Merge branch 'cpumask-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
398a153b
GH
6static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
7{
8 return container_of(rt_se, struct task_struct, rt);
9}
10
11#ifdef CONFIG_RT_GROUP_SCHED
12
13static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
14{
15 return rt_rq->rq;
16}
17
18static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
19{
20 return rt_se->rt_rq;
21}
22
23#else /* CONFIG_RT_GROUP_SCHED */
24
25static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
26{
27 return container_of(rt_rq, struct rq, rt);
28}
29
30static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
31{
32 struct task_struct *p = rt_task_of(rt_se);
33 struct rq *rq = task_rq(p);
34
35 return &rq->rt;
36}
37
38#endif /* CONFIG_RT_GROUP_SCHED */
39
4fd29176 40#ifdef CONFIG_SMP
84de4274 41
637f5085 42static inline int rt_overloaded(struct rq *rq)
4fd29176 43{
637f5085 44 return atomic_read(&rq->rd->rto_count);
4fd29176 45}
84de4274 46
4fd29176
SR
47static inline void rt_set_overload(struct rq *rq)
48{
1f11eb6a
GH
49 if (!rq->online)
50 return;
51
c6c4927b 52 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
53 /*
54 * Make sure the mask is visible before we set
55 * the overload count. That is checked to determine
56 * if we should look at the mask. It would be a shame
57 * if we looked at the mask, but the mask was not
58 * updated yet.
59 */
60 wmb();
637f5085 61 atomic_inc(&rq->rd->rto_count);
4fd29176 62}
84de4274 63
4fd29176
SR
64static inline void rt_clear_overload(struct rq *rq)
65{
1f11eb6a
GH
66 if (!rq->online)
67 return;
68
4fd29176 69 /* the order here really doesn't matter */
637f5085 70 atomic_dec(&rq->rd->rto_count);
c6c4927b 71 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 72}
73fe6aae 73
398a153b 74static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 75{
398a153b
GH
76 if (rt_rq->rt_nr_migratory && (rt_rq->rt_nr_running > 1)) {
77 if (!rt_rq->overloaded) {
78 rt_set_overload(rq_of_rt_rq(rt_rq));
79 rt_rq->overloaded = 1;
cdc8eb98 80 }
398a153b
GH
81 } else if (rt_rq->overloaded) {
82 rt_clear_overload(rq_of_rt_rq(rt_rq));
83 rt_rq->overloaded = 0;
637f5085 84 }
73fe6aae 85}
4fd29176 86
398a153b
GH
87static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
88{
89 if (rt_se->nr_cpus_allowed > 1)
90 rt_rq->rt_nr_migratory++;
91
92 update_rt_migration(rt_rq);
93}
94
95static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
96{
97 if (rt_se->nr_cpus_allowed > 1)
98 rt_rq->rt_nr_migratory--;
99
100 update_rt_migration(rt_rq);
101}
102
917b627d
GH
103static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
104{
105 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
106 plist_node_init(&p->pushable_tasks, p->prio);
107 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
108}
109
110static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
111{
112 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
113}
114
115#else
116
ceacc2c1 117static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 118{
6f505b16
PZ
119}
120
ceacc2c1
PZ
121static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
122{
123}
124
b07430ac 125static inline
ceacc2c1
PZ
126void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
127{
128}
129
398a153b 130static inline
ceacc2c1
PZ
131void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
132{
133}
917b627d 134
4fd29176
SR
135#endif /* CONFIG_SMP */
136
6f505b16
PZ
137static inline int on_rt_rq(struct sched_rt_entity *rt_se)
138{
139 return !list_empty(&rt_se->run_list);
140}
141
052f1dc7 142#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 143
9f0c1e56 144static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
145{
146 if (!rt_rq->tg)
9f0c1e56 147 return RUNTIME_INF;
6f505b16 148
ac086bc2
PZ
149 return rt_rq->rt_runtime;
150}
151
152static inline u64 sched_rt_period(struct rt_rq *rt_rq)
153{
154 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
155}
156
157#define for_each_leaf_rt_rq(rt_rq, rq) \
80f40ee4 158 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
6f505b16 159
6f505b16
PZ
160#define for_each_sched_rt_entity(rt_se) \
161 for (; rt_se; rt_se = rt_se->parent)
162
163static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
164{
165 return rt_se->my_q;
166}
167
168static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
169static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
170
9f0c1e56 171static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 172{
f6121f4f 173 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
6f505b16
PZ
174 struct sched_rt_entity *rt_se = rt_rq->rt_se;
175
f6121f4f
DF
176 if (rt_rq->rt_nr_running) {
177 if (rt_se && !on_rt_rq(rt_se))
178 enqueue_rt_entity(rt_se);
e864c499 179 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 180 resched_task(curr);
6f505b16
PZ
181 }
182}
183
9f0c1e56 184static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
185{
186 struct sched_rt_entity *rt_se = rt_rq->rt_se;
187
188 if (rt_se && on_rt_rq(rt_se))
189 dequeue_rt_entity(rt_se);
190}
191
23b0fdfc
PZ
192static inline int rt_rq_throttled(struct rt_rq *rt_rq)
193{
194 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
195}
196
197static int rt_se_boosted(struct sched_rt_entity *rt_se)
198{
199 struct rt_rq *rt_rq = group_rt_rq(rt_se);
200 struct task_struct *p;
201
202 if (rt_rq)
203 return !!rt_rq->rt_nr_boosted;
204
205 p = rt_task_of(rt_se);
206 return p->prio != p->normal_prio;
207}
208
d0b27fa7 209#ifdef CONFIG_SMP
c6c4927b 210static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7
PZ
211{
212 return cpu_rq(smp_processor_id())->rd->span;
213}
6f505b16 214#else
c6c4927b 215static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 216{
c6c4927b 217 return cpu_online_mask;
d0b27fa7
PZ
218}
219#endif
6f505b16 220
d0b27fa7
PZ
221static inline
222struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 223{
d0b27fa7
PZ
224 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
225}
9f0c1e56 226
ac086bc2
PZ
227static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
228{
229 return &rt_rq->tg->rt_bandwidth;
230}
231
55e12e5e 232#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
233
234static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
235{
ac086bc2
PZ
236 return rt_rq->rt_runtime;
237}
238
239static inline u64 sched_rt_period(struct rt_rq *rt_rq)
240{
241 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
242}
243
244#define for_each_leaf_rt_rq(rt_rq, rq) \
245 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
246
6f505b16
PZ
247#define for_each_sched_rt_entity(rt_se) \
248 for (; rt_se; rt_se = NULL)
249
250static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
251{
252 return NULL;
253}
254
9f0c1e56 255static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 256{
f3ade837
JB
257 if (rt_rq->rt_nr_running)
258 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
259}
260
9f0c1e56 261static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
262{
263}
264
23b0fdfc
PZ
265static inline int rt_rq_throttled(struct rt_rq *rt_rq)
266{
267 return rt_rq->rt_throttled;
268}
d0b27fa7 269
c6c4927b 270static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 271{
c6c4927b 272 return cpu_online_mask;
d0b27fa7
PZ
273}
274
275static inline
276struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
277{
278 return &cpu_rq(cpu)->rt;
279}
280
ac086bc2
PZ
281static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
282{
283 return &def_rt_bandwidth;
284}
285
55e12e5e 286#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 287
ac086bc2 288#ifdef CONFIG_SMP
78333cdd
PZ
289/*
290 * We ran out of runtime, see if we can borrow some from our neighbours.
