sched: Add support for throttling group entities
[deliverable/linux.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
9745512c 26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
864616ee 29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 30 *
21805085 31 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
bf0f6f24 35 *
d274a4ce
IM
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 38 */
21406928
MG
39unsigned int sysctl_sched_latency = 6000000ULL;
40unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 41
1983a922
CE
42/*
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 *
46 * Options are:
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 */
51enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG;
53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
864616ee 56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 57 */
0bf377bb
IM
58unsigned int sysctl_sched_min_granularity = 750000ULL;
59unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
60
61/*
b2be5e96
PZ
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 */
0bf377bb 64static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
65
66/*
2bba22c5 67 * After fork, child runs first. If set to 0 (default) then
b2be5e96 68 * parent will (try to) run first.
21805085 69 */
2bba22c5 70unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 71
bf0f6f24
IM
72/*
73 * SCHED_OTHER wake-up granularity.
172e082a 74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 */
172e082a 80unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 81unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 82
da84d961
IM
83const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
84
a7a4f8a7
PT
85/*
86 * The exponential sliding window over which load is averaged for shares
87 * distribution.
88 * (default: 10msec)
89 */
90unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
91
ec12cb7f
PT
92#ifdef CONFIG_CFS_BANDWIDTH
93/*
94 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
95 * each time a cfs_rq requests quota.
96 *
97 * Note: in the case that the slice exceeds the runtime remaining (either due
98 * to consumption or the quota being specified to be smaller than the slice)
99 * we will always only issue the remaining available time.
100 *
101 * default: 5 msec, units: microseconds
102 */
103unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
104#endif
105
a4c2f00f
PZ
106static const struct sched_class fair_sched_class;
107
bf0f6f24
IM
108/**************************************************************
109 * CFS operations on generic schedulable entities:
110 */
111
62160e3f 112#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 113
62160e3f 114/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
115static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
116{
62160e3f 117 return cfs_rq->rq;
bf0f6f24
IM
118}
119
62160e3f
IM
120/* An entity is a task if it doesn't "own" a runqueue */
121#define entity_is_task(se) (!se->my_q)
bf0f6f24 122
8f48894f
PZ
123static inline struct task_struct *task_of(struct sched_entity *se)
124{
125#ifdef CONFIG_SCHED_DEBUG
126 WARN_ON_ONCE(!entity_is_task(se));
127#endif
128 return container_of(se, struct task_struct, se);
129}
130
b758149c
PZ
131/* Walk up scheduling entities hierarchy */
132#define for_each_sched_entity(se) \
133 for (; se; se = se->parent)
134
135static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
136{
137 return p->se.cfs_rq;
138}
139
140/* runqueue on which this entity is (to be) queued */
141static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
142{
143 return se->cfs_rq;
144}
145
146/* runqueue "owned" by this group */
147static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
148{
149 return grp->my_q;
150}
151
3d4b47b4
PZ
152static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
153{
154 if (!cfs_rq->on_list) {
67e86250
PT
155 /*
156 * Ensure we either appear before our parent (if already
157 * enqueued) or force our parent to appear after us when it is
158 * enqueued. The fact that we always enqueue bottom-up
159 * reduces this to two cases.
160 */
161 if (cfs_rq->tg->parent &&
162 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
163 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
164 &rq_of(cfs_rq)->leaf_cfs_rq_list);
165 } else {
166 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 167 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 168 }
3d4b47b4
PZ
169
170 cfs_rq->on_list = 1;
171 }
172}
173
174static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
175{
176 if (cfs_rq->on_list) {
177 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
178 cfs_rq->on_list = 0;
179 }
180}
181
b758149c
PZ
182/* Iterate thr' all leaf cfs_rq's on a runqueue */
183#define for_each_leaf_cfs_rq(rq, cfs_rq) \
184 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
185
186/* Do the two (enqueued) entities belong to the same group ? */
187static inline int
188is_same_group(struct sched_entity *se, struct sched_entity *pse)
189{
190 if (se->cfs_rq == pse->cfs_rq)
191 return 1;
192
193 return 0;
194}
195
196static inline struct sched_entity *parent_entity(struct sched_entity *se)
197{
198 return se->parent;
199}
200
464b7527
PZ
201/* return depth at which a sched entity is present in the hierarchy */
202static inline int depth_se(struct sched_entity *se)
203{
204 int depth = 0;
205
206 for_each_sched_entity(se)
207 depth++;
208
209 return depth;
210}
211
212static void
213find_matching_se(struct sched_entity **se, struct sched_entity **pse)
214{
215 int se_depth, pse_depth;
216
217 /*
218 * preemption test can be made between sibling entities who are in the
219 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
220 * both tasks until we find their ancestors who are siblings of common
221 * parent.
222 */
223
224 /* First walk up until both entities are at same depth */
225 se_depth = depth_se(*se);
226 pse_depth = depth_se(*pse);
227
228 while (se_depth > pse_depth) {
229 se_depth--;
230 *se = parent_entity(*se);
231 }
232
233 while (pse_depth > se_depth) {
234 pse_depth--;
235 *pse = parent_entity(*pse);
236 }
237
238 while (!is_same_group(*se, *pse)) {
239 *se = parent_entity(*se);
240 *pse = parent_entity(*pse);
241 }
242}
243
8f48894f
PZ
244#else /* !CONFIG_FAIR_GROUP_SCHED */
245
246static inline struct task_struct *task_of(struct sched_entity *se)
247{
248 return container_of(se, struct task_struct, se);
249}
bf0f6f24 250
62160e3f
IM
251static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
252{
253 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
254}
255
256#define entity_is_task(se) 1
257
b758149c
PZ
258#define for_each_sched_entity(se) \
259 for (; se; se = NULL)
bf0f6f24 260
b758149c 261static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 262{
b758149c 263 return &task_rq(p)->cfs;
bf0f6f24
IM
264}
265
b758149c
PZ
266static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
267{
268 struct task_struct *p = task_of(se);
269 struct rq *rq = task_rq(p);
270
271 return &rq->cfs;
272}
273
274/* runqueue "owned" by this group */
275static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
276{
277 return NULL;
278}
279
3d4b47b4
PZ
280static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
281{
282}
283
284static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285{
286}
287
b758149c
PZ
288#define for_each_leaf_cfs_rq(rq, cfs_rq) \
289 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
290
291static inline int
292is_same_group(struct sched_entity *se, struct sched_entity *pse)
293{
294 return 1;
295}
296
297static inline struct sched_entity *parent_entity(struct sched_entity *se)
298{
299 return NULL;
300}
301
464b7527
PZ
302static inline void
303find_matching_se(struct sched_entity **se, struct sched_entity **pse)
304{
305}
306
b758149c
PZ
307#endif /* CONFIG_FAIR_GROUP_SCHED */
308
ec12cb7f
PT
309static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
310 unsigned long delta_exec);
bf0f6f24
IM
311
312/**************************************************************
313 * Scheduling class tree data structure manipulation methods:
314 */
315
0702e3eb 316static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 317{
368059a9
PZ
318 s64 delta = (s64)(vruntime - min_vruntime);
319 if (delta > 0)
02e0431a
PZ
320 min_vruntime = vruntime;
321
322 return min_vruntime;
323}
324
0702e3eb 325static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
326{
327 s64 delta = (s64)(vruntime - min_vruntime);
328 if (delta < 0)
329 min_vruntime = vruntime;
330
331 return min_vruntime;
332}
333
54fdc581
FC
334static inline int entity_before(struct sched_entity *a,
335 struct sched_entity *b)
336{
337 return (s64)(a->vruntime - b->vruntime) < 0;
338}
339
1af5f730
PZ
340static void update_min_vruntime(struct cfs_rq *cfs_rq)
341{
342 u64 vruntime = cfs_rq->min_vruntime;
343
344 if (cfs_rq->curr)
345 vruntime = cfs_rq->curr->vruntime;
346
347 if (cfs_rq->rb_leftmost) {
348 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
349 struct sched_entity,
350 run_node);
351
e17036da 352 if (!cfs_rq->curr)
1af5f730
PZ
353 vruntime = se->vruntime;
354 else
355 vruntime = min_vruntime(vruntime, se->vruntime);
356 }
357
358 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
359#ifndef CONFIG_64BIT
360 smp_wmb();
361 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
362#endif
1af5f730
PZ
363}
364
bf0f6f24
IM
365/*
366 * Enqueue an entity into the rb-tree:
367 */
0702e3eb 368static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
369{
370 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
371 struct rb_node *parent = NULL;
372 struct sched_entity *entry;
bf0f6f24
IM
373 int leftmost = 1;
374
375 /*
376 * Find the right place in the rbtree:
377 */
378 while (*link) {
379 parent = *link;
380 entry = rb_entry(parent, struct sched_entity, run_node);
381 /*
382 * We dont care about collisions. Nodes with
383 * the same key stay together.
384 */
2bd2d6f2 385 if (entity_before(se, entry)) {
bf0f6f24
IM
386 link = &parent->rb_left;
387 } else {
388 link = &parent->rb_right;
389 leftmost = 0;
390 }
391 }
392
393 /*
394 * Maintain a cache of leftmost tree entries (it is frequently
395 * used):
396 */
1af5f730 397 if (leftmost)
57cb499d 398 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
399
400 rb_link_node(&se->run_node, parent, link);
401 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
402}
403
0702e3eb 404static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 405{
3fe69747
PZ
406 if (cfs_rq->rb_leftmost == &se->run_node) {
407 struct rb_node *next_node;
3fe69747
PZ
408
409 next_node = rb_next(&se->run_node);
410 cfs_rq->rb_leftmost = next_node;
3fe69747 411 }
e9acbff6 412
bf0f6f24 413 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
414}
415
ac53db59 416static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 417{
f4b6755f
PZ
418 struct rb_node *left = cfs_rq->rb_leftmost;
419
420 if (!left)
421 return NULL;
422
423 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
424}
425
ac53db59
RR
426static struct sched_entity *__pick_next_entity(struct sched_entity *se)
427{
428 struct rb_node *next = rb_next(&se->run_node);
429
430 if (!next)
431 return NULL;
432
433 return rb_entry(next, struct sched_entity, run_node);
434}
435
436#ifdef CONFIG_SCHED_DEBUG
f4b6755f 437static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 438{
7eee3e67 439 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 440
70eee74b
BS
441 if (!last)
442 return NULL;
7eee3e67
IM
443
444 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
445}
446
bf0f6f24
IM
447/**************************************************************
448 * Scheduling class statistics methods:
449 */
450
acb4a848 451int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 452 void __user *buffer, size_t *lenp,
b2be5e96
PZ
453 loff_t *ppos)
454{
8d65af78 455 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 456 int factor = get_update_sysctl_factor();
b2be5e96
PZ
457
458 if (ret || !write)
459 return ret;
460
461 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
462 sysctl_sched_min_granularity);
463
acb4a848
CE
464#define WRT_SYSCTL(name) \
465 (normalized_sysctl_##name = sysctl_##name / (factor))
466 WRT_SYSCTL(sched_min_granularity);
467 WRT_SYSCTL(sched_latency);
468 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
469#undef WRT_SYSCTL
470
b2be5e96
PZ
471 return 0;
472}
473#endif
647e7cac 474
a7be37ac 475/*
f9c0b095 476 * delta /= w
a7be37ac
PZ
477 */
478static inline unsigned long
479calc_delta_fair(unsigned long delta, struct sched_entity *se)
480{
f9c0b095
PZ
481 if (unlikely(se->load.weight != NICE_0_LOAD))
482 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
483
484 return delta;
485}
486
647e7cac
IM
487/*
488 * The idea is to set a period in which each task runs once.
489 *
490 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
491 * this period because otherwise the slices get too small.
492 *
493 * p = (nr <= nl) ? l : l*nr/nl
494 */
4d78e7b6
PZ
495static u64 __sched_period(unsigned long nr_running)
496{
497 u64 period = sysctl_sched_latency;
b2be5e96 498 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
499
500 if (unlikely(nr_running > nr_latency)) {
4bf0b771 501 period = sysctl_sched_min_granularity;
4d78e7b6 502 period *= nr_running;
4d78e7b6
PZ
503 }
504
505 return period;
506}
507
647e7cac
IM
508/*
509 * We calculate the wall-time slice from the period by taking a part
510 * proportional to the weight.
511 *
f9c0b095 512 * s = p*P[w/rw]
647e7cac 513 */
6d0f0ebd 514static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 515{
0a582440 516 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 517
0a582440 518 for_each_sched_entity(se) {
6272d68c 519 struct load_weight *load;
3104bf03 520 struct load_weight lw;
6272d68c
LM
521
522 cfs_rq = cfs_rq_of(se);
523 load = &cfs_rq->load;
f9c0b095 524
0a582440 525 if (unlikely(!se->on_rq)) {
3104bf03 526 lw = cfs_rq->load;
0a582440
MG
527
528 update_load_add(&lw, se->load.weight);
529 load = &lw;
530 }
531 slice = calc_delta_mine(slice, se->load.weight, load);
532 }
533 return slice;
bf0f6f24
IM
534}
535
647e7cac 536/*
ac884dec 537 * We calculate the vruntime slice of a to be inserted task
647e7cac 538 *
f9c0b095 539 * vs = s/w
647e7cac 540 */
f9c0b095 541static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 542{
f9c0b095 543 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
544}
545
d6b55918 546static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 547static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 548
bf0f6f24
IM
549/*
550 * Update the current task's runtime statistics. Skip current tasks that
551 * are not in our scheduling class.
552 */
553static inline void
8ebc91d9
IM
554__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
555 unsigned long delta_exec)
bf0f6f24 556{
bbdba7c0 557 unsigned long delta_exec_weighted;
bf0f6f24 558
41acab88
LDM
559 schedstat_set(curr->statistics.exec_max,
560 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
561
562 curr->sum_exec_runtime += delta_exec;
7a62eabc 563 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 564 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 565
e9acbff6 566 curr->vruntime += delta_exec_weighted;
1af5f730 567 update_min_vruntime(cfs_rq);
3b3d190e 568
70caf8a6 569#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 570 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 571#endif
bf0f6f24
IM
572}
573
b7cc0896 574static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 575{
429d43bc 576 struct sched_entity *curr = cfs_rq->curr;
305e6835 577 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
578 unsigned long delta_exec;
579
580 if (unlikely(!curr))
581 return;
582
583 /*
584 * Get the amount of time the current task was running
585 * since the last time we changed load (this cannot
586 * overflow on 32 bits):
587 */
8ebc91d9 588 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
589 if (!delta_exec)
590 return;
bf0f6f24 591
8ebc91d9
IM
592 __update_curr(cfs_rq, curr, delta_exec);
593 curr->exec_start = now;
d842de87
SV
594
595 if (entity_is_task(curr)) {
596 struct task_struct *curtask = task_of(curr);
597
f977bb49 598 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 599 cpuacct_charge(curtask, delta_exec);
f06febc9 600 account_group_exec_runtime(curtask, delta_exec);
d842de87 601 }
ec12cb7f
PT
602
603 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
604}
605
606static inline void
5870db5b 607update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 608{
41acab88 609 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
610}
611
bf0f6f24
IM
612/*
613 * Task is being enqueued - update stats:
614 */
d2417e5a 615static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 616{
bf0f6f24
IM
617 /*
618 * Are we enqueueing a waiting task? (for current tasks
619 * a dequeue/enqueue event is a NOP)
620 */
429d43bc 621 if (se != cfs_rq->curr)
5870db5b 622 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
623}
624
bf0f6f24 625static void
9ef0a961 626update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 627{
41acab88
LDM
628 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
629 rq_of(cfs_rq)->clock - se->statistics.wait_start));
630 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
631 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
632 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
633#ifdef CONFIG_SCHEDSTATS
634 if (entity_is_task(se)) {
635 trace_sched_stat_wait(task_of(se),
41acab88 636 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
637 }
638#endif
41acab88 639 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
640}
641
642static inline void
19b6a2e3 643update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 644{
bf0f6f24
IM
645 /*
646 * Mark the end of the wait period if dequeueing a
647 * waiting task:
648 */
429d43bc 649 if (se != cfs_rq->curr)
9ef0a961 650 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
651}
652
653/*
654 * We are picking a new current task - update its stats:
655 */
656static inline void
79303e9e 657update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
658{
659 /*
660 * We are starting a new run period:
661 */
305e6835 662 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
663}
664
bf0f6f24
IM
665/**************************************************
666 * Scheduling class queueing methods:
667 */
668
c09595f6
PZ
669#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
670static void
671add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
672{
673 cfs_rq->task_weight += weight;
674}
675#else
676static inline void
677add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
678{
679}
680#endif
681
30cfdcfc
DA
682static void
683account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
684{
685 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
686 if (!parent_entity(se))
687 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 688 if (entity_is_task(se)) {
c09595f6 689 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
690 list_add(&se->group_node, &cfs_rq->tasks);
691 }
30cfdcfc 692 cfs_rq->nr_running++;
30cfdcfc
DA
693}
694
695static void
696account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
697{
698 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
699 if (!parent_entity(se))
700 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 701 if (entity_is_task(se)) {
c09595f6 702 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
703 list_del_init(&se->group_node);
704 }
30cfdcfc 705 cfs_rq->nr_running--;
30cfdcfc
DA
706}
707
3ff6dcac
YZ
708#ifdef CONFIG_FAIR_GROUP_SCHED
709# ifdef CONFIG_SMP
d6b55918
PT
710static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
711 int global_update)
712{
713 struct task_group *tg = cfs_rq->tg;
714 long load_avg;
715
716 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
717 load_avg -= cfs_rq->load_contribution;
718
719 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
720 atomic_add(load_avg, &tg->load_weight);
721 cfs_rq->load_contribution += load_avg;
722 }
723}
724
725static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 726{
a7a4f8a7 727 u64 period = sysctl_sched_shares_window;
2069dd75 728 u64 now, delta;
e33078ba 729 unsigned long load = cfs_rq->load.weight;
2069dd75 730
b815f196 731 if (cfs_rq->tg == &root_task_group)
2069dd75
PZ
732 return;
733
05ca62c6 734 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
735 delta = now - cfs_rq->load_stamp;
736
e33078ba
PT
737 /* truncate load history at 4 idle periods */
738 if (cfs_rq->load_stamp > cfs_rq->load_last &&
739 now - cfs_rq->load_last > 4 * period) {
740 cfs_rq->load_period = 0;
741 cfs_rq->load_avg = 0;
f07333bf 742 delta = period - 1;
e33078ba
PT
743 }
744
2069dd75 745 cfs_rq->load_stamp = now;
3b3d190e 746 cfs_rq->load_unacc_exec_time = 0;
2069dd75 747 cfs_rq->load_period += delta;
e33078ba
PT
748 if (load) {
749 cfs_rq->load_last = now;
750 cfs_rq->load_avg += delta * load;
751 }
2069dd75 752
d6b55918
PT
753 /* consider updating load contribution on each fold or truncate */
754 if (global_update || cfs_rq->load_period > period
755 || !cfs_rq->load_period)
756 update_cfs_rq_load_contribution(cfs_rq, global_update);
757
2069dd75
PZ
758 while (cfs_rq->load_period > period) {
759 /*
760 * Inline assembly required to prevent the compiler
761 * optimising this loop into a divmod call.
