sched: Remove unused parameters from sched_fork() and wake_up_new_task()
[deliverable/linux.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
8f48894f
PZ
6#ifdef CONFIG_RT_GROUP_SCHED
7
8#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
398a153b
GH
10static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11{
8f48894f
PZ
12#ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14#endif
398a153b
GH
15 return container_of(rt_se, struct task_struct, rt);
16}
17
398a153b
GH
18static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19{
20 return rt_rq->rq;
21}
22
23static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24{
25 return rt_se->rt_rq;
26}
27
28#else /* CONFIG_RT_GROUP_SCHED */
29
a1ba4d8b
PZ
30#define rt_entity_is_task(rt_se) (1)
31
8f48894f
PZ
32static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33{
34 return container_of(rt_se, struct task_struct, rt);
35}
36
398a153b
GH
37static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38{
39 return container_of(rt_rq, struct rq, rt);
40}
41
42static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43{
44 struct task_struct *p = rt_task_of(rt_se);
45 struct rq *rq = task_rq(p);
46
47 return &rq->rt;
48}
49
50#endif /* CONFIG_RT_GROUP_SCHED */
51
4fd29176 52#ifdef CONFIG_SMP
84de4274 53
637f5085 54static inline int rt_overloaded(struct rq *rq)
4fd29176 55{
637f5085 56 return atomic_read(&rq->rd->rto_count);
4fd29176 57}
84de4274 58
4fd29176
SR
59static inline void rt_set_overload(struct rq *rq)
60{
1f11eb6a
GH
61 if (!rq->online)
62 return;
63
c6c4927b 64 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
65 /*
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
70 * updated yet.
71 */
72 wmb();
637f5085 73 atomic_inc(&rq->rd->rto_count);
4fd29176 74}
84de4274 75
4fd29176
SR
76static inline void rt_clear_overload(struct rq *rq)
77{
1f11eb6a
GH
78 if (!rq->online)
79 return;
80
4fd29176 81 /* the order here really doesn't matter */
637f5085 82 atomic_dec(&rq->rd->rto_count);
c6c4927b 83 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 84}
73fe6aae 85
398a153b 86static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 87{
a1ba4d8b 88 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
89 if (!rt_rq->overloaded) {
90 rt_set_overload(rq_of_rt_rq(rt_rq));
91 rt_rq->overloaded = 1;
cdc8eb98 92 }
398a153b
GH
93 } else if (rt_rq->overloaded) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq));
95 rt_rq->overloaded = 0;
637f5085 96 }
73fe6aae 97}
4fd29176 98
398a153b
GH
99static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100{
a1ba4d8b
PZ
101 if (!rt_entity_is_task(rt_se))
102 return;
103
104 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105
106 rt_rq->rt_nr_total++;
398a153b
GH
107 if (rt_se->nr_cpus_allowed > 1)
108 rt_rq->rt_nr_migratory++;
109
110 update_rt_migration(rt_rq);
111}
112
113static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114{
a1ba4d8b
PZ
115 if (!rt_entity_is_task(rt_se))
116 return;
117
118 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119
120 rt_rq->rt_nr_total--;
398a153b
GH
121 if (rt_se->nr_cpus_allowed > 1)
122 rt_rq->rt_nr_migratory--;
123
124 update_rt_migration(rt_rq);
125}
126
917b627d
GH
127static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
128{
129 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
130 plist_node_init(&p->pushable_tasks, p->prio);
131 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
132}
133
134static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
135{
136 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
137}
138
bcf08df3
IM
139static inline int has_pushable_tasks(struct rq *rq)
140{
141 return !plist_head_empty(&rq->rt.pushable_tasks);
142}
143
917b627d
GH
144#else
145
ceacc2c1 146static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 147{
6f505b16
PZ
148}
149
ceacc2c1
PZ
150static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
151{
152}
153
b07430ac 154static inline
ceacc2c1
PZ
155void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
156{
157}
158
398a153b 159static inline
ceacc2c1
PZ
160void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
161{
162}
917b627d 163
4fd29176
SR
164#endif /* CONFIG_SMP */
165
6f505b16
PZ
166static inline int on_rt_rq(struct sched_rt_entity *rt_se)
167{
168 return !list_empty(&rt_se->run_list);
169}
170
052f1dc7 171#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 172
9f0c1e56 173static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
174{
175 if (!rt_rq->tg)
9f0c1e56 176 return RUNTIME_INF;
6f505b16 177
ac086bc2
PZ
178 return rt_rq->rt_runtime;
179}
180
181static inline u64 sched_rt_period(struct rt_rq *rt_rq)
182{
183 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
184}
185
3d4b47b4
PZ
186static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
187{
188 list_add_rcu(&rt_rq->leaf_rt_rq_list,
189 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
190}
191
192static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
193{
194 list_del_rcu(&rt_rq->leaf_rt_rq_list);
195}
196
6f505b16 197#define for_each_leaf_rt_rq(rt_rq, rq) \
80f40ee4 198 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
6f505b16 199
6f505b16
PZ
200#define for_each_sched_rt_entity(rt_se) \
201 for (; rt_se; rt_se = rt_se->parent)
202
203static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
204{
205 return rt_se->my_q;
206}
207
37dad3fc 208static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
209static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
210
9f0c1e56 211static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 212{
f6121f4f 213 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
74b7eb58
YZ
214 struct sched_rt_entity *rt_se;
215
0c3b9168
BS
216 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
217
218 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 219
f6121f4f
DF
220 if (rt_rq->rt_nr_running) {
221 if (rt_se && !on_rt_rq(rt_se))
37dad3fc 222 enqueue_rt_entity(rt_se, false);
e864c499 223 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 224 resched_task(curr);
6f505b16
PZ
225 }
226}
227
9f0c1e56 228static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 229{
74b7eb58 230 struct sched_rt_entity *rt_se;
0c3b9168 231 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 232
0c3b9168 233 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16
PZ
234
235 if (rt_se && on_rt_rq(rt_se))
236 dequeue_rt_entity(rt_se);
237}
238
23b0fdfc
PZ
239static inline int rt_rq_throttled(struct rt_rq *rt_rq)
240{
241 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
242}
243
244static int rt_se_boosted(struct sched_rt_entity *rt_se)
245{
246 struct rt_rq *rt_rq = group_rt_rq(rt_se);
247 struct task_struct *p;
248
249 if (rt_rq)
250 return !!rt_rq->rt_nr_boosted;
251
252 p = rt_task_of(rt_se);
253 return p->prio != p->normal_prio;
254}
255
d0b27fa7 256#ifdef CONFIG_SMP
c6c4927b 257static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7
PZ
258{
259 return cpu_rq(smp_processor_id())->rd->span;
260}
6f505b16 261#else
c6c4927b 262static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 263{
c6c4927b 264 return cpu_online_mask;
d0b27fa7
PZ
265}
266#endif
6f505b16 267
d0b27fa7
PZ
268static inline
269struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 270{
d0b27fa7
PZ
271 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
272}
9f0c1e56 273
ac086bc2
PZ
274static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
275{
276 return &rt_rq->tg->rt_bandwidth;
277}
278
55e12e5e 279#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
280
281static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
282{
ac086bc2
PZ
283 return rt_rq->rt_runtime;
284}
285
286static inline u64 sched_rt_period(struct rt_rq *rt_rq)
287{
288 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
289}
290
3d4b47b4
PZ
291static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
292{
293}
294
295static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
296{
297}
298
6f505b16
PZ
299#define for_each_leaf_rt_rq(rt_rq, rq) \
300 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
301
6f505b16
PZ
302#define for_each_sched_rt_entity(rt_se) \
303 for (; rt_se; rt_se = NULL)
304
305static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
306{
307 return NULL;
308}
309
9f0c1e56 310static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 311{
f3ade837
JB
312 if (rt_rq->rt_nr_running)
313 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
314}
315
9f0c1e56 316static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
317{
318}
319
23b0fdfc
PZ
320static inline int rt_rq_throttled(struct rt_rq *rt_rq)
321{
322 return rt_rq->rt_throttled;
323}
d0b27fa7 324
c6c4927b 325static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 326{
c6c4927b 327 return cpu_online_mask;
d0b27fa7
PZ
328}
329
330static inline
331struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
332{
333 return &cpu_rq(cpu)->rt;
334}
335
ac086bc2
PZ
336static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
337{
338 return &def_rt_bandwidth;
339}
340
55e12e5e 341#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 342
ac086bc2 343#ifdef CONFIG_SMP
78333cdd
PZ
344/*
345 * We ran out of runtime, see if we can borrow some from our neighbours.
