[PATCH] fix possible PAGE_CACHE_SHIFT overflows
[deliverable/linux.git] / kernel / signal.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13#include <linux/config.h>
14#include <linux/slab.h>
15#include <linux/module.h>
16#include <linux/smp_lock.h>
17#include <linux/init.h>
18#include <linux/sched.h>
19#include <linux/fs.h>
20#include <linux/tty.h>
21#include <linux/binfmts.h>
22#include <linux/security.h>
23#include <linux/syscalls.h>
24#include <linux/ptrace.h>
25#include <linux/posix-timers.h>
7ed20e1a 26#include <linux/signal.h>
c2f0c7c3 27#include <linux/audit.h>
1da177e4
LT
28#include <asm/param.h>
29#include <asm/uaccess.h>
30#include <asm/unistd.h>
31#include <asm/siginfo.h>
32
33/*
34 * SLAB caches for signal bits.
35 */
36
37static kmem_cache_t *sigqueue_cachep;
38
39/*
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
47 *
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 *
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
60 *
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
85 * | SIGURG | ignore |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
101 *
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
111 */
112
113#ifdef SIGEMT
114#define M_SIGEMT M(SIGEMT)
115#else
116#define M_SIGEMT 0
117#endif
118
119#if SIGRTMIN > BITS_PER_LONG
120#define M(sig) (1ULL << ((sig)-1))
121#else
122#define M(sig) (1UL << ((sig)-1))
123#endif
124#define T(sig, mask) (M(sig) & (mask))
125
126#define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
128
129#define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131
132#define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136
137#define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139
140#define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142#define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144#define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146#define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148
149#define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
152
153#define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
156
157static int sig_ignored(struct task_struct *t, int sig)
158{
159 void __user * handler;
160
161 /*
162 * Tracers always want to know about signals..
163 */
164 if (t->ptrace & PT_PTRACED)
165 return 0;
166
167 /*
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
170 * unblocked.
171 */
172 if (sigismember(&t->blocked, sig))
173 return 0;
174
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
179}
180
181/*
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
184 */
185static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
186{
187 unsigned long ready;
188 long i;
189
190 switch (_NSIG_WORDS) {
191 default:
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
194 break;
195
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
200 break;
201
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
204 break;
205
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
207 }
208 return ready != 0;
209}
210
211#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
212
213fastcall void recalc_sigpending_tsk(struct task_struct *t)
214{
215 if (t->signal->group_stop_count > 0 ||
3e1d1d28 216 (freezing(t)) ||
1da177e4
LT
217 PENDING(&t->pending, &t->blocked) ||
218 PENDING(&t->signal->shared_pending, &t->blocked))
219 set_tsk_thread_flag(t, TIF_SIGPENDING);
220 else
221 clear_tsk_thread_flag(t, TIF_SIGPENDING);
222}
223
224void recalc_sigpending(void)
225{
226 recalc_sigpending_tsk(current);
227}
228
229/* Given the mask, find the first available signal that should be serviced. */
230
231static int
232next_signal(struct sigpending *pending, sigset_t *mask)
233{
234 unsigned long i, *s, *m, x;
235 int sig = 0;
236
237 s = pending->signal.sig;
238 m = mask->sig;
239 switch (_NSIG_WORDS) {
240 default:
241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 if ((x = *s &~ *m) != 0) {
243 sig = ffz(~x) + i*_NSIG_BPW + 1;
244 break;
245 }
246 break;
247
248 case 2: if ((x = s[0] &~ m[0]) != 0)
249 sig = 1;
250 else if ((x = s[1] &~ m[1]) != 0)
251 sig = _NSIG_BPW + 1;
252 else
253 break;
254 sig += ffz(~x);
255 break;
256
257 case 1: if ((x = *s &~ *m) != 0)
258 sig = ffz(~x) + 1;
259 break;
260 }
261
262 return sig;
263}
264
dd0fc66f 265static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
1da177e4
LT
266 int override_rlimit)
267{
268 struct sigqueue *q = NULL;
269
270 atomic_inc(&t->user->sigpending);
271 if (override_rlimit ||
272 atomic_read(&t->user->sigpending) <=
273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 q = kmem_cache_alloc(sigqueue_cachep, flags);
275 if (unlikely(q == NULL)) {
276 atomic_dec(&t->user->sigpending);
277 } else {
278 INIT_LIST_HEAD(&q->list);
279 q->flags = 0;
1da177e4
LT
280 q->user = get_uid(t->user);
281 }
282 return(q);
283}
284
285static inline void __sigqueue_free(struct sigqueue *q)
286{
287 if (q->flags & SIGQUEUE_PREALLOC)
288 return;
289 atomic_dec(&q->user->sigpending);
290 free_uid(q->user);
291 kmem_cache_free(sigqueue_cachep, q);
292}
293
294static void flush_sigqueue(struct sigpending *queue)
295{
296 struct sigqueue *q;
297
298 sigemptyset(&queue->signal);
299 while (!list_empty(&queue->list)) {
300 q = list_entry(queue->list.next, struct sigqueue , list);
301 list_del_init(&q->list);
302 __sigqueue_free(q);
303 }
304}
305
306/*
307 * Flush all pending signals for a task.
308 */
309
310void
311flush_signals(struct task_struct *t)
312{
313 unsigned long flags;
314
315 spin_lock_irqsave(&t->sighand->siglock, flags);
316 clear_tsk_thread_flag(t,TIF_SIGPENDING);
317 flush_sigqueue(&t->pending);
318 flush_sigqueue(&t->signal->shared_pending);
319 spin_unlock_irqrestore(&t->sighand->siglock, flags);
320}
321
322/*
323 * This function expects the tasklist_lock write-locked.
324 */
325void __exit_sighand(struct task_struct *tsk)
326{
327 struct sighand_struct * sighand = tsk->sighand;
328
329 /* Ok, we're done with the signal handlers */
330 tsk->sighand = NULL;
331 if (atomic_dec_and_test(&sighand->count))
e56d0903 332 sighand_free(sighand);
1da177e4
LT
333}
334
335void exit_sighand(struct task_struct *tsk)
336{
337 write_lock_irq(&tasklist_lock);
e56d0903
IM
338 rcu_read_lock();
339 if (tsk->sighand != NULL) {
340 struct sighand_struct *sighand = rcu_dereference(tsk->sighand);
341 spin_lock(&sighand->siglock);
342 __exit_sighand(tsk);
343 spin_unlock(&sighand->siglock);
344 }
345 rcu_read_unlock();
1da177e4
LT
346 write_unlock_irq(&tasklist_lock);
347}
348
349/*
350 * This function expects the tasklist_lock write-locked.
351 */
352void __exit_signal(struct task_struct *tsk)
353{
354 struct signal_struct * sig = tsk->signal;
e56d0903 355 struct sighand_struct * sighand;
1da177e4
LT
356
357 if (!sig)
358 BUG();
359 if (!atomic_read(&sig->count))
360 BUG();
e56d0903
IM
361 rcu_read_lock();
362 sighand = rcu_dereference(tsk->sighand);
1da177e4
LT
363 spin_lock(&sighand->siglock);
364 posix_cpu_timers_exit(tsk);
365 if (atomic_dec_and_test(&sig->count)) {
366 posix_cpu_timers_exit_group(tsk);
367 if (tsk == sig->curr_target)
368 sig->curr_target = next_thread(tsk);
369 tsk->signal = NULL;
e56d0903 370 __exit_sighand(tsk);
1da177e4
LT
371 spin_unlock(&sighand->siglock);
372 flush_sigqueue(&sig->shared_pending);
373 } else {
374 /*
375 * If there is any task waiting for the group exit
376 * then notify it:
377 */
378 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
379 wake_up_process(sig->group_exit_task);
380 sig->group_exit_task = NULL;
381 }
382 if (tsk == sig->curr_target)
383 sig->curr_target = next_thread(tsk);
384 tsk->signal = NULL;
385 /*
386 * Accumulate here the counters for all threads but the
387 * group leader as they die, so they can be added into
388 * the process-wide totals when those are taken.
389 * The group leader stays around as a zombie as long
390 * as there are other threads. When it gets reaped,
391 * the exit.c code will add its counts into these totals.
392 * We won't ever get here for the group leader, since it
393 * will have been the last reference on the signal_struct.
394 */
395 sig->utime = cputime_add(sig->utime, tsk->utime);
396 sig->stime = cputime_add(sig->stime, tsk->stime);
397 sig->min_flt += tsk->min_flt;
398 sig->maj_flt += tsk->maj_flt;
399 sig->nvcsw += tsk->nvcsw;
400 sig->nivcsw += tsk->nivcsw;
401 sig->sched_time += tsk->sched_time;
e56d0903 402 __exit_sighand(tsk);
1da177e4
LT
403 spin_unlock(&sighand->siglock);
404 sig = NULL; /* Marker for below. */
405 }
e56d0903 406 rcu_read_unlock();
1da177e4
LT
407 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
408 flush_sigqueue(&tsk->pending);
409 if (sig) {
410 /*
25f407f0 411 * We are cleaning up the signal_struct here.
1da177e4 412 */
1da177e4
LT
413 exit_thread_group_keys(sig);
414 kmem_cache_free(signal_cachep, sig);
415 }
416}
417
418void exit_signal(struct task_struct *tsk)
419{
8d027de5
ON
420 atomic_dec(&tsk->signal->live);
421
1da177e4
LT
422 write_lock_irq(&tasklist_lock);
423 __exit_signal(tsk);
424 write_unlock_irq(&tasklist_lock);
425}
426
427/*
428 * Flush all handlers for a task.