762 * See __iter_div_u64_rem() for another example of this.
763 */
764 asm("" : "+rm" (cfs_rq->load_period));
765 cfs_rq->load_period /= 2;
766 cfs_rq->load_avg /= 2;
767 }
3d4b47b4 768
e33078ba
PT
769 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
770 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
771}
772
6d5ab293 773static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
774{
775 long load_weight, load, shares;
776
6d5ab293 777 load = cfs_rq->load.weight;
3ff6dcac
YZ
778
779 load_weight = atomic_read(&tg->load_weight);
3ff6dcac 780 load_weight += load;
6d5ab293 781 load_weight -= cfs_rq->load_contribution;
3ff6dcac
YZ
782
783 shares = (tg->shares * load);
784 if (load_weight)
785 shares /= load_weight;
786
787 if (shares < MIN_SHARES)
788 shares = MIN_SHARES;
789 if (shares > tg->shares)
790 shares = tg->shares;
791
792 return shares;
793}
794
795static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
796{
797 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
798 update_cfs_load(cfs_rq, 0);
6d5ab293 799 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
800 }
801}
802# else /* CONFIG_SMP */
803static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
804{
805}
806
6d5ab293 807static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
808{
809 return tg->shares;
810}
811
812static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
813{
814}
815# endif /* CONFIG_SMP */
2069dd75
PZ
816static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
817 unsigned long weight)
818{
19e5eebb
PT
819 if (se->on_rq) {
820 /* commit outstanding execution time */
821 if (cfs_rq->curr == se)
822 update_curr(cfs_rq);
2069dd75 823 account_entity_dequeue(cfs_rq, se);
19e5eebb 824 }
2069dd75
PZ
825
826 update_load_set(&se->load, weight);
827
828 if (se->on_rq)
829 account_entity_enqueue(cfs_rq, se);
830}
831
6d5ab293 832static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
833{
834 struct task_group *tg;
835 struct sched_entity *se;
3ff6dcac 836 long shares;
2069dd75 837
2069dd75
PZ
838 tg = cfs_rq->tg;
839 se = tg->se[cpu_of(rq_of(cfs_rq))];
840 if (!se)
841 return;
3ff6dcac
YZ
842#ifndef CONFIG_SMP
843 if (likely(se->load.weight == tg->shares))
844 return;
845#endif
6d5ab293 846 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
847
848 reweight_entity(cfs_rq_of(se), se, shares);
849}
850#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 851static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
852{
853}
854
6d5ab293 855static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
856{
857}
43365bd7
PT
858
859static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
860{
861}
2069dd75
PZ
862#endif /* CONFIG_FAIR_GROUP_SCHED */
863
2396af69 864static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 865{
bf0f6f24 866#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
867 struct task_struct *tsk = NULL;
868
869 if (entity_is_task(se))
870 tsk = task_of(se);
871
41acab88
LDM
872 if (se->statistics.sleep_start) {
873 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
874
875 if ((s64)delta < 0)
876 delta = 0;
877
41acab88
LDM
878 if (unlikely(delta > se->statistics.sleep_max))
879 se->statistics.sleep_max = delta;
bf0f6f24 880
41acab88
LDM
881 se->statistics.sleep_start = 0;
882 se->statistics.sum_sleep_runtime += delta;
9745512c 883
768d0c27 884 if (tsk) {
e414314c 885 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
886 trace_sched_stat_sleep(tsk, delta);
887 }
bf0f6f24 888 }
41acab88
LDM
889 if (se->statistics.block_start) {
890 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
891
892 if ((s64)delta < 0)
893 delta = 0;
894
41acab88
LDM
895 if (unlikely(delta > se->statistics.block_max))
896 se->statistics.block_max = delta;
bf0f6f24 897
41acab88
LDM
898 se->statistics.block_start = 0;
899 se->statistics.sum_sleep_runtime += delta;
30084fbd 900
e414314c 901 if (tsk) {
8f0dfc34 902 if (tsk->in_iowait) {
41acab88
LDM
903 se->statistics.iowait_sum += delta;
904 se->statistics.iowait_count++;
768d0c27 905 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
906 }
907
e414314c
PZ
908 /*
909 * Blocking time is in units of nanosecs, so shift by
910 * 20 to get a milliseconds-range estimation of the
911 * amount of time that the task spent sleeping:
912 */
913 if (unlikely(prof_on == SLEEP_PROFILING)) {
914 profile_hits(SLEEP_PROFILING,
915 (void *)get_wchan(tsk),
916 delta >> 20);
917 }
918 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 919 }
bf0f6f24
IM
920 }
921#endif
922}
923
ddc97297
PZ
924static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
925{
926#ifdef CONFIG_SCHED_DEBUG
927 s64 d = se->vruntime - cfs_rq->min_vruntime;
928
929 if (d < 0)
930 d = -d;
931
932 if (d > 3*sysctl_sched_latency)
933 schedstat_inc(cfs_rq, nr_spread_over);
934#endif
935}
936
aeb73b04
PZ
937static void
938place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
939{
1af5f730 940 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 941
2cb8600e
PZ
942 /*
943 * The 'current' period is already promised to the current tasks,
944 * however the extra weight of the new task will slow them down a
945 * little, place the new task so that it fits in the slot that
946 * stays open at the end.
947 */
94dfb5e7 948 if (initial && sched_feat(START_DEBIT))
f9c0b095 949 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 950
a2e7a7eb 951 /* sleeps up to a single latency don't count. */
5ca9880c 952 if (!initial) {
a2e7a7eb 953 unsigned long thresh = sysctl_sched_latency;
a7be37ac 954
a2e7a7eb
MG
955 /*
956 * Halve their sleep time's effect, to allow
957 * for a gentler effect of sleepers:
958 */
959 if (sched_feat(GENTLE_FAIR_SLEEPERS))
960 thresh >>= 1;
51e0304c 961
a2e7a7eb 962 vruntime -= thresh;
aeb73b04
PZ
963 }
964
b5d9d734
MG
965 /* ensure we never gain time by being placed backwards. */
966 vruntime = max_vruntime(se->vruntime, vruntime);
967
67e9fb2a 968 se->vruntime = vruntime;
aeb73b04
PZ
969}
970
bf0f6f24 971static void
88ec22d3 972enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 973{
88ec22d3
PZ
974 /*
975 * Update the normalized vruntime before updating min_vruntime
976 * through callig update_curr().
977 */
371fd7e7 978 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
979 se->vruntime += cfs_rq->min_vruntime;
980
bf0f6f24 981 /*
a2a2d680 982 * Update run-time statistics of the 'current'.
bf0f6f24 983 */
b7cc0896 984 update_curr(cfs_rq);
d6b55918 985 update_cfs_load(cfs_rq, 0);
a992241d 986 account_entity_enqueue(cfs_rq, se);
6d5ab293 987 update_cfs_shares(cfs_rq);
bf0f6f24 988
88ec22d3 989 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 990 place_entity(cfs_rq, se, 0);
2396af69 991 enqueue_sleeper(cfs_rq, se);
e9acbff6 992 }
bf0f6f24 993
d2417e5a 994 update_stats_enqueue(cfs_rq, se);
ddc97297 995 check_spread(cfs_rq, se);
83b699ed
SV
996 if (se != cfs_rq->curr)
997 __enqueue_entity(cfs_rq, se);
2069dd75 998 se->on_rq = 1;
3d4b47b4
PZ
999
1000 if (cfs_rq->nr_running == 1)
1001 list_add_leaf_cfs_rq(cfs_rq);
bf0f6f24
IM
1002}
1003
2c13c919 1004static void __clear_buddies_last(struct sched_entity *se)
2002c695 1005{
2c13c919
RR
1006 for_each_sched_entity(se) {
1007 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1008 if (cfs_rq->last == se)
1009 cfs_rq->last = NULL;
1010 else
1011 break;
1012 }
1013}
2002c695 1014
2c13c919
RR
1015static void __clear_buddies_next(struct sched_entity *se)
1016{
1017 for_each_sched_entity(se) {
1018 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1019 if (cfs_rq->next == se)
1020 cfs_rq->next = NULL;
1021 else
1022 break;
1023 }
2002c695
PZ
1024}
1025
ac53db59
RR
1026static void __clear_buddies_skip(struct sched_entity *se)
1027{
1028 for_each_sched_entity(se) {
1029 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1030 if (cfs_rq->skip == se)
1031 cfs_rq->skip = NULL;
1032 else
1033 break;
1034 }
1035}
1036
a571bbea
PZ
1037static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1038{
2c13c919
RR
1039 if (cfs_rq->last == se)
1040 __clear_buddies_last(se);
1041
1042 if (cfs_rq->next == se)
1043 __clear_buddies_next(se);
ac53db59
RR
1044
1045 if (cfs_rq->skip == se)
1046 __clear_buddies_skip(se);
a571bbea
PZ
1047}
1048
bf0f6f24 1049static void
371fd7e7 1050dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1051{
a2a2d680
DA
1052 /*
1053 * Update run-time statistics of the 'current'.
1054 */
1055 update_curr(cfs_rq);
1056
19b6a2e3 1057 update_stats_dequeue(cfs_rq, se);
371fd7e7 1058 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1059#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1060 if (entity_is_task(se)) {
1061 struct task_struct *tsk = task_of(se);
1062
1063 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1064 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1065 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1066 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1067 }
db36cc7d 1068#endif
67e9fb2a
PZ
1069 }
1070
2002c695 1071 clear_buddies(cfs_rq, se);
4793241b 1072
83b699ed 1073 if (se != cfs_rq->curr)
30cfdcfc 1074 __dequeue_entity(cfs_rq, se);
2069dd75 1075 se->on_rq = 0;
d6b55918 1076 update_cfs_load(cfs_rq, 0);
30cfdcfc 1077 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1078
1079 /*
1080 * Normalize the entity after updating the min_vruntime because the
1081 * update can refer to the ->curr item and we need to reflect this
1082 * movement in our normalized position.
1083 */
371fd7e7 1084 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1085 se->vruntime -= cfs_rq->min_vruntime;
1e876231
PZ
1086
1087 update_min_vruntime(cfs_rq);
1088 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1089}
1090
1091/*
1092 * Preempt the current task with a newly woken task if needed:
1093 */
7c92e54f 1094static void
2e09bf55 1095check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1096{
11697830
PZ
1097 unsigned long ideal_runtime, delta_exec;
1098
6d0f0ebd 1099 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1100 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1101 if (delta_exec > ideal_runtime) {
bf0f6f24 1102 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1103 /*
1104 * The current task ran long enough, ensure it doesn't get
1105 * re-elected due to buddy favours.
1106 */
1107 clear_buddies(cfs_rq, curr);
f685ceac
MG
1108 return;
1109 }
1110
1111 /*
1112 * Ensure that a task that missed wakeup preemption by a
1113 * narrow margin doesn't have to wait for a full slice.
1114 * This also mitigates buddy induced latencies under load.
1115 */
f685ceac
MG
1116 if (delta_exec < sysctl_sched_min_granularity)
1117 return;
1118
1119 if (cfs_rq->nr_running > 1) {
ac53db59 1120 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac
MG
1121 s64 delta = curr->vruntime - se->vruntime;
1122
d7d82944
MG
1123 if (delta < 0)
1124 return;
1125
f685ceac
MG
1126 if (delta > ideal_runtime)
1127 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 1128 }
bf0f6f24
IM
1129}
1130
83b699ed 1131static void
8494f412 1132set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1133{
83b699ed
SV
1134 /* 'current' is not kept within the tree. */
1135 if (se->on_rq) {
1136 /*
1137 * Any task has to be enqueued before it get to execute on
1138 * a CPU. So account for the time it spent waiting on the
1139 * runqueue.
1140 */
1141 update_stats_wait_end(cfs_rq, se);
1142 __dequeue_entity(cfs_rq, se);
1143 }
1144
79303e9e 1145 update_stats_curr_start(cfs_rq, se);
429d43bc 1146 cfs_rq->curr = se;
eba1ed4b
IM
1147#ifdef CONFIG_SCHEDSTATS
1148 /*
1149 * Track our maximum slice length, if the CPU's load is at
1150 * least twice that of our own weight (i.e. dont track it
1151 * when there are only lesser-weight tasks around):
1152 */
495eca49 1153 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1154 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1155 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1156 }
1157#endif
4a55b450 1158 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1159}
1160
3f3a4904
PZ
1161static int
1162wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1163
ac53db59
RR
1164/*
1165 * Pick the next process, keeping these things in mind, in this order:
1166 * 1) keep things fair between processes/task groups
1167 * 2) pick the "next" process, since someone really wants that to run
1168 * 3) pick the "last" process, for cache locality
1169 * 4) do not run the "skip" process, if something else is available
1170 */
f4b6755f 1171static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1172{
ac53db59 1173 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1174 struct sched_entity *left = se;
f4b6755f 1175
ac53db59
RR
1176 /*
1177 * Avoid running the skip buddy, if running something else can
1178 * be done without getting too unfair.
1179 */
1180 if (cfs_rq->skip == se) {
1181 struct sched_entity *second = __pick_next_entity(se);
1182 if (second && wakeup_preempt_entity(second, left) < 1)
1183 se = second;
1184 }
aa2ac252 1185
f685ceac
MG
1186 /*
1187 * Prefer last buddy, try to return the CPU to a preempted task.
1188 */
1189 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1190 se = cfs_rq->last;
1191
ac53db59
RR
1192 /*
1193 * Someone really wants this to run. If it's not unfair, run it.
1194 */
1195 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1196 se = cfs_rq->next;
1197
f685ceac 1198 clear_buddies(cfs_rq, se);
4793241b
PZ
1199
1200 return se;
aa2ac252
PZ
1201}
1202
ab6cde26 1203static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1204{
1205 /*
1206 * If still on the runqueue then deactivate_task()
1207 * was not called and update_curr() has to be done:
1208 */
1209 if (prev->on_rq)
b7cc0896 1210 update_curr(cfs_rq);
bf0f6f24 1211
ddc97297 1212 check_spread(cfs_rq, prev);
30cfdcfc 1213 if (prev->on_rq) {
5870db5b 1214 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1215 /* Put 'current' back into the tree. */
1216 __enqueue_entity(cfs_rq, prev);
1217 }
429d43bc 1218 cfs_rq->curr = NULL;
bf0f6f24
IM
1219}
1220
8f4d37ec
PZ
1221static void
1222entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1223{
bf0f6f24 1224 /*
30cfdcfc 1225 * Update run-time statistics of the 'current'.
bf0f6f24 1226 */
30cfdcfc 1227 update_curr(cfs_rq);
bf0f6f24 1228
43365bd7
PT
1229 /*
1230 * Update share accounting for long-running entities.
1231 */
1232 update_entity_shares_tick(cfs_rq);
1233
8f4d37ec
PZ
1234#ifdef CONFIG_SCHED_HRTICK
1235 /*
1236 * queued ticks are scheduled to match the slice, so don't bother
1237 * validating it and just reschedule.
1238 */
983ed7a6
HH
1239 if (queued) {
1240 resched_task(rq_of(cfs_rq)->curr);
1241 return;
1242 }
8f4d37ec
PZ
1243 /*
1244 * don't let the period tick interfere with the hrtick preemption
1245 */
1246 if (!sched_feat(DOUBLE_TICK) &&
1247 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1248 return;
1249#endif
1250
2c2efaed 1251 if (cfs_rq->nr_running > 1)
2e09bf55 1252 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1253}
1254
ab84d31e
PT
1255
1256/**************************************************
1257 * CFS bandwidth control machinery
1258 */
1259
1260#ifdef CONFIG_CFS_BANDWIDTH
1261/*
1262 * default period for cfs group bandwidth.
1263 * default: 0.1s, units: nanoseconds
1264 */
1265static inline u64 default_cfs_period(void)
1266{
1267 return 100000000ULL;
1268}
ec12cb7f
PT
1269
1270static inline u64 sched_cfs_bandwidth_slice(void)
1271{
1272 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1273}
1274
a9cf55b2
PT
1275/*
1276 * Replenish runtime according to assigned quota and update expiration time.
1277 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1278 * additional synchronization around rq->lock.
1279 *
1280 * requires cfs_b->lock
1281 */
1282static void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1283{
1284 u64 now;
1285
1286 if (cfs_b->quota == RUNTIME_INF)
1287 return;
1288
1289 now = sched_clock_cpu(smp_processor_id());
1290 cfs_b->runtime = cfs_b->quota;
1291 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1292}
1293
85dac906
PT
1294/* returns 0 on failure to allocate runtime */
1295static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
1296{
1297 struct task_group *tg = cfs_rq->tg;
1298 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1299 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1300
1301 /* note: this is a positive sum as runtime_remaining <= 0 */
1302 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1303
1304 raw_spin_lock(&cfs_b->lock);
1305 if (cfs_b->quota == RUNTIME_INF)
1306 amount = min_amount;
58088ad0 1307 else {
a9cf55b2
PT
1308 /*
1309 * If the bandwidth pool has become inactive, then at least one
1310 * period must have elapsed since the last consumption.
1311 * Refresh the global state and ensure bandwidth timer becomes
1312 * active.