346 */
b79f3833 347static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
348{
349 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
350 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
351 int i, weight, more = 0;
352 u64 rt_period;
353
c6c4927b 354 weight = cpumask_weight(rd->span);
ac086bc2 355
0986b11b 356 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 357 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 358 for_each_cpu(i, rd->span) {
ac086bc2
PZ
359 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
360 s64 diff;
361
362 if (iter == rt_rq)
363 continue;
364
0986b11b 365 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
366 /*
367 * Either all rqs have inf runtime and there's nothing to steal
368 * or __disable_runtime() below sets a specific rq to inf to
369 * indicate its been disabled and disalow stealing.
370 */
7def2be1
PZ
371 if (iter->rt_runtime == RUNTIME_INF)
372 goto next;
373
78333cdd
PZ
374 /*
375 * From runqueues with spare time, take 1/n part of their
376 * spare time, but no more than our period.
377 */
ac086bc2
PZ
378 diff = iter->rt_runtime - iter->rt_time;
379 if (diff > 0) {
58838cf3 380 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
381 if (rt_rq->rt_runtime + diff > rt_period)
382 diff = rt_period - rt_rq->rt_runtime;
383 iter->rt_runtime -= diff;
384 rt_rq->rt_runtime += diff;
385 more = 1;
386 if (rt_rq->rt_runtime == rt_period) {
0986b11b 387 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
388 break;
389 }
390 }
7def2be1 391next:
0986b11b 392 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 393 }
0986b11b 394 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
395
396 return more;
397}
7def2be1 398
78333cdd
PZ
399/*
400 * Ensure this RQ takes back all the runtime it lend to its neighbours.
401 */
7def2be1
PZ
402static void __disable_runtime(struct rq *rq)
403{
404 struct root_domain *rd = rq->rd;
405 struct rt_rq *rt_rq;
406
407 if (unlikely(!scheduler_running))
408 return;
409
410 for_each_leaf_rt_rq(rt_rq, rq) {
411 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
412 s64 want;
413 int i;
414
0986b11b
TG
415 raw_spin_lock(&rt_b->rt_runtime_lock);
416 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
417 /*
418 * Either we're all inf and nobody needs to borrow, or we're
419 * already disabled and thus have nothing to do, or we have
420 * exactly the right amount of runtime to take out.
421 */
7def2be1
PZ
422 if (rt_rq->rt_runtime == RUNTIME_INF ||
423 rt_rq->rt_runtime == rt_b->rt_runtime)
424 goto balanced;
0986b11b 425 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 426
78333cdd
PZ
427 /*
428 * Calculate the difference between what we started out with
429 * and what we current have, that's the amount of runtime
430 * we lend and now have to reclaim.
431 */
7def2be1
PZ
432 want = rt_b->rt_runtime - rt_rq->rt_runtime;
433
78333cdd
PZ
434 /*
435 * Greedy reclaim, take back as much as we can.
436 */
c6c4927b 437 for_each_cpu(i, rd->span) {
7def2be1
PZ
438 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
439 s64 diff;
440
78333cdd
PZ
441 /*
442 * Can't reclaim from ourselves or disabled runqueues.
443 */
f1679d08 444 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
445 continue;
446
0986b11b 447 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
448 if (want > 0) {
449 diff = min_t(s64, iter->rt_runtime, want);
450 iter->rt_runtime -= diff;
451 want -= diff;
452 } else {
453 iter->rt_runtime -= want;
454 want -= want;
455 }
0986b11b 456 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
457
458 if (!want)
459 break;
460 }
461
0986b11b 462 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
463 /*
464 * We cannot be left wanting - that would mean some runtime
465 * leaked out of the system.
466 */
7def2be1
PZ
467 BUG_ON(want);
468balanced:
78333cdd
PZ
469 /*
470 * Disable all the borrow logic by pretending we have inf
471 * runtime - in which case borrowing doesn't make sense.