291 */
b79f3833 292static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
293{
294 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
295 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
296 int i, weight, more = 0;
297 u64 rt_period;
298
c6c4927b 299 weight = cpumask_weight(rd->span);
ac086bc2
PZ
300
301 spin_lock(&rt_b->rt_runtime_lock);
302 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 303 for_each_cpu(i, rd->span) {
ac086bc2
PZ
304 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
305 s64 diff;
306
307 if (iter == rt_rq)
308 continue;
309
310 spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
311 /*
312 * Either all rqs have inf runtime and there's nothing to steal
313 * or __disable_runtime() below sets a specific rq to inf to
314 * indicate its been disabled and disalow stealing.
315 */
7def2be1
PZ
316 if (iter->rt_runtime == RUNTIME_INF)
317 goto next;
318
78333cdd
PZ
319 /*
320 * From runqueues with spare time, take 1/n part of their
321 * spare time, but no more than our period.
322 */
ac086bc2
PZ
323 diff = iter->rt_runtime - iter->rt_time;
324 if (diff > 0) {
58838cf3 325 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
326 if (rt_rq->rt_runtime + diff > rt_period)
327 diff = rt_period - rt_rq->rt_runtime;
328 iter->rt_runtime -= diff;
329 rt_rq->rt_runtime += diff;
330 more = 1;
331 if (rt_rq->rt_runtime == rt_period) {
332 spin_unlock(&iter->rt_runtime_lock);
333 break;
334 }
335 }
7def2be1 336next:
ac086bc2
PZ
337 spin_unlock(&iter->rt_runtime_lock);
338 }
339 spin_unlock(&rt_b->rt_runtime_lock);
340
341 return more;
342}
7def2be1 343
78333cdd
PZ
344/*
345 * Ensure this RQ takes back all the runtime it lend to its neighbours.
346 */
7def2be1
PZ
347static void __disable_runtime(struct rq *rq)
348{
349 struct root_domain *rd = rq->rd;
350 struct rt_rq *rt_rq;
351
352 if (unlikely(!scheduler_running))
353 return;
354
355 for_each_leaf_rt_rq(rt_rq, rq) {
356 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
357 s64 want;
358 int i;
359
360 spin_lock(&rt_b->rt_runtime_lock);
361 spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
362 /*
363 * Either we're all inf and nobody needs to borrow, or we're
364 * already disabled and thus have nothing to do, or we have
365 * exactly the right amount of runtime to take out.
366 */
7def2be1
PZ
367 if (rt_rq->rt_runtime == RUNTIME_INF ||
368 rt_rq->rt_runtime == rt_b->rt_runtime)
369 goto balanced;
370 spin_unlock(&rt_rq->rt_runtime_lock);
371
78333cdd
PZ
372 /*
373 * Calculate the difference between what we started out with
374 * and what we current have, that's the amount of runtime
375 * we lend and now have to reclaim.
376 */
7def2be1
PZ
377 want = rt_b->rt_runtime - rt_rq->rt_runtime;
378
78333cdd
PZ
379 /*
380 * Greedy reclaim, take back as much as we can.
381 */
c6c4927b 382 for_each_cpu(i, rd->span) {
7def2be1
PZ
383 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
384 s64 diff;
385
78333cdd
PZ
386 /*
387 * Can't reclaim from ourselves or disabled runqueues.
388 */
f1679d08 389 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
390 continue;
391
392 spin_lock(&iter->rt_runtime_lock);
393 if (want > 0) {
394 diff = min_t(s64, iter->rt_runtime, want);
395 iter->rt_runtime -= diff;
396 want -= diff;
397 } else {
398 iter->rt_runtime -= want;
399 want -= want;
400 }
401 spin_unlock(&iter->rt_runtime_lock);
402
403 if (!want)
404 break;
405 }
406
407 spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
408 /*
409 * We cannot be left wanting - that would mean some runtime
410 * leaked out of the system.
411 */
7def2be1
PZ
412 BUG_ON(want);
413balanced:
78333cdd
PZ
414 /*
415 * Disable all the borrow logic by pretending we have inf
416 * runtime - in which case borrowing doesn't make sense.
417 */
7def2be1
PZ
418 rt_rq->rt_runtime = RUNTIME_INF;
419 spin_unlock(&rt_rq->rt_runtime_lock);
420 spin_unlock(&rt_b->rt_runtime_lock);
421 }
422}
423
424static void disable_runtime(struct rq *rq)
425{
426 unsigned long flags;
427
428 spin_lock_irqsave(&rq->lock, flags);
429 __disable_runtime(rq);
430 spin_unlock_irqrestore(&rq->lock, flags);
431}
432
433static void __enable_runtime(struct rq *rq)
434{
7def2be1
PZ
435 struct rt_rq *rt_rq;
436
437 if (unlikely(!scheduler_running))
438 return;
439
78333cdd
PZ
440 /*
441 * Reset each runqueue's bandwidth settings
442 */
7def2be1
PZ
443 for_each_leaf_rt_rq(rt_rq, rq) {
444 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
445
446 spin_lock(&rt_b->rt_runtime_lock);
447 spin_lock(&rt_rq->rt_runtime_lock);
448 rt_rq->rt_runtime = rt_b->rt_runtime;
449 rt_rq->rt_time = 0;
baf25731 450 rt_rq->rt_throttled = 0;
7def2be1
PZ
451 spin_unlock(&rt_rq->rt_runtime_lock);
452 spin_unlock(&rt_b->rt_runtime_lock);
453 }
454}
455
456static void enable_runtime(struct rq *rq)
457{
458 unsigned long flags;
459
460 spin_lock_irqsave(&rq->lock, flags);
461 __enable_runtime(rq);
462 spin_unlock_irqrestore(&rq->lock, flags);
463}
464
eff6549b
PZ
465static int balance_runtime(struct rt_rq *rt_rq)
466{
467 int more = 0;
468
469 if (rt_rq->rt_time > rt_rq->rt_runtime) {
470 spin_unlock(&rt_rq->rt_runtime_lock);
471 more = do_balance_runtime(rt_rq);
472 spin_lock(&rt_rq->rt_runtime_lock);
473 }
474
475 return more;
476}
55e12e5e 477#else /* !CONFIG_SMP */
eff6549b
PZ
478static inline int balance_runtime(struct rt_rq *rt_rq)
479{
480 return 0;
481}
55e12e5e 482#endif /* CONFIG_SMP */
ac086bc2 483
eff6549b
PZ
484static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
485{
486 int i, idle = 1;
c6c4927b 487 const struct cpumask *span;
eff6549b 488
0b148fa0 489 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
eff6549b
PZ
490 return 1;
491
492 span = sched_rt_period_mask();
c6c4927b 493 for_each_cpu(i, span) {
eff6549b
PZ
494 int enqueue = 0;
495 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
496 struct rq *rq = rq_of_rt_rq(rt_rq);
497
498 spin_lock(&rq->lock);
499 if (rt_rq->rt_time) {
500 u64 runtime;
501
502 spin_lock(&rt_rq->rt_runtime_lock);
503 if (rt_rq->rt_throttled)
504 balance_runtime(rt_rq);
505 runtime = rt_rq->rt_runtime;
506 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
507 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
508 rt_rq->rt_throttled = 0;
509 enqueue = 1;
510 }
511 if (rt_rq->rt_time || rt_rq->rt_nr_running)
512 idle = 0;
513 spin_unlock(&rt_rq->rt_runtime_lock);
6c3df255
PZ
514 } else if (rt_rq->rt_nr_running)
515 idle = 0;
eff6549b
PZ
516
517 if (enqueue)
518 sched_rt_rq_enqueue(rt_rq);
519 spin_unlock(&rq->lock);
520 }
521
522 return idle;
523}
ac086bc2 524
6f505b16
PZ
525static inline int rt_se_prio(struct sched_rt_entity *rt_se)
526{
052f1dc7 527#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
528 struct rt_rq *rt_rq = group_rt_rq(rt_se);
529
530 if (rt_rq)
e864c499 531 return rt_rq->highest_prio.curr;
6f505b16
PZ
532#endif
533
534 return rt_task_of(rt_se)->prio;
535}
536
9f0c1e56 537static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 538{
9f0c1e56 539 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 540
fa85ae24 541 if (rt_rq->rt_throttled)
23b0fdfc 542 return rt_rq_throttled(rt_rq);
