group_load += load;
2623 sgs->sum_nr_running += rq->nr_running;
2624 sgs->sum_weighted_load += weighted_cpuload(i);
2625
1e3c88bd
PZ
2626 }
2627
2628 /*
2629 * First idle cpu or the first cpu(busiest) in this sched group
2630 * is eligible for doing load balancing at this and above
2631 * domains. In the newly idle case, we will allow all the cpu's
2632 * to do the newly idle load balance.
2633 */
bbc8cb5b
PZ
2634 if (idle != CPU_NEWLY_IDLE && local_group) {
2635 if (balance_cpu != this_cpu) {
2636 *balance = 0;
2637 return;
2638 }
2639 update_group_power(sd, this_cpu);
1e3c88bd
PZ
2640 }
2641
2642 /* Adjust by relative CPU power of the group */
2643 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2644
1e3c88bd
PZ
2645 /*
2646 * Consider the group unbalanced when the imbalance is larger
2647 * than the average weight of two tasks.
2648 *
2649 * APZ: with cgroup the avg task weight can vary wildly and
2650 * might not be a suitable number - should we keep a
2651 * normalized nr_running number somewhere that negates
2652 * the hierarchy?
2653 */
dd5feea1
SS
2654 if (sgs->sum_nr_running)
2655 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 2656
2582f0eb 2657 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
2658 sgs->group_imb = 1;
2659
2582f0eb 2660 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
9d5efe05
SV
2661 if (!sgs->group_capacity)
2662 sgs->group_capacity = fix_small_capacity(sd, group);
fab47622
NR
2663
2664 if (sgs->group_capacity > sgs->sum_nr_running)
2665 sgs->group_has_capacity = 1;
1e3c88bd
PZ
2666}
2667
532cb4c4
MN
2668/**
2669 * update_sd_pick_busiest - return 1 on busiest group
2670 * @sd: sched_domain whose statistics are to be checked
2671 * @sds: sched_domain statistics
2672 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
2673 * @sgs: sched_group statistics
2674 * @this_cpu: the current cpu
532cb4c4
MN
2675 *
2676 * Determine if @sg is a busier group than the previously selected
2677 * busiest group.
2678 */
2679static bool update_sd_pick_busiest(struct sched_domain *sd,
2680 struct sd_lb_stats *sds,
2681 struct sched_group *sg,
2682 struct sg_lb_stats *sgs,
2683 int this_cpu)
2684{
2685 if (sgs->avg_load <= sds->max_load)
2686 return false;
2687
2688 if (sgs->sum_nr_running > sgs->group_capacity)
2689 return true;
2690
2691 if (sgs->group_imb)
2692 return true;
2693
2694 /*
2695 * ASYM_PACKING needs to move all the work to the lowest
2696 * numbered CPUs in the group, therefore mark all groups
2697 * higher than ourself as busy.
2698 */
2699 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2700 this_cpu < group_first_cpu(sg)) {
2701 if (!sds->busiest)
2702 return true;
2703
2704 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2705 return true;
2706 }
2707
2708 return false;
2709}
2710
1e3c88bd
PZ
2711/**
2712 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2713 * @sd: sched_domain whose statistics are to be updated.
2714 * @this_cpu: Cpu for which load balance is currently performed.
2715 * @idle: Idle status of this_cpu
532cb4c4 2716 * @sd_idle: Idle status of the sched_domain containing sg.
1e3c88bd
PZ
2717 * @cpus: Set of cpus considered for load balancing.
2718 * @balance: Should we balance.
2719 * @sds: variable to hold the statistics for this sched_domain.
2720 */
2721static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2722 enum cpu_idle_type idle, int *sd_idle,
2723 const struct cpumask *cpus, int *balance,
2724 struct sd_lb_stats *sds)
2725{
2726 struct sched_domain *child = sd->child;
532cb4c4 2727 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
2728 struct sg_lb_stats sgs;
2729 int load_idx, prefer_sibling = 0;
2730
2731 if (child && child->flags & SD_PREFER_SIBLING)
2732 prefer_sibling = 1;
2733
2734 init_sd_power_savings_stats(sd, sds, idle);
2735 load_idx = get_sd_load_idx(sd, idle);
2736
2737 do {
2738 int local_group;
2739
532cb4c4 2740 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 2741 memset(&sgs, 0, sizeof(sgs));
532cb4c4 2742 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
1e3c88bd
PZ
2743 local_group, cpus, balance, &sgs);
2744
8f190fb3 2745 if (local_group && !(*balance))
1e3c88bd
PZ
2746 return;
2747
2748 sds->total_load += sgs.group_load;
532cb4c4 2749 sds->total_pwr += sg->cpu_power;
1e3c88bd
PZ
2750
2751 /*
2752 * In case the child domain prefers tasks go to siblings
532cb4c4 2753 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
2754 * and move all the excess tasks away. We lower the capacity
2755 * of a group only if the local group has the capacity to fit
2756 * these excess tasks, i.e. nr_running < group_capacity. The
2757 * extra check prevents the case where you always pull from the
2758 * heaviest group when it is already under-utilized (possible
2759 * with a large weight task outweighs the tasks on the system).
1e3c88bd 2760 */
75dd321d 2761 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
2762 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2763
2764 if (local_group) {
2765 sds->this_load = sgs.avg_load;
532cb4c4 2766 sds->this = sg;
1e3c88bd
PZ
2767 sds->this_nr_running = sgs.sum_nr_running;
2768 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 2769 sds->this_has_capacity = sgs.group_has_capacity;
532cb4c4 2770 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 2771 sds->max_load = sgs.avg_load;
532cb4c4 2772 sds->busiest = sg;
1e3c88bd 2773 sds->busiest_nr_running = sgs.sum_nr_running;
dd5feea1 2774 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 2775 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 2776 sds->busiest_has_capacity = sgs.group_has_capacity;
1e3c88bd
PZ
2777 sds->group_imb = sgs.group_imb;
2778 }
2779
532cb4c4
MN
2780 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2781 sg = sg->next;
2782 } while (sg != sd->groups);
2783}
2784
2ec57d44 2785int __weak arch_sd_sibling_asym_packing(void)
532cb4c4
MN
2786{
2787 return 0*SD_ASYM_PACKING;
2788}
2789
2790/**
2791 * check_asym_packing - Check to see if the group is packed into the
2792 * sched doman.
2793 *
2794 * This is primarily intended to used at the sibling level. Some
2795 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2796 * case of POWER7, it can move to lower SMT modes only when higher
2797 * threads are idle. When in lower SMT modes, the threads will
2798 * perform better since they share less core resources. Hence when we
2799 * have idle threads, we want them to be the higher ones.