429 */
430
431void
432flush_signal_handlers(struct task_struct *t, int force_default)
433{
434 int i;
435 struct k_sigaction *ka = &t->sighand->action[0];
436 for (i = _NSIG ; i != 0 ; i--) {
437 if (force_default || ka->sa.sa_handler != SIG_IGN)
438 ka->sa.sa_handler = SIG_DFL;
439 ka->sa.sa_flags = 0;
440 sigemptyset(&ka->sa.sa_mask);
441 ka++;
442 }
443}
444
445
446/* Notify the system that a driver wants to block all signals for this
447 * process, and wants to be notified if any signals at all were to be
448 * sent/acted upon. If the notifier routine returns non-zero, then the
449 * signal will be acted upon after all. If the notifier routine returns 0,
450 * then then signal will be blocked. Only one block per process is
451 * allowed. priv is a pointer to private data that the notifier routine
452 * can use to determine if the signal should be blocked or not. */
453
454void
455block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
456{
457 unsigned long flags;
458
459 spin_lock_irqsave(&current->sighand->siglock, flags);
460 current->notifier_mask = mask;
461 current->notifier_data = priv;
462 current->notifier = notifier;
463 spin_unlock_irqrestore(&current->sighand->siglock, flags);
464}
465
466/* Notify the system that blocking has ended. */
467
468void
469unblock_all_signals(void)
470{
471 unsigned long flags;
472
473 spin_lock_irqsave(&current->sighand->siglock, flags);
474 current->notifier = NULL;
475 current->notifier_data = NULL;
476 recalc_sigpending();
477 spin_unlock_irqrestore(&current->sighand->siglock, flags);
478}
479
480static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
481{
482 struct sigqueue *q, *first = NULL;
483 int still_pending = 0;
484
485 if (unlikely(!sigismember(&list->signal, sig)))
486 return 0;
487
488 /*
489 * Collect the siginfo appropriate to this signal. Check if
490 * there is another siginfo for the same signal.
491 */
492 list_for_each_entry(q, &list->list, list) {
493 if (q->info.si_signo == sig) {
494 if (first) {
495 still_pending = 1;
496 break;
497 }
498 first = q;
499 }
500 }
501 if (first) {
502 list_del_init(&first->list);
503 copy_siginfo(info, &first->info);
504 __sigqueue_free(first);
505 if (!still_pending)
506 sigdelset(&list->signal, sig);
507 } else {
508
509 /* Ok, it wasn't in the queue. This must be
510 a fast-pathed signal or we must have been
511 out of queue space. So zero out the info.
512 */
513 sigdelset(&list->signal, sig);
514 info->si_signo = sig;
515 info->si_errno = 0;
516 info->si_code = 0;
517 info->si_pid = 0;
518 info->si_uid = 0;
519 }
520 return 1;
521}
522
523static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
524 siginfo_t *info)
525{
526 int sig = 0;
527
b17b0421 528 sig = next_signal(pending, mask);
1da177e4
LT
529 if (sig) {
530 if (current->notifier) {
531 if (sigismember(current->notifier_mask, sig)) {
532 if (!(current->notifier)(current->notifier_data)) {
533 clear_thread_flag(TIF_SIGPENDING);
534 return 0;
535 }
536 }
537 }
538
539 if (!collect_signal(sig, pending, info))
540 sig = 0;
541
542 }
543 recalc_sigpending();
544
545 return sig;
546}
547
548/*
549 * Dequeue a signal and return the element to the caller, which is
550 * expected to free it.
551 *
552 * All callers have to hold the siglock.
553 */
554int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
555{
556 int signr = __dequeue_signal(&tsk->pending, mask, info);
557 if (!signr)
558 signr = __dequeue_signal(&tsk->signal->shared_pending,
559 mask, info);
560 if (signr && unlikely(sig_kernel_stop(signr))) {
561 /*
562 * Set a marker that we have dequeued a stop signal. Our
563 * caller might release the siglock and then the pending
564 * stop signal it is about to process is no longer in the
565 * pending bitmasks, but must still be cleared by a SIGCONT
566 * (and overruled by a SIGKILL). So those cases clear this
567 * shared flag after we've set it. Note that this flag may
568 * remain set after the signal we return is ignored or
569 * handled. That doesn't matter because its only purpose
570 * is to alert stop-signal processing code when another
571 * processor has come along and cleared the flag.
572 */
788e05a6
ON
573 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
574 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
1da177e4
LT
575 }
576 if ( signr &&
577 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
578 info->si_sys_private){
579 /*
580 * Release the siglock to ensure proper locking order
581 * of timer locks outside of siglocks. Note, we leave
582 * irqs disabled here, since the posix-timers code is
583 * about to disable them again anyway.
584 */
585 spin_unlock(&tsk->sighand->siglock);
586 do_schedule_next_timer(info);
587 spin_lock(&tsk->sighand->siglock);
588 }
589 return signr;
590}
591
592/*
593 * Tell a process that it has a new active signal..
594 *
595 * NOTE! we rely on the previous spin_lock to
596 * lock interrupts for us! We can only be called with
597 * "siglock" held, and the local interrupt must
598 * have been disabled when that got acquired!
599 *
600 * No need to set need_resched since signal event passing
601 * goes through ->blocked
602 */
603void signal_wake_up(struct task_struct *t, int resume)
604{
605 unsigned int mask;
606
607 set_tsk_thread_flag(t, TIF_SIGPENDING);
608
609 /*
610 * For SIGKILL, we want to wake it up in the stopped/traced case.
611 * We don't check t->state here because there is a race with it
612 * executing another processor and just now entering stopped state.
613 * By using wake_up_state, we ensure the process will wake up and
614 * handle its death signal.
615 */
616 mask = TASK_INTERRUPTIBLE;
617 if (resume)
618 mask |= TASK_STOPPED | TASK_TRACED;
619 if (!wake_up_state(t, mask))
620 kick_process(t);
621}
622
71fabd5e
GA
623/*
624 * Remove signals in mask from the pending set and queue.
625 * Returns 1 if any signals were found.
626 *
627 * All callers must be holding the siglock.
628 *
629 * This version takes a sigset mask and looks at all signals,
630 * not just those in the first mask word.
631 */
632static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
633{
634 struct sigqueue *q, *n;
635 sigset_t m;
636
637 sigandsets(&m, mask, &s->signal);
638 if (sigisemptyset(&m))
639 return 0;
640
641 signandsets(&s->signal, &s->signal, mask);
642 list_for_each_entry_safe(q, n, &s->list, list) {
643 if (sigismember(mask, q->info.si_signo)) {
644 list_del_init(&q->list);
645 __sigqueue_free(q);
646 }
647 }
648 return 1;
649}
1da177e4
LT
650/*
651 * Remove signals in mask from the pending set and queue.
652 * Returns 1 if any signals were found.
653 *
654 * All callers must be holding the siglock.
655 */
656static int rm_from_queue(unsigned long mask, struct sigpending *s)
657{
658 struct sigqueue *q, *n;
659
660 if (!sigtestsetmask(&s->signal, mask))
661 return 0;
662
663 sigdelsetmask(&s->signal, mask);
664 list_for_each_entry_safe(q, n, &s->list, list) {
665 if (q->info.si_signo < SIGRTMIN &&
666 (mask & sigmask(q->info.si_signo))) {
667 list_del_init(&q->list);
668 __sigqueue_free(q);
669 }
670 }
671 return 1;
672}
673
674/*
675 * Bad permissions for sending the signal
676 */
677static int check_kill_permission(int sig, struct siginfo *info,
678 struct task_struct *t)
679{
680 int error = -EINVAL;
7ed20e1a 681 if (!valid_signal(sig))
1da177e4
LT
682 return error;
683 error = -EPERM;
621d3121 684 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1da177e4
LT
685 && ((sig != SIGCONT) ||
686 (current->signal->session != t->signal->session))
687 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
688 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
689 && !capable(CAP_KILL))
690 return error;
c2f0c7c3
SG
691
692 error = security_task_kill(t, info, sig);
693 if (!error)
694 audit_signal_info(sig, t); /* Let audit system see the signal */
695 return error;
1da177e4
LT
696}
697
698/* forward decl */
699static void do_notify_parent_cldstop(struct task_struct *tsk,
bc505a47 700 int to_self,
1da177e4
LT
701 int why);
702
703/*
704 * Handle magic process-wide effects of stop/continue signals.
705 * Unlike the signal actions, these happen immediately at signal-generation
706 * time regardless of blocking, ignoring, or handling. This does the
707 * actual continuing for SIGCONT, but not the actual stopping for stop
708 * signals. The process stop is done as a signal action for SIG_DFL.
709 */
710static void handle_stop_signal(int sig, struct task_struct *p)
711{
712 struct task_struct *t;
713
dd12f48d 714 if (p->signal->flags & SIGNAL_GROUP_EXIT)
1da177e4
LT
715 /*
716 * The process is in the middle of dying already.
717 */
718 return;
719
720 if (sig_kernel_stop(sig)) {
721 /*
722 * This is a stop signal. Remove SIGCONT from all queues.
723 */
724 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
725 t = p;
726 do {
727 rm_from_queue(sigmask(SIGCONT), &t->pending);
728 t = next_thread(t);
729 } while (t != p);
730 } else if (sig == SIGCONT) {
731 /*
732 * Remove all stop signals from all queues,
733 * and wake all threads.
734 */
735 if (unlikely(p->signal->group_stop_count > 0)) {
736 /*
737 * There was a group stop in progress. We'll
738 * pretend it finished before we got here. We are
739 * obliged to report it to the parent: if the
740 * SIGSTOP happened "after" this SIGCONT, then it
741 * would have cleared this pending SIGCONT. If it
742 * happened "before" this SIGCONT, then the parent
743 * got the SIGCHLD about the stop finishing before
744 * the continue happened. We do the notification
745 * now, and it's as if the stop had finished and
746 * the SIGCHLD was pending on entry to this kill.
747 */
748 p->signal->group_stop_count = 0;
749 p->signal->flags = SIGNAL_STOP_CONTINUED;
750 spin_unlock(&p->sighand->siglock);
bc505a47 751 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
1da177e4
LT
752 spin_lock(&p->sighand->siglock);
753 }
754 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
755 t = p;
756 do {
757 unsigned int state;
758 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
759
760 /*
761 * If there is a handler for SIGCONT, we must make
762 * sure that no thread returns to user mode before
763 * we post the signal, in case it was the only
764 * thread eligible to run the signal handler--then
765 * it must not do anything between resuming and
766 * running the handler. With the TIF_SIGPENDING
767 * flag set, the thread will pause and acquire the
768 * siglock that we hold now and until we've queued
769 * the pending signal.
770 *
771 * Wake up the stopped thread _after_ setting
772 * TIF_SIGPENDING
773 */
774 state = TASK_STOPPED;
775 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
776 set_tsk_thread_flag(t, TIF_SIGPENDING);
777 state |= TASK_INTERRUPTIBLE;
778 }
779 wake_up_state(t, state);
780
781 t = next_thread(t);
782 } while (t != p);
783
784 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
785 /*
786 * We were in fact stopped, and are now continued.
787 * Notify the parent with CLD_CONTINUED.