fa85ae24 543
ac086bc2
PZ
544 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
545 return 0;
546
b79f3833
PZ
547 balance_runtime(rt_rq);
548 runtime = sched_rt_runtime(rt_rq);
549 if (runtime == RUNTIME_INF)
550 return 0;
ac086bc2 551
9f0c1e56 552 if (rt_rq->rt_time > runtime) {
6f505b16 553 rt_rq->rt_throttled = 1;
23b0fdfc 554 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 555 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
556 return 1;
557 }
fa85ae24
PZ
558 }
559
560 return 0;
561}
562
bb44e5d1
IM
563/*
564 * Update the current task's runtime statistics. Skip current tasks that
565 * are not in our scheduling class.
566 */
a9957449 567static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
568{
569 struct task_struct *curr = rq->curr;
6f505b16
PZ
570 struct sched_rt_entity *rt_se = &curr->rt;
571 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
572 u64 delta_exec;
573
574 if (!task_has_rt_policy(curr))
575 return;
576
d281918d 577 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
578 if (unlikely((s64)delta_exec < 0))
579 delta_exec = 0;
6cfb0d5d
IM
580
581 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
582
583 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
584 account_group_exec_runtime(curr, delta_exec);
585
d281918d 586 curr->se.exec_start = rq->clock;
d842de87 587 cpuacct_charge(curr, delta_exec);
fa85ae24 588
0b148fa0
PZ
589 if (!rt_bandwidth_enabled())
590 return;
591
354d60c2
DG
592 for_each_sched_rt_entity(rt_se) {
593 rt_rq = rt_rq_of_se(rt_se);
594
cc2991cf 595 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
e113a745 596 spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
597 rt_rq->rt_time += delta_exec;
598 if (sched_rt_runtime_exceeded(rt_rq))
599 resched_task(curr);
e113a745 600 spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 601 }
354d60c2 602 }
bb44e5d1
IM
603}
604
398a153b 605#if defined CONFIG_SMP
e864c499
GH
606
607static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
608
609static inline int next_prio(struct rq *rq)
63489e45 610{
e864c499
GH
611 struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
612
613 if (next && rt_prio(next->prio))
614 return next->prio;
615 else
616 return MAX_RT_PRIO;
617}
e864c499 618
398a153b
GH
619static void
620inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 621{
4d984277 622 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 623
398a153b 624 if (prio < prev_prio) {
4d984277 625
e864c499
GH
626 /*
627 * If the new task is higher in priority than anything on the
398a153b
GH
628 * run-queue, we know that the previous high becomes our
629 * next-highest.
e864c499 630 */
398a153b 631 rt_rq->highest_prio.next = prev_prio;
1f11eb6a
GH
632
633 if (rq->online)
4d984277 634 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1100ac91 635
e864c499
GH
636 } else if (prio == rt_rq->highest_prio.curr)
637 /*
638 * If the next task is equal in priority to the highest on
639 * the run-queue, then we implicitly know that the next highest
640 * task cannot be any lower than current
641 */
642 rt_rq->highest_prio.next = prio;
643 else if (prio < rt_rq->highest_prio.next)
644 /*
645 * Otherwise, we need to recompute next-highest
646 */
647 rt_rq->highest_prio.next = next_prio(rq);
398a153b 648}
73fe6aae 649
398a153b
GH
650static void
651dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
652{
653 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 654
398a153b
GH
655 if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
656 rt_rq->highest_prio.next = next_prio(rq);
657
658 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
659 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
660}
661
398a153b
GH
662#else /* CONFIG_SMP */
663
6f505b16 664static inline
398a153b
GH
665void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
666static inline
667void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
668
669#endif /* CONFIG_SMP */
6e0534f2 670
052f1dc7 671#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
672static void
673inc_rt_prio(struct rt_rq *rt_rq, int prio)
674{
675 int prev_prio = rt_rq->highest_prio.curr;
676
677 if (prio < prev_prio)
678 rt_rq->highest_prio.curr = prio;
679
680 inc_rt_prio_smp(rt_rq, prio, prev_prio);
681}
682
683static void
684dec_rt_prio(struct rt_rq *rt_rq, int prio)
685{
686 int prev_prio = rt_rq->highest_prio.curr;
687
6f505b16 688 if (rt_rq->rt_nr_running) {
764a9d6f 689
398a153b 690 WARN_ON(prio < prev_prio);
764a9d6f 691
e864c499 692 /*
398a153b
GH
693 * This may have been our highest task, and therefore
694 * we may have some recomputation to do
e864c499 695 */
398a153b 696 if (prio == prev_prio) {
e864c499
GH
697 struct rt_prio_array *array = &rt_rq->active;
698
699 rt_rq->highest_prio.curr =
764a9d6f 700 sched_find_first_bit(array->bitmap);
e864c499
GH
701 }
702
764a9d6f 703 } else
e864c499 704 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 705
398a153b
GH
706 dec_rt_prio_smp(rt_rq, prio, prev_prio);
707}
1f11eb6a 708
398a153b
GH
709#else
710
711static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
712static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
713
714#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 715
052f1dc7 716#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
717
718static void
719inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
720{
721 if (rt_se_boosted(rt_se))
722 rt_rq->rt_nr_boosted++;
723
724 if (rt_rq->tg)
725 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
726}
727
728static void
729dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
730{
23b0fdfc
PZ
731 if (rt_se_boosted(rt_se))
732 rt_rq->rt_nr_boosted--;
733
734 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
735}
736
737#else /* CONFIG_RT_GROUP_SCHED */
738
739static void
740inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
741{
742 start_rt_bandwidth(&def_rt_bandwidth);
743}
744
745static inline
746void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
747
748#endif /* CONFIG_RT_GROUP_SCHED */
749
750static inline
751void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
752{
753 int prio = rt_se_prio(rt_se);
754
755 WARN_ON(!rt_prio(prio));
756 rt_rq->rt_nr_running++;
757
758 inc_rt_prio(rt_rq, prio);
759 inc_rt_migration(rt_se, rt_rq);
760 inc_rt_group(rt_se, rt_rq);
761}
762
763static inline
764void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
765{
766 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
767 WARN_ON(!rt_rq->rt_nr_running);
768 rt_rq->rt_nr_running--;
769
770 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
771 dec_rt_migration(rt_se, rt_rq);
772 dec_rt_group(rt_se, rt_rq);
63489e45
SR
773}
774
ad2a3f13 775static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 776{
6f505b16
PZ
777 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
778 struct rt_prio_array *array = &rt_rq->active;
779 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 780 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 781
ad2a3f13
PZ
782 /*
783 * Don't enqueue the group if its throttled, or when empty.