2800 *
2801 * This packing function is run on idle threads. It checks to see if
2802 * the busiest CPU in this domain (core in the P7 case) has a higher
2803 * CPU number than the packing function is being run on. Here we are
2804 * assuming lower CPU number will be equivalent to lower a SMT thread
2805 * number.
2806 *
b6b12294
MN
2807 * Returns 1 when packing is required and a task should be moved to
2808 * this CPU. The amount of the imbalance is returned in *imbalance.
2809 *
532cb4c4
MN
2810 * @sd: The sched_domain whose packing is to be checked.
2811 * @sds: Statistics of the sched_domain which is to be packed
2812 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2813 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
2814 */
2815static int check_asym_packing(struct sched_domain *sd,
2816 struct sd_lb_stats *sds,
2817 int this_cpu, unsigned long *imbalance)
2818{
2819 int busiest_cpu;
2820
2821 if (!(sd->flags & SD_ASYM_PACKING))
2822 return 0;
2823
2824 if (!sds->busiest)
2825 return 0;
2826
2827 busiest_cpu = group_first_cpu(sds->busiest);
2828 if (this_cpu > busiest_cpu)
2829 return 0;
2830
2831 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2832 SCHED_LOAD_SCALE);
2833 return 1;
1e3c88bd
PZ
2834}
2835
2836/**
2837 * fix_small_imbalance - Calculate the minor imbalance that exists
2838 * amongst the groups of a sched_domain, during
2839 * load balancing.
2840 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2841 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2842 * @imbalance: Variable to store the imbalance.
2843 */
2844static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2845 int this_cpu, unsigned long *imbalance)
2846{
2847 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2848 unsigned int imbn = 2;
dd5feea1 2849 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
2850
2851 if (sds->this_nr_running) {
2852 sds->this_load_per_task /= sds->this_nr_running;
2853 if (sds->busiest_load_per_task >
2854 sds->this_load_per_task)
2855 imbn = 1;
2856 } else
2857 sds->this_load_per_task =
2858 cpu_avg_load_per_task(this_cpu);
2859
dd5feea1
SS
2860 scaled_busy_load_per_task = sds->busiest_load_per_task
2861 * SCHED_LOAD_SCALE;
2862 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2863
2864 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2865 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
2866 *imbalance = sds->busiest_load_per_task;
2867 return;
2868 }
2869
2870 /*
2871 * OK, we don't have enough imbalance to justify moving tasks,
2872 * however we may be able to increase total CPU power used by
2873 * moving them.
2874 */
2875
2876 pwr_now += sds->busiest->cpu_power *
2877 min(sds->busiest_load_per_task, sds->max_load);
2878 pwr_now += sds->this->cpu_power *
2879 min(sds->this_load_per_task, sds->this_load);
2880 pwr_now /= SCHED_LOAD_SCALE;
2881
2882 /* Amount of load we'd subtract */
2883 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2884 sds->busiest->cpu_power;
2885 if (sds->max_load > tmp)
2886 pwr_move += sds->busiest->cpu_power *
2887 min(sds->busiest_load_per_task, sds->max_load - tmp);
2888
2889 /* Amount of load we'd add */
2890 if (sds->max_load * sds->busiest->cpu_power <
2891 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2892 tmp = (sds->max_load * sds->busiest->cpu_power) /
2893 sds->this->cpu_power;
2894 else
2895 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2896 sds->this->cpu_power;
2897 pwr_move += sds->this->cpu_power *
2898 min(sds->this_load_per_task, sds->this_load + tmp);
2899 pwr_move /= SCHED_LOAD_SCALE;
2900
2901 /* Move if we gain throughput */
2902 if (pwr_move > pwr_now)
2903 *imbalance = sds->busiest_load_per_task;
2904}
2905
2906/**
2907 * calculate_imbalance - Calculate the amount of imbalance present within the
2908 * groups of a given sched_domain during load balance.
2909 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2910 * @this_cpu: Cpu for which currently load balance is being performed.
2911 * @imbalance: The variable to store the imbalance.
2912 */
2913static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2914 unsigned long *imbalance)
2915{
dd5feea1
SS
2916 unsigned long max_pull, load_above_capacity = ~0UL;
2917
2918 sds->busiest_load_per_task /= sds->busiest_nr_running;
2919 if (sds->group_imb) {
2920 sds->busiest_load_per_task =
2921 min(sds->busiest_load_per_task, sds->avg_load);
2922 }
2923
1e3c88bd
PZ
2924 /*
2925 * In the presence of smp nice balancing, certain scenarios can have
2926 * max load less than avg load(as we skip the groups at or below
2927 * its cpu_power, while calculating max_load..)
2928 */
2929 if (sds->max_load < sds->avg_load) {
2930 *imbalance = 0;
2931 return fix_small_imbalance(sds, this_cpu, imbalance);
2932 }
2933
dd5feea1
SS
2934 if (!sds->group_imb) {
2935 /*
2936 * Don't want to pull so many tasks that a group would go idle.
2937 */
2938 load_above_capacity = (sds->busiest_nr_running -
2939 sds->busiest_group_capacity);
2940
2941 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2942
2943 load_above_capacity /= sds->busiest->cpu_power;
2944 }
2945
2946 /*
2947 * We're trying to get all the cpus to the average_load, so we don't
2948 * want to push ourselves above the average load, nor do we wish to
2949 * reduce the max loaded cpu below the average load. At the same time,
2950 * we also don't want to reduce the group load below the group capacity
2951 * (so that we can implement power-savings policies etc). Thus we look
2952 * for the minimum possible imbalance.
2953 * Be careful of negative numbers as they'll appear as very large values
2954 * with unsigned longs.
2955 */
2956 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
2957
2958 /* How much load to actually move to equalise the imbalance */
2959 *imbalance = min(max_pull * sds->busiest->cpu_power,
2960 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2961 / SCHED_LOAD_SCALE;
2962
2963 /*
2964 * if *imbalance is less than the average load per runnable task
2965 * there is no gaurantee that any tasks will be moved so we'll have
2966 * a think about bumping its value to force at least one task to be
2967 * moved
2968 */
2969 if (*imbalance < sds->busiest_load_per_task)
2970 return fix_small_imbalance(sds, this_cpu, imbalance);
2971
2972}
fab47622 2973
1e3c88bd
PZ
2974/******* find_busiest_group() helpers end here *********************/
2975
2976/**
2977 * find_busiest_group - Returns the busiest group within the sched_domain
2978 * if there is an imbalance. If there isn't an imbalance, and
2979 * the user has opted for power-savings, it returns a group whose
2980 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2981 * such a group exists.
