sched: Add sysctl_sched_shares_window
[deliverable/linux.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
9745512c 25
bf0f6f24 26/*
21805085 27 * Targeted preemption latency for CPU-bound tasks:
864616ee 28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 37 */
21406928
MG
38unsigned int sysctl_sched_latency = 6000000ULL;
39unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
2bd8e6d4 53/*
b2be5e96 54 * Minimal preemption granularity for CPU-bound tasks:
864616ee 55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 56 */
0bf377bb
IM
57unsigned int sysctl_sched_min_granularity = 750000ULL;
58unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
59
60/*
b2be5e96
PZ
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
0bf377bb 63static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
64
65/*
2bba22c5 66 * After fork, child runs first. If set to 0 (default) then
b2be5e96 67 * parent will (try to) run first.
21805085 68 */
2bba22c5 69unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 70
1799e35d
IM
71/*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77unsigned int __read_mostly sysctl_sched_compat_yield;
78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a7a4f8a7
PT
92/*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
a4c2f00f
PZ
99static const struct sched_class fair_sched_class;
100
bf0f6f24
IM
101/**************************************************************
102 * CFS operations on generic schedulable entities:
103 */
104
62160e3f 105#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 106
62160e3f 107/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
108static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
109{
62160e3f 110 return cfs_rq->rq;
bf0f6f24
IM
111}
112
62160e3f
IM
113/* An entity is a task if it doesn't "own" a runqueue */
114#define entity_is_task(se) (!se->my_q)
bf0f6f24 115
8f48894f
PZ
116static inline struct task_struct *task_of(struct sched_entity *se)
117{
118#ifdef CONFIG_SCHED_DEBUG
119 WARN_ON_ONCE(!entity_is_task(se));
120#endif
121 return container_of(se, struct task_struct, se);
122}
123
b758149c
PZ
124/* Walk up scheduling entities hierarchy */
125#define for_each_sched_entity(se) \
126 for (; se; se = se->parent)
127
128static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
129{
130 return p->se.cfs_rq;
131}
132
133/* runqueue on which this entity is (to be) queued */
134static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
135{
136 return se->cfs_rq;
137}
138
139/* runqueue "owned" by this group */
140static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
141{
142 return grp->my_q;
143}
144
145/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
146 * another cpu ('this_cpu')
147 */
148static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
149{
150 return cfs_rq->tg->cfs_rq[this_cpu];
151}
152
3d4b47b4
PZ
153static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
154{
155 if (!cfs_rq->on_list) {
67e86250
PT
156 /*
157 * Ensure we either appear before our parent (if already
158 * enqueued) or force our parent to appear after us when it is
159 * enqueued. The fact that we always enqueue bottom-up
160 * reduces this to two cases.
161 */
162 if (cfs_rq->tg->parent &&
163 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
164 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
165 &rq_of(cfs_rq)->leaf_cfs_rq_list);
166 } else {
167 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 168 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 169 }
3d4b47b4
PZ
170
171 cfs_rq->on_list = 1;
172 }
173}
174
175static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
176{
177 if (cfs_rq->on_list) {
178 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
179 cfs_rq->on_list = 0;
180 }
181}
182
b758149c
PZ
183/* Iterate thr' all leaf cfs_rq's on a runqueue */
184#define for_each_leaf_cfs_rq(rq, cfs_rq) \
185 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
186
187/* Do the two (enqueued) entities belong to the same group ? */
188static inline int
189is_same_group(struct sched_entity *se, struct sched_entity *pse)
190{
191 if (se->cfs_rq == pse->cfs_rq)
192 return 1;
193
194 return 0;
195}
196
197static inline struct sched_entity *parent_entity(struct sched_entity *se)
198{
199 return se->parent;
200}
201
464b7527
PZ
202/* return depth at which a sched entity is present in the hierarchy */
203static inline int depth_se(struct sched_entity *se)
204{
205 int depth = 0;
206
207 for_each_sched_entity(se)
208 depth++;
209
210 return depth;
211}
212
213static void
214find_matching_se(struct sched_entity **se, struct sched_entity **pse)
215{
216 int se_depth, pse_depth;
217
218 /*
219 * preemption test can be made between sibling entities who are in the
220 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
221 * both tasks until we find their ancestors who are siblings of common
222 * parent.
223 */
224
225 /* First walk up until both entities are at same depth */
226 se_depth = depth_se(*se);
227 pse_depth = depth_se(*pse);
228
229 while (se_depth > pse_depth) {
230 se_depth--;
231 *se = parent_entity(*se);
232 }
233
234 while (pse_depth > se_depth) {
235 pse_depth--;
236 *pse = parent_entity(*pse);
237 }
238
239 while (!is_same_group(*se, *pse)) {
240 *se = parent_entity(*se);
241 *pse = parent_entity(*pse);
242 }
243}
244
8f48894f
PZ
245#else /* !CONFIG_FAIR_GROUP_SCHED */
246
247static inline struct task_struct *task_of(struct sched_entity *se)
248{
249 return container_of(se, struct task_struct, se);
250}
bf0f6f24 251
62160e3f
IM
252static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
253{
254 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
255}
256
257#define entity_is_task(se) 1
258
b758149c
PZ
259#define for_each_sched_entity(se) \
260 for (; se; se = NULL)
bf0f6f24 261
b758149c 262static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 263{
b758149c 264 return &task_rq(p)->cfs;
bf0f6f24
IM
265}
266
b758149c
PZ
267static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268{
269 struct task_struct *p = task_of(se);
270 struct rq *rq = task_rq(p);
271
272 return &rq->cfs;
273}
274
275/* runqueue "owned" by this group */
276static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
277{
278 return NULL;
279}
280
281static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
282{
283 return &cpu_rq(this_cpu)->cfs;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288}
289
290static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
291{
292}
293
b758149c
PZ
294#define for_each_leaf_cfs_rq(rq, cfs_rq) \
295 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
296
297static inline int
298is_same_group(struct sched_entity *se, struct sched_entity *pse)
299{
300 return 1;
301}
302
303static inline struct sched_entity *parent_entity(struct sched_entity *se)
304{
305 return NULL;
306}
307
464b7527
PZ
308static inline void
309find_matching_se(struct sched_entity **se, struct sched_entity **pse)
310{
311}
312
b758149c
PZ
313#endif /* CONFIG_FAIR_GROUP_SCHED */
314
bf0f6f24
IM
315
316/**************************************************************
317 * Scheduling class tree data structure manipulation methods:
318 */
319
0702e3eb 320static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 321{
368059a9
PZ
322 s64 delta = (s64)(vruntime - min_vruntime);
323 if (delta > 0)
02e0431a
PZ
324 min_vruntime = vruntime;
325
326 return min_vruntime;
327}
328
0702e3eb 329static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
330{
331 s64 delta = (s64)(vruntime - min_vruntime);
332 if (delta < 0)
333 min_vruntime = vruntime;
334
335 return min_vruntime;
336}
337
54fdc581
FC
338static inline int entity_before(struct sched_entity *a,
339 struct sched_entity *b)
340{
341 return (s64)(a->vruntime - b->vruntime) < 0;
342}
343
0702e3eb 344static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 345{
30cfdcfc 346 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
347}
348
1af5f730
PZ
349static void update_min_vruntime(struct cfs_rq *cfs_rq)
350{
351 u64 vruntime = cfs_rq->min_vruntime;
352
353 if (cfs_rq->curr)
354 vruntime = cfs_rq->curr->vruntime;
355
356 if (cfs_rq->rb_leftmost) {
357 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
358 struct sched_entity,
359 run_node);
360
e17036da 361 if (!cfs_rq->curr)
1af5f730
PZ
362 vruntime = se->vruntime;
363 else
364 vruntime = min_vruntime(vruntime, se->vruntime);
365 }
366
367 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
368}
369
bf0f6f24
IM
370/*
371 * Enqueue an entity into the rb-tree:
372 */
0702e3eb 373static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
374{
375 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
376 struct rb_node *parent = NULL;
377 struct sched_entity *entry;
9014623c 378 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
379 int leftmost = 1;
380
381 /*
382 * Find the right place in the rbtree:
383 */
384 while (*link) {
385 parent = *link;
386 entry = rb_entry(parent, struct sched_entity, run_node);
387 /*
388 * We dont care about collisions. Nodes with
389 * the same key stay together.
390 */
9014623c 391 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
392 link = &parent->rb_left;
393 } else {
394 link = &parent->rb_right;
395 leftmost = 0;
396 }
397 }
398
399 /*
400 * Maintain a cache of leftmost tree entries (it is frequently
401 * used):
402 */
1af5f730 403 if (leftmost)
57cb499d 404 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
405
406 rb_link_node(&se->run_node, parent, link);
407 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
408}
409
0702e3eb 410static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 411{
3fe69747
PZ
412 if (cfs_rq->rb_leftmost == &se->run_node) {
413 struct rb_node *next_node;
3fe69747
PZ
414
415 next_node = rb_next(&se->run_node);
416 cfs_rq->rb_leftmost = next_node;
3fe69747 417 }
e9acbff6 418
bf0f6f24 419 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
420}
421
bf0f6f24
IM
422static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
423{
f4b6755f
PZ
424 struct rb_node *left = cfs_rq->rb_leftmost;
425
426 if (!left)
427 return NULL;
428
429 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
430}
431
f4b6755f 432static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 433{
7eee3e67 434 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 435
70eee74b
BS
436 if (!last)
437 return NULL;
7eee3e67
IM
438
439 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
440}
441
bf0f6f24
IM
442/**************************************************************
443 * Scheduling class statistics methods:
444 */
445
b2be5e96 446#ifdef CONFIG_SCHED_DEBUG
acb4a848 447int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 448 void __user *buffer, size_t *lenp,
b2be5e96
PZ
449 loff_t *ppos)
450{
8d65af78 451 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 452 int factor = get_update_sysctl_factor();
b2be5e96
PZ
453
454 if (ret || !write)
455 return ret;
456
457 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
458 sysctl_sched_min_granularity);
459
acb4a848
CE
460#define WRT_SYSCTL(name) \
461 (normalized_sysctl_##name = sysctl_##name / (factor))
462 WRT_SYSCTL(sched_min_granularity);
463 WRT_SYSCTL(sched_latency);
464 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
465#undef WRT_SYSCTL
466
b2be5e96
PZ
467 return 0;
468}
469#endif
647e7cac 470
a7be37ac 471/*
f9c0b095 472 * delta /= w
a7be37ac
PZ
473 */
474static inline unsigned long
475calc_delta_fair(unsigned long delta, struct sched_entity *se)
476{
f9c0b095
PZ
477 if (unlikely(se->load.weight != NICE_0_LOAD))
478 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
479
480 return delta;
481}
482
647e7cac
IM
483/*
484 * The idea is to set a period in which each task runs once.
485 *
486 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
487 * this period because otherwise the slices get too small.
488 *
489 * p = (nr <= nl) ? l : l*nr/nl
490 */
4d78e7b6
PZ
491static u64 __sched_period(unsigned long nr_running)
492{
493 u64 period = sysctl_sched_latency;
b2be5e96 494 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
495
496 if (unlikely(nr_running > nr_latency)) {
4bf0b771 497 period = sysctl_sched_min_granularity;
4d78e7b6 498 period *= nr_running;
4d78e7b6
PZ
499 }
500
501 return period;
502}
503
647e7cac
IM
504/*
505 * We calculate the wall-time slice from the period by taking a part
506 * proportional to the weight.
507 *
f9c0b095 508 * s = p*P[w/rw]
647e7cac 509 */
6d0f0ebd 510static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 511{
0a582440 512 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 513
0a582440 514 for_each_sched_entity(se) {
6272d68c 515 struct load_weight *load;
3104bf03 516 struct load_weight lw;
6272d68c
LM
517
518 cfs_rq = cfs_rq_of(se);
519 load = &cfs_rq->load;
f9c0b095 520
0a582440 521 if (unlikely(!se->on_rq)) {
3104bf03 522 lw = cfs_rq->load;
0a582440
MG
523
524 update_load_add(&lw, se->load.weight);
525 load = &lw;
526 }
527 slice = calc_delta_mine(slice, se->load.weight, load);
528 }
529 return slice;
bf0f6f24
IM
530}
531
647e7cac 532/*
ac884dec 533 * We calculate the vruntime slice of a to be inserted task
647e7cac 534 *
f9c0b095 535 * vs = s/w
647e7cac 536 */
f9c0b095 537static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 538{
f9c0b095 539 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
540}
541
bf0f6f24
IM
542/*
543 * Update the current task's runtime statistics. Skip current tasks that
544 * are not in our scheduling class.
545 */
546static inline void
8ebc91d9
IM
547__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
548 unsigned long delta_exec)
bf0f6f24 549{
bbdba7c0 550 unsigned long delta_exec_weighted;
bf0f6f24 551
41acab88
LDM
552 schedstat_set(curr->statistics.exec_max,
553 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
554
555 curr->sum_exec_runtime += delta_exec;
7a62eabc 556 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 557 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 558
e9acbff6 559 curr->vruntime += delta_exec_weighted;
1af5f730 560 update_min_vruntime(cfs_rq);
bf0f6f24
IM
561}
562
b7cc0896 563static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 564{
429d43bc 565 struct sched_entity *curr = cfs_rq->curr;
305e6835 566 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
567 unsigned long delta_exec;
568
569 if (unlikely(!curr))
570 return;
571
572 /*
573 * Get the amount of time the current task was running
574 * since the last time we changed load (this cannot
575 * overflow on 32 bits):
576 */
8ebc91d9 577 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
578 if (!delta_exec)
579 return;
bf0f6f24 580
8ebc91d9
IM
581 __update_curr(cfs_rq, curr, delta_exec);
582 curr->exec_start = now;
d842de87
SV
583
584 if (entity_is_task(curr)) {
585 struct task_struct *curtask = task_of(curr);
586
f977bb49 587 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 588 cpuacct_charge(curtask, delta_exec);
f06febc9 589 account_group_exec_runtime(curtask, delta_exec);
d842de87 590 }
bf0f6f24
IM
591}
592
593static inline void
5870db5b 594update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 595{
41acab88 596 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
597}
598
bf0f6f24
IM
599/*
600 * Task is being enqueued - update stats:
601 */
d2417e5a 602static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 603{
bf0f6f24
IM
604 /*
605 * Are we enqueueing a waiting task? (for current tasks
606 * a dequeue/enqueue event is a NOP)
607 */
429d43bc 608 if (se != cfs_rq->curr)
5870db5b 609 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
610}
611
bf0f6f24 612static void
9ef0a961 613update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 614{
41acab88
LDM
615 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
616 rq_of(cfs_rq)->clock - se->statistics.wait_start));
617 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
618 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
619 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
620#ifdef CONFIG_SCHEDSTATS
621 if (entity_is_task(se)) {
622 trace_sched_stat_wait(task_of(se),
41acab88 623 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
624 }
625#endif
41acab88 626 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
627}
628
629static inline void
19b6a2e3 630update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 631{
bf0f6f24
IM
632 /*
633 * Mark the end of the wait period if dequeueing a
634 * waiting task:
635 */
429d43bc 636 if (se != cfs_rq->curr)
9ef0a961 637 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
638}
639
640/*
641 * We are picking a new current task - update its stats:
642 */
643static inline void
79303e9e 644update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
645{
646 /*
647 * We are starting a new run period:
648 */
305e6835 649 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
650}
651
bf0f6f24
IM
652/**************************************************
653 * Scheduling class queueing methods:
654 */
655
c09595f6
PZ
656#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
657static void
658add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
659{
660 cfs_rq->task_weight += weight;
661}
662#else
663static inline void
664add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
665{
666}
667#endif
668
30cfdcfc
DA
669static void
670account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
671{
672 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
673 if (!parent_entity(se))
674 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 675 if (entity_is_task(se)) {
c09595f6 676 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
677 list_add(&se->group_node, &cfs_rq->tasks);
678 }
30cfdcfc 679 cfs_rq->nr_running++;
30cfdcfc
DA
680}
681
682static void
683account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
684{
685 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
686 if (!parent_entity(se))
687 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 688 if (entity_is_task(se)) {
c09595f6 689 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
690 list_del_init(&se->group_node);
691 }
30cfdcfc 692 cfs_rq->nr_running--;
30cfdcfc
DA
693}
694
2069dd75 695#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
e33078ba 696static void update_cfs_load(struct cfs_rq *cfs_rq)
2069dd75 697{
a7a4f8a7 698 u64 period = sysctl_sched_shares_window;
2069dd75 699 u64 now, delta;
e33078ba 700 unsigned long load = cfs_rq->load.weight;
2069dd75
PZ
701
702 if (!cfs_rq)
703 return;
704
705 now = rq_of(cfs_rq)->clock;
706 delta = now - cfs_rq->load_stamp;
707
e33078ba
PT
708 /* truncate load history at 4 idle periods */
709 if (cfs_rq->load_stamp > cfs_rq->load_last &&
710 now - cfs_rq->load_last > 4 * period) {
711 cfs_rq->load_period = 0;
712 cfs_rq->load_avg = 0;
713 }
714
2069dd75
PZ
715 cfs_rq->load_stamp = now;
716 cfs_rq->load_period += delta;
e33078ba
PT
717 if (load) {
718 cfs_rq->load_last = now;
719 cfs_rq->load_avg += delta * load;
720 }
2069dd75
PZ
721
722 while (cfs_rq->load_period > period) {
723 /*
724 * Inline assembly required to prevent the compiler
725 * optimising this loop into a divmod call.