784 * The latter is a consequence of the former when a child group
785 * get throttled and the current group doesn't have any other
786 * active members.
787 */
788 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 789 return;
63489e45 790
7ebefa8c 791 list_add_tail(&rt_se->run_list, queue);
6f505b16 792 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 793
6f505b16
PZ
794 inc_rt_tasks(rt_se, rt_rq);
795}
796
ad2a3f13 797static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
798{
799 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
800 struct rt_prio_array *array = &rt_rq->active;
801
802 list_del_init(&rt_se->run_list);
803 if (list_empty(array->queue + rt_se_prio(rt_se)))
804 __clear_bit(rt_se_prio(rt_se), array->bitmap);
805
806 dec_rt_tasks(rt_se, rt_rq);
807}
808
809/*
810 * Because the prio of an upper entry depends on the lower
811 * entries, we must remove entries top - down.
6f505b16 812 */
ad2a3f13 813static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 814{
ad2a3f13 815 struct sched_rt_entity *back = NULL;
6f505b16 816
58d6c2d7
PZ
817 for_each_sched_rt_entity(rt_se) {
818 rt_se->back = back;
819 back = rt_se;
820 }
821
822 for (rt_se = back; rt_se; rt_se = rt_se->back) {
823 if (on_rt_rq(rt_se))
ad2a3f13
PZ
824 __dequeue_rt_entity(rt_se);
825 }
826}
827
828static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
829{
830 dequeue_rt_stack(rt_se);
831 for_each_sched_rt_entity(rt_se)
832 __enqueue_rt_entity(rt_se);
833}
834
835static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
836{
837 dequeue_rt_stack(rt_se);
838
839 for_each_sched_rt_entity(rt_se) {
840 struct rt_rq *rt_rq = group_rt_rq(rt_se);
841
842 if (rt_rq && rt_rq->rt_nr_running)
843 __enqueue_rt_entity(rt_se);
58d6c2d7 844 }
bb44e5d1
IM
845}
846
847/*
848 * Adding/removing a task to/from a priority array:
849 */
6f505b16
PZ
850static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
851{
852 struct sched_rt_entity *rt_se = &p->rt;
853
854 if (wakeup)
855 rt_se->timeout = 0;
856
ad2a3f13 857 enqueue_rt_entity(rt_se);
c09595f6 858
917b627d
GH
859 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
860 enqueue_pushable_task(rq, p);
861
c09595f6 862 inc_cpu_load(rq, p->se.load.weight);
6f505b16
PZ
863}
864
f02231e5 865static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 866{
6f505b16 867 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 868
f1e14ef6 869 update_curr_rt(rq);
ad2a3f13 870 dequeue_rt_entity(rt_se);
c09595f6 871
917b627d
GH
872 dequeue_pushable_task(rq, p);
873
c09595f6 874 dec_cpu_load(rq, p->se.load.weight);
bb44e5d1
IM
875}
876
877/*
878 * Put task to the end of the run list without the overhead of dequeue
879 * followed by enqueue.
880 */
7ebefa8c
DA
881static void
882requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 883{
1cdad715 884 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
885 struct rt_prio_array *array = &rt_rq->active;
886 struct list_head *queue = array->queue + rt_se_prio(rt_se);
887
888 if (head)
889 list_move(&rt_se->run_list, queue);
890 else
891 list_move_tail(&rt_se->run_list, queue);
1cdad715 892 }
6f505b16
PZ
893}
894
7ebefa8c 895static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 896{
6f505b16
PZ
897 struct sched_rt_entity *rt_se = &p->rt;
898 struct rt_rq *rt_rq;
bb44e5d1 899
6f505b16
PZ
900 for_each_sched_rt_entity(rt_se) {
901 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 902 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 903 }
bb44e5d1
IM
904}
905
6f505b16 906static void yield_task_rt(struct rq *rq)
bb44e5d1 907{
7ebefa8c 908 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
909}
910
e7693a36 911#ifdef CONFIG_SMP
318e0893
GH
912static int find_lowest_rq(struct task_struct *task);
913
e7693a36
GH
914static int select_task_rq_rt(struct task_struct *p, int sync)
915{
318e0893
GH
916 struct rq *rq = task_rq(p);
917
918 /*
e1f47d89
SR
919 * If the current task is an RT task, then
920 * try to see if we can wake this RT task up on another
921 * runqueue. Otherwise simply start this RT task
922 * on its current runqueue.
923 *
924 * We want to avoid overloading runqueues. Even if
925 * the RT task is of higher priority than the current RT task.
926 * RT tasks behave differently than other tasks. If
927 * one gets preempted, we try to push it off to another queue.
928 * So trying to keep a preempting RT task on the same
929 * cache hot CPU will force the running RT task to
930 * a cold CPU. So we waste all the cache for the lower
931 * RT task in hopes of saving some of a RT task
932 * that is just being woken and probably will have
933 * cold cache anyway.