2982 *
2983 * Also calculates the amount of weighted load which should be moved
2984 * to restore balance.
2985 *
2986 * @sd: The sched_domain whose busiest group is to be returned.
2987 * @this_cpu: The cpu for which load balancing is currently being performed.
2988 * @imbalance: Variable which stores amount of weighted load which should
2989 * be moved to restore balance/put a group to idle.
2990 * @idle: The idle status of this_cpu.
2991 * @sd_idle: The idleness of sd
2992 * @cpus: The set of CPUs under consideration for load-balancing.
2993 * @balance: Pointer to a variable indicating if this_cpu
2994 * is the appropriate cpu to perform load balancing at this_level.
2995 *
2996 * Returns: - the busiest group if imbalance exists.
2997 * - If no imbalance and user has opted for power-savings balance,
2998 * return the least loaded group whose CPUs can be
2999 * put to idle by rebalancing its tasks onto our group.
3000 */
3001static struct sched_group *
3002find_busiest_group(struct sched_domain *sd, int this_cpu,
3003 unsigned long *imbalance, enum cpu_idle_type idle,
3004 int *sd_idle, const struct cpumask *cpus, int *balance)
3005{
3006 struct sd_lb_stats sds;
3007
3008 memset(&sds, 0, sizeof(sds));
3009
3010 /*
3011 * Compute the various statistics relavent for load balancing at
3012 * this level.
3013 */
3014 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3015 balance, &sds);
3016
3017 /* Cases where imbalance does not exist from POV of this_cpu */
3018 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3019 * at this level.
3020 * 2) There is no busy sibling group to pull from.
3021 * 3) This group is the busiest group.
3022 * 4) This group is more busy than the avg busieness at this
3023 * sched_domain.
3024 * 5) The imbalance is within the specified limit.
fab47622
NR
3025 *
3026 * Note: when doing newidle balance, if the local group has excess
3027 * capacity (i.e. nr_running < group_capacity) and the busiest group
3028 * does not have any capacity, we force a load balance to pull tasks
3029 * to the local group. In this case, we skip past checks 3, 4 and 5.
1e3c88bd 3030 */
8f190fb3 3031 if (!(*balance))
1e3c88bd
PZ
3032 goto ret;
3033
532cb4c4
MN
3034 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3035 check_asym_packing(sd, &sds, this_cpu, imbalance))
3036 return sds.busiest;
3037
1e3c88bd
PZ
3038 if (!sds.busiest || sds.busiest_nr_running == 0)
3039 goto out_balanced;
3040
fab47622
NR
3041 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3042 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3043 !sds.busiest_has_capacity)
3044 goto force_balance;
3045
1e3c88bd
PZ
3046 if (sds.this_load >= sds.max_load)
3047 goto out_balanced;
3048
3049 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3050
3051 if (sds.this_load >= sds.avg_load)
3052 goto out_balanced;
3053
3054 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3055 goto out_balanced;
3056
fab47622 3057force_balance:
1e3c88bd
PZ
3058 /* Looks like there is an imbalance. Compute it */
3059 calculate_imbalance(&sds, this_cpu, imbalance);
3060 return sds.busiest;
3061
3062out_balanced:
3063 /*
3064 * There is no obvious imbalance. But check if we can do some balancing
3065 * to save power.
3066 */
3067 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3068 return sds.busiest;
3069ret:
3070 *imbalance = 0;
3071 return NULL;
3072}
3073
3074/*
3075 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3076 */
3077static struct rq *
9d5efe05
SV
3078find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3079 enum cpu_idle_type idle, unsigned long imbalance,
3080 const struct cpumask *cpus)
1e3c88bd
PZ
3081{
3082 struct rq *busiest = NULL, *rq;
3083 unsigned long max_load = 0;
3084 int i;
3085
3086 for_each_cpu(i, sched_group_cpus(group)) {
3087 unsigned long power = power_of(i);
3088 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3089 unsigned long wl;
3090
9d5efe05
SV
3091 if (!capacity)
3092 capacity = fix_small_capacity(sd, group);
3093
1e3c88bd
PZ
3094 if (!cpumask_test_cpu(i, cpus))
3095 continue;
3096
3097 rq = cpu_rq(i);
6e40f5bb 3098 wl = weighted_cpuload(i);
1e3c88bd 3099
6e40f5bb
TG
3100 /*
3101 * When comparing with imbalance, use weighted_cpuload()
3102 * which is not scaled with the cpu power.
3103 */
1e3c88bd
PZ
3104 if (capacity && rq->nr_running == 1 && wl > imbalance)
3105 continue;
3106
6e40f5bb
TG
3107 /*
3108 * For the load comparisons with the other cpu's, consider
3109 * the weighted_cpuload() scaled with the cpu power, so that
3110 * the load can be moved away from the cpu that is potentially
3111 * running at a lower capacity.
3112 */
3113 wl = (wl * SCHED_LOAD_SCALE) / power;
3114
1e3c88bd
PZ
3115 if (wl > max_load) {
3116 max_load = wl;
3117 busiest = rq;
3118 }
3119 }
3120
3121 return busiest;
3122}
3123
3124/*
3125 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3126 * so long as it is large enough.
3127 */
3128#define MAX_PINNED_INTERVAL 512
3129
3130/* Working cpumask for load_balance and load_balance_newidle. */
3131static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3132
532cb4c4
MN
3133static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
3134 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
3135{
3136 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
3137
3138 /*
3139 * ASYM_PACKING needs to force migrate tasks from busy but
3140 * higher numbered CPUs in order to pack all tasks in the
3141 * lowest numbered CPUs.
3142 */
3143 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3144 return 1;
3145
1af3ed3d
PZ
3146 /*
3147 * The only task running in a non-idle cpu can be moved to this
3148 * cpu in an attempt to completely freeup the other CPU
3149 * package.
3150 *
3151 * The package power saving logic comes from
3152 * find_busiest_group(). If there are no imbalance, then
3153 * f_b_g() will return NULL. However when sched_mc={1,2} then
3154 * f_b_g() will select a group from which a running task may be
3155 * pulled to this cpu in order to make the other package idle.
3156 * If there is no opportunity to make a package idle and if
3157 * there are no imbalance, then f_b_g() will return NULL and no
3158 * action will be taken in load_balance_newidle().
3159 *
3160 * Under normal task pull operation due to imbalance, there
3161 * will be more than one task in the source run queue and
3162 * move_tasks() will succeed. ld_moved will be true and this
3163 * active balance code will not be triggered.
