sched: improve rq-clock overflow logic
[deliverable/linux.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 */
19
20/*
21 * Preemption granularity:
22 * (default: 2 msec, units: nanoseconds)
23 *
24 * NOTE: this granularity value is not the same as the concept of
25 * 'timeslice length' - timeslices in CFS will typically be somewhat
26 * larger than this value. (to see the precise effective timeslice
27 * length of your workload, run vmstat and monitor the context-switches
28 * field)
29 *
30 * On SMP systems the value of this is multiplied by the log2 of the
31 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
32 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
33 */
34unsigned int sysctl_sched_granularity __read_mostly = 2000000000ULL/HZ;
35
36/*
37 * SCHED_BATCH wake-up granularity.
38 * (default: 10 msec, units: nanoseconds)
39 *
40 * This option delays the preemption effects of decoupled workloads
41 * and reduces their over-scheduling. Synchronous workloads will still
42 * have immediate wakeup/sleep latencies.
43 */
44unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly =
45 10000000000ULL/HZ;
46
47/*
48 * SCHED_OTHER wake-up granularity.
49 * (default: 1 msec, units: nanoseconds)
50 *
51 * This option delays the preemption effects of decoupled workloads
52 * and reduces their over-scheduling. Synchronous workloads will still
53 * have immediate wakeup/sleep latencies.
54 */
55unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000000ULL/HZ;
56
57unsigned int sysctl_sched_stat_granularity __read_mostly;
58
59/*
60 * Initialized in sched_init_granularity():
61 */
62unsigned int sysctl_sched_runtime_limit __read_mostly;
63
64/*
65 * Debugging: various feature bits
66 */
67enum {
68 SCHED_FEAT_FAIR_SLEEPERS = 1,
69 SCHED_FEAT_SLEEPER_AVG = 2,
70 SCHED_FEAT_SLEEPER_LOAD_AVG = 4,
71 SCHED_FEAT_PRECISE_CPU_LOAD = 8,
72 SCHED_FEAT_START_DEBIT = 16,
73 SCHED_FEAT_SKIP_INITIAL = 32,
74};
75
76unsigned int sysctl_sched_features __read_mostly =
77 SCHED_FEAT_FAIR_SLEEPERS *1 |
78 SCHED_FEAT_SLEEPER_AVG *1 |
79 SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
80 SCHED_FEAT_PRECISE_CPU_LOAD *1 |
81 SCHED_FEAT_START_DEBIT *1 |
82 SCHED_FEAT_SKIP_INITIAL *0;
83
84extern struct sched_class fair_sched_class;
85
86/**************************************************************
87 * CFS operations on generic schedulable entities:
88 */
89
90#ifdef CONFIG_FAIR_GROUP_SCHED
91
92/* cpu runqueue to which this cfs_rq is attached */
93static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94{
95 return cfs_rq->rq;
96}
97
98/* currently running entity (if any) on this cfs_rq */
99static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
100{
101 return cfs_rq->curr;
102}
103
104/* An entity is a task if it doesn't "own" a runqueue */
105#define entity_is_task(se) (!se->my_q)
106
107static inline void
108set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
109{
110 cfs_rq->curr = se;
111}
112
113#else /* CONFIG_FAIR_GROUP_SCHED */
114
115static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
116{
117 return container_of(cfs_rq, struct rq, cfs);
118}
119
120static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
121{
122 struct rq *rq = rq_of(cfs_rq);
123
124 if (unlikely(rq->curr->sched_class != &fair_sched_class))
125 return NULL;
126
127 return &rq->curr->se;
128}
129
130#define entity_is_task(se) 1
131
132static inline void
133set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
134
135#endif /* CONFIG_FAIR_GROUP_SCHED */
136
137static inline struct task_struct *task_of(struct sched_entity *se)
138{
139 return container_of(se, struct task_struct, se);
140}
141
142
143/**************************************************************
144 * Scheduling class tree data structure manipulation methods:
145 */
146
147/*
148 * Enqueue an entity into the rb-tree:
149 */
150static inline void
151__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
152{
153 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
154 struct rb_node *parent = NULL;
155 struct sched_entity *entry;
156 s64 key = se->fair_key;
157 int leftmost = 1;
158
159 /*
160 * Find the right place in the rbtree:
161 */
162 while (*link) {
163 parent = *link;
164 entry = rb_entry(parent, struct sched_entity, run_node);
165 /*
166 * We dont care about collisions. Nodes with
167 * the same key stay together.
