sched: Fix sign under-flows in wake_affine
[deliverable/linux.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
9745512c 25
bf0f6f24 26/*
21805085 27 * Targeted preemption latency for CPU-bound tasks:
864616ee 28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 37 */
21406928
MG
38unsigned int sysctl_sched_latency = 6000000ULL;
39unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
2bd8e6d4 53/*
b2be5e96 54 * Minimal preemption granularity for CPU-bound tasks:
864616ee 55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 56 */
0bf377bb
IM
57unsigned int sysctl_sched_min_granularity = 750000ULL;
58unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
59
60/*
b2be5e96
PZ
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
0bf377bb 63static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
64
65/*
2bba22c5 66 * After fork, child runs first. If set to 0 (default) then
b2be5e96 67 * parent will (try to) run first.
21805085 68 */
2bba22c5 69unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 70
1799e35d
IM
71/*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77unsigned int __read_mostly sysctl_sched_compat_yield;
78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a7a4f8a7
PT
92/*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
a4c2f00f
PZ
99static const struct sched_class fair_sched_class;
100
bf0f6f24
IM
101/**************************************************************
102 * CFS operations on generic schedulable entities:
103 */
104
62160e3f 105#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 106
62160e3f 107/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
108static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
109{
62160e3f 110 return cfs_rq->rq;
bf0f6f24
IM
111}
112
62160e3f
IM
113/* An entity is a task if it doesn't "own" a runqueue */
114#define entity_is_task(se) (!se->my_q)
bf0f6f24 115
8f48894f
PZ
116static inline struct task_struct *task_of(struct sched_entity *se)
117{
118#ifdef CONFIG_SCHED_DEBUG
119 WARN_ON_ONCE(!entity_is_task(se));
120#endif
121 return container_of(se, struct task_struct, se);
122}
123
b758149c
PZ
124/* Walk up scheduling entities hierarchy */
125#define for_each_sched_entity(se) \
126 for (; se; se = se->parent)
127
128static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
129{
130 return p->se.cfs_rq;
131}
132
133/* runqueue on which this entity is (to be) queued */
134static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
135{
136 return se->cfs_rq;
137}
138
139/* runqueue "owned" by this group */
140static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
141{
142 return grp->my_q;
143}
144
145/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
146 * another cpu ('this_cpu')
147 */
148static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
149{
150 return cfs_rq->tg->cfs_rq[this_cpu];
151}
152
3d4b47b4
PZ
153static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
154{
155 if (!cfs_rq->on_list) {
67e86250
PT
156 /*
157 * Ensure we either appear before our parent (if already
158 * enqueued) or force our parent to appear after us when it is
159 * enqueued. The fact that we always enqueue bottom-up
160 * reduces this to two cases.
161 */
162 if (cfs_rq->tg->parent &&
163 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
164 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
165 &rq_of(cfs_rq)->leaf_cfs_rq_list);
166 } else {
167 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 168 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 169 }
3d4b47b4
PZ
170
171 cfs_rq->on_list = 1;
172 }
173}
174
175static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
176{
177 if (cfs_rq->on_list) {
178 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
179 cfs_rq->on_list = 0;
180 }
181}
182
b758149c
PZ
183/* Iterate thr' all leaf cfs_rq's on a runqueue */
184#define for_each_leaf_cfs_rq(rq, cfs_rq) \
185 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
186
187/* Do the two (enqueued) entities belong to the same group ? */
188static inline int
189is_same_group(struct sched_entity *se, struct sched_entity *pse)
190{
191 if (se->cfs_rq == pse->cfs_rq)
192 return 1;
193
194 return 0;
195}
196
197static inline struct sched_entity *parent_entity(struct sched_entity *se)
198{
199 return se->parent;
200}
201
464b7527
PZ
202/* return depth at which a sched entity is present in the hierarchy */
203static inline int depth_se(struct sched_entity *se)
204{
205 int depth = 0;
206
207 for_each_sched_entity(se)
208 depth++;
209
210 return depth;
211}
212
213static void
214find_matching_se(struct sched_entity **se, struct sched_entity **pse)
215{
216 int se_depth, pse_depth;
217
218 /*
219 * preemption test can be made between sibling entities who are in the
220 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
221 * both tasks until we find their ancestors who are siblings of common
222 * parent.
223 */
224
225 /* First walk up until both entities are at same depth */
226 se_depth = depth_se(*se);
227 pse_depth = depth_se(*pse);
228
229 while (se_depth > pse_depth) {
230 se_depth--;
231 *se = parent_entity(*se);
232 }
233
234 while (pse_depth > se_depth) {
235 pse_depth--;
236 *pse = parent_entity(*pse);
237 }
238
239 while (!is_same_group(*se, *pse)) {
240 *se = parent_entity(*se);
241 *pse = parent_entity(*pse);
242 }
243}
244
8f48894f
PZ
245#else /* !CONFIG_FAIR_GROUP_SCHED */
246
247static inline struct task_struct *task_of(struct sched_entity *se)
248{
249 return container_of(se, struct task_struct, se);
250}
bf0f6f24 251
62160e3f
IM
252static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
253{
254 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
255}
256
257#define entity_is_task(se) 1
258
b758149c
PZ
259#define for_each_sched_entity(se) \
260 for (; se; se = NULL)
bf0f6f24 261
b758149c 262static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 263{
b758149c 264 return &task_rq(p)->cfs;
bf0f6f24
IM
265}
266
b758149c
PZ
267static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268{
269 struct task_struct *p = task_of(se);
270 struct rq *rq = task_rq(p);
271
272 return &rq->cfs;
273}
274
275/* runqueue "owned" by this group */
276static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
277{
278 return NULL;
279}
280
281static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
282{
283 return &cpu_rq(this_cpu)->cfs;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288}
289
290static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
291{
292}
293
b758149c
PZ
294#define for_each_leaf_cfs_rq(rq, cfs_rq) \
295 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
296
297static inline int
298is_same_group(struct sched_entity *se, struct sched_entity *pse)
299{
300 return 1;
301}
302
303static inline struct sched_entity *parent_entity(struct sched_entity *se)
304{
305 return NULL;
306}
307
464b7527
PZ
308static inline void
309find_matching_se(struct sched_entity **se, struct sched_entity **pse)
310{
311}
312
b758149c
PZ
313#endif /* CONFIG_FAIR_GROUP_SCHED */
314
bf0f6f24
IM
315
316/**************************************************************
317 * Scheduling class tree data structure manipulation methods:
318 */
319
0702e3eb 320static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 321{
368059a9
PZ
322 s64 delta = (s64)(vruntime - min_vruntime);
323 if (delta > 0)
02e0431a
PZ
324 min_vruntime = vruntime;
325
326 return min_vruntime;
327}
328
0702e3eb 329static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
330{
331 s64 delta = (s64)(vruntime - min_vruntime);
332 if (delta < 0)
333 min_vruntime = vruntime;
334
335 return min_vruntime;
336}
337
54fdc581
FC
338static inline int entity_before(struct sched_entity *a,
339 struct sched_entity *b)
340{
341 return (s64)(a->vruntime - b->vruntime) < 0;
342}
343
0702e3eb 344static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 345{
30cfdcfc 346 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
347}
348
1af5f730
PZ
349static void update_min_vruntime(struct cfs_rq *cfs_rq)
350{
351 u64 vruntime = cfs_rq->min_vruntime;
352
353 if (cfs_rq->curr)
354 vruntime = cfs_rq->curr->vruntime;
355
356 if (cfs_rq->rb_leftmost) {
357 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
358 struct sched_entity,
359 run_node);
360
e17036da 361 if (!cfs_rq->curr)
1af5f730
PZ
362 vruntime = se->vruntime;
363 else
364 vruntime = min_vruntime(vruntime, se->vruntime);
365 }
366
367 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
368}
369
bf0f6f24
IM
370/*
371 * Enqueue an entity into the rb-tree:
372 */
0702e3eb 373static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
374{
375 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
376 struct rb_node *parent = NULL;
377 struct sched_entity *entry;
9014623c 378 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
379 int leftmost = 1;
380
381 /*
382 * Find the right place in the rbtree:
383 */
384 while (*link) {
385 parent = *link;
386 entry = rb_entry(parent, struct sched_entity, run_node);
387 /*
388 * We dont care about collisions. Nodes with
389 * the same key stay together.
390 */
9014623c 391 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
392 link = &parent->rb_left;
393 } else {
394 link = &parent->rb_right;
395 leftmost = 0;
396 }
397 }
398
399 /*
400 * Maintain a cache of leftmost tree entries (it is frequently
401 * used):
402 */
1af5f730 403 if (leftmost)
57cb499d 404 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
405
406 rb_link_node(&se->run_node, parent, link);
407 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
408}
409
0702e3eb 410static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 411{
3fe69747
PZ
412 if (cfs_rq->rb_leftmost == &se->run_node) {
413 struct rb_node *next_node;
3fe69747
PZ
414
415 next_node = rb_next(&se->run_node);
416 cfs_rq->rb_leftmost = next_node;
3fe69747 417 }
e9acbff6 418
bf0f6f24 419 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
420}
421
bf0f6f24
IM
422static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
423{
f4b6755f
PZ
424 struct rb_node *left = cfs_rq->rb_leftmost;
425
426 if (!left)
427 return NULL;
428
429 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
430}
431
f4b6755f 432static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 433{
7eee3e67 434 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 435
70eee74b
BS
436 if (!last)
437 return NULL;
7eee3e67
IM
438
439 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
440}
441
bf0f6f24
IM
442/**************************************************************
443 * Scheduling class statistics methods:
444 */
445
b2be5e96 446#ifdef CONFIG_SCHED_DEBUG
acb4a848 447int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 448 void __user *buffer, size_t *lenp,
b2be5e96
PZ
449 loff_t *ppos)
450{
8d65af78 451 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 452 int factor = get_update_sysctl_factor();
b2be5e96
PZ
453
454 if (ret || !write)
455 return ret;
456
457 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
458 sysctl_sched_min_granularity);
459
acb4a848
CE
460#define WRT_SYSCTL(name) \
461 (normalized_sysctl_##name = sysctl_##name / (factor))
462 WRT_SYSCTL(sched_min_granularity);
463 WRT_SYSCTL(sched_latency);
464 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
465#undef WRT_SYSCTL
466
b2be5e96
PZ
467 return 0;
468}
469#endif
647e7cac 470
a7be37ac 471/*
f9c0b095 472 * delta /= w
a7be37ac
PZ
473 */
474static inline unsigned long
475calc_delta_fair(unsigned long delta, struct sched_entity *se)
476{
f9c0b095
PZ
477 if (unlikely(se->load.weight != NICE_0_LOAD))
478 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
479
480 return delta;
481}
482
647e7cac
IM
483/*
484 * The idea is to set a period in which each task runs once.
485 *
486 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
487 * this period because otherwise the slices get too small.
488 *
489 * p = (nr <= nl) ? l : l*nr/nl
490 */
4d78e7b6
PZ
491static u64 __sched_period(unsigned long nr_running)
492{
493 u64 period = sysctl_sched_latency;
b2be5e96 494 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
495
496 if (unlikely(nr_running > nr_latency)) {
4bf0b771 497 period = sysctl_sched_min_granularity;
4d78e7b6 498 period *= nr_running;
4d78e7b6
PZ
499 }
500
501 return period;
502}
503
647e7cac
IM
504/*
505 * We calculate the wall-time slice from the period by taking a part
506 * proportional to the weight.
507 *
f9c0b095 508 * s = p*P[w/rw]
647e7cac 509 */
6d0f0ebd 510static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 511{
0a582440 512 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 513
0a582440 514 for_each_sched_entity(se) {
6272d68c 515 struct load_weight *load;
3104bf03 516 struct load_weight lw;
6272d68c
LM
517
518 cfs_rq = cfs_rq_of(se);
519 load = &cfs_rq->load;
f9c0b095 520
0a582440 521 if (unlikely(!se->on_rq)) {
3104bf03 522 lw = cfs_rq->load;
0a582440
MG
523
524 update_load_add(&lw, se->load.weight);
525 load = &lw;
526 }
527 slice = calc_delta_mine(slice, se->load.weight, load);
528 }
529 return slice;
bf0f6f24
IM
530}
531
647e7cac 532/*
ac884dec 533 * We calculate the vruntime slice of a to be inserted task
647e7cac 534 *
f9c0b095 535 * vs = s/w
647e7cac 536 */
f9c0b095 537static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 538{
f9c0b095 539 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
540}
541
d6b55918 542static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
3b3d190e
PT
543static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta);
544
bf0f6f24
IM
545/*
546 * Update the current task's runtime statistics. Skip current tasks that
547 * are not in our scheduling class.
548 */
549static inline void
8ebc91d9
IM
550__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
551 unsigned long delta_exec)
bf0f6f24 552{
bbdba7c0 553 unsigned long delta_exec_weighted;
bf0f6f24 554
41acab88
LDM
555 schedstat_set(curr->statistics.exec_max,
556 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
557
558 curr->sum_exec_runtime += delta_exec;
7a62eabc 559 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 560 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 561
e9acbff6 562 curr->vruntime += delta_exec_weighted;
1af5f730 563 update_min_vruntime(cfs_rq);
3b3d190e 564
70caf8a6 565#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 566 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 567#endif
bf0f6f24
IM
568}
569
b7cc0896 570static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 571{
429d43bc 572 struct sched_entity *curr = cfs_rq->curr;
305e6835 573 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
574 unsigned long delta_exec;
575
576 if (unlikely(!curr))
577 return;
578
579 /*
580 * Get the amount of time the current task was running
581 * since the last time we changed load (this cannot
582 * overflow on 32 bits):
583 */
8ebc91d9 584 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
585 if (!delta_exec)
586 return;
bf0f6f24 587
8ebc91d9
IM
588 __update_curr(cfs_rq, curr, delta_exec);
589 curr->exec_start = now;
d842de87
SV
590
591 if (entity_is_task(curr)) {
592 struct task_struct *curtask = task_of(curr);
593
f977bb49 594 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 595 cpuacct_charge(curtask, delta_exec);
f06febc9 596 account_group_exec_runtime(curtask, delta_exec);
d842de87 597 }
bf0f6f24
IM
598}
599
600static inline void
5870db5b 601update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 602{
41acab88 603 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
604}
605
bf0f6f24
IM
606/*
607 * Task is being enqueued - update stats:
608 */
d2417e5a 609static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 610{
bf0f6f24
IM
611 /*
612 * Are we enqueueing a waiting task? (for current tasks
613 * a dequeue/enqueue event is a NOP)
614 */
429d43bc 615 if (se != cfs_rq->curr)
5870db5b 616 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
617}
618
bf0f6f24 619static void
9ef0a961 620update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 621{
41acab88
LDM
622 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
623 rq_of(cfs_rq)->clock - se->statistics.wait_start));
624 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
625 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
626 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
627#ifdef CONFIG_SCHEDSTATS
628 if (entity_is_task(se)) {
629 trace_sched_stat_wait(task_of(se),
41acab88 630 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
631 }
632#endif
41acab88 633 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
634}
635
636static inline void
19b6a2e3 637update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 638{
bf0f6f24
IM
639 /*
640 * Mark the end of the wait period if dequeueing a
641 * waiting task:
642 */
429d43bc 643 if (se != cfs_rq->curr)
9ef0a961 644 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
645}
646
647/*
648 * We are picking a new current task - update its stats:
649 */
650static inline void
79303e9e 651update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
652{
653 /*
654 * We are starting a new run period:
655 */
305e6835 656 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
657}
658
bf0f6f24
IM
659/**************************************************
660 * Scheduling class queueing methods:
661 */
662
c09595f6
PZ
663#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
664static void
665add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
666{
667 cfs_rq->task_weight += weight;
668}
669#else
670static inline void
671add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
672{
673}
674#endif
675
30cfdcfc
DA
676static void
677account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
678{
679 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
680 if (!parent_entity(se))
681 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 682 if (entity_is_task(se)) {
c09595f6 683 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
684 list_add(&se->group_node, &cfs_rq->tasks);
685 }
30cfdcfc 686 cfs_rq->nr_running++;
30cfdcfc
DA
687}
688
689static void
690account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
691{
692 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
693 if (!parent_entity(se))
694 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 695 if (entity_is_task(se)) {
c09595f6 696 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
697 list_del_init(&se->group_node);
698 }
30cfdcfc 699 cfs_rq->nr_running--;
30cfdcfc
DA
700}
701
3ff6dcac
YZ
702#ifdef CONFIG_FAIR_GROUP_SCHED
703# ifdef CONFIG_SMP
d6b55918
PT
704static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
705 int global_update)
706{
707 struct task_group *tg = cfs_rq->tg;
708 long load_avg;
709
710 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
711 load_avg -= cfs_rq->load_contribution;
712
713 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
714 atomic_add(load_avg, &tg->load_weight);
715 cfs_rq->load_contribution += load_avg;
716 }
717}
718
719static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 720{
a7a4f8a7 721 u64 period = sysctl_sched_shares_window;
2069dd75 722 u64 now, delta;
e33078ba 723 unsigned long load = cfs_rq->load.weight;
2069dd75
PZ
724
725 if (!cfs_rq)
726 return;
727
728 now = rq_of(cfs_rq)->clock;
729 delta = now - cfs_rq->load_stamp;
730
e33078ba
PT
731 /* truncate load history at 4 idle periods */
732 if (cfs_rq->load_stamp > cfs_rq->load_last &&
733 now - cfs_rq->load_last > 4 * period) {
734 cfs_rq->load_period = 0;
735 cfs_rq->load_avg = 0;
736 }
737
2069dd75 738 cfs_rq->load_stamp = now;
3b3d190e 739 cfs_rq->load_unacc_exec_time = 0;
2069dd75 740 cfs_rq->load_period += delta;
e33078ba
PT
741 if (load) {
742 cfs_rq->load_last = now;
743 cfs_rq->load_avg += delta * load;
744 }
2069dd75 745
d6b55918
PT
746 /* consider updating load contribution on each fold or truncate */
747 if (global_update || cfs_rq->load_period > period
748 || !cfs_rq->load_period)
749 update_cfs_rq_load_contribution(cfs_rq, global_update);
750
2069dd75
PZ
751 while (cfs_rq->load_period > period) {
752 /*
753 * Inline assembly required to prevent the compiler
754 * optimising this loop into a divmod call.