1313 */
1314 if (!cfs_b->timer_active) {
1315 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1316 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1317 }
58088ad0
PT
1318
1319 if (cfs_b->runtime > 0) {
1320 amount = min(cfs_b->runtime, min_amount);
1321 cfs_b->runtime -= amount;
1322 cfs_b->idle = 0;
1323 }
ec12cb7f 1324 }
a9cf55b2 1325 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1326 raw_spin_unlock(&cfs_b->lock);
1327
1328 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1329 /*
1330 * we may have advanced our local expiration to account for allowed
1331 * spread between our sched_clock and the one on which runtime was
1332 * issued.
1333 */
1334 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1335 cfs_rq->runtime_expires = expires;
85dac906
PT
1336
1337 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
1338}
1339
a9cf55b2
PT
1340/*
1341 * Note: This depends on the synchronization provided by sched_clock and the
1342 * fact that rq->clock snapshots this value.
1343 */
1344static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1345{
a9cf55b2
PT
1346 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1347 struct rq *rq = rq_of(cfs_rq);
1348
1349 /* if the deadline is ahead of our clock, nothing to do */
1350 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1351 return;
1352
a9cf55b2
PT
1353 if (cfs_rq->runtime_remaining < 0)
1354 return;
1355
1356 /*
1357 * If the local deadline has passed we have to consider the
1358 * possibility that our sched_clock is 'fast' and the global deadline
1359 * has not truly expired.
1360 *
1361 * Fortunately we can check determine whether this the case by checking
1362 * whether the global deadline has advanced.
1363 */
1364
1365 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1366 /* extend local deadline, drift is bounded above by 2 ticks */
1367 cfs_rq->runtime_expires += TICK_NSEC;
1368 } else {
1369 /* global deadline is ahead, expiration has passed */
1370 cfs_rq->runtime_remaining = 0;
1371 }
1372}
1373
1374static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1375 unsigned long delta_exec)
1376{
1377 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1378 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1379 expire_cfs_rq_runtime(cfs_rq);
1380
1381 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1382 return;
1383
85dac906
PT
1384 /*
1385 * if we're unable to extend our runtime we resched so that the active
1386 * hierarchy can be throttled
1387 */
1388 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1389 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
1390}
1391
1392static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1393 unsigned long delta_exec)
1394{
1395 if (!cfs_rq->runtime_enabled)
1396 return;
1397
1398 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1399}
1400
85dac906
PT
1401static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1402{
1403 return cfs_rq->throttled;
1404}
1405
1406static __used void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1407{
1408 struct rq *rq = rq_of(cfs_rq);
1409 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1410 struct sched_entity *se;
1411 long task_delta, dequeue = 1;
1412
1413 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1414
1415 /* account load preceding throttle */
1416 update_cfs_load(cfs_rq, 0);
1417
1418 task_delta = cfs_rq->h_nr_running;
1419 for_each_sched_entity(se) {
1420 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1421 /* throttled entity or throttle-on-deactivate */
1422 if (!se->on_rq)
1423 break;
1424
1425 if (dequeue)
1426 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1427 qcfs_rq->h_nr_running -= task_delta;
1428
1429 if (qcfs_rq->load.weight)
1430 dequeue = 0;
1431 }
1432
1433 if (!se)
1434 rq->nr_running -= task_delta;
1435
1436 cfs_rq->throttled = 1;
1437 raw_spin_lock(&cfs_b->lock);
1438 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1439 raw_spin_unlock(&cfs_b->lock);
1440}
1441
58088ad0
PT
1442/*
1443 * Responsible for refilling a task_group's bandwidth and unthrottling its
1444 * cfs_rqs as appropriate. If there has been no activity within the last
1445 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1446 * used to track this state.
1447 */
1448static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1449{
1450 int idle = 1;
1451
1452 raw_spin_lock(&cfs_b->lock);
1453 /* no need to continue the timer with no bandwidth constraint */
1454 if (cfs_b->quota == RUNTIME_INF)
1455 goto out_unlock;
1456
1457 idle = cfs_b->idle;
a9cf55b2
PT
1458 /* if we're going inactive then everything else can be deferred */
1459 if (idle)
1460 goto out_unlock;
1461
1462 __refill_cfs_bandwidth_runtime(cfs_b);
1463
58088ad0
PT
1464
1465 /* mark as potentially idle for the upcoming period */
1466 cfs_b->idle = 1;
1467out_unlock:
1468 if (idle)
1469 cfs_b->timer_active = 0;
1470 raw_spin_unlock(&cfs_b->lock);
1471
1472 return idle;
1473}
ec12cb7f
PT
1474#else
1475static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1476 unsigned long delta_exec) {}
85dac906
PT
1477
1478static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1479{
1480 return 0;
1481}
ab84d31e
PT
1482#endif
1483
bf0f6f24
IM
1484/**************************************************
1485 * CFS operations on tasks:
1486 */
1487
8f4d37ec
PZ
1488#ifdef CONFIG_SCHED_HRTICK
1489static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1490{
8f4d37ec
PZ
1491 struct sched_entity *se = &p->se;
1492 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1493
1494 WARN_ON(task_rq(p) != rq);
1495
1496 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1497 u64 slice = sched_slice(cfs_rq, se);
1498 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1499 s64 delta = slice - ran;
1500
1501 if (delta < 0) {
1502 if (rq->curr == p)
1503 resched_task(p);
1504 return;
1505 }
1506
1507 /*
1508 * Don't schedule slices shorter than 10000ns, that just
1509 * doesn't make sense. Rely on vruntime for fairness.
1510 */
31656519 1511 if (rq->curr != p)
157124c1 1512 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1513
31656519 1514 hrtick_start(rq, delta);
8f4d37ec
PZ
1515 }
1516}
a4c2f00f
PZ
1517
1518/*
1519 * called from enqueue/dequeue and updates the hrtick when the
1520 * current task is from our class and nr_running is low enough
1521 * to matter.
1522 */
1523static void hrtick_update(struct rq *rq)
1524{
1525 struct task_struct *curr = rq->curr;
1526
1527 if (curr->sched_class != &fair_sched_class)
1528 return;
1529
1530 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1531 hrtick_start_fair(rq, curr);
1532}
55e12e5e 1533#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1534static inline void
1535hrtick_start_fair(struct rq *rq, struct task_struct *p)
1536{
1537}
a4c2f00f
PZ
1538
1539static inline void hrtick_update(struct rq *rq)
1540{
1541}
8f4d37ec
PZ
1542#endif
1543
bf0f6f24
IM
1544/*
1545 * The enqueue_task method is called before nr_running is
1546 * increased. Here we update the fair scheduling stats and
1547 * then put the task into the rbtree:
1548 */
ea87bb78 1549static void
371fd7e7 1550enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1551{
1552 struct cfs_rq *cfs_rq;
62fb1851 1553 struct sched_entity *se = &p->se;
bf0f6f24
IM
1554
1555 for_each_sched_entity(se) {
62fb1851 1556 if (se->on_rq)
bf0f6f24
IM
1557 break;
1558 cfs_rq = cfs_rq_of(se);
88ec22d3 1559 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
1560
1561 /*
1562 * end evaluation on encountering a throttled cfs_rq
1563 *
1564 * note: in the case of encountering a throttled cfs_rq we will
1565 * post the final h_nr_running increment below.
1566 */
1567 if (cfs_rq_throttled(cfs_rq))
1568 break;
953bfcd1 1569 cfs_rq->h_nr_running++;
85dac906 1570
88ec22d3 1571 flags = ENQUEUE_WAKEUP;
bf0f6f24 1572 }
8f4d37ec 1573
2069dd75 1574 for_each_sched_entity(se) {
0f317143 1575 cfs_rq = cfs_rq_of(se);
953bfcd1 1576 cfs_rq->h_nr_running++;
2069dd75 1577
85dac906
PT
1578 if (cfs_rq_throttled(cfs_rq))
1579 break;
1580
d6b55918 1581 update_cfs_load(cfs_rq, 0);
6d5ab293 1582 update_cfs_shares(cfs_rq);
2069dd75
PZ
1583 }
1584
85dac906
PT
1585 if (!se)
1586 inc_nr_running(rq);
a4c2f00f 1587 hrtick_update(rq);
bf0f6f24
IM
1588}
1589
2f36825b
VP
1590static void set_next_buddy(struct sched_entity *se);
1591
bf0f6f24
IM
1592/*
1593 * The dequeue_task method is called before nr_running is
1594 * decreased. We remove the task from the rbtree and
1595 * update the fair scheduling stats:
1596 */
371fd7e7 1597static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1598{
1599 struct cfs_rq *cfs_rq;
62fb1851 1600 struct sched_entity *se = &p->se;
2f36825b 1601 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
1602
1603 for_each_sched_entity(se) {
1604 cfs_rq = cfs_rq_of(se);
371fd7e7 1605 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
1606
1607 /*
1608 * end evaluation on encountering a throttled cfs_rq
1609 *
1610 * note: in the case of encountering a throttled cfs_rq we will
1611 * post the final h_nr_running decrement below.
1612 */
1613 if (cfs_rq_throttled(cfs_rq))
1614 break;
953bfcd1 1615 cfs_rq->h_nr_running--;
2069dd75 1616
bf0f6f24 1617 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
1618 if (cfs_rq->load.weight) {
1619 /*
1620 * Bias pick_next to pick a task from this cfs_rq, as
1621 * p is sleeping when it is within its sched_slice.
1622 */
1623 if (task_sleep && parent_entity(se))
1624 set_next_buddy(parent_entity(se));
9598c82d
PT
1625
1626 /* avoid re-evaluating load for this entity */
1627 se = parent_entity(se);
bf0f6f24 1628 break;
2f36825b 1629 }
371fd7e7 1630 flags |= DEQUEUE_SLEEP;
bf0f6f24 1631 }
8f4d37ec 1632
2069dd75 1633 for_each_sched_entity(se) {
0f317143 1634 cfs_rq = cfs_rq_of(se);
953bfcd1 1635 cfs_rq->h_nr_running--;
2069dd75 1636
85dac906
PT
1637 if (cfs_rq_throttled(cfs_rq))
1638 break;
1639
d6b55918 1640 update_cfs_load(cfs_rq, 0);
6d5ab293 1641 update_cfs_shares(cfs_rq);
2069dd75
PZ
1642 }
1643
85dac906
PT
1644 if (!se)
1645 dec_nr_running(rq);
a4c2f00f 1646 hrtick_update(rq);
bf0f6f24
IM
1647}
1648
e7693a36 1649#ifdef CONFIG_SMP
098fb9db 1650
74f8e4b2 1651static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
1652{
1653 struct sched_entity *se = &p->se;
1654 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
1655 u64 min_vruntime;
1656
1657#ifndef CONFIG_64BIT
1658 u64 min_vruntime_copy;
88ec22d3 1659
3fe1698b
PZ
1660 do {
1661 min_vruntime_copy = cfs_rq->min_vruntime_copy;
1662 smp_rmb();
1663 min_vruntime = cfs_rq->min_vruntime;
1664 } while (min_vruntime != min_vruntime_copy);
1665#else
1666 min_vruntime = cfs_rq->min_vruntime;
1667#endif
88ec22d3 1668
3fe1698b 1669 se->vruntime -= min_vruntime;
88ec22d3
PZ
1670}
1671
bb3469ac 1672#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1673/*
1674 * effective_load() calculates the load change as seen from the root_task_group
1675 *
1676 * Adding load to a group doesn't make a group heavier, but can cause movement
1677 * of group shares between cpus. Assuming the shares were perfectly aligned one
1678 * can calculate the shift in shares.
f5bfb7d9 1679 */
2069dd75 1680static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 1681{
4be9daaa 1682 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1683
1684 if (!tg->parent)
1685 return wl;
1686
4be9daaa 1687 for_each_sched_entity(se) {
977dda7c 1688 long lw, w;
4be9daaa 1689
977dda7c
PT
1690 tg = se->my_q->tg;
1691 w = se->my_q->load.weight;
bb3469ac 1692
977dda7c
PT
1693 /* use this cpu's instantaneous contribution */
1694 lw = atomic_read(&tg->load_weight);
1695 lw -= se->my_q->load_contribution;
1696 lw += w + wg;
4be9daaa 1697
977dda7c 1698 wl += w;
940959e9 1699
977dda7c
PT
1700 if (lw > 0 && wl < lw)
1701 wl = (wl * tg->shares) / lw;
1702 else
1703 wl = tg->shares;
940959e9 1704
977dda7c
PT
1705 /* zero point is MIN_SHARES */
1706 if (wl < MIN_SHARES)
1707 wl = MIN_SHARES;
1708 wl -= se->load.weight;
4be9daaa 1709 wg = 0;
4be9daaa 1710 }
bb3469ac 1711
4be9daaa 1712 return wl;
bb3469ac
PZ
1713}
1714#else
4be9daaa 1715
83378269
PZ
1716static inline unsigned long effective_load(struct task_group *tg, int cpu,
1717 unsigned long wl, unsigned long wg)
4be9daaa 1718{
83378269 1719 return wl;
bb3469ac 1720}
4be9daaa 1721
bb3469ac
PZ
1722#endif
1723
c88d5910 1724static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1725{
e37b6a7b 1726 s64 this_load, load;
c88d5910 1727 int idx, this_cpu, prev_cpu;
098fb9db 1728 unsigned long tl_per_task;
c88d5910 1729 struct task_group *tg;
83378269 1730 unsigned long weight;
b3137bc8 1731 int balanced;
098fb9db 1732
c88d5910
PZ
1733 idx = sd->wake_idx;
1734 this_cpu = smp_processor_id();
1735 prev_cpu = task_cpu(p);
1736 load = source_load(prev_cpu, idx);
1737 this_load = target_load(this_cpu, idx);
098fb9db 1738
b3137bc8
MG
1739 /*
1740 * If sync wakeup then subtract the (maximum possible)
1741 * effect of the currently running task from the load
1742 * of the current CPU:
1743 */
83378269
PZ
1744 if (sync) {
1745 tg = task_group(current);
1746 weight = current->se.load.weight;
1747
c88d5910 1748 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1749 load += effective_load(tg, prev_cpu, 0, -weight);
1750 }
b3137bc8 1751
83378269
PZ
1752 tg = task_group(p);
1753 weight = p->se.load.weight;
b3137bc8 1754
71a29aa7
PZ
1755 /*
1756 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1757 * due to the sync cause above having dropped this_load to 0, we'll
1758 * always have an imbalance, but there's really nothing you can do
1759 * about that, so that's good too.
71a29aa7
PZ
1760 *
1761 * Otherwise check if either cpus are near enough in load to allow this
1762 * task to be woken on this_cpu.
1763 */
e37b6a7b
PT
1764 if (this_load > 0) {
1765 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
1766
1767 this_eff_load = 100;
1768 this_eff_load *= power_of(prev_cpu);
1769 this_eff_load *= this_load +
1770 effective_load(tg, this_cpu, weight, weight);
1771
1772 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1773 prev_eff_load *= power_of(this_cpu);
1774 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1775
1776 balanced = this_eff_load <= prev_eff_load;
1777 } else
1778 balanced = true;
b3137bc8 1779
098fb9db 1780 /*
4ae7d5ce
IM
1781 * If the currently running task will sleep within
1782 * a reasonable amount of time then attract this newly
1783 * woken task:
098fb9db 1784 */
2fb7635c
PZ
1785 if (sync && balanced)
1786 return 1;
098fb9db 1787
41acab88 1788 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
1789 tl_per_task = cpu_avg_load_per_task(this_cpu);
1790
c88d5910
PZ
1791 if (balanced ||
1792 (this_load <= load &&
1793 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1794 /*
1795 * This domain has SD_WAKE_AFFINE and
1796 * p is cache cold in this domain, and
1797 * there is no bad imbalance.
1798 */
c88d5910 1799 schedstat_inc(sd, ttwu_move_affine);
41acab88 1800 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
1801
1802 return 1;
1803 }
1804 return 0;
1805}
1806
aaee1203
PZ
1807/*
1808 * find_idlest_group finds and returns the least busy CPU group within the
1809 * domain.
1810 */
1811static struct sched_group *
78e7ed53 1812find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1813 int this_cpu, int load_idx)
e7693a36 1814{
b3bd3de6 1815 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 1816 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1817 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1818
aaee1203
PZ
1819 do {
1820 unsigned long load, avg_load;
1821 int local_group;
1822 int i;
e7693a36 1823
aaee1203
PZ
1824 /* Skip over this group if it has no CPUs allowed */
1825 if (!cpumask_intersects(sched_group_cpus(group),
1826 &p->cpus_allowed))
1827 continue;
1828
1829 local_group = cpumask_test_cpu(this_cpu,
1830 sched_group_cpus(group));
1831
1832 /* Tally up the load of all CPUs in the group */
1833 avg_load = 0;
1834
1835 for_each_cpu(i, sched_group_cpus(group)) {
1836 /* Bias balancing toward cpus of our domain */
1837 if (local_group)
1838 load = source_load(i, load_idx);
1839 else
1840 load = target_load(i, load_idx);
1841
1842 avg_load += load;
1843 }
1844
1845 /* Adjust by relative CPU power of the group */
9c3f75cb 1846 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
1847
1848 if (local_group) {
1849 this_load = avg_load;
aaee1203
PZ
1850 } else if (avg_load < min_load) {
1851 min_load = avg_load;
1852 idlest = group;
1853 }
1854 } while (group = group->next, group != sd->groups);
1855
1856 if (!idlest || 100*this_load < imbalance*min_load)
1857 return NULL;
1858 return idlest;
1859}
1860
1861/*
1862 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1863 */
1864static int
1865find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1866{
1867 unsigned long load, min_load = ULONG_MAX;
1868 int idlest = -1;
1869 int i;
1870
1871 /* Traverse only the allowed CPUs */
1872 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1873 load = weighted_cpuload(i);
1874
1875 if (load < min_load || (load == min_load && i == this_cpu)) {
1876 min_load = load;
1877 idlest = i;
e7693a36
GH
1878 }
1879 }
1880
aaee1203
PZ
1881 return idlest;
1882}
e7693a36 1883
a50bde51
PZ
1884/*
1885 * Try and locate an idle CPU in the sched_domain.