472 */
7def2be1 473 rt_rq->rt_runtime = RUNTIME_INF;
0986b11b
TG
474 raw_spin_unlock(&rt_rq->rt_runtime_lock);
475 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
476 }
477}
478
479static void disable_runtime(struct rq *rq)
480{
481 unsigned long flags;
482
05fa785c 483 raw_spin_lock_irqsave(&rq->lock, flags);
7def2be1 484 __disable_runtime(rq);
05fa785c 485 raw_spin_unlock_irqrestore(&rq->lock, flags);
7def2be1
PZ
486}
487
488static void __enable_runtime(struct rq *rq)
489{
7def2be1
PZ
490 struct rt_rq *rt_rq;
491
492 if (unlikely(!scheduler_running))
493 return;
494
78333cdd
PZ
495 /*
496 * Reset each runqueue's bandwidth settings
497 */
7def2be1
PZ
498 for_each_leaf_rt_rq(rt_rq, rq) {
499 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
500
0986b11b
TG
501 raw_spin_lock(&rt_b->rt_runtime_lock);
502 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
503 rt_rq->rt_runtime = rt_b->rt_runtime;
504 rt_rq->rt_time = 0;
baf25731 505 rt_rq->rt_throttled = 0;
0986b11b
TG
506 raw_spin_unlock(&rt_rq->rt_runtime_lock);
507 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
508 }
509}
510
511static void enable_runtime(struct rq *rq)
512{
513 unsigned long flags;
514
05fa785c 515 raw_spin_lock_irqsave(&rq->lock, flags);
7def2be1 516 __enable_runtime(rq);
05fa785c 517 raw_spin_unlock_irqrestore(&rq->lock, flags);
7def2be1
PZ
518}
519
eff6549b
PZ
520static int balance_runtime(struct rt_rq *rt_rq)
521{
522 int more = 0;
523
524 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 525 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 526 more = do_balance_runtime(rt_rq);
0986b11b 527 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
528 }
529
530 return more;
531}
55e12e5e 532#else /* !CONFIG_SMP */
eff6549b
PZ
533static inline int balance_runtime(struct rt_rq *rt_rq)
534{
535 return 0;
536}
55e12e5e 537#endif /* CONFIG_SMP */
ac086bc2 538
eff6549b
PZ
539static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
540{
541 int i, idle = 1;
c6c4927b 542 const struct cpumask *span;
eff6549b 543
0b148fa0 544 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
eff6549b
PZ
545 return 1;
546
547 span = sched_rt_period_mask();
c6c4927b 548 for_each_cpu(i, span) {
eff6549b
PZ
549 int enqueue = 0;
550 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
551 struct rq *rq = rq_of_rt_rq(rt_rq);
552
05fa785c 553 raw_spin_lock(&rq->lock);
eff6549b
PZ
554 if (rt_rq->rt_time) {
555 u64 runtime;
556
0986b11b 557 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
558 if (rt_rq->rt_throttled)
559 balance_runtime(rt_rq);
560 runtime = rt_rq->rt_runtime;
561 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
562 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
563 rt_rq->rt_throttled = 0;
564 enqueue = 1;
565 }
566 if (rt_rq->rt_time || rt_rq->rt_nr_running)
567 idle = 0;
0986b11b 568 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 569 } else if (rt_rq->rt_nr_running) {
6c3df255 570 idle = 0;
0c3b9168
BS
571 if (!rt_rq_throttled(rt_rq))
572 enqueue = 1;
573 }
eff6549b
PZ
574
575 if (enqueue)
576 sched_rt_rq_enqueue(rt_rq);
05fa785c 577 raw_spin_unlock(&rq->lock);
eff6549b
PZ
578 }
579
580 return idle;
581}
ac086bc2 582
6f505b16
PZ
583static inline int rt_se_prio(struct sched_rt_entity *rt_se)
584{
052f1dc7 585#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
586 struct rt_rq *rt_rq = group_rt_rq(rt_se);
587
588 if (rt_rq)
e864c499 589 return rt_rq->highest_prio.curr;
6f505b16
PZ
590#endif
591
592 return rt_task_of(rt_se)->prio;
593}
594
9f0c1e56 595static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 596{
9f0c1e56 597 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 598
fa85ae24 599 if (rt_rq->rt_throttled)
23b0fdfc 600 return rt_rq_throttled(rt_rq);
fa85ae24 601
ac086bc2
PZ
602 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
603 return 0;
604
b79f3833
PZ
605 balance_runtime(rt_rq);
606 runtime = sched_rt_runtime(rt_rq);
607 if (runtime == RUNTIME_INF)
608 return 0;
ac086bc2 609
9f0c1e56 610 if (rt_rq->rt_time > runtime) {
6f505b16 611 rt_rq->rt_throttled = 1;
23b0fdfc 612 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 613 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
614 return 1;
615 }
fa85ae24
PZ
616 }
617
618 return 0;
619}
620
bb44e5d1
IM
621/*
622 * Update the current task's runtime statistics. Skip current tasks that
623 * are not in our scheduling class.
624 */
a9957449 625static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
626{
627 struct task_struct *curr = rq->curr;
6f505b16
PZ
628 struct sched_rt_entity *rt_se = &curr->rt;
629 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
630 u64 delta_exec;
631
06c3bc65 632 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
633 return;
634
305e6835 635 delta_exec = rq->clock_task - curr->se.exec_start;
bb44e5d1
IM
636 if (unlikely((s64)delta_exec < 0))
637 delta_exec = 0;
6cfb0d5d 638
41acab88 639 schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
640
641 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
642 account_group_exec_runtime(curr, delta_exec);
643
305e6835 644 curr->se.exec_start = rq->clock_task;
d842de87 645 cpuacct_charge(curr, delta_exec);
fa85ae24 646
e9e9250b
PZ
647 sched_rt_avg_update(rq, delta_exec);
648
0b148fa0
PZ
649 if (!rt_bandwidth_enabled())
650 return;
651
354d60c2
DG
652 for_each_sched_rt_entity(rt_se) {
653 rt_rq = rt_rq_of_se(rt_se);
654
cc2991cf 655 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 656 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
657 rt_rq->rt_time += delta_exec;
658 if (sched_rt_runtime_exceeded(rt_rq))
659 resched_task(curr);
0986b11b 660 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 661 }
354d60c2 662 }
bb44e5d1
IM
663}
664
398a153b 665#if defined CONFIG_SMP
e864c499
GH
666
667static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
668
669static inline int next_prio(struct rq *rq)
63489e45 670{
e864c499
GH
671 struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
672
673 if (next && rt_prio(next->prio))
674 return next->prio;
675 else
676 return MAX_RT_PRIO;
677}
e864c499 678
398a153b
GH
679static void
680inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 681{
4d984277 682 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 683
398a153b 684 if (prio < prev_prio) {
4d984277 685
e864c499
GH
686 /*
687 * If the new task is higher in priority than anything on the
398a153b
GH
688 * run-queue, we know that the previous high becomes our
689 * next-highest.
