hrtimer: Unconfuse switch_hrtimer_base() a bit
[deliverable/linux.git] / kernel / time / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32 46#include <linux/sched.h>
cf4aebc2 47#include <linux/sched/sysctl.h>
8bd75c77 48#include <linux/sched/rt.h>
aab03e05 49#include <linux/sched/deadline.h>
eea08f32 50#include <linux/timer.h>
b0f8c44f 51#include <linux/freezer.h>
c0a31329
TG
52
53#include <asm/uaccess.h>
54
c6a2a177
XG
55#include <trace/events/timer.h>
56
c1797baf 57#include "tick-internal.h"
8b094cd0 58
c0a31329
TG
59/*
60 * The timer bases:
7978672c 61 *
e06383db
JS
62 * There are more clockids then hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 66 */
54cdfdb4 67DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 68{
84cc8fd2 69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
887d9dc9 70 .seq = SEQCNT_ZERO(hrtimer_bases.seq),
3c8aa39d 71 .clock_base =
c0a31329 72 {
3c8aa39d 73 {
ab8177bc
TG
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
3c8aa39d 76 .get_time = &ktime_get,
3c8aa39d 77 },
68fa61c0
TG
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
68fa61c0 82 },
70a08cca 83 {
ab8177bc
TG
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
70a08cca 86 .get_time = &ktime_get_boottime,
70a08cca 87 },
90adda98
JS
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
90adda98 92 },
3c8aa39d 93 }
c0a31329
TG
94};
95
942c3c5c 96static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
ce31332d
TG
97 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
98 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
99 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 100 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 101};
e06383db
JS
102
103static inline int hrtimer_clockid_to_base(clockid_t clock_id)
104{
105 return hrtimer_clock_to_base_table[clock_id];
106}
107
c0a31329
TG
108/*
109 * Functions and macros which are different for UP/SMP systems are kept in a
110 * single place
111 */
112#ifdef CONFIG_SMP
113
887d9dc9
PZ
114/*
115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116 * such that hrtimer_callback_running() can unconditionally dereference
117 * timer->base->cpu_base
118 */
119static struct hrtimer_cpu_base migration_cpu_base = {
120 .seq = SEQCNT_ZERO(migration_cpu_base),
121 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
122};
123
124#define migration_base migration_cpu_base.clock_base[0]
125
c0a31329
TG
126/*
127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128 * means that all timers which are tied to this base via timer->base are
129 * locked, and the base itself is locked too.
130 *
131 * So __run_timers/migrate_timers can safely modify all timers which could
132 * be found on the lists/queues.
133 *
134 * When the timer's base is locked, and the timer removed from list, it is
887d9dc9
PZ
135 * possible to set timer->base = &migration_base and drop the lock: the timer
136 * remains locked.
c0a31329 137 */
3c8aa39d
TG
138static
139struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
140 unsigned long *flags)
c0a31329 141{
3c8aa39d 142 struct hrtimer_clock_base *base;
c0a31329
TG
143
144 for (;;) {
145 base = timer->base;
887d9dc9 146 if (likely(base != &migration_base)) {
ecb49d1a 147 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
148 if (likely(base == timer->base))
149 return base;
150 /* The timer has migrated to another CPU: */
ecb49d1a 151 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
152 }
153 cpu_relax();
154 }
155}
156
6ff7041d
TG
157/*
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
161 *
162 * Called with cpu_base->lock of target cpu held.