168 */
169 if (key - entry->fair_key < 0) {
170 link = &parent->rb_left;
171 } else {
172 link = &parent->rb_right;
173 leftmost = 0;
174 }
175 }
176
177 /*
178 * Maintain a cache of leftmost tree entries (it is frequently
179 * used):
180 */
181 if (leftmost)
182 cfs_rq->rb_leftmost = &se->run_node;
183
184 rb_link_node(&se->run_node, parent, link);
185 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
186 update_load_add(&cfs_rq->load, se->load.weight);
187 cfs_rq->nr_running++;
188 se->on_rq = 1;
189}
190
191static inline void
192__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
193{
194 if (cfs_rq->rb_leftmost == &se->run_node)
195 cfs_rq->rb_leftmost = rb_next(&se->run_node);
196 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
197 update_load_sub(&cfs_rq->load, se->load.weight);
198 cfs_rq->nr_running--;
199 se->on_rq = 0;
200}
201
202static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
203{
204 return cfs_rq->rb_leftmost;
205}
206
207static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
208{
209 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
210}
211
212/**************************************************************
213 * Scheduling class statistics methods:
214 */
215
216/*
217 * We rescale the rescheduling granularity of tasks according to their
218 * nice level, but only linearly, not exponentially:
219 */
220static long
221niced_granularity(struct sched_entity *curr, unsigned long granularity)
222{
223 u64 tmp;
224
7cff8cf6
IM
225 if (likely(curr->load.weight == NICE_0_LOAD))
226 return granularity;
bf0f6f24 227 /*
7cff8cf6 228 * Positive nice levels get the same granularity as nice-0:
bf0f6f24 229 */
7cff8cf6
IM
230 if (likely(curr->load.weight < NICE_0_LOAD)) {
231 tmp = curr->load.weight * (u64)granularity;
232 return (long) (tmp >> NICE_0_SHIFT);
233 }
bf0f6f24 234 /*
7cff8cf6 235 * Negative nice level tasks get linearly finer
bf0f6f24
IM
236 * granularity:
237 */
7cff8cf6 238 tmp = curr->load.inv_weight * (u64)granularity;
bf0f6f24
IM
239
240 /*
241 * It will always fit into 'long':
242 */
7cff8cf6 243 return (long) (tmp >> WMULT_SHIFT);
bf0f6f24
IM
244}
245
246static inline void
247limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
248{
249 long limit = sysctl_sched_runtime_limit;
250
251 /*
252 * Niced tasks have the same history dynamic range as
253 * non-niced tasks:
254 */
255 if (unlikely(se->wait_runtime > limit)) {
256 se->wait_runtime = limit;
257 schedstat_inc(se, wait_runtime_overruns);
258 schedstat_inc(cfs_rq, wait_runtime_overruns);
259 }
260 if (unlikely(se->wait_runtime < -limit)) {
261 se->wait_runtime = -limit;
262 schedstat_inc(se, wait_runtime_underruns);
263 schedstat_inc(cfs_rq, wait_runtime_underruns);
264 }
265}
266
267static inline void
268__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
269{
270 se->wait_runtime += delta;
271 schedstat_add(se, sum_wait_runtime, delta);
272 limit_wait_runtime(cfs_rq, se);
273}
274
275static void
276add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
277{
278 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
279 __add_wait_runtime(cfs_rq, se, delta);
280 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
281}
282
283/*
284 * Update the current task's runtime statistics. Skip current tasks that
285 * are not in our scheduling class.