e864c499 690 */
398a153b 691 rt_rq->highest_prio.next = prev_prio;
1f11eb6a
GH
692
693 if (rq->online)
4d984277 694 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1100ac91 695
e864c499
GH
696 } else if (prio == rt_rq->highest_prio.curr)
697 /*
698 * If the next task is equal in priority to the highest on
699 * the run-queue, then we implicitly know that the next highest
700 * task cannot be any lower than current
701 */
702 rt_rq->highest_prio.next = prio;
703 else if (prio < rt_rq->highest_prio.next)
704 /*
705 * Otherwise, we need to recompute next-highest
706 */
707 rt_rq->highest_prio.next = next_prio(rq);
398a153b 708}
73fe6aae 709
398a153b
GH
710static void
711dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
712{
713 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 714
398a153b
GH
715 if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
716 rt_rq->highest_prio.next = next_prio(rq);
717
718 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
719 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
720}
721
398a153b
GH
722#else /* CONFIG_SMP */
723
6f505b16 724static inline
398a153b
GH
725void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
726static inline
727void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
728
729#endif /* CONFIG_SMP */
6e0534f2 730
052f1dc7 731#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
732static void
733inc_rt_prio(struct rt_rq *rt_rq, int prio)
734{
735 int prev_prio = rt_rq->highest_prio.curr;
736
737 if (prio < prev_prio)
738 rt_rq->highest_prio.curr = prio;
739
740 inc_rt_prio_smp(rt_rq, prio, prev_prio);
741}
742
743static void
744dec_rt_prio(struct rt_rq *rt_rq, int prio)
745{
746 int prev_prio = rt_rq->highest_prio.curr;
747
6f505b16 748 if (rt_rq->rt_nr_running) {
764a9d6f 749
398a153b 750 WARN_ON(prio < prev_prio);
764a9d6f 751
e864c499 752 /*
398a153b
GH
753 * This may have been our highest task, and therefore
754 * we may have some recomputation to do
e864c499 755 */
398a153b 756 if (prio == prev_prio) {
e864c499
GH
757 struct rt_prio_array *array = &rt_rq->active;
758
759 rt_rq->highest_prio.curr =
764a9d6f 760 sched_find_first_bit(array->bitmap);
e864c499
GH
761 }
762
764a9d6f 763 } else
e864c499 764 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 765
398a153b
GH
766 dec_rt_prio_smp(rt_rq, prio, prev_prio);
767}
1f11eb6a 768
398a153b
GH
769#else
770
771static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
772static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
773
774#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 775
052f1dc7 776#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
777
778static void
779inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
780{
781 if (rt_se_boosted(rt_se))
782 rt_rq->rt_nr_boosted++;
783
784 if (rt_rq->tg)
785 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
786}
787
788static void
789dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
790{
23b0fdfc
PZ
791 if (rt_se_boosted(rt_se))
792 rt_rq->rt_nr_boosted--;
793
794 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
795}
796
797#else /* CONFIG_RT_GROUP_SCHED */
798
799static void
800inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
801{
802 start_rt_bandwidth(&def_rt_bandwidth);
803}
804
805static inline
806void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
807
808#endif /* CONFIG_RT_GROUP_SCHED */
809
810static inline
811void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
812{
813 int prio = rt_se_prio(rt_se);
814
815 WARN_ON(!rt_prio(prio));
816 rt_rq->rt_nr_running++;
817
818 inc_rt_prio(rt_rq, prio);
819 inc_rt_migration(rt_se, rt_rq);
820 inc_rt_group(rt_se, rt_rq);
821}
822
823static inline
824void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
825{
826 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
827 WARN_ON(!rt_rq->rt_nr_running);
828 rt_rq->rt_nr_running--;
829
830 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
831 dec_rt_migration(rt_se, rt_rq);
832 dec_rt_group(rt_se, rt_rq);
63489e45
SR
833}
834
37dad3fc 835static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 836{
6f505b16
PZ
837 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
838 struct rt_prio_array *array = &rt_rq->active;
839 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 840 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 841
ad2a3f13
PZ
842 /*
843 * Don't enqueue the group if its throttled, or when empty.
844 * The latter is a consequence of the former when a child group
845 * get throttled and the current group doesn't have any other
846 * active members.
847 */
848 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 849 return;
63489e45 850
3d4b47b4
PZ
851 if (!rt_rq->rt_nr_running)
852 list_add_leaf_rt_rq(rt_rq);
853
37dad3fc
TG
854 if (head)
855 list_add(&rt_se->run_list, queue);
856 else
857 list_add_tail(&rt_se->run_list, queue);
6f505b16 858 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 859
6f505b16
PZ
860 inc_rt_tasks(rt_se, rt_rq);
861}
862
ad2a3f13 863static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
864{
865 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
866 struct rt_prio_array *array = &rt_rq->active;
867
868 list_del_init(&rt_se->run_list);
869 if (list_empty(array->queue + rt_se_prio(rt_se)))
870 __clear_bit(rt_se_prio(rt_se), array->bitmap);
871
872 dec_rt_tasks(rt_se, rt_rq);
3d4b47b4
PZ
873 if (!rt_rq->rt_nr_running)
874 list_del_leaf_rt_rq(rt_rq);
6f505b16
PZ
875}
876
877/*
878 * Because the prio of an upper entry depends on the lower
879 * entries, we must remove entries top - down.
6f505b16 880 */
ad2a3f13 881static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 882{
ad2a3f13 883 struct sched_rt_entity *back = NULL;
6f505b16 884
58d6c2d7
PZ
885 for_each_sched_rt_entity(rt_se) {
886 rt_se->back = back;
887 back = rt_se;
888 }
889
890 for (rt_se = back; rt_se; rt_se = rt_se->back) {
891 if (on_rt_rq(rt_se))
ad2a3f13
PZ
892 __dequeue_rt_entity(rt_se);
893 }
894}
895
37dad3fc 896static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13
PZ
897{
898 dequeue_rt_stack(rt_se);
899 for_each_sched_rt_entity(rt_se)
37dad3fc 900 __enqueue_rt_entity(rt_se, head);
ad2a3f13
PZ
901}
902
903static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
904{
905 dequeue_rt_stack(rt_se);
906
907 for_each_sched_rt_entity(rt_se) {
908 struct rt_rq *rt_rq = group_rt_rq(rt_se);
909
910 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 911 __enqueue_rt_entity(rt_se, false);
58d6c2d7 912 }
bb44e5d1
IM
913}
914
915/*
916 * Adding/removing a task to/from a priority array:
917 */
ea87bb78 918static void
371fd7e7 919enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
920{
921 struct sched_rt_entity *rt_se = &p->rt;
922
371fd7e7 923 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
924 rt_se->timeout = 0;
925
371fd7e7 926 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 927
917b627d
GH
928 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
929 enqueue_pushable_task(rq, p);
6f505b16
PZ
930}
931
371fd7e7 932static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 933{
6f505b16 934 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 935
f1e14ef6 936 update_curr_rt(rq);
ad2a3f13 937 dequeue_rt_entity(rt_se);
c09595f6 938
917b627d 939 dequeue_pushable_task(rq, p);
bb44e5d1
IM
940}
941
942/*
943 * Put task to the end of the run list without the overhead of dequeue
944 * followed by enqueue.
945 */
7ebefa8c
DA
946static void
947requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 948{
1cdad715 949 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
950 struct rt_prio_array *array = &rt_rq->active;
951 struct list_head *queue = array->queue + rt_se_prio(rt_se);
952
953 if (head)
954 list_move(&rt_se->run_list, queue);
955 else
956 list_move_tail(&rt_se->run_list, queue);
1cdad715 957 }
6f505b16
PZ
958}
959
7ebefa8c 960static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 961{
6f505b16
PZ
962 struct sched_rt_entity *rt_se = &p->rt;
963 struct rt_rq *rt_rq;
bb44e5d1 964
6f505b16
PZ
965 for_each_sched_rt_entity(rt_se) {
966 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 967 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 968 }
bb44e5d1
IM
969}
970
6f505b16 971static void yield_task_rt(struct rq *rq)
bb44e5d1 972{
7ebefa8c 973 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
974}
975
e7693a36 976#ifdef CONFIG_SMP
318e0893
GH
977static int find_lowest_rq(struct task_struct *task);
978
0017d735 979static int
7608dec2 980select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
e7693a36 981{
7608dec2
PZ
982 struct task_struct *curr;
983 struct rq *rq;
984 int cpu;
985
0763a660 986 if (sd_flag != SD_BALANCE_WAKE)
5f3edc1b
PZ
987 return smp_processor_id();
988
7608dec2
PZ
989 cpu = task_cpu(p);
990 rq = cpu_rq(cpu);
991
992 rcu_read_lock();
993 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
994
318e0893 995 /*
7608dec2 996 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
997 * try to see if we can wake this RT task up on another
998 * runqueue. Otherwise simply start this RT task
999 * on its current runqueue.