318e0893 934 */
17b3279b 935 if (unlikely(rt_task(rq->curr)) &&
6f505b16 936 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
937 int cpu = find_lowest_rq(p);
938
939 return (cpu == -1) ? task_cpu(p) : cpu;
940 }
941
942 /*
943 * Otherwise, just let it ride on the affined RQ and the
944 * post-schedule router will push the preempted task away
945 */
e7693a36
GH
946 return task_cpu(p);
947}
7ebefa8c
DA
948
949static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
950{
24600ce8 951 cpumask_var_t mask;
7ebefa8c
DA
952
953 if (rq->curr->rt.nr_cpus_allowed == 1)
954 return;
955
24600ce8 956 if (!alloc_cpumask_var(&mask, GFP_ATOMIC))
7ebefa8c
DA
957 return;
958
24600ce8
RR
959 if (p->rt.nr_cpus_allowed != 1
960 && cpupri_find(&rq->rd->cpupri, p, mask))
961 goto free;
962
963 if (!cpupri_find(&rq->rd->cpupri, rq->curr, mask))
964 goto free;
7ebefa8c
DA
965
966 /*
967 * There appears to be other cpus that can accept
968 * current and none to run 'p', so lets reschedule
969 * to try and push current away:
970 */
971 requeue_task_rt(rq, p, 1);
972 resched_task(rq->curr);
24600ce8
RR
973free:
974 free_cpumask_var(mask);
7ebefa8c
DA
975}
976
e7693a36
GH
977#endif /* CONFIG_SMP */
978
bb44e5d1
IM
979/*
980 * Preempt the current task with a newly woken task if needed:
981 */
15afe09b 982static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
bb44e5d1 983{
45c01e82 984 if (p->prio < rq->curr->prio) {
bb44e5d1 985 resched_task(rq->curr);
45c01e82
GH
986 return;
987 }
988
989#ifdef CONFIG_SMP
990 /*
991 * If:
992 *
993 * - the newly woken task is of equal priority to the current task
994 * - the newly woken task is non-migratable while current is migratable
995 * - current will be preempted on the next reschedule
996 *
997 * we should check to see if current can readily move to a different
998 * cpu. If so, we will reschedule to allow the push logic to try
999 * to move current somewhere else, making room for our non-migratable
1000 * task.
1001 */
7ebefa8c
DA
1002 if (p->prio == rq->curr->prio && !need_resched())
1003 check_preempt_equal_prio(rq, p);
45c01e82 1004#endif
bb44e5d1
IM
1005}
1006
6f505b16
PZ
1007static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1008 struct rt_rq *rt_rq)
bb44e5d1 1009{
6f505b16
PZ
1010 struct rt_prio_array *array = &rt_rq->active;
1011 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1012 struct list_head *queue;
1013 int idx;
1014
1015 idx = sched_find_first_bit(array->bitmap);
6f505b16 1016 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1017
1018 queue = array->queue + idx;
6f505b16 1019 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1020
6f505b16
PZ
1021 return next;
1022}
bb44e5d1 1023
917b627d 1024static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1025{
1026 struct sched_rt_entity *rt_se;
1027 struct task_struct *p;
1028 struct rt_rq *rt_rq;
bb44e5d1 1029
6f505b16
PZ
1030 rt_rq = &rq->rt;
1031
1032 if (unlikely(!rt_rq->rt_nr_running))
1033 return NULL;
1034
23b0fdfc 1035 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
1036 return NULL;
1037
1038 do {
1039 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1040 BUG_ON(!rt_se);
6f505b16
PZ
1041 rt_rq = group_rt_rq(rt_se);
1042 } while (rt_rq);
1043
1044 p = rt_task_of(rt_se);
1045 p->se.exec_start = rq->clock;
917b627d
GH
1046
1047 return p;
1048}
1049
1050static struct task_struct *pick_next_task_rt(struct rq *rq)
1051{
1052 struct task_struct *p = _pick_next_task_rt(rq);
1053
1054 /* The running task is never eligible for pushing */
1055 if (p)
1056 dequeue_pushable_task(rq, p);
1057
6f505b16 1058 return p;
bb44e5d1
IM
1059}
1060
31ee529c 1061static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1062{
f1e14ef6 1063 update_curr_rt(rq);
bb44e5d1 1064 p->se.exec_start = 0;
917b627d
GH
1065
1066 /*
1067 * The previous task needs to be made eligible for pushing
1068 * if it is still active
1069 */
1070 if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
1071 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1072}
1073
681f3e68 1074#ifdef CONFIG_SMP
6f505b16 1075
e8fa1362
SR
1076/* Only try algorithms three times */
1077#define RT_MAX_TRIES 3
1078
e8fa1362
SR
1079static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1080
f65eda4f
SR
1081static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1082{
1083 if (!task_running(rq, p) &&
96f874e2 1084 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
6f505b16 1085 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
1086 return 1;
1087 return 0;
1088}
1089
e8fa1362 1090/* Return the second highest RT task, NULL otherwise */
79064fbf 1091static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 1092{
6f505b16
PZ
1093 struct task_struct *next = NULL;
1094 struct sched_rt_entity *rt_se;
1095 struct rt_prio_array *array;
1096 struct rt_rq *rt_rq;
e8fa1362
SR
1097 int idx;
1098
6f505b16
PZ
1099 for_each_leaf_rt_rq(rt_rq, rq) {
1100 array = &rt_rq->active;
1101 idx = sched_find_first_bit(array->bitmap);
1102 next_idx:
1103 if (idx >= MAX_RT_PRIO)
1104 continue;
1105 if (next && next->prio < idx)
1106 continue;
1107 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1108 struct task_struct *p = rt_task_of(rt_se);
1109 if (pick_rt_task(rq, p, cpu)) {
1110 next = p;
1111 break;
1112 }
1113 }
1114 if (!next) {
1115 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1116 goto next_idx;
1117 }
f65eda4f
SR
1118 }
1119
e8fa1362
SR
1120 return next;
1121}
1122
0e3900e6 1123static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1124
d38b223c
MT
1125static inline int pick_optimal_cpu(int this_cpu,
1126 const struct cpumask *mask)
6e1254d2
GH
1127{
1128 int first;
1129
1130 /* "this_cpu" is cheaper to preempt than a remote processor */
d38b223c 1131 if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask))
6e1254d2
GH
1132 return this_cpu;
1133
3d398703
RR
1134 first = cpumask_first(mask);
1135 if (first < nr_cpu_ids)
6e1254d2
GH
1136 return first;
1137
1138 return -1;
1139}
1140
1141static int find_lowest_rq(struct task_struct *task)
1142{
1143 struct sched_domain *sd;
96f874e2 1144 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1145 int this_cpu = smp_processor_id();
1146 int cpu = task_cpu(task);
d38b223c 1147 cpumask_var_t domain_mask;
06f90dbd 1148
6e0534f2
GH
1149 if (task->rt.nr_cpus_allowed == 1)
1150 return -1; /* No other targets possible */
6e1254d2 1151
6e0534f2
GH
1152 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1153 return -1; /* No targets found */
6e1254d2 1154
e761b772
MK
1155 /*
1156 * Only consider CPUs that are usable for migration.
1157 * I guess we might want to change cpupri_find() to ignore those
1158 * in the first place.