726 * See __iter_div_u64_rem() for another example of this.
727 */
728 asm("" : "+rm" (cfs_rq->load_period));
729 cfs_rq->load_period /= 2;
730 cfs_rq->load_avg /= 2;
731 }
3d4b47b4 732
e33078ba
PT
733 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
734 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
735}
736
737static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
738 unsigned long weight)
739{
740 if (se->on_rq)
741 account_entity_dequeue(cfs_rq, se);
742
743 update_load_set(&se->load, weight);
744
745 if (se->on_rq)
746 account_entity_enqueue(cfs_rq, se);
747}
748
f0d7442a 749static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
2069dd75
PZ
750{
751 struct task_group *tg;
752 struct sched_entity *se;
753 long load_weight, load, shares;
754
755 if (!cfs_rq)
756 return;
757
758 tg = cfs_rq->tg;
759 se = tg->se[cpu_of(rq_of(cfs_rq))];
760 if (!se)
761 return;
762
f0d7442a 763 load = cfs_rq->load.weight + weight_delta;
2069dd75
PZ
764
765 load_weight = atomic_read(&tg->load_weight);
766 load_weight -= cfs_rq->load_contribution;
767 load_weight += load;
768
769 shares = (tg->shares * load);
770 if (load_weight)
771 shares /= load_weight;
772
773 if (shares < MIN_SHARES)
774 shares = MIN_SHARES;
775 if (shares > tg->shares)
776 shares = tg->shares;
777
778 reweight_entity(cfs_rq_of(se), se, shares);
779}
780#else /* CONFIG_FAIR_GROUP_SCHED */
e33078ba 781static inline void update_cfs_load(struct cfs_rq *cfs_rq)
2069dd75
PZ
782{
783}
784
f0d7442a 785static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
2069dd75
PZ
786{
787}
788#endif /* CONFIG_FAIR_GROUP_SCHED */
789
2396af69 790static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 791{
bf0f6f24 792#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
793 struct task_struct *tsk = NULL;
794
795 if (entity_is_task(se))
796 tsk = task_of(se);
797
41acab88
LDM
798 if (se->statistics.sleep_start) {
799 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
800
801 if ((s64)delta < 0)
802 delta = 0;
803
41acab88
LDM
804 if (unlikely(delta > se->statistics.sleep_max))
805 se->statistics.sleep_max = delta;
bf0f6f24 806
41acab88
LDM
807 se->statistics.sleep_start = 0;
808 se->statistics.sum_sleep_runtime += delta;
9745512c 809
768d0c27 810 if (tsk) {
e414314c 811 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
812 trace_sched_stat_sleep(tsk, delta);
813 }
bf0f6f24 814 }
41acab88
LDM
815 if (se->statistics.block_start) {
816 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
817
818 if ((s64)delta < 0)
819 delta = 0;
820
41acab88
LDM
821 if (unlikely(delta > se->statistics.block_max))
822 se->statistics.block_max = delta;
bf0f6f24 823
41acab88
LDM
824 se->statistics.block_start = 0;
825 se->statistics.sum_sleep_runtime += delta;
30084fbd 826
e414314c 827 if (tsk) {
8f0dfc34 828 if (tsk->in_iowait) {
41acab88
LDM
829 se->statistics.iowait_sum += delta;
830 se->statistics.iowait_count++;
768d0c27 831 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
832 }
833
e414314c
PZ
834 /*
835 * Blocking time is in units of nanosecs, so shift by
836 * 20 to get a milliseconds-range estimation of the
837 * amount of time that the task spent sleeping:
838 */
839 if (unlikely(prof_on == SLEEP_PROFILING)) {
840 profile_hits(SLEEP_PROFILING,
841 (void *)get_wchan(tsk),
842 delta >> 20);
843 }
844 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 845 }
bf0f6f24
IM
846 }
847#endif
848}
849
ddc97297
PZ
850static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
851{
852#ifdef CONFIG_SCHED_DEBUG
853 s64 d = se->vruntime - cfs_rq->min_vruntime;
854
855 if (d < 0)
856 d = -d;
857
858 if (d > 3*sysctl_sched_latency)
859 schedstat_inc(cfs_rq, nr_spread_over);
860#endif
861}
862
aeb73b04
PZ
863static void
864place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
865{
1af5f730 866 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 867
2cb8600e
PZ
868 /*
869 * The 'current' period is already promised to the current tasks,
870 * however the extra weight of the new task will slow them down a
871 * little, place the new task so that it fits in the slot that
872 * stays open at the end.
873 */
94dfb5e7 874 if (initial && sched_feat(START_DEBIT))
f9c0b095 875 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 876
a2e7a7eb 877 /* sleeps up to a single latency don't count. */
5ca9880c 878 if (!initial) {
a2e7a7eb 879 unsigned long thresh = sysctl_sched_latency;
a7be37ac 880
a2e7a7eb
MG
881 /*
882 * Halve their sleep time's effect, to allow
883 * for a gentler effect of sleepers:
884 */
885 if (sched_feat(GENTLE_FAIR_SLEEPERS))
886 thresh >>= 1;
51e0304c 887
a2e7a7eb 888 vruntime -= thresh;
aeb73b04
PZ
889 }
890
b5d9d734
MG
891 /* ensure we never gain time by being placed backwards. */
892 vruntime = max_vruntime(se->vruntime, vruntime);
893
67e9fb2a 894 se->vruntime = vruntime;
aeb73b04
PZ
895}
896
bf0f6f24 897static void
88ec22d3 898enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 899{
88ec22d3
PZ
900 /*
901 * Update the normalized vruntime before updating min_vruntime
902 * through callig update_curr().
903 */
371fd7e7 904 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
905 se->vruntime += cfs_rq->min_vruntime;
906
bf0f6f24 907 /*
a2a2d680 908 * Update run-time statistics of the 'current'.
bf0f6f24 909 */
b7cc0896 910 update_curr(cfs_rq);
e33078ba 911 update_cfs_load(cfs_rq);
f0d7442a 912 update_cfs_shares(cfs_rq, se->load.weight);
a992241d 913 account_entity_enqueue(cfs_rq, se);
bf0f6f24 914
88ec22d3 915 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 916 place_entity(cfs_rq, se, 0);
2396af69 917 enqueue_sleeper(cfs_rq, se);
e9acbff6 918 }
bf0f6f24 919
d2417e5a 920 update_stats_enqueue(cfs_rq, se);
ddc97297 921 check_spread(cfs_rq, se);
83b699ed
SV
922 if (se != cfs_rq->curr)
923 __enqueue_entity(cfs_rq, se);
2069dd75 924 se->on_rq = 1;
3d4b47b4
PZ
925
926 if (cfs_rq->nr_running == 1)
927 list_add_leaf_cfs_rq(cfs_rq);
bf0f6f24
IM
928}
929
a571bbea 930static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695 931{
de69a80b 932 if (!se || cfs_rq->last == se)
2002c695
PZ
933 cfs_rq->last = NULL;
934
de69a80b 935 if (!se || cfs_rq->next == se)
2002c695
PZ
936 cfs_rq->next = NULL;
937}
938
a571bbea
PZ
939static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
940{
941 for_each_sched_entity(se)
942 __clear_buddies(cfs_rq_of(se), se);
943}
944
bf0f6f24 945static void
371fd7e7 946dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 947{
a2a2d680
DA
948 /*
949 * Update run-time statistics of the 'current'.
950 */
951 update_curr(cfs_rq);
952
19b6a2e3 953 update_stats_dequeue(cfs_rq, se);
371fd7e7 954 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 955#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
956 if (entity_is_task(se)) {
957 struct task_struct *tsk = task_of(se);
958
959 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 960 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 961 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 962 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 963 }
db36cc7d 964#endif
67e9fb2a
PZ
965 }
966
2002c695 967 clear_buddies(cfs_rq, se);
4793241b 968
83b699ed 969 if (se != cfs_rq->curr)
30cfdcfc 970 __dequeue_entity(cfs_rq, se);
2069dd75 971 se->on_rq = 0;
e33078ba 972 update_cfs_load(cfs_rq);
30cfdcfc 973 account_entity_dequeue(cfs_rq, se);
1af5f730 974 update_min_vruntime(cfs_rq);
f0d7442a 975 update_cfs_shares(cfs_rq, 0);
88ec22d3
PZ
976
977 /*
978 * Normalize the entity after updating the min_vruntime because the
979 * update can refer to the ->curr item and we need to reflect this
980 * movement in our normalized position.
981 */
371fd7e7 982 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 983 se->vruntime -= cfs_rq->min_vruntime;
bf0f6f24
IM
984}
985
986/*
987 * Preempt the current task with a newly woken task if needed:
988 */
7c92e54f 989static void
2e09bf55 990check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 991{
11697830
PZ
992 unsigned long ideal_runtime, delta_exec;
993
6d0f0ebd 994 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 995 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 996 if (delta_exec > ideal_runtime) {
bf0f6f24 997 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
998 /*
999 * The current task ran long enough, ensure it doesn't get
1000 * re-elected due to buddy favours.
1001 */
1002 clear_buddies(cfs_rq, curr);
f685ceac
MG
1003 return;
1004 }
1005
1006 /*
1007 * Ensure that a task that missed wakeup preemption by a
1008 * narrow margin doesn't have to wait for a full slice.
1009 * This also mitigates buddy induced latencies under load.
1010 */
1011 if (!sched_feat(WAKEUP_PREEMPT))
1012 return;
1013
1014 if (delta_exec < sysctl_sched_min_granularity)
1015 return;
1016
1017 if (cfs_rq->nr_running > 1) {
1018 struct sched_entity *se = __pick_next_entity(cfs_rq);
1019 s64 delta = curr->vruntime - se->vruntime;
1020
1021 if (delta > ideal_runtime)
1022 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 1023 }
bf0f6f24
IM
1024}
1025
83b699ed 1026static void
8494f412 1027set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1028{
83b699ed
SV
1029 /* 'current' is not kept within the tree. */
1030 if (se->on_rq) {
1031 /*
1032 * Any task has to be enqueued before it get to execute on
1033 * a CPU. So account for the time it spent waiting on the
1034 * runqueue.
1035 */
1036 update_stats_wait_end(cfs_rq, se);
1037 __dequeue_entity(cfs_rq, se);
1038 }
1039
79303e9e 1040 update_stats_curr_start(cfs_rq, se);
429d43bc 1041 cfs_rq->curr = se;
eba1ed4b
IM
1042#ifdef CONFIG_SCHEDSTATS
1043 /*
1044 * Track our maximum slice length, if the CPU's load is at
1045 * least twice that of our own weight (i.e. dont track it
1046 * when there are only lesser-weight tasks around):
1047 */
495eca49 1048 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1049 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1050 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1051 }
1052#endif
4a55b450 1053 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1054}
1055
3f3a4904
PZ
1056static int
1057wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1058
f4b6755f 1059static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1060{
f4b6755f 1061 struct sched_entity *se = __pick_next_entity(cfs_rq);
f685ceac 1062 struct sched_entity *left = se;
f4b6755f 1063
f685ceac
MG
1064 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1065 se = cfs_rq->next;
aa2ac252 1066
f685ceac
MG
1067 /*
1068 * Prefer last buddy, try to return the CPU to a preempted task.
1069 */
1070 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1071 se = cfs_rq->last;
1072
1073 clear_buddies(cfs_rq, se);
4793241b
PZ
1074
1075 return se;
aa2ac252
PZ
1076}
1077
ab6cde26 1078static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1079{
1080 /*
1081 * If still on the runqueue then deactivate_task()
1082 * was not called and update_curr() has to be done:
1083 */
1084 if (prev->on_rq)
b7cc0896 1085 update_curr(cfs_rq);
bf0f6f24 1086
ddc97297 1087 check_spread(cfs_rq, prev);
30cfdcfc 1088 if (prev->on_rq) {
5870db5b 1089 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1090 /* Put 'current' back into the tree. */
1091 __enqueue_entity(cfs_rq, prev);
1092 }
429d43bc 1093 cfs_rq->curr = NULL;
bf0f6f24
IM
1094}
1095
8f4d37ec
PZ
1096static void
1097entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1098{
bf0f6f24 1099 /*
30cfdcfc 1100 * Update run-time statistics of the 'current'.
bf0f6f24 1101 */
30cfdcfc 1102 update_curr(cfs_rq);
bf0f6f24 1103
8f4d37ec
PZ
1104#ifdef CONFIG_SCHED_HRTICK
1105 /*
1106 * queued ticks are scheduled to match the slice, so don't bother
1107 * validating it and just reschedule.
1108 */
983ed7a6
HH
1109 if (queued) {
1110 resched_task(rq_of(cfs_rq)->curr);
1111 return;
1112 }
8f4d37ec
PZ
1113 /*
1114 * don't let the period tick interfere with the hrtick preemption
1115 */
1116 if (!sched_feat(DOUBLE_TICK) &&
1117 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1118 return;
1119#endif
1120
ce6c1311 1121 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 1122 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1123}
1124
1125/**************************************************
1126 * CFS operations on tasks:
1127 */
1128
8f4d37ec
PZ
1129#ifdef CONFIG_SCHED_HRTICK
1130static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1131{
8f4d37ec
PZ
1132 struct sched_entity *se = &p->se;
1133 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1134
1135 WARN_ON(task_rq(p) != rq);
1136
1137 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1138 u64 slice = sched_slice(cfs_rq, se);
1139 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1140 s64 delta = slice - ran;
1141
1142 if (delta < 0) {
1143 if (rq->curr == p)
1144 resched_task(p);
1145 return;
1146 }
1147
1148 /*
1149 * Don't schedule slices shorter than 10000ns, that just
1150 * doesn't make sense. Rely on vruntime for fairness.
1151 */
31656519 1152 if (rq->curr != p)
157124c1 1153 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1154
31656519 1155 hrtick_start(rq, delta);
8f4d37ec
PZ
1156 }
1157}
a4c2f00f
PZ
1158
1159/*
1160 * called from enqueue/dequeue and updates the hrtick when the
1161 * current task is from our class and nr_running is low enough
1162 * to matter.