1000 *
43fa5460
SR
1001 * We want to avoid overloading runqueues. If the woken
1002 * task is a higher priority, then it will stay on this CPU
1003 * and the lower prio task should be moved to another CPU.
1004 * Even though this will probably make the lower prio task
1005 * lose its cache, we do not want to bounce a higher task
1006 * around just because it gave up its CPU, perhaps for a
1007 * lock?
1008 *
1009 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1010 *
1011 * Otherwise, just let it ride on the affined RQ and the
1012 * post-schedule router will push the preempted task away
1013 *
1014 * This test is optimistic, if we get it wrong the load-balancer
1015 * will have to sort it out.
318e0893 1016 */
7608dec2
PZ
1017 if (curr && unlikely(rt_task(curr)) &&
1018 (curr->rt.nr_cpus_allowed < 2 ||
1019 curr->prio < p->prio) &&
6f505b16 1020 (p->rt.nr_cpus_allowed > 1)) {
7608dec2 1021 int target = find_lowest_rq(p);
318e0893 1022
7608dec2
PZ
1023 if (target != -1)
1024 cpu = target;
318e0893 1025 }
7608dec2 1026 rcu_read_unlock();
318e0893 1027
7608dec2 1028 return cpu;
e7693a36 1029}
7ebefa8c
DA
1030
1031static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1032{
7ebefa8c
DA
1033 if (rq->curr->rt.nr_cpus_allowed == 1)
1034 return;
1035
24600ce8 1036 if (p->rt.nr_cpus_allowed != 1
13b8bd0a
RR
1037 && cpupri_find(&rq->rd->cpupri, p, NULL))
1038 return;
24600ce8 1039
13b8bd0a
RR
1040 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1041 return;
7ebefa8c
DA
1042
1043 /*
1044 * There appears to be other cpus that can accept
1045 * current and none to run 'p', so lets reschedule
1046 * to try and push current away:
1047 */
1048 requeue_task_rt(rq, p, 1);
1049 resched_task(rq->curr);
1050}
1051
e7693a36
GH
1052#endif /* CONFIG_SMP */
1053
bb44e5d1
IM
1054/*
1055 * Preempt the current task with a newly woken task if needed:
1056 */
7d478721 1057static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1058{
45c01e82 1059 if (p->prio < rq->curr->prio) {
bb44e5d1 1060 resched_task(rq->curr);
45c01e82
GH
1061 return;
1062 }
1063
1064#ifdef CONFIG_SMP
1065 /*
1066 * If:
1067 *
1068 * - the newly woken task is of equal priority to the current task
1069 * - the newly woken task is non-migratable while current is migratable
1070 * - current will be preempted on the next reschedule
1071 *
1072 * we should check to see if current can readily move to a different
1073 * cpu. If so, we will reschedule to allow the push logic to try
1074 * to move current somewhere else, making room for our non-migratable
1075 * task.
1076 */
7ebefa8c
DA
1077 if (p->prio == rq->curr->prio && !need_resched())
1078 check_preempt_equal_prio(rq, p);
45c01e82 1079#endif
bb44e5d1
IM
1080}
1081
6f505b16
PZ
1082static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1083 struct rt_rq *rt_rq)
bb44e5d1 1084{
6f505b16
PZ
1085 struct rt_prio_array *array = &rt_rq->active;
1086 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1087 struct list_head *queue;
1088 int idx;
1089
1090 idx = sched_find_first_bit(array->bitmap);
6f505b16 1091 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1092
1093 queue = array->queue + idx;
6f505b16 1094 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1095
6f505b16
PZ
1096 return next;
1097}
bb44e5d1 1098
917b627d 1099static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1100{
1101 struct sched_rt_entity *rt_se;
1102 struct task_struct *p;
1103 struct rt_rq *rt_rq;
bb44e5d1 1104
6f505b16
PZ
1105 rt_rq = &rq->rt;
1106
1107 if (unlikely(!rt_rq->rt_nr_running))
1108 return NULL;
1109
23b0fdfc 1110 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
1111 return NULL;
1112
1113 do {
1114 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1115 BUG_ON(!rt_se);
6f505b16
PZ
1116 rt_rq = group_rt_rq(rt_se);
1117 } while (rt_rq);
1118
1119 p = rt_task_of(rt_se);
305e6835 1120 p->se.exec_start = rq->clock_task;
917b627d
GH
1121
1122 return p;
1123}
1124
1125static struct task_struct *pick_next_task_rt(struct rq *rq)
1126{
1127 struct task_struct *p = _pick_next_task_rt(rq);
1128
1129 /* The running task is never eligible for pushing */
1130 if (p)
1131 dequeue_pushable_task(rq, p);
1132
bcf08df3 1133#ifdef CONFIG_SMP
3f029d3c
GH
1134 /*
1135 * We detect this state here so that we can avoid taking the RQ
1136 * lock again later if there is no need to push
1137 */
1138 rq->post_schedule = has_pushable_tasks(rq);
bcf08df3 1139#endif
3f029d3c 1140
6f505b16 1141 return p;
bb44e5d1
IM
1142}
1143
31ee529c 1144static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1145{
f1e14ef6 1146 update_curr_rt(rq);
bb44e5d1 1147 p->se.exec_start = 0;
917b627d
GH
1148
1149 /*
1150 * The previous task needs to be made eligible for pushing
1151 * if it is still active
1152 */
fd2f4419 1153 if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
917b627d 1154 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1155}
1156
681f3e68 1157#ifdef CONFIG_SMP
6f505b16 1158
e8fa1362
SR
1159/* Only try algorithms three times */
1160#define RT_MAX_TRIES 3
1161
e8fa1362
SR
1162static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1163
f65eda4f
SR
1164static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1165{
1166 if (!task_running(rq, p) &&
96f874e2 1167 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
6f505b16 1168 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
1169 return 1;
1170 return 0;
1171}
1172
e8fa1362 1173/* Return the second highest RT task, NULL otherwise */
79064fbf 1174static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 1175{
6f505b16
PZ
1176 struct task_struct *next = NULL;
1177 struct sched_rt_entity *rt_se;
1178 struct rt_prio_array *array;
1179 struct rt_rq *rt_rq;
e8fa1362
SR
1180 int idx;
1181
6f505b16
PZ
1182 for_each_leaf_rt_rq(rt_rq, rq) {
1183 array = &rt_rq->active;
1184 idx = sched_find_first_bit(array->bitmap);
49246274 1185next_idx:
6f505b16
PZ
1186 if (idx >= MAX_RT_PRIO)
1187 continue;
1188 if (next && next->prio < idx)
1189 continue;
1190 list_for_each_entry(rt_se, array->queue + idx, run_list) {
3d07467b
PZ
1191 struct task_struct *p;
1192
1193 if (!rt_entity_is_task(rt_se))
1194 continue;
1195
1196 p = rt_task_of(rt_se);
6f505b16
PZ
1197 if (pick_rt_task(rq, p, cpu)) {
1198 next = p;
1199 break;
1200 }
1201 }
1202 if (!next) {
1203 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1204 goto next_idx;
1205 }
f65eda4f
SR
1206 }
1207
e8fa1362
SR
1208 return next;
1209}
1210
0e3900e6 1211static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1212
6e1254d2
GH
1213static int find_lowest_rq(struct task_struct *task)
1214{
1215 struct sched_domain *sd;
96f874e2 1216 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1217 int this_cpu = smp_processor_id();
1218 int cpu = task_cpu(task);
06f90dbd 1219
6e0534f2
GH
1220 if (task->rt.nr_cpus_allowed == 1)
1221 return -1; /* No other targets possible */
6e1254d2 1222
6e0534f2
GH
1223 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1224 return -1; /* No targets found */
6e1254d2
GH
1225
1226 /*
1227 * At this point we have built a mask of cpus representing the
1228 * lowest priority tasks in the system. Now we want to elect
1229 * the best one based on our affinity and topology.