1886 */
99bd5e2f 1887static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
1888{
1889 int cpu = smp_processor_id();
1890 int prev_cpu = task_cpu(p);
99bd5e2f 1891 struct sched_domain *sd;
a50bde51
PZ
1892 int i;
1893
1894 /*
99bd5e2f
SS
1895 * If the task is going to be woken-up on this cpu and if it is
1896 * already idle, then it is the right target.
a50bde51 1897 */
99bd5e2f
SS
1898 if (target == cpu && idle_cpu(cpu))
1899 return cpu;
1900
1901 /*
1902 * If the task is going to be woken-up on the cpu where it previously
1903 * ran and if it is currently idle, then it the right target.
1904 */
1905 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 1906 return prev_cpu;
a50bde51
PZ
1907
1908 /*
99bd5e2f 1909 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 1910 */
dce840a0 1911 rcu_read_lock();
99bd5e2f
SS
1912 for_each_domain(target, sd) {
1913 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
fe3bcfe1 1914 break;
99bd5e2f
SS
1915
1916 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1917 if (idle_cpu(i)) {
1918 target = i;
1919 break;
1920 }
a50bde51 1921 }
99bd5e2f
SS
1922
1923 /*
1924 * Lets stop looking for an idle sibling when we reached
1925 * the domain that spans the current cpu and prev_cpu.
1926 */
1927 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1928 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1929 break;
a50bde51 1930 }
dce840a0 1931 rcu_read_unlock();
a50bde51
PZ
1932
1933 return target;
1934}
1935
aaee1203
PZ
1936/*
1937 * sched_balance_self: balance the current task (running on cpu) in domains
1938 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1939 * SD_BALANCE_EXEC.
1940 *
1941 * Balance, ie. select the least loaded group.
1942 *
1943 * Returns the target CPU number, or the same CPU if no balancing is needed.
1944 *
1945 * preempt must be disabled.
1946 */
0017d735 1947static int
7608dec2 1948select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1949{
29cd8bae 1950 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1951 int cpu = smp_processor_id();
1952 int prev_cpu = task_cpu(p);
1953 int new_cpu = cpu;
99bd5e2f 1954 int want_affine = 0;
29cd8bae 1955 int want_sd = 1;
5158f4e4 1956 int sync = wake_flags & WF_SYNC;
c88d5910 1957
0763a660 1958 if (sd_flag & SD_BALANCE_WAKE) {
beac4c7e 1959 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1960 want_affine = 1;
1961 new_cpu = prev_cpu;
1962 }
aaee1203 1963
dce840a0 1964 rcu_read_lock();
aaee1203 1965 for_each_domain(cpu, tmp) {
e4f42888
PZ
1966 if (!(tmp->flags & SD_LOAD_BALANCE))
1967 continue;
1968
aaee1203 1969 /*
ae154be1
PZ
1970 * If power savings logic is enabled for a domain, see if we
1971 * are not overloaded, if so, don't balance wider.
aaee1203 1972 */
59abf026 1973 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1974 unsigned long power = 0;
1975 unsigned long nr_running = 0;
1976 unsigned long capacity;
1977 int i;
1978
1979 for_each_cpu(i, sched_domain_span(tmp)) {
1980 power += power_of(i);
1981 nr_running += cpu_rq(i)->cfs.nr_running;
1982 }
1983
1399fa78 1984 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
ae154be1 1985
59abf026
PZ
1986 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1987 nr_running /= 2;
1988
1989 if (nr_running < capacity)
29cd8bae 1990 want_sd = 0;
ae154be1 1991 }
aaee1203 1992
fe3bcfe1 1993 /*
99bd5e2f
SS
1994 * If both cpu and prev_cpu are part of this domain,
1995 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 1996 */
99bd5e2f
SS
1997 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1998 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1999 affine_sd = tmp;
2000 want_affine = 0;
c88d5910
PZ
2001 }
2002
29cd8bae
PZ
2003 if (!want_sd && !want_affine)
2004 break;
2005
0763a660 2006 if (!(tmp->flags & sd_flag))
c88d5910
PZ
2007 continue;
2008
29cd8bae
PZ
2009 if (want_sd)
2010 sd = tmp;
2011 }
2012
8b911acd 2013 if (affine_sd) {
99bd5e2f 2014 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
dce840a0
PZ
2015 prev_cpu = cpu;
2016
2017 new_cpu = select_idle_sibling(p, prev_cpu);
2018 goto unlock;
8b911acd 2019 }
e7693a36 2020
aaee1203 2021 while (sd) {
5158f4e4 2022 int load_idx = sd->forkexec_idx;
aaee1203 2023 struct sched_group *group;
c88d5910 2024 int weight;
098fb9db 2025
0763a660 2026 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
2027 sd = sd->child;
2028 continue;
2029 }
098fb9db 2030
5158f4e4
PZ
2031 if (sd_flag & SD_BALANCE_WAKE)
2032 load_idx = sd->wake_idx;
098fb9db 2033
5158f4e4 2034 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
2035 if (!group) {
2036 sd = sd->child;
2037 continue;
2038 }
4ae7d5ce 2039
d7c33c49 2040 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
2041 if (new_cpu == -1 || new_cpu == cpu) {
2042 /* Now try balancing at a lower domain level of cpu */
2043 sd = sd->child;
2044 continue;
e7693a36 2045 }
aaee1203
PZ
2046
2047 /* Now try balancing at a lower domain level of new_cpu */
2048 cpu = new_cpu;
669c55e9 2049 weight = sd->span_weight;
aaee1203
PZ
2050 sd = NULL;
2051 for_each_domain(cpu, tmp) {
669c55e9 2052 if (weight <= tmp->span_weight)
aaee1203 2053 break;
0763a660 2054 if (tmp->flags & sd_flag)
aaee1203
PZ
2055 sd = tmp;
2056 }
2057 /* while loop will break here if sd == NULL */
e7693a36 2058 }
dce840a0
PZ
2059unlock:
2060 rcu_read_unlock();
e7693a36 2061
c88d5910 2062 return new_cpu;
e7693a36
GH
2063}
2064#endif /* CONFIG_SMP */
2065
e52fb7c0
PZ
2066static unsigned long
2067wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
2068{
2069 unsigned long gran = sysctl_sched_wakeup_granularity;
2070
2071 /*
e52fb7c0
PZ
2072 * Since its curr running now, convert the gran from real-time
2073 * to virtual-time in his units.
13814d42
MG
2074 *
2075 * By using 'se' instead of 'curr' we penalize light tasks, so
2076 * they get preempted easier. That is, if 'se' < 'curr' then
2077 * the resulting gran will be larger, therefore penalizing the
2078 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2079 * be smaller, again penalizing the lighter task.
2080 *
2081 * This is especially important for buddies when the leftmost
2082 * task is higher priority than the buddy.
0bbd3336 2083 */
f4ad9bd2 2084 return calc_delta_fair(gran, se);
0bbd3336
PZ
2085}
2086
464b7527
PZ
2087/*
2088 * Should 'se' preempt 'curr'.
2089 *
2090 * |s1
2091 * |s2
2092 * |s3
2093 * g
2094 * |<--->|c
2095 *
2096 * w(c, s1) = -1
2097 * w(c, s2) = 0
2098 * w(c, s3) = 1
2099 *
2100 */
2101static int
2102wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2103{
2104 s64 gran, vdiff = curr->vruntime - se->vruntime;
2105
2106 if (vdiff <= 0)
2107 return -1;
2108
e52fb7c0 2109 gran = wakeup_gran(curr, se);
464b7527
PZ
2110 if (vdiff > gran)
2111 return 1;
2112
2113 return 0;
2114}
2115
02479099
PZ
2116static void set_last_buddy(struct sched_entity *se)
2117{
69c80f3e
VP
2118 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2119 return;
2120
2121 for_each_sched_entity(se)
2122 cfs_rq_of(se)->last = se;
02479099
PZ
2123}
2124
2125static void set_next_buddy(struct sched_entity *se)
2126{
69c80f3e
VP
2127 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2128 return;
2129
2130 for_each_sched_entity(se)
2131 cfs_rq_of(se)->next = se;
02479099
PZ
2132}
2133
ac53db59
RR
2134static void set_skip_buddy(struct sched_entity *se)
2135{
69c80f3e
VP
2136 for_each_sched_entity(se)
2137 cfs_rq_of(se)->skip = se;
ac53db59
RR
2138}
2139
bf0f6f24
IM
2140/*
2141 * Preempt the current task with a newly woken task if needed:
2142 */
5a9b86f6 2143static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
2144{
2145 struct task_struct *curr = rq->curr;
8651a86c 2146 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 2147 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 2148 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 2149 int next_buddy_marked = 0;
bf0f6f24 2150
4ae7d5ce
IM
2151 if (unlikely(se == pse))
2152 return;
2153
2f36825b 2154 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 2155 set_next_buddy(pse);
2f36825b
VP
2156 next_buddy_marked = 1;
2157 }
57fdc26d 2158
aec0a514
BR
2159 /*
2160 * We can come here with TIF_NEED_RESCHED already set from new task
2161 * wake up path.
2162 */
2163 if (test_tsk_need_resched(curr))
2164 return;
2165
a2f5c9ab
DH
2166 /* Idle tasks are by definition preempted by non-idle tasks. */
2167 if (unlikely(curr->policy == SCHED_IDLE) &&
2168 likely(p->policy != SCHED_IDLE))
2169 goto preempt;
2170
91c234b4 2171 /*
a2f5c9ab
DH
2172 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2173 * is driven by the tick):
91c234b4 2174 */
6bc912b7 2175 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 2176 return;
bf0f6f24 2177
464b7527 2178 find_matching_se(&se, &pse);
9bbd7374 2179 update_curr(cfs_rq_of(se));
002f128b 2180 BUG_ON(!pse);
2f36825b
VP
2181 if (wakeup_preempt_entity(se, pse) == 1) {
2182 /*
2183 * Bias pick_next to pick the sched entity that is
2184 * triggering this preemption.
2185 */
2186 if (!next_buddy_marked)
2187 set_next_buddy(pse);
3a7e73a2 2188 goto preempt;
2f36825b 2189 }
464b7527 2190
3a7e73a2 2191 return;
a65ac745 2192
3a7e73a2
PZ
2193preempt:
2194 resched_task(curr);
2195 /*
2196 * Only set the backward buddy when the current task is still
2197 * on the rq. This can happen when a wakeup gets interleaved
2198 * with schedule on the ->pre_schedule() or idle_balance()
2199 * point, either of which can * drop the rq lock.
2200 *
2201 * Also, during early boot the idle thread is in the fair class,
2202 * for obvious reasons its a bad idea to schedule back to it.
2203 */
2204 if (unlikely(!se->on_rq || curr == rq->idle))
2205 return;
2206
2207 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2208 set_last_buddy(se);
bf0f6f24
IM
2209}
2210
fb8d4724 2211static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 2212{
8f4d37ec 2213 struct task_struct *p;
bf0f6f24
IM
2214 struct cfs_rq *cfs_rq = &rq->cfs;
2215 struct sched_entity *se;
2216
36ace27e 2217 if (!cfs_rq->nr_running)
bf0f6f24
IM
2218 return NULL;
2219
2220 do {
9948f4b2 2221 se = pick_next_entity(cfs_rq);
f4b6755f 2222 set_next_entity(cfs_rq, se);
bf0f6f24
IM
2223 cfs_rq = group_cfs_rq(se);
2224 } while (cfs_rq);
2225
8f4d37ec
PZ
2226 p = task_of(se);
2227 hrtick_start_fair(rq, p);
2228
2229 return p;
bf0f6f24
IM
2230}
2231
2232/*
2233 * Account for a descheduled task:
2234 */
31ee529c 2235static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
2236{
2237 struct sched_entity *se = &prev->se;
2238 struct cfs_rq *cfs_rq;
2239
2240 for_each_sched_entity(se) {
2241 cfs_rq = cfs_rq_of(se);
ab6cde26 2242 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
2243 }
2244}
2245
ac53db59
RR
2246/*
2247 * sched_yield() is very simple
2248 *
2249 * The magic of dealing with the ->skip buddy is in pick_next_entity.
2250 */
2251static void yield_task_fair(struct rq *rq)
2252{
2253 struct task_struct *curr = rq->curr;
2254 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2255 struct sched_entity *se = &curr->se;
2256
2257 /*
2258 * Are we the only task in the tree?
2259 */
2260 if (unlikely(rq->nr_running == 1))
2261 return;
2262
2263 clear_buddies(cfs_rq, se);
2264
2265 if (curr->policy != SCHED_BATCH) {
2266 update_rq_clock(rq);
2267 /*
2268 * Update run-time statistics of the 'current'.
2269 */
2270 update_curr(cfs_rq);
2271 }
2272
2273 set_skip_buddy(se);
2274}
2275
d95f4122
MG
2276static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
2277{
2278 struct sched_entity *se = &p->se;
2279
2280 if (!se->on_rq)
2281 return false;
2282
2283 /* Tell the scheduler that we'd really like pse to run next. */
2284 set_next_buddy(se);
2285
d95f4122
MG
2286 yield_task_fair(rq);
2287
2288 return true;
2289}
2290
681f3e68 2291#ifdef CONFIG_SMP
bf0f6f24
IM
2292/**************************************************
2293 * Fair scheduling class load-balancing methods:
2294 */
2295
1e3c88bd
PZ
2296/*
2297 * pull_task - move a task from a remote runqueue to the local runqueue.
2298 * Both runqueues must be locked.
2299 */
2300static void pull_task(struct rq *src_rq, struct task_struct *p,
2301 struct rq *this_rq, int this_cpu)
2302{
2303 deactivate_task(src_rq, p, 0);
2304 set_task_cpu(p, this_cpu);
2305 activate_task(this_rq, p, 0);
2306 check_preempt_curr(this_rq, p, 0);
2307}
2308
2309/*
2310 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2311 */
2312static
2313int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2314 struct sched_domain *sd, enum cpu_idle_type idle,
2315 int *all_pinned)
2316{
2317 int tsk_cache_hot = 0;
2318 /*
2319 * We do not migrate tasks that are:
2320 * 1) running (obviously), or
2321 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2322 * 3) are cache-hot on their current CPU.
2323 */
2324 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
41acab88 2325 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
2326 return 0;
2327 }
2328 *all_pinned = 0;
2329
2330 if (task_running(rq, p)) {
41acab88 2331 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
2332 return 0;
2333 }
2334
2335 /*
2336 * Aggressive migration if:
2337 * 1) task is cache cold, or
2338 * 2) too many balance attempts have failed.
2339 */
2340
305e6835 2341 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
2342 if (!tsk_cache_hot ||
2343 sd->nr_balance_failed > sd->cache_nice_tries) {
2344#ifdef CONFIG_SCHEDSTATS
2345 if (tsk_cache_hot) {
2346 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 2347 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
2348 }
2349#endif
2350 return 1;
2351 }
2352
2353 if (tsk_cache_hot) {
41acab88 2354 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
2355 return 0;
2356 }
2357 return 1;
2358}
2359
897c395f
PZ
2360/*
2361 * move_one_task tries to move exactly one task from busiest to this_rq, as
2362 * part of active balancing operations within "domain".
2363 * Returns 1 if successful and 0 otherwise.
2364 *
2365 * Called with both runqueues locked.
2366 */
2367static int
2368move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2369 struct sched_domain *sd, enum cpu_idle_type idle)
2370{
2371 struct task_struct *p, *n;
2372 struct cfs_rq *cfs_rq;
2373 int pinned = 0;
2374
2375 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2376 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2377
2378 if (!can_migrate_task(p, busiest, this_cpu,
2379 sd, idle, &pinned))
2380 continue;
2381
2382 pull_task(busiest, p, this_rq, this_cpu);
2383 /*
2384 * Right now, this is only the second place pull_task()
2385 * is called, so we can safely collect pull_task()
2386 * stats here rather than inside pull_task().
2387 */
2388 schedstat_inc(sd, lb_gained[idle]);
2389 return 1;
2390 }
2391 }
2392
2393 return 0;
2394}
2395
1e3c88bd
PZ
2396static unsigned long
2397balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2398 unsigned long max_load_move, struct sched_domain *sd,
2399 enum cpu_idle_type idle, int *all_pinned,
931aeeda 2400 struct cfs_rq *busiest_cfs_rq)
1e3c88bd 2401{
b30aef17 2402 int loops = 0, pulled = 0;
1e3c88bd 2403 long rem_load_move = max_load_move;
ee00e66f 2404 struct task_struct *p, *n;
1e3c88bd
PZ
2405
2406 if (max_load_move == 0)
2407 goto out;
2408
ee00e66f
PZ
2409 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2410 if (loops++ > sysctl_sched_nr_migrate)
2411 break;
1e3c88bd 2412
ee00e66f 2413 if ((p->se.load.weight >> 1) > rem_load_move ||
b30aef17
KC
2414 !can_migrate_task(p, busiest, this_cpu, sd, idle,
2415 all_pinned))
ee00e66f 2416 continue;
1e3c88bd 2417
ee00e66f
PZ
2418 pull_task(busiest, p, this_rq, this_cpu);
2419 pulled++;
2420 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
2421
2422#ifdef CONFIG_PREEMPT
ee00e66f
PZ
2423 /*
2424 * NEWIDLE balancing is a source of latency, so preemptible
2425 * kernels will stop after the first task is pulled to minimize
2426 * the critical section.
2427 */
2428 if (idle == CPU_NEWLY_IDLE)
2429 break;
1e3c88bd
PZ
2430#endif
2431
ee00e66f
PZ
2432 /*
2433 * We only want to steal up to the prescribed amount of
2434 * weighted load.
2435 */
2436 if (rem_load_move <= 0)
2437 break;
1e3c88bd
PZ
2438 }
2439out:
2440 /*
2441 * Right now, this is one of only two places pull_task() is called,
2442 * so we can safely collect pull_task() stats here rather than
2443 * inside pull_task().
2444 */
2445 schedstat_add(sd, lb_gained[idle], pulled);
2446
1e3c88bd
PZ
2447 return max_load_move - rem_load_move;
2448}
2449
230059de 2450#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
2451/*
2452 * update tg->load_weight by folding this cpu's load_avg
2453 */
67e86250 2454static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
2455{
2456 struct cfs_rq *cfs_rq;
2457 unsigned long flags;
2458 struct rq *rq;
9e3081ca
PZ
2459
2460 if (!tg->se[cpu])
2461 return 0;
2462
2463 rq = cpu_rq(cpu);
2464 cfs_rq = tg->cfs_rq[cpu];
2465
2466 raw_spin_lock_irqsave(&rq->lock, flags);
2467
2468 update_rq_clock(rq);
d6b55918 2469 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
2470
2471 /*
2472 * We need to update shares after updating tg->load_weight in
2473 * order to adjust the weight of groups with long running tasks.