1159 */
96f874e2 1160 cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
e761b772 1161
6e1254d2
GH
1162 /*
1163 * At this point we have built a mask of cpus representing the
1164 * lowest priority tasks in the system. Now we want to elect
1165 * the best one based on our affinity and topology.
1166 *
1167 * We prioritize the last cpu that the task executed on since
1168 * it is most likely cache-hot in that location.
1169 */
96f874e2 1170 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1171 return cpu;
1172
1173 /*
1174 * Otherwise, we consult the sched_domains span maps to figure
1175 * out which cpu is logically closest to our hot cache data.
1176 */
1177 if (this_cpu == cpu)
1178 this_cpu = -1; /* Skip this_cpu opt if the same */
1179
d38b223c
MT
1180 if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) {
1181 for_each_domain(cpu, sd) {
1182 if (sd->flags & SD_WAKE_AFFINE) {
1183 int best_cpu;
6e1254d2 1184
d38b223c
MT
1185 cpumask_and(domain_mask,
1186 sched_domain_span(sd),
1187 lowest_mask);
6e1254d2 1188
d38b223c
MT
1189 best_cpu = pick_optimal_cpu(this_cpu,
1190 domain_mask);
1191
1192 if (best_cpu != -1) {
1193 free_cpumask_var(domain_mask);
1194 return best_cpu;
1195 }
1196 }
6e1254d2 1197 }
d38b223c 1198 free_cpumask_var(domain_mask);
6e1254d2
GH
1199 }
1200
1201 /*
1202 * And finally, if there were no matches within the domains
1203 * just give the caller *something* to work with from the compatible
1204 * locations.
1205 */
1206 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
1207}
1208
1209/* Will lock the rq it finds */
4df64c0b 1210static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1211{
1212 struct rq *lowest_rq = NULL;
07b4032c 1213 int tries;
4df64c0b 1214 int cpu;
e8fa1362 1215
07b4032c
GH
1216 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1217 cpu = find_lowest_rq(task);
1218
2de0b463 1219 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1220 break;
1221
07b4032c
GH
1222 lowest_rq = cpu_rq(cpu);
1223
e8fa1362 1224 /* if the prio of this runqueue changed, try again */
07b4032c 1225 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1226 /*
1227 * We had to unlock the run queue. In
1228 * the mean time, task could have
1229 * migrated already or had its affinity changed.
1230 * Also make sure that it wasn't scheduled on its rq.
1231 */
07b4032c 1232 if (unlikely(task_rq(task) != rq ||
96f874e2
RR
1233 !cpumask_test_cpu(lowest_rq->cpu,
1234 &task->cpus_allowed) ||
07b4032c 1235 task_running(rq, task) ||
e8fa1362 1236 !task->se.on_rq)) {
4df64c0b 1237
e8fa1362
SR
1238 spin_unlock(&lowest_rq->lock);
1239 lowest_rq = NULL;
1240 break;
1241 }
1242 }
1243
1244 /* If this rq is still suitable use it. */
e864c499 1245 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1246 break;
1247
1248 /* try again */
1b12bbc7 1249 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1250 lowest_rq = NULL;
1251 }
1252
1253 return lowest_rq;
1254}
1255
917b627d
GH
1256static inline int has_pushable_tasks(struct rq *rq)
1257{
1258 return !plist_head_empty(&rq->rt.pushable_tasks);
1259}
1260
1261static struct task_struct *pick_next_pushable_task(struct rq *rq)
1262{
1263 struct task_struct *p;
1264
1265 if (!has_pushable_tasks(rq))
1266 return NULL;
1267
1268 p = plist_first_entry(&rq->rt.pushable_tasks,
1269 struct task_struct, pushable_tasks);
1270
1271 BUG_ON(rq->cpu != task_cpu(p));
1272 BUG_ON(task_current(rq, p));
1273 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1274
1275 BUG_ON(!p->se.on_rq);
1276 BUG_ON(!rt_task(p));
1277
1278 return p;
1279}
1280
e8fa1362
SR
1281/*
1282 * If the current CPU has more than one RT task, see if the non
1283 * running task can migrate over to a CPU that is running a task
1284 * of lesser priority.
1285 */
697f0a48 1286static int push_rt_task(struct rq *rq)
e8fa1362
SR
1287{
1288 struct task_struct *next_task;
1289 struct rq *lowest_rq;
e8fa1362 1290
a22d7fc1
GH
1291 if (!rq->rt.overloaded)
1292 return 0;
1293
917b627d 1294 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1295 if (!next_task)
1296 return 0;
1297
1298 retry:
697f0a48 1299 if (unlikely(next_task == rq->curr)) {
f65eda4f 1300 WARN_ON(1);
e8fa1362 1301 return 0;
f65eda4f 1302 }
e8fa1362
SR
1303
1304 /*
1305 * It's possible that the next_task slipped in of
1306 * higher priority than current. If that's the case
1307 * just reschedule current.
1308 */
697f0a48
GH
1309 if (unlikely(next_task->prio < rq->curr->prio)) {
1310 resched_task(rq->curr);
e8fa1362
SR
1311 return 0;
1312 }
1313
697f0a48 1314 /* We might release rq lock */
e8fa1362
SR
1315 get_task_struct(next_task);
1316
1317 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1318 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1319 if (!lowest_rq) {
1320 struct task_struct *task;
1321 /*
697f0a48 1322 * find lock_lowest_rq releases rq->lock
1563513d
GH
1323 * so it is possible that next_task has migrated.
1324 *
1325 * We need to make sure that the task is still on the same
1326 * run-queue and is also still the next task eligible for
1327 * pushing.
e8fa1362 1328 */
917b627d 1329 task = pick_next_pushable_task(rq);
1563513d
GH
1330 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1331 /*
1332 * If we get here, the task hasnt moved at all, but
1333 * it has failed to push. We will not try again,
1334 * since the other cpus will pull from us when they
1335 * are ready.
1336 */
1337 dequeue_pushable_task(rq, next_task);
1338 goto out;
e8fa1362 1339 }
917b627d 1340
1563513d
GH
1341 if (!task)
1342 /* No more tasks, just exit */
1343 goto out;
1344
917b627d 1345 /*
1563513d 1346 * Something has shifted, try again.
917b627d 1347 */
1563513d
GH
1348 put_task_struct(next_task);
1349 next_task = task;
1350 goto retry;
e8fa1362
SR
1351 }
1352
697f0a48 1353 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1354 set_task_cpu(next_task, lowest_rq->cpu);
1355 activate_task(lowest_rq, next_task, 0);
1356
1357 resched_task(lowest_rq->curr);
1358
1b12bbc7 1359 double_unlock_balance(rq, lowest_rq);
e8fa1362 1360
e8fa1362
SR
1361out:
1362 put_task_struct(next_task);
1363
917b627d 1364 return 1;
e8fa1362
SR
1365}
1366
e8fa1362
SR
1367static void push_rt_tasks(struct rq *rq)
1368{
1369 /* push_rt_task will return true if it moved an RT */
1370 while (push_rt_task(rq))
1371 ;
1372}
1373
f65eda4f
SR
1374static int pull_rt_task(struct rq *this_rq)
1375{
80bf3171 1376 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1377 struct task_struct *p;
f65eda4f 1378 struct rq *src_rq;
f65eda4f 1379
637f5085 1380 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1381 return 0;
1382
c6c4927b 1383 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1384 if (this_cpu == cpu)
1385 continue;
1386
1387 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1388
1389 /*
1390 * Don't bother taking the src_rq->lock if the next highest
1391 * task is known to be lower-priority than our current task.