1230 *
1231 * We prioritize the last cpu that the task executed on since
1232 * it is most likely cache-hot in that location.
1233 */
96f874e2 1234 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1235 return cpu;
1236
1237 /*
1238 * Otherwise, we consult the sched_domains span maps to figure
1239 * out which cpu is logically closest to our hot cache data.
1240 */
e2c88063
RR
1241 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1242 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1243
e2c88063
RR
1244 for_each_domain(cpu, sd) {
1245 if (sd->flags & SD_WAKE_AFFINE) {
1246 int best_cpu;
6e1254d2 1247
e2c88063
RR
1248 /*
1249 * "this_cpu" is cheaper to preempt than a
1250 * remote processor.
1251 */
1252 if (this_cpu != -1 &&
1253 cpumask_test_cpu(this_cpu, sched_domain_span(sd)))
1254 return this_cpu;
1255
1256 best_cpu = cpumask_first_and(lowest_mask,
1257 sched_domain_span(sd));
1258 if (best_cpu < nr_cpu_ids)
1259 return best_cpu;
6e1254d2
GH
1260 }
1261 }
1262
1263 /*
1264 * And finally, if there were no matches within the domains
1265 * just give the caller *something* to work with from the compatible
1266 * locations.
1267 */
e2c88063
RR
1268 if (this_cpu != -1)
1269 return this_cpu;
1270
1271 cpu = cpumask_any(lowest_mask);
1272 if (cpu < nr_cpu_ids)
1273 return cpu;
1274 return -1;
07b4032c
GH
1275}
1276
1277/* Will lock the rq it finds */
4df64c0b 1278static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1279{
1280 struct rq *lowest_rq = NULL;
07b4032c 1281 int tries;
4df64c0b 1282 int cpu;
e8fa1362 1283
07b4032c
GH
1284 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1285 cpu = find_lowest_rq(task);
1286
2de0b463 1287 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1288 break;
1289
07b4032c
GH
1290 lowest_rq = cpu_rq(cpu);
1291
e8fa1362 1292 /* if the prio of this runqueue changed, try again */
07b4032c 1293 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1294 /*
1295 * We had to unlock the run queue. In
1296 * the mean time, task could have
1297 * migrated already or had its affinity changed.
1298 * Also make sure that it wasn't scheduled on its rq.
1299 */
07b4032c 1300 if (unlikely(task_rq(task) != rq ||
96f874e2
RR
1301 !cpumask_test_cpu(lowest_rq->cpu,
1302 &task->cpus_allowed) ||
07b4032c 1303 task_running(rq, task) ||
fd2f4419 1304 !task->on_rq)) {
4df64c0b 1305
05fa785c 1306 raw_spin_unlock(&lowest_rq->lock);
e8fa1362
SR
1307 lowest_rq = NULL;
1308 break;
1309 }
1310 }
1311
1312 /* If this rq is still suitable use it. */
e864c499 1313 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1314 break;
1315
1316 /* try again */
1b12bbc7 1317 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1318 lowest_rq = NULL;
1319 }
1320
1321 return lowest_rq;
1322}
1323
917b627d
GH
1324static struct task_struct *pick_next_pushable_task(struct rq *rq)
1325{
1326 struct task_struct *p;
1327
1328 if (!has_pushable_tasks(rq))
1329 return NULL;
1330
1331 p = plist_first_entry(&rq->rt.pushable_tasks,
1332 struct task_struct, pushable_tasks);
1333
1334 BUG_ON(rq->cpu != task_cpu(p));
1335 BUG_ON(task_current(rq, p));
1336 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1337
fd2f4419 1338 BUG_ON(!p->on_rq);
917b627d
GH
1339 BUG_ON(!rt_task(p));
1340
1341 return p;
1342}
1343
e8fa1362
SR
1344/*
1345 * If the current CPU has more than one RT task, see if the non
1346 * running task can migrate over to a CPU that is running a task
1347 * of lesser priority.
1348 */
697f0a48 1349static int push_rt_task(struct rq *rq)
e8fa1362
SR
1350{
1351 struct task_struct *next_task;
1352 struct rq *lowest_rq;
e8fa1362 1353
a22d7fc1
GH
1354 if (!rq->rt.overloaded)
1355 return 0;
1356
917b627d 1357 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1358 if (!next_task)
1359 return 0;
1360
49246274 1361retry:
697f0a48 1362 if (unlikely(next_task == rq->curr)) {
f65eda4f 1363 WARN_ON(1);
e8fa1362 1364 return 0;
f65eda4f 1365 }
e8fa1362
SR
1366
1367 /*
1368 * It's possible that the next_task slipped in of
1369 * higher priority than current. If that's the case
1370 * just reschedule current.
1371 */
697f0a48
GH
1372 if (unlikely(next_task->prio < rq->curr->prio)) {
1373 resched_task(rq->curr);
e8fa1362
SR
1374 return 0;
1375 }
1376
697f0a48 1377 /* We might release rq lock */
e8fa1362
SR
1378 get_task_struct(next_task);
1379
1380 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1381 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1382 if (!lowest_rq) {
1383 struct task_struct *task;
1384 /*
697f0a48 1385 * find lock_lowest_rq releases rq->lock
1563513d
GH
1386 * so it is possible that next_task has migrated.
1387 *
1388 * We need to make sure that the task is still on the same
1389 * run-queue and is also still the next task eligible for
1390 * pushing.
e8fa1362 1391 */
917b627d 1392 task = pick_next_pushable_task(rq);
1563513d
GH
1393 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1394 /*
25985edc 1395 * If we get here, the task hasn't moved at all, but
1563513d
GH
1396 * it has failed to push. We will not try again,
1397 * since the other cpus will pull from us when they
1398 * are ready.
1399 */
1400 dequeue_pushable_task(rq, next_task);
1401 goto out;
e8fa1362 1402 }
917b627d 1403
1563513d
GH
1404 if (!task)
1405 /* No more tasks, just exit */
1406 goto out;
1407
917b627d 1408 /*
1563513d 1409 * Something has shifted, try again.