286 */
287static inline void
b7cc0896 288__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 289{
c5dcfe72 290 unsigned long delta, delta_exec, delta_fair, delta_mine;
bf0f6f24
IM
291 struct load_weight *lw = &cfs_rq->load;
292 unsigned long load = lw->weight;
293
bf0f6f24 294 delta_exec = curr->delta_exec;
8179ca23 295 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
296
297 curr->sum_exec_runtime += delta_exec;
298 cfs_rq->exec_clock += delta_exec;
299
fd8bb43e
IM
300 if (unlikely(!load))
301 return;
302
bf0f6f24
IM
303 delta_fair = calc_delta_fair(delta_exec, lw);
304 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
305
0915c4e8 306 if (cfs_rq->sleeper_bonus > sysctl_sched_granularity) {
bf0f6f24
IM
307 delta = calc_delta_mine(cfs_rq->sleeper_bonus,
308 curr->load.weight, lw);
309 if (unlikely(delta > cfs_rq->sleeper_bonus))
310 delta = cfs_rq->sleeper_bonus;
311
312 cfs_rq->sleeper_bonus -= delta;
313 delta_mine -= delta;
314 }
315
316 cfs_rq->fair_clock += delta_fair;
317 /*
318 * We executed delta_exec amount of time on the CPU,
319 * but we were only entitled to delta_mine amount of
320 * time during that period (if nr_running == 1 then
321 * the two values are equal)
322 * [Note: delta_mine - delta_exec is negative]:
323 */
324 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
325}
326
b7cc0896 327static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24
IM
328{
329 struct sched_entity *curr = cfs_rq_curr(cfs_rq);
330 unsigned long delta_exec;
331
332 if (unlikely(!curr))
333 return;
334
335 /*
336 * Get the amount of time the current task was running
337 * since the last time we changed load (this cannot
338 * overflow on 32 bits):
339 */
d281918d 340 delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start);
bf0f6f24
IM
341
342 curr->delta_exec += delta_exec;
343
344 if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
b7cc0896 345 __update_curr(cfs_rq, curr);
bf0f6f24
IM
346 curr->delta_exec = 0;
347 }
d281918d 348 curr->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
349}
350
351static inline void
5870db5b 352update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
353{
354 se->wait_start_fair = cfs_rq->fair_clock;
d281918d 355 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
356}
357
358/*
359 * We calculate fair deltas here, so protect against the random effects
360 * of a multiplication overflow by capping it to the runtime limit:
361 */
362#if BITS_PER_LONG == 32
363static inline unsigned long
364calc_weighted(unsigned long delta, unsigned long weight, int shift)
365{
366 u64 tmp = (u64)delta * weight >> shift;
367
368 if (unlikely(tmp > sysctl_sched_runtime_limit*2))
369 return sysctl_sched_runtime_limit*2;
370 return tmp;
371}
372#else
373static inline unsigned long
374calc_weighted(unsigned long delta, unsigned long weight, int shift)
375{
376 return delta * weight >> shift;
377}
378#endif
379
380/*
381 * Task is being enqueued - update stats:
382 */
d2417e5a 383static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
384{
385 s64 key;
386
387 /*
388 * Are we enqueueing a waiting task? (for current tasks
389 * a dequeue/enqueue event is a NOP)
390 */
391 if (se != cfs_rq_curr(cfs_rq))
5870db5b 392 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
393 /*
394 * Update the key:
395 */
396 key = cfs_rq->fair_clock;
397
398 /*
399 * Optimize the common nice 0 case:
400 */
401 if (likely(se->load.weight == NICE_0_LOAD)) {
402 key -= se->wait_runtime;
403 } else {
404 u64 tmp;
405
406 if (se->wait_runtime < 0) {
407 tmp = -se->wait_runtime;
408 key += (tmp * se->load.inv_weight) >>
409 (WMULT_SHIFT - NICE_0_SHIFT);
410 } else {
411 tmp = se->wait_runtime;
a69edb55
IM
412 key -= (tmp * se->load.inv_weight) >>
413 (WMULT_SHIFT - NICE_0_SHIFT);
bf0f6f24
IM
414 }
415 }
416
417 se->fair_key = key;
418}
419
420/*
421 * Note: must be called with a freshly updated rq->fair_clock.