3164 */
3165 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3166 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3167 return 0;
3168
3169 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3170 return 0;
3171 }
3172
3173 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3174}
3175
969c7921
TH
3176static int active_load_balance_cpu_stop(void *data);
3177
1e3c88bd
PZ
3178/*
3179 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3180 * tasks if there is an imbalance.
3181 */
3182static int load_balance(int this_cpu, struct rq *this_rq,
3183 struct sched_domain *sd, enum cpu_idle_type idle,
3184 int *balance)
3185{
3186 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3187 struct sched_group *group;
3188 unsigned long imbalance;
3189 struct rq *busiest;
3190 unsigned long flags;
3191 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3192
3193 cpumask_copy(cpus, cpu_active_mask);
3194
3195 /*
3196 * When power savings policy is enabled for the parent domain, idle
3197 * sibling can pick up load irrespective of busy siblings. In this case,
3198 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3199 * portraying it as CPU_NOT_IDLE.
3200 */
3201 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3202 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3203 sd_idle = 1;
3204
3205 schedstat_inc(sd, lb_count[idle]);
3206
3207redo:
1e3c88bd
PZ
3208 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3209 cpus, balance);
3210
3211 if (*balance == 0)
3212 goto out_balanced;
3213
3214 if (!group) {
3215 schedstat_inc(sd, lb_nobusyg[idle]);
3216 goto out_balanced;
3217 }
3218
9d5efe05 3219 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
3220 if (!busiest) {
3221 schedstat_inc(sd, lb_nobusyq[idle]);
3222 goto out_balanced;
3223 }
3224
3225 BUG_ON(busiest == this_rq);
3226
3227 schedstat_add(sd, lb_imbalance[idle], imbalance);
3228
3229 ld_moved = 0;
3230 if (busiest->nr_running > 1) {
3231 /*
3232 * Attempt to move tasks. If find_busiest_group has found
3233 * an imbalance but busiest->nr_running <= 1, the group is
3234 * still unbalanced. ld_moved simply stays zero, so it is
3235 * correctly treated as an imbalance.
3236 */
3237 local_irq_save(flags);
3238 double_rq_lock(this_rq, busiest);
3239 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3240 imbalance, sd, idle, &all_pinned);
3241 double_rq_unlock(this_rq, busiest);
3242 local_irq_restore(flags);
3243
3244 /*
3245 * some other cpu did the load balance for us.
3246 */
3247 if (ld_moved && this_cpu != smp_processor_id())
3248 resched_cpu(this_cpu);
3249
3250 /* All tasks on this runqueue were pinned by CPU affinity */
3251 if (unlikely(all_pinned)) {
3252 cpumask_clear_cpu(cpu_of(busiest), cpus);
3253 if (!cpumask_empty(cpus))
3254 goto redo;
3255 goto out_balanced;
3256 }
3257 }
3258
3259 if (!ld_moved) {
3260 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
3261 /*
3262 * Increment the failure counter only on periodic balance.
3263 * We do not want newidle balance, which can be very
3264 * frequent, pollute the failure counter causing
3265 * excessive cache_hot migrations and active balances.
3266 */
3267 if (idle != CPU_NEWLY_IDLE)
3268 sd->nr_balance_failed++;
1e3c88bd 3269
532cb4c4
MN
3270 if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
3271 this_cpu)) {
1e3c88bd
PZ
3272 raw_spin_lock_irqsave(&busiest->lock, flags);
3273
969c7921
TH
3274 /* don't kick the active_load_balance_cpu_stop,
3275 * if the curr task on busiest cpu can't be
3276 * moved to this_cpu
1e3c88bd
PZ
3277 */
3278 if (!cpumask_test_cpu(this_cpu,
3279 &busiest->curr->cpus_allowed)) {
3280 raw_spin_unlock_irqrestore(&busiest->lock,
3281 flags);
3282 all_pinned = 1;
3283 goto out_one_pinned;
3284 }
3285
969c7921
TH
3286 /*
3287 * ->active_balance synchronizes accesses to
3288 * ->active_balance_work. Once set, it's cleared
3289 * only after active load balance is finished.
3290 */
1e3c88bd
PZ
3291 if (!busiest->active_balance) {
3292 busiest->active_balance = 1;
3293 busiest->push_cpu = this_cpu;
3294 active_balance = 1;
3295 }
3296 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 3297
1e3c88bd 3298 if (active_balance)
969c7921
TH
3299 stop_one_cpu_nowait(cpu_of(busiest),
3300 active_load_balance_cpu_stop, busiest,
3301 &busiest->active_balance_work);
1e3c88bd
PZ
3302
3303 /*
3304 * We've kicked active balancing, reset the failure
3305 * counter.
3306 */
3307 sd->nr_balance_failed = sd->cache_nice_tries+1;
3308 }
3309 } else
3310 sd->nr_balance_failed = 0;
3311
3312 if (likely(!active_balance)) {
3313 /* We were unbalanced, so reset the balancing interval */
3314 sd->balance_interval = sd->min_interval;
3315 } else {
3316 /*
3317 * If we've begun active balancing, start to back off. This
3318 * case may not be covered by the all_pinned logic if there
3319 * is only 1 task on the busy runqueue (because we don't call
3320 * move_tasks).
3321 */
3322 if (sd->balance_interval < sd->max_interval)
3323 sd->balance_interval *= 2;
3324 }
3325
3326 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3327 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3328 ld_moved = -1;
3329
3330 goto out;
3331
3332out_balanced:
3333 schedstat_inc(sd, lb_balanced[idle]);
3334
3335 sd->nr_balance_failed = 0;
3336
3337out_one_pinned:
3338 /* tune up the balancing interval */
3339 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3340 (sd->balance_interval < sd->max_interval))
3341 sd->balance_interval *= 2;
3342
3343 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3344 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3345 ld_moved = -1;
3346 else
3347 ld_moved = 0;
3348out:
1e3c88bd
PZ
3349 return ld_moved;
3350}
3351
1e3c88bd
PZ
3352/*
3353 * idle_balance is called by schedule() if this_cpu is about to become
3354 * idle. Attempts to pull tasks from other CPUs.
3355 */
3356static void idle_balance(int this_cpu, struct rq *this_rq)
3357{
3358 struct sched_domain *sd;
3359 int pulled_task = 0;
3360 unsigned long next_balance = jiffies + HZ;
3361
3362 this_rq->idle_stamp = this_rq->clock;
3363
3364 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3365 return;
3366
f492e12e
PZ
3367 /*
3368 * Drop the rq->lock, but keep IRQ/preempt disabled.