1163 */
1164static void hrtick_update(struct rq *rq)
1165{
1166 struct task_struct *curr = rq->curr;
1167
1168 if (curr->sched_class != &fair_sched_class)
1169 return;
1170
1171 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1172 hrtick_start_fair(rq, curr);
1173}
55e12e5e 1174#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1175static inline void
1176hrtick_start_fair(struct rq *rq, struct task_struct *p)
1177{
1178}
a4c2f00f
PZ
1179
1180static inline void hrtick_update(struct rq *rq)
1181{
1182}
8f4d37ec
PZ
1183#endif
1184
bf0f6f24
IM
1185/*
1186 * The enqueue_task method is called before nr_running is
1187 * increased. Here we update the fair scheduling stats and
1188 * then put the task into the rbtree:
1189 */
ea87bb78 1190static void
371fd7e7 1191enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1192{
1193 struct cfs_rq *cfs_rq;
62fb1851 1194 struct sched_entity *se = &p->se;
bf0f6f24
IM
1195
1196 for_each_sched_entity(se) {
62fb1851 1197 if (se->on_rq)
bf0f6f24
IM
1198 break;
1199 cfs_rq = cfs_rq_of(se);
88ec22d3
PZ
1200 enqueue_entity(cfs_rq, se, flags);
1201 flags = ENQUEUE_WAKEUP;
bf0f6f24 1202 }
8f4d37ec 1203
2069dd75
PZ
1204 for_each_sched_entity(se) {
1205 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1206
e33078ba 1207 update_cfs_load(cfs_rq);
f0d7442a 1208 update_cfs_shares(cfs_rq, 0);
2069dd75
PZ
1209 }
1210
a4c2f00f 1211 hrtick_update(rq);
bf0f6f24
IM
1212}
1213
1214/*
1215 * The dequeue_task method is called before nr_running is
1216 * decreased. We remove the task from the rbtree and
1217 * update the fair scheduling stats:
1218 */
371fd7e7 1219static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1220{
1221 struct cfs_rq *cfs_rq;
62fb1851 1222 struct sched_entity *se = &p->se;
bf0f6f24
IM
1223
1224 for_each_sched_entity(se) {
1225 cfs_rq = cfs_rq_of(se);
371fd7e7 1226 dequeue_entity(cfs_rq, se, flags);
2069dd75 1227
bf0f6f24 1228 /* Don't dequeue parent if it has other entities besides us */
62fb1851 1229 if (cfs_rq->load.weight)
bf0f6f24 1230 break;
371fd7e7 1231 flags |= DEQUEUE_SLEEP;
bf0f6f24 1232 }
8f4d37ec 1233
2069dd75
PZ
1234 for_each_sched_entity(se) {
1235 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1236
e33078ba 1237 update_cfs_load(cfs_rq);
f0d7442a 1238 update_cfs_shares(cfs_rq, 0);
2069dd75
PZ
1239 }
1240
a4c2f00f 1241 hrtick_update(rq);
bf0f6f24
IM
1242}
1243
1244/*
1799e35d
IM
1245 * sched_yield() support is very simple - we dequeue and enqueue.
1246 *
1247 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 1248 */
4530d7ab 1249static void yield_task_fair(struct rq *rq)
bf0f6f24 1250{
db292ca3
IM
1251 struct task_struct *curr = rq->curr;
1252 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1253 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1254
1255 /*
1799e35d
IM
1256 * Are we the only task in the tree?
1257 */
1258 if (unlikely(cfs_rq->nr_running == 1))
1259 return;
1260
2002c695
PZ
1261 clear_buddies(cfs_rq, se);
1262
db292ca3 1263 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1264 update_rq_clock(rq);
1799e35d 1265 /*
a2a2d680 1266 * Update run-time statistics of the 'current'.
1799e35d 1267 */
2b1e315d 1268 update_curr(cfs_rq);
1799e35d
IM
1269
1270 return;
1271 }
1272 /*
1273 * Find the rightmost entry in the rbtree:
bf0f6f24 1274 */
2b1e315d 1275 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1276 /*
1277 * Already in the rightmost position?
1278 */
54fdc581 1279 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1280 return;
1281
1282 /*
1283 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1284 * Upon rescheduling, sched_class::put_prev_task() will place
1285 * 'current' within the tree based on its new key value.
1799e35d 1286 */
30cfdcfc 1287 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1288}
1289
e7693a36 1290#ifdef CONFIG_SMP
098fb9db 1291
88ec22d3
PZ
1292static void task_waking_fair(struct rq *rq, struct task_struct *p)
1293{
1294 struct sched_entity *se = &p->se;
1295 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1296
1297 se->vruntime -= cfs_rq->min_vruntime;
1298}
1299
bb3469ac 1300#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1301/*
1302 * effective_load() calculates the load change as seen from the root_task_group
1303 *
1304 * Adding load to a group doesn't make a group heavier, but can cause movement
1305 * of group shares between cpus. Assuming the shares were perfectly aligned one
1306 * can calculate the shift in shares.
f5bfb7d9 1307 */
2069dd75 1308static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 1309{
4be9daaa 1310 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1311
1312 if (!tg->parent)
1313 return wl;
1314
4be9daaa 1315 for_each_sched_entity(se) {
cb5ef42a 1316 long S, rw, s, a, b;
4be9daaa
PZ
1317
1318 S = se->my_q->tg->shares;
2069dd75
PZ
1319 s = se->load.weight;
1320 rw = se->my_q->load.weight;
bb3469ac 1321
cb5ef42a
PZ
1322 a = S*(rw + wl);
1323 b = S*rw + s*wg;
4be9daaa 1324
940959e9
PZ
1325 wl = s*(a-b);
1326
1327 if (likely(b))
1328 wl /= b;
1329
83378269
PZ
1330 /*
1331 * Assume the group is already running and will
1332 * thus already be accounted for in the weight.
1333 *
1334 * That is, moving shares between CPUs, does not
1335 * alter the group weight.
1336 */
4be9daaa 1337 wg = 0;
4be9daaa 1338 }
bb3469ac 1339
4be9daaa 1340 return wl;
bb3469ac 1341}
4be9daaa 1342
bb3469ac 1343#else
4be9daaa 1344
83378269
PZ
1345static inline unsigned long effective_load(struct task_group *tg, int cpu,
1346 unsigned long wl, unsigned long wg)
4be9daaa 1347{
83378269 1348 return wl;
bb3469ac 1349}
4be9daaa 1350
bb3469ac
PZ
1351#endif
1352
c88d5910 1353static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1354{
c88d5910
PZ
1355 unsigned long this_load, load;
1356 int idx, this_cpu, prev_cpu;
098fb9db 1357 unsigned long tl_per_task;
c88d5910 1358 struct task_group *tg;
83378269 1359 unsigned long weight;
b3137bc8 1360 int balanced;
098fb9db 1361
c88d5910
PZ
1362 idx = sd->wake_idx;
1363 this_cpu = smp_processor_id();
1364 prev_cpu = task_cpu(p);
1365 load = source_load(prev_cpu, idx);
1366 this_load = target_load(this_cpu, idx);
098fb9db 1367
b3137bc8
MG
1368 /*
1369 * If sync wakeup then subtract the (maximum possible)
1370 * effect of the currently running task from the load
1371 * of the current CPU:
1372 */
f3b577de 1373 rcu_read_lock();
83378269
PZ
1374 if (sync) {
1375 tg = task_group(current);
1376 weight = current->se.load.weight;
1377
c88d5910 1378 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1379 load += effective_load(tg, prev_cpu, 0, -weight);
1380 }
b3137bc8 1381
83378269
PZ
1382 tg = task_group(p);
1383 weight = p->se.load.weight;
b3137bc8 1384
71a29aa7
PZ
1385 /*
1386 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1387 * due to the sync cause above having dropped this_load to 0, we'll
1388 * always have an imbalance, but there's really nothing you can do
1389 * about that, so that's good too.
71a29aa7
PZ
1390 *
1391 * Otherwise check if either cpus are near enough in load to allow this
1392 * task to be woken on this_cpu.
1393 */
e51fd5e2
PZ
1394 if (this_load) {
1395 unsigned long this_eff_load, prev_eff_load;
1396
1397 this_eff_load = 100;
1398 this_eff_load *= power_of(prev_cpu);
1399 this_eff_load *= this_load +
1400 effective_load(tg, this_cpu, weight, weight);
1401
1402 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1403 prev_eff_load *= power_of(this_cpu);
1404 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1405
1406 balanced = this_eff_load <= prev_eff_load;
1407 } else
1408 balanced = true;
f3b577de 1409 rcu_read_unlock();
b3137bc8 1410
098fb9db 1411 /*
4ae7d5ce
IM
1412 * If the currently running task will sleep within
1413 * a reasonable amount of time then attract this newly
1414 * woken task:
098fb9db 1415 */
2fb7635c
PZ
1416 if (sync && balanced)
1417 return 1;
098fb9db 1418
41acab88 1419 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
1420 tl_per_task = cpu_avg_load_per_task(this_cpu);
1421
c88d5910
PZ
1422 if (balanced ||
1423 (this_load <= load &&
1424 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1425 /*
1426 * This domain has SD_WAKE_AFFINE and
1427 * p is cache cold in this domain, and
1428 * there is no bad imbalance.
1429 */
c88d5910 1430 schedstat_inc(sd, ttwu_move_affine);
41acab88 1431 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
1432
1433 return 1;
1434 }
1435 return 0;
1436}
1437
aaee1203
PZ
1438/*
1439 * find_idlest_group finds and returns the least busy CPU group within the
1440 * domain.
1441 */
1442static struct sched_group *
78e7ed53 1443find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1444 int this_cpu, int load_idx)
e7693a36 1445{
b3bd3de6 1446 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 1447 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1448 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1449
aaee1203
PZ
1450 do {
1451 unsigned long load, avg_load;
1452 int local_group;
1453 int i;
e7693a36 1454
aaee1203
PZ
1455 /* Skip over this group if it has no CPUs allowed */
1456 if (!cpumask_intersects(sched_group_cpus(group),
1457 &p->cpus_allowed))
1458 continue;
1459
1460 local_group = cpumask_test_cpu(this_cpu,
1461 sched_group_cpus(group));
1462
1463 /* Tally up the load of all CPUs in the group */
1464 avg_load = 0;
1465
1466 for_each_cpu(i, sched_group_cpus(group)) {
1467 /* Bias balancing toward cpus of our domain */
1468 if (local_group)
1469 load = source_load(i, load_idx);
1470 else
1471 load = target_load(i, load_idx);
1472
1473 avg_load += load;
1474 }
1475
1476 /* Adjust by relative CPU power of the group */
1477 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1478
1479 if (local_group) {
1480 this_load = avg_load;
aaee1203
PZ
1481 } else if (avg_load < min_load) {
1482 min_load = avg_load;
1483 idlest = group;
1484 }
1485 } while (group = group->next, group != sd->groups);
1486
1487 if (!idlest || 100*this_load < imbalance*min_load)
1488 return NULL;
1489 return idlest;
1490}
1491
1492/*
1493 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1494 */
1495static int
1496find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1497{
1498 unsigned long load, min_load = ULONG_MAX;
1499 int idlest = -1;
1500 int i;
1501
1502 /* Traverse only the allowed CPUs */
1503 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1504 load = weighted_cpuload(i);
1505
1506 if (load < min_load || (load == min_load && i == this_cpu)) {
1507 min_load = load;
1508 idlest = i;
e7693a36
GH
1509 }
1510 }
1511
aaee1203
PZ
1512 return idlest;
1513}
e7693a36 1514
a50bde51
PZ
1515/*
1516 * Try and locate an idle CPU in the sched_domain.
1517 */
99bd5e2f 1518static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
1519{
1520 int cpu = smp_processor_id();
1521 int prev_cpu = task_cpu(p);
99bd5e2f 1522 struct sched_domain *sd;
a50bde51
PZ
1523 int i;
1524
1525 /*
99bd5e2f
SS
1526 * If the task is going to be woken-up on this cpu and if it is
1527 * already idle, then it is the right target.
a50bde51 1528 */
99bd5e2f
SS
1529 if (target == cpu && idle_cpu(cpu))
1530 return cpu;
1531
1532 /*
1533 * If the task is going to be woken-up on the cpu where it previously
1534 * ran and if it is currently idle, then it the right target.
1535 */
1536 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 1537 return prev_cpu;
a50bde51
PZ
1538
1539 /*
99bd5e2f 1540 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 1541 */
99bd5e2f
SS
1542 for_each_domain(target, sd) {
1543 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
fe3bcfe1 1544 break;
99bd5e2f
SS
1545
1546 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1547 if (idle_cpu(i)) {
1548 target = i;
1549 break;
1550 }
a50bde51 1551 }
99bd5e2f
SS
1552
1553 /*
1554 * Lets stop looking for an idle sibling when we reached
1555 * the domain that spans the current cpu and prev_cpu.
1556 */
1557 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1558 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1559 break;
a50bde51
PZ
1560 }
1561
1562 return target;
1563}
1564
aaee1203
PZ
1565/*
1566 * sched_balance_self: balance the current task (running on cpu) in domains
1567 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1568 * SD_BALANCE_EXEC.
1569 *
1570 * Balance, ie. select the least loaded group.
1571 *
1572 * Returns the target CPU number, or the same CPU if no balancing is needed.
1573 *
1574 * preempt must be disabled.
1575 */
0017d735
PZ
1576static int
1577select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1578{
29cd8bae 1579 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1580 int cpu = smp_processor_id();
1581 int prev_cpu = task_cpu(p);
1582 int new_cpu = cpu;
99bd5e2f 1583 int want_affine = 0;
29cd8bae 1584 int want_sd = 1;
5158f4e4 1585 int sync = wake_flags & WF_SYNC;
c88d5910 1586
0763a660 1587 if (sd_flag & SD_BALANCE_WAKE) {
beac4c7e 1588 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1589 want_affine = 1;
1590 new_cpu = prev_cpu;
1591 }
aaee1203
PZ
1592
1593 for_each_domain(cpu, tmp) {
e4f42888
PZ
1594 if (!(tmp->flags & SD_LOAD_BALANCE))
1595 continue;
1596
aaee1203 1597 /*
ae154be1
PZ
1598 * If power savings logic is enabled for a domain, see if we
1599 * are not overloaded, if so, don't balance wider.
aaee1203 1600 */
59abf026 1601 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1602 unsigned long power = 0;
1603 unsigned long nr_running = 0;
1604 unsigned long capacity;
1605 int i;
1606
1607 for_each_cpu(i, sched_domain_span(tmp)) {
1608 power += power_of(i);
1609 nr_running += cpu_rq(i)->cfs.nr_running;
1610 }
1611
1612 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1613
59abf026
PZ
1614 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1615 nr_running /= 2;
1616
1617 if (nr_running < capacity)
29cd8bae 1618 want_sd = 0;
ae154be1 1619 }
aaee1203 1620
fe3bcfe1 1621 /*
99bd5e2f
SS
1622 * If both cpu and prev_cpu are part of this domain,
1623 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 1624 */
99bd5e2f
SS
1625 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1626 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1627 affine_sd = tmp;
1628 want_affine = 0;
c88d5910
PZ
1629 }
1630
29cd8bae
PZ
1631 if (!want_sd && !want_affine)
1632 break;
1633
0763a660 1634 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1635 continue;
1636
29cd8bae
PZ
1637 if (want_sd)
1638 sd = tmp;
1639 }
1640
8b911acd 1641 if (affine_sd) {
99bd5e2f
SS
1642 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1643 return select_idle_sibling(p, cpu);
1644 else
1645 return select_idle_sibling(p, prev_cpu);
8b911acd 1646 }
e7693a36 1647
aaee1203 1648 while (sd) {
5158f4e4 1649 int load_idx = sd->forkexec_idx;
aaee1203 1650 struct sched_group *group;
c88d5910 1651 int weight;
098fb9db 1652
0763a660 1653 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1654 sd = sd->child;
1655 continue;
1656 }
098fb9db 1657
5158f4e4
PZ
1658 if (sd_flag & SD_BALANCE_WAKE)
1659 load_idx = sd->wake_idx;
098fb9db 1660
5158f4e4 1661 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1662 if (!group) {
1663 sd = sd->child;
1664 continue;
1665 }
4ae7d5ce 1666
d7c33c49 1667 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1668 if (new_cpu == -1 || new_cpu == cpu) {
1669 /* Now try balancing at a lower domain level of cpu */
1670 sd = sd->child;
1671 continue;
e7693a36 1672 }
aaee1203
PZ
1673
1674 /* Now try balancing at a lower domain level of new_cpu */
1675 cpu = new_cpu;
669c55e9 1676 weight = sd->span_weight;
aaee1203
PZ
1677 sd = NULL;
1678 for_each_domain(cpu, tmp) {
669c55e9 1679 if (weight <= tmp->span_weight)
aaee1203 1680 break;
0763a660 1681 if (tmp->flags & sd_flag)
aaee1203
PZ
1682 sd = tmp;
1683 }
1684 /* while loop will break here if sd == NULL */
e7693a36
GH
1685 }
1686
c88d5910 1687 return new_cpu;
e7693a36
GH
1688}
1689#endif /* CONFIG_SMP */
1690
e52fb7c0
PZ
1691static unsigned long
1692wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1693{
1694 unsigned long gran = sysctl_sched_wakeup_granularity;
1695
1696 /*
e52fb7c0
PZ
1697 * Since its curr running now, convert the gran from real-time
1698 * to virtual-time in his units.