422 */
423static inline void
eac55ea3 424__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
425{
426 unsigned long delta_fair = se->delta_fair_run;
427
d281918d
IM
428 schedstat_set(se->wait_max, max(se->wait_max,
429 rq_of(cfs_rq)->clock - se->wait_start));
bf0f6f24
IM
430
431 if (unlikely(se->load.weight != NICE_0_LOAD))
432 delta_fair = calc_weighted(delta_fair, se->load.weight,
433 NICE_0_SHIFT);
434
435 add_wait_runtime(cfs_rq, se, delta_fair);
436}
437
438static void
9ef0a961 439update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
440{
441 unsigned long delta_fair;
442
443 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
444 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
445
446 se->delta_fair_run += delta_fair;
447 if (unlikely(abs(se->delta_fair_run) >=
448 sysctl_sched_stat_granularity)) {
eac55ea3 449 __update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
450 se->delta_fair_run = 0;
451 }
452
453 se->wait_start_fair = 0;
6cfb0d5d 454 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
455}
456
457static inline void
19b6a2e3 458update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 459{
b7cc0896 460 update_curr(cfs_rq);
bf0f6f24
IM
461 /*
462 * Mark the end of the wait period if dequeueing a
463 * waiting task:
464 */
465 if (se != cfs_rq_curr(cfs_rq))
9ef0a961 466 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
467}
468
469/*
470 * We are picking a new current task - update its stats:
471 */
472static inline void
79303e9e 473update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
474{
475 /*
476 * We are starting a new run period:
477 */
d281918d 478 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
479}
480
481/*
482 * We are descheduling a task - update its stats:
483 */
484static inline void
c7e9b5b2 485update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
486{
487 se->exec_start = 0;
488}
489
490/**************************************************
491 * Scheduling class queueing methods:
492 */
493
dfdc119e 494static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
495{
496 unsigned long load = cfs_rq->load.weight, delta_fair;
497 long prev_runtime;
498
499 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
500 load = rq_of(cfs_rq)->cpu_load[2];
501
502 delta_fair = se->delta_fair_sleep;
503
504 /*
505 * Fix up delta_fair with the effect of us running
506 * during the whole sleep period:
507 */
508 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
509 delta_fair = div64_likely32((u64)delta_fair * load,
510 load + se->load.weight);
511
512 if (unlikely(se->load.weight != NICE_0_LOAD))
513 delta_fair = calc_weighted(delta_fair, se->load.weight,
514 NICE_0_SHIFT);
515
516 prev_runtime = se->wait_runtime;
517 __add_wait_runtime(cfs_rq, se, delta_fair);
518 delta_fair = se->wait_runtime - prev_runtime;
519
520 /*
521 * Track the amount of bonus we've given to sleepers:
522 */
523 cfs_rq->sleeper_bonus += delta_fair;
524
525 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
526}
527
2396af69 528static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
529{
530 struct task_struct *tsk = task_of(se);
531 unsigned long delta_fair;
532
533 if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
534 !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
535 return;
536
537 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
538 (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
539
540 se->delta_fair_sleep += delta_fair;
541 if (unlikely(abs(se->delta_fair_sleep) >=
542 sysctl_sched_stat_granularity)) {
dfdc119e 543 __enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
544 se->delta_fair_sleep = 0;
545 }
546
547 se->sleep_start_fair = 0;
548
549#ifdef CONFIG_SCHEDSTATS
550 if (se->sleep_start) {
d281918d 551 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
552
553 if ((s64)delta < 0)
554 delta = 0;
555
556 if (unlikely(delta > se->sleep_max))
557 se->sleep_max = delta;
558
559 se->sleep_start = 0;
560 se->sum_sleep_runtime += delta;
561 }
562 if (se->block_start) {
d281918d 563 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
564
565 if ((s64)delta < 0)
566 delta = 0;
567
568 if (unlikely(delta > se->block_max))
569 se->block_max = delta;
570
571 se->block_start = 0;
572 se->sum_sleep_runtime += delta;
573 }
574#endif
575}
576
577static void
668031ca 578enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
579{
580 /*
581 * Update the fair clock.