3369 */
3370 raw_spin_unlock(&this_rq->lock);
3371
c66eaf61 3372 update_shares(this_cpu);
1e3c88bd
PZ
3373 for_each_domain(this_cpu, sd) {
3374 unsigned long interval;
f492e12e 3375 int balance = 1;
1e3c88bd
PZ
3376
3377 if (!(sd->flags & SD_LOAD_BALANCE))
3378 continue;
3379
f492e12e 3380 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 3381 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
3382 pulled_task = load_balance(this_cpu, this_rq,
3383 sd, CPU_NEWLY_IDLE, &balance);
3384 }
1e3c88bd
PZ
3385
3386 interval = msecs_to_jiffies(sd->balance_interval);
3387 if (time_after(next_balance, sd->last_balance + interval))
3388 next_balance = sd->last_balance + interval;
fab47622 3389 if (pulled_task)
1e3c88bd 3390 break;
1e3c88bd 3391 }
f492e12e
PZ
3392
3393 raw_spin_lock(&this_rq->lock);
3394
1e3c88bd
PZ
3395 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3396 /*
3397 * We are going idle. next_balance may be set based on
3398 * a busy processor. So reset next_balance.
3399 */
3400 this_rq->next_balance = next_balance;
3401 }
3402}
3403
3404/*
969c7921
TH
3405 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3406 * running tasks off the busiest CPU onto idle CPUs. It requires at
3407 * least 1 task to be running on each physical CPU where possible, and
3408 * avoids physical / logical imbalances.
1e3c88bd 3409 */
969c7921 3410static int active_load_balance_cpu_stop(void *data)
1e3c88bd 3411{
969c7921
TH
3412 struct rq *busiest_rq = data;
3413 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 3414 int target_cpu = busiest_rq->push_cpu;
969c7921 3415 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 3416 struct sched_domain *sd;
969c7921
TH
3417
3418 raw_spin_lock_irq(&busiest_rq->lock);
3419
3420 /* make sure the requested cpu hasn't gone down in the meantime */
3421 if (unlikely(busiest_cpu != smp_processor_id() ||
3422 !busiest_rq->active_balance))
3423 goto out_unlock;
1e3c88bd
PZ
3424
3425 /* Is there any task to move? */
3426 if (busiest_rq->nr_running <= 1)
969c7921 3427 goto out_unlock;
1e3c88bd
PZ
3428
3429 /*
3430 * This condition is "impossible", if it occurs
3431 * we need to fix it. Originally reported by
3432 * Bjorn Helgaas on a 128-cpu setup.
3433 */
3434 BUG_ON(busiest_rq == target_rq);
3435
3436 /* move a task from busiest_rq to target_rq */
3437 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
3438
3439 /* Search for an sd spanning us and the target CPU. */
3440 for_each_domain(target_cpu, sd) {
3441 if ((sd->flags & SD_LOAD_BALANCE) &&
3442 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3443 break;
3444 }
3445
3446 if (likely(sd)) {
3447 schedstat_inc(sd, alb_count);
3448
3449 if (move_one_task(target_rq, target_cpu, busiest_rq,
3450 sd, CPU_IDLE))
3451 schedstat_inc(sd, alb_pushed);
3452 else
3453 schedstat_inc(sd, alb_failed);
3454 }
3455 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
3456out_unlock:
3457 busiest_rq->active_balance = 0;
3458 raw_spin_unlock_irq(&busiest_rq->lock);
3459 return 0;
1e3c88bd
PZ
3460}
3461
3462#ifdef CONFIG_NO_HZ
83cd4fe2
VP
3463
3464static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3465
3466static void trigger_sched_softirq(void *data)
3467{
3468 raise_softirq_irqoff(SCHED_SOFTIRQ);
3469}
3470
3471static inline void init_sched_softirq_csd(struct call_single_data *csd)
3472{
3473 csd->func = trigger_sched_softirq;
3474 csd->info = NULL;
3475 csd->flags = 0;
3476 csd->priv = 0;
3477}
3478
3479/*
3480 * idle load balancing details
3481 * - One of the idle CPUs nominates itself as idle load_balancer, while
3482 * entering idle.
3483 * - This idle load balancer CPU will also go into tickless mode when
3484 * it is idle, just like all other idle CPUs
3485 * - When one of the busy CPUs notice that there may be an idle rebalancing
3486 * needed, they will kick the idle load balancer, which then does idle
3487 * load balancing for all the idle CPUs.
3488 */
1e3c88bd
PZ
3489static struct {
3490 atomic_t load_balancer;
83cd4fe2
VP
3491 atomic_t first_pick_cpu;
3492 atomic_t second_pick_cpu;
3493 cpumask_var_t idle_cpus_mask;
3494 cpumask_var_t grp_idle_mask;
3495 unsigned long next_balance; /* in jiffy units */
3496} nohz ____cacheline_aligned;
1e3c88bd
PZ
3497
3498int get_nohz_load_balancer(void)
3499{
3500 return atomic_read(&nohz.load_balancer);
3501}
3502
3503#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3504/**
3505 * lowest_flag_domain - Return lowest sched_domain containing flag.
3506 * @cpu: The cpu whose lowest level of sched domain is to
3507 * be returned.
3508 * @flag: The flag to check for the lowest sched_domain
3509 * for the given cpu.
3510 *
3511 * Returns the lowest sched_domain of a cpu which contains the given flag.
3512 */
3513static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3514{
3515 struct sched_domain *sd;
3516
3517 for_each_domain(cpu, sd)
3518 if (sd && (sd->flags & flag))
3519 break;
3520
3521 return sd;
3522}
3523
3524/**
3525 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3526 * @cpu: The cpu whose domains we're iterating over.
3527 * @sd: variable holding the value of the power_savings_sd
3528 * for cpu.
3529 * @flag: The flag to filter the sched_domains to be iterated.
3530 *
3531 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3532 * set, starting from the lowest sched_domain to the highest.
3533 */
3534#define for_each_flag_domain(cpu, sd, flag) \
3535 for (sd = lowest_flag_domain(cpu, flag); \
3536 (sd && (sd->flags & flag)); sd = sd->parent)
3537
3538/**
3539 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3540 * @ilb_group: group to be checked for semi-idleness
3541 *
3542 * Returns: 1 if the group is semi-idle. 0 otherwise.
3543 *
3544 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3545 * and atleast one non-idle CPU. This helper function checks if the given
3546 * sched_group is semi-idle or not.