13814d42
MG
1699 *
1700 * By using 'se' instead of 'curr' we penalize light tasks, so
1701 * they get preempted easier. That is, if 'se' < 'curr' then
1702 * the resulting gran will be larger, therefore penalizing the
1703 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1704 * be smaller, again penalizing the lighter task.
1705 *
1706 * This is especially important for buddies when the leftmost
1707 * task is higher priority than the buddy.
0bbd3336 1708 */
13814d42
MG
1709 if (unlikely(se->load.weight != NICE_0_LOAD))
1710 gran = calc_delta_fair(gran, se);
0bbd3336
PZ
1711
1712 return gran;
1713}
1714
464b7527
PZ
1715/*
1716 * Should 'se' preempt 'curr'.
1717 *
1718 * |s1
1719 * |s2
1720 * |s3
1721 * g
1722 * |<--->|c
1723 *
1724 * w(c, s1) = -1
1725 * w(c, s2) = 0
1726 * w(c, s3) = 1
1727 *
1728 */
1729static int
1730wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1731{
1732 s64 gran, vdiff = curr->vruntime - se->vruntime;
1733
1734 if (vdiff <= 0)
1735 return -1;
1736
e52fb7c0 1737 gran = wakeup_gran(curr, se);
464b7527
PZ
1738 if (vdiff > gran)
1739 return 1;
1740
1741 return 0;
1742}
1743
02479099
PZ
1744static void set_last_buddy(struct sched_entity *se)
1745{
6bc912b7
PZ
1746 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1747 for_each_sched_entity(se)
1748 cfs_rq_of(se)->last = se;
1749 }
02479099
PZ
1750}
1751
1752static void set_next_buddy(struct sched_entity *se)
1753{
6bc912b7
PZ
1754 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1755 for_each_sched_entity(se)
1756 cfs_rq_of(se)->next = se;
1757 }
02479099
PZ
1758}
1759
bf0f6f24
IM
1760/*
1761 * Preempt the current task with a newly woken task if needed:
1762 */
5a9b86f6 1763static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
1764{
1765 struct task_struct *curr = rq->curr;
8651a86c 1766 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1767 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 1768 int scale = cfs_rq->nr_running >= sched_nr_latency;
bf0f6f24 1769
3a7e73a2
PZ
1770 if (unlikely(rt_prio(p->prio)))
1771 goto preempt;
aa2ac252 1772
d95f98d0
PZ
1773 if (unlikely(p->sched_class != &fair_sched_class))
1774 return;
1775
4ae7d5ce
IM
1776 if (unlikely(se == pse))
1777 return;
1778
f685ceac 1779 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
3cb63d52 1780 set_next_buddy(pse);
57fdc26d 1781
aec0a514
BR
1782 /*
1783 * We can come here with TIF_NEED_RESCHED already set from new task
1784 * wake up path.
1785 */
1786 if (test_tsk_need_resched(curr))
1787 return;
1788
91c234b4 1789 /*
6bc912b7 1790 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1791 * the tick):
1792 */
6bc912b7 1793 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1794 return;
bf0f6f24 1795
6bc912b7 1796 /* Idle tasks are by definition preempted by everybody. */
3a7e73a2
PZ
1797 if (unlikely(curr->policy == SCHED_IDLE))
1798 goto preempt;
bf0f6f24 1799
ad4b78bb
PZ
1800 if (!sched_feat(WAKEUP_PREEMPT))
1801 return;
1802
3a7e73a2 1803 update_curr(cfs_rq);
464b7527 1804 find_matching_se(&se, &pse);
002f128b 1805 BUG_ON(!pse);
3a7e73a2
PZ
1806 if (wakeup_preempt_entity(se, pse) == 1)
1807 goto preempt;
464b7527 1808
3a7e73a2 1809 return;
a65ac745 1810
3a7e73a2
PZ
1811preempt:
1812 resched_task(curr);
1813 /*
1814 * Only set the backward buddy when the current task is still
1815 * on the rq. This can happen when a wakeup gets interleaved
1816 * with schedule on the ->pre_schedule() or idle_balance()
1817 * point, either of which can * drop the rq lock.
1818 *
1819 * Also, during early boot the idle thread is in the fair class,
1820 * for obvious reasons its a bad idea to schedule back to it.
1821 */
1822 if (unlikely(!se->on_rq || curr == rq->idle))
1823 return;
1824
1825 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1826 set_last_buddy(se);
bf0f6f24
IM
1827}
1828
fb8d4724 1829static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1830{
8f4d37ec 1831 struct task_struct *p;
bf0f6f24
IM
1832 struct cfs_rq *cfs_rq = &rq->cfs;
1833 struct sched_entity *se;
1834
36ace27e 1835 if (!cfs_rq->nr_running)
bf0f6f24
IM
1836 return NULL;
1837
1838 do {
9948f4b2 1839 se = pick_next_entity(cfs_rq);
f4b6755f 1840 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1841 cfs_rq = group_cfs_rq(se);
1842 } while (cfs_rq);
1843
8f4d37ec
PZ
1844 p = task_of(se);
1845 hrtick_start_fair(rq, p);
1846
1847 return p;
bf0f6f24
IM
1848}
1849
1850/*
1851 * Account for a descheduled task:
1852 */
31ee529c 1853static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1854{
1855 struct sched_entity *se = &prev->se;
1856 struct cfs_rq *cfs_rq;
1857
1858 for_each_sched_entity(se) {
1859 cfs_rq = cfs_rq_of(se);
ab6cde26 1860 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1861 }
1862}
1863
681f3e68 1864#ifdef CONFIG_SMP
bf0f6f24
IM
1865/**************************************************
1866 * Fair scheduling class load-balancing methods:
1867 */
1868
1e3c88bd
PZ
1869/*
1870 * pull_task - move a task from a remote runqueue to the local runqueue.
1871 * Both runqueues must be locked.
1872 */
1873static void pull_task(struct rq *src_rq, struct task_struct *p,
1874 struct rq *this_rq, int this_cpu)
1875{
1876 deactivate_task(src_rq, p, 0);
1877 set_task_cpu(p, this_cpu);
1878 activate_task(this_rq, p, 0);
1879 check_preempt_curr(this_rq, p, 0);
fab47622
NR
1880
1881 /* re-arm NEWIDLE balancing when moving tasks */
1882 src_rq->avg_idle = this_rq->avg_idle = 2*sysctl_sched_migration_cost;
1883 this_rq->idle_stamp = 0;
1e3c88bd
PZ
1884}
1885
1886/*
1887 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1888 */
1889static
1890int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1891 struct sched_domain *sd, enum cpu_idle_type idle,
1892 int *all_pinned)
1893{
1894 int tsk_cache_hot = 0;
1895 /*
1896 * We do not migrate tasks that are:
1897 * 1) running (obviously), or
1898 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1899 * 3) are cache-hot on their current CPU.
1900 */
1901 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
41acab88 1902 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
1903 return 0;
1904 }
1905 *all_pinned = 0;
1906
1907 if (task_running(rq, p)) {
41acab88 1908 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
1909 return 0;
1910 }
1911
1912 /*
1913 * Aggressive migration if:
1914 * 1) task is cache cold, or
1915 * 2) too many balance attempts have failed.
1916 */
1917
305e6835 1918 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
1919 if (!tsk_cache_hot ||
1920 sd->nr_balance_failed > sd->cache_nice_tries) {
1921#ifdef CONFIG_SCHEDSTATS
1922 if (tsk_cache_hot) {
1923 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 1924 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
1925 }
1926#endif
1927 return 1;
1928 }
1929
1930 if (tsk_cache_hot) {
41acab88 1931 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
1932 return 0;
1933 }
1934 return 1;
1935}
1936
897c395f
PZ
1937/*
1938 * move_one_task tries to move exactly one task from busiest to this_rq, as
1939 * part of active balancing operations within "domain".
1940 * Returns 1 if successful and 0 otherwise.
1941 *
1942 * Called with both runqueues locked.
1943 */
1944static int
1945move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1946 struct sched_domain *sd, enum cpu_idle_type idle)
1947{
1948 struct task_struct *p, *n;
1949 struct cfs_rq *cfs_rq;
1950 int pinned = 0;
1951
1952 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1953 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1954
1955 if (!can_migrate_task(p, busiest, this_cpu,
1956 sd, idle, &pinned))
1957 continue;
1958
1959 pull_task(busiest, p, this_rq, this_cpu);
1960 /*
1961 * Right now, this is only the second place pull_task()
1962 * is called, so we can safely collect pull_task()
1963 * stats here rather than inside pull_task().
1964 */
1965 schedstat_inc(sd, lb_gained[idle]);
1966 return 1;
1967 }
1968 }
1969
1970 return 0;
1971}
1972
1e3c88bd
PZ
1973static unsigned long
1974balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1975 unsigned long max_load_move, struct sched_domain *sd,
1976 enum cpu_idle_type idle, int *all_pinned,
ee00e66f 1977 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1e3c88bd
PZ
1978{
1979 int loops = 0, pulled = 0, pinned = 0;
1e3c88bd 1980 long rem_load_move = max_load_move;
ee00e66f 1981 struct task_struct *p, *n;
1e3c88bd
PZ
1982
1983 if (max_load_move == 0)
1984 goto out;
1985
1986 pinned = 1;
1987
ee00e66f
PZ
1988 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1989 if (loops++ > sysctl_sched_nr_migrate)
1990 break;
1e3c88bd 1991
ee00e66f
PZ
1992 if ((p->se.load.weight >> 1) > rem_load_move ||
1993 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1994 continue;
1e3c88bd 1995
ee00e66f
PZ
1996 pull_task(busiest, p, this_rq, this_cpu);
1997 pulled++;
1998 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
1999
2000#ifdef CONFIG_PREEMPT
ee00e66f
PZ
2001 /*
2002 * NEWIDLE balancing is a source of latency, so preemptible
2003 * kernels will stop after the first task is pulled to minimize
2004 * the critical section.
2005 */
2006 if (idle == CPU_NEWLY_IDLE)
2007 break;
1e3c88bd
PZ
2008#endif
2009
ee00e66f
PZ
2010 /*
2011 * We only want to steal up to the prescribed amount of
2012 * weighted load.
2013 */
2014 if (rem_load_move <= 0)
2015 break;
2016
1e3c88bd
PZ
2017 if (p->prio < *this_best_prio)
2018 *this_best_prio = p->prio;
1e3c88bd
PZ
2019 }
2020out:
2021 /*
2022 * Right now, this is one of only two places pull_task() is called,
2023 * so we can safely collect pull_task() stats here rather than
2024 * inside pull_task().
2025 */
2026 schedstat_add(sd, lb_gained[idle], pulled);
2027
2028 if (all_pinned)
2029 *all_pinned = pinned;
2030
2031 return max_load_move - rem_load_move;
2032}
2033
230059de 2034#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
2035/*
2036 * update tg->load_weight by folding this cpu's load_avg
2037 */
67e86250 2038static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
2039{
2040 struct cfs_rq *cfs_rq;
2041 unsigned long flags;
2042 struct rq *rq;
2043 long load_avg;
2044
2045 if (!tg->se[cpu])
2046 return 0;
2047
2048 rq = cpu_rq(cpu);
2049 cfs_rq = tg->cfs_rq[cpu];
2050
2051 raw_spin_lock_irqsave(&rq->lock, flags);
2052
2053 update_rq_clock(rq);
e33078ba 2054 update_cfs_load(cfs_rq);
9e3081ca
PZ
2055
2056 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
2057 load_avg -= cfs_rq->load_contribution;
2058 atomic_add(load_avg, &tg->load_weight);
2059 cfs_rq->load_contribution += load_avg;
2060
2061 /*
2062 * We need to update shares after updating tg->load_weight in
2063 * order to adjust the weight of groups with long running tasks.
2064 */
f0d7442a 2065 update_cfs_shares(cfs_rq, 0);
9e3081ca
PZ
2066
2067 raw_spin_unlock_irqrestore(&rq->lock, flags);
2068
2069 return 0;
2070}
2071
2072static void update_shares(int cpu)
2073{
2074 struct cfs_rq *cfs_rq;
2075 struct rq *rq = cpu_rq(cpu);
2076
2077 rcu_read_lock();
67e86250
PT
2078 for_each_leaf_cfs_rq(rq, cfs_rq)
2079 update_shares_cpu(cfs_rq->tg, cpu);
9e3081ca
PZ
2080 rcu_read_unlock();
2081}
2082
230059de
PZ
2083static unsigned long
2084load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2085 unsigned long max_load_move,
2086 struct sched_domain *sd, enum cpu_idle_type idle,
2087 int *all_pinned, int *this_best_prio)
2088{
2089 long rem_load_move = max_load_move;
2090 int busiest_cpu = cpu_of(busiest);
2091 struct task_group *tg;
2092
2093 rcu_read_lock();
2094 update_h_load(busiest_cpu);
2095
2096 list_for_each_entry_rcu(tg, &task_groups, list) {
2097 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2098 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2099 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2100 u64 rem_load, moved_load;
2101
2102 /*
2103 * empty group
2104 */
2105 if (!busiest_cfs_rq->task_weight)
2106 continue;
2107
2108 rem_load = (u64)rem_load_move * busiest_weight;
2109 rem_load = div_u64(rem_load, busiest_h_load + 1);
2110
2111 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2112 rem_load, sd, idle, all_pinned, this_best_prio,
2113 busiest_cfs_rq);
2114
2115 if (!moved_load)
2116 continue;
2117
2118 moved_load *= busiest_h_load;
2119 moved_load = div_u64(moved_load, busiest_weight + 1);
2120
2121 rem_load_move -= moved_load;
2122 if (rem_load_move < 0)
2123 break;
2124 }
2125 rcu_read_unlock();
2126
2127 return max_load_move - rem_load_move;
2128}
2129#else
9e3081ca
PZ
2130static inline void update_shares(int cpu)
2131{
2132}
2133
230059de
PZ
2134static unsigned long
2135load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2136 unsigned long max_load_move,
2137 struct sched_domain *sd, enum cpu_idle_type idle,
2138 int *all_pinned, int *this_best_prio)
2139{
2140 return balance_tasks(this_rq, this_cpu, busiest,
2141 max_load_move, sd, idle, all_pinned,
2142 this_best_prio, &busiest->cfs);
2143}
2144#endif
2145
1e3c88bd
PZ
2146/*
2147 * move_tasks tries to move up to max_load_move weighted load from busiest to
2148 * this_rq, as part of a balancing operation within domain "sd".
2149 * Returns 1 if successful and 0 otherwise.
2150 *
2151 * Called with both runqueues locked.
2152 */
2153static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2154 unsigned long max_load_move,
2155 struct sched_domain *sd, enum cpu_idle_type idle,
2156 int *all_pinned)
2157{
3d45fd80 2158 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
2159 int this_best_prio = this_rq->curr->prio;
2160
2161 do {
3d45fd80 2162 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd
PZ
2163 max_load_move - total_load_moved,
2164 sd, idle, all_pinned, &this_best_prio);
3d45fd80
PZ
2165
2166 total_load_moved += load_moved;
1e3c88bd
PZ
2167
2168#ifdef CONFIG_PREEMPT
2169 /*
2170 * NEWIDLE balancing is a source of latency, so preemptible
2171 * kernels will stop after the first task is pulled to minimize
2172 * the critical section.