582 */
b7cc0896 583 update_curr(cfs_rq);
bf0f6f24
IM
584
585 if (wakeup)
2396af69 586 enqueue_sleeper(cfs_rq, se);
bf0f6f24 587
d2417e5a 588 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
589 __enqueue_entity(cfs_rq, se);
590}
591
592static void
525c2716 593dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 594{
19b6a2e3 595 update_stats_dequeue(cfs_rq, se);
bf0f6f24
IM
596 if (sleep) {
597 se->sleep_start_fair = cfs_rq->fair_clock;
598#ifdef CONFIG_SCHEDSTATS
599 if (entity_is_task(se)) {
600 struct task_struct *tsk = task_of(se);
601
602 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 603 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 604 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 605 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
606 }
607 cfs_rq->wait_runtime -= se->wait_runtime;
608#endif
609 }
610 __dequeue_entity(cfs_rq, se);
611}
612
613/*
614 * Preempt the current task with a newly woken task if needed:
615 */
616static void
617__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
618 struct sched_entity *curr, unsigned long granularity)
619{
620 s64 __delta = curr->fair_key - se->fair_key;
621
622 /*
623 * Take scheduling granularity into account - do not
624 * preempt the current task unless the best task has
625 * a larger than sched_granularity fairness advantage:
626 */
627 if (__delta > niced_granularity(curr, granularity))
628 resched_task(rq_of(cfs_rq)->curr);
629}
630
631static inline void
8494f412 632set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
633{
634 /*
635 * Any task has to be enqueued before it get to execute on
636 * a CPU. So account for the time it spent waiting on the
637 * runqueue. (note, here we rely on pick_next_task() having
638 * done a put_prev_task_fair() shortly before this, which
639 * updated rq->fair_clock - used by update_stats_wait_end())
640 */
9ef0a961 641 update_stats_wait_end(cfs_rq, se);
79303e9e 642 update_stats_curr_start(cfs_rq, se);
bf0f6f24
IM
643 set_cfs_rq_curr(cfs_rq, se);
644}
645
9948f4b2 646static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24
IM
647{
648 struct sched_entity *se = __pick_next_entity(cfs_rq);
649
8494f412 650 set_next_entity(cfs_rq, se);
bf0f6f24
IM
651
652 return se;
653}
654
ab6cde26 655static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
656{
657 /*
658 * If still on the runqueue then deactivate_task()
659 * was not called and update_curr() has to be done:
660 */
661 if (prev->on_rq)
b7cc0896 662 update_curr(cfs_rq);
bf0f6f24 663
c7e9b5b2 664 update_stats_curr_end(cfs_rq, prev);
bf0f6f24
IM
665
666 if (prev->on_rq)
5870db5b 667 update_stats_wait_start(cfs_rq, prev);
bf0f6f24
IM
668 set_cfs_rq_curr(cfs_rq, NULL);
669}
670
671static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
672{
bf0f6f24 673 struct sched_entity *next;
c1b3da3e 674
bf0f6f24
IM
675 /*
676 * Dequeue and enqueue the task to update its
677 * position within the tree:
678 */
525c2716 679 dequeue_entity(cfs_rq, curr, 0);
668031ca 680 enqueue_entity(cfs_rq, curr, 0);
bf0f6f24
IM
681
682 /*
683 * Reschedule if another task tops the current one.