755 * See __iter_div_u64_rem() for another example of this.
756 */
757 asm("" : "+rm" (cfs_rq->load_period));
758 cfs_rq->load_period /= 2;
759 cfs_rq->load_avg /= 2;
760 }
3d4b47b4 761
e33078ba
PT
762 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
763 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
764}
765
3ff6dcac
YZ
766static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg,
767 long weight_delta)
768{
769 long load_weight, load, shares;
770
771 load = cfs_rq->load.weight + weight_delta;
772
773 load_weight = atomic_read(&tg->load_weight);
774 load_weight -= cfs_rq->load_contribution;
775 load_weight += load;
776
777 shares = (tg->shares * load);
778 if (load_weight)
779 shares /= load_weight;
780
781 if (shares < MIN_SHARES)
782 shares = MIN_SHARES;
783 if (shares > tg->shares)
784 shares = tg->shares;
785
786 return shares;
787}
788
789static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
790{
791 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
792 update_cfs_load(cfs_rq, 0);
793 update_cfs_shares(cfs_rq, 0);
794 }
795}
796# else /* CONFIG_SMP */
797static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
798{
799}
800
801static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg,
802 long weight_delta)
803{
804 return tg->shares;
805}
806
807static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
808{
809}
810# endif /* CONFIG_SMP */
2069dd75
PZ
811static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
812 unsigned long weight)
813{
19e5eebb
PT
814 if (se->on_rq) {
815 /* commit outstanding execution time */
816 if (cfs_rq->curr == se)
817 update_curr(cfs_rq);
2069dd75 818 account_entity_dequeue(cfs_rq, se);
19e5eebb 819 }
2069dd75
PZ
820
821 update_load_set(&se->load, weight);
822
823 if (se->on_rq)
824 account_entity_enqueue(cfs_rq, se);
825}
826
f0d7442a 827static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
2069dd75
PZ
828{
829 struct task_group *tg;
830 struct sched_entity *se;
3ff6dcac 831 long shares;
2069dd75
PZ
832
833 if (!cfs_rq)
834 return;
835
836 tg = cfs_rq->tg;
837 se = tg->se[cpu_of(rq_of(cfs_rq))];
838 if (!se)
839 return;
3ff6dcac
YZ
840#ifndef CONFIG_SMP
841 if (likely(se->load.weight == tg->shares))
842 return;
843#endif
844 shares = calc_cfs_shares(cfs_rq, tg, weight_delta);
2069dd75
PZ
845
846 reweight_entity(cfs_rq_of(se), se, shares);
847}
848#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 849static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
850{
851}
852
f0d7442a 853static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
2069dd75
PZ
854{
855}
43365bd7
PT
856
857static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
858{
859}
2069dd75
PZ
860#endif /* CONFIG_FAIR_GROUP_SCHED */
861
2396af69 862static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 863{
bf0f6f24 864#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
865 struct task_struct *tsk = NULL;
866
867 if (entity_is_task(se))
868 tsk = task_of(se);
869
41acab88
LDM
870 if (se->statistics.sleep_start) {
871 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
872
873 if ((s64)delta < 0)
874 delta = 0;
875
41acab88
LDM
876 if (unlikely(delta > se->statistics.sleep_max))
877 se->statistics.sleep_max = delta;
bf0f6f24 878
41acab88
LDM
879 se->statistics.sleep_start = 0;
880 se->statistics.sum_sleep_runtime += delta;
9745512c 881
768d0c27 882 if (tsk) {
e414314c 883 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
884 trace_sched_stat_sleep(tsk, delta);
885 }
bf0f6f24 886 }
41acab88
LDM
887 if (se->statistics.block_start) {
888 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
889
890 if ((s64)delta < 0)
891 delta = 0;
892
41acab88
LDM
893 if (unlikely(delta > se->statistics.block_max))
894 se->statistics.block_max = delta;
bf0f6f24 895
41acab88
LDM
896 se->statistics.block_start = 0;
897 se->statistics.sum_sleep_runtime += delta;
30084fbd 898
e414314c 899 if (tsk) {
8f0dfc34 900 if (tsk->in_iowait) {
41acab88
LDM
901 se->statistics.iowait_sum += delta;
902 se->statistics.iowait_count++;
768d0c27 903 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
904 }
905
e414314c
PZ
906 /*
907 * Blocking time is in units of nanosecs, so shift by
908 * 20 to get a milliseconds-range estimation of the
909 * amount of time that the task spent sleeping:
910 */
911 if (unlikely(prof_on == SLEEP_PROFILING)) {
912 profile_hits(SLEEP_PROFILING,
913 (void *)get_wchan(tsk),
914 delta >> 20);
915 }
916 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 917 }
bf0f6f24
IM
918 }
919#endif
920}
921
ddc97297
PZ
922static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
923{
924#ifdef CONFIG_SCHED_DEBUG
925 s64 d = se->vruntime - cfs_rq->min_vruntime;
926
927 if (d < 0)
928 d = -d;
929
930 if (d > 3*sysctl_sched_latency)
931 schedstat_inc(cfs_rq, nr_spread_over);
932#endif
933}
934
aeb73b04
PZ
935static void
936place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
937{
1af5f730 938 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 939
2cb8600e
PZ
940 /*
941 * The 'current' period is already promised to the current tasks,
942 * however the extra weight of the new task will slow them down a
943 * little, place the new task so that it fits in the slot that
944 * stays open at the end.
945 */
94dfb5e7 946 if (initial && sched_feat(START_DEBIT))
f9c0b095 947 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 948
a2e7a7eb 949 /* sleeps up to a single latency don't count. */
5ca9880c 950 if (!initial) {
a2e7a7eb 951 unsigned long thresh = sysctl_sched_latency;
a7be37ac 952
a2e7a7eb
MG
953 /*
954 * Halve their sleep time's effect, to allow
955 * for a gentler effect of sleepers:
956 */
957 if (sched_feat(GENTLE_FAIR_SLEEPERS))
958 thresh >>= 1;
51e0304c 959
a2e7a7eb 960 vruntime -= thresh;
aeb73b04
PZ
961 }
962
b5d9d734
MG
963 /* ensure we never gain time by being placed backwards. */
964 vruntime = max_vruntime(se->vruntime, vruntime);
965
67e9fb2a 966 se->vruntime = vruntime;
aeb73b04
PZ
967}
968
bf0f6f24 969static void
88ec22d3 970enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 971{
88ec22d3
PZ
972 /*
973 * Update the normalized vruntime before updating min_vruntime
974 * through callig update_curr().
975 */
371fd7e7 976 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
977 se->vruntime += cfs_rq->min_vruntime;
978
bf0f6f24 979 /*
a2a2d680 980 * Update run-time statistics of the 'current'.
bf0f6f24 981 */
b7cc0896 982 update_curr(cfs_rq);
d6b55918 983 update_cfs_load(cfs_rq, 0);
f0d7442a 984 update_cfs_shares(cfs_rq, se->load.weight);
a992241d 985 account_entity_enqueue(cfs_rq, se);
bf0f6f24 986
88ec22d3 987 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 988 place_entity(cfs_rq, se, 0);
2396af69 989 enqueue_sleeper(cfs_rq, se);
e9acbff6 990 }
bf0f6f24 991
d2417e5a 992 update_stats_enqueue(cfs_rq, se);
ddc97297 993 check_spread(cfs_rq, se);
83b699ed
SV
994 if (se != cfs_rq->curr)
995 __enqueue_entity(cfs_rq, se);
2069dd75 996 se->on_rq = 1;
3d4b47b4
PZ
997
998 if (cfs_rq->nr_running == 1)
999 list_add_leaf_cfs_rq(cfs_rq);
bf0f6f24
IM
1000}
1001
a571bbea 1002static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695 1003{
de69a80b 1004 if (!se || cfs_rq->last == se)
2002c695
PZ
1005 cfs_rq->last = NULL;
1006
de69a80b 1007 if (!se || cfs_rq->next == se)
2002c695
PZ
1008 cfs_rq->next = NULL;
1009}
1010
a571bbea
PZ
1011static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1012{
1013 for_each_sched_entity(se)
1014 __clear_buddies(cfs_rq_of(se), se);
1015}
1016
bf0f6f24 1017static void
371fd7e7 1018dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1019{
a2a2d680
DA
1020 /*
1021 * Update run-time statistics of the 'current'.
1022 */
1023 update_curr(cfs_rq);
1024
19b6a2e3 1025 update_stats_dequeue(cfs_rq, se);
371fd7e7 1026 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1027#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1028 if (entity_is_task(se)) {
1029 struct task_struct *tsk = task_of(se);
1030
1031 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1032 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1033 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1034 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1035 }
db36cc7d 1036#endif
67e9fb2a
PZ
1037 }
1038
2002c695 1039 clear_buddies(cfs_rq, se);
4793241b 1040
83b699ed 1041 if (se != cfs_rq->curr)
30cfdcfc 1042 __dequeue_entity(cfs_rq, se);
2069dd75 1043 se->on_rq = 0;
d6b55918 1044 update_cfs_load(cfs_rq, 0);
30cfdcfc 1045 account_entity_dequeue(cfs_rq, se);
1af5f730 1046 update_min_vruntime(cfs_rq);
f0d7442a 1047 update_cfs_shares(cfs_rq, 0);
88ec22d3
PZ
1048
1049 /*
1050 * Normalize the entity after updating the min_vruntime because the
1051 * update can refer to the ->curr item and we need to reflect this
1052 * movement in our normalized position.
1053 */
371fd7e7 1054 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1055 se->vruntime -= cfs_rq->min_vruntime;
bf0f6f24
IM
1056}
1057
1058/*
1059 * Preempt the current task with a newly woken task if needed:
1060 */
7c92e54f 1061static void
2e09bf55 1062check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1063{
11697830
PZ
1064 unsigned long ideal_runtime, delta_exec;
1065
6d0f0ebd 1066 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1067 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1068 if (delta_exec > ideal_runtime) {
bf0f6f24 1069 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1070 /*
1071 * The current task ran long enough, ensure it doesn't get
1072 * re-elected due to buddy favours.
1073 */
1074 clear_buddies(cfs_rq, curr);
f685ceac
MG
1075 return;
1076 }
1077
1078 /*
1079 * Ensure that a task that missed wakeup preemption by a
1080 * narrow margin doesn't have to wait for a full slice.
1081 * This also mitigates buddy induced latencies under load.
1082 */
1083 if (!sched_feat(WAKEUP_PREEMPT))
1084 return;
1085
1086 if (delta_exec < sysctl_sched_min_granularity)
1087 return;
1088
1089 if (cfs_rq->nr_running > 1) {
1090 struct sched_entity *se = __pick_next_entity(cfs_rq);
1091 s64 delta = curr->vruntime - se->vruntime;
1092
d7d82944
MG
1093 if (delta < 0)
1094 return;
1095
f685ceac
MG
1096 if (delta > ideal_runtime)
1097 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 1098 }
bf0f6f24
IM
1099}
1100
83b699ed 1101static void
8494f412 1102set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1103{
83b699ed
SV
1104 /* 'current' is not kept within the tree. */
1105 if (se->on_rq) {
1106 /*
1107 * Any task has to be enqueued before it get to execute on
1108 * a CPU. So account for the time it spent waiting on the
1109 * runqueue.
1110 */
1111 update_stats_wait_end(cfs_rq, se);
1112 __dequeue_entity(cfs_rq, se);
1113 }
1114
79303e9e 1115 update_stats_curr_start(cfs_rq, se);
429d43bc 1116 cfs_rq->curr = se;
eba1ed4b
IM
1117#ifdef CONFIG_SCHEDSTATS
1118 /*
1119 * Track our maximum slice length, if the CPU's load is at
1120 * least twice that of our own weight (i.e. dont track it
1121 * when there are only lesser-weight tasks around):
1122 */
495eca49 1123 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1124 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1125 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1126 }
1127#endif
4a55b450 1128 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1129}
1130
3f3a4904
PZ
1131static int
1132wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1133
f4b6755f 1134static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1135{
f4b6755f 1136 struct sched_entity *se = __pick_next_entity(cfs_rq);
f685ceac 1137 struct sched_entity *left = se;
f4b6755f 1138
f685ceac
MG
1139 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1140 se = cfs_rq->next;
aa2ac252 1141
f685ceac
MG
1142 /*
1143 * Prefer last buddy, try to return the CPU to a preempted task.
1144 */
1145 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1146 se = cfs_rq->last;
1147
1148 clear_buddies(cfs_rq, se);
4793241b
PZ
1149
1150 return se;
aa2ac252
PZ
1151}
1152
ab6cde26 1153static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1154{
1155 /*
1156 * If still on the runqueue then deactivate_task()
1157 * was not called and update_curr() has to be done:
1158 */
1159 if (prev->on_rq)
b7cc0896 1160 update_curr(cfs_rq);
bf0f6f24 1161
ddc97297 1162 check_spread(cfs_rq, prev);
30cfdcfc 1163 if (prev->on_rq) {
5870db5b 1164 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1165 /* Put 'current' back into the tree. */
1166 __enqueue_entity(cfs_rq, prev);
1167 }
429d43bc 1168 cfs_rq->curr = NULL;
bf0f6f24
IM
1169}
1170
8f4d37ec
PZ
1171static void
1172entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1173{
bf0f6f24 1174 /*
30cfdcfc 1175 * Update run-time statistics of the 'current'.
bf0f6f24 1176 */
30cfdcfc 1177 update_curr(cfs_rq);
bf0f6f24 1178
43365bd7
PT
1179 /*
1180 * Update share accounting for long-running entities.
1181 */
1182 update_entity_shares_tick(cfs_rq);
1183
8f4d37ec
PZ
1184#ifdef CONFIG_SCHED_HRTICK
1185 /*
1186 * queued ticks are scheduled to match the slice, so don't bother
1187 * validating it and just reschedule.
1188 */
983ed7a6
HH
1189 if (queued) {
1190 resched_task(rq_of(cfs_rq)->curr);
1191 return;
1192 }
8f4d37ec
PZ
1193 /*
1194 * don't let the period tick interfere with the hrtick preemption
1195 */
1196 if (!sched_feat(DOUBLE_TICK) &&
1197 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1198 return;
1199#endif
1200
ce6c1311 1201 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 1202 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1203}
1204
1205/**************************************************
1206 * CFS operations on tasks:
1207 */
1208
8f4d37ec
PZ
1209#ifdef CONFIG_SCHED_HRTICK
1210static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1211{
8f4d37ec
PZ
1212 struct sched_entity *se = &p->se;
1213 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1214
1215 WARN_ON(task_rq(p) != rq);
1216
1217 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1218 u64 slice = sched_slice(cfs_rq, se);
1219 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1220 s64 delta = slice - ran;
1221
1222 if (delta < 0) {
1223 if (rq->curr == p)
1224 resched_task(p);
1225 return;
1226 }
1227
1228 /*
1229 * Don't schedule slices shorter than 10000ns, that just
1230 * doesn't make sense. Rely on vruntime for fairness.