2173 */
2174 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2175 break;
baa8c110
PZ
2176
2177 if (raw_spin_is_contended(&this_rq->lock) ||
2178 raw_spin_is_contended(&busiest->lock))
2179 break;
1e3c88bd 2180#endif
3d45fd80 2181 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
2182
2183 return total_load_moved > 0;
2184}
2185
1e3c88bd
PZ
2186/********** Helpers for find_busiest_group ************************/
2187/*
2188 * sd_lb_stats - Structure to store the statistics of a sched_domain
2189 * during load balancing.
2190 */
2191struct sd_lb_stats {
2192 struct sched_group *busiest; /* Busiest group in this sd */
2193 struct sched_group *this; /* Local group in this sd */
2194 unsigned long total_load; /* Total load of all groups in sd */
2195 unsigned long total_pwr; /* Total power of all groups in sd */
2196 unsigned long avg_load; /* Average load across all groups in sd */
2197
2198 /** Statistics of this group */
2199 unsigned long this_load;
2200 unsigned long this_load_per_task;
2201 unsigned long this_nr_running;
fab47622 2202 unsigned long this_has_capacity;
1e3c88bd
PZ
2203
2204 /* Statistics of the busiest group */
2205 unsigned long max_load;
2206 unsigned long busiest_load_per_task;
2207 unsigned long busiest_nr_running;
dd5feea1 2208 unsigned long busiest_group_capacity;
fab47622 2209 unsigned long busiest_has_capacity;
1e3c88bd
PZ
2210
2211 int group_imb; /* Is there imbalance in this sd */
2212#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2213 int power_savings_balance; /* Is powersave balance needed for this sd */
2214 struct sched_group *group_min; /* Least loaded group in sd */
2215 struct sched_group *group_leader; /* Group which relieves group_min */
2216 unsigned long min_load_per_task; /* load_per_task in group_min */
2217 unsigned long leader_nr_running; /* Nr running of group_leader */
2218 unsigned long min_nr_running; /* Nr running of group_min */
2219#endif
2220};
2221
2222/*
2223 * sg_lb_stats - stats of a sched_group required for load_balancing
2224 */
2225struct sg_lb_stats {
2226 unsigned long avg_load; /*Avg load across the CPUs of the group */
2227 unsigned long group_load; /* Total load over the CPUs of the group */
2228 unsigned long sum_nr_running; /* Nr tasks running in the group */
2229 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2230 unsigned long group_capacity;
2231 int group_imb; /* Is there an imbalance in the group ? */
fab47622 2232 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
2233};
2234
2235/**
2236 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2237 * @group: The group whose first cpu is to be returned.
2238 */
2239static inline unsigned int group_first_cpu(struct sched_group *group)
2240{
2241 return cpumask_first(sched_group_cpus(group));
2242}
2243
2244/**
2245 * get_sd_load_idx - Obtain the load index for a given sched domain.
2246 * @sd: The sched_domain whose load_idx is to be obtained.
2247 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2248 */
2249static inline int get_sd_load_idx(struct sched_domain *sd,
2250 enum cpu_idle_type idle)
2251{
2252 int load_idx;
2253
2254 switch (idle) {
2255 case CPU_NOT_IDLE:
2256 load_idx = sd->busy_idx;
2257 break;
2258
2259 case CPU_NEWLY_IDLE:
2260 load_idx = sd->newidle_idx;
2261 break;
2262 default:
2263 load_idx = sd->idle_idx;
2264 break;
2265 }
2266
2267 return load_idx;
2268}
2269
2270
2271#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2272/**
2273 * init_sd_power_savings_stats - Initialize power savings statistics for
2274 * the given sched_domain, during load balancing.
2275 *
2276 * @sd: Sched domain whose power-savings statistics are to be initialized.
2277 * @sds: Variable containing the statistics for sd.
2278 * @idle: Idle status of the CPU at which we're performing load-balancing.
2279 */
2280static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2281 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2282{
2283 /*
2284 * Busy processors will not participate in power savings
2285 * balance.
2286 */
2287 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2288 sds->power_savings_balance = 0;
2289 else {
2290 sds->power_savings_balance = 1;
2291 sds->min_nr_running = ULONG_MAX;
2292 sds->leader_nr_running = 0;
2293 }
2294}
2295
2296/**
2297 * update_sd_power_savings_stats - Update the power saving stats for a
2298 * sched_domain while performing load balancing.
2299 *
2300 * @group: sched_group belonging to the sched_domain under consideration.
2301 * @sds: Variable containing the statistics of the sched_domain
2302 * @local_group: Does group contain the CPU for which we're performing
2303 * load balancing ?
2304 * @sgs: Variable containing the statistics of the group.
2305 */
2306static inline void update_sd_power_savings_stats(struct sched_group *group,
2307 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2308{
2309
2310 if (!sds->power_savings_balance)
2311 return;
2312
2313 /*
2314 * If the local group is idle or completely loaded
2315 * no need to do power savings balance at this domain
2316 */
2317 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2318 !sds->this_nr_running))
2319 sds->power_savings_balance = 0;
2320
2321 /*
2322 * If a group is already running at full capacity or idle,
2323 * don't include that group in power savings calculations
2324 */
2325 if (!sds->power_savings_balance ||
2326 sgs->sum_nr_running >= sgs->group_capacity ||
2327 !sgs->sum_nr_running)
2328 return;
2329
2330 /*
2331 * Calculate the group which has the least non-idle load.
2332 * This is the group from where we need to pick up the load
2333 * for saving power
2334 */
2335 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2336 (sgs->sum_nr_running == sds->min_nr_running &&
2337 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2338 sds->group_min = group;
2339 sds->min_nr_running = sgs->sum_nr_running;
2340 sds->min_load_per_task = sgs->sum_weighted_load /
2341 sgs->sum_nr_running;
2342 }
2343
2344 /*
2345 * Calculate the group which is almost near its
2346 * capacity but still has some space to pick up some load
2347 * from other group and save more power
2348 */
2349 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2350 return;
2351
2352 if (sgs->sum_nr_running > sds->leader_nr_running ||
2353 (sgs->sum_nr_running == sds->leader_nr_running &&
2354 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2355 sds->group_leader = group;
2356 sds->leader_nr_running = sgs->sum_nr_running;
2357 }
2358}
2359
2360/**
2361 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2362 * @sds: Variable containing the statistics of the sched_domain
2363 * under consideration.
2364 * @this_cpu: Cpu at which we're currently performing load-balancing.
2365 * @imbalance: Variable to store the imbalance.
2366 *
2367 * Description:
2368 * Check if we have potential to perform some power-savings balance.
2369 * If yes, set the busiest group to be the least loaded group in the
2370 * sched_domain, so that it's CPUs can be put to idle.
2371 *
2372 * Returns 1 if there is potential to perform power-savings balance.
2373 * Else returns 0.
2374 */
2375static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2376 int this_cpu, unsigned long *imbalance)
2377{
2378 if (!sds->power_savings_balance)
2379 return 0;
2380
2381 if (sds->this != sds->group_leader ||
2382 sds->group_leader == sds->group_min)
2383 return 0;
2384
2385 *imbalance = sds->min_load_per_task;
2386 sds->busiest = sds->group_min;
2387
2388 return 1;
2389
2390}
2391#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2392static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2393 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2394{
2395 return;
2396}
2397
2398static inline void update_sd_power_savings_stats(struct sched_group *group,
2399 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2400{
2401 return;
2402}
2403
2404static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2405 int this_cpu, unsigned long *imbalance)
2406{
2407 return 0;
2408}
2409#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2410
2411
2412unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2413{
2414 return SCHED_LOAD_SCALE;
2415}
2416
2417unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2418{
2419 return default_scale_freq_power(sd, cpu);
2420}
2421
2422unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2423{
669c55e9 2424 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2425 unsigned long smt_gain = sd->smt_gain;
2426
2427 smt_gain /= weight;
2428
2429 return smt_gain;
2430}
2431
2432unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2433{
2434 return default_scale_smt_power(sd, cpu);
2435}
2436
2437unsigned long scale_rt_power(int cpu)
2438{
2439 struct rq *rq = cpu_rq(cpu);
2440 u64 total, available;
2441
1e3c88bd 2442 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
2443
2444 if (unlikely(total < rq->rt_avg)) {
2445 /* Ensures that power won't end up being negative */
2446 available = 0;
2447 } else {
2448 available = total - rq->rt_avg;
2449 }
1e3c88bd
PZ
2450
2451 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2452 total = SCHED_LOAD_SCALE;
2453
2454 total >>= SCHED_LOAD_SHIFT;
2455
2456 return div_u64(available, total);
2457}
2458
2459static void update_cpu_power(struct sched_domain *sd, int cpu)
2460{
669c55e9 2461 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2462 unsigned long power = SCHED_LOAD_SCALE;
2463 struct sched_group *sdg = sd->groups;
2464
1e3c88bd
PZ
2465 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2466 if (sched_feat(ARCH_POWER))
2467 power *= arch_scale_smt_power(sd, cpu);
2468 else
2469 power *= default_scale_smt_power(sd, cpu);
2470
2471 power >>= SCHED_LOAD_SHIFT;
2472 }
2473
9d5efe05
SV
2474 sdg->cpu_power_orig = power;
2475
2476 if (sched_feat(ARCH_POWER))
2477 power *= arch_scale_freq_power(sd, cpu);
2478 else
2479 power *= default_scale_freq_power(sd, cpu);
2480
2481 power >>= SCHED_LOAD_SHIFT;
2482
1e3c88bd
PZ
2483 power *= scale_rt_power(cpu);
2484 power >>= SCHED_LOAD_SHIFT;
2485
2486 if (!power)
2487 power = 1;
2488
e51fd5e2 2489 cpu_rq(cpu)->cpu_power = power;
1e3c88bd
PZ
2490 sdg->cpu_power = power;
2491}
2492
2493static void update_group_power(struct sched_domain *sd, int cpu)
2494{
2495 struct sched_domain *child = sd->child;
2496 struct sched_group *group, *sdg = sd->groups;
2497 unsigned long power;
2498
2499 if (!child) {
2500 update_cpu_power(sd, cpu);
2501 return;
2502 }
2503
2504 power = 0;
2505
2506 group = child->groups;
2507 do {
2508 power += group->cpu_power;
2509 group = group->next;
2510 } while (group != child->groups);
2511
2512 sdg->cpu_power = power;
2513}
2514
9d5efe05
SV
2515/*
2516 * Try and fix up capacity for tiny siblings, this is needed when
2517 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2518 * which on its own isn't powerful enough.
2519 *
2520 * See update_sd_pick_busiest() and check_asym_packing().
2521 */
2522static inline int
2523fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2524{
2525 /*
2526 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2527 */
2528 if (sd->level != SD_LV_SIBLING)
2529 return 0;
2530
2531 /*
2532 * If ~90% of the cpu_power is still there, we're good.
2533 */
694f5a11 2534 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
9d5efe05
SV
2535 return 1;
2536
2537 return 0;
2538}
2539
1e3c88bd
PZ
2540/**
2541 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2542 * @sd: The sched_domain whose statistics are to be updated.
2543 * @group: sched_group whose statistics are to be updated.
2544 * @this_cpu: Cpu for which load balance is currently performed.
2545 * @idle: Idle status of this_cpu
2546 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2547 * @sd_idle: Idle status of the sched_domain containing group.
2548 * @local_group: Does group contain this_cpu.
2549 * @cpus: Set of cpus considered for load balancing.
2550 * @balance: Should we balance.
2551 * @sgs: variable to hold the statistics for this group.
2552 */
2553static inline void update_sg_lb_stats(struct sched_domain *sd,
2554 struct sched_group *group, int this_cpu,
2555 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2556 int local_group, const struct cpumask *cpus,
2557 int *balance, struct sg_lb_stats *sgs)
2558{
2582f0eb 2559 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
2560 int i;
2561 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 2562 unsigned long avg_load_per_task = 0;
1e3c88bd 2563
871e35bc 2564 if (local_group)
1e3c88bd 2565 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
2566
2567 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
2568 max_cpu_load = 0;
2569 min_cpu_load = ~0UL;
2582f0eb 2570 max_nr_running = 0;
1e3c88bd
PZ
2571
2572 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2573 struct rq *rq = cpu_rq(i);
2574
2575 if (*sd_idle && rq->nr_running)
2576 *sd_idle = 0;
2577
2578 /* Bias balancing toward cpus of our domain */
2579 if (local_group) {
2580 if (idle_cpu(i) && !first_idle_cpu) {
2581 first_idle_cpu = 1;
2582 balance_cpu = i;
2583 }
2584
2585 load = target_load(i, load_idx);
2586 } else {
2587 load = source_load(i, load_idx);
2582f0eb 2588 if (load > max_cpu_load) {
1e3c88bd 2589 max_cpu_load = load;
2582f0eb
NR
2590 max_nr_running = rq->nr_running;
2591 }
1e3c88bd
PZ
2592 if (min_cpu_load > load)
2593 min_cpu_load = load;
2594 }
2595
2596 sgs->group_load += load;
2597 sgs->sum_nr_running += rq->nr_running;
2598 sgs->sum_weighted_load += weighted_cpuload(i);
2599
1e3c88bd
PZ
2600 }
2601
2602 /*
2603 * First idle cpu or the first cpu(busiest) in this sched group
2604 * is eligible for doing load balancing at this and above
2605 * domains. In the newly idle case, we will allow all the cpu's
2606 * to do the newly idle load balance.
2607 */
bbc8cb5b
PZ
2608 if (idle != CPU_NEWLY_IDLE && local_group) {
2609 if (balance_cpu != this_cpu) {
2610 *balance = 0;
2611 return;
2612 }
2613 update_group_power(sd, this_cpu);
1e3c88bd
PZ
2614 }
2615
2616 /* Adjust by relative CPU power of the group */
2617 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2618
1e3c88bd
PZ
2619 /*
2620 * Consider the group unbalanced when the imbalance is larger
2621 * than the average weight of two tasks.
2622 *
2623 * APZ: with cgroup the avg task weight can vary wildly and
2624 * might not be a suitable number - should we keep a
2625 * normalized nr_running number somewhere that negates
2626 * the hierarchy?
2627 */
dd5feea1
SS
2628 if (sgs->sum_nr_running)
2629 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 2630
2582f0eb 2631 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
2632 sgs->group_imb = 1;
2633
2582f0eb 2634 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
9d5efe05
SV
2635 if (!sgs->group_capacity)
2636 sgs->group_capacity = fix_small_capacity(sd, group);
fab47622
NR
2637
2638 if (sgs->group_capacity > sgs->sum_nr_running)
2639 sgs->group_has_capacity = 1;
1e3c88bd
PZ
2640}
2641
532cb4c4
MN
2642/**
2643 * update_sd_pick_busiest - return 1 on busiest group
2644 * @sd: sched_domain whose statistics are to be checked
2645 * @sds: sched_domain statistics
2646 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
2647 * @sgs: sched_group statistics
2648 * @this_cpu: the current cpu
532cb4c4
MN
2649 *
2650 * Determine if @sg is a busier group than the previously selected
2651 * busiest group.
2652 */
2653static bool update_sd_pick_busiest(struct sched_domain *sd,
2654 struct sd_lb_stats *sds,
2655 struct sched_group *sg,
2656 struct sg_lb_stats *sgs,
2657 int this_cpu)
2658{
2659 if (sgs->avg_load <= sds->max_load)
2660 return false;
2661
2662 if (sgs->sum_nr_running > sgs->group_capacity)
2663 return true;
2664
2665 if (sgs->group_imb)
2666 return true;
2667
2668 /*
2669 * ASYM_PACKING needs to move all the work to the lowest
2670 * numbered CPUs in the group, therefore mark all groups
2671 * higher than ourself as busy.
2672 */
2673 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2674 this_cpu < group_first_cpu(sg)) {
2675 if (!sds->busiest)
2676 return true;
2677
2678 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2679 return true;
2680 }
2681
2682 return false;
2683}
2684
1e3c88bd
PZ
2685/**
2686 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2687 * @sd: sched_domain whose statistics are to be updated.
2688 * @this_cpu: Cpu for which load balance is currently performed.