917b627d 1410 */
1563513d
GH
1411 put_task_struct(next_task);
1412 next_task = task;
1413 goto retry;
e8fa1362
SR
1414 }
1415
697f0a48 1416 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1417 set_task_cpu(next_task, lowest_rq->cpu);
1418 activate_task(lowest_rq, next_task, 0);
1419
1420 resched_task(lowest_rq->curr);
1421
1b12bbc7 1422 double_unlock_balance(rq, lowest_rq);
e8fa1362 1423
e8fa1362
SR
1424out:
1425 put_task_struct(next_task);
1426
917b627d 1427 return 1;
e8fa1362
SR
1428}
1429
e8fa1362
SR
1430static void push_rt_tasks(struct rq *rq)
1431{
1432 /* push_rt_task will return true if it moved an RT */
1433 while (push_rt_task(rq))
1434 ;
1435}
1436
f65eda4f
SR
1437static int pull_rt_task(struct rq *this_rq)
1438{
80bf3171 1439 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1440 struct task_struct *p;
f65eda4f 1441 struct rq *src_rq;
f65eda4f 1442
637f5085 1443 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1444 return 0;
1445
c6c4927b 1446 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1447 if (this_cpu == cpu)
1448 continue;
1449
1450 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1451
1452 /*
1453 * Don't bother taking the src_rq->lock if the next highest
1454 * task is known to be lower-priority than our current task.
1455 * This may look racy, but if this value is about to go
1456 * logically higher, the src_rq will push this task away.
1457 * And if its going logically lower, we do not care
1458 */
1459 if (src_rq->rt.highest_prio.next >=
1460 this_rq->rt.highest_prio.curr)
1461 continue;
1462
f65eda4f
SR
1463 /*
1464 * We can potentially drop this_rq's lock in
1465 * double_lock_balance, and another CPU could
a8728944 1466 * alter this_rq
f65eda4f 1467 */
a8728944 1468 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1469
1470 /*
1471 * Are there still pullable RT tasks?
1472 */
614ee1f6
MG
1473 if (src_rq->rt.rt_nr_running <= 1)
1474 goto skip;
f65eda4f 1475
f65eda4f
SR
1476 p = pick_next_highest_task_rt(src_rq, this_cpu);
1477
1478 /*
1479 * Do we have an RT task that preempts
1480 * the to-be-scheduled task?
1481 */
a8728944 1482 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 1483 WARN_ON(p == src_rq->curr);
fd2f4419 1484 WARN_ON(!p->on_rq);
f65eda4f
SR
1485
1486 /*
1487 * There's a chance that p is higher in priority
1488 * than what's currently running on its cpu.
1489 * This is just that p is wakeing up and hasn't
1490 * had a chance to schedule. We only pull
1491 * p if it is lower in priority than the
a8728944 1492 * current task on the run queue
f65eda4f 1493 */
a8728944 1494 if (p->prio < src_rq->curr->prio)
614ee1f6 1495 goto skip;
f65eda4f
SR
1496
1497 ret = 1;
1498
1499 deactivate_task(src_rq, p, 0);
1500 set_task_cpu(p, this_cpu);
1501 activate_task(this_rq, p, 0);
1502 /*
1503 * We continue with the search, just in
1504 * case there's an even higher prio task
25985edc 1505 * in another runqueue. (low likelihood
f65eda4f 1506 * but possible)
f65eda4f 1507 */
f65eda4f 1508 }
49246274 1509skip:
1b12bbc7 1510 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1511 }
1512
1513 return ret;
1514}
1515
9a897c5a 1516static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1517{
1518 /* Try to pull RT tasks here if we lower this rq's prio */
e864c499 1519 if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
f65eda4f
SR
1520 pull_rt_task(rq);
1521}
1522
9a897c5a 1523static void post_schedule_rt(struct rq *rq)
e8fa1362 1524{
967fc046 1525 push_rt_tasks(rq);
e8fa1362
SR
1526}
1527
8ae121ac
GH
1528/*
1529 * If we are not running and we are not going to reschedule soon, we should
1530 * try to push tasks away now
1531 */
efbbd05a 1532static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 1533{
9a897c5a 1534 if (!task_running(rq, p) &&
8ae121ac 1535 !test_tsk_need_resched(rq->curr) &&
917b627d 1536 has_pushable_tasks(rq) &&
b3bc211c 1537 p->rt.nr_cpus_allowed > 1 &&
43fa5460 1538 rt_task(rq->curr) &&
b3bc211c
SR
1539 (rq->curr->rt.nr_cpus_allowed < 2 ||
1540 rq->curr->prio < p->prio))
4642dafd
SR
1541 push_rt_tasks(rq);
1542}
1543
cd8ba7cd 1544static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1545 const struct cpumask *new_mask)
73fe6aae 1546{
96f874e2 1547 int weight = cpumask_weight(new_mask);
73fe6aae
GH
1548
1549 BUG_ON(!rt_task(p));
1550
1551 /*
1552 * Update the migration status of the RQ if we have an RT task
1553 * which is running AND changing its weight value.
1554 */
fd2f4419 1555 if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1556 struct rq *rq = task_rq(p);
1557
917b627d
GH
1558 if (!task_current(rq, p)) {
1559 /*
1560 * Make sure we dequeue this task from the pushable list
1561 * before going further. It will either remain off of
1562 * the list because we are no longer pushable, or it
1563 * will be requeued.
1564 */
1565 if (p->rt.nr_cpus_allowed > 1)
1566 dequeue_pushable_task(rq, p);
1567
1568 /*
1569 * Requeue if our weight is changing and still > 1
1570 */
1571 if (weight > 1)
1572 enqueue_pushable_task(rq, p);
1573
1574 }
1575
6f505b16 1576 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1577 rq->rt.rt_nr_migratory++;
6f505b16 1578 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1579 BUG_ON(!rq->rt.rt_nr_migratory);
1580 rq->rt.rt_nr_migratory--;
1581 }
1582
398a153b 1583 update_rt_migration(&rq->rt);
73fe6aae
GH
1584 }
1585
96f874e2 1586 cpumask_copy(&p->cpus_allowed, new_mask);
6f505b16 1587 p->rt.nr_cpus_allowed = weight;
73fe6aae 1588}
deeeccd4 1589
bdd7c81b 1590/* Assumes rq->lock is held */
1f11eb6a 1591static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1592{
1593 if (rq->rt.overloaded)
1594 rt_set_overload(rq);
6e0534f2 1595
7def2be1
PZ
1596 __enable_runtime(rq);
1597
e864c499 1598 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1599}
1600
1601/* Assumes rq->lock is held */
1f11eb6a 1602static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1603{
1604 if (rq->rt.overloaded)
1605 rt_clear_overload(rq);
6e0534f2 1606
7def2be1
PZ
1607 __disable_runtime(rq);
1608
6e0534f2 1609 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1610}
cb469845
SR
1611
1612/*
1613 * When switch from the rt queue, we bring ourselves to a position
1614 * that we might want to pull RT tasks from other runqueues.
1615 */
da7a735e 1616static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1617{
1618 /*
1619 * If there are other RT tasks then we will reschedule
1620 * and the scheduling of the other RT tasks will handle
1621 * the balancing. But if we are the last RT task
1622 * we may need to handle the pulling of RT tasks
1623 * now.