788 */
789 p->signal->flags = SIGNAL_STOP_CONTINUED;
790 p->signal->group_exit_code = 0;
791 spin_unlock(&p->sighand->siglock);
bc505a47 792 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
1da177e4
LT
793 spin_lock(&p->sighand->siglock);
794 } else {
795 /*
796 * We are not stopped, but there could be a stop
797 * signal in the middle of being processed after
798 * being removed from the queue. Clear that too.
799 */
800 p->signal->flags = 0;
801 }
802 } else if (sig == SIGKILL) {
803 /*
804 * Make sure that any pending stop signal already dequeued
805 * is undone by the wakeup for SIGKILL.
806 */
807 p->signal->flags = 0;
808 }
809}
810
811static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
812 struct sigpending *signals)
813{
814 struct sigqueue * q = NULL;
815 int ret = 0;
816
817 /*
818 * fast-pathed signals for kernel-internal things like SIGSTOP
819 * or SIGKILL.
820 */
b67a1b9e 821 if (info == SEND_SIG_FORCED)
1da177e4
LT
822 goto out_set;
823
824 /* Real-time signals must be queued if sent by sigqueue, or
825 some other real-time mechanism. It is implementation
826 defined whether kill() does so. We attempt to do so, on
827 the principle of least surprise, but since kill is not
828 allowed to fail with EAGAIN when low on memory we just
829 make sure at least one signal gets delivered and don't
830 pass on the info struct. */
831
832 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
621d3121 833 (is_si_special(info) ||
1da177e4
LT
834 info->si_code >= 0)));
835 if (q) {
836 list_add_tail(&q->list, &signals->list);
837 switch ((unsigned long) info) {
b67a1b9e 838 case (unsigned long) SEND_SIG_NOINFO:
1da177e4
LT
839 q->info.si_signo = sig;
840 q->info.si_errno = 0;
841 q->info.si_code = SI_USER;
842 q->info.si_pid = current->pid;
843 q->info.si_uid = current->uid;
844 break;
b67a1b9e 845 case (unsigned long) SEND_SIG_PRIV:
1da177e4
LT
846 q->info.si_signo = sig;
847 q->info.si_errno = 0;
848 q->info.si_code = SI_KERNEL;
849 q->info.si_pid = 0;
850 q->info.si_uid = 0;
851 break;
852 default:
853 copy_siginfo(&q->info, info);
854 break;
855 }
621d3121
ON
856 } else if (!is_si_special(info)) {
857 if (sig >= SIGRTMIN && info->si_code != SI_USER)
1da177e4
LT
858 /*
859 * Queue overflow, abort. We may abort if the signal was rt
860 * and sent by user using something other than kill().
861 */
862 return -EAGAIN;
1da177e4
LT
863 }
864
865out_set:
866 sigaddset(&signals->signal, sig);
867 return ret;
868}
869
870#define LEGACY_QUEUE(sigptr, sig) \
871 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
872
873
874static int
875specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
876{
877 int ret = 0;
878
879 if (!irqs_disabled())
880 BUG();
881 assert_spin_locked(&t->sighand->siglock);
882
1da177e4
LT
883 /* Short-circuit ignored signals. */
884 if (sig_ignored(t, sig))
885 goto out;
886
887 /* Support queueing exactly one non-rt signal, so that we
888 can get more detailed information about the cause of
889 the signal. */
890 if (LEGACY_QUEUE(&t->pending, sig))
891 goto out;
892
893 ret = send_signal(sig, info, t, &t->pending);
894 if (!ret && !sigismember(&t->blocked, sig))
895 signal_wake_up(t, sig == SIGKILL);
896out:
897 return ret;
898}
899
900/*
901 * Force a signal that the process can't ignore: if necessary
902 * we unblock the signal and change any SIG_IGN to SIG_DFL.
903 */
904
905int
906force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
907{
908 unsigned long int flags;
909 int ret;
910
911 spin_lock_irqsave(&t->sighand->siglock, flags);
b0423a0d 912 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
1da177e4 913 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
b0423a0d
PM
914 }
915 if (sigismember(&t->blocked, sig)) {
1da177e4 916 sigdelset(&t->blocked, sig);
1da177e4 917 }
b0423a0d 918 recalc_sigpending_tsk(t);
1da177e4
LT
919 ret = specific_send_sig_info(sig, info, t);
920 spin_unlock_irqrestore(&t->sighand->siglock, flags);
921
922 return ret;
923}
924
925void
926force_sig_specific(int sig, struct task_struct *t)
927{
b0423a0d 928 force_sig_info(sig, SEND_SIG_FORCED, t);
1da177e4
LT
929}
930
931/*
932 * Test if P wants to take SIG. After we've checked all threads with this,
933 * it's equivalent to finding no threads not blocking SIG. Any threads not
934 * blocking SIG were ruled out because they are not running and already
935 * have pending signals. Such threads will dequeue from the shared queue
936 * as soon as they're available, so putting the signal on the shared queue
937 * will be equivalent to sending it to one such thread.
938 */
188a1eaf
LT
939static inline int wants_signal(int sig, struct task_struct *p)
940{
941 if (sigismember(&p->blocked, sig))
942 return 0;
943 if (p->flags & PF_EXITING)
944 return 0;
945 if (sig == SIGKILL)
946 return 1;
947 if (p->state & (TASK_STOPPED | TASK_TRACED))
948 return 0;
949 return task_curr(p) || !signal_pending(p);
950}
1da177e4
LT
951
952static void
953__group_complete_signal(int sig, struct task_struct *p)
954{
1da177e4
LT
955 struct task_struct *t;
956
1da177e4
LT
957 /*
958 * Now find a thread we can wake up to take the signal off the queue.
959 *
960 * If the main thread wants the signal, it gets first crack.
961 * Probably the least surprising to the average bear.
962 */
188a1eaf 963 if (wants_signal(sig, p))
1da177e4
LT
964 t = p;
965 else if (thread_group_empty(p))
966 /*
967 * There is just one thread and it does not need to be woken.
968 * It will dequeue unblocked signals before it runs again.
969 */
970 return;
971 else {
972 /*
973 * Otherwise try to find a suitable thread.
974 */
975 t = p->signal->curr_target;
976 if (t == NULL)
977 /* restart balancing at this thread */
978 t = p->signal->curr_target = p;
979 BUG_ON(t->tgid != p->tgid);
980
188a1eaf 981 while (!wants_signal(sig, t)) {
1da177e4
LT
982 t = next_thread(t);
983 if (t == p->signal->curr_target)
984 /*
985 * No thread needs to be woken.
986 * Any eligible threads will see
987 * the signal in the queue soon.
988 */
989 return;
990 }
991 p->signal->curr_target = t;
992 }
993
994 /*
995 * Found a killable thread. If the signal will be fatal,
996 * then start taking the whole group down immediately.
997 */
998 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
999 !sigismember(&t->real_blocked, sig) &&
1000 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
1001 /*
1002 * This signal will be fatal to the whole group.
1003 */
1004 if (!sig_kernel_coredump(sig)) {
1005 /*
1006 * Start a group exit and wake everybody up.
1007 * This way we don't have other threads
1008 * running and doing things after a slower
1009 * thread has the fatal signal pending.
1010 */
1011 p->signal->flags = SIGNAL_GROUP_EXIT;
1012 p->signal->group_exit_code = sig;
1013 p->signal->group_stop_count = 0;
1014 t = p;
1015 do {
1016 sigaddset(&t->pending.signal, SIGKILL);
1017 signal_wake_up(t, 1);
1018 t = next_thread(t);
1019 } while (t != p);
1020 return;
1021 }
1022
1023 /*
1024 * There will be a core dump. We make all threads other
1025 * than the chosen one go into a group stop so that nothing
1026 * happens until it gets scheduled, takes the signal off
1027 * the shared queue, and does the core dump. This is a
1028 * little more complicated than strictly necessary, but it
1029 * keeps the signal state that winds up in the core dump
1030 * unchanged from the death state, e.g. which thread had
1031 * the core-dump signal unblocked.
1032 */
1033 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1034 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1035 p->signal->group_stop_count = 0;
1036 p->signal->group_exit_task = t;
1037 t = p;
1038 do {
1039 p->signal->group_stop_count++;
1040 signal_wake_up(t, 0);
1041 t = next_thread(t);
1042 } while (t != p);
1043 wake_up_process(p->signal->group_exit_task);
1044 return;
1045 }
1046
1047 /*
1048 * The signal is already in the shared-pending queue.
1049 * Tell the chosen thread to wake up and dequeue it.
1050 */
1051 signal_wake_up(t, sig == SIGKILL);
1052 return;
1053}
1054
1055int
1056__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1057{
1058 int ret = 0;
1059
1060 assert_spin_locked(&p->sighand->siglock);
1061 handle_stop_signal(sig, p);
1062
1da177e4
LT
1063 /* Short-circuit ignored signals. */
1064 if (sig_ignored(p, sig))
1065 return ret;
1066
1067 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1068 /* This is a non-RT signal and we already have one queued. */
1069 return ret;
1070
1071 /*
1072 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1073 * We always use the shared queue for process-wide signals,
1074 * to avoid several races.
1075 */
1076 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1077 if (unlikely(ret))
1078 return ret;
1079
1080 __group_complete_signal(sig, p);
1081 return 0;
1082}
1083
1084/*
1085 * Nuke all other threads in the group.
1086 */
1087void zap_other_threads(struct task_struct *p)
1088{
1089 struct task_struct *t;
1090
1091 p->signal->flags = SIGNAL_GROUP_EXIT;
1092 p->signal->group_stop_count = 0;
1093
1094 if (thread_group_empty(p))
1095 return;
1096
1097 for (t = next_thread(p); t != p; t = next_thread(t)) {
1098 /*
1099 * Don't bother with already dead threads
1100 */
1101 if (t->exit_state)
1102 continue;
1103
1104 /*
1105 * We don't want to notify the parent, since we are
1106 * killed as part of a thread group due to another
1107 * thread doing an execve() or similar. So set the
1108 * exit signal to -1 to allow immediate reaping of
1109 * the process. But don't detach the thread group
1110 * leader.