163 */
164static int
165hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166{
167#ifdef CONFIG_HIGH_RES_TIMERS
168 ktime_t expires;
169
170 if (!new_base->cpu_base->hres_active)
171 return 0;
172
173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
175#else
176 return 0;
177#endif
178}
179
bc7a34b8
TG
180#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
181static inline
182struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
183 int pinned)
184{
185 if (pinned || !base->migration_enabled)
662b3e19 186 return base;
bc7a34b8
TG
187 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
188}
189#else
190static inline
191struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
192 int pinned)
193{
662b3e19 194 return base;
bc7a34b8
TG
195}
196#endif
197
c0a31329 198/*
b48362d8
FW
199 * We switch the timer base to a power-optimized selected CPU target,
200 * if:
201 * - NO_HZ_COMMON is enabled
202 * - timer migration is enabled
203 * - the timer callback is not running
204 * - the timer is not the first expiring timer on the new target
205 *
206 * If one of the above requirements is not fulfilled we move the timer
207 * to the current CPU or leave it on the previously assigned CPU if
208 * the timer callback is currently running.
c0a31329 209 */
3c8aa39d 210static inline struct hrtimer_clock_base *
597d0275
AB
211switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
212 int pinned)
c0a31329 213{
b48362d8 214 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
3c8aa39d 215 struct hrtimer_clock_base *new_base;
ab8177bc 216 int basenum = base->index;
c0a31329 217
b48362d8
FW
218 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
219 new_cpu_base = get_target_base(this_cpu_base, pinned);
eea08f32 220again:
e06383db 221 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
222
223 if (base != new_base) {
224 /*
6ff7041d 225 * We are trying to move timer to new_base.
c0a31329
TG
226 * However we can't change timer's base while it is running,
227 * so we keep it on the same CPU. No hassle vs. reprogramming
228 * the event source in the high resolution case. The softirq
229 * code will take care of this when the timer function has
230 * completed. There is no conflict as we hold the lock until
231 * the timer is enqueued.
232 */
54cdfdb4 233 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
234 return base;
235
887d9dc9
PZ
236 /* See the comment in lock_hrtimer_base() */
237 timer->base = &migration_base;
ecb49d1a
TG
238 raw_spin_unlock(&base->cpu_base->lock);
239 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 240
b48362d8 241 if (new_cpu_base != this_cpu_base &&
bc7a34b8 242 hrtimer_check_target(timer, new_base)) {
ecb49d1a
TG
243 raw_spin_unlock(&new_base->cpu_base->lock);
244 raw_spin_lock(&base->cpu_base->lock);
b48362d8 245 new_cpu_base = this_cpu_base;
6ff7041d
TG
246 timer->base = base;
247 goto again;
eea08f32 248 }
c0a31329 249 timer->base = new_base;
012a45e3 250 } else {
b48362d8 251 if (new_cpu_base != this_cpu_base &&
bc7a34b8 252 hrtimer_check_target(timer, new_base)) {
b48362d8 253 new_cpu_base = this_cpu_base;
012a45e3
LM
254 goto again;
255 }
c0a31329
TG
256 }
257 return new_base;
258}
259
260#else /* CONFIG_SMP */
261
3c8aa39d 262static inline struct hrtimer_clock_base *
c0a31329
TG
263lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
264{
3c8aa39d 265 struct hrtimer_clock_base *base = timer->base;
c0a31329 266
ecb49d1a 267 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
268
269 return base;
270}
271
eea08f32 272# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
273
274#endif /* !CONFIG_SMP */
275
276/*
277 * Functions for the union type storage format of ktime_t which are
278 * too large for inlining:
279 */
280#if BITS_PER_LONG < 64
c0a31329
TG
281/*
282 * Divide a ktime value by a nanosecond value
283 */
f7bcb70e 284s64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 285{
c0a31329 286 int sft = 0;
f7bcb70e
JS
287 s64 dclc;
288 u64 tmp;
c0a31329 289
900cfa46 290 dclc = ktime_to_ns(kt);
f7bcb70e
JS
291 tmp = dclc < 0 ? -dclc : dclc;
292
c0a31329
TG
293 /* Make sure the divisor is less than 2^32: */
294 while (div >> 32) {