1231 */
31656519 1232 if (rq->curr != p)
157124c1 1233 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1234
31656519 1235 hrtick_start(rq, delta);
8f4d37ec
PZ
1236 }
1237}
a4c2f00f
PZ
1238
1239/*
1240 * called from enqueue/dequeue and updates the hrtick when the
1241 * current task is from our class and nr_running is low enough
1242 * to matter.
1243 */
1244static void hrtick_update(struct rq *rq)
1245{
1246 struct task_struct *curr = rq->curr;
1247
1248 if (curr->sched_class != &fair_sched_class)
1249 return;
1250
1251 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1252 hrtick_start_fair(rq, curr);
1253}
55e12e5e 1254#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1255static inline void
1256hrtick_start_fair(struct rq *rq, struct task_struct *p)
1257{
1258}
a4c2f00f
PZ
1259
1260static inline void hrtick_update(struct rq *rq)
1261{
1262}
8f4d37ec
PZ
1263#endif
1264
bf0f6f24
IM
1265/*
1266 * The enqueue_task method is called before nr_running is
1267 * increased. Here we update the fair scheduling stats and
1268 * then put the task into the rbtree:
1269 */
ea87bb78 1270static void
371fd7e7 1271enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1272{
1273 struct cfs_rq *cfs_rq;
62fb1851 1274 struct sched_entity *se = &p->se;
bf0f6f24
IM
1275
1276 for_each_sched_entity(se) {
62fb1851 1277 if (se->on_rq)
bf0f6f24
IM
1278 break;
1279 cfs_rq = cfs_rq_of(se);
88ec22d3
PZ
1280 enqueue_entity(cfs_rq, se, flags);
1281 flags = ENQUEUE_WAKEUP;
bf0f6f24 1282 }
8f4d37ec 1283
2069dd75
PZ
1284 for_each_sched_entity(se) {
1285 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1286
d6b55918 1287 update_cfs_load(cfs_rq, 0);
f0d7442a 1288 update_cfs_shares(cfs_rq, 0);
2069dd75
PZ
1289 }
1290
a4c2f00f 1291 hrtick_update(rq);
bf0f6f24
IM
1292}
1293
1294/*
1295 * The dequeue_task method is called before nr_running is
1296 * decreased. We remove the task from the rbtree and
1297 * update the fair scheduling stats:
1298 */
371fd7e7 1299static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1300{
1301 struct cfs_rq *cfs_rq;
62fb1851 1302 struct sched_entity *se = &p->se;
bf0f6f24
IM
1303
1304 for_each_sched_entity(se) {
1305 cfs_rq = cfs_rq_of(se);
371fd7e7 1306 dequeue_entity(cfs_rq, se, flags);
2069dd75 1307
bf0f6f24 1308 /* Don't dequeue parent if it has other entities besides us */
62fb1851 1309 if (cfs_rq->load.weight)
bf0f6f24 1310 break;
371fd7e7 1311 flags |= DEQUEUE_SLEEP;
bf0f6f24 1312 }
8f4d37ec 1313
2069dd75
PZ
1314 for_each_sched_entity(se) {
1315 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1316
d6b55918 1317 update_cfs_load(cfs_rq, 0);
f0d7442a 1318 update_cfs_shares(cfs_rq, 0);
2069dd75
PZ
1319 }
1320
a4c2f00f 1321 hrtick_update(rq);
bf0f6f24
IM
1322}
1323
1324/*
1799e35d
IM
1325 * sched_yield() support is very simple - we dequeue and enqueue.
1326 *
1327 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 1328 */
4530d7ab 1329static void yield_task_fair(struct rq *rq)
bf0f6f24 1330{
db292ca3
IM
1331 struct task_struct *curr = rq->curr;
1332 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1333 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1334
1335 /*
1799e35d
IM
1336 * Are we the only task in the tree?
1337 */
1338 if (unlikely(cfs_rq->nr_running == 1))
1339 return;
1340
2002c695
PZ
1341 clear_buddies(cfs_rq, se);
1342
db292ca3 1343 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1344 update_rq_clock(rq);
1799e35d 1345 /*
a2a2d680 1346 * Update run-time statistics of the 'current'.
1799e35d 1347 */
2b1e315d 1348 update_curr(cfs_rq);
1799e35d
IM
1349
1350 return;
1351 }
1352 /*
1353 * Find the rightmost entry in the rbtree:
bf0f6f24 1354 */
2b1e315d 1355 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1356 /*
1357 * Already in the rightmost position?
1358 */
54fdc581 1359 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1360 return;
1361
1362 /*
1363 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1364 * Upon rescheduling, sched_class::put_prev_task() will place
1365 * 'current' within the tree based on its new key value.
1799e35d 1366 */
30cfdcfc 1367 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1368}
1369
e7693a36 1370#ifdef CONFIG_SMP
098fb9db 1371
88ec22d3
PZ
1372static void task_waking_fair(struct rq *rq, struct task_struct *p)
1373{
1374 struct sched_entity *se = &p->se;
1375 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1376
1377 se->vruntime -= cfs_rq->min_vruntime;
1378}
1379
bb3469ac 1380#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1381/*
1382 * effective_load() calculates the load change as seen from the root_task_group
1383 *
1384 * Adding load to a group doesn't make a group heavier, but can cause movement
1385 * of group shares between cpus. Assuming the shares were perfectly aligned one
1386 * can calculate the shift in shares.
f5bfb7d9 1387 */
2069dd75 1388static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 1389{
4be9daaa 1390 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1391
1392 if (!tg->parent)
1393 return wl;
1394
4be9daaa 1395 for_each_sched_entity(se) {
977dda7c 1396 long lw, w;
4be9daaa 1397
977dda7c
PT
1398 tg = se->my_q->tg;
1399 w = se->my_q->load.weight;
bb3469ac 1400
977dda7c
PT
1401 /* use this cpu's instantaneous contribution */
1402 lw = atomic_read(&tg->load_weight);
1403 lw -= se->my_q->load_contribution;
1404 lw += w + wg;
4be9daaa 1405
977dda7c 1406 wl += w;
940959e9 1407
977dda7c
PT
1408 if (lw > 0 && wl < lw)
1409 wl = (wl * tg->shares) / lw;
1410 else
1411 wl = tg->shares;
940959e9 1412
977dda7c
PT
1413 /* zero point is MIN_SHARES */
1414 if (wl < MIN_SHARES)
1415 wl = MIN_SHARES;
1416 wl -= se->load.weight;
4be9daaa 1417 wg = 0;
4be9daaa 1418 }
bb3469ac 1419
4be9daaa 1420 return wl;
bb3469ac 1421}
4be9daaa 1422
bb3469ac 1423#else
4be9daaa 1424
83378269
PZ
1425static inline unsigned long effective_load(struct task_group *tg, int cpu,
1426 unsigned long wl, unsigned long wg)
4be9daaa 1427{
83378269 1428 return wl;
bb3469ac 1429}
4be9daaa 1430
bb3469ac
PZ
1431#endif
1432
c88d5910 1433static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1434{
e37b6a7b 1435 s64 this_load, load;
c88d5910 1436 int idx, this_cpu, prev_cpu;
098fb9db 1437 unsigned long tl_per_task;
c88d5910 1438 struct task_group *tg;
83378269 1439 unsigned long weight;
b3137bc8 1440 int balanced;
098fb9db 1441
c88d5910
PZ
1442 idx = sd->wake_idx;
1443 this_cpu = smp_processor_id();
1444 prev_cpu = task_cpu(p);
1445 load = source_load(prev_cpu, idx);
1446 this_load = target_load(this_cpu, idx);
098fb9db 1447
b3137bc8
MG
1448 /*
1449 * If sync wakeup then subtract the (maximum possible)
1450 * effect of the currently running task from the load
1451 * of the current CPU:
1452 */
f3b577de 1453 rcu_read_lock();
83378269
PZ
1454 if (sync) {
1455 tg = task_group(current);
1456 weight = current->se.load.weight;
1457
c88d5910 1458 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1459 load += effective_load(tg, prev_cpu, 0, -weight);
1460 }
b3137bc8 1461
83378269
PZ
1462 tg = task_group(p);
1463 weight = p->se.load.weight;
b3137bc8 1464
71a29aa7
PZ
1465 /*
1466 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1467 * due to the sync cause above having dropped this_load to 0, we'll
1468 * always have an imbalance, but there's really nothing you can do
1469 * about that, so that's good too.
71a29aa7
PZ
1470 *
1471 * Otherwise check if either cpus are near enough in load to allow this
1472 * task to be woken on this_cpu.
1473 */
e37b6a7b
PT
1474 if (this_load > 0) {
1475 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
1476
1477 this_eff_load = 100;
1478 this_eff_load *= power_of(prev_cpu);
1479 this_eff_load *= this_load +
1480 effective_load(tg, this_cpu, weight, weight);
1481
1482 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1483 prev_eff_load *= power_of(this_cpu);
1484 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1485
1486 balanced = this_eff_load <= prev_eff_load;
1487 } else
1488 balanced = true;
f3b577de 1489 rcu_read_unlock();
b3137bc8 1490
098fb9db 1491 /*
4ae7d5ce
IM
1492 * If the currently running task will sleep within
1493 * a reasonable amount of time then attract this newly
1494 * woken task:
098fb9db 1495 */
2fb7635c
PZ
1496 if (sync && balanced)
1497 return 1;
098fb9db 1498
41acab88 1499 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
1500 tl_per_task = cpu_avg_load_per_task(this_cpu);
1501
c88d5910
PZ
1502 if (balanced ||
1503 (this_load <= load &&
1504 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1505 /*
1506 * This domain has SD_WAKE_AFFINE and
1507 * p is cache cold in this domain, and
1508 * there is no bad imbalance.
1509 */
c88d5910 1510 schedstat_inc(sd, ttwu_move_affine);
41acab88 1511 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
1512
1513 return 1;
1514 }
1515 return 0;
1516}
1517
aaee1203
PZ
1518/*
1519 * find_idlest_group finds and returns the least busy CPU group within the
1520 * domain.
1521 */
1522static struct sched_group *
78e7ed53 1523find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1524 int this_cpu, int load_idx)
e7693a36 1525{
b3bd3de6 1526 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 1527 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1528 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1529
aaee1203
PZ
1530 do {
1531 unsigned long load, avg_load;
1532 int local_group;
1533 int i;
e7693a36 1534
aaee1203
PZ
1535 /* Skip over this group if it has no CPUs allowed */
1536 if (!cpumask_intersects(sched_group_cpus(group),
1537 &p->cpus_allowed))
1538 continue;
1539
1540 local_group = cpumask_test_cpu(this_cpu,
1541 sched_group_cpus(group));
1542
1543 /* Tally up the load of all CPUs in the group */
1544 avg_load = 0;
1545
1546 for_each_cpu(i, sched_group_cpus(group)) {
1547 /* Bias balancing toward cpus of our domain */
1548 if (local_group)
1549 load = source_load(i, load_idx);
1550 else
1551 load = target_load(i, load_idx);
1552
1553 avg_load += load;
1554 }
1555
1556 /* Adjust by relative CPU power of the group */
1557 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1558
1559 if (local_group) {
1560 this_load = avg_load;
aaee1203
PZ
1561 } else if (avg_load < min_load) {
1562 min_load = avg_load;
1563 idlest = group;
1564 }
1565 } while (group = group->next, group != sd->groups);
1566
1567 if (!idlest || 100*this_load < imbalance*min_load)
1568 return NULL;
1569 return idlest;
1570}
1571
1572/*
1573 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1574 */
1575static int
1576find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1577{
1578 unsigned long load, min_load = ULONG_MAX;
1579 int idlest = -1;
1580 int i;
1581
1582 /* Traverse only the allowed CPUs */
1583 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1584 load = weighted_cpuload(i);
1585
1586 if (load < min_load || (load == min_load && i == this_cpu)) {
1587 min_load = load;
1588 idlest = i;
e7693a36
GH
1589 }
1590 }
1591
aaee1203
PZ
1592 return idlest;
1593}
e7693a36 1594
a50bde51
PZ
1595/*
1596 * Try and locate an idle CPU in the sched_domain.
1597 */
99bd5e2f 1598static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
1599{
1600 int cpu = smp_processor_id();
1601 int prev_cpu = task_cpu(p);
99bd5e2f 1602 struct sched_domain *sd;
a50bde51
PZ
1603 int i;
1604
1605 /*
99bd5e2f
SS
1606 * If the task is going to be woken-up on this cpu and if it is
1607 * already idle, then it is the right target.
a50bde51 1608 */
99bd5e2f
SS
1609 if (target == cpu && idle_cpu(cpu))
1610 return cpu;
1611
1612 /*
1613 * If the task is going to be woken-up on the cpu where it previously
1614 * ran and if it is currently idle, then it the right target.
1615 */
1616 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 1617 return prev_cpu;
a50bde51
PZ
1618
1619 /*
99bd5e2f 1620 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 1621 */
99bd5e2f
SS
1622 for_each_domain(target, sd) {
1623 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
fe3bcfe1 1624 break;
99bd5e2f
SS
1625
1626 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1627 if (idle_cpu(i)) {
1628 target = i;
1629 break;
1630 }
a50bde51 1631 }
99bd5e2f
SS
1632
1633 /*
1634 * Lets stop looking for an idle sibling when we reached
1635 * the domain that spans the current cpu and prev_cpu.
1636 */
1637 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1638 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1639 break;
a50bde51
PZ
1640 }
1641
1642 return target;
1643}
1644
aaee1203
PZ
1645/*
1646 * sched_balance_self: balance the current task (running on cpu) in domains
1647 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1648 * SD_BALANCE_EXEC.
1649 *
1650 * Balance, ie. select the least loaded group.
1651 *
1652 * Returns the target CPU number, or the same CPU if no balancing is needed.
1653 *
1654 * preempt must be disabled.