1111 */
1112 if (t != p->group_leader)
1113 t->exit_signal = -1;
1114
30e0fca6 1115 /* SIGKILL will be handled before any pending SIGSTOP */
1da177e4 1116 sigaddset(&t->pending.signal, SIGKILL);
1da177e4
LT
1117 signal_wake_up(t, 1);
1118 }
1119}
1120
1121/*
e56d0903 1122 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1da177e4
LT
1123 */
1124int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1125{
1126 unsigned long flags;
e56d0903 1127 struct sighand_struct *sp;
1da177e4
LT
1128 int ret;
1129
e56d0903 1130retry:
1da177e4 1131 ret = check_kill_permission(sig, info, p);
2d89c929 1132 if (!ret && sig && (sp = rcu_dereference(p->sighand))) {
e56d0903
IM
1133 spin_lock_irqsave(&sp->siglock, flags);
1134 if (p->sighand != sp) {
1135 spin_unlock_irqrestore(&sp->siglock, flags);
e56d0903
IM
1136 goto retry;
1137 }
2d89c929
PM
1138 if ((atomic_read(&sp->count) == 0) ||
1139 (atomic_read(&p->usage) == 0)) {
1140 spin_unlock_irqrestore(&sp->siglock, flags);
1141 return -ESRCH;
1142 }
1da177e4 1143 ret = __group_send_sig_info(sig, info, p);
e56d0903 1144 spin_unlock_irqrestore(&sp->siglock, flags);
1da177e4
LT
1145 }
1146
1147 return ret;
1148}
1149
1150/*
1151 * kill_pg_info() sends a signal to a process group: this is what the tty
1152 * control characters do (^C, ^Z etc)
1153 */
1154
1155int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1156{
1157 struct task_struct *p = NULL;
1158 int retval, success;
1159
1160 if (pgrp <= 0)
1161 return -EINVAL;
1162
1163 success = 0;
1164 retval = -ESRCH;
1165 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1166 int err = group_send_sig_info(sig, info, p);
1167 success |= !err;
1168 retval = err;
1169 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1170 return success ? 0 : retval;
1171}
1172
1173int
1174kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1175{
1176 int retval;
1177
1178 read_lock(&tasklist_lock);
1179 retval = __kill_pg_info(sig, info, pgrp);
1180 read_unlock(&tasklist_lock);
1181
1182 return retval;
1183}
1184
1185int
1186kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1187{
1188 int error;
e56d0903 1189 int acquired_tasklist_lock = 0;
1da177e4
LT
1190 struct task_struct *p;
1191
e56d0903
IM
1192 rcu_read_lock();
1193 if (unlikely(sig_kernel_stop(sig) || sig == SIGCONT)) {
1194 read_lock(&tasklist_lock);
1195 acquired_tasklist_lock = 1;
1196 }
1da177e4
LT
1197 p = find_task_by_pid(pid);
1198 error = -ESRCH;
1199 if (p)
1200 error = group_send_sig_info(sig, info, p);
e56d0903
IM
1201 if (unlikely(acquired_tasklist_lock))
1202 read_unlock(&tasklist_lock);
1203 rcu_read_unlock();
1da177e4
LT
1204 return error;
1205}
1206
46113830
HW
1207/* like kill_proc_info(), but doesn't use uid/euid of "current" */
1208int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1209 uid_t uid, uid_t euid)
1210{
1211 int ret = -EINVAL;
1212 struct task_struct *p;
1213
1214 if (!valid_signal(sig))
1215 return ret;
1216
1217 read_lock(&tasklist_lock);
1218 p = find_task_by_pid(pid);
1219 if (!p) {
1220 ret = -ESRCH;
1221 goto out_unlock;
1222 }
1223 if ((!info || ((unsigned long)info != 1 &&
1224 (unsigned long)info != 2 && SI_FROMUSER(info)))
1225 && (euid != p->suid) && (euid != p->uid)
1226 && (uid != p->suid) && (uid != p->uid)) {
1227 ret = -EPERM;
1228 goto out_unlock;
1229 }
1230 if (sig && p->sighand) {
1231 unsigned long flags;
1232 spin_lock_irqsave(&p->sighand->siglock, flags);
1233 ret = __group_send_sig_info(sig, info, p);
1234 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1235 }
1236out_unlock:
1237 read_unlock(&tasklist_lock);
1238 return ret;
1239}
1240EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1da177e4
LT
1241
1242/*
1243 * kill_something_info() interprets pid in interesting ways just like kill(2).
1244 *
1245 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1246 * is probably wrong. Should make it like BSD or SYSV.
1247 */
1248
1249static int kill_something_info(int sig, struct siginfo *info, int pid)
1250{
1251 if (!pid) {
1252 return kill_pg_info(sig, info, process_group(current));
1253 } else if (pid == -1) {
1254 int retval = 0, count = 0;
1255 struct task_struct * p;
1256
1257 read_lock(&tasklist_lock);
1258 for_each_process(p) {
1259 if (p->pid > 1 && p->tgid != current->tgid) {
1260 int err = group_send_sig_info(sig, info, p);
1261 ++count;
1262 if (err != -EPERM)
1263 retval = err;
1264 }
1265 }
1266 read_unlock(&tasklist_lock);
1267 return count ? retval : -ESRCH;
1268 } else if (pid < 0) {
1269 return kill_pg_info(sig, info, -pid);
1270 } else {
1271 return kill_proc_info(sig, info, pid);
1272 }
1273}
1274
1275/*
1276 * These are for backward compatibility with the rest of the kernel source.
1277 */
1278
1279/*
1280 * These two are the most common entry points. They send a signal
1281 * just to the specific thread.
1282 */
1283int
1284send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1285{
1286 int ret;
1287 unsigned long flags;
1288
1289 /*
1290 * Make sure legacy kernel users don't send in bad values
1291 * (normal paths check this in check_kill_permission).
1292 */
7ed20e1a 1293 if (!valid_signal(sig))
1da177e4
LT
1294 return -EINVAL;
1295
1296 /*
1297 * We need the tasklist lock even for the specific
1298 * thread case (when we don't need to follow the group
1299 * lists) in order to avoid races with "p->sighand"
1300 * going away or changing from under us.
1301 */
1302 read_lock(&tasklist_lock);
1303 spin_lock_irqsave(&p->sighand->siglock, flags);
1304 ret = specific_send_sig_info(sig, info, p);
1305 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1306 read_unlock(&tasklist_lock);
1307 return ret;
1308}
1309
b67a1b9e
ON
1310#define __si_special(priv) \
1311 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1312
1da177e4
LT
1313int
1314send_sig(int sig, struct task_struct *p, int priv)
1315{
b67a1b9e 1316 return send_sig_info(sig, __si_special(priv), p);
1da177e4
LT
1317}
1318
1319/*
1320 * This is the entry point for "process-wide" signals.
1321 * They will go to an appropriate thread in the thread group.
1322 */
1323int
1324send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1325{
1326 int ret;
1327 read_lock(&tasklist_lock);
1328 ret = group_send_sig_info(sig, info, p);
1329 read_unlock(&tasklist_lock);
1330 return ret;
1331}
1332
1333void
1334force_sig(int sig, struct task_struct *p)
1335{
b67a1b9e 1336 force_sig_info(sig, SEND_SIG_PRIV, p);
1da177e4
LT
1337}
1338
1339/*
1340 * When things go south during signal handling, we
1341 * will force a SIGSEGV. And if the signal that caused
1342 * the problem was already a SIGSEGV, we'll want to
1343 * make sure we don't even try to deliver the signal..
1344 */
1345int
1346force_sigsegv(int sig, struct task_struct *p)
1347{
1348 if (sig == SIGSEGV) {
1349 unsigned long flags;
1350 spin_lock_irqsave(&p->sighand->siglock, flags);
1351 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1352 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1353 }
1354 force_sig(SIGSEGV, p);
1355 return 0;
1356}
1357
1358int
1359kill_pg(pid_t pgrp, int sig, int priv)
1360{
b67a1b9e 1361 return kill_pg_info(sig, __si_special(priv), pgrp);
1da177e4
LT
1362}
1363
1364int
1365kill_proc(pid_t pid, int sig, int priv)
1366{
b67a1b9e 1367 return kill_proc_info(sig, __si_special(priv), pid);
1da177e4
LT
1368}
1369
1370/*
1371 * These functions support sending signals using preallocated sigqueue
1372 * structures. This is needed "because realtime applications cannot
1373 * afford to lose notifications of asynchronous events, like timer
1374 * expirations or I/O completions". In the case of Posix Timers
1375 * we allocate the sigqueue structure from the timer_create. If this
1376 * allocation fails we are able to report the failure to the application
1377 * with an EAGAIN error.
1378 */
1379
1380struct sigqueue *sigqueue_alloc(void)
1381{
1382 struct sigqueue *q;
1383
1384 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1385 q->flags |= SIGQUEUE_PREALLOC;
1386 return(q);
1387}
1388
1389void sigqueue_free(struct sigqueue *q)
1390{
1391 unsigned long flags;
1392 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1393 /*
1394 * If the signal is still pending remove it from the
1395 * pending queue.
1396 */
1397 if (unlikely(!list_empty(&q->list))) {
19a4fcb5
ON
1398 spinlock_t *lock = &current->sighand->siglock;
1399 read_lock(&tasklist_lock);
1400 spin_lock_irqsave(lock, flags);
1da177e4
LT
1401 if (!list_empty(&q->list))
1402 list_del_init(&q->list);
19a4fcb5 1403 spin_unlock_irqrestore(lock, flags);
1da177e4
LT
1404 read_unlock(&tasklist_lock);
1405 }
1406 q->flags &= ~SIGQUEUE_PREALLOC;
1407 __sigqueue_free(q);
1408}
1409
1410int
1411send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1412{
1413 unsigned long flags;
1414 int ret = 0;
e56d0903 1415 struct sighand_struct *sh;
1da177e4 1416
1da177e4 1417 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
e56d0903
IM
1418
1419 /*
1420 * The rcu based delayed sighand destroy makes it possible to
1421 * run this without tasklist lock held. The task struct itself
1422 * cannot go away as create_timer did get_task_struct().
1423 *
1424 * We return -1, when the task is marked exiting, so
1425 * posix_timer_event can redirect it to the group leader
1426 */
1427 rcu_read_lock();
e752dd6c
ON
1428
1429 if (unlikely(p->flags & PF_EXITING)) {
1430 ret = -1;
1431 goto out_err;
1432 }
1433
e56d0903
IM
1434retry:
1435 sh = rcu_dereference(p->sighand);
1436
1437 spin_lock_irqsave(&sh->siglock, flags);
1438 if (p->sighand != sh) {
1439 /* We raced with exec() in a multithreaded process... */
1440 spin_unlock_irqrestore(&sh->siglock, flags);
1441 goto retry;
1442 }
1443
1444 /*
1445 * We do the check here again to handle the following scenario:
1446 *
1447 * CPU 0 CPU 1
1448 * send_sigqueue
1449 * check PF_EXITING
1450 * interrupt exit code running
1451 * __exit_signal
1452 * lock sighand->siglock
1453 * unlock sighand->siglock
1454 * lock sh->siglock
1455 * add(tsk->pending) flush_sigqueue(tsk->pending)
1456 *
1457 */
1458
1459 if (unlikely(p->flags & PF_EXITING)) {
1460 ret = -1;
1461 goto out;
1462 }
e752dd6c 1463
1da177e4
LT
1464 if (unlikely(!list_empty(&q->list))) {
1465 /*
1466 * If an SI_TIMER entry is already queue just increment
1467 * the overrun count.