2689 * @idle: Idle status of this_cpu
532cb4c4 2690 * @sd_idle: Idle status of the sched_domain containing sg.
1e3c88bd
PZ
2691 * @cpus: Set of cpus considered for load balancing.
2692 * @balance: Should we balance.
2693 * @sds: variable to hold the statistics for this sched_domain.
2694 */
2695static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2696 enum cpu_idle_type idle, int *sd_idle,
2697 const struct cpumask *cpus, int *balance,
2698 struct sd_lb_stats *sds)
2699{
2700 struct sched_domain *child = sd->child;
532cb4c4 2701 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
2702 struct sg_lb_stats sgs;
2703 int load_idx, prefer_sibling = 0;
2704
2705 if (child && child->flags & SD_PREFER_SIBLING)
2706 prefer_sibling = 1;
2707
2708 init_sd_power_savings_stats(sd, sds, idle);
2709 load_idx = get_sd_load_idx(sd, idle);
2710
2711 do {
2712 int local_group;
2713
532cb4c4 2714 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 2715 memset(&sgs, 0, sizeof(sgs));
532cb4c4 2716 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
1e3c88bd
PZ
2717 local_group, cpus, balance, &sgs);
2718
8f190fb3 2719 if (local_group && !(*balance))
1e3c88bd
PZ
2720 return;
2721
2722 sds->total_load += sgs.group_load;
532cb4c4 2723 sds->total_pwr += sg->cpu_power;
1e3c88bd
PZ
2724
2725 /*
2726 * In case the child domain prefers tasks go to siblings
532cb4c4 2727 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
2728 * and move all the excess tasks away. We lower the capacity
2729 * of a group only if the local group has the capacity to fit
2730 * these excess tasks, i.e. nr_running < group_capacity. The
2731 * extra check prevents the case where you always pull from the
2732 * heaviest group when it is already under-utilized (possible
2733 * with a large weight task outweighs the tasks on the system).
1e3c88bd 2734 */
75dd321d 2735 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
2736 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2737
2738 if (local_group) {
2739 sds->this_load = sgs.avg_load;
532cb4c4 2740 sds->this = sg;
1e3c88bd
PZ
2741 sds->this_nr_running = sgs.sum_nr_running;
2742 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 2743 sds->this_has_capacity = sgs.group_has_capacity;
532cb4c4 2744 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 2745 sds->max_load = sgs.avg_load;
532cb4c4 2746 sds->busiest = sg;
1e3c88bd 2747 sds->busiest_nr_running = sgs.sum_nr_running;
dd5feea1 2748 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 2749 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 2750 sds->busiest_has_capacity = sgs.group_has_capacity;
1e3c88bd
PZ
2751 sds->group_imb = sgs.group_imb;
2752 }
2753
532cb4c4
MN
2754 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2755 sg = sg->next;
2756 } while (sg != sd->groups);
2757}
2758
2ec57d44 2759int __weak arch_sd_sibling_asym_packing(void)
532cb4c4
MN
2760{
2761 return 0*SD_ASYM_PACKING;
2762}
2763
2764/**
2765 * check_asym_packing - Check to see if the group is packed into the
2766 * sched doman.
2767 *
2768 * This is primarily intended to used at the sibling level. Some
2769 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2770 * case of POWER7, it can move to lower SMT modes only when higher
2771 * threads are idle. When in lower SMT modes, the threads will
2772 * perform better since they share less core resources. Hence when we
2773 * have idle threads, we want them to be the higher ones.
2774 *
2775 * This packing function is run on idle threads. It checks to see if
2776 * the busiest CPU in this domain (core in the P7 case) has a higher
2777 * CPU number than the packing function is being run on. Here we are
2778 * assuming lower CPU number will be equivalent to lower a SMT thread
2779 * number.
2780 *
b6b12294
MN
2781 * Returns 1 when packing is required and a task should be moved to
2782 * this CPU. The amount of the imbalance is returned in *imbalance.
2783 *
532cb4c4
MN
2784 * @sd: The sched_domain whose packing is to be checked.
2785 * @sds: Statistics of the sched_domain which is to be packed
2786 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2787 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
2788 */
2789static int check_asym_packing(struct sched_domain *sd,
2790 struct sd_lb_stats *sds,
2791 int this_cpu, unsigned long *imbalance)
2792{
2793 int busiest_cpu;
2794
2795 if (!(sd->flags & SD_ASYM_PACKING))
2796 return 0;
2797
2798 if (!sds->busiest)
2799 return 0;
2800
2801 busiest_cpu = group_first_cpu(sds->busiest);
2802 if (this_cpu > busiest_cpu)
2803 return 0;
2804
2805 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2806 SCHED_LOAD_SCALE);
2807 return 1;
1e3c88bd
PZ
2808}
2809
2810/**
2811 * fix_small_imbalance - Calculate the minor imbalance that exists
2812 * amongst the groups of a sched_domain, during
2813 * load balancing.
2814 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2815 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2816 * @imbalance: Variable to store the imbalance.
2817 */
2818static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2819 int this_cpu, unsigned long *imbalance)
2820{
2821 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2822 unsigned int imbn = 2;
dd5feea1 2823 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
2824
2825 if (sds->this_nr_running) {
2826 sds->this_load_per_task /= sds->this_nr_running;
2827 if (sds->busiest_load_per_task >
2828 sds->this_load_per_task)
2829 imbn = 1;
2830 } else
2831 sds->this_load_per_task =
2832 cpu_avg_load_per_task(this_cpu);
2833
dd5feea1
SS
2834 scaled_busy_load_per_task = sds->busiest_load_per_task
2835 * SCHED_LOAD_SCALE;
2836 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2837
2838 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2839 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
2840 *imbalance = sds->busiest_load_per_task;
2841 return;
2842 }
2843
2844 /*
2845 * OK, we don't have enough imbalance to justify moving tasks,
2846 * however we may be able to increase total CPU power used by
2847 * moving them.
2848 */
2849
2850 pwr_now += sds->busiest->cpu_power *
2851 min(sds->busiest_load_per_task, sds->max_load);
2852 pwr_now += sds->this->cpu_power *
2853 min(sds->this_load_per_task, sds->this_load);
2854 pwr_now /= SCHED_LOAD_SCALE;
2855
2856 /* Amount of load we'd subtract */
2857 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2858 sds->busiest->cpu_power;
2859 if (sds->max_load > tmp)
2860 pwr_move += sds->busiest->cpu_power *
2861 min(sds->busiest_load_per_task, sds->max_load - tmp);
2862
2863 /* Amount of load we'd add */
2864 if (sds->max_load * sds->busiest->cpu_power <
2865 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2866 tmp = (sds->max_load * sds->busiest->cpu_power) /
2867 sds->this->cpu_power;
2868 else
2869 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2870 sds->this->cpu_power;
2871 pwr_move += sds->this->cpu_power *
2872 min(sds->this_load_per_task, sds->this_load + tmp);
2873 pwr_move /= SCHED_LOAD_SCALE;
2874
2875 /* Move if we gain throughput */
2876 if (pwr_move > pwr_now)
2877 *imbalance = sds->busiest_load_per_task;
2878}
2879
2880/**
2881 * calculate_imbalance - Calculate the amount of imbalance present within the
2882 * groups of a given sched_domain during load balance.
2883 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2884 * @this_cpu: Cpu for which currently load balance is being performed.
2885 * @imbalance: The variable to store the imbalance.
2886 */
2887static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2888 unsigned long *imbalance)
2889{
dd5feea1
SS
2890 unsigned long max_pull, load_above_capacity = ~0UL;
2891
2892 sds->busiest_load_per_task /= sds->busiest_nr_running;
2893 if (sds->group_imb) {
2894 sds->busiest_load_per_task =
2895 min(sds->busiest_load_per_task, sds->avg_load);
2896 }
2897
1e3c88bd
PZ
2898 /*
2899 * In the presence of smp nice balancing, certain scenarios can have
2900 * max load less than avg load(as we skip the groups at or below
2901 * its cpu_power, while calculating max_load..)
2902 */
2903 if (sds->max_load < sds->avg_load) {
2904 *imbalance = 0;
2905 return fix_small_imbalance(sds, this_cpu, imbalance);
2906 }
2907
dd5feea1
SS
2908 if (!sds->group_imb) {
2909 /*
2910 * Don't want to pull so many tasks that a group would go idle.
2911 */
2912 load_above_capacity = (sds->busiest_nr_running -
2913 sds->busiest_group_capacity);
2914
2915 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2916
2917 load_above_capacity /= sds->busiest->cpu_power;
2918 }
2919
2920 /*
2921 * We're trying to get all the cpus to the average_load, so we don't
2922 * want to push ourselves above the average load, nor do we wish to
2923 * reduce the max loaded cpu below the average load. At the same time,
2924 * we also don't want to reduce the group load below the group capacity
2925 * (so that we can implement power-savings policies etc). Thus we look
2926 * for the minimum possible imbalance.
2927 * Be careful of negative numbers as they'll appear as very large values
2928 * with unsigned longs.
2929 */
2930 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
2931
2932 /* How much load to actually move to equalise the imbalance */
2933 *imbalance = min(max_pull * sds->busiest->cpu_power,
2934 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2935 / SCHED_LOAD_SCALE;
2936
2937 /*
2938 * if *imbalance is less than the average load per runnable task
2939 * there is no gaurantee that any tasks will be moved so we'll have
2940 * a think about bumping its value to force at least one task to be
2941 * moved
2942 */
2943 if (*imbalance < sds->busiest_load_per_task)
2944 return fix_small_imbalance(sds, this_cpu, imbalance);
2945
2946}
fab47622 2947
1e3c88bd
PZ
2948/******* find_busiest_group() helpers end here *********************/
2949
2950/**
2951 * find_busiest_group - Returns the busiest group within the sched_domain
2952 * if there is an imbalance. If there isn't an imbalance, and
2953 * the user has opted for power-savings, it returns a group whose
2954 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2955 * such a group exists.
2956 *
2957 * Also calculates the amount of weighted load which should be moved
2958 * to restore balance.
2959 *
2960 * @sd: The sched_domain whose busiest group is to be returned.
2961 * @this_cpu: The cpu for which load balancing is currently being performed.
2962 * @imbalance: Variable which stores amount of weighted load which should
2963 * be moved to restore balance/put a group to idle.
2964 * @idle: The idle status of this_cpu.
2965 * @sd_idle: The idleness of sd
2966 * @cpus: The set of CPUs under consideration for load-balancing.
2967 * @balance: Pointer to a variable indicating if this_cpu
2968 * is the appropriate cpu to perform load balancing at this_level.
2969 *
2970 * Returns: - the busiest group if imbalance exists.
2971 * - If no imbalance and user has opted for power-savings balance,
2972 * return the least loaded group whose CPUs can be
2973 * put to idle by rebalancing its tasks onto our group.
2974 */
2975static struct sched_group *
2976find_busiest_group(struct sched_domain *sd, int this_cpu,
2977 unsigned long *imbalance, enum cpu_idle_type idle,
2978 int *sd_idle, const struct cpumask *cpus, int *balance)
2979{
2980 struct sd_lb_stats sds;
2981
2982 memset(&sds, 0, sizeof(sds));
2983
2984 /*
2985 * Compute the various statistics relavent for load balancing at
2986 * this level.
2987 */
2988 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2989 balance, &sds);
2990
2991 /* Cases where imbalance does not exist from POV of this_cpu */
2992 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2993 * at this level.
2994 * 2) There is no busy sibling group to pull from.
2995 * 3) This group is the busiest group.
2996 * 4) This group is more busy than the avg busieness at this
2997 * sched_domain.
2998 * 5) The imbalance is within the specified limit.
fab47622
NR
2999 *
3000 * Note: when doing newidle balance, if the local group has excess
3001 * capacity (i.e. nr_running < group_capacity) and the busiest group
3002 * does not have any capacity, we force a load balance to pull tasks
3003 * to the local group. In this case, we skip past checks 3, 4 and 5.
1e3c88bd 3004 */
8f190fb3 3005 if (!(*balance))
1e3c88bd
PZ
3006 goto ret;
3007
532cb4c4
MN
3008 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3009 check_asym_packing(sd, &sds, this_cpu, imbalance))
3010 return sds.busiest;
3011
1e3c88bd
PZ
3012 if (!sds.busiest || sds.busiest_nr_running == 0)
3013 goto out_balanced;
3014
fab47622
NR
3015 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3016 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3017 !sds.busiest_has_capacity)
3018 goto force_balance;
3019
1e3c88bd
PZ
3020 if (sds.this_load >= sds.max_load)
3021 goto out_balanced;
3022
3023 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3024
3025 if (sds.this_load >= sds.avg_load)
3026 goto out_balanced;
3027
3028 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3029 goto out_balanced;
3030
fab47622 3031force_balance:
1e3c88bd
PZ
3032 /* Looks like there is an imbalance. Compute it */
3033 calculate_imbalance(&sds, this_cpu, imbalance);
3034 return sds.busiest;
3035
3036out_balanced:
3037 /*
3038 * There is no obvious imbalance. But check if we can do some balancing
3039 * to save power.
3040 */
3041 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3042 return sds.busiest;
3043ret:
3044 *imbalance = 0;
3045 return NULL;
3046}
3047
3048/*
3049 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3050 */
3051static struct rq *
9d5efe05
SV
3052find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3053 enum cpu_idle_type idle, unsigned long imbalance,
3054 const struct cpumask *cpus)
1e3c88bd
PZ
3055{
3056 struct rq *busiest = NULL, *rq;
3057 unsigned long max_load = 0;
3058 int i;
3059
3060 for_each_cpu(i, sched_group_cpus(group)) {
3061 unsigned long power = power_of(i);
3062 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3063 unsigned long wl;
3064
9d5efe05
SV
3065 if (!capacity)
3066 capacity = fix_small_capacity(sd, group);
3067
1e3c88bd
PZ
3068 if (!cpumask_test_cpu(i, cpus))
3069 continue;
3070
3071 rq = cpu_rq(i);
6e40f5bb 3072 wl = weighted_cpuload(i);
1e3c88bd 3073
6e40f5bb
TG
3074 /*
3075 * When comparing with imbalance, use weighted_cpuload()
3076 * which is not scaled with the cpu power.
3077 */
1e3c88bd
PZ
3078 if (capacity && rq->nr_running == 1 && wl > imbalance)
3079 continue;
3080
6e40f5bb
TG
3081 /*
3082 * For the load comparisons with the other cpu's, consider
3083 * the weighted_cpuload() scaled with the cpu power, so that
3084 * the load can be moved away from the cpu that is potentially
3085 * running at a lower capacity.
3086 */
3087 wl = (wl * SCHED_LOAD_SCALE) / power;
3088
1e3c88bd
PZ
3089 if (wl > max_load) {
3090 max_load = wl;
3091 busiest = rq;
3092 }
3093 }
3094
3095 return busiest;
3096}
3097
3098/*
3099 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3100 * so long as it is large enough.
3101 */
3102#define MAX_PINNED_INTERVAL 512
3103
3104/* Working cpumask for load_balance and load_balance_newidle. */
3105static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3106
532cb4c4
MN
3107static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
3108 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
3109{
3110 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
3111
3112 /*
3113 * ASYM_PACKING needs to force migrate tasks from busy but
3114 * higher numbered CPUs in order to pack all tasks in the
3115 * lowest numbered CPUs.
3116 */
3117 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3118 return 1;
3119
1af3ed3d
PZ
3120 /*
3121 * The only task running in a non-idle cpu can be moved to this
3122 * cpu in an attempt to completely freeup the other CPU
3123 * package.
3124 *
3125 * The package power saving logic comes from
3126 * find_busiest_group(). If there are no imbalance, then
3127 * f_b_g() will return NULL. However when sched_mc={1,2} then
3128 * f_b_g() will select a group from which a running task may be
3129 * pulled to this cpu in order to make the other package idle.
3130 * If there is no opportunity to make a package idle and if
3131 * there are no imbalance, then f_b_g() will return NULL and no
3132 * action will be taken in load_balance_newidle().