1655 */
0017d735
PZ
1656static int
1657select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1658{
29cd8bae 1659 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1660 int cpu = smp_processor_id();
1661 int prev_cpu = task_cpu(p);
1662 int new_cpu = cpu;
99bd5e2f 1663 int want_affine = 0;
29cd8bae 1664 int want_sd = 1;
5158f4e4 1665 int sync = wake_flags & WF_SYNC;
c88d5910 1666
0763a660 1667 if (sd_flag & SD_BALANCE_WAKE) {
beac4c7e 1668 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1669 want_affine = 1;
1670 new_cpu = prev_cpu;
1671 }
aaee1203
PZ
1672
1673 for_each_domain(cpu, tmp) {
e4f42888
PZ
1674 if (!(tmp->flags & SD_LOAD_BALANCE))
1675 continue;
1676
aaee1203 1677 /*
ae154be1
PZ
1678 * If power savings logic is enabled for a domain, see if we
1679 * are not overloaded, if so, don't balance wider.
aaee1203 1680 */
59abf026 1681 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1682 unsigned long power = 0;
1683 unsigned long nr_running = 0;
1684 unsigned long capacity;
1685 int i;
1686
1687 for_each_cpu(i, sched_domain_span(tmp)) {
1688 power += power_of(i);
1689 nr_running += cpu_rq(i)->cfs.nr_running;
1690 }
1691
1692 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1693
59abf026
PZ
1694 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1695 nr_running /= 2;
1696
1697 if (nr_running < capacity)
29cd8bae 1698 want_sd = 0;
ae154be1 1699 }
aaee1203 1700
fe3bcfe1 1701 /*
99bd5e2f
SS
1702 * If both cpu and prev_cpu are part of this domain,
1703 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 1704 */
99bd5e2f
SS
1705 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1706 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1707 affine_sd = tmp;
1708 want_affine = 0;
c88d5910
PZ
1709 }
1710
29cd8bae
PZ
1711 if (!want_sd && !want_affine)
1712 break;
1713
0763a660 1714 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1715 continue;
1716
29cd8bae
PZ
1717 if (want_sd)
1718 sd = tmp;
1719 }
1720
8b911acd 1721 if (affine_sd) {
99bd5e2f
SS
1722 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1723 return select_idle_sibling(p, cpu);
1724 else
1725 return select_idle_sibling(p, prev_cpu);
8b911acd 1726 }
e7693a36 1727
aaee1203 1728 while (sd) {
5158f4e4 1729 int load_idx = sd->forkexec_idx;
aaee1203 1730 struct sched_group *group;
c88d5910 1731 int weight;
098fb9db 1732
0763a660 1733 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1734 sd = sd->child;
1735 continue;
1736 }
098fb9db 1737
5158f4e4
PZ
1738 if (sd_flag & SD_BALANCE_WAKE)
1739 load_idx = sd->wake_idx;
098fb9db 1740
5158f4e4 1741 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1742 if (!group) {
1743 sd = sd->child;
1744 continue;
1745 }
4ae7d5ce 1746
d7c33c49 1747 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1748 if (new_cpu == -1 || new_cpu == cpu) {
1749 /* Now try balancing at a lower domain level of cpu */
1750 sd = sd->child;
1751 continue;
e7693a36 1752 }
aaee1203
PZ
1753
1754 /* Now try balancing at a lower domain level of new_cpu */
1755 cpu = new_cpu;
669c55e9 1756 weight = sd->span_weight;
aaee1203
PZ
1757 sd = NULL;
1758 for_each_domain(cpu, tmp) {
669c55e9 1759 if (weight <= tmp->span_weight)
aaee1203 1760 break;
0763a660 1761 if (tmp->flags & sd_flag)
aaee1203
PZ
1762 sd = tmp;
1763 }
1764 /* while loop will break here if sd == NULL */
e7693a36
GH
1765 }
1766
c88d5910 1767 return new_cpu;
e7693a36
GH
1768}
1769#endif /* CONFIG_SMP */
1770
e52fb7c0
PZ
1771static unsigned long
1772wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1773{
1774 unsigned long gran = sysctl_sched_wakeup_granularity;
1775
1776 /*
e52fb7c0
PZ
1777 * Since its curr running now, convert the gran from real-time
1778 * to virtual-time in his units.
13814d42
MG
1779 *
1780 * By using 'se' instead of 'curr' we penalize light tasks, so
1781 * they get preempted easier. That is, if 'se' < 'curr' then
1782 * the resulting gran will be larger, therefore penalizing the
1783 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1784 * be smaller, again penalizing the lighter task.
1785 *
1786 * This is especially important for buddies when the leftmost
1787 * task is higher priority than the buddy.
0bbd3336 1788 */
13814d42
MG
1789 if (unlikely(se->load.weight != NICE_0_LOAD))
1790 gran = calc_delta_fair(gran, se);
0bbd3336
PZ
1791
1792 return gran;
1793}
1794
464b7527
PZ
1795/*
1796 * Should 'se' preempt 'curr'.
1797 *
1798 * |s1
1799 * |s2
1800 * |s3
1801 * g
1802 * |<--->|c
1803 *
1804 * w(c, s1) = -1
1805 * w(c, s2) = 0
1806 * w(c, s3) = 1
1807 *
1808 */
1809static int
1810wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1811{
1812 s64 gran, vdiff = curr->vruntime - se->vruntime;
1813
1814 if (vdiff <= 0)
1815 return -1;
1816
e52fb7c0 1817 gran = wakeup_gran(curr, se);
464b7527
PZ
1818 if (vdiff > gran)
1819 return 1;
1820
1821 return 0;
1822}
1823
02479099
PZ
1824static void set_last_buddy(struct sched_entity *se)
1825{
6bc912b7
PZ
1826 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1827 for_each_sched_entity(se)
1828 cfs_rq_of(se)->last = se;
1829 }
02479099
PZ
1830}
1831
1832static void set_next_buddy(struct sched_entity *se)
1833{
6bc912b7
PZ
1834 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1835 for_each_sched_entity(se)
1836 cfs_rq_of(se)->next = se;
1837 }
02479099
PZ
1838}
1839
bf0f6f24
IM
1840/*
1841 * Preempt the current task with a newly woken task if needed:
1842 */
5a9b86f6 1843static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
1844{
1845 struct task_struct *curr = rq->curr;
8651a86c 1846 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1847 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 1848 int scale = cfs_rq->nr_running >= sched_nr_latency;
bf0f6f24 1849
4ae7d5ce
IM
1850 if (unlikely(se == pse))
1851 return;
1852
f685ceac 1853 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
3cb63d52 1854 set_next_buddy(pse);
57fdc26d 1855
aec0a514
BR
1856 /*
1857 * We can come here with TIF_NEED_RESCHED already set from new task
1858 * wake up path.
1859 */
1860 if (test_tsk_need_resched(curr))
1861 return;
1862
91c234b4 1863 /*
6bc912b7 1864 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1865 * the tick):
1866 */
6bc912b7 1867 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1868 return;
bf0f6f24 1869
6bc912b7 1870 /* Idle tasks are by definition preempted by everybody. */
3a7e73a2
PZ
1871 if (unlikely(curr->policy == SCHED_IDLE))
1872 goto preempt;
bf0f6f24 1873
ad4b78bb
PZ
1874 if (!sched_feat(WAKEUP_PREEMPT))
1875 return;
1876
3a7e73a2 1877 update_curr(cfs_rq);
464b7527 1878 find_matching_se(&se, &pse);
002f128b 1879 BUG_ON(!pse);
3a7e73a2
PZ
1880 if (wakeup_preempt_entity(se, pse) == 1)
1881 goto preempt;
464b7527 1882
3a7e73a2 1883 return;
a65ac745 1884
3a7e73a2
PZ
1885preempt:
1886 resched_task(curr);
1887 /*
1888 * Only set the backward buddy when the current task is still
1889 * on the rq. This can happen when a wakeup gets interleaved
1890 * with schedule on the ->pre_schedule() or idle_balance()
1891 * point, either of which can * drop the rq lock.
1892 *
1893 * Also, during early boot the idle thread is in the fair class,
1894 * for obvious reasons its a bad idea to schedule back to it.
1895 */
1896 if (unlikely(!se->on_rq || curr == rq->idle))
1897 return;
1898
1899 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1900 set_last_buddy(se);
bf0f6f24
IM
1901}
1902
fb8d4724 1903static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1904{
8f4d37ec 1905 struct task_struct *p;
bf0f6f24
IM
1906 struct cfs_rq *cfs_rq = &rq->cfs;
1907 struct sched_entity *se;
1908
36ace27e 1909 if (!cfs_rq->nr_running)
bf0f6f24
IM
1910 return NULL;
1911
1912 do {
9948f4b2 1913 se = pick_next_entity(cfs_rq);
f4b6755f 1914 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1915 cfs_rq = group_cfs_rq(se);
1916 } while (cfs_rq);
1917
8f4d37ec
PZ
1918 p = task_of(se);
1919 hrtick_start_fair(rq, p);
1920
1921 return p;
bf0f6f24
IM
1922}
1923
1924/*
1925 * Account for a descheduled task:
1926 */
31ee529c 1927static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1928{
1929 struct sched_entity *se = &prev->se;
1930 struct cfs_rq *cfs_rq;
1931
1932 for_each_sched_entity(se) {
1933 cfs_rq = cfs_rq_of(se);
ab6cde26 1934 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1935 }
1936}
1937
681f3e68 1938#ifdef CONFIG_SMP
bf0f6f24
IM
1939/**************************************************
1940 * Fair scheduling class load-balancing methods:
1941 */
1942
1e3c88bd
PZ
1943/*
1944 * pull_task - move a task from a remote runqueue to the local runqueue.
1945 * Both runqueues must be locked.
1946 */
1947static void pull_task(struct rq *src_rq, struct task_struct *p,
1948 struct rq *this_rq, int this_cpu)
1949{
1950 deactivate_task(src_rq, p, 0);
1951 set_task_cpu(p, this_cpu);
1952 activate_task(this_rq, p, 0);
1953 check_preempt_curr(this_rq, p, 0);
1954}
1955
1956/*
1957 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1958 */
1959static
1960int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1961 struct sched_domain *sd, enum cpu_idle_type idle,
1962 int *all_pinned)
1963{
1964 int tsk_cache_hot = 0;
1965 /*
1966 * We do not migrate tasks that are:
1967 * 1) running (obviously), or
1968 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1969 * 3) are cache-hot on their current CPU.
1970 */
1971 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
41acab88 1972 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
1973 return 0;
1974 }
1975 *all_pinned = 0;
1976
1977 if (task_running(rq, p)) {
41acab88 1978 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
1979 return 0;
1980 }
1981
1982 /*
1983 * Aggressive migration if:
1984 * 1) task is cache cold, or
1985 * 2) too many balance attempts have failed.
1986 */
1987
305e6835 1988 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
1989 if (!tsk_cache_hot ||
1990 sd->nr_balance_failed > sd->cache_nice_tries) {
1991#ifdef CONFIG_SCHEDSTATS
1992 if (tsk_cache_hot) {
1993 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 1994 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
1995 }
1996#endif
1997 return 1;
1998 }
1999
2000 if (tsk_cache_hot) {
41acab88 2001 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
2002 return 0;
2003 }
2004 return 1;
2005}
2006
897c395f
PZ
2007/*
2008 * move_one_task tries to move exactly one task from busiest to this_rq, as
2009 * part of active balancing operations within "domain".
2010 * Returns 1 if successful and 0 otherwise.
2011 *
2012 * Called with both runqueues locked.
2013 */
2014static int
2015move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2016 struct sched_domain *sd, enum cpu_idle_type idle)
2017{
2018 struct task_struct *p, *n;
2019 struct cfs_rq *cfs_rq;
2020 int pinned = 0;
2021
2022 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2023 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2024
2025 if (!can_migrate_task(p, busiest, this_cpu,
2026 sd, idle, &pinned))
2027 continue;
2028
2029 pull_task(busiest, p, this_rq, this_cpu);
2030 /*
2031 * Right now, this is only the second place pull_task()
2032 * is called, so we can safely collect pull_task()
2033 * stats here rather than inside pull_task().
2034 */
2035 schedstat_inc(sd, lb_gained[idle]);
2036 return 1;
2037 }
2038 }
2039
2040 return 0;
2041}
2042
1e3c88bd
PZ
2043static unsigned long
2044balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2045 unsigned long max_load_move, struct sched_domain *sd,
2046 enum cpu_idle_type idle, int *all_pinned,
ee00e66f 2047 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1e3c88bd
PZ
2048{
2049 int loops = 0, pulled = 0, pinned = 0;
1e3c88bd 2050 long rem_load_move = max_load_move;
ee00e66f 2051 struct task_struct *p, *n;
1e3c88bd
PZ
2052
2053 if (max_load_move == 0)
2054 goto out;
2055
2056 pinned = 1;
2057
ee00e66f
PZ
2058 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2059 if (loops++ > sysctl_sched_nr_migrate)
2060 break;
1e3c88bd 2061
ee00e66f
PZ
2062 if ((p->se.load.weight >> 1) > rem_load_move ||
2063 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
2064 continue;
1e3c88bd 2065
ee00e66f
PZ
2066 pull_task(busiest, p, this_rq, this_cpu);
2067 pulled++;
2068 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
2069
2070#ifdef CONFIG_PREEMPT
ee00e66f
PZ
2071 /*
2072 * NEWIDLE balancing is a source of latency, so preemptible
2073 * kernels will stop after the first task is pulled to minimize
2074 * the critical section.
2075 */
2076 if (idle == CPU_NEWLY_IDLE)
2077 break;
1e3c88bd
PZ
2078#endif
2079
ee00e66f
PZ
2080 /*
2081 * We only want to steal up to the prescribed amount of
2082 * weighted load.
2083 */
2084 if (rem_load_move <= 0)
2085 break;
2086
1e3c88bd
PZ
2087 if (p->prio < *this_best_prio)
2088 *this_best_prio = p->prio;
1e3c88bd
PZ
2089 }
2090out:
2091 /*
2092 * Right now, this is one of only two places pull_task() is called,
2093 * so we can safely collect pull_task() stats here rather than
2094 * inside pull_task().
2095 */
2096 schedstat_add(sd, lb_gained[idle], pulled);
2097
2098 if (all_pinned)
2099 *all_pinned = pinned;
2100
2101 return max_load_move - rem_load_move;
2102}
2103
230059de 2104#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
2105/*
2106 * update tg->load_weight by folding this cpu's load_avg
2107 */
67e86250 2108static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
2109{
2110 struct cfs_rq *cfs_rq;
2111 unsigned long flags;
2112 struct rq *rq;
9e3081ca
PZ
2113
2114 if (!tg->se[cpu])
2115 return 0;
2116
2117 rq = cpu_rq(cpu);
2118 cfs_rq = tg->cfs_rq[cpu];
2119
2120 raw_spin_lock_irqsave(&rq->lock, flags);
2121
2122 update_rq_clock(rq);
d6b55918 2123 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
2124
2125 /*
2126 * We need to update shares after updating tg->load_weight in
2127 * order to adjust the weight of groups with long running tasks.
2128 */
f0d7442a 2129 update_cfs_shares(cfs_rq, 0);
9e3081ca
PZ
2130
2131 raw_spin_unlock_irqrestore(&rq->lock, flags);
2132
2133 return 0;
2134}
2135
2136static void update_shares(int cpu)
2137{
2138 struct cfs_rq *cfs_rq;
2139 struct rq *rq = cpu_rq(cpu);
2140
2141 rcu_read_lock();
67e86250
PT
2142 for_each_leaf_cfs_rq(rq, cfs_rq)
2143 update_shares_cpu(cfs_rq->tg, cpu);
9e3081ca
PZ
2144 rcu_read_unlock();
2145}
2146
230059de
PZ
2147static unsigned long
2148load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2149 unsigned long max_load_move,
2150 struct sched_domain *sd, enum cpu_idle_type idle,
2151 int *all_pinned, int *this_best_prio)
2152{
2153 long rem_load_move = max_load_move;
2154 int busiest_cpu = cpu_of(busiest);
2155 struct task_group *tg;
2156
2157 rcu_read_lock();
2158 update_h_load(busiest_cpu);
2159
2160 list_for_each_entry_rcu(tg, &task_groups, list) {
2161 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2162 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2163 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2164 u64 rem_load, moved_load;
2165
2166 /*
2167 * empty group
2168 */
2169 if (!busiest_cfs_rq->task_weight)
2170 continue;
2171
2172 rem_load = (u64)rem_load_move * busiest_weight;
2173 rem_load = div_u64(rem_load, busiest_h_load + 1);
2174
2175 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2176 rem_load, sd, idle, all_pinned, this_best_prio,
2177 busiest_cfs_rq);
2178
2179 if (!moved_load)
2180 continue;
2181
2182 moved_load *= busiest_h_load;
2183 moved_load = div_u64(moved_load, busiest_weight + 1);
2184
2185 rem_load_move -= moved_load;
2186 if (rem_load_move < 0)
2187 break;
2188 }
2189 rcu_read_unlock();
2190
2191 return max_load_move - rem_load_move;
2192}
2193#else
9e3081ca
PZ
2194static inline void update_shares(int cpu)
2195{
2196}
2197
230059de
PZ
2198static unsigned long
2199load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2200 unsigned long max_load_move,
2201 struct sched_domain *sd, enum cpu_idle_type idle,
2202 int *all_pinned, int *this_best_prio)
2203{
2204 return balance_tasks(this_rq, this_cpu, busiest,
2205 max_load_move, sd, idle, all_pinned,
2206 this_best_prio, &busiest->cfs);
2207}
2208#endif
2209
1e3c88bd
PZ
2210/*
2211 * move_tasks tries to move up to max_load_move weighted load from busiest to
2212 * this_rq, as part of a balancing operation within domain "sd".
2213 * Returns 1 if successful and 0 otherwise.
2214 *
2215 * Called with both runqueues locked.
2216 */
2217static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2218 unsigned long max_load_move,
2219 struct sched_domain *sd, enum cpu_idle_type idle,
2220 int *all_pinned)
2221{
3d45fd80 2222 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
2223 int this_best_prio = this_rq->curr->prio;
2224
2225 do {
3d45fd80 2226 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd
PZ
2227 max_load_move - total_load_moved,
2228 sd, idle, all_pinned, &this_best_prio);
3d45fd80
PZ
2229
2230 total_load_moved += load_moved;
1e3c88bd
PZ
2231
2232#ifdef CONFIG_PREEMPT
2233 /*
2234 * NEWIDLE balancing is a source of latency, so preemptible
2235 * kernels will stop after the first task is pulled to minimize
2236 * the critical section.