684 */
685 next = __pick_next_entity(cfs_rq);
686 if (next == curr)
687 return;
688
689 __check_preempt_curr_fair(cfs_rq, next, curr, sysctl_sched_granularity);
690}
691
692/**************************************************
693 * CFS operations on tasks:
694 */
695
696#ifdef CONFIG_FAIR_GROUP_SCHED
697
698/* Walk up scheduling entities hierarchy */
699#define for_each_sched_entity(se) \
700 for (; se; se = se->parent)
701
702static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
703{
704 return p->se.cfs_rq;
705}
706
707/* runqueue on which this entity is (to be) queued */
708static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
709{
710 return se->cfs_rq;
711}
712
713/* runqueue "owned" by this group */
714static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
715{
716 return grp->my_q;
717}
718
719/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
720 * another cpu ('this_cpu')
721 */
722static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
723{
724 /* A later patch will take group into account */
725 return &cpu_rq(this_cpu)->cfs;
726}
727
728/* Iterate thr' all leaf cfs_rq's on a runqueue */
729#define for_each_leaf_cfs_rq(rq, cfs_rq) \
730 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
731
732/* Do the two (enqueued) tasks belong to the same group ? */
733static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
734{
735 if (curr->se.cfs_rq == p->se.cfs_rq)
736 return 1;
737
738 return 0;
739}
740
741#else /* CONFIG_FAIR_GROUP_SCHED */
742
743#define for_each_sched_entity(se) \
744 for (; se; se = NULL)
745
746static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
747{
748 return &task_rq(p)->cfs;
749}
750
751static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
752{
753 struct task_struct *p = task_of(se);
754 struct rq *rq = task_rq(p);
755
756 return &rq->cfs;
757}
758
759/* runqueue "owned" by this group */
760static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
761{
762 return NULL;
763}
764
765static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
766{
767 return &cpu_rq(this_cpu)->cfs;
768}
769
770#define for_each_leaf_cfs_rq(rq, cfs_rq) \
771 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
772
773static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
774{
775 return 1;
776}
777
778#endif /* CONFIG_FAIR_GROUP_SCHED */
779
780/*
781 * The enqueue_task method is called before nr_running is
782 * increased. Here we update the fair scheduling stats and
783 * then put the task into the rbtree:
784 */
fd390f6a 785static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
786{
787 struct cfs_rq *cfs_rq;
788 struct sched_entity *se = &p->se;
789
790 for_each_sched_entity(se) {
791 if (se->on_rq)
792 break;
793 cfs_rq = cfs_rq_of(se);
668031ca 794 enqueue_entity(cfs_rq, se, wakeup);
bf0f6f24
IM
795 }
796}
797
798/*
799 * The dequeue_task method is called before nr_running is
800 * decreased. We remove the task from the rbtree and
801 * update the fair scheduling stats:
802 */
f02231e5 803static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
804{
805 struct cfs_rq *cfs_rq;
806 struct sched_entity *se = &p->se;
807
808 for_each_sched_entity(se) {
809 cfs_rq = cfs_rq_of(se);
525c2716 810 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
811 /* Don't dequeue parent if it has other entities besides us */
812 if (cfs_rq->load.weight)
813 break;
814 }
815}
816
817/*
818 * sched_yield() support is very simple - we dequeue and enqueue
819 */
820static void yield_task_fair(struct rq *rq, struct task_struct *p)
821{
822 struct cfs_rq *cfs_rq = task_cfs_rq(p);
bf0f6f24 823
c1b3da3e 824 __update_rq_clock(rq);
bf0f6f24
IM
825 /*
826 * Dequeue and enqueue the task to update its
827 * position within the tree:
828 */
525c2716 829 dequeue_entity(cfs_rq, &p->se, 0);
668031ca 830 enqueue_entity(cfs_rq, &p->se, 0);
bf0f6f24
IM
831}
832
833/*
834 * Preempt the current task with a newly woken task if needed:
835 */
836static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
837{
838 struct task_struct *curr = rq->curr;
839 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
840 unsigned long gran;
841
842 if (unlikely(rt_prio(p->prio))) {
a8e504d2 843 update_rq_clock(rq);
b7cc0896 844 update_curr(cfs_rq);
bf0f6f24
IM
845 resched_task(curr);
846 return;
847 }
848
849 gran = sysctl_sched_wakeup_granularity;
850 /*
851 * Batch tasks prefer throughput over latency:
852 */
853 if (unlikely(p->policy == SCHED_BATCH))
854 gran = sysctl_sched_batch_wakeup_granularity;
855
856 if (is_same_group(curr, p))
857 __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
858}
859
fb8d4724 860static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
861{
862 struct cfs_rq *cfs_rq = &rq->cfs;
863 struct sched_entity *se;
864
865 if (unlikely(!cfs_rq->nr_running))
866 return NULL;
867
868 do {
9948f4b2 869 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
870 cfs_rq = group_cfs_rq(se);
871 } while (cfs_rq);
872
873 return task_of(se);
874}
875
876/*
877 * Account for a descheduled task:
878 */
31ee529c 879static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
880{
881 struct sched_entity *se = &prev->se;
882 struct cfs_rq *cfs_rq;
883
884 for_each_sched_entity(se) {
885 cfs_rq = cfs_rq_of(se);
ab6cde26 886 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
887 }
888}
889
890/**************************************************
891 * Fair scheduling class load-balancing methods:
892 */
893
894/*
895 * Load-balancing iterator. Note: while the runqueue stays locked
896 * during the whole iteration, the current task might be
897 * dequeued so the iterator has to be dequeue-safe. Here we
898 * achieve that by always pre-iterating before returning
899 * the current task:
900 */
901static inline struct task_struct *
902__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
903{
904 struct task_struct *p;
905
906 if (!curr)
907 return NULL;
908
909 p = rb_entry(curr, struct task_struct, se.run_node);
910 cfs_rq->rb_load_balance_curr = rb_next(curr);
911
912 return p;
913}
914
915static struct task_struct *load_balance_start_fair(void *arg)
916{
917 struct cfs_rq *cfs_rq = arg;
918
919 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
920}
921
922static struct task_struct *load_balance_next_fair(void *arg)
923{
924 struct cfs_rq *cfs_rq = arg;
925
926 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
927}
928
a4ac01c3 929#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
930static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
931{
932 struct sched_entity *curr;
933 struct task_struct *p;
934
935 if (!cfs_rq->nr_running)
936 return MAX_PRIO;
937
938 curr = __pick_next_entity(cfs_rq);
939 p = task_of(curr);
940
941 return p->prio;
942}
a4ac01c3 943#endif
bf0f6f24 944
43010659 945static unsigned long
bf0f6f24 946load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
947 unsigned long max_nr_move, unsigned long max_load_move,
948 struct sched_domain *sd, enum cpu_idle_type idle,
949 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
950{
951 struct cfs_rq *busy_cfs_rq;
952 unsigned long load_moved, total_nr_moved = 0, nr_moved;
953 long rem_load_move = max_load_move;
954 struct rq_iterator cfs_rq_iterator;
955
956 cfs_rq_iterator.start = load_balance_start_fair;
957 cfs_rq_iterator.next = load_balance_next_fair;
958
959 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 960#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 961 struct cfs_rq *this_cfs_rq;
a4ac01c3 962 long imbalances;
bf0f6f24 963 unsigned long maxload;
bf0f6f24
IM
964
965 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
966
967 imbalance = busy_cfs_rq->load.weight -
968 this_cfs_rq->load.weight;
969 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
970 if (imbalance <= 0)
971 continue;
972
973 /* Don't pull more than imbalance/2 */
974 imbalance /= 2;
975 maxload = min(rem_load_move, imbalance);