1624 */
fd2f4419 1625 if (p->on_rq && !rq->rt.rt_nr_running)
cb469845
SR
1626 pull_rt_task(rq);
1627}
3d8cbdf8
RR
1628
1629static inline void init_sched_rt_class(void)
1630{
1631 unsigned int i;
1632
1633 for_each_possible_cpu(i)
eaa95840 1634 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 1635 GFP_KERNEL, cpu_to_node(i));
3d8cbdf8 1636}
cb469845
SR
1637#endif /* CONFIG_SMP */
1638
1639/*
1640 * When switching a task to RT, we may overload the runqueue
1641 * with RT tasks. In this case we try to push them off to
1642 * other runqueues.
1643 */
da7a735e 1644static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1645{
1646 int check_resched = 1;
1647
1648 /*
1649 * If we are already running, then there's nothing
1650 * that needs to be done. But if we are not running
1651 * we may need to preempt the current running task.
1652 * If that current running task is also an RT task
1653 * then see if we can move to another run queue.
1654 */
fd2f4419 1655 if (p->on_rq && rq->curr != p) {
cb469845
SR
1656#ifdef CONFIG_SMP
1657 if (rq->rt.overloaded && push_rt_task(rq) &&
1658 /* Don't resched if we changed runqueues */
1659 rq != task_rq(p))
1660 check_resched = 0;
1661#endif /* CONFIG_SMP */
1662 if (check_resched && p->prio < rq->curr->prio)
1663 resched_task(rq->curr);
1664 }
1665}
1666
1667/*
1668 * Priority of the task has changed. This may cause
1669 * us to initiate a push or pull.
1670 */
da7a735e
PZ
1671static void
1672prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 1673{
fd2f4419 1674 if (!p->on_rq)
da7a735e
PZ
1675 return;
1676
1677 if (rq->curr == p) {
cb469845
SR
1678#ifdef CONFIG_SMP
1679 /*
1680 * If our priority decreases while running, we
1681 * may need to pull tasks to this runqueue.
1682 */
1683 if (oldprio < p->prio)
1684 pull_rt_task(rq);
1685 /*
1686 * If there's a higher priority task waiting to run
6fa46fa5
SR
1687 * then reschedule. Note, the above pull_rt_task
1688 * can release the rq lock and p could migrate.
1689 * Only reschedule if p is still on the same runqueue.
cb469845 1690 */
e864c499 1691 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1692 resched_task(p);
1693#else
1694 /* For UP simply resched on drop of prio */
1695 if (oldprio < p->prio)
1696 resched_task(p);
e8fa1362 1697#endif /* CONFIG_SMP */
cb469845
SR
1698 } else {
1699 /*
1700 * This task is not running, but if it is
1701 * greater than the current running task
1702 * then reschedule.
1703 */
1704 if (p->prio < rq->curr->prio)
1705 resched_task(rq->curr);
1706 }
1707}
1708
78f2c7db
PZ
1709static void watchdog(struct rq *rq, struct task_struct *p)
1710{
1711 unsigned long soft, hard;
1712
78d7d407
JS
1713 /* max may change after cur was read, this will be fixed next tick */
1714 soft = task_rlimit(p, RLIMIT_RTTIME);
1715 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
1716
1717 if (soft != RLIM_INFINITY) {
1718 unsigned long next;
1719
1720 p->rt.timeout++;
1721 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1722 if (p->rt.timeout > next)
f06febc9 1723 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1724 }
1725}
bb44e5d1 1726
8f4d37ec 1727static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1728{
67e2be02
PZ
1729 update_curr_rt(rq);
1730
78f2c7db
PZ
1731 watchdog(rq, p);
1732
bb44e5d1
IM
1733 /*
1734 * RR tasks need a special form of timeslice management.
1735 * FIFO tasks have no timeslices.
1736 */
1737 if (p->policy != SCHED_RR)
1738 return;
1739
fa717060 1740 if (--p->rt.time_slice)
bb44e5d1
IM
1741 return;
1742
fa717060 1743 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1744
98fbc798
DA
1745 /*
1746 * Requeue to the end of queue if we are not the only element
1747 * on the queue:
1748 */
fa717060 1749 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 1750 requeue_task_rt(rq, p, 0);
98fbc798
DA
1751 set_tsk_need_resched(p);
1752 }
bb44e5d1
IM
1753}
1754
83b699ed
SV
1755static void set_curr_task_rt(struct rq *rq)
1756{
1757 struct task_struct *p = rq->curr;
1758
305e6835 1759 p->se.exec_start = rq->clock_task;
917b627d
GH
1760
1761 /* The running task is never eligible for pushing */
1762 dequeue_pushable_task(rq, p);
83b699ed
SV
1763}
1764
6d686f45 1765static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
1766{
1767 /*
1768 * Time slice is 0 for SCHED_FIFO tasks
1769 */
1770 if (task->policy == SCHED_RR)
1771 return DEF_TIMESLICE;
1772 else
1773 return 0;
1774}
1775
2abdad0a 1776static const struct sched_class rt_sched_class = {
5522d5d5 1777 .next = &fair_sched_class,
bb44e5d1
IM
1778 .enqueue_task = enqueue_task_rt,
1779 .dequeue_task = dequeue_task_rt,
1780 .yield_task = yield_task_rt,
1781
1782 .check_preempt_curr = check_preempt_curr_rt,
1783
1784 .pick_next_task = pick_next_task_rt,
1785 .put_prev_task = put_prev_task_rt,
1786
681f3e68 1787#ifdef CONFIG_SMP
4ce72a2c
LZ
1788 .select_task_rq = select_task_rq_rt,
1789
73fe6aae 1790 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1791 .rq_online = rq_online_rt,
1792 .rq_offline = rq_offline_rt,
9a897c5a
SR
1793 .pre_schedule = pre_schedule_rt,
1794 .post_schedule = post_schedule_rt,
efbbd05a 1795 .task_woken = task_woken_rt,
cb469845 1796 .switched_from = switched_from_rt,
681f3e68 1797#endif
bb44e5d1 1798
83b699ed 1799 .set_curr_task = set_curr_task_rt,
bb44e5d1 1800 .task_tick = task_tick_rt,
cb469845 1801
0d721cea
PW
1802 .get_rr_interval = get_rr_interval_rt,
1803
cb469845
SR
1804 .prio_changed = prio_changed_rt,
1805 .switched_to = switched_to_rt,
bb44e5d1 1806};
ada18de2
PZ
1807
1808#ifdef CONFIG_SCHED_DEBUG
1809extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1810
1811static void print_rt_stats(struct seq_file *m, int cpu)
1812{
1813 struct rt_rq *rt_rq;
1814
1815 rcu_read_lock();
1816 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1817 print_rt_rq(m, cpu, rt_rq);
1818 rcu_read_unlock();
1819}
55e12e5e 1820#endif /* CONFIG_SCHED_DEBUG */
0e3900e6 1821
This page took 0.940701 seconds and 5 git commands to generate.