3133 *
3134 * Under normal task pull operation due to imbalance, there
3135 * will be more than one task in the source run queue and
3136 * move_tasks() will succeed. ld_moved will be true and this
3137 * active balance code will not be triggered.
3138 */
3139 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3140 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3141 return 0;
3142
3143 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3144 return 0;
3145 }
3146
3147 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3148}
3149
969c7921
TH
3150static int active_load_balance_cpu_stop(void *data);
3151
1e3c88bd
PZ
3152/*
3153 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3154 * tasks if there is an imbalance.
3155 */
3156static int load_balance(int this_cpu, struct rq *this_rq,
3157 struct sched_domain *sd, enum cpu_idle_type idle,
3158 int *balance)
3159{
3160 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3161 struct sched_group *group;
3162 unsigned long imbalance;
3163 struct rq *busiest;
3164 unsigned long flags;
3165 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3166
3167 cpumask_copy(cpus, cpu_active_mask);
3168
3169 /*
3170 * When power savings policy is enabled for the parent domain, idle
3171 * sibling can pick up load irrespective of busy siblings. In this case,
3172 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3173 * portraying it as CPU_NOT_IDLE.
3174 */
3175 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3176 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3177 sd_idle = 1;
3178
3179 schedstat_inc(sd, lb_count[idle]);
3180
3181redo:
1e3c88bd
PZ
3182 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3183 cpus, balance);
3184
3185 if (*balance == 0)
3186 goto out_balanced;
3187
3188 if (!group) {
3189 schedstat_inc(sd, lb_nobusyg[idle]);
3190 goto out_balanced;
3191 }
3192
9d5efe05 3193 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
3194 if (!busiest) {
3195 schedstat_inc(sd, lb_nobusyq[idle]);
3196 goto out_balanced;
3197 }
3198
3199 BUG_ON(busiest == this_rq);
3200
3201 schedstat_add(sd, lb_imbalance[idle], imbalance);
3202
3203 ld_moved = 0;
3204 if (busiest->nr_running > 1) {
3205 /*
3206 * Attempt to move tasks. If find_busiest_group has found
3207 * an imbalance but busiest->nr_running <= 1, the group is
3208 * still unbalanced. ld_moved simply stays zero, so it is
3209 * correctly treated as an imbalance.
3210 */
3211 local_irq_save(flags);
3212 double_rq_lock(this_rq, busiest);
3213 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3214 imbalance, sd, idle, &all_pinned);
3215 double_rq_unlock(this_rq, busiest);
3216 local_irq_restore(flags);
3217
3218 /*
3219 * some other cpu did the load balance for us.
3220 */
3221 if (ld_moved && this_cpu != smp_processor_id())
3222 resched_cpu(this_cpu);
3223
3224 /* All tasks on this runqueue were pinned by CPU affinity */
3225 if (unlikely(all_pinned)) {
3226 cpumask_clear_cpu(cpu_of(busiest), cpus);
3227 if (!cpumask_empty(cpus))
3228 goto redo;
3229 goto out_balanced;
3230 }
3231 }
3232
3233 if (!ld_moved) {
3234 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
3235 /*
3236 * Increment the failure counter only on periodic balance.
3237 * We do not want newidle balance, which can be very
3238 * frequent, pollute the failure counter causing
3239 * excessive cache_hot migrations and active balances.
3240 */
3241 if (idle != CPU_NEWLY_IDLE)
3242 sd->nr_balance_failed++;
1e3c88bd 3243
532cb4c4
MN
3244 if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
3245 this_cpu)) {
1e3c88bd
PZ
3246 raw_spin_lock_irqsave(&busiest->lock, flags);
3247
969c7921
TH
3248 /* don't kick the active_load_balance_cpu_stop,
3249 * if the curr task on busiest cpu can't be
3250 * moved to this_cpu
1e3c88bd
PZ
3251 */
3252 if (!cpumask_test_cpu(this_cpu,
3253 &busiest->curr->cpus_allowed)) {
3254 raw_spin_unlock_irqrestore(&busiest->lock,
3255 flags);
3256 all_pinned = 1;
3257 goto out_one_pinned;
3258 }
3259
969c7921
TH
3260 /*
3261 * ->active_balance synchronizes accesses to
3262 * ->active_balance_work. Once set, it's cleared
3263 * only after active load balance is finished.
3264 */
1e3c88bd
PZ
3265 if (!busiest->active_balance) {
3266 busiest->active_balance = 1;
3267 busiest->push_cpu = this_cpu;
3268 active_balance = 1;
3269 }
3270 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 3271
1e3c88bd 3272 if (active_balance)
969c7921
TH
3273 stop_one_cpu_nowait(cpu_of(busiest),
3274 active_load_balance_cpu_stop, busiest,
3275 &busiest->active_balance_work);
1e3c88bd
PZ
3276
3277 /*
3278 * We've kicked active balancing, reset the failure
3279 * counter.
3280 */
3281 sd->nr_balance_failed = sd->cache_nice_tries+1;
3282 }
3283 } else
3284 sd->nr_balance_failed = 0;
3285
3286 if (likely(!active_balance)) {
3287 /* We were unbalanced, so reset the balancing interval */
3288 sd->balance_interval = sd->min_interval;
3289 } else {
3290 /*
3291 * If we've begun active balancing, start to back off. This
3292 * case may not be covered by the all_pinned logic if there
3293 * is only 1 task on the busy runqueue (because we don't call
3294 * move_tasks).
3295 */
3296 if (sd->balance_interval < sd->max_interval)
3297 sd->balance_interval *= 2;
3298 }
3299
3300 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3301 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3302 ld_moved = -1;
3303
3304 goto out;
3305
3306out_balanced:
3307 schedstat_inc(sd, lb_balanced[idle]);
3308
3309 sd->nr_balance_failed = 0;
3310
3311out_one_pinned:
3312 /* tune up the balancing interval */
3313 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3314 (sd->balance_interval < sd->max_interval))
3315 sd->balance_interval *= 2;
3316
3317 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3318 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3319 ld_moved = -1;
3320 else
3321 ld_moved = 0;
3322out:
1e3c88bd
PZ
3323 return ld_moved;
3324}
3325
1e3c88bd
PZ
3326/*
3327 * idle_balance is called by schedule() if this_cpu is about to become
3328 * idle. Attempts to pull tasks from other CPUs.
3329 */
3330static void idle_balance(int this_cpu, struct rq *this_rq)
3331{
3332 struct sched_domain *sd;
3333 int pulled_task = 0;
3334 unsigned long next_balance = jiffies + HZ;
3335
3336 this_rq->idle_stamp = this_rq->clock;
3337
3338 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3339 return;
3340
f492e12e
PZ
3341 /*
3342 * Drop the rq->lock, but keep IRQ/preempt disabled.
3343 */
3344 raw_spin_unlock(&this_rq->lock);
3345
1e3c88bd
PZ
3346 for_each_domain(this_cpu, sd) {
3347 unsigned long interval;
f492e12e 3348 int balance = 1;
1e3c88bd
PZ
3349
3350 if (!(sd->flags & SD_LOAD_BALANCE))
3351 continue;
3352
f492e12e 3353 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 3354 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
3355 pulled_task = load_balance(this_cpu, this_rq,
3356 sd, CPU_NEWLY_IDLE, &balance);
3357 }
1e3c88bd
PZ
3358
3359 interval = msecs_to_jiffies(sd->balance_interval);
3360 if (time_after(next_balance, sd->last_balance + interval))
3361 next_balance = sd->last_balance + interval;
fab47622 3362 if (pulled_task)
1e3c88bd 3363 break;
1e3c88bd 3364 }
f492e12e
PZ
3365
3366 raw_spin_lock(&this_rq->lock);
3367
1e3c88bd
PZ
3368 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3369 /*
3370 * We are going idle. next_balance may be set based on
3371 * a busy processor. So reset next_balance.
3372 */
3373 this_rq->next_balance = next_balance;
3374 }
3375}
3376
3377/*
969c7921
TH
3378 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3379 * running tasks off the busiest CPU onto idle CPUs. It requires at
3380 * least 1 task to be running on each physical CPU where possible, and
3381 * avoids physical / logical imbalances.
1e3c88bd 3382 */
969c7921 3383static int active_load_balance_cpu_stop(void *data)
1e3c88bd 3384{
969c7921
TH
3385 struct rq *busiest_rq = data;
3386 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 3387 int target_cpu = busiest_rq->push_cpu;
969c7921 3388 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 3389 struct sched_domain *sd;
969c7921
TH
3390
3391 raw_spin_lock_irq(&busiest_rq->lock);
3392
3393 /* make sure the requested cpu hasn't gone down in the meantime */
3394 if (unlikely(busiest_cpu != smp_processor_id() ||
3395 !busiest_rq->active_balance))
3396 goto out_unlock;
1e3c88bd
PZ
3397
3398 /* Is there any task to move? */
3399 if (busiest_rq->nr_running <= 1)
969c7921 3400 goto out_unlock;
1e3c88bd
PZ
3401
3402 /*
3403 * This condition is "impossible", if it occurs
3404 * we need to fix it. Originally reported by
3405 * Bjorn Helgaas on a 128-cpu setup.
3406 */
3407 BUG_ON(busiest_rq == target_rq);
3408
3409 /* move a task from busiest_rq to target_rq */
3410 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
3411
3412 /* Search for an sd spanning us and the target CPU. */
3413 for_each_domain(target_cpu, sd) {
3414 if ((sd->flags & SD_LOAD_BALANCE) &&
3415 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3416 break;
3417 }
3418
3419 if (likely(sd)) {
3420 schedstat_inc(sd, alb_count);
3421
3422 if (move_one_task(target_rq, target_cpu, busiest_rq,
3423 sd, CPU_IDLE))
3424 schedstat_inc(sd, alb_pushed);
3425 else
3426 schedstat_inc(sd, alb_failed);
3427 }
3428 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
3429out_unlock:
3430 busiest_rq->active_balance = 0;
3431 raw_spin_unlock_irq(&busiest_rq->lock);
3432 return 0;
1e3c88bd
PZ
3433}
3434
3435#ifdef CONFIG_NO_HZ
83cd4fe2
VP
3436
3437static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3438
3439static void trigger_sched_softirq(void *data)
3440{
3441 raise_softirq_irqoff(SCHED_SOFTIRQ);
3442}
3443
3444static inline void init_sched_softirq_csd(struct call_single_data *csd)
3445{
3446 csd->func = trigger_sched_softirq;
3447 csd->info = NULL;
3448 csd->flags = 0;
3449 csd->priv = 0;
3450}
3451
3452/*
3453 * idle load balancing details
3454 * - One of the idle CPUs nominates itself as idle load_balancer, while
3455 * entering idle.
3456 * - This idle load balancer CPU will also go into tickless mode when
3457 * it is idle, just like all other idle CPUs
3458 * - When one of the busy CPUs notice that there may be an idle rebalancing
3459 * needed, they will kick the idle load balancer, which then does idle
3460 * load balancing for all the idle CPUs.
3461 */
1e3c88bd
PZ
3462static struct {
3463 atomic_t load_balancer;
83cd4fe2
VP
3464 atomic_t first_pick_cpu;
3465 atomic_t second_pick_cpu;
3466 cpumask_var_t idle_cpus_mask;
3467 cpumask_var_t grp_idle_mask;
3468 unsigned long next_balance; /* in jiffy units */
3469} nohz ____cacheline_aligned;
1e3c88bd
PZ
3470
3471int get_nohz_load_balancer(void)
3472{
3473 return atomic_read(&nohz.load_balancer);
3474}
3475
3476#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3477/**
3478 * lowest_flag_domain - Return lowest sched_domain containing flag.
3479 * @cpu: The cpu whose lowest level of sched domain is to
3480 * be returned.
3481 * @flag: The flag to check for the lowest sched_domain
3482 * for the given cpu.
3483 *
3484 * Returns the lowest sched_domain of a cpu which contains the given flag.
3485 */
3486static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3487{
3488 struct sched_domain *sd;
3489
3490 for_each_domain(cpu, sd)
3491 if (sd && (sd->flags & flag))
3492 break;
3493
3494 return sd;
3495}
3496
3497/**
3498 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3499 * @cpu: The cpu whose domains we're iterating over.
3500 * @sd: variable holding the value of the power_savings_sd
3501 * for cpu.
3502 * @flag: The flag to filter the sched_domains to be iterated.
3503 *
3504 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3505 * set, starting from the lowest sched_domain to the highest.
3506 */
3507#define for_each_flag_domain(cpu, sd, flag) \
3508 for (sd = lowest_flag_domain(cpu, flag); \
3509 (sd && (sd->flags & flag)); sd = sd->parent)
3510
3511/**
3512 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3513 * @ilb_group: group to be checked for semi-idleness
3514 *
3515 * Returns: 1 if the group is semi-idle. 0 otherwise.
3516 *
3517 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3518 * and atleast one non-idle CPU. This helper function checks if the given
3519 * sched_group is semi-idle or not.
3520 */
3521static inline int is_semi_idle_group(struct sched_group *ilb_group)
3522{
83cd4fe2 3523 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
1e3c88bd
PZ
3524 sched_group_cpus(ilb_group));
3525
3526 /*
3527 * A sched_group is semi-idle when it has atleast one busy cpu
3528 * and atleast one idle cpu.
3529 */
83cd4fe2 3530 if (cpumask_empty(nohz.grp_idle_mask))
1e3c88bd
PZ
3531 return 0;
3532
83cd4fe2 3533 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
1e3c88bd
PZ
3534 return 0;
3535
3536 return 1;
3537}
3538/**
3539 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3540 * @cpu: The cpu which is nominating a new idle_load_balancer.
3541 *
3542 * Returns: Returns the id of the idle load balancer if it exists,
3543 * Else, returns >= nr_cpu_ids.
3544 *
3545 * This algorithm picks the idle load balancer such that it belongs to a
3546 * semi-idle powersavings sched_domain. The idea is to try and avoid
3547 * completely idle packages/cores just for the purpose of idle load balancing
3548 * when there are other idle cpu's which are better suited for that job.
3549 */
3550static int find_new_ilb(int cpu)
3551{
3552 struct sched_domain *sd;
3553 struct sched_group *ilb_group;
3554
3555 /*
3556 * Have idle load balancer selection from semi-idle packages only
3557 * when power-aware load balancing is enabled
3558 */
3559 if (!(sched_smt_power_savings || sched_mc_power_savings))
3560 goto out_done;
3561
3562 /*
3563 * Optimize for the case when we have no idle CPUs or only one
3564 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3565 */
83cd4fe2 3566 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
3567 goto out_done;
3568
3569 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3570 ilb_group = sd->groups;
3571
3572 do {
3573 if (is_semi_idle_group(ilb_group))
83cd4fe2 3574 return cpumask_first(nohz.grp_idle_mask);
1e3c88bd
PZ
3575
3576 ilb_group = ilb_group->next;
3577
3578 } while (ilb_group != sd->groups);
3579 }
3580
3581out_done:
83cd4fe2 3582 return nr_cpu_ids;
1e3c88bd
PZ
3583}
3584#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3585static inline int find_new_ilb(int call_cpu)
3586{
83cd4fe2 3587 return nr_cpu_ids;
1e3c88bd
PZ
3588}
3589#endif
3590
83cd4fe2
VP
3591/*
3592 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3593 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3594 * CPU (if there is one).
3595 */
3596static void nohz_balancer_kick(int cpu)
3597{
3598 int ilb_cpu;
3599
3600 nohz.next_balance++;
3601
3602 ilb_cpu = get_nohz_load_balancer();
3603
3604 if (ilb_cpu >= nr_cpu_ids) {
3605 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3606 if (ilb_cpu >= nr_cpu_ids)
3607 return;
3608 }
3609
3610 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3611 struct call_single_data *cp;
3612
3613 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3614 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3615 __smp_call_function_single(ilb_cpu, cp, 0);
3616 }
3617 return;
3618}
3619
1e3c88bd
PZ
3620/*
3621 * This routine will try to nominate the ilb (idle load balancing)
3622 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
83cd4fe2 3623 * load balancing on behalf of all those cpus.