3547 */
3548static inline int is_semi_idle_group(struct sched_group *ilb_group)
3549{
83cd4fe2 3550 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
1e3c88bd
PZ
3551 sched_group_cpus(ilb_group));
3552
3553 /*
3554 * A sched_group is semi-idle when it has atleast one busy cpu
3555 * and atleast one idle cpu.
3556 */
83cd4fe2 3557 if (cpumask_empty(nohz.grp_idle_mask))
1e3c88bd
PZ
3558 return 0;
3559
83cd4fe2 3560 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
1e3c88bd
PZ
3561 return 0;
3562
3563 return 1;
3564}
3565/**
3566 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3567 * @cpu: The cpu which is nominating a new idle_load_balancer.
3568 *
3569 * Returns: Returns the id of the idle load balancer if it exists,
3570 * Else, returns >= nr_cpu_ids.
3571 *
3572 * This algorithm picks the idle load balancer such that it belongs to a
3573 * semi-idle powersavings sched_domain. The idea is to try and avoid
3574 * completely idle packages/cores just for the purpose of idle load balancing
3575 * when there are other idle cpu's which are better suited for that job.
3576 */
3577static int find_new_ilb(int cpu)
3578{
3579 struct sched_domain *sd;
3580 struct sched_group *ilb_group;
3581
3582 /*
3583 * Have idle load balancer selection from semi-idle packages only
3584 * when power-aware load balancing is enabled
3585 */
3586 if (!(sched_smt_power_savings || sched_mc_power_savings))
3587 goto out_done;
3588
3589 /*
3590 * Optimize for the case when we have no idle CPUs or only one
3591 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3592 */
83cd4fe2 3593 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
3594 goto out_done;
3595
3596 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3597 ilb_group = sd->groups;
3598
3599 do {
3600 if (is_semi_idle_group(ilb_group))
83cd4fe2 3601 return cpumask_first(nohz.grp_idle_mask);
1e3c88bd
PZ
3602
3603 ilb_group = ilb_group->next;
3604
3605 } while (ilb_group != sd->groups);
3606 }
3607
3608out_done:
83cd4fe2 3609 return nr_cpu_ids;
1e3c88bd
PZ
3610}
3611#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3612static inline int find_new_ilb(int call_cpu)
3613{
83cd4fe2 3614 return nr_cpu_ids;
1e3c88bd
PZ
3615}
3616#endif
3617
83cd4fe2
VP
3618/*
3619 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3620 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3621 * CPU (if there is one).
3622 */
3623static void nohz_balancer_kick(int cpu)
3624{
3625 int ilb_cpu;
3626
3627 nohz.next_balance++;
3628
3629 ilb_cpu = get_nohz_load_balancer();
3630
3631 if (ilb_cpu >= nr_cpu_ids) {
3632 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3633 if (ilb_cpu >= nr_cpu_ids)
3634 return;
3635 }
3636
3637 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3638 struct call_single_data *cp;
3639
3640 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3641 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3642 __smp_call_function_single(ilb_cpu, cp, 0);
3643 }
3644 return;
3645}
3646
1e3c88bd
PZ
3647/*
3648 * This routine will try to nominate the ilb (idle load balancing)
3649 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
83cd4fe2 3650 * load balancing on behalf of all those cpus.
1e3c88bd 3651 *
83cd4fe2
VP
3652 * When the ilb owner becomes busy, we will not have new ilb owner until some
3653 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3654 * idle load balancing by kicking one of the idle CPUs.
1e3c88bd 3655 *
83cd4fe2
VP
3656 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3657 * ilb owner CPU in future (when there is a need for idle load balancing on
3658 * behalf of all idle CPUs).
1e3c88bd 3659 */
83cd4fe2 3660void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
3661{
3662 int cpu = smp_processor_id();
3663
3664 if (stop_tick) {
1e3c88bd
PZ
3665 if (!cpu_active(cpu)) {
3666 if (atomic_read(&nohz.load_balancer) != cpu)
83cd4fe2 3667 return;
1e3c88bd
PZ
3668
3669 /*
3670 * If we are going offline and still the leader,
3671 * give up!
3672 */
83cd4fe2
VP
3673 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3674 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3675 BUG();
3676
83cd4fe2 3677 return;
1e3c88bd
PZ
3678 }
3679
83cd4fe2 3680 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd 3681
83cd4fe2
VP
3682 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3683 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3684 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3685 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
1e3c88bd 3686
83cd4fe2 3687 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
1e3c88bd
PZ
3688 int new_ilb;
3689
83cd4fe2
VP
3690 /* make me the ilb owner */
3691 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3692 cpu) != nr_cpu_ids)
3693 return;
3694
1e3c88bd
PZ
3695 /*
3696 * Check to see if there is a more power-efficient
3697 * ilb.
3698 */
3699 new_ilb = find_new_ilb(cpu);
3700 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
83cd4fe2 3701 atomic_set(&nohz.load_balancer, nr_cpu_ids);
1e3c88bd 3702 resched_cpu(new_ilb);
83cd4fe2 3703 return;
1e3c88bd 3704 }
83cd4fe2 3705 return;
1e3c88bd
PZ
3706 }
3707 } else {
83cd4fe2
VP
3708 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3709 return;
1e3c88bd 3710
83cd4fe2 3711 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd
PZ
3712
3713 if (atomic_read(&nohz.load_balancer) == cpu)
83cd4fe2
VP
3714 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3715 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3716 BUG();
3717 }
83cd4fe2 3718 return;
1e3c88bd
PZ
3719}
3720#endif
3721
3722static DEFINE_SPINLOCK(balancing);
3723
3724/*
3725 * It checks each scheduling domain to see if it is due to be balanced,
3726 * and initiates a balancing operation if so.
3727 *
3728 * Balancing parameters are set up in arch_init_sched_domains.
3729 */
3730static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3731{
3732 int balance = 1;
3733 struct rq *rq = cpu_rq(cpu);
3734 unsigned long interval;
3735 struct sched_domain *sd;
3736 /* Earliest time when we have to do rebalance again */
3737 unsigned long next_balance = jiffies + 60*HZ;
3738 int update_next_balance = 0;
3739 int need_serialize;
3740
2069dd75
PZ
3741 update_shares(cpu);
3742
1e3c88bd
PZ
3743 for_each_domain(cpu, sd) {
3744 if (!(sd->flags & SD_LOAD_BALANCE))
3745 continue;
3746
3747 interval = sd->balance_interval;
3748 if (idle != CPU_IDLE)
3749 interval *= sd->busy_factor;
3750
3751 /* scale ms to jiffies */
3752 interval = msecs_to_jiffies(interval);
3753 if (unlikely(!interval))
3754 interval = 1;
3755 if (interval > HZ*NR_CPUS/10)
3756 interval = HZ*NR_CPUS/10;
3757
3758 need_serialize = sd->flags & SD_SERIALIZE;
3759
3760 if (need_serialize) {
3761 if (!spin_trylock(&balancing))
3762 goto out;
3763 }
3764
3765 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3766 if (load_balance(cpu, rq, sd, idle, &balance)) {
3767 /*
3768 * We've pulled tasks over so either we're no
3769 * longer idle, or one of our SMT siblings is
3770 * not idle.