295 sft++;
296 div >>= 1;
297 }
f7bcb70e
JS
298 tmp >>= sft;
299 do_div(tmp, (unsigned long) div);
300 return dclc < 0 ? -tmp : tmp;
c0a31329 301}
8b618628 302EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
303#endif /* BITS_PER_LONG >= 64 */
304
5a7780e7
TG
305/*
306 * Add two ktime values and do a safety check for overflow:
307 */
308ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
309{
310 ktime_t res = ktime_add(lhs, rhs);
311
312 /*
313 * We use KTIME_SEC_MAX here, the maximum timeout which we can
314 * return to user space in a timespec:
315 */
316 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
317 res = ktime_set(KTIME_SEC_MAX, 0);
318
319 return res;
320}
321
8daa21e6
AB
322EXPORT_SYMBOL_GPL(ktime_add_safe);
323
237fc6e7
TG
324#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
325
326static struct debug_obj_descr hrtimer_debug_descr;
327
99777288
SG
328static void *hrtimer_debug_hint(void *addr)
329{
330 return ((struct hrtimer *) addr)->function;
331}
332
237fc6e7
TG
333/*
334 * fixup_init is called when:
335 * - an active object is initialized
336 */
337static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
338{
339 struct hrtimer *timer = addr;
340
341 switch (state) {
342 case ODEBUG_STATE_ACTIVE:
343 hrtimer_cancel(timer);
344 debug_object_init(timer, &hrtimer_debug_descr);
345 return 1;
346 default:
347 return 0;
348 }
349}
350
351/*
352 * fixup_activate is called when:
353 * - an active object is activated
354 * - an unknown object is activated (might be a statically initialized object)
355 */
356static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
357{
358 switch (state) {
359
360 case ODEBUG_STATE_NOTAVAILABLE:
361 WARN_ON_ONCE(1);
362 return 0;
363
364 case ODEBUG_STATE_ACTIVE:
365 WARN_ON(1);
366
367 default:
368 return 0;
369 }
370}
371
372/*
373 * fixup_free is called when:
374 * - an active object is freed
375 */
376static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
377{
378 struct hrtimer *timer = addr;
379
380 switch (state) {
381 case ODEBUG_STATE_ACTIVE:
382 hrtimer_cancel(timer);
383 debug_object_free(timer, &hrtimer_debug_descr);
384 return 1;
385 default:
386 return 0;
387 }
388}
389
390static struct debug_obj_descr hrtimer_debug_descr = {
391 .name = "hrtimer",
99777288 392 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
393 .fixup_init = hrtimer_fixup_init,
394 .fixup_activate = hrtimer_fixup_activate,
395 .fixup_free = hrtimer_fixup_free,
396};
397
398static inline void debug_hrtimer_init(struct hrtimer *timer)
399{
400 debug_object_init(timer, &hrtimer_debug_descr);
401}
402
403static inline void debug_hrtimer_activate(struct hrtimer *timer)
404{
405 debug_object_activate(timer, &hrtimer_debug_descr);
406}
407
408static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
409{
410 debug_object_deactivate(timer, &hrtimer_debug_descr);
411}
412
413static inline void debug_hrtimer_free(struct hrtimer *timer)
414{
415 debug_object_free(timer, &hrtimer_debug_descr);
416}
417
418static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
419 enum hrtimer_mode mode);
420
421void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
422 enum hrtimer_mode mode)
423{
424 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
425 __hrtimer_init(timer, clock_id, mode);
426}
2bc481cf 427EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
428
429void destroy_hrtimer_on_stack(struct hrtimer *timer)
430{
431 debug_object_free(timer, &hrtimer_debug_descr);
432}
433
434#else
435static inline void debug_hrtimer_init(struct hrtimer *timer) { }
436static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
437static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
438#endif
439
c6a2a177
XG
440static inline void
441debug_init(struct hrtimer *timer, clockid_t clockid,
442 enum hrtimer_mode mode)
443{
444 debug_hrtimer_init(timer);
445 trace_hrtimer_init(timer, clockid, mode);
446}
447
448static inline void debug_activate(struct hrtimer *timer)
449{
450 debug_hrtimer_activate(timer);
451 trace_hrtimer_start(timer);
452}
453
454static inline void debug_deactivate(struct hrtimer *timer)
455{
456 debug_hrtimer_deactivate(timer);