1e3c88bd 3624 *
83cd4fe2
VP
3625 * When the ilb owner becomes busy, we will not have new ilb owner until some
3626 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3627 * idle load balancing by kicking one of the idle CPUs.
1e3c88bd 3628 *
83cd4fe2
VP
3629 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3630 * ilb owner CPU in future (when there is a need for idle load balancing on
3631 * behalf of all idle CPUs).
1e3c88bd 3632 */
83cd4fe2 3633void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
3634{
3635 int cpu = smp_processor_id();
3636
3637 if (stop_tick) {
1e3c88bd
PZ
3638 if (!cpu_active(cpu)) {
3639 if (atomic_read(&nohz.load_balancer) != cpu)
83cd4fe2 3640 return;
1e3c88bd
PZ
3641
3642 /*
3643 * If we are going offline and still the leader,
3644 * give up!
3645 */
83cd4fe2
VP
3646 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3647 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3648 BUG();
3649
83cd4fe2 3650 return;
1e3c88bd
PZ
3651 }
3652
83cd4fe2 3653 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd 3654
83cd4fe2
VP
3655 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3656 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3657 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3658 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
1e3c88bd 3659
83cd4fe2 3660 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
1e3c88bd
PZ
3661 int new_ilb;
3662
83cd4fe2
VP
3663 /* make me the ilb owner */
3664 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3665 cpu) != nr_cpu_ids)
3666 return;
3667
1e3c88bd
PZ
3668 /*
3669 * Check to see if there is a more power-efficient
3670 * ilb.
3671 */
3672 new_ilb = find_new_ilb(cpu);
3673 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
83cd4fe2 3674 atomic_set(&nohz.load_balancer, nr_cpu_ids);
1e3c88bd 3675 resched_cpu(new_ilb);
83cd4fe2 3676 return;
1e3c88bd 3677 }
83cd4fe2 3678 return;
1e3c88bd
PZ
3679 }
3680 } else {
83cd4fe2
VP
3681 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3682 return;
1e3c88bd 3683
83cd4fe2 3684 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd
PZ
3685
3686 if (atomic_read(&nohz.load_balancer) == cpu)
83cd4fe2
VP
3687 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3688 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3689 BUG();
3690 }
83cd4fe2 3691 return;
1e3c88bd
PZ
3692}
3693#endif
3694
3695static DEFINE_SPINLOCK(balancing);
3696
3697/*
3698 * It checks each scheduling domain to see if it is due to be balanced,
3699 * and initiates a balancing operation if so.
3700 *
3701 * Balancing parameters are set up in arch_init_sched_domains.
3702 */
3703static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3704{
3705 int balance = 1;
3706 struct rq *rq = cpu_rq(cpu);
3707 unsigned long interval;
3708 struct sched_domain *sd;
3709 /* Earliest time when we have to do rebalance again */
3710 unsigned long next_balance = jiffies + 60*HZ;
3711 int update_next_balance = 0;
3712 int need_serialize;
3713
2069dd75
PZ
3714 update_shares(cpu);
3715
1e3c88bd
PZ
3716 for_each_domain(cpu, sd) {
3717 if (!(sd->flags & SD_LOAD_BALANCE))
3718 continue;
3719
3720 interval = sd->balance_interval;
3721 if (idle != CPU_IDLE)
3722 interval *= sd->busy_factor;
3723
3724 /* scale ms to jiffies */
3725 interval = msecs_to_jiffies(interval);
3726 if (unlikely(!interval))
3727 interval = 1;
3728 if (interval > HZ*NR_CPUS/10)
3729 interval = HZ*NR_CPUS/10;
3730
3731 need_serialize = sd->flags & SD_SERIALIZE;
3732
3733 if (need_serialize) {
3734 if (!spin_trylock(&balancing))
3735 goto out;
3736 }
3737
3738 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3739 if (load_balance(cpu, rq, sd, idle, &balance)) {
3740 /*
3741 * We've pulled tasks over so either we're no
3742 * longer idle, or one of our SMT siblings is
3743 * not idle.
3744 */
3745 idle = CPU_NOT_IDLE;
3746 }
3747 sd->last_balance = jiffies;
3748 }
3749 if (need_serialize)
3750 spin_unlock(&balancing);
3751out:
3752 if (time_after(next_balance, sd->last_balance + interval)) {
3753 next_balance = sd->last_balance + interval;
3754 update_next_balance = 1;
3755 }
3756
3757 /*
3758 * Stop the load balance at this level. There is another
3759 * CPU in our sched group which is doing load balancing more
3760 * actively.
3761 */
3762 if (!balance)
3763 break;
3764 }
3765
3766 /*
3767 * next_balance will be updated only when there is a need.
3768 * When the cpu is attached to null domain for ex, it will not be
3769 * updated.
3770 */
3771 if (likely(update_next_balance))
3772 rq->next_balance = next_balance;
3773}
3774
83cd4fe2 3775#ifdef CONFIG_NO_HZ
1e3c88bd 3776/*
83cd4fe2 3777 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
3778 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3779 */
83cd4fe2
VP
3780static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3781{
3782 struct rq *this_rq = cpu_rq(this_cpu);
3783 struct rq *rq;
3784 int balance_cpu;
3785
3786 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3787 return;
3788
3789 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3790 if (balance_cpu == this_cpu)
3791 continue;
3792
3793 /*
3794 * If this cpu gets work to do, stop the load balancing
3795 * work being done for other cpus. Next load
3796 * balancing owner will pick it up.
3797 */
3798 if (need_resched()) {
3799 this_rq->nohz_balance_kick = 0;
3800 break;
3801 }
3802
3803 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 3804 update_rq_clock(this_rq);
83cd4fe2
VP
3805 update_cpu_load(this_rq);
3806 raw_spin_unlock_irq(&this_rq->lock);
3807
3808 rebalance_domains(balance_cpu, CPU_IDLE);
3809
3810 rq = cpu_rq(balance_cpu);
3811 if (time_after(this_rq->next_balance, rq->next_balance))
3812 this_rq->next_balance = rq->next_balance;
3813 }
3814 nohz.next_balance = this_rq->next_balance;
3815 this_rq->nohz_balance_kick = 0;
3816}
3817
3818/*
3819 * Current heuristic for kicking the idle load balancer
3820 * - first_pick_cpu is the one of the busy CPUs. It will kick
3821 * idle load balancer when it has more than one process active. This
3822 * eliminates the need for idle load balancing altogether when we have
3823 * only one running process in the system (common case).
3824 * - If there are more than one busy CPU, idle load balancer may have
3825 * to run for active_load_balance to happen (i.e., two busy CPUs are
3826 * SMT or core siblings and can run better if they move to different
3827 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3828 * which will kick idle load balancer as soon as it has any load.
3829 */
3830static inline int nohz_kick_needed(struct rq *rq, int cpu)
3831{
3832 unsigned long now = jiffies;
3833 int ret;
3834 int first_pick_cpu, second_pick_cpu;
3835
3836 if (time_before(now, nohz.next_balance))
3837 return 0;
3838
f6c3f168 3839 if (rq->idle_at_tick)
83cd4fe2
VP
3840 return 0;
3841
3842 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3843 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3844
3845 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3846 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3847 return 0;
3848
3849 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3850 if (ret == nr_cpu_ids || ret == cpu) {
3851 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3852 if (rq->nr_running > 1)
3853 return 1;
3854 } else {
3855 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3856 if (ret == nr_cpu_ids || ret == cpu) {
3857 if (rq->nr_running)
3858 return 1;
3859 }
3860 }
3861 return 0;
3862}
3863#else
3864static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3865#endif
3866
3867/*
3868 * run_rebalance_domains is triggered when needed from the scheduler tick.
3869 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3870 */
1e3c88bd
PZ
3871static void run_rebalance_domains(struct softirq_action *h)
3872{
3873 int this_cpu = smp_processor_id();
3874 struct rq *this_rq = cpu_rq(this_cpu);
3875 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3876 CPU_IDLE : CPU_NOT_IDLE;
3877
3878 rebalance_domains(this_cpu, idle);
3879
1e3c88bd 3880 /*
83cd4fe2 3881 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
3882 * balancing on behalf of the other idle cpus whose ticks are
3883 * stopped.
3884 */
83cd4fe2 3885 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
3886}
3887
3888static inline int on_null_domain(int cpu)
3889{
90a6501f 3890 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
3891}
3892
3893/*
3894 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd
PZ
3895 */
3896static inline void trigger_load_balance(struct rq *rq, int cpu)
3897{
1e3c88bd
PZ
3898 /* Don't need to rebalance while attached to NULL domain */
3899 if (time_after_eq(jiffies, rq->next_balance) &&
3900 likely(!on_null_domain(cpu)))
3901 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2
VP
3902#ifdef CONFIG_NO_HZ
3903 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
3904 nohz_balancer_kick(cpu);
3905#endif
1e3c88bd
PZ
3906}
3907
0bcdcf28
CE
3908static void rq_online_fair(struct rq *rq)
3909{
3910 update_sysctl();
3911}
3912
3913static void rq_offline_fair(struct rq *rq)
3914{
3915 update_sysctl();
3916}
3917
1e3c88bd
PZ
3918#else /* CONFIG_SMP */
3919
3920/*
3921 * on UP we do not need to balance between CPUs:
3922 */
3923static inline void idle_balance(int cpu, struct rq *rq)
3924{
3925}
3926
55e12e5e 3927#endif /* CONFIG_SMP */
e1d1484f 3928
bf0f6f24
IM
3929/*
3930 * scheduler tick hitting a task of our scheduling class:
3931 */
8f4d37ec 3932static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
3933{
3934 struct cfs_rq *cfs_rq;
3935 struct sched_entity *se = &curr->se;
3936
3937 for_each_sched_entity(se) {
3938 cfs_rq = cfs_rq_of(se);
8f4d37ec 3939 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
3940 }
3941}
3942
3943/*
cd29fe6f
PZ
3944 * called on fork with the child task as argument from the parent's context
3945 * - child not yet on the tasklist
3946 * - preemption disabled
bf0f6f24 3947 */
cd29fe6f 3948static void task_fork_fair(struct task_struct *p)
bf0f6f24 3949{
cd29fe6f 3950 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 3951 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 3952 int this_cpu = smp_processor_id();
cd29fe6f
PZ
3953 struct rq *rq = this_rq();
3954 unsigned long flags;
3955
05fa785c 3956 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 3957
861d034e
PZ
3958 update_rq_clock(rq);
3959
b0a0f667
PM
3960 if (unlikely(task_cpu(p) != this_cpu)) {
3961 rcu_read_lock();
cd29fe6f 3962 __set_task_cpu(p, this_cpu);
b0a0f667
PM
3963 rcu_read_unlock();
3964 }
bf0f6f24 3965
7109c442 3966 update_curr(cfs_rq);
cd29fe6f 3967
b5d9d734
MG
3968 if (curr)
3969 se->vruntime = curr->vruntime;
aeb73b04 3970 place_entity(cfs_rq, se, 1);
4d78e7b6 3971
cd29fe6f 3972 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 3973 /*
edcb60a3
IM
3974 * Upon rescheduling, sched_class::put_prev_task() will place
3975 * 'current' within the tree based on its new key value.
3976 */
4d78e7b6 3977 swap(curr->vruntime, se->vruntime);
aec0a514 3978 resched_task(rq->curr);
4d78e7b6 3979 }
bf0f6f24 3980
88ec22d3
PZ
3981 se->vruntime -= cfs_rq->min_vruntime;
3982
05fa785c 3983 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
3984}
3985
cb469845
SR
3986/*
3987 * Priority of the task has changed. Check to see if we preempt
3988 * the current task.
3989 */
3990static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3991 int oldprio, int running)
3992{
3993 /*
3994 * Reschedule if we are currently running on this runqueue and
3995 * our priority decreased, or if we are not currently running on
3996 * this runqueue and our priority is higher than the current's
3997 */
3998 if (running) {
3999 if (p->prio > oldprio)
4000 resched_task(rq->curr);
4001 } else
15afe09b 4002 check_preempt_curr(rq, p, 0);
cb469845
SR
4003}
4004
4005/*
4006 * We switched to the sched_fair class.
4007 */
4008static void switched_to_fair(struct rq *rq, struct task_struct *p,
4009 int running)
4010{
4011 /*
4012 * We were most likely switched from sched_rt, so
4013 * kick off the schedule if running, otherwise just see
4014 * if we can still preempt the current task.
4015 */
4016 if (running)
4017 resched_task(rq->curr);
4018 else
15afe09b 4019 check_preempt_curr(rq, p, 0);
cb469845
SR
4020}
4021
83b699ed
SV
4022/* Account for a task changing its policy or group.
4023 *
4024 * This routine is mostly called to set cfs_rq->curr field when a task
4025 * migrates between groups/classes.
4026 */
4027static void set_curr_task_fair(struct rq *rq)
4028{
4029 struct sched_entity *se = &rq->curr->se;
4030
4031 for_each_sched_entity(se)
4032 set_next_entity(cfs_rq_of(se), se);
4033}
4034
810b3817 4035#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4036static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 4037{
b2b5ce02
PZ
4038 /*
4039 * If the task was not on the rq at the time of this cgroup movement
4040 * it must have been asleep, sleeping tasks keep their ->vruntime
4041 * absolute on their old rq until wakeup (needed for the fair sleeper
4042 * bonus in place_entity()).
4043 *
4044 * If it was on the rq, we've just 'preempted' it, which does convert
4045 * ->vruntime to a relative base.
4046 *
4047 * Make sure both cases convert their relative position when migrating
4048 * to another cgroup's rq. This does somewhat interfere with the
4049 * fair sleeper stuff for the first placement, but who cares.
4050 */
4051 if (!on_rq)
4052 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4053 set_task_rq(p, task_cpu(p));
88ec22d3 4054 if (!on_rq)
b2b5ce02 4055 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817
PZ
4056}
4057#endif
4058
6d686f45 4059static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
4060{
4061 struct sched_entity *se = &task->se;
0d721cea
PW
4062 unsigned int rr_interval = 0;
4063
4064 /*
4065 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4066 * idle runqueue:
4067 */
0d721cea
PW
4068 if (rq->cfs.load.weight)
4069 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
4070
4071 return rr_interval;
4072}
4073
bf0f6f24
IM
4074/*
4075 * All the scheduling class methods:
4076 */
5522d5d5
IM
4077static const struct sched_class fair_sched_class = {
4078 .next = &idle_sched_class,
bf0f6f24
IM
4079 .enqueue_task = enqueue_task_fair,
4080 .dequeue_task = dequeue_task_fair,
4081 .yield_task = yield_task_fair,
4082
2e09bf55 4083 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
4084
4085 .pick_next_task = pick_next_task_fair,
4086 .put_prev_task = put_prev_task_fair,
4087
681f3e68 4088#ifdef CONFIG_SMP
4ce72a2c
LZ
4089 .select_task_rq = select_task_rq_fair,
4090
0bcdcf28
CE
4091 .rq_online = rq_online_fair,
4092 .rq_offline = rq_offline_fair,
88ec22d3
PZ
4093
4094 .task_waking = task_waking_fair,
681f3e68 4095#endif
bf0f6f24 4096
83b699ed 4097 .set_curr_task = set_curr_task_fair,
bf0f6f24 4098 .task_tick = task_tick_fair,
cd29fe6f 4099 .task_fork = task_fork_fair,
cb469845
SR
4100
4101 .prio_changed = prio_changed_fair,
4102 .switched_to = switched_to_fair,
810b3817 4103
0d721cea
PW
4104 .get_rr_interval = get_rr_interval_fair,
4105
810b3817 4106#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4107 .task_move_group = task_move_group_fair,
810b3817 4108#endif
bf0f6f24
IM
4109};
4110
4111#ifdef CONFIG_SCHED_DEBUG
5cef9eca 4112static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 4113{
bf0f6f24
IM
4114 struct cfs_rq *cfs_rq;
4115
5973e5b9 4116 rcu_read_lock();
c3b64f1e 4117 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 4118 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 4119 rcu_read_unlock();
bf0f6f24
IM
4120}
4121#endif
This page took 0.568894 seconds and 5 git commands to generate.