2474 */
6d5ab293 2475 update_cfs_shares(cfs_rq);
9e3081ca
PZ
2476
2477 raw_spin_unlock_irqrestore(&rq->lock, flags);
2478
2479 return 0;
2480}
2481
2482static void update_shares(int cpu)
2483{
2484 struct cfs_rq *cfs_rq;
2485 struct rq *rq = cpu_rq(cpu);
2486
2487 rcu_read_lock();
9763b67f
PZ
2488 /*
2489 * Iterates the task_group tree in a bottom up fashion, see
2490 * list_add_leaf_cfs_rq() for details.
2491 */
67e86250
PT
2492 for_each_leaf_cfs_rq(rq, cfs_rq)
2493 update_shares_cpu(cfs_rq->tg, cpu);
9e3081ca
PZ
2494 rcu_read_unlock();
2495}
2496
9763b67f
PZ
2497/*
2498 * Compute the cpu's hierarchical load factor for each task group.
2499 * This needs to be done in a top-down fashion because the load of a child
2500 * group is a fraction of its parents load.
2501 */
2502static int tg_load_down(struct task_group *tg, void *data)
2503{
2504 unsigned long load;
2505 long cpu = (long)data;
2506
2507 if (!tg->parent) {
2508 load = cpu_rq(cpu)->load.weight;
2509 } else {
2510 load = tg->parent->cfs_rq[cpu]->h_load;
2511 load *= tg->se[cpu]->load.weight;
2512 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
2513 }
2514
2515 tg->cfs_rq[cpu]->h_load = load;
2516
2517 return 0;
2518}
2519
2520static void update_h_load(long cpu)
2521{
2522 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
2523}
2524
230059de
PZ
2525static unsigned long
2526load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2527 unsigned long max_load_move,
2528 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 2529 int *all_pinned)
230059de
PZ
2530{
2531 long rem_load_move = max_load_move;
9763b67f 2532 struct cfs_rq *busiest_cfs_rq;
230059de
PZ
2533
2534 rcu_read_lock();
9763b67f 2535 update_h_load(cpu_of(busiest));
230059de 2536
9763b67f 2537 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
230059de
PZ
2538 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2539 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2540 u64 rem_load, moved_load;
2541
2542 /*
2543 * empty group
2544 */
2545 if (!busiest_cfs_rq->task_weight)
2546 continue;
2547
2548 rem_load = (u64)rem_load_move * busiest_weight;
2549 rem_load = div_u64(rem_load, busiest_h_load + 1);
2550
2551 moved_load = balance_tasks(this_rq, this_cpu, busiest,
931aeeda 2552 rem_load, sd, idle, all_pinned,
230059de
PZ
2553 busiest_cfs_rq);
2554
2555 if (!moved_load)
2556 continue;
2557
2558 moved_load *= busiest_h_load;
2559 moved_load = div_u64(moved_load, busiest_weight + 1);
2560
2561 rem_load_move -= moved_load;
2562 if (rem_load_move < 0)
2563 break;
2564 }
2565 rcu_read_unlock();
2566
2567 return max_load_move - rem_load_move;
2568}
2569#else
9e3081ca
PZ
2570static inline void update_shares(int cpu)
2571{
2572}
2573
230059de
PZ
2574static unsigned long
2575load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2576 unsigned long max_load_move,
2577 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 2578 int *all_pinned)
230059de
PZ
2579{
2580 return balance_tasks(this_rq, this_cpu, busiest,
2581 max_load_move, sd, idle, all_pinned,
931aeeda 2582 &busiest->cfs);
230059de
PZ
2583}
2584#endif
2585
1e3c88bd
PZ
2586/*
2587 * move_tasks tries to move up to max_load_move weighted load from busiest to
2588 * this_rq, as part of a balancing operation within domain "sd".
2589 * Returns 1 if successful and 0 otherwise.
2590 *
2591 * Called with both runqueues locked.
2592 */
2593static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2594 unsigned long max_load_move,
2595 struct sched_domain *sd, enum cpu_idle_type idle,
2596 int *all_pinned)
2597{
3d45fd80 2598 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
2599
2600 do {
3d45fd80 2601 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd 2602 max_load_move - total_load_moved,
931aeeda 2603 sd, idle, all_pinned);
3d45fd80
PZ
2604
2605 total_load_moved += load_moved;
1e3c88bd
PZ
2606
2607#ifdef CONFIG_PREEMPT
2608 /*
2609 * NEWIDLE balancing is a source of latency, so preemptible
2610 * kernels will stop after the first task is pulled to minimize
2611 * the critical section.
2612 */
2613 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2614 break;
baa8c110
PZ
2615
2616 if (raw_spin_is_contended(&this_rq->lock) ||
2617 raw_spin_is_contended(&busiest->lock))
2618 break;
1e3c88bd 2619#endif
3d45fd80 2620 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
2621
2622 return total_load_moved > 0;
2623}
2624
1e3c88bd
PZ
2625/********** Helpers for find_busiest_group ************************/
2626/*
2627 * sd_lb_stats - Structure to store the statistics of a sched_domain
2628 * during load balancing.
2629 */
2630struct sd_lb_stats {
2631 struct sched_group *busiest; /* Busiest group in this sd */
2632 struct sched_group *this; /* Local group in this sd */
2633 unsigned long total_load; /* Total load of all groups in sd */
2634 unsigned long total_pwr; /* Total power of all groups in sd */
2635 unsigned long avg_load; /* Average load across all groups in sd */
2636
2637 /** Statistics of this group */
2638 unsigned long this_load;
2639 unsigned long this_load_per_task;
2640 unsigned long this_nr_running;
fab47622 2641 unsigned long this_has_capacity;
aae6d3dd 2642 unsigned int this_idle_cpus;
1e3c88bd
PZ
2643
2644 /* Statistics of the busiest group */
aae6d3dd 2645 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
2646 unsigned long max_load;
2647 unsigned long busiest_load_per_task;
2648 unsigned long busiest_nr_running;
dd5feea1 2649 unsigned long busiest_group_capacity;
fab47622 2650 unsigned long busiest_has_capacity;
aae6d3dd 2651 unsigned int busiest_group_weight;
1e3c88bd
PZ
2652
2653 int group_imb; /* Is there imbalance in this sd */
2654#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2655 int power_savings_balance; /* Is powersave balance needed for this sd */
2656 struct sched_group *group_min; /* Least loaded group in sd */
2657 struct sched_group *group_leader; /* Group which relieves group_min */
2658 unsigned long min_load_per_task; /* load_per_task in group_min */
2659 unsigned long leader_nr_running; /* Nr running of group_leader */
2660 unsigned long min_nr_running; /* Nr running of group_min */
2661#endif
2662};
2663
2664/*
2665 * sg_lb_stats - stats of a sched_group required for load_balancing
2666 */
2667struct sg_lb_stats {
2668 unsigned long avg_load; /*Avg load across the CPUs of the group */
2669 unsigned long group_load; /* Total load over the CPUs of the group */
2670 unsigned long sum_nr_running; /* Nr tasks running in the group */
2671 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2672 unsigned long group_capacity;
aae6d3dd
SS
2673 unsigned long idle_cpus;
2674 unsigned long group_weight;
1e3c88bd 2675 int group_imb; /* Is there an imbalance in the group ? */
fab47622 2676 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
2677};
2678
2679/**
2680 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2681 * @group: The group whose first cpu is to be returned.
2682 */
2683static inline unsigned int group_first_cpu(struct sched_group *group)
2684{
2685 return cpumask_first(sched_group_cpus(group));
2686}
2687
2688/**
2689 * get_sd_load_idx - Obtain the load index for a given sched domain.
2690 * @sd: The sched_domain whose load_idx is to be obtained.
2691 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2692 */
2693static inline int get_sd_load_idx(struct sched_domain *sd,
2694 enum cpu_idle_type idle)
2695{
2696 int load_idx;
2697
2698 switch (idle) {
2699 case CPU_NOT_IDLE:
2700 load_idx = sd->busy_idx;
2701 break;
2702
2703 case CPU_NEWLY_IDLE:
2704 load_idx = sd->newidle_idx;
2705 break;
2706 default:
2707 load_idx = sd->idle_idx;
2708 break;
2709 }
2710
2711 return load_idx;
2712}
2713
2714
2715#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2716/**
2717 * init_sd_power_savings_stats - Initialize power savings statistics for
2718 * the given sched_domain, during load balancing.
2719 *
2720 * @sd: Sched domain whose power-savings statistics are to be initialized.
2721 * @sds: Variable containing the statistics for sd.
2722 * @idle: Idle status of the CPU at which we're performing load-balancing.
2723 */
2724static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2725 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2726{
2727 /*
2728 * Busy processors will not participate in power savings
2729 * balance.
2730 */
2731 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2732 sds->power_savings_balance = 0;
2733 else {
2734 sds->power_savings_balance = 1;
2735 sds->min_nr_running = ULONG_MAX;
2736 sds->leader_nr_running = 0;
2737 }
2738}
2739
2740/**
2741 * update_sd_power_savings_stats - Update the power saving stats for a
2742 * sched_domain while performing load balancing.
2743 *
2744 * @group: sched_group belonging to the sched_domain under consideration.
2745 * @sds: Variable containing the statistics of the sched_domain
2746 * @local_group: Does group contain the CPU for which we're performing
2747 * load balancing ?
2748 * @sgs: Variable containing the statistics of the group.
2749 */
2750static inline void update_sd_power_savings_stats(struct sched_group *group,
2751 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2752{
2753
2754 if (!sds->power_savings_balance)
2755 return;
2756
2757 /*
2758 * If the local group is idle or completely loaded
2759 * no need to do power savings balance at this domain
2760 */
2761 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2762 !sds->this_nr_running))
2763 sds->power_savings_balance = 0;
2764
2765 /*
2766 * If a group is already running at full capacity or idle,
2767 * don't include that group in power savings calculations
2768 */
2769 if (!sds->power_savings_balance ||
2770 sgs->sum_nr_running >= sgs->group_capacity ||
2771 !sgs->sum_nr_running)
2772 return;
2773
2774 /*
2775 * Calculate the group which has the least non-idle load.
2776 * This is the group from where we need to pick up the load
2777 * for saving power
2778 */
2779 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2780 (sgs->sum_nr_running == sds->min_nr_running &&
2781 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2782 sds->group_min = group;
2783 sds->min_nr_running = sgs->sum_nr_running;
2784 sds->min_load_per_task = sgs->sum_weighted_load /
2785 sgs->sum_nr_running;
2786 }
2787
2788 /*
2789 * Calculate the group which is almost near its
2790 * capacity but still has some space to pick up some load
2791 * from other group and save more power
2792 */
2793 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2794 return;
2795
2796 if (sgs->sum_nr_running > sds->leader_nr_running ||
2797 (sgs->sum_nr_running == sds->leader_nr_running &&
2798 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2799 sds->group_leader = group;
2800 sds->leader_nr_running = sgs->sum_nr_running;
2801 }
2802}
2803
2804/**
2805 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2806 * @sds: Variable containing the statistics of the sched_domain
2807 * under consideration.
2808 * @this_cpu: Cpu at which we're currently performing load-balancing.
2809 * @imbalance: Variable to store the imbalance.
2810 *
2811 * Description:
2812 * Check if we have potential to perform some power-savings balance.
2813 * If yes, set the busiest group to be the least loaded group in the
2814 * sched_domain, so that it's CPUs can be put to idle.
2815 *
2816 * Returns 1 if there is potential to perform power-savings balance.
2817 * Else returns 0.
2818 */
2819static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2820 int this_cpu, unsigned long *imbalance)
2821{
2822 if (!sds->power_savings_balance)
2823 return 0;
2824
2825 if (sds->this != sds->group_leader ||
2826 sds->group_leader == sds->group_min)
2827 return 0;
2828
2829 *imbalance = sds->min_load_per_task;
2830 sds->busiest = sds->group_min;
2831
2832 return 1;
2833
2834}
2835#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2836static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2837 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2838{
2839 return;
2840}
2841
2842static inline void update_sd_power_savings_stats(struct sched_group *group,
2843 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2844{
2845 return;
2846}
2847
2848static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2849 int this_cpu, unsigned long *imbalance)
2850{
2851 return 0;
2852}
2853#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2854
2855
2856unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2857{
1399fa78 2858 return SCHED_POWER_SCALE;
1e3c88bd
PZ
2859}
2860
2861unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2862{
2863 return default_scale_freq_power(sd, cpu);
2864}
2865
2866unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2867{
669c55e9 2868 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2869 unsigned long smt_gain = sd->smt_gain;
2870
2871 smt_gain /= weight;
2872
2873 return smt_gain;
2874}
2875
2876unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2877{
2878 return default_scale_smt_power(sd, cpu);
2879}
2880
2881unsigned long scale_rt_power(int cpu)
2882{
2883 struct rq *rq = cpu_rq(cpu);
2884 u64 total, available;
2885
1e3c88bd 2886 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
2887
2888 if (unlikely(total < rq->rt_avg)) {
2889 /* Ensures that power won't end up being negative */
2890 available = 0;
2891 } else {
2892 available = total - rq->rt_avg;
2893 }
1e3c88bd 2894
1399fa78
NR
2895 if (unlikely((s64)total < SCHED_POWER_SCALE))
2896 total = SCHED_POWER_SCALE;
1e3c88bd 2897
1399fa78 2898 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
2899
2900 return div_u64(available, total);
2901}
2902
2903static void update_cpu_power(struct sched_domain *sd, int cpu)
2904{
669c55e9 2905 unsigned long weight = sd->span_weight;
1399fa78 2906 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
2907 struct sched_group *sdg = sd->groups;
2908
1e3c88bd
PZ
2909 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2910 if (sched_feat(ARCH_POWER))
2911 power *= arch_scale_smt_power(sd, cpu);
2912 else
2913 power *= default_scale_smt_power(sd, cpu);
2914
1399fa78 2915 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
2916 }
2917
9c3f75cb 2918 sdg->sgp->power_orig = power;
9d5efe05
SV
2919
2920 if (sched_feat(ARCH_POWER))
2921 power *= arch_scale_freq_power(sd, cpu);
2922 else
2923 power *= default_scale_freq_power(sd, cpu);
2924
1399fa78 2925 power >>= SCHED_POWER_SHIFT;
9d5efe05 2926
1e3c88bd 2927 power *= scale_rt_power(cpu);
1399fa78 2928 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
2929
2930 if (!power)
2931 power = 1;
2932
e51fd5e2 2933 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 2934 sdg->sgp->power = power;
1e3c88bd
PZ
2935}
2936
2937static void update_group_power(struct sched_domain *sd, int cpu)
2938{
2939 struct sched_domain *child = sd->child;
2940 struct sched_group *group, *sdg = sd->groups;
2941 unsigned long power;
2942
2943 if (!child) {
2944 update_cpu_power(sd, cpu);
2945 return;
2946 }
2947
2948 power = 0;
2949
2950 group = child->groups;
2951 do {
9c3f75cb 2952 power += group->sgp->power;
1e3c88bd
PZ
2953 group = group->next;
2954 } while (group != child->groups);
2955
9c3f75cb 2956 sdg->sgp->power = power;
1e3c88bd
PZ
2957}
2958
9d5efe05
SV
2959/*
2960 * Try and fix up capacity for tiny siblings, this is needed when
2961 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2962 * which on its own isn't powerful enough.
2963 *
2964 * See update_sd_pick_busiest() and check_asym_packing().
2965 */
2966static inline int
2967fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2968{
2969 /*
1399fa78 2970 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 2971 */
a6c75f2f 2972 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
2973 return 0;
2974
2975 /*
2976 * If ~90% of the cpu_power is still there, we're good.
2977 */
9c3f75cb 2978 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
2979 return 1;
2980
2981 return 0;
2982}
2983
1e3c88bd
PZ
2984/**
2985 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2986 * @sd: The sched_domain whose statistics are to be updated.
2987 * @group: sched_group whose statistics are to be updated.
2988 * @this_cpu: Cpu for which load balance is currently performed.
2989 * @idle: Idle status of this_cpu
2990 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd
PZ
2991 * @local_group: Does group contain this_cpu.
2992 * @cpus: Set of cpus considered for load balancing.
2993 * @balance: Should we balance.
2994 * @sgs: variable to hold the statistics for this group.
2995 */
2996static inline void update_sg_lb_stats(struct sched_domain *sd,
2997 struct sched_group *group, int this_cpu,
46e49b38 2998 enum cpu_idle_type idle, int load_idx,
1e3c88bd
PZ
2999 int local_group, const struct cpumask *cpus,
3000 int *balance, struct sg_lb_stats *sgs)
3001{
2582f0eb 3002 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
3003 int i;
3004 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 3005 unsigned long avg_load_per_task = 0;
1e3c88bd 3006
871e35bc 3007 if (local_group)
1e3c88bd 3008 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
3009
3010 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
3011 max_cpu_load = 0;
3012 min_cpu_load = ~0UL;
2582f0eb 3013 max_nr_running = 0;
1e3c88bd
PZ
3014
3015 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3016 struct rq *rq = cpu_rq(i);
3017
1e3c88bd
PZ
3018 /* Bias balancing toward cpus of our domain */
3019 if (local_group) {
3020 if (idle_cpu(i) && !first_idle_cpu) {
3021 first_idle_cpu = 1;
3022 balance_cpu = i;
3023 }
3024
3025 load = target_load(i, load_idx);
3026 } else {
3027 load = source_load(i, load_idx);
2582f0eb 3028 if (load > max_cpu_load) {
1e3c88bd 3029 max_cpu_load = load;
2582f0eb
NR
3030 max_nr_running = rq->nr_running;
3031 }
1e3c88bd
PZ
3032 if (min_cpu_load > load)
3033 min_cpu_load = load;
3034 }
3035
3036 sgs->group_load += load;
3037 sgs->sum_nr_running += rq->nr_running;
3038 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
3039 if (idle_cpu(i))
3040 sgs->idle_cpus++;
1e3c88bd
PZ
3041 }
3042
3043 /*
3044 * First idle cpu or the first cpu(busiest) in this sched group
3045 * is eligible for doing load balancing at this and above
3046 * domains. In the newly idle case, we will allow all the cpu's
3047 * to do the newly idle load balance.