1392 * This may look racy, but if this value is about to go
1393 * logically higher, the src_rq will push this task away.
1394 * And if its going logically lower, we do not care
1395 */
1396 if (src_rq->rt.highest_prio.next >=
1397 this_rq->rt.highest_prio.curr)
1398 continue;
1399
f65eda4f
SR
1400 /*
1401 * We can potentially drop this_rq's lock in
1402 * double_lock_balance, and another CPU could
a8728944 1403 * alter this_rq
f65eda4f 1404 */
a8728944 1405 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1406
1407 /*
1408 * Are there still pullable RT tasks?
1409 */
614ee1f6
MG
1410 if (src_rq->rt.rt_nr_running <= 1)
1411 goto skip;
f65eda4f 1412
f65eda4f
SR
1413 p = pick_next_highest_task_rt(src_rq, this_cpu);
1414
1415 /*
1416 * Do we have an RT task that preempts
1417 * the to-be-scheduled task?
1418 */
a8728944 1419 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f
SR
1420 WARN_ON(p == src_rq->curr);
1421 WARN_ON(!p->se.on_rq);
1422
1423 /*
1424 * There's a chance that p is higher in priority
1425 * than what's currently running on its cpu.
1426 * This is just that p is wakeing up and hasn't
1427 * had a chance to schedule. We only pull
1428 * p if it is lower in priority than the
a8728944 1429 * current task on the run queue
f65eda4f 1430 */
a8728944 1431 if (p->prio < src_rq->curr->prio)
614ee1f6 1432 goto skip;
f65eda4f
SR
1433
1434 ret = 1;
1435
1436 deactivate_task(src_rq, p, 0);
1437 set_task_cpu(p, this_cpu);
1438 activate_task(this_rq, p, 0);
1439 /*
1440 * We continue with the search, just in
1441 * case there's an even higher prio task
1442 * in another runqueue. (low likelyhood
1443 * but possible)
f65eda4f 1444 */
f65eda4f 1445 }
614ee1f6 1446 skip:
1b12bbc7 1447 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1448 }
1449
1450 return ret;
1451}
1452
9a897c5a 1453static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1454{
1455 /* Try to pull RT tasks here if we lower this rq's prio */
e864c499 1456 if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
f65eda4f
SR
1457 pull_rt_task(rq);
1458}
1459
967fc046
GH
1460/*
1461 * assumes rq->lock is held
1462 */
1463static int needs_post_schedule_rt(struct rq *rq)
1464{
917b627d 1465 return has_pushable_tasks(rq);
967fc046
GH
1466}
1467
9a897c5a 1468static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
1469{
1470 /*
967fc046
GH
1471 * This is only called if needs_post_schedule_rt() indicates that
1472 * we need to push tasks away
e8fa1362 1473 */
967fc046
GH
1474 spin_lock_irq(&rq->lock);
1475 push_rt_tasks(rq);
1476 spin_unlock_irq(&rq->lock);
e8fa1362
SR
1477}
1478
8ae121ac
GH
1479/*
1480 * If we are not running and we are not going to reschedule soon, we should
1481 * try to push tasks away now
1482 */
9a897c5a 1483static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 1484{
9a897c5a 1485 if (!task_running(rq, p) &&
8ae121ac 1486 !test_tsk_need_resched(rq->curr) &&
917b627d 1487 has_pushable_tasks(rq) &&
777c2f38 1488 p->rt.nr_cpus_allowed > 1)
4642dafd
SR
1489 push_rt_tasks(rq);
1490}
1491
43010659 1492static unsigned long
bb44e5d1 1493load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
1494 unsigned long max_load_move,
1495 struct sched_domain *sd, enum cpu_idle_type idle,
1496 int *all_pinned, int *this_best_prio)
bb44e5d1 1497{
c7a1e46a
SR
1498 /* don't touch RT tasks */
1499 return 0;
e1d1484f
PW
1500}
1501
1502static int
1503move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1504 struct sched_domain *sd, enum cpu_idle_type idle)
1505{
c7a1e46a
SR
1506 /* don't touch RT tasks */
1507 return 0;
bb44e5d1 1508}
deeeccd4 1509
cd8ba7cd 1510static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1511 const struct cpumask *new_mask)
73fe6aae 1512{
96f874e2 1513 int weight = cpumask_weight(new_mask);
73fe6aae
GH
1514
1515 BUG_ON(!rt_task(p));
1516
1517 /*
1518 * Update the migration status of the RQ if we have an RT task
1519 * which is running AND changing its weight value.
1520 */
6f505b16 1521 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1522 struct rq *rq = task_rq(p);
1523
917b627d
GH
1524 if (!task_current(rq, p)) {
1525 /*
1526 * Make sure we dequeue this task from the pushable list
1527 * before going further. It will either remain off of
1528 * the list because we are no longer pushable, or it
1529 * will be requeued.
1530 */
1531 if (p->rt.nr_cpus_allowed > 1)
1532 dequeue_pushable_task(rq, p);
1533
1534 /*
1535 * Requeue if our weight is changing and still > 1
1536 */
1537 if (weight > 1)
1538 enqueue_pushable_task(rq, p);
1539
1540 }
1541
6f505b16 1542 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1543 rq->rt.rt_nr_migratory++;
6f505b16 1544 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1545 BUG_ON(!rq->rt.rt_nr_migratory);
1546 rq->rt.rt_nr_migratory--;
1547 }
1548
398a153b 1549 update_rt_migration(&rq->rt);
73fe6aae
GH
1550 }
1551
96f874e2 1552 cpumask_copy(&p->cpus_allowed, new_mask);
6f505b16 1553 p->rt.nr_cpus_allowed = weight;
73fe6aae 1554}
deeeccd4 1555
bdd7c81b 1556/* Assumes rq->lock is held */
1f11eb6a 1557static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1558{
1559 if (rq->rt.overloaded)
1560 rt_set_overload(rq);
6e0534f2 1561
7def2be1
PZ
1562 __enable_runtime(rq);
1563
e864c499 1564 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1565}
1566
1567/* Assumes rq->lock is held */
1f11eb6a 1568static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1569{
1570 if (rq->rt.overloaded)
1571 rt_clear_overload(rq);
6e0534f2 1572
7def2be1
PZ
1573 __disable_runtime(rq);
1574
6e0534f2 1575 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1576}
cb469845
SR
1577
1578/*
1579 * When switch from the rt queue, we bring ourselves to a position
1580 * that we might want to pull RT tasks from other runqueues.