3771 */
3772 idle = CPU_NOT_IDLE;
3773 }
3774 sd->last_balance = jiffies;
3775 }
3776 if (need_serialize)
3777 spin_unlock(&balancing);
3778out:
3779 if (time_after(next_balance, sd->last_balance + interval)) {
3780 next_balance = sd->last_balance + interval;
3781 update_next_balance = 1;
3782 }
3783
3784 /*
3785 * Stop the load balance at this level. There is another
3786 * CPU in our sched group which is doing load balancing more
3787 * actively.
3788 */
3789 if (!balance)
3790 break;
3791 }
3792
3793 /*
3794 * next_balance will be updated only when there is a need.
3795 * When the cpu is attached to null domain for ex, it will not be
3796 * updated.
3797 */
3798 if (likely(update_next_balance))
3799 rq->next_balance = next_balance;
3800}
3801
83cd4fe2 3802#ifdef CONFIG_NO_HZ
1e3c88bd 3803/*
83cd4fe2 3804 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
3805 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3806 */
83cd4fe2
VP
3807static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3808{
3809 struct rq *this_rq = cpu_rq(this_cpu);
3810 struct rq *rq;
3811 int balance_cpu;
3812
3813 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3814 return;
3815
3816 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3817 if (balance_cpu == this_cpu)
3818 continue;
3819
3820 /*
3821 * If this cpu gets work to do, stop the load balancing
3822 * work being done for other cpus. Next load
3823 * balancing owner will pick it up.
3824 */
3825 if (need_resched()) {
3826 this_rq->nohz_balance_kick = 0;
3827 break;
3828 }
3829
3830 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 3831 update_rq_clock(this_rq);
83cd4fe2
VP
3832 update_cpu_load(this_rq);
3833 raw_spin_unlock_irq(&this_rq->lock);
3834
3835 rebalance_domains(balance_cpu, CPU_IDLE);
3836
3837 rq = cpu_rq(balance_cpu);
3838 if (time_after(this_rq->next_balance, rq->next_balance))
3839 this_rq->next_balance = rq->next_balance;
3840 }
3841 nohz.next_balance = this_rq->next_balance;
3842 this_rq->nohz_balance_kick = 0;
3843}
3844
3845/*
3846 * Current heuristic for kicking the idle load balancer
3847 * - first_pick_cpu is the one of the busy CPUs. It will kick
3848 * idle load balancer when it has more than one process active. This
3849 * eliminates the need for idle load balancing altogether when we have
3850 * only one running process in the system (common case).
3851 * - If there are more than one busy CPU, idle load balancer may have
3852 * to run for active_load_balance to happen (i.e., two busy CPUs are
3853 * SMT or core siblings and can run better if they move to different
3854 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3855 * which will kick idle load balancer as soon as it has any load.
3856 */
3857static inline int nohz_kick_needed(struct rq *rq, int cpu)
3858{
3859 unsigned long now = jiffies;
3860 int ret;
3861 int first_pick_cpu, second_pick_cpu;
3862
3863 if (time_before(now, nohz.next_balance))
3864 return 0;
3865
f6c3f168 3866 if (rq->idle_at_tick)
83cd4fe2
VP
3867 return 0;
3868
3869 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3870 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3871
3872 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3873 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3874 return 0;
3875
3876 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3877 if (ret == nr_cpu_ids || ret == cpu) {
3878 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3879 if (rq->nr_running > 1)
3880 return 1;
3881 } else {
3882 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3883 if (ret == nr_cpu_ids || ret == cpu) {
3884 if (rq->nr_running)
3885 return 1;
3886 }
3887 }
3888 return 0;
3889}
3890#else
3891static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3892#endif
3893
3894/*
3895 * run_rebalance_domains is triggered when needed from the scheduler tick.
3896 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3897 */
1e3c88bd
PZ
3898static void run_rebalance_domains(struct softirq_action *h)
3899{
3900 int this_cpu = smp_processor_id();
3901 struct rq *this_rq = cpu_rq(this_cpu);
3902 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3903 CPU_IDLE : CPU_NOT_IDLE;
3904
3905 rebalance_domains(this_cpu, idle);
3906
1e3c88bd 3907 /*
83cd4fe2 3908 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
3909 * balancing on behalf of the other idle cpus whose ticks are
3910 * stopped.
3911 */
83cd4fe2 3912 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
3913}
3914
3915static inline int on_null_domain(int cpu)
3916{
90a6501f 3917 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
3918}
3919
3920/*
3921 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd
PZ
3922 */
3923static inline void trigger_load_balance(struct rq *rq, int cpu)
3924{
1e3c88bd
PZ
3925 /* Don't need to rebalance while attached to NULL domain */
3926 if (time_after_eq(jiffies, rq->next_balance) &&
3927 likely(!on_null_domain(cpu)))
3928 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2
VP
3929#ifdef CONFIG_NO_HZ
3930 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
3931 nohz_balancer_kick(cpu);
3932#endif
1e3c88bd
PZ
3933}
3934
0bcdcf28
CE
3935static void rq_online_fair(struct rq *rq)
3936{
3937 update_sysctl();
3938}
3939
3940static void rq_offline_fair(struct rq *rq)
3941{
3942 update_sysctl();
3943}
3944
1e3c88bd
PZ
3945#else /* CONFIG_SMP */
3946
3947/*
3948 * on UP we do not need to balance between CPUs:
3949 */
3950static inline void idle_balance(int cpu, struct rq *rq)
3951{
3952}
3953
55e12e5e 3954#endif /* CONFIG_SMP */
e1d1484f 3955
bf0f6f24
IM
3956/*
3957 * scheduler tick hitting a task of our scheduling class:
3958 */
8f4d37ec 3959static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
3960{
3961 struct cfs_rq *cfs_rq;
3962 struct sched_entity *se = &curr->se;
3963
3964 for_each_sched_entity(se) {
3965 cfs_rq = cfs_rq_of(se);
8f4d37ec 3966 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
3967 }
3968}
3969
3970/*
cd29fe6f
PZ
3971 * called on fork with the child task as argument from the parent's context
3972 * - child not yet on the tasklist
3973 * - preemption disabled
bf0f6f24 3974 */
cd29fe6f 3975static void task_fork_fair(struct task_struct *p)
bf0f6f24 3976{
cd29fe6f 3977 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 3978 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 3979 int this_cpu = smp_processor_id();
cd29fe6f
PZ
3980 struct rq *rq = this_rq();
3981 unsigned long flags;
3982
05fa785c 3983 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 3984
861d034e
PZ
3985 update_rq_clock(rq);
3986
b0a0f667
PM
3987 if (unlikely(task_cpu(p) != this_cpu)) {
3988 rcu_read_lock();
cd29fe6f 3989 __set_task_cpu(p, this_cpu);
b0a0f667
PM
3990 rcu_read_unlock();
3991 }
bf0f6f24 3992
7109c442 3993 update_curr(cfs_rq);
cd29fe6f 3994
b5d9d734
MG
3995 if (curr)
3996 se->vruntime = curr->vruntime;
aeb73b04 3997 place_entity(cfs_rq, se, 1);
4d78e7b6 3998
cd29fe6f 3999 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 4000 /*
edcb60a3
IM
4001 * Upon rescheduling, sched_class::put_prev_task() will place
4002 * 'current' within the tree based on its new key value.