2237 */
2238 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2239 break;
baa8c110
PZ
2240
2241 if (raw_spin_is_contended(&this_rq->lock) ||
2242 raw_spin_is_contended(&busiest->lock))
2243 break;
1e3c88bd 2244#endif
3d45fd80 2245 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
2246
2247 return total_load_moved > 0;
2248}
2249
1e3c88bd
PZ
2250/********** Helpers for find_busiest_group ************************/
2251/*
2252 * sd_lb_stats - Structure to store the statistics of a sched_domain
2253 * during load balancing.
2254 */
2255struct sd_lb_stats {
2256 struct sched_group *busiest; /* Busiest group in this sd */
2257 struct sched_group *this; /* Local group in this sd */
2258 unsigned long total_load; /* Total load of all groups in sd */
2259 unsigned long total_pwr; /* Total power of all groups in sd */
2260 unsigned long avg_load; /* Average load across all groups in sd */
2261
2262 /** Statistics of this group */
2263 unsigned long this_load;
2264 unsigned long this_load_per_task;
2265 unsigned long this_nr_running;
fab47622 2266 unsigned long this_has_capacity;
aae6d3dd 2267 unsigned int this_idle_cpus;
1e3c88bd
PZ
2268
2269 /* Statistics of the busiest group */
aae6d3dd 2270 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
2271 unsigned long max_load;
2272 unsigned long busiest_load_per_task;
2273 unsigned long busiest_nr_running;
dd5feea1 2274 unsigned long busiest_group_capacity;
fab47622 2275 unsigned long busiest_has_capacity;
aae6d3dd 2276 unsigned int busiest_group_weight;
1e3c88bd
PZ
2277
2278 int group_imb; /* Is there imbalance in this sd */
2279#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2280 int power_savings_balance; /* Is powersave balance needed for this sd */
2281 struct sched_group *group_min; /* Least loaded group in sd */
2282 struct sched_group *group_leader; /* Group which relieves group_min */
2283 unsigned long min_load_per_task; /* load_per_task in group_min */
2284 unsigned long leader_nr_running; /* Nr running of group_leader */
2285 unsigned long min_nr_running; /* Nr running of group_min */
2286#endif
2287};
2288
2289/*
2290 * sg_lb_stats - stats of a sched_group required for load_balancing
2291 */
2292struct sg_lb_stats {
2293 unsigned long avg_load; /*Avg load across the CPUs of the group */
2294 unsigned long group_load; /* Total load over the CPUs of the group */
2295 unsigned long sum_nr_running; /* Nr tasks running in the group */
2296 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2297 unsigned long group_capacity;
aae6d3dd
SS
2298 unsigned long idle_cpus;
2299 unsigned long group_weight;
1e3c88bd 2300 int group_imb; /* Is there an imbalance in the group ? */
fab47622 2301 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
2302};
2303
2304/**
2305 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2306 * @group: The group whose first cpu is to be returned.
2307 */
2308static inline unsigned int group_first_cpu(struct sched_group *group)
2309{
2310 return cpumask_first(sched_group_cpus(group));
2311}
2312
2313/**
2314 * get_sd_load_idx - Obtain the load index for a given sched domain.
2315 * @sd: The sched_domain whose load_idx is to be obtained.
2316 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2317 */
2318static inline int get_sd_load_idx(struct sched_domain *sd,
2319 enum cpu_idle_type idle)
2320{
2321 int load_idx;
2322
2323 switch (idle) {
2324 case CPU_NOT_IDLE:
2325 load_idx = sd->busy_idx;
2326 break;
2327
2328 case CPU_NEWLY_IDLE:
2329 load_idx = sd->newidle_idx;
2330 break;
2331 default:
2332 load_idx = sd->idle_idx;
2333 break;
2334 }
2335
2336 return load_idx;
2337}
2338
2339
2340#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2341/**
2342 * init_sd_power_savings_stats - Initialize power savings statistics for
2343 * the given sched_domain, during load balancing.
2344 *
2345 * @sd: Sched domain whose power-savings statistics are to be initialized.
2346 * @sds: Variable containing the statistics for sd.
2347 * @idle: Idle status of the CPU at which we're performing load-balancing.
2348 */
2349static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2350 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2351{
2352 /*
2353 * Busy processors will not participate in power savings
2354 * balance.
2355 */
2356 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2357 sds->power_savings_balance = 0;
2358 else {
2359 sds->power_savings_balance = 1;
2360 sds->min_nr_running = ULONG_MAX;
2361 sds->leader_nr_running = 0;
2362 }
2363}
2364
2365/**
2366 * update_sd_power_savings_stats - Update the power saving stats for a
2367 * sched_domain while performing load balancing.
2368 *
2369 * @group: sched_group belonging to the sched_domain under consideration.
2370 * @sds: Variable containing the statistics of the sched_domain
2371 * @local_group: Does group contain the CPU for which we're performing
2372 * load balancing ?
2373 * @sgs: Variable containing the statistics of the group.
2374 */
2375static inline void update_sd_power_savings_stats(struct sched_group *group,
2376 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2377{
2378
2379 if (!sds->power_savings_balance)
2380 return;
2381
2382 /*
2383 * If the local group is idle or completely loaded
2384 * no need to do power savings balance at this domain
2385 */
2386 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2387 !sds->this_nr_running))
2388 sds->power_savings_balance = 0;
2389
2390 /*
2391 * If a group is already running at full capacity or idle,
2392 * don't include that group in power savings calculations
2393 */
2394 if (!sds->power_savings_balance ||
2395 sgs->sum_nr_running >= sgs->group_capacity ||
2396 !sgs->sum_nr_running)
2397 return;
2398
2399 /*
2400 * Calculate the group which has the least non-idle load.
2401 * This is the group from where we need to pick up the load
2402 * for saving power
2403 */
2404 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2405 (sgs->sum_nr_running == sds->min_nr_running &&
2406 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2407 sds->group_min = group;
2408 sds->min_nr_running = sgs->sum_nr_running;
2409 sds->min_load_per_task = sgs->sum_weighted_load /
2410 sgs->sum_nr_running;
2411 }
2412
2413 /*
2414 * Calculate the group which is almost near its
2415 * capacity but still has some space to pick up some load
2416 * from other group and save more power
2417 */
2418 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2419 return;
2420
2421 if (sgs->sum_nr_running > sds->leader_nr_running ||
2422 (sgs->sum_nr_running == sds->leader_nr_running &&
2423 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2424 sds->group_leader = group;
2425 sds->leader_nr_running = sgs->sum_nr_running;
2426 }
2427}
2428
2429/**
2430 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2431 * @sds: Variable containing the statistics of the sched_domain
2432 * under consideration.
2433 * @this_cpu: Cpu at which we're currently performing load-balancing.
2434 * @imbalance: Variable to store the imbalance.
2435 *
2436 * Description:
2437 * Check if we have potential to perform some power-savings balance.
2438 * If yes, set the busiest group to be the least loaded group in the
2439 * sched_domain, so that it's CPUs can be put to idle.
2440 *
2441 * Returns 1 if there is potential to perform power-savings balance.
2442 * Else returns 0.
2443 */
2444static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2445 int this_cpu, unsigned long *imbalance)
2446{
2447 if (!sds->power_savings_balance)
2448 return 0;
2449
2450 if (sds->this != sds->group_leader ||
2451 sds->group_leader == sds->group_min)
2452 return 0;
2453
2454 *imbalance = sds->min_load_per_task;
2455 sds->busiest = sds->group_min;
2456
2457 return 1;
2458
2459}
2460#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2461static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2462 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2463{
2464 return;
2465}
2466
2467static inline void update_sd_power_savings_stats(struct sched_group *group,
2468 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2469{
2470 return;
2471}
2472
2473static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2474 int this_cpu, unsigned long *imbalance)
2475{
2476 return 0;
2477}
2478#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2479
2480
2481unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2482{
2483 return SCHED_LOAD_SCALE;
2484}
2485
2486unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2487{
2488 return default_scale_freq_power(sd, cpu);
2489}
2490
2491unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2492{
669c55e9 2493 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2494 unsigned long smt_gain = sd->smt_gain;
2495
2496 smt_gain /= weight;
2497
2498 return smt_gain;
2499}
2500
2501unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2502{
2503 return default_scale_smt_power(sd, cpu);
2504}
2505
2506unsigned long scale_rt_power(int cpu)
2507{
2508 struct rq *rq = cpu_rq(cpu);
2509 u64 total, available;
2510
1e3c88bd 2511 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
2512
2513 if (unlikely(total < rq->rt_avg)) {
2514 /* Ensures that power won't end up being negative */
2515 available = 0;
2516 } else {
2517 available = total - rq->rt_avg;
2518 }
1e3c88bd
PZ
2519
2520 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2521 total = SCHED_LOAD_SCALE;
2522
2523 total >>= SCHED_LOAD_SHIFT;
2524
2525 return div_u64(available, total);
2526}
2527
2528static void update_cpu_power(struct sched_domain *sd, int cpu)
2529{
669c55e9 2530 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2531 unsigned long power = SCHED_LOAD_SCALE;
2532 struct sched_group *sdg = sd->groups;
2533
1e3c88bd
PZ
2534 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2535 if (sched_feat(ARCH_POWER))
2536 power *= arch_scale_smt_power(sd, cpu);
2537 else
2538 power *= default_scale_smt_power(sd, cpu);
2539
2540 power >>= SCHED_LOAD_SHIFT;
2541 }
2542
9d5efe05
SV
2543 sdg->cpu_power_orig = power;
2544
2545 if (sched_feat(ARCH_POWER))
2546 power *= arch_scale_freq_power(sd, cpu);
2547 else
2548 power *= default_scale_freq_power(sd, cpu);
2549
2550 power >>= SCHED_LOAD_SHIFT;
2551
1e3c88bd
PZ
2552 power *= scale_rt_power(cpu);
2553 power >>= SCHED_LOAD_SHIFT;
2554
2555 if (!power)
2556 power = 1;
2557
e51fd5e2 2558 cpu_rq(cpu)->cpu_power = power;
1e3c88bd
PZ
2559 sdg->cpu_power = power;
2560}
2561
2562static void update_group_power(struct sched_domain *sd, int cpu)
2563{
2564 struct sched_domain *child = sd->child;
2565 struct sched_group *group, *sdg = sd->groups;
2566 unsigned long power;
2567
2568 if (!child) {
2569 update_cpu_power(sd, cpu);
2570 return;
2571 }
2572
2573 power = 0;
2574
2575 group = child->groups;
2576 do {
2577 power += group->cpu_power;
2578 group = group->next;
2579 } while (group != child->groups);
2580
2581 sdg->cpu_power = power;
2582}
2583
9d5efe05
SV
2584/*
2585 * Try and fix up capacity for tiny siblings, this is needed when
2586 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2587 * which on its own isn't powerful enough.
2588 *
2589 * See update_sd_pick_busiest() and check_asym_packing().
2590 */
2591static inline int
2592fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2593{
2594 /*
2595 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2596 */
2597 if (sd->level != SD_LV_SIBLING)
2598 return 0;
2599
2600 /*
2601 * If ~90% of the cpu_power is still there, we're good.
2602 */
694f5a11 2603 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
9d5efe05
SV
2604 return 1;
2605
2606 return 0;
2607}
2608
1e3c88bd
PZ
2609/**
2610 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2611 * @sd: The sched_domain whose statistics are to be updated.
2612 * @group: sched_group whose statistics are to be updated.
2613 * @this_cpu: Cpu for which load balance is currently performed.
2614 * @idle: Idle status of this_cpu
2615 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2616 * @sd_idle: Idle status of the sched_domain containing group.
2617 * @local_group: Does group contain this_cpu.
2618 * @cpus: Set of cpus considered for load balancing.
2619 * @balance: Should we balance.
2620 * @sgs: variable to hold the statistics for this group.
2621 */
2622static inline void update_sg_lb_stats(struct sched_domain *sd,
2623 struct sched_group *group, int this_cpu,
2624 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2625 int local_group, const struct cpumask *cpus,
2626 int *balance, struct sg_lb_stats *sgs)
2627{
2582f0eb 2628 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
2629 int i;
2630 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 2631 unsigned long avg_load_per_task = 0;
1e3c88bd 2632
871e35bc 2633 if (local_group)
1e3c88bd 2634 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
2635
2636 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
2637 max_cpu_load = 0;
2638 min_cpu_load = ~0UL;
2582f0eb 2639 max_nr_running = 0;
1e3c88bd
PZ
2640
2641 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2642 struct rq *rq = cpu_rq(i);
2643
2644 if (*sd_idle && rq->nr_running)
2645 *sd_idle = 0;
2646
2647 /* Bias balancing toward cpus of our domain */
2648 if (local_group) {
2649 if (idle_cpu(i) && !first_idle_cpu) {
2650 first_idle_cpu = 1;
2651 balance_cpu = i;
2652 }
2653
2654 load = target_load(i, load_idx);
2655 } else {
2656 load = source_load(i, load_idx);
2582f0eb 2657 if (load > max_cpu_load) {
1e3c88bd 2658 max_cpu_load = load;
2582f0eb
NR
2659 max_nr_running = rq->nr_running;
2660 }
1e3c88bd
PZ
2661 if (min_cpu_load > load)
2662 min_cpu_load = load;
2663 }
2664
2665 sgs->group_load += load;
2666 sgs->sum_nr_running += rq->nr_running;
2667 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
2668 if (idle_cpu(i))
2669 sgs->idle_cpus++;
1e3c88bd
PZ
2670 }
2671
2672 /*
2673 * First idle cpu or the first cpu(busiest) in this sched group
2674 * is eligible for doing load balancing at this and above
2675 * domains. In the newly idle case, we will allow all the cpu's
2676 * to do the newly idle load balance.
2677 */
bbc8cb5b
PZ
2678 if (idle != CPU_NEWLY_IDLE && local_group) {
2679 if (balance_cpu != this_cpu) {
2680 *balance = 0;
2681 return;
2682 }
2683 update_group_power(sd, this_cpu);
1e3c88bd
PZ
2684 }
2685
2686 /* Adjust by relative CPU power of the group */
2687 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2688
1e3c88bd
PZ
2689 /*
2690 * Consider the group unbalanced when the imbalance is larger
2691 * than the average weight of two tasks.
2692 *
2693 * APZ: with cgroup the avg task weight can vary wildly and
2694 * might not be a suitable number - should we keep a
2695 * normalized nr_running number somewhere that negates
2696 * the hierarchy?
2697 */
dd5feea1
SS
2698 if (sgs->sum_nr_running)
2699 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 2700
2582f0eb 2701 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
2702 sgs->group_imb = 1;
2703
2582f0eb 2704 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
9d5efe05
SV
2705 if (!sgs->group_capacity)
2706 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 2707 sgs->group_weight = group->group_weight;
fab47622
NR
2708
2709 if (sgs->group_capacity > sgs->sum_nr_running)
2710 sgs->group_has_capacity = 1;
1e3c88bd
PZ
2711}
2712
532cb4c4
MN
2713/**
2714 * update_sd_pick_busiest - return 1 on busiest group
2715 * @sd: sched_domain whose statistics are to be checked
2716 * @sds: sched_domain statistics
2717 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
2718 * @sgs: sched_group statistics
2719 * @this_cpu: the current cpu
532cb4c4
MN
2720 *
2721 * Determine if @sg is a busier group than the previously selected
2722 * busiest group.
2723 */
2724static bool update_sd_pick_busiest(struct sched_domain *sd,
2725 struct sd_lb_stats *sds,
2726 struct sched_group *sg,
2727 struct sg_lb_stats *sgs,
2728 int this_cpu)
2729{
2730 if (sgs->avg_load <= sds->max_load)
2731 return false;
2732
2733 if (sgs->sum_nr_running > sgs->group_capacity)
2734 return true;
2735
2736 if (sgs->group_imb)
2737 return true;
2738
2739 /*
2740 * ASYM_PACKING needs to move all the work to the lowest
2741 * numbered CPUs in the group, therefore mark all groups
2742 * higher than ourself as busy.