1468 */
1469 if (q->info.si_code != SI_TIMER)
1470 BUG();
1471 q->info.si_overrun++;
1472 goto out;
e752dd6c 1473 }
1da177e4
LT
1474 /* Short-circuit ignored signals. */
1475 if (sig_ignored(p, sig)) {
1476 ret = 1;
1477 goto out;
1478 }
1479
1da177e4
LT
1480 list_add_tail(&q->list, &p->pending.list);
1481 sigaddset(&p->pending.signal, sig);
1482 if (!sigismember(&p->blocked, sig))
1483 signal_wake_up(p, sig == SIGKILL);
1484
1485out:
e56d0903 1486 spin_unlock_irqrestore(&sh->siglock, flags);
e752dd6c 1487out_err:
e56d0903 1488 rcu_read_unlock();
e752dd6c
ON
1489
1490 return ret;
1da177e4
LT
1491}
1492
1493int
1494send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1495{
1496 unsigned long flags;
1497 int ret = 0;
1498
1499 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
e56d0903 1500
1da177e4 1501 read_lock(&tasklist_lock);
e56d0903 1502 /* Since it_lock is held, p->sighand cannot be NULL. */
1da177e4
LT
1503 spin_lock_irqsave(&p->sighand->siglock, flags);
1504 handle_stop_signal(sig, p);
1505
1506 /* Short-circuit ignored signals. */
1507 if (sig_ignored(p, sig)) {
1508 ret = 1;
1509 goto out;
1510 }
1511
1512 if (unlikely(!list_empty(&q->list))) {
1513 /*
1514 * If an SI_TIMER entry is already queue just increment
1515 * the overrun count. Other uses should not try to
1516 * send the signal multiple times.
1517 */
1518 if (q->info.si_code != SI_TIMER)
1519 BUG();
1520 q->info.si_overrun++;
1521 goto out;
1522 }
1523
1524 /*
1525 * Put this signal on the shared-pending queue.
1526 * We always use the shared queue for process-wide signals,
1527 * to avoid several races.
1528 */
1da177e4
LT
1529 list_add_tail(&q->list, &p->signal->shared_pending.list);
1530 sigaddset(&p->signal->shared_pending.signal, sig);
1531
1532 __group_complete_signal(sig, p);
1533out:
1534 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1535 read_unlock(&tasklist_lock);
e56d0903 1536 return ret;
1da177e4
LT
1537}
1538
1539/*
1540 * Wake up any threads in the parent blocked in wait* syscalls.
1541 */
1542static inline void __wake_up_parent(struct task_struct *p,
1543 struct task_struct *parent)
1544{
1545 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1546}
1547
1548/*
1549 * Let a parent know about the death of a child.
1550 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1551 */
1552
1553void do_notify_parent(struct task_struct *tsk, int sig)
1554{
1555 struct siginfo info;
1556 unsigned long flags;
1557 struct sighand_struct *psig;
1558
1559 BUG_ON(sig == -1);
1560
1561 /* do_notify_parent_cldstop should have been called instead. */
1562 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1563
1564 BUG_ON(!tsk->ptrace &&
1565 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1566
1567 info.si_signo = sig;
1568 info.si_errno = 0;
1569 info.si_pid = tsk->pid;
1570 info.si_uid = tsk->uid;
1571
1572 /* FIXME: find out whether or not this is supposed to be c*time. */
1573 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1574 tsk->signal->utime));
1575 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1576 tsk->signal->stime));
1577
1578 info.si_status = tsk->exit_code & 0x7f;
1579 if (tsk->exit_code & 0x80)
1580 info.si_code = CLD_DUMPED;
1581 else if (tsk->exit_code & 0x7f)
1582 info.si_code = CLD_KILLED;
1583 else {
1584 info.si_code = CLD_EXITED;
1585 info.si_status = tsk->exit_code >> 8;
1586 }
1587
1588 psig = tsk->parent->sighand;
1589 spin_lock_irqsave(&psig->siglock, flags);
7ed0175a 1590 if (!tsk->ptrace && sig == SIGCHLD &&
1da177e4
LT
1591 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1592 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1593 /*
1594 * We are exiting and our parent doesn't care. POSIX.1
1595 * defines special semantics for setting SIGCHLD to SIG_IGN
1596 * or setting the SA_NOCLDWAIT flag: we should be reaped
1597 * automatically and not left for our parent's wait4 call.
1598 * Rather than having the parent do it as a magic kind of
1599 * signal handler, we just set this to tell do_exit that we
1600 * can be cleaned up without becoming a zombie. Note that
1601 * we still call __wake_up_parent in this case, because a
1602 * blocked sys_wait4 might now return -ECHILD.
1603 *
1604 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1605 * is implementation-defined: we do (if you don't want
1606 * it, just use SIG_IGN instead).
1607 */
1608 tsk->exit_signal = -1;
1609 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1610 sig = 0;
1611 }
7ed20e1a 1612 if (valid_signal(sig) && sig > 0)
1da177e4
LT
1613 __group_send_sig_info(sig, &info, tsk->parent);
1614 __wake_up_parent(tsk, tsk->parent);
1615 spin_unlock_irqrestore(&psig->siglock, flags);
1616}
1617
bc505a47 1618static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1da177e4
LT
1619{
1620 struct siginfo info;
1621 unsigned long flags;
bc505a47 1622 struct task_struct *parent;
1da177e4
LT
1623 struct sighand_struct *sighand;
1624
bc505a47
ON
1625 if (to_self)
1626 parent = tsk->parent;
1627 else {
1628 tsk = tsk->group_leader;
1629 parent = tsk->real_parent;
1630 }
1631
1da177e4
LT
1632 info.si_signo = SIGCHLD;
1633 info.si_errno = 0;
1634 info.si_pid = tsk->pid;
1635 info.si_uid = tsk->uid;
1636
1637 /* FIXME: find out whether or not this is supposed to be c*time. */
1638 info.si_utime = cputime_to_jiffies(tsk->utime);
1639 info.si_stime = cputime_to_jiffies(tsk->stime);
1640
1641 info.si_code = why;
1642 switch (why) {
1643 case CLD_CONTINUED:
1644 info.si_status = SIGCONT;
1645 break;
1646 case CLD_STOPPED:
1647 info.si_status = tsk->signal->group_exit_code & 0x7f;
1648 break;
1649 case CLD_TRAPPED:
1650 info.si_status = tsk->exit_code & 0x7f;
1651 break;
1652 default:
1653 BUG();
1654 }
1655
1656 sighand = parent->sighand;
1657 spin_lock_irqsave(&sighand->siglock, flags);
1658 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1659 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1660 __group_send_sig_info(SIGCHLD, &info, parent);
1661 /*
1662 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1663 */
1664 __wake_up_parent(tsk, parent);
1665 spin_unlock_irqrestore(&sighand->siglock, flags);
1666}
1667
1668/*
1669 * This must be called with current->sighand->siglock held.
1670 *
1671 * This should be the path for all ptrace stops.
1672 * We always set current->last_siginfo while stopped here.
1673 * That makes it a way to test a stopped process for
1674 * being ptrace-stopped vs being job-control-stopped.
1675 *
1676 * If we actually decide not to stop at all because the tracer is gone,
1677 * we leave nostop_code in current->exit_code.
1678 */
1679static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1680{
1681 /*
1682 * If there is a group stop in progress,
1683 * we must participate in the bookkeeping.
1684 */
1685 if (current->signal->group_stop_count > 0)
1686 --current->signal->group_stop_count;
1687
1688 current->last_siginfo = info;
1689 current->exit_code = exit_code;
1690
1691 /* Let the debugger run. */
1692 set_current_state(TASK_TRACED);
1693 spin_unlock_irq(&current->sighand->siglock);
1694 read_lock(&tasklist_lock);
1695 if (likely(current->ptrace & PT_PTRACED) &&
1696 likely(current->parent != current->real_parent ||
1697 !(current->ptrace & PT_ATTACHED)) &&
1698 (likely(current->parent->signal != current->signal) ||
1699 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
bc505a47 1700 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1da177e4
LT
1701 read_unlock(&tasklist_lock);
1702 schedule();
1703 } else {
1704 /*
1705 * By the time we got the lock, our tracer went away.
1706 * Don't stop here.
1707 */
1708 read_unlock(&tasklist_lock);
1709 set_current_state(TASK_RUNNING);
1710 current->exit_code = nostop_code;
1711 }
1712
1713 /*
1714 * We are back. Now reacquire the siglock before touching
1715 * last_siginfo, so that we are sure to have synchronized with
1716 * any signal-sending on another CPU that wants to examine it.
1717 */
1718 spin_lock_irq(&current->sighand->siglock);
1719 current->last_siginfo = NULL;
1720
1721 /*
1722 * Queued signals ignored us while we were stopped for tracing.
1723 * So check for any that we should take before resuming user mode.
1724 */
1725 recalc_sigpending();
1726}
1727
1728void ptrace_notify(int exit_code)
1729{
1730 siginfo_t info;
1731
1732 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1733
1734 memset(&info, 0, sizeof info);
1735 info.si_signo = SIGTRAP;
1736 info.si_code = exit_code;
1737 info.si_pid = current->pid;
1738 info.si_uid = current->uid;
1739
1740 /* Let the debugger run. */
1741 spin_lock_irq(&current->sighand->siglock);
1742 ptrace_stop(exit_code, 0, &info);
1743 spin_unlock_irq(&current->sighand->siglock);
1744}
1745
1da177e4
LT
1746static void
1747finish_stop(int stop_count)
1748{
bc505a47
ON
1749 int to_self;
1750
1da177e4
LT
1751 /*
1752 * If there are no other threads in the group, or if there is
1753 * a group stop in progress and we are the last to stop,
1754 * report to the parent. When ptraced, every thread reports itself.