1581 */
1582static void switched_from_rt(struct rq *rq, struct task_struct *p,
1583 int running)
1584{
1585 /*
1586 * If there are other RT tasks then we will reschedule
1587 * and the scheduling of the other RT tasks will handle
1588 * the balancing. But if we are the last RT task
1589 * we may need to handle the pulling of RT tasks
1590 * now.
1591 */
1592 if (!rq->rt.rt_nr_running)
1593 pull_rt_task(rq);
1594}
3d8cbdf8
RR
1595
1596static inline void init_sched_rt_class(void)
1597{
1598 unsigned int i;
1599
1600 for_each_possible_cpu(i)
6ca09dfc
MT
1601 alloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1602 GFP_KERNEL, cpu_to_node(i));
3d8cbdf8 1603}
cb469845
SR
1604#endif /* CONFIG_SMP */
1605
1606/*
1607 * When switching a task to RT, we may overload the runqueue
1608 * with RT tasks. In this case we try to push them off to
1609 * other runqueues.
1610 */
1611static void switched_to_rt(struct rq *rq, struct task_struct *p,
1612 int running)
1613{
1614 int check_resched = 1;
1615
1616 /*
1617 * If we are already running, then there's nothing
1618 * that needs to be done. But if we are not running
1619 * we may need to preempt the current running task.
1620 * If that current running task is also an RT task
1621 * then see if we can move to another run queue.
1622 */
1623 if (!running) {
1624#ifdef CONFIG_SMP
1625 if (rq->rt.overloaded && push_rt_task(rq) &&
1626 /* Don't resched if we changed runqueues */
1627 rq != task_rq(p))
1628 check_resched = 0;
1629#endif /* CONFIG_SMP */
1630 if (check_resched && p->prio < rq->curr->prio)
1631 resched_task(rq->curr);
1632 }
1633}
1634
1635/*
1636 * Priority of the task has changed. This may cause
1637 * us to initiate a push or pull.
1638 */
1639static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1640 int oldprio, int running)
1641{
1642 if (running) {
1643#ifdef CONFIG_SMP
1644 /*
1645 * If our priority decreases while running, we
1646 * may need to pull tasks to this runqueue.
1647 */
1648 if (oldprio < p->prio)
1649 pull_rt_task(rq);
1650 /*
1651 * If there's a higher priority task waiting to run
6fa46fa5
SR
1652 * then reschedule. Note, the above pull_rt_task
1653 * can release the rq lock and p could migrate.
1654 * Only reschedule if p is still on the same runqueue.
cb469845 1655 */
e864c499 1656 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1657 resched_task(p);
1658#else
1659 /* For UP simply resched on drop of prio */
1660 if (oldprio < p->prio)
1661 resched_task(p);
e8fa1362 1662#endif /* CONFIG_SMP */
cb469845
SR
1663 } else {
1664 /*
1665 * This task is not running, but if it is
1666 * greater than the current running task
1667 * then reschedule.
1668 */
1669 if (p->prio < rq->curr->prio)
1670 resched_task(rq->curr);
1671 }
1672}
1673
78f2c7db
PZ
1674static void watchdog(struct rq *rq, struct task_struct *p)
1675{
1676 unsigned long soft, hard;
1677
1678 if (!p->signal)
1679 return;
1680
1681 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1682 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1683
1684 if (soft != RLIM_INFINITY) {
1685 unsigned long next;
1686
1687 p->rt.timeout++;
1688 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1689 if (p->rt.timeout > next)
f06febc9 1690 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1691 }
1692}
bb44e5d1 1693
8f4d37ec 1694static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1695{
67e2be02
PZ
1696 update_curr_rt(rq);
1697
78f2c7db
PZ
1698 watchdog(rq, p);
1699
bb44e5d1
IM
1700 /*
1701 * RR tasks need a special form of timeslice management.
1702 * FIFO tasks have no timeslices.
1703 */
1704 if (p->policy != SCHED_RR)
1705 return;
1706
fa717060 1707 if (--p->rt.time_slice)
bb44e5d1
IM
1708 return;
1709
fa717060 1710 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1711
98fbc798
DA
1712 /*
1713 * Requeue to the end of queue if we are not the only element
1714 * on the queue:
1715 */
fa717060 1716 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 1717 requeue_task_rt(rq, p, 0);
98fbc798
DA
1718 set_tsk_need_resched(p);
1719 }
bb44e5d1
IM
1720}
1721
83b699ed
SV
1722static void set_curr_task_rt(struct rq *rq)
1723{
1724 struct task_struct *p = rq->curr;
1725
1726 p->se.exec_start = rq->clock;
917b627d
GH
1727
1728 /* The running task is never eligible for pushing */
1729 dequeue_pushable_task(rq, p);
83b699ed
SV
1730}
1731
2abdad0a 1732static const struct sched_class rt_sched_class = {
5522d5d5 1733 .next = &fair_sched_class,
bb44e5d1
IM
1734 .enqueue_task = enqueue_task_rt,
1735 .dequeue_task = dequeue_task_rt,
1736 .yield_task = yield_task_rt,
1737
1738 .check_preempt_curr = check_preempt_curr_rt,
1739
1740 .pick_next_task = pick_next_task_rt,
1741 .put_prev_task = put_prev_task_rt,
1742
681f3e68 1743#ifdef CONFIG_SMP
4ce72a2c
LZ
1744 .select_task_rq = select_task_rq_rt,
1745
bb44e5d1 1746 .load_balance = load_balance_rt,
e1d1484f 1747 .move_one_task = move_one_task_rt,
73fe6aae 1748 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1749 .rq_online = rq_online_rt,
1750 .rq_offline = rq_offline_rt,
9a897c5a 1751 .pre_schedule = pre_schedule_rt,
967fc046 1752 .needs_post_schedule = needs_post_schedule_rt,
9a897c5a
SR
1753 .post_schedule = post_schedule_rt,
1754 .task_wake_up = task_wake_up_rt,
cb469845 1755 .switched_from = switched_from_rt,
681f3e68 1756#endif
bb44e5d1 1757
83b699ed 1758 .set_curr_task = set_curr_task_rt,
bb44e5d1 1759 .task_tick = task_tick_rt,
cb469845
SR
1760
1761 .prio_changed = prio_changed_rt,
1762 .switched_to = switched_to_rt,
bb44e5d1 1763};
ada18de2
PZ
1764
1765#ifdef CONFIG_SCHED_DEBUG
1766extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1767
1768static void print_rt_stats(struct seq_file *m, int cpu)
1769{
1770 struct rt_rq *rt_rq;
1771
1772 rcu_read_lock();
1773 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1774 print_rt_rq(m, cpu, rt_rq);
1775 rcu_read_unlock();
1776}
55e12e5e 1777#endif /* CONFIG_SCHED_DEBUG */
0e3900e6 1778
This page took 0.405058 seconds and 5 git commands to generate.