2743 */
2744 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2745 this_cpu < group_first_cpu(sg)) {
2746 if (!sds->busiest)
2747 return true;
2748
2749 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2750 return true;
2751 }
2752
2753 return false;
2754}
2755
1e3c88bd
PZ
2756/**
2757 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2758 * @sd: sched_domain whose statistics are to be updated.
2759 * @this_cpu: Cpu for which load balance is currently performed.
2760 * @idle: Idle status of this_cpu
532cb4c4 2761 * @sd_idle: Idle status of the sched_domain containing sg.
1e3c88bd
PZ
2762 * @cpus: Set of cpus considered for load balancing.
2763 * @balance: Should we balance.
2764 * @sds: variable to hold the statistics for this sched_domain.
2765 */
2766static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2767 enum cpu_idle_type idle, int *sd_idle,
2768 const struct cpumask *cpus, int *balance,
2769 struct sd_lb_stats *sds)
2770{
2771 struct sched_domain *child = sd->child;
532cb4c4 2772 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
2773 struct sg_lb_stats sgs;
2774 int load_idx, prefer_sibling = 0;
2775
2776 if (child && child->flags & SD_PREFER_SIBLING)
2777 prefer_sibling = 1;
2778
2779 init_sd_power_savings_stats(sd, sds, idle);
2780 load_idx = get_sd_load_idx(sd, idle);
2781
2782 do {
2783 int local_group;
2784
532cb4c4 2785 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 2786 memset(&sgs, 0, sizeof(sgs));
532cb4c4 2787 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
1e3c88bd
PZ
2788 local_group, cpus, balance, &sgs);
2789
8f190fb3 2790 if (local_group && !(*balance))
1e3c88bd
PZ
2791 return;
2792
2793 sds->total_load += sgs.group_load;
532cb4c4 2794 sds->total_pwr += sg->cpu_power;
1e3c88bd
PZ
2795
2796 /*
2797 * In case the child domain prefers tasks go to siblings
532cb4c4 2798 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
2799 * and move all the excess tasks away. We lower the capacity
2800 * of a group only if the local group has the capacity to fit
2801 * these excess tasks, i.e. nr_running < group_capacity. The
2802 * extra check prevents the case where you always pull from the
2803 * heaviest group when it is already under-utilized (possible
2804 * with a large weight task outweighs the tasks on the system).
1e3c88bd 2805 */
75dd321d 2806 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
2807 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2808
2809 if (local_group) {
2810 sds->this_load = sgs.avg_load;
532cb4c4 2811 sds->this = sg;
1e3c88bd
PZ
2812 sds->this_nr_running = sgs.sum_nr_running;
2813 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 2814 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 2815 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 2816 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 2817 sds->max_load = sgs.avg_load;
532cb4c4 2818 sds->busiest = sg;
1e3c88bd 2819 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 2820 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 2821 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 2822 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 2823 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 2824 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
2825 sds->group_imb = sgs.group_imb;
2826 }
2827
532cb4c4
MN
2828 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2829 sg = sg->next;
2830 } while (sg != sd->groups);
2831}
2832
2ec57d44 2833int __weak arch_sd_sibling_asym_packing(void)
532cb4c4
MN
2834{
2835 return 0*SD_ASYM_PACKING;
2836}
2837
2838/**
2839 * check_asym_packing - Check to see if the group is packed into the
2840 * sched doman.
2841 *
2842 * This is primarily intended to used at the sibling level. Some
2843 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2844 * case of POWER7, it can move to lower SMT modes only when higher
2845 * threads are idle. When in lower SMT modes, the threads will
2846 * perform better since they share less core resources. Hence when we
2847 * have idle threads, we want them to be the higher ones.
2848 *
2849 * This packing function is run on idle threads. It checks to see if
2850 * the busiest CPU in this domain (core in the P7 case) has a higher
2851 * CPU number than the packing function is being run on. Here we are
2852 * assuming lower CPU number will be equivalent to lower a SMT thread
2853 * number.
2854 *
b6b12294
MN
2855 * Returns 1 when packing is required and a task should be moved to
2856 * this CPU. The amount of the imbalance is returned in *imbalance.
2857 *
532cb4c4
MN
2858 * @sd: The sched_domain whose packing is to be checked.
2859 * @sds: Statistics of the sched_domain which is to be packed
2860 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2861 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
2862 */
2863static int check_asym_packing(struct sched_domain *sd,
2864 struct sd_lb_stats *sds,
2865 int this_cpu, unsigned long *imbalance)
2866{
2867 int busiest_cpu;
2868
2869 if (!(sd->flags & SD_ASYM_PACKING))
2870 return 0;
2871
2872 if (!sds->busiest)
2873 return 0;
2874
2875 busiest_cpu = group_first_cpu(sds->busiest);
2876 if (this_cpu > busiest_cpu)
2877 return 0;
2878
2879 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2880 SCHED_LOAD_SCALE);
2881 return 1;
1e3c88bd
PZ
2882}
2883
2884/**
2885 * fix_small_imbalance - Calculate the minor imbalance that exists
2886 * amongst the groups of a sched_domain, during
2887 * load balancing.
2888 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2889 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2890 * @imbalance: Variable to store the imbalance.
2891 */
2892static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2893 int this_cpu, unsigned long *imbalance)
2894{
2895 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2896 unsigned int imbn = 2;
dd5feea1 2897 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
2898
2899 if (sds->this_nr_running) {
2900 sds->this_load_per_task /= sds->this_nr_running;
2901 if (sds->busiest_load_per_task >
2902 sds->this_load_per_task)
2903 imbn = 1;
2904 } else
2905 sds->this_load_per_task =
2906 cpu_avg_load_per_task(this_cpu);
2907
dd5feea1
SS
2908 scaled_busy_load_per_task = sds->busiest_load_per_task
2909 * SCHED_LOAD_SCALE;
2910 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2911
2912 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2913 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
2914 *imbalance = sds->busiest_load_per_task;
2915 return;
2916 }
2917
2918 /*
2919 * OK, we don't have enough imbalance to justify moving tasks,
2920 * however we may be able to increase total CPU power used by
2921 * moving them.
2922 */
2923
2924 pwr_now += sds->busiest->cpu_power *
2925 min(sds->busiest_load_per_task, sds->max_load);
2926 pwr_now += sds->this->cpu_power *
2927 min(sds->this_load_per_task, sds->this_load);
2928 pwr_now /= SCHED_LOAD_SCALE;
2929
2930 /* Amount of load we'd subtract */
2931 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2932 sds->busiest->cpu_power;
2933 if (sds->max_load > tmp)
2934 pwr_move += sds->busiest->cpu_power *
2935 min(sds->busiest_load_per_task, sds->max_load - tmp);
2936
2937 /* Amount of load we'd add */
2938 if (sds->max_load * sds->busiest->cpu_power <
2939 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2940 tmp = (sds->max_load * sds->busiest->cpu_power) /
2941 sds->this->cpu_power;
2942 else
2943 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2944 sds->this->cpu_power;
2945 pwr_move += sds->this->cpu_power *
2946 min(sds->this_load_per_task, sds->this_load + tmp);
2947 pwr_move /= SCHED_LOAD_SCALE;
2948
2949 /* Move if we gain throughput */
2950 if (pwr_move > pwr_now)
2951 *imbalance = sds->busiest_load_per_task;
2952}
2953
2954/**
2955 * calculate_imbalance - Calculate the amount of imbalance present within the
2956 * groups of a given sched_domain during load balance.
2957 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2958 * @this_cpu: Cpu for which currently load balance is being performed.
2959 * @imbalance: The variable to store the imbalance.
2960 */
2961static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2962 unsigned long *imbalance)
2963{
dd5feea1
SS
2964 unsigned long max_pull, load_above_capacity = ~0UL;
2965
2966 sds->busiest_load_per_task /= sds->busiest_nr_running;
2967 if (sds->group_imb) {
2968 sds->busiest_load_per_task =
2969 min(sds->busiest_load_per_task, sds->avg_load);
2970 }
2971
1e3c88bd
PZ
2972 /*
2973 * In the presence of smp nice balancing, certain scenarios can have
2974 * max load less than avg load(as we skip the groups at or below
2975 * its cpu_power, while calculating max_load..)
2976 */
2977 if (sds->max_load < sds->avg_load) {
2978 *imbalance = 0;
2979 return fix_small_imbalance(sds, this_cpu, imbalance);
2980 }
2981
dd5feea1
SS
2982 if (!sds->group_imb) {
2983 /*
2984 * Don't want to pull so many tasks that a group would go idle.
2985 */
2986 load_above_capacity = (sds->busiest_nr_running -
2987 sds->busiest_group_capacity);
2988
2989 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2990
2991 load_above_capacity /= sds->busiest->cpu_power;
2992 }
2993
2994 /*
2995 * We're trying to get all the cpus to the average_load, so we don't
2996 * want to push ourselves above the average load, nor do we wish to
2997 * reduce the max loaded cpu below the average load. At the same time,
2998 * we also don't want to reduce the group load below the group capacity
2999 * (so that we can implement power-savings policies etc). Thus we look
3000 * for the minimum possible imbalance.
3001 * Be careful of negative numbers as they'll appear as very large values
3002 * with unsigned longs.
3003 */
3004 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
3005
3006 /* How much load to actually move to equalise the imbalance */
3007 *imbalance = min(max_pull * sds->busiest->cpu_power,
3008 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3009 / SCHED_LOAD_SCALE;
3010
3011 /*
3012 * if *imbalance is less than the average load per runnable task
3013 * there is no gaurantee that any tasks will be moved so we'll have
3014 * a think about bumping its value to force at least one task to be
3015 * moved
3016 */
3017 if (*imbalance < sds->busiest_load_per_task)
3018 return fix_small_imbalance(sds, this_cpu, imbalance);
3019
3020}
fab47622 3021
1e3c88bd
PZ
3022/******* find_busiest_group() helpers end here *********************/
3023
3024/**
3025 * find_busiest_group - Returns the busiest group within the sched_domain
3026 * if there is an imbalance. If there isn't an imbalance, and
3027 * the user has opted for power-savings, it returns a group whose
3028 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3029 * such a group exists.
3030 *
3031 * Also calculates the amount of weighted load which should be moved
3032 * to restore balance.
3033 *
3034 * @sd: The sched_domain whose busiest group is to be returned.
3035 * @this_cpu: The cpu for which load balancing is currently being performed.
3036 * @imbalance: Variable which stores amount of weighted load which should
3037 * be moved to restore balance/put a group to idle.
3038 * @idle: The idle status of this_cpu.
3039 * @sd_idle: The idleness of sd
3040 * @cpus: The set of CPUs under consideration for load-balancing.
3041 * @balance: Pointer to a variable indicating if this_cpu
3042 * is the appropriate cpu to perform load balancing at this_level.
3043 *
3044 * Returns: - the busiest group if imbalance exists.
3045 * - If no imbalance and user has opted for power-savings balance,
3046 * return the least loaded group whose CPUs can be
3047 * put to idle by rebalancing its tasks onto our group.
3048 */
3049static struct sched_group *
3050find_busiest_group(struct sched_domain *sd, int this_cpu,
3051 unsigned long *imbalance, enum cpu_idle_type idle,
3052 int *sd_idle, const struct cpumask *cpus, int *balance)
3053{
3054 struct sd_lb_stats sds;
3055
3056 memset(&sds, 0, sizeof(sds));
3057
3058 /*
3059 * Compute the various statistics relavent for load balancing at
3060 * this level.
3061 */
3062 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3063 balance, &sds);
3064
3065 /* Cases where imbalance does not exist from POV of this_cpu */
3066 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3067 * at this level.
3068 * 2) There is no busy sibling group to pull from.
3069 * 3) This group is the busiest group.
3070 * 4) This group is more busy than the avg busieness at this
3071 * sched_domain.
3072 * 5) The imbalance is within the specified limit.
fab47622
NR
3073 *
3074 * Note: when doing newidle balance, if the local group has excess
3075 * capacity (i.e. nr_running < group_capacity) and the busiest group
3076 * does not have any capacity, we force a load balance to pull tasks
3077 * to the local group. In this case, we skip past checks 3, 4 and 5.
1e3c88bd 3078 */
8f190fb3 3079 if (!(*balance))
1e3c88bd
PZ
3080 goto ret;
3081
532cb4c4
MN
3082 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3083 check_asym_packing(sd, &sds, this_cpu, imbalance))
3084 return sds.busiest;
3085
1e3c88bd
PZ
3086 if (!sds.busiest || sds.busiest_nr_running == 0)
3087 goto out_balanced;
3088
fab47622
NR
3089 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3090 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3091 !sds.busiest_has_capacity)
3092 goto force_balance;
3093
1e3c88bd
PZ
3094 if (sds.this_load >= sds.max_load)
3095 goto out_balanced;
3096
3097 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3098
3099 if (sds.this_load >= sds.avg_load)
3100 goto out_balanced;
3101
aae6d3dd
SS
3102 /*
3103 * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
3104 * And to check for busy balance use !idle_cpu instead of
3105 * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
3106 * even when they are idle.
3107 */
3108 if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
3109 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3110 goto out_balanced;
3111 } else {
3112 /*
3113 * This cpu is idle. If the busiest group load doesn't
3114 * have more tasks than the number of available cpu's and
3115 * there is no imbalance between this and busiest group
3116 * wrt to idle cpu's, it is balanced.
3117 */
3118 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3119 sds.busiest_nr_running <= sds.busiest_group_weight)
3120 goto out_balanced;
3121 }
1e3c88bd 3122
fab47622 3123force_balance:
1e3c88bd
PZ
3124 /* Looks like there is an imbalance. Compute it */
3125 calculate_imbalance(&sds, this_cpu, imbalance);
3126 return sds.busiest;
3127
3128out_balanced:
3129 /*
3130 * There is no obvious imbalance. But check if we can do some balancing
3131 * to save power.
3132 */
3133 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3134 return sds.busiest;
3135ret:
3136 *imbalance = 0;
3137 return NULL;
3138}
3139
3140/*
3141 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3142 */
3143static struct rq *
9d5efe05
SV
3144find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3145 enum cpu_idle_type idle, unsigned long imbalance,
3146 const struct cpumask *cpus)
1e3c88bd
PZ
3147{
3148 struct rq *busiest = NULL, *rq;
3149 unsigned long max_load = 0;
3150 int i;
3151
3152 for_each_cpu(i, sched_group_cpus(group)) {
3153 unsigned long power = power_of(i);
3154 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3155 unsigned long wl;
3156
9d5efe05
SV
3157 if (!capacity)
3158 capacity = fix_small_capacity(sd, group);
3159
1e3c88bd
PZ
3160 if (!cpumask_test_cpu(i, cpus))
3161 continue;
3162
3163 rq = cpu_rq(i);
6e40f5bb 3164 wl = weighted_cpuload(i);
1e3c88bd 3165
6e40f5bb
TG
3166 /*
3167 * When comparing with imbalance, use weighted_cpuload()
3168 * which is not scaled with the cpu power.
3169 */
1e3c88bd
PZ
3170 if (capacity && rq->nr_running == 1 && wl > imbalance)
3171 continue;
3172
6e40f5bb
TG
3173 /*
3174 * For the load comparisons with the other cpu's, consider
3175 * the weighted_cpuload() scaled with the cpu power, so that
3176 * the load can be moved away from the cpu that is potentially
3177 * running at a lower capacity.
3178 */
3179 wl = (wl * SCHED_LOAD_SCALE) / power;
3180
1e3c88bd
PZ
3181 if (wl > max_load) {
3182 max_load = wl;
3183 busiest = rq;
3184 }
3185 }
3186
3187 return busiest;
3188}
3189
3190/*
3191 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3192 * so long as it is large enough.
3193 */
3194#define MAX_PINNED_INTERVAL 512
3195
3196/* Working cpumask for load_balance and load_balance_newidle. */
3197static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3198
532cb4c4
MN
3199static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
3200 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
3201{
3202 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
3203
3204 /*
3205 * ASYM_PACKING needs to force migrate tasks from busy but
3206 * higher numbered CPUs in order to pack all tasks in the
3207 * lowest numbered CPUs.
3208 */
3209 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3210 return 1;
3211
1af3ed3d
PZ
3212 /*
3213 * The only task running in a non-idle cpu can be moved to this
3214 * cpu in an attempt to completely freeup the other CPU
3215 * package.