457 trace_hrtimer_cancel(timer);
458}
459
9bc74919 460#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
895bdfa7
TG
461static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
462 struct hrtimer *timer)
463{
464#ifdef CONFIG_HIGH_RES_TIMERS
465 cpu_base->next_timer = timer;
466#endif
467}
468
4ebbda52 469static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
9bc74919
TG
470{
471 struct hrtimer_clock_base *base = cpu_base->clock_base;
472 ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
34aee88a 473 unsigned int active = cpu_base->active_bases;
9bc74919 474
895bdfa7 475 hrtimer_update_next_timer(cpu_base, NULL);
34aee88a 476 for (; active; base++, active >>= 1) {
9bc74919
TG
477 struct timerqueue_node *next;
478 struct hrtimer *timer;
479
34aee88a 480 if (!(active & 0x01))
9bc74919
TG
481 continue;
482
34aee88a 483 next = timerqueue_getnext(&base->active);
9bc74919
TG
484 timer = container_of(next, struct hrtimer, node);
485 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
895bdfa7 486 if (expires.tv64 < expires_next.tv64) {
9bc74919 487 expires_next = expires;
895bdfa7
TG
488 hrtimer_update_next_timer(cpu_base, timer);
489 }
9bc74919
TG
490 }
491 /*
492 * clock_was_set() might have changed base->offset of any of
493 * the clock bases so the result might be negative. Fix it up
494 * to prevent a false positive in clockevents_program_event().
495 */
496 if (expires_next.tv64 < 0)
497 expires_next.tv64 = 0;
498 return expires_next;
499}
500#endif
501
21d6d52a
TG
502static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
503{
504 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
505 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
506 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
507
868a3e91
TG
508 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
509 offs_real, offs_boot, offs_tai);
21d6d52a
TG
510}
511
54cdfdb4
TG
512/* High resolution timer related functions */
513#ifdef CONFIG_HIGH_RES_TIMERS
514
515/*
516 * High resolution timer enabled ?
517 */
518static int hrtimer_hres_enabled __read_mostly = 1;
398ca17f
TG
519unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
520EXPORT_SYMBOL_GPL(hrtimer_resolution);
54cdfdb4
TG
521
522/*
523 * Enable / Disable high resolution mode
524 */
525static int __init setup_hrtimer_hres(char *str)
526{
527 if (!strcmp(str, "off"))
528 hrtimer_hres_enabled = 0;
529 else if (!strcmp(str, "on"))
530 hrtimer_hres_enabled = 1;
531 else
532 return 0;
533 return 1;
534}
535
536__setup("highres=", setup_hrtimer_hres);
537
538/*
539 * hrtimer_high_res_enabled - query, if the highres mode is enabled
540 */
541static inline int hrtimer_is_hres_enabled(void)
542{
543 return hrtimer_hres_enabled;
544}
545
546/*
547 * Is the high resolution mode active ?
548 */
e19ffe8b
TG
549static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
550{
551 return cpu_base->hres_active;
552}
553
54cdfdb4
TG
554static inline int hrtimer_hres_active(void)
555{
e19ffe8b 556 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
54cdfdb4
TG
557}
558
559/*
560 * Reprogram the event source with checking both queues for the
561 * next event
562 * Called with interrupts disabled and base->lock held
563 */
7403f41f
AC
564static void
565hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 566{
21d6d52a
TG
567 ktime_t expires_next;
568
569 if (!cpu_base->hres_active)
570 return;
571
572 expires_next = __hrtimer_get_next_event(cpu_base);
54cdfdb4 573
7403f41f
AC
574 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
575 return;
576
577 cpu_base->expires_next.tv64 = expires_next.tv64;
578
6c6c0d5a
SH
579 /*
580 * If a hang was detected in the last timer interrupt then we
581 * leave the hang delay active in the hardware. We want the
582 * system to make progress. That also prevents the following
583 * scenario:
584 * T1 expires 50ms from now
585 * T2 expires 5s from now
586 *
587 * T1 is removed, so this code is called and would reprogram
588 * the hardware to 5s from now. Any hrtimer_start after that
589 * will not reprogram the hardware due to hang_detected being
590 * set. So we'd effectivly block all timers until the T2 event
591 * fires.