1755 */
bc505a47
ON
1756 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1757 to_self = 1;
1758 else if (stop_count == 0)
1759 to_self = 0;
1760 else
1761 goto out;
1da177e4 1762
bc505a47
ON
1763 read_lock(&tasklist_lock);
1764 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1765 read_unlock(&tasklist_lock);
1766
1767out:
1da177e4
LT
1768 schedule();
1769 /*
1770 * Now we don't run again until continued.
1771 */
1772 current->exit_code = 0;
1773}
1774
1775/*
1776 * This performs the stopping for SIGSTOP and other stop signals.
1777 * We have to stop all threads in the thread group.
1778 * Returns nonzero if we've actually stopped and released the siglock.
1779 * Returns zero if we didn't stop and still hold the siglock.
1780 */
1781static int
1782do_signal_stop(int signr)
1783{
1784 struct signal_struct *sig = current->signal;
1785 struct sighand_struct *sighand = current->sighand;
1786 int stop_count = -1;
1787
1788 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1789 return 0;
1790
1791 if (sig->group_stop_count > 0) {
1792 /*
1793 * There is a group stop in progress. We don't need to
1794 * start another one.
1795 */
1796 signr = sig->group_exit_code;
1797 stop_count = --sig->group_stop_count;
1798 current->exit_code = signr;
1799 set_current_state(TASK_STOPPED);
1800 if (stop_count == 0)
1801 sig->flags = SIGNAL_STOP_STOPPED;
1802 spin_unlock_irq(&sighand->siglock);
1803 }
1804 else if (thread_group_empty(current)) {
1805 /*
1806 * Lock must be held through transition to stopped state.
1807 */
1808 current->exit_code = current->signal->group_exit_code = signr;
1809 set_current_state(TASK_STOPPED);
1810 sig->flags = SIGNAL_STOP_STOPPED;
1811 spin_unlock_irq(&sighand->siglock);
1812 }
1813 else {
1814 /*
1815 * There is no group stop already in progress.
1816 * We must initiate one now, but that requires
1817 * dropping siglock to get both the tasklist lock
1818 * and siglock again in the proper order. Note that
1819 * this allows an intervening SIGCONT to be posted.
1820 * We need to check for that and bail out if necessary.
1821 */
1822 struct task_struct *t;
1823
1824 spin_unlock_irq(&sighand->siglock);
1825
1826 /* signals can be posted during this window */
1827
1828 read_lock(&tasklist_lock);
1829 spin_lock_irq(&sighand->siglock);
1830
1831 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1832 /*
1833 * Another stop or continue happened while we
1834 * didn't have the lock. We can just swallow this
1835 * signal now. If we raced with a SIGCONT, that
1836 * should have just cleared it now. If we raced
1837 * with another processor delivering a stop signal,
1838 * then the SIGCONT that wakes us up should clear it.
1839 */
1840 read_unlock(&tasklist_lock);
1841 return 0;
1842 }
1843
1844 if (sig->group_stop_count == 0) {
1845 sig->group_exit_code = signr;
1846 stop_count = 0;
1847 for (t = next_thread(current); t != current;
1848 t = next_thread(t))
1849 /*
1850 * Setting state to TASK_STOPPED for a group
1851 * stop is always done with the siglock held,
1852 * so this check has no races.
1853 */
5acbc5cb
RM
1854 if (!t->exit_state &&
1855 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1da177e4
LT
1856 stop_count++;
1857 signal_wake_up(t, 0);
1858 }
1859 sig->group_stop_count = stop_count;
1860 }
1861 else {
1862 /* A race with another thread while unlocked. */
1863 signr = sig->group_exit_code;
1864 stop_count = --sig->group_stop_count;
1865 }
1866
1867 current->exit_code = signr;
1868 set_current_state(TASK_STOPPED);
1869 if (stop_count == 0)
1870 sig->flags = SIGNAL_STOP_STOPPED;
1871
1872 spin_unlock_irq(&sighand->siglock);
1873 read_unlock(&tasklist_lock);
1874 }
1875
1876 finish_stop(stop_count);
1877 return 1;
1878}
1879
1880/*
1881 * Do appropriate magic when group_stop_count > 0.
1882 * We return nonzero if we stopped, after releasing the siglock.
1883 * We return zero if we still hold the siglock and should look
1884 * for another signal without checking group_stop_count again.
1885 */
1886static inline int handle_group_stop(void)
1887{
1888 int stop_count;
1889
1890 if (current->signal->group_exit_task == current) {
1891 /*
1892 * Group stop is so we can do a core dump,
1893 * We are the initiating thread, so get on with it.
1894 */
1895 current->signal->group_exit_task = NULL;
1896 return 0;
1897 }
1898
1899 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1900 /*
1901 * Group stop is so another thread can do a core dump,
1902 * or else we are racing against a death signal.
1903 * Just punt the stop so we can get the next signal.
1904 */
1905 return 0;
1906
1907 /*
1908 * There is a group stop in progress. We stop
1909 * without any associated signal being in our queue.
1910 */
1911 stop_count = --current->signal->group_stop_count;
1912 if (stop_count == 0)
1913 current->signal->flags = SIGNAL_STOP_STOPPED;
1914 current->exit_code = current->signal->group_exit_code;
1915 set_current_state(TASK_STOPPED);
1916 spin_unlock_irq(&current->sighand->siglock);
1917 finish_stop(stop_count);
1918 return 1;
1919}
1920
1921int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1922 struct pt_regs *regs, void *cookie)
1923{
1924 sigset_t *mask = &current->blocked;
1925 int signr = 0;
1926
1927relock:
1928 spin_lock_irq(&current->sighand->siglock);
1929 for (;;) {
1930 struct k_sigaction *ka;
1931
1932 if (unlikely(current->signal->group_stop_count > 0) &&
1933 handle_group_stop())
1934 goto relock;
1935
1936 signr = dequeue_signal(current, mask, info);
1937
1938 if (!signr)
1939 break; /* will return 0 */
1940
1941 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1942 ptrace_signal_deliver(regs, cookie);
1943
1944 /* Let the debugger run. */
1945 ptrace_stop(signr, signr, info);
1946
30e0fca6 1947 /* We're back. Did the debugger cancel the sig or group_exit? */
1da177e4 1948 signr = current->exit_code;
30e0fca6 1949 if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT)
1da177e4
LT
1950 continue;
1951
1952 current->exit_code = 0;
1953
1954 /* Update the siginfo structure if the signal has
1955 changed. If the debugger wanted something
1956 specific in the siginfo structure then it should
1957 have updated *info via PTRACE_SETSIGINFO. */
1958 if (signr != info->si_signo) {
1959 info->si_signo = signr;
1960 info->si_errno = 0;
1961 info->si_code = SI_USER;
1962 info->si_pid = current->parent->pid;
1963 info->si_uid = current->parent->uid;
1964 }
1965
1966 /* If the (new) signal is now blocked, requeue it. */
1967 if (sigismember(&current->blocked, signr)) {
1968 specific_send_sig_info(signr, info, current);
1969 continue;
1970 }
1971 }
1972
1973 ka = &current->sighand->action[signr-1];
1974 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1975 continue;
1976 if (ka->sa.sa_handler != SIG_DFL) {
1977 /* Run the handler. */
1978 *return_ka = *ka;
1979
1980 if (ka->sa.sa_flags & SA_ONESHOT)
1981 ka->sa.sa_handler = SIG_DFL;
1982
1983 break; /* will return non-zero "signr" value */
1984 }
1985
1986 /*
1987 * Now we are doing the default action for this signal.
1988 */
1989 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1990 continue;
1991
1992 /* Init gets no signals it doesn't want. */
1993 if (current->pid == 1)
1994 continue;
1995
1996 if (sig_kernel_stop(signr)) {
1997 /*
1998 * The default action is to stop all threads in
1999 * the thread group. The job control signals
2000 * do nothing in an orphaned pgrp, but SIGSTOP
2001 * always works. Note that siglock needs to be
2002 * dropped during the call to is_orphaned_pgrp()
2003 * because of lock ordering with tasklist_lock.
2004 * This allows an intervening SIGCONT to be posted.
2005 * We need to check for that and bail out if necessary.
2006 */
2007 if (signr != SIGSTOP) {
2008 spin_unlock_irq(&current->sighand->siglock);
2009
2010 /* signals can be posted during this window */
2011
2012 if (is_orphaned_pgrp(process_group(current)))
2013 goto relock;
2014
2015 spin_lock_irq(&current->sighand->siglock);
2016 }
2017
2018 if (likely(do_signal_stop(signr))) {
2019 /* It released the siglock. */
2020 goto relock;
2021 }
2022
2023 /*
2024 * We didn't actually stop, due to a race
2025 * with SIGCONT or something like that.
2026 */
2027 continue;
2028 }
2029
2030 spin_unlock_irq(&current->sighand->siglock);
2031
2032 /*
2033 * Anything else is fatal, maybe with a core dump.
2034 */
2035 current->flags |= PF_SIGNALED;
2036 if (sig_kernel_coredump(signr)) {
2037 /*
2038 * If it was able to dump core, this kills all
2039 * other threads in the group and synchronizes with
2040 * their demise. If we lost the race with another
2041 * thread getting here, it set group_exit_code
2042 * first and our do_group_exit call below will use
2043 * that value and ignore the one we pass it.
2044 */
2045 do_coredump((long)signr, signr, regs);
2046 }
2047
2048 /*
2049 * Death signals, no core dump.
2050 */
2051 do_group_exit(signr);
2052 /* NOTREACHED */
2053 }
2054 spin_unlock_irq(&current->sighand->siglock);
2055 return signr;
2056}
2057
1da177e4
LT
2058EXPORT_SYMBOL(recalc_sigpending);
2059EXPORT_SYMBOL_GPL(dequeue_signal);
2060EXPORT_SYMBOL(flush_signals);
2061EXPORT_SYMBOL(force_sig);
2062EXPORT_SYMBOL(kill_pg);
2063EXPORT_SYMBOL(kill_proc);
2064EXPORT_SYMBOL(ptrace_notify);
2065EXPORT_SYMBOL(send_sig);
2066EXPORT_SYMBOL(send_sig_info);
2067EXPORT_SYMBOL(sigprocmask);
2068EXPORT_SYMBOL(block_all_signals);
2069EXPORT_SYMBOL(unblock_all_signals);
2070
2071
2072/*
2073 * System call entry points.