3048 */
bbc8cb5b
PZ
3049 if (idle != CPU_NEWLY_IDLE && local_group) {
3050 if (balance_cpu != this_cpu) {
3051 *balance = 0;
3052 return;
3053 }
3054 update_group_power(sd, this_cpu);
1e3c88bd
PZ
3055 }
3056
3057 /* Adjust by relative CPU power of the group */
9c3f75cb 3058 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 3059
1e3c88bd
PZ
3060 /*
3061 * Consider the group unbalanced when the imbalance is larger
866ab43e 3062 * than the average weight of a task.
1e3c88bd
PZ
3063 *
3064 * APZ: with cgroup the avg task weight can vary wildly and
3065 * might not be a suitable number - should we keep a
3066 * normalized nr_running number somewhere that negates
3067 * the hierarchy?
3068 */
dd5feea1
SS
3069 if (sgs->sum_nr_running)
3070 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 3071
866ab43e 3072 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
3073 sgs->group_imb = 1;
3074
9c3f75cb 3075 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 3076 SCHED_POWER_SCALE);
9d5efe05
SV
3077 if (!sgs->group_capacity)
3078 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 3079 sgs->group_weight = group->group_weight;
fab47622
NR
3080
3081 if (sgs->group_capacity > sgs->sum_nr_running)
3082 sgs->group_has_capacity = 1;
1e3c88bd
PZ
3083}
3084
532cb4c4
MN
3085/**
3086 * update_sd_pick_busiest - return 1 on busiest group
3087 * @sd: sched_domain whose statistics are to be checked
3088 * @sds: sched_domain statistics
3089 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
3090 * @sgs: sched_group statistics
3091 * @this_cpu: the current cpu
532cb4c4
MN
3092 *
3093 * Determine if @sg is a busier group than the previously selected
3094 * busiest group.
3095 */
3096static bool update_sd_pick_busiest(struct sched_domain *sd,
3097 struct sd_lb_stats *sds,
3098 struct sched_group *sg,
3099 struct sg_lb_stats *sgs,
3100 int this_cpu)
3101{
3102 if (sgs->avg_load <= sds->max_load)
3103 return false;
3104
3105 if (sgs->sum_nr_running > sgs->group_capacity)
3106 return true;
3107
3108 if (sgs->group_imb)
3109 return true;
3110
3111 /*
3112 * ASYM_PACKING needs to move all the work to the lowest
3113 * numbered CPUs in the group, therefore mark all groups
3114 * higher than ourself as busy.
3115 */
3116 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3117 this_cpu < group_first_cpu(sg)) {
3118 if (!sds->busiest)
3119 return true;
3120
3121 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3122 return true;
3123 }
3124
3125 return false;
3126}
3127
1e3c88bd
PZ
3128/**
3129 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3130 * @sd: sched_domain whose statistics are to be updated.
3131 * @this_cpu: Cpu for which load balance is currently performed.
3132 * @idle: Idle status of this_cpu
1e3c88bd
PZ
3133 * @cpus: Set of cpus considered for load balancing.
3134 * @balance: Should we balance.
3135 * @sds: variable to hold the statistics for this sched_domain.
3136 */
3137static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
46e49b38
VP
3138 enum cpu_idle_type idle, const struct cpumask *cpus,
3139 int *balance, struct sd_lb_stats *sds)
1e3c88bd
PZ
3140{
3141 struct sched_domain *child = sd->child;
532cb4c4 3142 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
3143 struct sg_lb_stats sgs;
3144 int load_idx, prefer_sibling = 0;
3145
3146 if (child && child->flags & SD_PREFER_SIBLING)
3147 prefer_sibling = 1;
3148
3149 init_sd_power_savings_stats(sd, sds, idle);
3150 load_idx = get_sd_load_idx(sd, idle);
3151
3152 do {
3153 int local_group;
3154
532cb4c4 3155 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 3156 memset(&sgs, 0, sizeof(sgs));
46e49b38 3157 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
1e3c88bd
PZ
3158 local_group, cpus, balance, &sgs);
3159
8f190fb3 3160 if (local_group && !(*balance))
1e3c88bd
PZ
3161 return;
3162
3163 sds->total_load += sgs.group_load;
9c3f75cb 3164 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
3165
3166 /*
3167 * In case the child domain prefers tasks go to siblings
532cb4c4 3168 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
3169 * and move all the excess tasks away. We lower the capacity
3170 * of a group only if the local group has the capacity to fit
3171 * these excess tasks, i.e. nr_running < group_capacity. The
3172 * extra check prevents the case where you always pull from the
3173 * heaviest group when it is already under-utilized (possible
3174 * with a large weight task outweighs the tasks on the system).
1e3c88bd 3175 */
75dd321d 3176 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
3177 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3178
3179 if (local_group) {
3180 sds->this_load = sgs.avg_load;
532cb4c4 3181 sds->this = sg;
1e3c88bd
PZ
3182 sds->this_nr_running = sgs.sum_nr_running;
3183 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 3184 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 3185 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 3186 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 3187 sds->max_load = sgs.avg_load;
532cb4c4 3188 sds->busiest = sg;
1e3c88bd 3189 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 3190 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 3191 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 3192 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 3193 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 3194 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
3195 sds->group_imb = sgs.group_imb;
3196 }
3197
532cb4c4
MN
3198 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
3199 sg = sg->next;
3200 } while (sg != sd->groups);
3201}
3202
2ec57d44 3203int __weak arch_sd_sibling_asym_packing(void)
532cb4c4
MN
3204{
3205 return 0*SD_ASYM_PACKING;
3206}
3207
3208/**
3209 * check_asym_packing - Check to see if the group is packed into the
3210 * sched doman.
3211 *
3212 * This is primarily intended to used at the sibling level. Some
3213 * cores like POWER7 prefer to use lower numbered SMT threads. In the
3214 * case of POWER7, it can move to lower SMT modes only when higher
3215 * threads are idle. When in lower SMT modes, the threads will
3216 * perform better since they share less core resources. Hence when we
3217 * have idle threads, we want them to be the higher ones.
3218 *
3219 * This packing function is run on idle threads. It checks to see if
3220 * the busiest CPU in this domain (core in the P7 case) has a higher
3221 * CPU number than the packing function is being run on. Here we are
3222 * assuming lower CPU number will be equivalent to lower a SMT thread
3223 * number.
3224 *
b6b12294
MN
3225 * Returns 1 when packing is required and a task should be moved to
3226 * this CPU. The amount of the imbalance is returned in *imbalance.
3227 *
532cb4c4
MN
3228 * @sd: The sched_domain whose packing is to be checked.
3229 * @sds: Statistics of the sched_domain which is to be packed
3230 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3231 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
3232 */
3233static int check_asym_packing(struct sched_domain *sd,
3234 struct sd_lb_stats *sds,
3235 int this_cpu, unsigned long *imbalance)
3236{
3237 int busiest_cpu;
3238
3239 if (!(sd->flags & SD_ASYM_PACKING))
3240 return 0;
3241
3242 if (!sds->busiest)
3243 return 0;
3244
3245 busiest_cpu = group_first_cpu(sds->busiest);
3246 if (this_cpu > busiest_cpu)
3247 return 0;
3248
9c3f75cb 3249 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
1399fa78 3250 SCHED_POWER_SCALE);
532cb4c4 3251 return 1;
1e3c88bd
PZ
3252}
3253
3254/**
3255 * fix_small_imbalance - Calculate the minor imbalance that exists
3256 * amongst the groups of a sched_domain, during
3257 * load balancing.
3258 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3259 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3260 * @imbalance: Variable to store the imbalance.
3261 */
3262static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3263 int this_cpu, unsigned long *imbalance)
3264{
3265 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3266 unsigned int imbn = 2;
dd5feea1 3267 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
3268
3269 if (sds->this_nr_running) {
3270 sds->this_load_per_task /= sds->this_nr_running;
3271 if (sds->busiest_load_per_task >
3272 sds->this_load_per_task)
3273 imbn = 1;
3274 } else
3275 sds->this_load_per_task =
3276 cpu_avg_load_per_task(this_cpu);
3277
dd5feea1 3278 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 3279 * SCHED_POWER_SCALE;
9c3f75cb 3280 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
3281
3282 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3283 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
3284 *imbalance = sds->busiest_load_per_task;
3285 return;
3286 }
3287
3288 /*
3289 * OK, we don't have enough imbalance to justify moving tasks,
3290 * however we may be able to increase total CPU power used by
3291 * moving them.
3292 */
3293
9c3f75cb 3294 pwr_now += sds->busiest->sgp->power *
1e3c88bd 3295 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 3296 pwr_now += sds->this->sgp->power *
1e3c88bd 3297 min(sds->this_load_per_task, sds->this_load);
1399fa78 3298 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3299
3300 /* Amount of load we'd subtract */
1399fa78 3301 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 3302 sds->busiest->sgp->power;
1e3c88bd 3303 if (sds->max_load > tmp)
9c3f75cb 3304 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
3305 min(sds->busiest_load_per_task, sds->max_load - tmp);
3306
3307 /* Amount of load we'd add */
9c3f75cb 3308 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 3309 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
3310 tmp = (sds->max_load * sds->busiest->sgp->power) /
3311 sds->this->sgp->power;
1e3c88bd 3312 else
1399fa78 3313 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
3314 sds->this->sgp->power;
3315 pwr_move += sds->this->sgp->power *
1e3c88bd 3316 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 3317 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3318
3319 /* Move if we gain throughput */
3320 if (pwr_move > pwr_now)
3321 *imbalance = sds->busiest_load_per_task;
3322}
3323
3324/**
3325 * calculate_imbalance - Calculate the amount of imbalance present within the
3326 * groups of a given sched_domain during load balance.
3327 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3328 * @this_cpu: Cpu for which currently load balance is being performed.
3329 * @imbalance: The variable to store the imbalance.
3330 */
3331static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3332 unsigned long *imbalance)
3333{
dd5feea1
SS
3334 unsigned long max_pull, load_above_capacity = ~0UL;
3335
3336 sds->busiest_load_per_task /= sds->busiest_nr_running;
3337 if (sds->group_imb) {
3338 sds->busiest_load_per_task =
3339 min(sds->busiest_load_per_task, sds->avg_load);
3340 }
3341
1e3c88bd
PZ
3342 /*
3343 * In the presence of smp nice balancing, certain scenarios can have
3344 * max load less than avg load(as we skip the groups at or below
3345 * its cpu_power, while calculating max_load..)
3346 */
3347 if (sds->max_load < sds->avg_load) {
3348 *imbalance = 0;
3349 return fix_small_imbalance(sds, this_cpu, imbalance);
3350 }
3351
dd5feea1
SS
3352 if (!sds->group_imb) {
3353 /*
3354 * Don't want to pull so many tasks that a group would go idle.
3355 */
3356 load_above_capacity = (sds->busiest_nr_running -
3357 sds->busiest_group_capacity);
3358
1399fa78 3359 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 3360
9c3f75cb 3361 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
3362 }
3363
3364 /*
3365 * We're trying to get all the cpus to the average_load, so we don't
3366 * want to push ourselves above the average load, nor do we wish to
3367 * reduce the max loaded cpu below the average load. At the same time,
3368 * we also don't want to reduce the group load below the group capacity
3369 * (so that we can implement power-savings policies etc). Thus we look
3370 * for the minimum possible imbalance.
3371 * Be careful of negative numbers as they'll appear as very large values
3372 * with unsigned longs.
3373 */
3374 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
3375
3376 /* How much load to actually move to equalise the imbalance */
9c3f75cb
PZ
3377 *imbalance = min(max_pull * sds->busiest->sgp->power,
3378 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 3379 / SCHED_POWER_SCALE;
1e3c88bd
PZ
3380
3381 /*
3382 * if *imbalance is less than the average load per runnable task
25985edc 3383 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
3384 * a think about bumping its value to force at least one task to be
3385 * moved
3386 */
3387 if (*imbalance < sds->busiest_load_per_task)
3388 return fix_small_imbalance(sds, this_cpu, imbalance);
3389
3390}
fab47622 3391
1e3c88bd
PZ
3392/******* find_busiest_group() helpers end here *********************/
3393
3394/**
3395 * find_busiest_group - Returns the busiest group within the sched_domain
3396 * if there is an imbalance. If there isn't an imbalance, and
3397 * the user has opted for power-savings, it returns a group whose
3398 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3399 * such a group exists.
3400 *
3401 * Also calculates the amount of weighted load which should be moved
3402 * to restore balance.
3403 *
3404 * @sd: The sched_domain whose busiest group is to be returned.
3405 * @this_cpu: The cpu for which load balancing is currently being performed.
3406 * @imbalance: Variable which stores amount of weighted load which should
3407 * be moved to restore balance/put a group to idle.
3408 * @idle: The idle status of this_cpu.
1e3c88bd
PZ
3409 * @cpus: The set of CPUs under consideration for load-balancing.
3410 * @balance: Pointer to a variable indicating if this_cpu
3411 * is the appropriate cpu to perform load balancing at this_level.
3412 *
3413 * Returns: - the busiest group if imbalance exists.
3414 * - If no imbalance and user has opted for power-savings balance,
3415 * return the least loaded group whose CPUs can be
3416 * put to idle by rebalancing its tasks onto our group.
3417 */
3418static struct sched_group *
3419find_busiest_group(struct sched_domain *sd, int this_cpu,
3420 unsigned long *imbalance, enum cpu_idle_type idle,
46e49b38 3421 const struct cpumask *cpus, int *balance)
1e3c88bd
PZ
3422{
3423 struct sd_lb_stats sds;
3424
3425 memset(&sds, 0, sizeof(sds));
3426
3427 /*
3428 * Compute the various statistics relavent for load balancing at
3429 * this level.
3430 */
46e49b38 3431 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
1e3c88bd 3432
cc57aa8f
PZ
3433 /*
3434 * this_cpu is not the appropriate cpu to perform load balancing at
3435 * this level.
1e3c88bd 3436 */
8f190fb3 3437 if (!(*balance))
1e3c88bd
PZ
3438 goto ret;
3439
532cb4c4
MN
3440 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3441 check_asym_packing(sd, &sds, this_cpu, imbalance))
3442 return sds.busiest;
3443
cc57aa8f 3444 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
3445 if (!sds.busiest || sds.busiest_nr_running == 0)
3446 goto out_balanced;
3447
1399fa78 3448 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 3449
866ab43e
PZ
3450 /*
3451 * If the busiest group is imbalanced the below checks don't
3452 * work because they assumes all things are equal, which typically
3453 * isn't true due to cpus_allowed constraints and the like.
3454 */
3455 if (sds.group_imb)
3456 goto force_balance;
3457
cc57aa8f 3458 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
fab47622
NR
3459 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3460 !sds.busiest_has_capacity)
3461 goto force_balance;
3462
cc57aa8f
PZ
3463 /*
3464 * If the local group is more busy than the selected busiest group
3465 * don't try and pull any tasks.
3466 */
1e3c88bd
PZ
3467 if (sds.this_load >= sds.max_load)
3468 goto out_balanced;
3469
cc57aa8f
PZ
3470 /*
3471 * Don't pull any tasks if this group is already above the domain
3472 * average load.
3473 */
1e3c88bd
PZ
3474 if (sds.this_load >= sds.avg_load)
3475 goto out_balanced;
3476
c186fafe 3477 if (idle == CPU_IDLE) {
aae6d3dd
SS
3478 /*
3479 * This cpu is idle. If the busiest group load doesn't
3480 * have more tasks than the number of available cpu's and
3481 * there is no imbalance between this and busiest group
3482 * wrt to idle cpu's, it is balanced.
3483 */
c186fafe 3484 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
3485 sds.busiest_nr_running <= sds.busiest_group_weight)
3486 goto out_balanced;
c186fafe
PZ
3487 } else {
3488 /*
3489 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3490 * imbalance_pct to be conservative.
3491 */
3492 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3493 goto out_balanced;
aae6d3dd 3494 }
1e3c88bd 3495
fab47622 3496force_balance:
1e3c88bd
PZ
3497 /* Looks like there is an imbalance. Compute it */
3498 calculate_imbalance(&sds, this_cpu, imbalance);
3499 return sds.busiest;
3500
3501out_balanced:
3502 /*
3503 * There is no obvious imbalance. But check if we can do some balancing
3504 * to save power.
3505 */
3506 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3507 return sds.busiest;
3508ret:
3509 *imbalance = 0;
3510 return NULL;
3511}
3512
3513/*
3514 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3515 */
3516static struct rq *
9d5efe05
SV
3517find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3518 enum cpu_idle_type idle, unsigned long imbalance,
3519 const struct cpumask *cpus)
1e3c88bd
PZ
3520{
3521 struct rq *busiest = NULL, *rq;
3522 unsigned long max_load = 0;
3523 int i;
3524
3525 for_each_cpu(i, sched_group_cpus(group)) {
3526 unsigned long power = power_of(i);
1399fa78
NR
3527 unsigned long capacity = DIV_ROUND_CLOSEST(power,
3528 SCHED_POWER_SCALE);
1e3c88bd
PZ
3529 unsigned long wl;
3530
9d5efe05
SV
3531 if (!capacity)
3532 capacity = fix_small_capacity(sd, group);
3533
1e3c88bd
PZ
3534 if (!cpumask_test_cpu(i, cpus))
3535 continue;
3536
3537 rq = cpu_rq(i);
6e40f5bb 3538 wl = weighted_cpuload(i);
1e3c88bd 3539
6e40f5bb
TG
3540 /*
3541 * When comparing with imbalance, use weighted_cpuload()
3542 * which is not scaled with the cpu power.
3543 */
1e3c88bd
PZ
3544 if (capacity && rq->nr_running == 1 && wl > imbalance)
3545 continue;
3546
6e40f5bb
TG
3547 /*
3548 * For the load comparisons with the other cpu's, consider
3549 * the weighted_cpuload() scaled with the cpu power, so that
3550 * the load can be moved away from the cpu that is potentially
3551 * running at a lower capacity.