3216 *
3217 * The package power saving logic comes from
3218 * find_busiest_group(). If there are no imbalance, then
3219 * f_b_g() will return NULL. However when sched_mc={1,2} then
3220 * f_b_g() will select a group from which a running task may be
3221 * pulled to this cpu in order to make the other package idle.
3222 * If there is no opportunity to make a package idle and if
3223 * there are no imbalance, then f_b_g() will return NULL and no
3224 * action will be taken in load_balance_newidle().
3225 *
3226 * Under normal task pull operation due to imbalance, there
3227 * will be more than one task in the source run queue and
3228 * move_tasks() will succeed. ld_moved will be true and this
3229 * active balance code will not be triggered.
3230 */
3231 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3232 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3233 return 0;
3234
3235 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3236 return 0;
3237 }
3238
3239 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3240}
3241
969c7921
TH
3242static int active_load_balance_cpu_stop(void *data);
3243
1e3c88bd
PZ
3244/*
3245 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3246 * tasks if there is an imbalance.
3247 */
3248static int load_balance(int this_cpu, struct rq *this_rq,
3249 struct sched_domain *sd, enum cpu_idle_type idle,
3250 int *balance)
3251{
3252 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3253 struct sched_group *group;
3254 unsigned long imbalance;
3255 struct rq *busiest;
3256 unsigned long flags;
3257 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3258
3259 cpumask_copy(cpus, cpu_active_mask);
3260
3261 /*
3262 * When power savings policy is enabled for the parent domain, idle
3263 * sibling can pick up load irrespective of busy siblings. In this case,
3264 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3265 * portraying it as CPU_NOT_IDLE.
3266 */
3267 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3268 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3269 sd_idle = 1;
3270
3271 schedstat_inc(sd, lb_count[idle]);
3272
3273redo:
1e3c88bd
PZ
3274 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3275 cpus, balance);
3276
3277 if (*balance == 0)
3278 goto out_balanced;
3279
3280 if (!group) {
3281 schedstat_inc(sd, lb_nobusyg[idle]);
3282 goto out_balanced;
3283 }
3284
9d5efe05 3285 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
3286 if (!busiest) {
3287 schedstat_inc(sd, lb_nobusyq[idle]);
3288 goto out_balanced;
3289 }
3290
3291 BUG_ON(busiest == this_rq);
3292
3293 schedstat_add(sd, lb_imbalance[idle], imbalance);
3294
3295 ld_moved = 0;
3296 if (busiest->nr_running > 1) {
3297 /*
3298 * Attempt to move tasks. If find_busiest_group has found
3299 * an imbalance but busiest->nr_running <= 1, the group is
3300 * still unbalanced. ld_moved simply stays zero, so it is
3301 * correctly treated as an imbalance.
3302 */
3303 local_irq_save(flags);
3304 double_rq_lock(this_rq, busiest);
3305 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3306 imbalance, sd, idle, &all_pinned);
3307 double_rq_unlock(this_rq, busiest);
3308 local_irq_restore(flags);
3309
3310 /*
3311 * some other cpu did the load balance for us.
3312 */
3313 if (ld_moved && this_cpu != smp_processor_id())
3314 resched_cpu(this_cpu);
3315
3316 /* All tasks on this runqueue were pinned by CPU affinity */
3317 if (unlikely(all_pinned)) {
3318 cpumask_clear_cpu(cpu_of(busiest), cpus);
3319 if (!cpumask_empty(cpus))
3320 goto redo;
3321 goto out_balanced;
3322 }
3323 }
3324
3325 if (!ld_moved) {
3326 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
3327 /*
3328 * Increment the failure counter only on periodic balance.
3329 * We do not want newidle balance, which can be very
3330 * frequent, pollute the failure counter causing
3331 * excessive cache_hot migrations and active balances.
3332 */
3333 if (idle != CPU_NEWLY_IDLE)
3334 sd->nr_balance_failed++;
1e3c88bd 3335
532cb4c4
MN
3336 if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
3337 this_cpu)) {
1e3c88bd
PZ
3338 raw_spin_lock_irqsave(&busiest->lock, flags);
3339
969c7921
TH
3340 /* don't kick the active_load_balance_cpu_stop,
3341 * if the curr task on busiest cpu can't be
3342 * moved to this_cpu
1e3c88bd
PZ
3343 */
3344 if (!cpumask_test_cpu(this_cpu,
3345 &busiest->curr->cpus_allowed)) {
3346 raw_spin_unlock_irqrestore(&busiest->lock,
3347 flags);
3348 all_pinned = 1;
3349 goto out_one_pinned;
3350 }
3351
969c7921
TH
3352 /*
3353 * ->active_balance synchronizes accesses to
3354 * ->active_balance_work. Once set, it's cleared
3355 * only after active load balance is finished.
3356 */
1e3c88bd
PZ
3357 if (!busiest->active_balance) {
3358 busiest->active_balance = 1;
3359 busiest->push_cpu = this_cpu;
3360 active_balance = 1;
3361 }
3362 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 3363
1e3c88bd 3364 if (active_balance)
969c7921
TH
3365 stop_one_cpu_nowait(cpu_of(busiest),
3366 active_load_balance_cpu_stop, busiest,
3367 &busiest->active_balance_work);
1e3c88bd
PZ
3368
3369 /*
3370 * We've kicked active balancing, reset the failure
3371 * counter.
3372 */
3373 sd->nr_balance_failed = sd->cache_nice_tries+1;
3374 }
3375 } else
3376 sd->nr_balance_failed = 0;
3377
3378 if (likely(!active_balance)) {
3379 /* We were unbalanced, so reset the balancing interval */
3380 sd->balance_interval = sd->min_interval;
3381 } else {
3382 /*
3383 * If we've begun active balancing, start to back off. This
3384 * case may not be covered by the all_pinned logic if there
3385 * is only 1 task on the busy runqueue (because we don't call
3386 * move_tasks).
3387 */
3388 if (sd->balance_interval < sd->max_interval)
3389 sd->balance_interval *= 2;
3390 }
3391
3392 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3393 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3394 ld_moved = -1;
3395
3396 goto out;
3397
3398out_balanced:
3399 schedstat_inc(sd, lb_balanced[idle]);
3400
3401 sd->nr_balance_failed = 0;
3402
3403out_one_pinned:
3404 /* tune up the balancing interval */
3405 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3406 (sd->balance_interval < sd->max_interval))
3407 sd->balance_interval *= 2;
3408
3409 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3410 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3411 ld_moved = -1;
3412 else
3413 ld_moved = 0;
3414out:
1e3c88bd
PZ
3415 return ld_moved;
3416}
3417
1e3c88bd
PZ
3418/*
3419 * idle_balance is called by schedule() if this_cpu is about to become
3420 * idle. Attempts to pull tasks from other CPUs.
3421 */
3422static void idle_balance(int this_cpu, struct rq *this_rq)
3423{
3424 struct sched_domain *sd;
3425 int pulled_task = 0;
3426 unsigned long next_balance = jiffies + HZ;
3427
3428 this_rq->idle_stamp = this_rq->clock;
3429
3430 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3431 return;
3432
f492e12e
PZ
3433 /*
3434 * Drop the rq->lock, but keep IRQ/preempt disabled.
3435 */
3436 raw_spin_unlock(&this_rq->lock);
3437
c66eaf61 3438 update_shares(this_cpu);
1e3c88bd
PZ
3439 for_each_domain(this_cpu, sd) {
3440 unsigned long interval;
f492e12e 3441 int balance = 1;
1e3c88bd
PZ
3442
3443 if (!(sd->flags & SD_LOAD_BALANCE))
3444 continue;
3445
f492e12e 3446 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 3447 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
3448 pulled_task = load_balance(this_cpu, this_rq,
3449 sd, CPU_NEWLY_IDLE, &balance);
3450 }
1e3c88bd
PZ
3451
3452 interval = msecs_to_jiffies(sd->balance_interval);
3453 if (time_after(next_balance, sd->last_balance + interval))
3454 next_balance = sd->last_balance + interval;
d5ad140b
NR
3455 if (pulled_task) {
3456 this_rq->idle_stamp = 0;
1e3c88bd 3457 break;
d5ad140b 3458 }
1e3c88bd 3459 }
f492e12e
PZ
3460
3461 raw_spin_lock(&this_rq->lock);
3462
1e3c88bd
PZ
3463 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3464 /*
3465 * We are going idle. next_balance may be set based on
3466 * a busy processor. So reset next_balance.
3467 */
3468 this_rq->next_balance = next_balance;
3469 }
3470}
3471
3472/*
969c7921
TH
3473 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3474 * running tasks off the busiest CPU onto idle CPUs. It requires at
3475 * least 1 task to be running on each physical CPU where possible, and
3476 * avoids physical / logical imbalances.
1e3c88bd 3477 */
969c7921 3478static int active_load_balance_cpu_stop(void *data)
1e3c88bd 3479{
969c7921
TH
3480 struct rq *busiest_rq = data;
3481 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 3482 int target_cpu = busiest_rq->push_cpu;
969c7921 3483 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 3484 struct sched_domain *sd;
969c7921
TH
3485
3486 raw_spin_lock_irq(&busiest_rq->lock);
3487
3488 /* make sure the requested cpu hasn't gone down in the meantime */
3489 if (unlikely(busiest_cpu != smp_processor_id() ||
3490 !busiest_rq->active_balance))
3491 goto out_unlock;
1e3c88bd
PZ
3492
3493 /* Is there any task to move? */
3494 if (busiest_rq->nr_running <= 1)
969c7921 3495 goto out_unlock;
1e3c88bd
PZ
3496
3497 /*
3498 * This condition is "impossible", if it occurs
3499 * we need to fix it. Originally reported by
3500 * Bjorn Helgaas on a 128-cpu setup.
3501 */
3502 BUG_ON(busiest_rq == target_rq);
3503
3504 /* move a task from busiest_rq to target_rq */
3505 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
3506
3507 /* Search for an sd spanning us and the target CPU. */
3508 for_each_domain(target_cpu, sd) {
3509 if ((sd->flags & SD_LOAD_BALANCE) &&
3510 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3511 break;
3512 }
3513
3514 if (likely(sd)) {
3515 schedstat_inc(sd, alb_count);
3516
3517 if (move_one_task(target_rq, target_cpu, busiest_rq,
3518 sd, CPU_IDLE))
3519 schedstat_inc(sd, alb_pushed);
3520 else
3521 schedstat_inc(sd, alb_failed);
3522 }
3523 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
3524out_unlock:
3525 busiest_rq->active_balance = 0;
3526 raw_spin_unlock_irq(&busiest_rq->lock);
3527 return 0;
1e3c88bd
PZ
3528}
3529
3530#ifdef CONFIG_NO_HZ
83cd4fe2
VP
3531
3532static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3533
3534static void trigger_sched_softirq(void *data)
3535{
3536 raise_softirq_irqoff(SCHED_SOFTIRQ);
3537}
3538
3539static inline void init_sched_softirq_csd(struct call_single_data *csd)
3540{
3541 csd->func = trigger_sched_softirq;
3542 csd->info = NULL;
3543 csd->flags = 0;
3544 csd->priv = 0;
3545}
3546
3547/*
3548 * idle load balancing details
3549 * - One of the idle CPUs nominates itself as idle load_balancer, while
3550 * entering idle.
3551 * - This idle load balancer CPU will also go into tickless mode when
3552 * it is idle, just like all other idle CPUs
3553 * - When one of the busy CPUs notice that there may be an idle rebalancing
3554 * needed, they will kick the idle load balancer, which then does idle
3555 * load balancing for all the idle CPUs.
3556 */
1e3c88bd
PZ
3557static struct {
3558 atomic_t load_balancer;
83cd4fe2
VP
3559 atomic_t first_pick_cpu;
3560 atomic_t second_pick_cpu;
3561 cpumask_var_t idle_cpus_mask;
3562 cpumask_var_t grp_idle_mask;
3563 unsigned long next_balance; /* in jiffy units */
3564} nohz ____cacheline_aligned;
1e3c88bd
PZ
3565
3566int get_nohz_load_balancer(void)
3567{
3568 return atomic_read(&nohz.load_balancer);
3569}
3570
3571#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3572/**
3573 * lowest_flag_domain - Return lowest sched_domain containing flag.
3574 * @cpu: The cpu whose lowest level of sched domain is to
3575 * be returned.
3576 * @flag: The flag to check for the lowest sched_domain
3577 * for the given cpu.
3578 *
3579 * Returns the lowest sched_domain of a cpu which contains the given flag.
3580 */
3581static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3582{
3583 struct sched_domain *sd;
3584
3585 for_each_domain(cpu, sd)
3586 if (sd && (sd->flags & flag))
3587 break;
3588
3589 return sd;
3590}
3591
3592/**
3593 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3594 * @cpu: The cpu whose domains we're iterating over.
3595 * @sd: variable holding the value of the power_savings_sd
3596 * for cpu.
3597 * @flag: The flag to filter the sched_domains to be iterated.
3598 *
3599 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3600 * set, starting from the lowest sched_domain to the highest.
3601 */
3602#define for_each_flag_domain(cpu, sd, flag) \
3603 for (sd = lowest_flag_domain(cpu, flag); \
3604 (sd && (sd->flags & flag)); sd = sd->parent)
3605
3606/**
3607 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3608 * @ilb_group: group to be checked for semi-idleness
3609 *
3610 * Returns: 1 if the group is semi-idle. 0 otherwise.
3611 *
3612 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3613 * and atleast one non-idle CPU. This helper function checks if the given
3614 * sched_group is semi-idle or not.
3615 */
3616static inline int is_semi_idle_group(struct sched_group *ilb_group)
3617{
83cd4fe2 3618 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
1e3c88bd
PZ
3619 sched_group_cpus(ilb_group));
3620
3621 /*
3622 * A sched_group is semi-idle when it has atleast one busy cpu
3623 * and atleast one idle cpu.
3624 */
83cd4fe2 3625 if (cpumask_empty(nohz.grp_idle_mask))
1e3c88bd
PZ
3626 return 0;
3627
83cd4fe2 3628 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
1e3c88bd
PZ
3629 return 0;
3630
3631 return 1;
3632}
3633/**
3634 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3635 * @cpu: The cpu which is nominating a new idle_load_balancer.
3636 *
3637 * Returns: Returns the id of the idle load balancer if it exists,
3638 * Else, returns >= nr_cpu_ids.
3639 *
3640 * This algorithm picks the idle load balancer such that it belongs to a
3641 * semi-idle powersavings sched_domain. The idea is to try and avoid
3642 * completely idle packages/cores just for the purpose of idle load balancing
3643 * when there are other idle cpu's which are better suited for that job.
3644 */
3645static int find_new_ilb(int cpu)
3646{
3647 struct sched_domain *sd;
3648 struct sched_group *ilb_group;
3649
3650 /*
3651 * Have idle load balancer selection from semi-idle packages only
3652 * when power-aware load balancing is enabled
3653 */
3654 if (!(sched_smt_power_savings || sched_mc_power_savings))
3655 goto out_done;
3656
3657 /*
3658 * Optimize for the case when we have no idle CPUs or only one
3659 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3660 */
83cd4fe2 3661 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
3662 goto out_done;
3663
3664 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3665 ilb_group = sd->groups;
3666
3667 do {
3668 if (is_semi_idle_group(ilb_group))
83cd4fe2 3669 return cpumask_first(nohz.grp_idle_mask);
1e3c88bd
PZ
3670
3671 ilb_group = ilb_group->next;
3672
3673 } while (ilb_group != sd->groups);
3674 }
3675
3676out_done:
83cd4fe2 3677 return nr_cpu_ids;
1e3c88bd
PZ
3678}
3679#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3680static inline int find_new_ilb(int call_cpu)
3681{
83cd4fe2 3682 return nr_cpu_ids;
1e3c88bd
PZ
3683}
3684#endif
3685
83cd4fe2
VP
3686/*
3687 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3688 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3689 * CPU (if there is one).
3690 */
3691static void nohz_balancer_kick(int cpu)
3692{
3693 int ilb_cpu;
3694
3695 nohz.next_balance++;
3696
3697 ilb_cpu = get_nohz_load_balancer();
3698
3699 if (ilb_cpu >= nr_cpu_ids) {
3700 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3701 if (ilb_cpu >= nr_cpu_ids)
3702 return;
3703 }
3704
3705 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3706 struct call_single_data *cp;
3707
3708 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3709 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3710 __smp_call_function_single(ilb_cpu, cp, 0);
3711 }
3712 return;
3713}
3714
1e3c88bd
PZ
3715/*
3716 * This routine will try to nominate the ilb (idle load balancing)
3717 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
83cd4fe2 3718 * load balancing on behalf of all those cpus.