2074 */
2075
2076asmlinkage long sys_restart_syscall(void)
2077{
2078 struct restart_block *restart = &current_thread_info()->restart_block;
2079 return restart->fn(restart);
2080}
2081
2082long do_no_restart_syscall(struct restart_block *param)
2083{
2084 return -EINTR;
2085}
2086
2087/*
2088 * We don't need to get the kernel lock - this is all local to this
2089 * particular thread.. (and that's good, because this is _heavily_
2090 * used by various programs)
2091 */
2092
2093/*
2094 * This is also useful for kernel threads that want to temporarily
2095 * (or permanently) block certain signals.
2096 *
2097 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2098 * interface happily blocks "unblockable" signals like SIGKILL
2099 * and friends.
2100 */
2101int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2102{
2103 int error;
2104 sigset_t old_block;
2105
2106 spin_lock_irq(&current->sighand->siglock);
2107 old_block = current->blocked;
2108 error = 0;
2109 switch (how) {
2110 case SIG_BLOCK:
2111 sigorsets(&current->blocked, &current->blocked, set);
2112 break;
2113 case SIG_UNBLOCK:
2114 signandsets(&current->blocked, &current->blocked, set);
2115 break;
2116 case SIG_SETMASK:
2117 current->blocked = *set;
2118 break;
2119 default:
2120 error = -EINVAL;
2121 }
2122 recalc_sigpending();
2123 spin_unlock_irq(&current->sighand->siglock);
2124 if (oldset)
2125 *oldset = old_block;
2126 return error;
2127}
2128
2129asmlinkage long
2130sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2131{
2132 int error = -EINVAL;
2133 sigset_t old_set, new_set;
2134
2135 /* XXX: Don't preclude handling different sized sigset_t's. */
2136 if (sigsetsize != sizeof(sigset_t))
2137 goto out;
2138
2139 if (set) {
2140 error = -EFAULT;
2141 if (copy_from_user(&new_set, set, sizeof(*set)))
2142 goto out;
2143 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2144
2145 error = sigprocmask(how, &new_set, &old_set);
2146 if (error)
2147 goto out;
2148 if (oset)
2149 goto set_old;
2150 } else if (oset) {
2151 spin_lock_irq(&current->sighand->siglock);
2152 old_set = current->blocked;
2153 spin_unlock_irq(&current->sighand->siglock);
2154
2155 set_old:
2156 error = -EFAULT;
2157 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2158 goto out;
2159 }
2160 error = 0;
2161out:
2162 return error;
2163}
2164
2165long do_sigpending(void __user *set, unsigned long sigsetsize)
2166{
2167 long error = -EINVAL;
2168 sigset_t pending;
2169
2170 if (sigsetsize > sizeof(sigset_t))
2171 goto out;
2172
2173 spin_lock_irq(&current->sighand->siglock);
2174 sigorsets(&pending, &current->pending.signal,
2175 &current->signal->shared_pending.signal);
2176 spin_unlock_irq(&current->sighand->siglock);
2177
2178 /* Outside the lock because only this thread touches it. */
2179 sigandsets(&pending, &current->blocked, &pending);
2180
2181 error = -EFAULT;
2182 if (!copy_to_user(set, &pending, sigsetsize))
2183 error = 0;
2184
2185out:
2186 return error;
2187}
2188
2189asmlinkage long
2190sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2191{
2192 return do_sigpending(set, sigsetsize);
2193}
2194
2195#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2196
2197int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2198{
2199 int err;
2200
2201 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2202 return -EFAULT;
2203 if (from->si_code < 0)
2204 return __copy_to_user(to, from, sizeof(siginfo_t))
2205 ? -EFAULT : 0;
2206 /*
2207 * If you change siginfo_t structure, please be sure
2208 * this code is fixed accordingly.
2209 * It should never copy any pad contained in the structure
2210 * to avoid security leaks, but must copy the generic
2211 * 3 ints plus the relevant union member.
2212 */
2213 err = __put_user(from->si_signo, &to->si_signo);
2214 err |= __put_user(from->si_errno, &to->si_errno);
2215 err |= __put_user((short)from->si_code, &to->si_code);
2216 switch (from->si_code & __SI_MASK) {
2217 case __SI_KILL:
2218 err |= __put_user(from->si_pid, &to->si_pid);
2219 err |= __put_user(from->si_uid, &to->si_uid);
2220 break;
2221 case __SI_TIMER:
2222 err |= __put_user(from->si_tid, &to->si_tid);
2223 err |= __put_user(from->si_overrun, &to->si_overrun);
2224 err |= __put_user(from->si_ptr, &to->si_ptr);
2225 break;
2226 case __SI_POLL:
2227 err |= __put_user(from->si_band, &to->si_band);
2228 err |= __put_user(from->si_fd, &to->si_fd);
2229 break;
2230 case __SI_FAULT:
2231 err |= __put_user(from->si_addr, &to->si_addr);
2232#ifdef __ARCH_SI_TRAPNO
2233 err |= __put_user(from->si_trapno, &to->si_trapno);
2234#endif
2235 break;
2236 case __SI_CHLD:
2237 err |= __put_user(from->si_pid, &to->si_pid);
2238 err |= __put_user(from->si_uid, &to->si_uid);
2239 err |= __put_user(from->si_status, &to->si_status);
2240 err |= __put_user(from->si_utime, &to->si_utime);
2241 err |= __put_user(from->si_stime, &to->si_stime);
2242 break;
2243 case __SI_RT: /* This is not generated by the kernel as of now. */
2244 case __SI_MESGQ: /* But this is */
2245 err |= __put_user(from->si_pid, &to->si_pid);
2246 err |= __put_user(from->si_uid, &to->si_uid);
2247 err |= __put_user(from->si_ptr, &to->si_ptr);
2248 break;
2249 default: /* this is just in case for now ... */
2250 err |= __put_user(from->si_pid, &to->si_pid);
2251 err |= __put_user(from->si_uid, &to->si_uid);
2252 break;
2253 }
2254 return err;
2255}
2256
2257#endif
2258
2259asmlinkage long
2260sys_rt_sigtimedwait(const sigset_t __user *uthese,
2261 siginfo_t __user *uinfo,
2262 const struct timespec __user *uts,
2263 size_t sigsetsize)
2264{
2265 int ret, sig;
2266 sigset_t these;
2267 struct timespec ts;
2268 siginfo_t info;
2269 long timeout = 0;
2270
2271 /* XXX: Don't preclude handling different sized sigset_t's. */
2272 if (sigsetsize != sizeof(sigset_t))
2273 return -EINVAL;
2274
2275 if (copy_from_user(&these, uthese, sizeof(these)))
2276 return -EFAULT;
2277
2278 /*
2279 * Invert the set of allowed signals to get those we
2280 * want to block.
2281 */
2282 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2283 signotset(&these);
2284
2285 if (uts) {
2286 if (copy_from_user(&ts, uts, sizeof(ts)))
2287 return -EFAULT;
2288 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2289 || ts.tv_sec < 0)
2290 return -EINVAL;
2291 }
2292
2293 spin_lock_irq(&current->sighand->siglock);
2294 sig = dequeue_signal(current, &these, &info);
2295 if (!sig) {
2296 timeout = MAX_SCHEDULE_TIMEOUT;
2297 if (uts)
2298 timeout = (timespec_to_jiffies(&ts)
2299 + (ts.tv_sec || ts.tv_nsec));
2300
2301 if (timeout) {
2302 /* None ready -- temporarily unblock those we're
2303 * interested while we are sleeping in so that we'll
2304 * be awakened when they arrive. */
2305 current->real_blocked = current->blocked;
2306 sigandsets(&current->blocked, &current->blocked, &these);
2307 recalc_sigpending();
2308 spin_unlock_irq(&current->sighand->siglock);
2309
75bcc8c5 2310 timeout = schedule_timeout_interruptible(timeout);
1da177e4 2311
3e1d1d28 2312 try_to_freeze();
1da177e4
LT
2313 spin_lock_irq(&current->sighand->siglock);
2314 sig = dequeue_signal(current, &these, &info);
2315 current->blocked = current->real_blocked;
2316 siginitset(&current->real_blocked, 0);
2317 recalc_sigpending();
2318 }
2319 }
2320 spin_unlock_irq(&current->sighand->siglock);
2321
2322 if (sig) {
2323 ret = sig;
2324 if (uinfo) {
2325 if (copy_siginfo_to_user(uinfo, &info))
2326 ret = -EFAULT;
2327 }
2328 } else {
2329 ret = -EAGAIN;
2330 if (timeout)
2331 ret = -EINTR;
2332 }
2333
2334 return ret;
2335}
2336
2337asmlinkage long
2338sys_kill(int pid, int sig)
2339{
2340 struct siginfo info;
2341
2342 info.si_signo = sig;
2343 info.si_errno = 0;
2344 info.si_code = SI_USER;
2345 info.si_pid = current->tgid;
2346 info.si_uid = current->uid;
2347
2348 return kill_something_info(sig, &info, pid);
2349}
2350
6dd69f10 2351static int do_tkill(int tgid, int pid, int sig)
1da177e4 2352{
1da177e4 2353 int error;
6dd69f10 2354 struct siginfo info;
1da177e4
LT
2355 struct task_struct *p;
2356
6dd69f10 2357 error = -ESRCH;
1da177e4
LT
2358 info.si_signo = sig;
2359 info.si_errno = 0;
2360 info.si_code = SI_TKILL;
2361 info.si_pid = current->tgid;
2362 info.si_uid = current->uid;
2363
2364 read_lock(&tasklist_lock);
2365 p = find_task_by_pid(pid);
6dd69f10 2366 if (p && (tgid <= 0 || p->tgid == tgid)) {
1da177e4
LT
2367 error = check_kill_permission(sig, &info, p);
2368 /*
2369 * The null signal is a permissions and process existence
2370 * probe. No signal is actually delivered.
2371 */
2372 if (!error && sig && p->sighand) {
2373 spin_lock_irq(&p->sighand->siglock);
2374 handle_stop_signal(sig, p);
2375 error = specific_send_sig_info(sig, &info, p);
2376 spin_unlock_irq(&p->sighand->siglock);
2377 }
2378 }
2379 read_unlock(&tasklist_lock);
6dd69f10 2380
1da177e4
LT
2381 return error;
2382}
2383
6dd69f10
VL
2384/**
2385 * sys_tgkill - send signal to one specific thread
2386 * @tgid: the thread group ID of the thread
2387 * @pid: the PID of the thread
2388 * @sig: signal to be sent
2389 *
2390 * This syscall also checks the tgid and returns -ESRCH even if the PID
2391 * exists but it's not belonging to the target process anymore. This
2392 * method solves the problem of threads exiting and PIDs getting reused.