3552 */
1399fa78 3553 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 3554
1e3c88bd
PZ
3555 if (wl > max_load) {
3556 max_load = wl;
3557 busiest = rq;
3558 }
3559 }
3560
3561 return busiest;
3562}
3563
3564/*
3565 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3566 * so long as it is large enough.
3567 */
3568#define MAX_PINNED_INTERVAL 512
3569
3570/* Working cpumask for load_balance and load_balance_newidle. */
3571static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3572
46e49b38 3573static int need_active_balance(struct sched_domain *sd, int idle,
532cb4c4 3574 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
3575{
3576 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
3577
3578 /*
3579 * ASYM_PACKING needs to force migrate tasks from busy but
3580 * higher numbered CPUs in order to pack all tasks in the
3581 * lowest numbered CPUs.
3582 */
3583 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3584 return 1;
3585
1af3ed3d
PZ
3586 /*
3587 * The only task running in a non-idle cpu can be moved to this
3588 * cpu in an attempt to completely freeup the other CPU
3589 * package.
3590 *
3591 * The package power saving logic comes from
3592 * find_busiest_group(). If there are no imbalance, then
3593 * f_b_g() will return NULL. However when sched_mc={1,2} then
3594 * f_b_g() will select a group from which a running task may be
3595 * pulled to this cpu in order to make the other package idle.
3596 * If there is no opportunity to make a package idle and if
3597 * there are no imbalance, then f_b_g() will return NULL and no
3598 * action will be taken in load_balance_newidle().
3599 *
3600 * Under normal task pull operation due to imbalance, there
3601 * will be more than one task in the source run queue and
3602 * move_tasks() will succeed. ld_moved will be true and this
3603 * active balance code will not be triggered.
3604 */
1af3ed3d
PZ
3605 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3606 return 0;
3607 }
3608
3609 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3610}
3611
969c7921
TH
3612static int active_load_balance_cpu_stop(void *data);
3613
1e3c88bd
PZ
3614/*
3615 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3616 * tasks if there is an imbalance.
3617 */
3618static int load_balance(int this_cpu, struct rq *this_rq,
3619 struct sched_domain *sd, enum cpu_idle_type idle,
3620 int *balance)
3621{
46e49b38 3622 int ld_moved, all_pinned = 0, active_balance = 0;
1e3c88bd
PZ
3623 struct sched_group *group;
3624 unsigned long imbalance;
3625 struct rq *busiest;
3626 unsigned long flags;
3627 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3628
3629 cpumask_copy(cpus, cpu_active_mask);
3630
1e3c88bd
PZ
3631 schedstat_inc(sd, lb_count[idle]);
3632
3633redo:
46e49b38 3634 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
1e3c88bd
PZ
3635 cpus, balance);
3636
3637 if (*balance == 0)
3638 goto out_balanced;
3639
3640 if (!group) {
3641 schedstat_inc(sd, lb_nobusyg[idle]);
3642 goto out_balanced;
3643 }
3644
9d5efe05 3645 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
3646 if (!busiest) {
3647 schedstat_inc(sd, lb_nobusyq[idle]);
3648 goto out_balanced;
3649 }
3650
3651 BUG_ON(busiest == this_rq);
3652
3653 schedstat_add(sd, lb_imbalance[idle], imbalance);
3654
3655 ld_moved = 0;
3656 if (busiest->nr_running > 1) {
3657 /*
3658 * Attempt to move tasks. If find_busiest_group has found
3659 * an imbalance but busiest->nr_running <= 1, the group is
3660 * still unbalanced. ld_moved simply stays zero, so it is
3661 * correctly treated as an imbalance.
3662 */
b30aef17 3663 all_pinned = 1;
1e3c88bd
PZ
3664 local_irq_save(flags);
3665 double_rq_lock(this_rq, busiest);
3666 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3667 imbalance, sd, idle, &all_pinned);
3668 double_rq_unlock(this_rq, busiest);
3669 local_irq_restore(flags);
3670
3671 /*
3672 * some other cpu did the load balance for us.
3673 */
3674 if (ld_moved && this_cpu != smp_processor_id())
3675 resched_cpu(this_cpu);
3676
3677 /* All tasks on this runqueue were pinned by CPU affinity */
3678 if (unlikely(all_pinned)) {
3679 cpumask_clear_cpu(cpu_of(busiest), cpus);
3680 if (!cpumask_empty(cpus))
3681 goto redo;
3682 goto out_balanced;
3683 }
3684 }
3685
3686 if (!ld_moved) {
3687 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
3688 /*
3689 * Increment the failure counter only on periodic balance.
3690 * We do not want newidle balance, which can be very
3691 * frequent, pollute the failure counter causing
3692 * excessive cache_hot migrations and active balances.
3693 */
3694 if (idle != CPU_NEWLY_IDLE)
3695 sd->nr_balance_failed++;
1e3c88bd 3696
46e49b38 3697 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
1e3c88bd
PZ
3698 raw_spin_lock_irqsave(&busiest->lock, flags);
3699
969c7921
TH
3700 /* don't kick the active_load_balance_cpu_stop,
3701 * if the curr task on busiest cpu can't be
3702 * moved to this_cpu
1e3c88bd
PZ
3703 */
3704 if (!cpumask_test_cpu(this_cpu,
3705 &busiest->curr->cpus_allowed)) {
3706 raw_spin_unlock_irqrestore(&busiest->lock,
3707 flags);
3708 all_pinned = 1;
3709 goto out_one_pinned;
3710 }
3711
969c7921
TH
3712 /*
3713 * ->active_balance synchronizes accesses to
3714 * ->active_balance_work. Once set, it's cleared
3715 * only after active load balance is finished.
3716 */
1e3c88bd
PZ
3717 if (!busiest->active_balance) {
3718 busiest->active_balance = 1;
3719 busiest->push_cpu = this_cpu;
3720 active_balance = 1;
3721 }
3722 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 3723
1e3c88bd 3724 if (active_balance)
969c7921
TH
3725 stop_one_cpu_nowait(cpu_of(busiest),
3726 active_load_balance_cpu_stop, busiest,
3727 &busiest->active_balance_work);
1e3c88bd
PZ
3728
3729 /*
3730 * We've kicked active balancing, reset the failure
3731 * counter.
3732 */
3733 sd->nr_balance_failed = sd->cache_nice_tries+1;
3734 }
3735 } else
3736 sd->nr_balance_failed = 0;
3737
3738 if (likely(!active_balance)) {
3739 /* We were unbalanced, so reset the balancing interval */
3740 sd->balance_interval = sd->min_interval;
3741 } else {
3742 /*
3743 * If we've begun active balancing, start to back off. This
3744 * case may not be covered by the all_pinned logic if there
3745 * is only 1 task on the busy runqueue (because we don't call
3746 * move_tasks).
3747 */
3748 if (sd->balance_interval < sd->max_interval)
3749 sd->balance_interval *= 2;
3750 }
3751
1e3c88bd
PZ
3752 goto out;
3753
3754out_balanced:
3755 schedstat_inc(sd, lb_balanced[idle]);
3756
3757 sd->nr_balance_failed = 0;
3758
3759out_one_pinned:
3760 /* tune up the balancing interval */
3761 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3762 (sd->balance_interval < sd->max_interval))
3763 sd->balance_interval *= 2;
3764
46e49b38 3765 ld_moved = 0;
1e3c88bd 3766out:
1e3c88bd
PZ
3767 return ld_moved;
3768}
3769
1e3c88bd
PZ
3770/*
3771 * idle_balance is called by schedule() if this_cpu is about to become
3772 * idle. Attempts to pull tasks from other CPUs.
3773 */
3774static void idle_balance(int this_cpu, struct rq *this_rq)
3775{
3776 struct sched_domain *sd;
3777 int pulled_task = 0;
3778 unsigned long next_balance = jiffies + HZ;
3779
3780 this_rq->idle_stamp = this_rq->clock;
3781
3782 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3783 return;
3784
f492e12e
PZ
3785 /*
3786 * Drop the rq->lock, but keep IRQ/preempt disabled.
3787 */
3788 raw_spin_unlock(&this_rq->lock);
3789
c66eaf61 3790 update_shares(this_cpu);
dce840a0 3791 rcu_read_lock();
1e3c88bd
PZ
3792 for_each_domain(this_cpu, sd) {
3793 unsigned long interval;
f492e12e 3794 int balance = 1;
1e3c88bd
PZ
3795
3796 if (!(sd->flags & SD_LOAD_BALANCE))
3797 continue;
3798
f492e12e 3799 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 3800 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
3801 pulled_task = load_balance(this_cpu, this_rq,
3802 sd, CPU_NEWLY_IDLE, &balance);
3803 }
1e3c88bd
PZ
3804
3805 interval = msecs_to_jiffies(sd->balance_interval);
3806 if (time_after(next_balance, sd->last_balance + interval))
3807 next_balance = sd->last_balance + interval;
d5ad140b
NR
3808 if (pulled_task) {
3809 this_rq->idle_stamp = 0;
1e3c88bd 3810 break;
d5ad140b 3811 }
1e3c88bd 3812 }
dce840a0 3813 rcu_read_unlock();
f492e12e
PZ
3814
3815 raw_spin_lock(&this_rq->lock);
3816
1e3c88bd
PZ
3817 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3818 /*
3819 * We are going idle. next_balance may be set based on
3820 * a busy processor. So reset next_balance.
3821 */
3822 this_rq->next_balance = next_balance;
3823 }
3824}
3825
3826/*
969c7921
TH
3827 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3828 * running tasks off the busiest CPU onto idle CPUs. It requires at
3829 * least 1 task to be running on each physical CPU where possible, and
3830 * avoids physical / logical imbalances.
1e3c88bd 3831 */
969c7921 3832static int active_load_balance_cpu_stop(void *data)
1e3c88bd 3833{
969c7921
TH
3834 struct rq *busiest_rq = data;
3835 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 3836 int target_cpu = busiest_rq->push_cpu;
969c7921 3837 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 3838 struct sched_domain *sd;
969c7921
TH
3839
3840 raw_spin_lock_irq(&busiest_rq->lock);
3841
3842 /* make sure the requested cpu hasn't gone down in the meantime */
3843 if (unlikely(busiest_cpu != smp_processor_id() ||
3844 !busiest_rq->active_balance))
3845 goto out_unlock;
1e3c88bd
PZ
3846
3847 /* Is there any task to move? */
3848 if (busiest_rq->nr_running <= 1)
969c7921 3849 goto out_unlock;
1e3c88bd
PZ
3850
3851 /*
3852 * This condition is "impossible", if it occurs
3853 * we need to fix it. Originally reported by
3854 * Bjorn Helgaas on a 128-cpu setup.
3855 */
3856 BUG_ON(busiest_rq == target_rq);
3857
3858 /* move a task from busiest_rq to target_rq */
3859 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
3860
3861 /* Search for an sd spanning us and the target CPU. */
dce840a0 3862 rcu_read_lock();
1e3c88bd
PZ
3863 for_each_domain(target_cpu, sd) {
3864 if ((sd->flags & SD_LOAD_BALANCE) &&
3865 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3866 break;
3867 }
3868
3869 if (likely(sd)) {
3870 schedstat_inc(sd, alb_count);
3871
3872 if (move_one_task(target_rq, target_cpu, busiest_rq,
3873 sd, CPU_IDLE))
3874 schedstat_inc(sd, alb_pushed);
3875 else
3876 schedstat_inc(sd, alb_failed);
3877 }
dce840a0 3878 rcu_read_unlock();
1e3c88bd 3879 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
3880out_unlock:
3881 busiest_rq->active_balance = 0;
3882 raw_spin_unlock_irq(&busiest_rq->lock);
3883 return 0;
1e3c88bd
PZ
3884}
3885
3886#ifdef CONFIG_NO_HZ
83cd4fe2
VP
3887
3888static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3889
3890static void trigger_sched_softirq(void *data)
3891{
3892 raise_softirq_irqoff(SCHED_SOFTIRQ);
3893}
3894
3895static inline void init_sched_softirq_csd(struct call_single_data *csd)
3896{
3897 csd->func = trigger_sched_softirq;
3898 csd->info = NULL;
3899 csd->flags = 0;
3900 csd->priv = 0;
3901}
3902
3903/*
3904 * idle load balancing details
3905 * - One of the idle CPUs nominates itself as idle load_balancer, while
3906 * entering idle.
3907 * - This idle load balancer CPU will also go into tickless mode when
3908 * it is idle, just like all other idle CPUs
3909 * - When one of the busy CPUs notice that there may be an idle rebalancing
3910 * needed, they will kick the idle load balancer, which then does idle
3911 * load balancing for all the idle CPUs.
3912 */
1e3c88bd
PZ
3913static struct {
3914 atomic_t load_balancer;
83cd4fe2
VP
3915 atomic_t first_pick_cpu;
3916 atomic_t second_pick_cpu;
3917 cpumask_var_t idle_cpus_mask;
3918 cpumask_var_t grp_idle_mask;
3919 unsigned long next_balance; /* in jiffy units */
3920} nohz ____cacheline_aligned;
1e3c88bd
PZ
3921
3922int get_nohz_load_balancer(void)
3923{
3924 return atomic_read(&nohz.load_balancer);
3925}
3926
3927#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3928/**
3929 * lowest_flag_domain - Return lowest sched_domain containing flag.
3930 * @cpu: The cpu whose lowest level of sched domain is to
3931 * be returned.
3932 * @flag: The flag to check for the lowest sched_domain
3933 * for the given cpu.
3934 *
3935 * Returns the lowest sched_domain of a cpu which contains the given flag.
3936 */
3937static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3938{
3939 struct sched_domain *sd;
3940
3941 for_each_domain(cpu, sd)
08354716 3942 if (sd->flags & flag)
1e3c88bd
PZ
3943 break;
3944
3945 return sd;
3946}
3947
3948/**
3949 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3950 * @cpu: The cpu whose domains we're iterating over.
3951 * @sd: variable holding the value of the power_savings_sd
3952 * for cpu.
3953 * @flag: The flag to filter the sched_domains to be iterated.
3954 *
3955 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3956 * set, starting from the lowest sched_domain to the highest.
3957 */
3958#define for_each_flag_domain(cpu, sd, flag) \
3959 for (sd = lowest_flag_domain(cpu, flag); \
3960 (sd && (sd->flags & flag)); sd = sd->parent)
3961
3962/**
3963 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3964 * @ilb_group: group to be checked for semi-idleness
3965 *
3966 * Returns: 1 if the group is semi-idle. 0 otherwise.
3967 *
3968 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3969 * and atleast one non-idle CPU. This helper function checks if the given
3970 * sched_group is semi-idle or not.
3971 */
3972static inline int is_semi_idle_group(struct sched_group *ilb_group)
3973{
83cd4fe2 3974 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
1e3c88bd
PZ
3975 sched_group_cpus(ilb_group));
3976
3977 /*
3978 * A sched_group is semi-idle when it has atleast one busy cpu
3979 * and atleast one idle cpu.
3980 */
83cd4fe2 3981 if (cpumask_empty(nohz.grp_idle_mask))
1e3c88bd
PZ
3982 return 0;
3983
83cd4fe2 3984 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
1e3c88bd
PZ
3985 return 0;
3986
3987 return 1;
3988}
3989/**
3990 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3991 * @cpu: The cpu which is nominating a new idle_load_balancer.
3992 *
3993 * Returns: Returns the id of the idle load balancer if it exists,
3994 * Else, returns >= nr_cpu_ids.
3995 *
3996 * This algorithm picks the idle load balancer such that it belongs to a
3997 * semi-idle powersavings sched_domain. The idea is to try and avoid
3998 * completely idle packages/cores just for the purpose of idle load balancing
3999 * when there are other idle cpu's which are better suited for that job.
4000 */
4001static int find_new_ilb(int cpu)
4002{
4003 struct sched_domain *sd;
4004 struct sched_group *ilb_group;
dce840a0 4005 int ilb = nr_cpu_ids;
1e3c88bd
PZ
4006
4007 /*
4008 * Have idle load balancer selection from semi-idle packages only
4009 * when power-aware load balancing is enabled
4010 */
4011 if (!(sched_smt_power_savings || sched_mc_power_savings))
4012 goto out_done;
4013
4014 /*
4015 * Optimize for the case when we have no idle CPUs or only one
4016 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4017 */
83cd4fe2 4018 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
4019 goto out_done;
4020
dce840a0 4021 rcu_read_lock();
1e3c88bd
PZ
4022 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4023 ilb_group = sd->groups;
4024
4025 do {
dce840a0
PZ
4026 if (is_semi_idle_group(ilb_group)) {
4027 ilb = cpumask_first(nohz.grp_idle_mask);
4028 goto unlock;
4029 }
1e3c88bd
PZ
4030
4031 ilb_group = ilb_group->next;
4032
4033 } while (ilb_group != sd->groups);
4034 }
dce840a0
PZ
4035unlock:
4036 rcu_read_unlock();
1e3c88bd
PZ
4037
4038out_done:
dce840a0 4039 return ilb;
1e3c88bd
PZ
4040}
4041#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4042static inline int find_new_ilb(int call_cpu)
4043{
83cd4fe2 4044 return nr_cpu_ids;
1e3c88bd
PZ
4045}
4046#endif
4047
83cd4fe2
VP
4048/*
4049 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4050 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4051 * CPU (if there is one).
4052 */
4053static void nohz_balancer_kick(int cpu)
4054{
4055 int ilb_cpu;
4056
4057 nohz.next_balance++;
4058
4059 ilb_cpu = get_nohz_load_balancer();
4060
4061 if (ilb_cpu >= nr_cpu_ids) {
4062 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
4063 if (ilb_cpu >= nr_cpu_ids)
4064 return;
4065 }
4066
4067 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
4068 struct call_single_data *cp;
4069
4070 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
4071 cp = &per_cpu(remote_sched_softirq_cb, cpu);
4072 __smp_call_function_single(ilb_cpu, cp, 0);
4073 }
4074 return;
4075}
4076
1e3c88bd
PZ
4077/*
4078 * This routine will try to nominate the ilb (idle load balancing)
4079 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
83cd4fe2 4080 * load balancing on behalf of all those cpus.