976
a4ac01c3
PW
977 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
978#else
979#define maxload rem_load_move
980#endif
bf0f6f24
IM
981 /* pass busy_cfs_rq argument into
982 * load_balance_[start|next]_fair iterators
983 */
984 cfs_rq_iterator.arg = busy_cfs_rq;
985 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
986 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 987 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
988
989 total_nr_moved += nr_moved;
990 max_nr_move -= nr_moved;
991 rem_load_move -= load_moved;
992
993 if (max_nr_move <= 0 || rem_load_move <= 0)
994 break;
995 }
996
43010659 997 return max_load_move - rem_load_move;
bf0f6f24
IM
998}
999
1000/*
1001 * scheduler tick hitting a task of our scheduling class:
1002 */
1003static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1004{
1005 struct cfs_rq *cfs_rq;
1006 struct sched_entity *se = &curr->se;
1007
1008 for_each_sched_entity(se) {
1009 cfs_rq = cfs_rq_of(se);
1010 entity_tick(cfs_rq, se);
1011 }
1012}
1013
1014/*
1015 * Share the fairness runtime between parent and child, thus the
1016 * total amount of pressure for CPU stays equal - new tasks
1017 * get a chance to run but frequent forkers are not allowed to
1018 * monopolize the CPU. Note: the parent runqueue is locked,
1019 * the child is not running yet.
1020 */
ee0827d8 1021static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1022{
1023 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1024 struct sched_entity *se = &p->se;
bf0f6f24
IM
1025
1026 sched_info_queued(p);
1027
d2417e5a 1028 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
1029 /*
1030 * Child runs first: we let it run before the parent
1031 * until it reschedules once. We set up the key so that
1032 * it will preempt the parent:
1033 */
1034 p->se.fair_key = current->se.fair_key -
1035 niced_granularity(&rq->curr->se, sysctl_sched_granularity) - 1;
1036 /*
1037 * The first wait is dominated by the child-runs-first logic,
1038 * so do not credit it with that waiting time yet:
1039 */
1040 if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
1041 p->se.wait_start_fair = 0;
1042
1043 /*
1044 * The statistical average of wait_runtime is about
1045 * -granularity/2, so initialize the task with that:
1046 */
1047 if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
1048 p->se.wait_runtime = -(sysctl_sched_granularity / 2);
1049
1050 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
1051}
1052
1053#ifdef CONFIG_FAIR_GROUP_SCHED
1054/* Account for a task changing its policy or group.
1055 *
1056 * This routine is mostly called to set cfs_rq->curr field when a task
1057 * migrates between groups/classes.
1058 */
1059static void set_curr_task_fair(struct rq *rq)
1060{
c3b64f1e 1061 struct sched_entity *se = &rq->curr.se;
a8e504d2 1062
c3b64f1e
IM
1063 for_each_sched_entity(se)
1064 set_next_entity(cfs_rq_of(se), se);
bf0f6f24
IM
1065}
1066#else
1067static void set_curr_task_fair(struct rq *rq)
1068{
1069}
1070#endif
1071
1072/*
1073 * All the scheduling class methods:
1074 */
1075struct sched_class fair_sched_class __read_mostly = {
1076 .enqueue_task = enqueue_task_fair,
1077 .dequeue_task = dequeue_task_fair,
1078 .yield_task = yield_task_fair,
1079
1080 .check_preempt_curr = check_preempt_curr_fair,
1081
1082 .pick_next_task = pick_next_task_fair,
1083 .put_prev_task = put_prev_task_fair,
1084
1085 .load_balance = load_balance_fair,
1086
1087 .set_curr_task = set_curr_task_fair,
1088 .task_tick = task_tick_fair,
1089 .task_new = task_new_fair,
1090};
1091
1092#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1093static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1094{
bf0f6f24
IM
1095 struct cfs_rq *cfs_rq;
1096
c3b64f1e 1097 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1098 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1099}
1100#endif
This page took 0.097327 seconds and 5 git commands to generate.