2393 */
2394asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2395{
2396 /* This is only valid for single tasks */
2397 if (pid <= 0 || tgid <= 0)
2398 return -EINVAL;
2399
2400 return do_tkill(tgid, pid, sig);
2401}
2402
1da177e4
LT
2403/*
2404 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2405 */
2406asmlinkage long
2407sys_tkill(int pid, int sig)
2408{
1da177e4
LT
2409 /* This is only valid for single tasks */
2410 if (pid <= 0)
2411 return -EINVAL;
2412
6dd69f10 2413 return do_tkill(0, pid, sig);
1da177e4
LT
2414}
2415
2416asmlinkage long
2417sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2418{
2419 siginfo_t info;
2420
2421 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2422 return -EFAULT;
2423
2424 /* Not even root can pretend to send signals from the kernel.
2425 Nor can they impersonate a kill(), which adds source info. */
2426 if (info.si_code >= 0)
2427 return -EPERM;
2428 info.si_signo = sig;
2429
2430 /* POSIX.1b doesn't mention process groups. */
2431 return kill_proc_info(sig, &info, pid);
2432}
2433
2434int
2435do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2436{
2437 struct k_sigaction *k;
71fabd5e 2438 sigset_t mask;
1da177e4 2439
7ed20e1a 2440 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
1da177e4
LT
2441 return -EINVAL;
2442
2443 k = &current->sighand->action[sig-1];
2444
2445 spin_lock_irq(&current->sighand->siglock);
2446 if (signal_pending(current)) {
2447 /*
2448 * If there might be a fatal signal pending on multiple
2449 * threads, make sure we take it before changing the action.
2450 */
2451 spin_unlock_irq(&current->sighand->siglock);
2452 return -ERESTARTNOINTR;
2453 }
2454
2455 if (oact)
2456 *oact = *k;
2457
2458 if (act) {
2459 /*
2460 * POSIX 3.3.1.3:
2461 * "Setting a signal action to SIG_IGN for a signal that is
2462 * pending shall cause the pending signal to be discarded,
2463 * whether or not it is blocked."
2464 *
2465 * "Setting a signal action to SIG_DFL for a signal that is
2466 * pending and whose default action is to ignore the signal
2467 * (for example, SIGCHLD), shall cause the pending signal to
2468 * be discarded, whether or not it is blocked"
2469 */
2470 if (act->sa.sa_handler == SIG_IGN ||
2471 (act->sa.sa_handler == SIG_DFL &&
2472 sig_kernel_ignore(sig))) {
2473 /*
2474 * This is a fairly rare case, so we only take the
2475 * tasklist_lock once we're sure we'll need it.
2476 * Now we must do this little unlock and relock
2477 * dance to maintain the lock hierarchy.
2478 */
2479 struct task_struct *t = current;
2480 spin_unlock_irq(&t->sighand->siglock);
2481 read_lock(&tasklist_lock);
2482 spin_lock_irq(&t->sighand->siglock);
2483 *k = *act;
2484 sigdelsetmask(&k->sa.sa_mask,
2485 sigmask(SIGKILL) | sigmask(SIGSTOP));
71fabd5e
GA
2486 sigemptyset(&mask);
2487 sigaddset(&mask, sig);
2488 rm_from_queue_full(&mask, &t->signal->shared_pending);
1da177e4 2489 do {
71fabd5e 2490 rm_from_queue_full(&mask, &t->pending);
1da177e4
LT
2491 recalc_sigpending_tsk(t);
2492 t = next_thread(t);
2493 } while (t != current);
2494 spin_unlock_irq(&current->sighand->siglock);
2495 read_unlock(&tasklist_lock);
2496 return 0;
2497 }
2498
2499 *k = *act;
2500 sigdelsetmask(&k->sa.sa_mask,
2501 sigmask(SIGKILL) | sigmask(SIGSTOP));
2502 }
2503
2504 spin_unlock_irq(&current->sighand->siglock);
2505 return 0;
2506}
2507
2508int
2509do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2510{
2511 stack_t oss;
2512 int error;
2513
2514 if (uoss) {
2515 oss.ss_sp = (void __user *) current->sas_ss_sp;
2516 oss.ss_size = current->sas_ss_size;
2517 oss.ss_flags = sas_ss_flags(sp);
2518 }
2519
2520 if (uss) {
2521 void __user *ss_sp;
2522 size_t ss_size;
2523 int ss_flags;
2524
2525 error = -EFAULT;
2526 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2527 || __get_user(ss_sp, &uss->ss_sp)
2528 || __get_user(ss_flags, &uss->ss_flags)
2529 || __get_user(ss_size, &uss->ss_size))
2530 goto out;
2531
2532 error = -EPERM;
2533 if (on_sig_stack(sp))
2534 goto out;
2535
2536 error = -EINVAL;
2537 /*
2538 *
2539 * Note - this code used to test ss_flags incorrectly
2540 * old code may have been written using ss_flags==0
2541 * to mean ss_flags==SS_ONSTACK (as this was the only
2542 * way that worked) - this fix preserves that older
2543 * mechanism
2544 */
2545 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2546 goto out;
2547
2548 if (ss_flags == SS_DISABLE) {
2549 ss_size = 0;
2550 ss_sp = NULL;
2551 } else {
2552 error = -ENOMEM;
2553 if (ss_size < MINSIGSTKSZ)
2554 goto out;
2555 }
2556
2557 current->sas_ss_sp = (unsigned long) ss_sp;
2558 current->sas_ss_size = ss_size;
2559 }
2560
2561 if (uoss) {
2562 error = -EFAULT;
2563 if (copy_to_user(uoss, &oss, sizeof(oss)))
2564 goto out;
2565 }
2566
2567 error = 0;
2568out:
2569 return error;
2570}
2571
2572#ifdef __ARCH_WANT_SYS_SIGPENDING
2573
2574asmlinkage long
2575sys_sigpending(old_sigset_t __user *set)
2576{
2577 return do_sigpending(set, sizeof(*set));
2578}
2579
2580#endif
2581
2582#ifdef __ARCH_WANT_SYS_SIGPROCMASK
2583/* Some platforms have their own version with special arguments others
2584 support only sys_rt_sigprocmask. */
2585
2586asmlinkage long
2587sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2588{
2589 int error;
2590 old_sigset_t old_set, new_set;
2591
2592 if (set) {
2593 error = -EFAULT;
2594 if (copy_from_user(&new_set, set, sizeof(*set)))
2595 goto out;
2596 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2597
2598 spin_lock_irq(&current->sighand->siglock);
2599 old_set = current->blocked.sig[0];
2600
2601 error = 0;
2602 switch (how) {
2603 default:
2604 error = -EINVAL;
2605 break;
2606 case SIG_BLOCK:
2607 sigaddsetmask(&current->blocked, new_set);
2608 break;
2609 case SIG_UNBLOCK:
2610 sigdelsetmask(&current->blocked, new_set);
2611 break;
2612 case SIG_SETMASK:
2613 current->blocked.sig[0] = new_set;
2614 break;
2615 }
2616
2617 recalc_sigpending();
2618 spin_unlock_irq(&current->sighand->siglock);
2619 if (error)
2620 goto out;
2621 if (oset)
2622 goto set_old;
2623 } else if (oset) {
2624 old_set = current->blocked.sig[0];
2625 set_old:
2626 error = -EFAULT;
2627 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2628 goto out;
2629 }
2630 error = 0;
2631out:
2632 return error;
2633}
2634#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2635
2636#ifdef __ARCH_WANT_SYS_RT_SIGACTION
2637asmlinkage long
2638sys_rt_sigaction(int sig,
2639 const struct sigaction __user *act,
2640 struct sigaction __user *oact,
2641 size_t sigsetsize)
2642{
2643 struct k_sigaction new_sa, old_sa;
2644 int ret = -EINVAL;
2645
2646 /* XXX: Don't preclude handling different sized sigset_t's. */
2647 if (sigsetsize != sizeof(sigset_t))
2648 goto out;
2649
2650 if (act) {
2651 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2652 return -EFAULT;
2653 }
2654
2655 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2656
2657 if (!ret && oact) {
2658 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2659 return -EFAULT;
2660 }
2661out:
2662 return ret;
2663}
2664#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2665
2666#ifdef __ARCH_WANT_SYS_SGETMASK
2667
2668/*
2669 * For backwards compatibility. Functionality superseded by sigprocmask.
2670 */
2671asmlinkage long
2672sys_sgetmask(void)
2673{
2674 /* SMP safe */
2675 return current->blocked.sig[0];
2676}
2677
2678asmlinkage long
2679sys_ssetmask(int newmask)
2680{
2681 int old;
2682
2683 spin_lock_irq(&current->sighand->siglock);
2684 old = current->blocked.sig[0];
2685
2686 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2687 sigmask(SIGSTOP)));
2688 recalc_sigpending();
2689 spin_unlock_irq(&current->sighand->siglock);
2690
2691 return old;
2692}
2693#endif /* __ARCH_WANT_SGETMASK */
2694
2695#ifdef __ARCH_WANT_SYS_SIGNAL
2696/*
2697 * For backwards compatibility. Functionality superseded by sigaction.
2698 */
2699asmlinkage unsigned long
2700sys_signal(int sig, __sighandler_t handler)
2701{
2702 struct k_sigaction new_sa, old_sa;
2703 int ret;
2704
2705 new_sa.sa.sa_handler = handler;
2706 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2707
2708 ret = do_sigaction(sig, &new_sa, &old_sa);
2709
2710 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2711}
2712#endif /* __ARCH_WANT_SYS_SIGNAL */
2713
2714#ifdef __ARCH_WANT_SYS_PAUSE
2715
2716asmlinkage long
2717sys_pause(void)
2718{
2719 current->state = TASK_INTERRUPTIBLE;
2720 schedule();
2721 return -ERESTARTNOHAND;
2722}
2723
2724#endif
2725
2726void __init signals_init(void)
2727{
2728 sigqueue_cachep =
2729 kmem_cache_create("sigqueue",
2730 sizeof(struct sigqueue),
2731 __alignof__(struct sigqueue),
2732 SLAB_PANIC, NULL, NULL);
2733}
This page took 0.278616 seconds and 5 git commands to generate.