1e3c88bd 3719 *
83cd4fe2
VP
3720 * When the ilb owner becomes busy, we will not have new ilb owner until some
3721 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3722 * idle load balancing by kicking one of the idle CPUs.
1e3c88bd 3723 *
83cd4fe2
VP
3724 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3725 * ilb owner CPU in future (when there is a need for idle load balancing on
3726 * behalf of all idle CPUs).
1e3c88bd 3727 */
83cd4fe2 3728void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
3729{
3730 int cpu = smp_processor_id();
3731
3732 if (stop_tick) {
1e3c88bd
PZ
3733 if (!cpu_active(cpu)) {
3734 if (atomic_read(&nohz.load_balancer) != cpu)
83cd4fe2 3735 return;
1e3c88bd
PZ
3736
3737 /*
3738 * If we are going offline and still the leader,
3739 * give up!
3740 */
83cd4fe2
VP
3741 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3742 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3743 BUG();
3744
83cd4fe2 3745 return;
1e3c88bd
PZ
3746 }
3747
83cd4fe2 3748 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd 3749
83cd4fe2
VP
3750 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3751 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3752 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3753 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
1e3c88bd 3754
83cd4fe2 3755 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
1e3c88bd
PZ
3756 int new_ilb;
3757
83cd4fe2
VP
3758 /* make me the ilb owner */
3759 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3760 cpu) != nr_cpu_ids)
3761 return;
3762
1e3c88bd
PZ
3763 /*
3764 * Check to see if there is a more power-efficient
3765 * ilb.
3766 */
3767 new_ilb = find_new_ilb(cpu);
3768 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
83cd4fe2 3769 atomic_set(&nohz.load_balancer, nr_cpu_ids);
1e3c88bd 3770 resched_cpu(new_ilb);
83cd4fe2 3771 return;
1e3c88bd 3772 }
83cd4fe2 3773 return;
1e3c88bd
PZ
3774 }
3775 } else {
83cd4fe2
VP
3776 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3777 return;
1e3c88bd 3778
83cd4fe2 3779 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd
PZ
3780
3781 if (atomic_read(&nohz.load_balancer) == cpu)
83cd4fe2
VP
3782 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3783 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3784 BUG();
3785 }
83cd4fe2 3786 return;
1e3c88bd
PZ
3787}
3788#endif
3789
3790static DEFINE_SPINLOCK(balancing);
3791
3792/*
3793 * It checks each scheduling domain to see if it is due to be balanced,
3794 * and initiates a balancing operation if so.
3795 *
3796 * Balancing parameters are set up in arch_init_sched_domains.
3797 */
3798static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3799{
3800 int balance = 1;
3801 struct rq *rq = cpu_rq(cpu);
3802 unsigned long interval;
3803 struct sched_domain *sd;
3804 /* Earliest time when we have to do rebalance again */
3805 unsigned long next_balance = jiffies + 60*HZ;
3806 int update_next_balance = 0;
3807 int need_serialize;
3808
2069dd75
PZ
3809 update_shares(cpu);
3810
1e3c88bd
PZ
3811 for_each_domain(cpu, sd) {
3812 if (!(sd->flags & SD_LOAD_BALANCE))
3813 continue;
3814
3815 interval = sd->balance_interval;
3816 if (idle != CPU_IDLE)
3817 interval *= sd->busy_factor;
3818
3819 /* scale ms to jiffies */
3820 interval = msecs_to_jiffies(interval);
3821 if (unlikely(!interval))
3822 interval = 1;
3823 if (interval > HZ*NR_CPUS/10)
3824 interval = HZ*NR_CPUS/10;
3825
3826 need_serialize = sd->flags & SD_SERIALIZE;
3827
3828 if (need_serialize) {
3829 if (!spin_trylock(&balancing))
3830 goto out;
3831 }
3832
3833 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3834 if (load_balance(cpu, rq, sd, idle, &balance)) {
3835 /*
3836 * We've pulled tasks over so either we're no
3837 * longer idle, or one of our SMT siblings is
3838 * not idle.
3839 */
3840 idle = CPU_NOT_IDLE;
3841 }
3842 sd->last_balance = jiffies;
3843 }
3844 if (need_serialize)
3845 spin_unlock(&balancing);
3846out:
3847 if (time_after(next_balance, sd->last_balance + interval)) {
3848 next_balance = sd->last_balance + interval;
3849 update_next_balance = 1;
3850 }
3851
3852 /*
3853 * Stop the load balance at this level. There is another
3854 * CPU in our sched group which is doing load balancing more
3855 * actively.
3856 */
3857 if (!balance)
3858 break;
3859 }
3860
3861 /*
3862 * next_balance will be updated only when there is a need.
3863 * When the cpu is attached to null domain for ex, it will not be
3864 * updated.
3865 */
3866 if (likely(update_next_balance))
3867 rq->next_balance = next_balance;
3868}
3869
83cd4fe2 3870#ifdef CONFIG_NO_HZ
1e3c88bd 3871/*
83cd4fe2 3872 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
3873 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3874 */
83cd4fe2
VP
3875static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3876{
3877 struct rq *this_rq = cpu_rq(this_cpu);
3878 struct rq *rq;
3879 int balance_cpu;
3880
3881 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3882 return;
3883
3884 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3885 if (balance_cpu == this_cpu)
3886 continue;
3887
3888 /*
3889 * If this cpu gets work to do, stop the load balancing
3890 * work being done for other cpus. Next load
3891 * balancing owner will pick it up.
3892 */
3893 if (need_resched()) {
3894 this_rq->nohz_balance_kick = 0;
3895 break;
3896 }
3897
3898 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 3899 update_rq_clock(this_rq);
83cd4fe2
VP
3900 update_cpu_load(this_rq);
3901 raw_spin_unlock_irq(&this_rq->lock);
3902
3903 rebalance_domains(balance_cpu, CPU_IDLE);
3904
3905 rq = cpu_rq(balance_cpu);
3906 if (time_after(this_rq->next_balance, rq->next_balance))
3907 this_rq->next_balance = rq->next_balance;
3908 }
3909 nohz.next_balance = this_rq->next_balance;
3910 this_rq->nohz_balance_kick = 0;
3911}
3912
3913/*
3914 * Current heuristic for kicking the idle load balancer
3915 * - first_pick_cpu is the one of the busy CPUs. It will kick
3916 * idle load balancer when it has more than one process active. This
3917 * eliminates the need for idle load balancing altogether when we have
3918 * only one running process in the system (common case).
3919 * - If there are more than one busy CPU, idle load balancer may have
3920 * to run for active_load_balance to happen (i.e., two busy CPUs are
3921 * SMT or core siblings and can run better if they move to different
3922 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3923 * which will kick idle load balancer as soon as it has any load.
3924 */
3925static inline int nohz_kick_needed(struct rq *rq, int cpu)
3926{
3927 unsigned long now = jiffies;
3928 int ret;
3929 int first_pick_cpu, second_pick_cpu;
3930
3931 if (time_before(now, nohz.next_balance))
3932 return 0;
3933
f6c3f168 3934 if (rq->idle_at_tick)
83cd4fe2
VP
3935 return 0;
3936
3937 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3938 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3939
3940 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3941 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3942 return 0;
3943
3944 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3945 if (ret == nr_cpu_ids || ret == cpu) {
3946 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3947 if (rq->nr_running > 1)
3948 return 1;
3949 } else {
3950 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3951 if (ret == nr_cpu_ids || ret == cpu) {
3952 if (rq->nr_running)
3953 return 1;
3954 }
3955 }
3956 return 0;
3957}
3958#else
3959static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3960#endif
3961
3962/*
3963 * run_rebalance_domains is triggered when needed from the scheduler tick.
3964 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3965 */
1e3c88bd
PZ
3966static void run_rebalance_domains(struct softirq_action *h)
3967{
3968 int this_cpu = smp_processor_id();
3969 struct rq *this_rq = cpu_rq(this_cpu);
3970 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3971 CPU_IDLE : CPU_NOT_IDLE;
3972
3973 rebalance_domains(this_cpu, idle);
3974
1e3c88bd 3975 /*
83cd4fe2 3976 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
3977 * balancing on behalf of the other idle cpus whose ticks are
3978 * stopped.
3979 */
83cd4fe2 3980 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
3981}
3982
3983static inline int on_null_domain(int cpu)
3984{
90a6501f 3985 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
3986}
3987
3988/*
3989 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd
PZ
3990 */
3991static inline void trigger_load_balance(struct rq *rq, int cpu)
3992{
1e3c88bd
PZ
3993 /* Don't need to rebalance while attached to NULL domain */
3994 if (time_after_eq(jiffies, rq->next_balance) &&
3995 likely(!on_null_domain(cpu)))
3996 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2
VP
3997#ifdef CONFIG_NO_HZ
3998 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
3999 nohz_balancer_kick(cpu);
4000#endif
1e3c88bd
PZ
4001}
4002
0bcdcf28
CE
4003static void rq_online_fair(struct rq *rq)
4004{
4005 update_sysctl();
4006}
4007
4008static void rq_offline_fair(struct rq *rq)
4009{
4010 update_sysctl();
4011}
4012
1e3c88bd
PZ
4013#else /* CONFIG_SMP */
4014
4015/*
4016 * on UP we do not need to balance between CPUs:
4017 */
4018static inline void idle_balance(int cpu, struct rq *rq)
4019{
4020}
4021
55e12e5e 4022#endif /* CONFIG_SMP */
e1d1484f 4023
bf0f6f24
IM
4024/*
4025 * scheduler tick hitting a task of our scheduling class:
4026 */
8f4d37ec 4027static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
4028{
4029 struct cfs_rq *cfs_rq;
4030 struct sched_entity *se = &curr->se;
4031
4032 for_each_sched_entity(se) {
4033 cfs_rq = cfs_rq_of(se);
8f4d37ec 4034 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
4035 }
4036}
4037
4038/*
cd29fe6f
PZ
4039 * called on fork with the child task as argument from the parent's context
4040 * - child not yet on the tasklist
4041 * - preemption disabled
bf0f6f24 4042 */
cd29fe6f 4043static void task_fork_fair(struct task_struct *p)
bf0f6f24 4044{
cd29fe6f 4045 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 4046 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 4047 int this_cpu = smp_processor_id();
cd29fe6f
PZ
4048 struct rq *rq = this_rq();
4049 unsigned long flags;
4050
05fa785c 4051 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 4052
861d034e
PZ
4053 update_rq_clock(rq);
4054
b0a0f667
PM
4055 if (unlikely(task_cpu(p) != this_cpu)) {
4056 rcu_read_lock();
cd29fe6f 4057 __set_task_cpu(p, this_cpu);
b0a0f667
PM
4058 rcu_read_unlock();
4059 }
bf0f6f24 4060
7109c442 4061 update_curr(cfs_rq);
cd29fe6f 4062
b5d9d734
MG
4063 if (curr)
4064 se->vruntime = curr->vruntime;
aeb73b04 4065 place_entity(cfs_rq, se, 1);
4d78e7b6 4066
cd29fe6f 4067 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 4068 /*
edcb60a3
IM
4069 * Upon rescheduling, sched_class::put_prev_task() will place
4070 * 'current' within the tree based on its new key value.
4071 */
4d78e7b6 4072 swap(curr->vruntime, se->vruntime);
aec0a514 4073 resched_task(rq->curr);
4d78e7b6 4074 }
bf0f6f24 4075
88ec22d3
PZ
4076 se->vruntime -= cfs_rq->min_vruntime;
4077
05fa785c 4078 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
4079}
4080
cb469845
SR
4081/*
4082 * Priority of the task has changed. Check to see if we preempt
4083 * the current task.
4084 */
4085static void prio_changed_fair(struct rq *rq, struct task_struct *p,
4086 int oldprio, int running)
4087{
4088 /*
4089 * Reschedule if we are currently running on this runqueue and
4090 * our priority decreased, or if we are not currently running on
4091 * this runqueue and our priority is higher than the current's
4092 */
4093 if (running) {
4094 if (p->prio > oldprio)
4095 resched_task(rq->curr);
4096 } else
15afe09b 4097 check_preempt_curr(rq, p, 0);
cb469845
SR
4098}
4099
4100/*
4101 * We switched to the sched_fair class.
4102 */
4103static void switched_to_fair(struct rq *rq, struct task_struct *p,
4104 int running)
4105{
4106 /*
4107 * We were most likely switched from sched_rt, so
4108 * kick off the schedule if running, otherwise just see
4109 * if we can still preempt the current task.
4110 */
4111 if (running)
4112 resched_task(rq->curr);
4113 else
15afe09b 4114 check_preempt_curr(rq, p, 0);
cb469845
SR
4115}
4116
83b699ed
SV
4117/* Account for a task changing its policy or group.
4118 *
4119 * This routine is mostly called to set cfs_rq->curr field when a task
4120 * migrates between groups/classes.
4121 */
4122static void set_curr_task_fair(struct rq *rq)
4123{
4124 struct sched_entity *se = &rq->curr->se;
4125
4126 for_each_sched_entity(se)
4127 set_next_entity(cfs_rq_of(se), se);
4128}
4129
810b3817 4130#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4131static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 4132{
b2b5ce02
PZ
4133 /*
4134 * If the task was not on the rq at the time of this cgroup movement
4135 * it must have been asleep, sleeping tasks keep their ->vruntime
4136 * absolute on their old rq until wakeup (needed for the fair sleeper
4137 * bonus in place_entity()).
4138 *
4139 * If it was on the rq, we've just 'preempted' it, which does convert
4140 * ->vruntime to a relative base.
4141 *
4142 * Make sure both cases convert their relative position when migrating
4143 * to another cgroup's rq. This does somewhat interfere with the
4144 * fair sleeper stuff for the first placement, but who cares.
4145 */
4146 if (!on_rq)
4147 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4148 set_task_rq(p, task_cpu(p));
88ec22d3 4149 if (!on_rq)
b2b5ce02 4150 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817
PZ
4151}
4152#endif
4153
6d686f45 4154static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
4155{
4156 struct sched_entity *se = &task->se;
0d721cea
PW
4157 unsigned int rr_interval = 0;
4158
4159 /*
4160 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4161 * idle runqueue:
4162 */
0d721cea
PW
4163 if (rq->cfs.load.weight)
4164 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
4165
4166 return rr_interval;
4167}
4168
bf0f6f24
IM
4169/*
4170 * All the scheduling class methods:
4171 */
5522d5d5
IM
4172static const struct sched_class fair_sched_class = {
4173 .next = &idle_sched_class,
bf0f6f24
IM
4174 .enqueue_task = enqueue_task_fair,
4175 .dequeue_task = dequeue_task_fair,
4176 .yield_task = yield_task_fair,
4177
2e09bf55 4178 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
4179
4180 .pick_next_task = pick_next_task_fair,
4181 .put_prev_task = put_prev_task_fair,
4182
681f3e68 4183#ifdef CONFIG_SMP
4ce72a2c
LZ
4184 .select_task_rq = select_task_rq_fair,
4185
0bcdcf28
CE
4186 .rq_online = rq_online_fair,
4187 .rq_offline = rq_offline_fair,
88ec22d3
PZ
4188
4189 .task_waking = task_waking_fair,
681f3e68 4190#endif
bf0f6f24 4191
83b699ed 4192 .set_curr_task = set_curr_task_fair,
bf0f6f24 4193 .task_tick = task_tick_fair,
cd29fe6f 4194 .task_fork = task_fork_fair,
cb469845
SR
4195
4196 .prio_changed = prio_changed_fair,
4197 .switched_to = switched_to_fair,
810b3817 4198
0d721cea
PW
4199 .get_rr_interval = get_rr_interval_fair,
4200
810b3817 4201#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4202 .task_move_group = task_move_group_fair,
810b3817 4203#endif
bf0f6f24
IM
4204};
4205
4206#ifdef CONFIG_SCHED_DEBUG
5cef9eca 4207static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 4208{
bf0f6f24
IM
4209 struct cfs_rq *cfs_rq;
4210
5973e5b9 4211 rcu_read_lock();
c3b64f1e 4212 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 4213 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 4214 rcu_read_unlock();
bf0f6f24
IM
4215}
4216#endif
This page took 0.572663 seconds and 5 git commands to generate.