4003 */
4d78e7b6 4004 swap(curr->vruntime, se->vruntime);
aec0a514 4005 resched_task(rq->curr);
4d78e7b6 4006 }
bf0f6f24 4007
88ec22d3
PZ
4008 se->vruntime -= cfs_rq->min_vruntime;
4009
05fa785c 4010 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
4011}
4012
cb469845
SR
4013/*
4014 * Priority of the task has changed. Check to see if we preempt
4015 * the current task.
4016 */
4017static void prio_changed_fair(struct rq *rq, struct task_struct *p,
4018 int oldprio, int running)
4019{
4020 /*
4021 * Reschedule if we are currently running on this runqueue and
4022 * our priority decreased, or if we are not currently running on
4023 * this runqueue and our priority is higher than the current's
4024 */
4025 if (running) {
4026 if (p->prio > oldprio)
4027 resched_task(rq->curr);
4028 } else
15afe09b 4029 check_preempt_curr(rq, p, 0);
cb469845
SR
4030}
4031
4032/*
4033 * We switched to the sched_fair class.
4034 */
4035static void switched_to_fair(struct rq *rq, struct task_struct *p,
4036 int running)
4037{
4038 /*
4039 * We were most likely switched from sched_rt, so
4040 * kick off the schedule if running, otherwise just see
4041 * if we can still preempt the current task.
4042 */
4043 if (running)
4044 resched_task(rq->curr);
4045 else
15afe09b 4046 check_preempt_curr(rq, p, 0);
cb469845
SR
4047}
4048
83b699ed
SV
4049/* Account for a task changing its policy or group.
4050 *
4051 * This routine is mostly called to set cfs_rq->curr field when a task
4052 * migrates between groups/classes.
4053 */
4054static void set_curr_task_fair(struct rq *rq)
4055{
4056 struct sched_entity *se = &rq->curr->se;
4057
4058 for_each_sched_entity(se)
4059 set_next_entity(cfs_rq_of(se), se);
4060}
4061
810b3817 4062#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4063static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 4064{
b2b5ce02
PZ
4065 /*
4066 * If the task was not on the rq at the time of this cgroup movement
4067 * it must have been asleep, sleeping tasks keep their ->vruntime
4068 * absolute on their old rq until wakeup (needed for the fair sleeper
4069 * bonus in place_entity()).
4070 *
4071 * If it was on the rq, we've just 'preempted' it, which does convert
4072 * ->vruntime to a relative base.
4073 *
4074 * Make sure both cases convert their relative position when migrating
4075 * to another cgroup's rq. This does somewhat interfere with the
4076 * fair sleeper stuff for the first placement, but who cares.
4077 */
4078 if (!on_rq)
4079 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4080 set_task_rq(p, task_cpu(p));
88ec22d3 4081 if (!on_rq)
b2b5ce02 4082 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817
PZ
4083}
4084#endif
4085
6d686f45 4086static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
4087{
4088 struct sched_entity *se = &task->se;
0d721cea
PW
4089 unsigned int rr_interval = 0;
4090
4091 /*
4092 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4093 * idle runqueue:
4094 */
0d721cea
PW
4095 if (rq->cfs.load.weight)
4096 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
4097
4098 return rr_interval;
4099}
4100
bf0f6f24
IM
4101/*
4102 * All the scheduling class methods:
4103 */
5522d5d5
IM
4104static const struct sched_class fair_sched_class = {
4105 .next = &idle_sched_class,
bf0f6f24
IM
4106 .enqueue_task = enqueue_task_fair,
4107 .dequeue_task = dequeue_task_fair,
4108 .yield_task = yield_task_fair,
4109
2e09bf55 4110 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
4111
4112 .pick_next_task = pick_next_task_fair,
4113 .put_prev_task = put_prev_task_fair,
4114
681f3e68 4115#ifdef CONFIG_SMP
4ce72a2c
LZ
4116 .select_task_rq = select_task_rq_fair,
4117
0bcdcf28
CE
4118 .rq_online = rq_online_fair,
4119 .rq_offline = rq_offline_fair,
88ec22d3
PZ
4120
4121 .task_waking = task_waking_fair,
681f3e68 4122#endif
bf0f6f24 4123
83b699ed 4124 .set_curr_task = set_curr_task_fair,
bf0f6f24 4125 .task_tick = task_tick_fair,
cd29fe6f 4126 .task_fork = task_fork_fair,
cb469845
SR
4127
4128 .prio_changed = prio_changed_fair,
4129 .switched_to = switched_to_fair,
810b3817 4130
0d721cea
PW
4131 .get_rr_interval = get_rr_interval_fair,
4132
810b3817 4133#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4134 .task_move_group = task_move_group_fair,
810b3817 4135#endif
bf0f6f24
IM
4136};
4137
4138#ifdef CONFIG_SCHED_DEBUG
5cef9eca 4139static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 4140{
bf0f6f24
IM
4141 struct cfs_rq *cfs_rq;
4142
5973e5b9 4143 rcu_read_lock();
c3b64f1e 4144 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 4145 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 4146 rcu_read_unlock();
bf0f6f24
IM
4147}
4148#endif
This page took 0.523305 seconds and 5 git commands to generate.