1e3c88bd 4081 *
83cd4fe2
VP
4082 * When the ilb owner becomes busy, we will not have new ilb owner until some
4083 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
4084 * idle load balancing by kicking one of the idle CPUs.
1e3c88bd 4085 *
83cd4fe2
VP
4086 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
4087 * ilb owner CPU in future (when there is a need for idle load balancing on
4088 * behalf of all idle CPUs).
1e3c88bd 4089 */
83cd4fe2 4090void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
4091{
4092 int cpu = smp_processor_id();
4093
4094 if (stop_tick) {
1e3c88bd
PZ
4095 if (!cpu_active(cpu)) {
4096 if (atomic_read(&nohz.load_balancer) != cpu)
83cd4fe2 4097 return;
1e3c88bd
PZ
4098
4099 /*
4100 * If we are going offline and still the leader,
4101 * give up!
4102 */
83cd4fe2
VP
4103 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4104 nr_cpu_ids) != cpu)
1e3c88bd
PZ
4105 BUG();
4106
83cd4fe2 4107 return;
1e3c88bd
PZ
4108 }
4109
83cd4fe2 4110 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd 4111
83cd4fe2
VP
4112 if (atomic_read(&nohz.first_pick_cpu) == cpu)
4113 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
4114 if (atomic_read(&nohz.second_pick_cpu) == cpu)
4115 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
1e3c88bd 4116
83cd4fe2 4117 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
1e3c88bd
PZ
4118 int new_ilb;
4119
83cd4fe2
VP
4120 /* make me the ilb owner */
4121 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
4122 cpu) != nr_cpu_ids)
4123 return;
4124
1e3c88bd
PZ
4125 /*
4126 * Check to see if there is a more power-efficient
4127 * ilb.
4128 */
4129 new_ilb = find_new_ilb(cpu);
4130 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
83cd4fe2 4131 atomic_set(&nohz.load_balancer, nr_cpu_ids);
1e3c88bd 4132 resched_cpu(new_ilb);
83cd4fe2 4133 return;
1e3c88bd 4134 }
83cd4fe2 4135 return;
1e3c88bd
PZ
4136 }
4137 } else {
83cd4fe2
VP
4138 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
4139 return;
1e3c88bd 4140
83cd4fe2 4141 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd
PZ
4142
4143 if (atomic_read(&nohz.load_balancer) == cpu)
83cd4fe2
VP
4144 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4145 nr_cpu_ids) != cpu)
1e3c88bd
PZ
4146 BUG();
4147 }
83cd4fe2 4148 return;
1e3c88bd
PZ
4149}
4150#endif
4151
4152static DEFINE_SPINLOCK(balancing);
4153
49c022e6
PZ
4154static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4155
4156/*
4157 * Scale the max load_balance interval with the number of CPUs in the system.
4158 * This trades load-balance latency on larger machines for less cross talk.
4159 */
4160static void update_max_interval(void)
4161{
4162 max_load_balance_interval = HZ*num_online_cpus()/10;
4163}
4164
1e3c88bd
PZ
4165/*
4166 * It checks each scheduling domain to see if it is due to be balanced,
4167 * and initiates a balancing operation if so.
4168 *
4169 * Balancing parameters are set up in arch_init_sched_domains.
4170 */
4171static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4172{
4173 int balance = 1;
4174 struct rq *rq = cpu_rq(cpu);
4175 unsigned long interval;
4176 struct sched_domain *sd;
4177 /* Earliest time when we have to do rebalance again */
4178 unsigned long next_balance = jiffies + 60*HZ;
4179 int update_next_balance = 0;
4180 int need_serialize;
4181
2069dd75
PZ
4182 update_shares(cpu);
4183
dce840a0 4184 rcu_read_lock();
1e3c88bd
PZ
4185 for_each_domain(cpu, sd) {
4186 if (!(sd->flags & SD_LOAD_BALANCE))
4187 continue;
4188
4189 interval = sd->balance_interval;
4190 if (idle != CPU_IDLE)
4191 interval *= sd->busy_factor;
4192
4193 /* scale ms to jiffies */
4194 interval = msecs_to_jiffies(interval);
49c022e6 4195 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
4196
4197 need_serialize = sd->flags & SD_SERIALIZE;
4198
4199 if (need_serialize) {
4200 if (!spin_trylock(&balancing))
4201 goto out;
4202 }
4203
4204 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4205 if (load_balance(cpu, rq, sd, idle, &balance)) {
4206 /*
4207 * We've pulled tasks over so either we're no
c186fafe 4208 * longer idle.
1e3c88bd
PZ
4209 */
4210 idle = CPU_NOT_IDLE;
4211 }
4212 sd->last_balance = jiffies;
4213 }
4214 if (need_serialize)
4215 spin_unlock(&balancing);
4216out:
4217 if (time_after(next_balance, sd->last_balance + interval)) {
4218 next_balance = sd->last_balance + interval;
4219 update_next_balance = 1;
4220 }
4221
4222 /*
4223 * Stop the load balance at this level. There is another
4224 * CPU in our sched group which is doing load balancing more
4225 * actively.
4226 */
4227 if (!balance)
4228 break;
4229 }
dce840a0 4230 rcu_read_unlock();
1e3c88bd
PZ
4231
4232 /*
4233 * next_balance will be updated only when there is a need.
4234 * When the cpu is attached to null domain for ex, it will not be
4235 * updated.
4236 */
4237 if (likely(update_next_balance))
4238 rq->next_balance = next_balance;
4239}
4240
83cd4fe2 4241#ifdef CONFIG_NO_HZ
1e3c88bd 4242/*
83cd4fe2 4243 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
4244 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4245 */
83cd4fe2
VP
4246static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4247{
4248 struct rq *this_rq = cpu_rq(this_cpu);
4249 struct rq *rq;
4250 int balance_cpu;
4251
4252 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
4253 return;
4254
4255 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
4256 if (balance_cpu == this_cpu)
4257 continue;
4258
4259 /*
4260 * If this cpu gets work to do, stop the load balancing
4261 * work being done for other cpus. Next load
4262 * balancing owner will pick it up.
4263 */
4264 if (need_resched()) {
4265 this_rq->nohz_balance_kick = 0;
4266 break;
4267 }
4268
4269 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 4270 update_rq_clock(this_rq);
83cd4fe2
VP
4271 update_cpu_load(this_rq);
4272 raw_spin_unlock_irq(&this_rq->lock);
4273
4274 rebalance_domains(balance_cpu, CPU_IDLE);
4275
4276 rq = cpu_rq(balance_cpu);
4277 if (time_after(this_rq->next_balance, rq->next_balance))
4278 this_rq->next_balance = rq->next_balance;
4279 }
4280 nohz.next_balance = this_rq->next_balance;
4281 this_rq->nohz_balance_kick = 0;
4282}
4283
4284/*
4285 * Current heuristic for kicking the idle load balancer
4286 * - first_pick_cpu is the one of the busy CPUs. It will kick
4287 * idle load balancer when it has more than one process active. This
4288 * eliminates the need for idle load balancing altogether when we have
4289 * only one running process in the system (common case).
4290 * - If there are more than one busy CPU, idle load balancer may have
4291 * to run for active_load_balance to happen (i.e., two busy CPUs are
4292 * SMT or core siblings and can run better if they move to different
4293 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4294 * which will kick idle load balancer as soon as it has any load.
4295 */
4296static inline int nohz_kick_needed(struct rq *rq, int cpu)
4297{
4298 unsigned long now = jiffies;
4299 int ret;
4300 int first_pick_cpu, second_pick_cpu;
4301
4302 if (time_before(now, nohz.next_balance))
4303 return 0;
4304
f6c3f168 4305 if (rq->idle_at_tick)
83cd4fe2
VP
4306 return 0;
4307
4308 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
4309 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
4310
4311 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
4312 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
4313 return 0;
4314
4315 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
4316 if (ret == nr_cpu_ids || ret == cpu) {
4317 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4318 if (rq->nr_running > 1)
4319 return 1;
4320 } else {
4321 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
4322 if (ret == nr_cpu_ids || ret == cpu) {
4323 if (rq->nr_running)
4324 return 1;
4325 }
4326 }
4327 return 0;
4328}
4329#else
4330static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4331#endif
4332
4333/*
4334 * run_rebalance_domains is triggered when needed from the scheduler tick.
4335 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4336 */
1e3c88bd
PZ
4337static void run_rebalance_domains(struct softirq_action *h)
4338{
4339 int this_cpu = smp_processor_id();
4340 struct rq *this_rq = cpu_rq(this_cpu);
4341 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4342 CPU_IDLE : CPU_NOT_IDLE;
4343
4344 rebalance_domains(this_cpu, idle);
4345
1e3c88bd 4346 /*
83cd4fe2 4347 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
4348 * balancing on behalf of the other idle cpus whose ticks are
4349 * stopped.
4350 */
83cd4fe2 4351 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
4352}
4353
4354static inline int on_null_domain(int cpu)
4355{
90a6501f 4356 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
4357}
4358
4359/*
4360 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd
PZ
4361 */
4362static inline void trigger_load_balance(struct rq *rq, int cpu)
4363{
1e3c88bd
PZ
4364 /* Don't need to rebalance while attached to NULL domain */
4365 if (time_after_eq(jiffies, rq->next_balance) &&
4366 likely(!on_null_domain(cpu)))
4367 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2
VP
4368#ifdef CONFIG_NO_HZ
4369 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4370 nohz_balancer_kick(cpu);
4371#endif
1e3c88bd
PZ
4372}
4373
0bcdcf28
CE
4374static void rq_online_fair(struct rq *rq)
4375{
4376 update_sysctl();
4377}
4378
4379static void rq_offline_fair(struct rq *rq)
4380{
4381 update_sysctl();
4382}
4383
1e3c88bd
PZ
4384#else /* CONFIG_SMP */
4385
4386/*
4387 * on UP we do not need to balance between CPUs:
4388 */
4389static inline void idle_balance(int cpu, struct rq *rq)
4390{
4391}
4392
55e12e5e 4393#endif /* CONFIG_SMP */
e1d1484f 4394
bf0f6f24
IM
4395/*
4396 * scheduler tick hitting a task of our scheduling class:
4397 */
8f4d37ec 4398static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
4399{
4400 struct cfs_rq *cfs_rq;
4401 struct sched_entity *se = &curr->se;
4402
4403 for_each_sched_entity(se) {
4404 cfs_rq = cfs_rq_of(se);
8f4d37ec 4405 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
4406 }
4407}
4408
4409/*
cd29fe6f
PZ
4410 * called on fork with the child task as argument from the parent's context
4411 * - child not yet on the tasklist
4412 * - preemption disabled
bf0f6f24 4413 */
cd29fe6f 4414static void task_fork_fair(struct task_struct *p)
bf0f6f24 4415{
cd29fe6f 4416 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 4417 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 4418 int this_cpu = smp_processor_id();
cd29fe6f
PZ
4419 struct rq *rq = this_rq();
4420 unsigned long flags;
4421
05fa785c 4422 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 4423
861d034e
PZ
4424 update_rq_clock(rq);
4425
b0a0f667
PM
4426 if (unlikely(task_cpu(p) != this_cpu)) {
4427 rcu_read_lock();
cd29fe6f 4428 __set_task_cpu(p, this_cpu);
b0a0f667
PM
4429 rcu_read_unlock();
4430 }
bf0f6f24 4431
7109c442 4432 update_curr(cfs_rq);
cd29fe6f 4433
b5d9d734
MG
4434 if (curr)
4435 se->vruntime = curr->vruntime;
aeb73b04 4436 place_entity(cfs_rq, se, 1);
4d78e7b6 4437
cd29fe6f 4438 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 4439 /*
edcb60a3
IM
4440 * Upon rescheduling, sched_class::put_prev_task() will place
4441 * 'current' within the tree based on its new key value.
4442 */
4d78e7b6 4443 swap(curr->vruntime, se->vruntime);
aec0a514 4444 resched_task(rq->curr);
4d78e7b6 4445 }
bf0f6f24 4446
88ec22d3
PZ
4447 se->vruntime -= cfs_rq->min_vruntime;
4448
05fa785c 4449 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
4450}
4451
cb469845
SR
4452/*
4453 * Priority of the task has changed. Check to see if we preempt
4454 * the current task.
4455 */
da7a735e
PZ
4456static void
4457prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 4458{
da7a735e
PZ
4459 if (!p->se.on_rq)
4460 return;
4461
cb469845
SR
4462 /*
4463 * Reschedule if we are currently running on this runqueue and
4464 * our priority decreased, or if we are not currently running on
4465 * this runqueue and our priority is higher than the current's
4466 */
da7a735e 4467 if (rq->curr == p) {
cb469845
SR
4468 if (p->prio > oldprio)
4469 resched_task(rq->curr);
4470 } else
15afe09b 4471 check_preempt_curr(rq, p, 0);
cb469845
SR
4472}
4473
da7a735e
PZ
4474static void switched_from_fair(struct rq *rq, struct task_struct *p)
4475{
4476 struct sched_entity *se = &p->se;
4477 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4478
4479 /*
4480 * Ensure the task's vruntime is normalized, so that when its
4481 * switched back to the fair class the enqueue_entity(.flags=0) will
4482 * do the right thing.
4483 *
4484 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4485 * have normalized the vruntime, if it was !on_rq, then only when
4486 * the task is sleeping will it still have non-normalized vruntime.
4487 */
4488 if (!se->on_rq && p->state != TASK_RUNNING) {
4489 /*
4490 * Fix up our vruntime so that the current sleep doesn't
4491 * cause 'unlimited' sleep bonus.
4492 */
4493 place_entity(cfs_rq, se, 0);
4494 se->vruntime -= cfs_rq->min_vruntime;
4495 }
4496}
4497
cb469845
SR
4498/*
4499 * We switched to the sched_fair class.
4500 */
da7a735e 4501static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 4502{
da7a735e
PZ
4503 if (!p->se.on_rq)
4504 return;
4505
cb469845
SR
4506 /*
4507 * We were most likely switched from sched_rt, so
4508 * kick off the schedule if running, otherwise just see
4509 * if we can still preempt the current task.
4510 */
da7a735e 4511 if (rq->curr == p)
cb469845
SR
4512 resched_task(rq->curr);
4513 else
15afe09b 4514 check_preempt_curr(rq, p, 0);
cb469845
SR
4515}
4516
83b699ed
SV
4517/* Account for a task changing its policy or group.
4518 *
4519 * This routine is mostly called to set cfs_rq->curr field when a task
4520 * migrates between groups/classes.
4521 */
4522static void set_curr_task_fair(struct rq *rq)
4523{
4524 struct sched_entity *se = &rq->curr->se;
4525
ec12cb7f
PT
4526 for_each_sched_entity(se) {
4527 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4528
4529 set_next_entity(cfs_rq, se);
4530 /* ensure bandwidth has been allocated on our new cfs_rq */
4531 account_cfs_rq_runtime(cfs_rq, 0);
4532 }
83b699ed
SV
4533}
4534
810b3817 4535#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4536static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 4537{
b2b5ce02
PZ
4538 /*
4539 * If the task was not on the rq at the time of this cgroup movement
4540 * it must have been asleep, sleeping tasks keep their ->vruntime
4541 * absolute on their old rq until wakeup (needed for the fair sleeper
4542 * bonus in place_entity()).
4543 *
4544 * If it was on the rq, we've just 'preempted' it, which does convert
4545 * ->vruntime to a relative base.
4546 *
4547 * Make sure both cases convert their relative position when migrating
4548 * to another cgroup's rq. This does somewhat interfere with the
4549 * fair sleeper stuff for the first placement, but who cares.
4550 */
4551 if (!on_rq)
4552 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4553 set_task_rq(p, task_cpu(p));
88ec22d3 4554 if (!on_rq)
b2b5ce02 4555 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817
PZ
4556}
4557#endif
4558
6d686f45 4559static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
4560{
4561 struct sched_entity *se = &task->se;
0d721cea
PW
4562 unsigned int rr_interval = 0;
4563
4564 /*
4565 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4566 * idle runqueue:
4567 */
0d721cea
PW
4568 if (rq->cfs.load.weight)
4569 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
4570
4571 return rr_interval;
4572}
4573
bf0f6f24
IM
4574/*
4575 * All the scheduling class methods:
4576 */
5522d5d5
IM
4577static const struct sched_class fair_sched_class = {
4578 .next = &idle_sched_class,
bf0f6f24
IM
4579 .enqueue_task = enqueue_task_fair,
4580 .dequeue_task = dequeue_task_fair,
4581 .yield_task = yield_task_fair,
d95f4122 4582 .yield_to_task = yield_to_task_fair,
bf0f6f24 4583
2e09bf55 4584 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
4585
4586 .pick_next_task = pick_next_task_fair,
4587 .put_prev_task = put_prev_task_fair,
4588
681f3e68 4589#ifdef CONFIG_SMP
4ce72a2c
LZ
4590 .select_task_rq = select_task_rq_fair,
4591
0bcdcf28
CE
4592 .rq_online = rq_online_fair,
4593 .rq_offline = rq_offline_fair,
88ec22d3
PZ
4594
4595 .task_waking = task_waking_fair,
681f3e68 4596#endif
bf0f6f24 4597
83b699ed 4598 .set_curr_task = set_curr_task_fair,
bf0f6f24 4599 .task_tick = task_tick_fair,
cd29fe6f 4600 .task_fork = task_fork_fair,
cb469845
SR
4601
4602 .prio_changed = prio_changed_fair,
da7a735e 4603 .switched_from = switched_from_fair,
cb469845 4604 .switched_to = switched_to_fair,
810b3817 4605
0d721cea
PW
4606 .get_rr_interval = get_rr_interval_fair,
4607
810b3817 4608#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4609 .task_move_group = task_move_group_fair,
810b3817 4610#endif
bf0f6f24
IM
4611};
4612
4613#ifdef CONFIG_SCHED_DEBUG
5cef9eca 4614static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 4615{
bf0f6f24
IM
4616 struct cfs_rq *cfs_rq;
4617
5973e5b9 4618 rcu_read_lock();
c3b64f1e 4619 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 4620 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 4621 rcu_read_unlock();
bf0f6f24
IM
4622}
4623#endif
This page took 0.684151 seconds and 5 git commands to generate.