592 */
593 if (cpu_base->hang_detected)
594 return;
595
d2540875 596 tick_program_event(cpu_base->expires_next, 1);
54cdfdb4
TG
597}
598
599/*
54cdfdb4
TG
600 * When a timer is enqueued and expires earlier than the already enqueued
601 * timers, we have to check, whether it expires earlier than the timer for
602 * which the clock event device was armed.
603 *
604 * Called with interrupts disabled and base->cpu_base.lock held
605 */
c6eb3f70
TG
606static void hrtimer_reprogram(struct hrtimer *timer,
607 struct hrtimer_clock_base *base)
54cdfdb4 608{
dc5df73b 609 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
cc584b21 610 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4 611
cc584b21 612 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 613
54cdfdb4 614 /*
c6eb3f70
TG
615 * If the timer is not on the current cpu, we cannot reprogram
616 * the other cpus clock event device.
54cdfdb4 617 */
c6eb3f70
TG
618 if (base->cpu_base != cpu_base)
619 return;
620
621 /*
622 * If the hrtimer interrupt is running, then it will
623 * reevaluate the clock bases and reprogram the clock event
624 * device. The callbacks are always executed in hard interrupt
625 * context so we don't need an extra check for a running
626 * callback.
627 */
628 if (cpu_base->in_hrtirq)
629 return;
54cdfdb4 630
63070a79
TG
631 /*
632 * CLOCK_REALTIME timer might be requested with an absolute
c6eb3f70 633 * expiry time which is less than base->offset. Set it to 0.
63070a79
TG
634 */
635 if (expires.tv64 < 0)
c6eb3f70 636 expires.tv64 = 0;
63070a79 637
41d2e494 638 if (expires.tv64 >= cpu_base->expires_next.tv64)
c6eb3f70 639 return;
41d2e494 640
c6eb3f70 641 /* Update the pointer to the next expiring timer */
895bdfa7 642 cpu_base->next_timer = timer;
9bc74919 643
41d2e494
TG
644 /*
645 * If a hang was detected in the last timer interrupt then we
646 * do not schedule a timer which is earlier than the expiry
647 * which we enforced in the hang detection. We want the system
648 * to make progress.
649 */
650 if (cpu_base->hang_detected)
c6eb3f70 651 return;
54cdfdb4
TG
652
653 /*
c6eb3f70
TG
654 * Program the timer hardware. We enforce the expiry for
655 * events which are already in the past.
54cdfdb4 656 */
c6eb3f70
TG
657 cpu_base->expires_next = expires;
658 tick_program_event(expires, 1);
54cdfdb4
TG
659}
660
54cdfdb4
TG
661/*
662 * Initialize the high resolution related parts of cpu_base
663 */
664static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
665{
666 base->expires_next.tv64 = KTIME_MAX;
667 base->hres_active = 0;
54cdfdb4
TG
668}
669
9ec26907
TG
670/*
671 * Retrigger next event is called after clock was set
672 *
673 * Called with interrupts disabled via on_each_cpu()
674 */
675static void retrigger_next_event(void *arg)
676{
dc5df73b 677 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 678
e19ffe8b 679 if (!base->hres_active)
9ec26907
TG
680 return;
681
9ec26907 682 raw_spin_lock(&base->lock);
5baefd6d 683 hrtimer_update_base(base);
9ec26907
TG
684 hrtimer_force_reprogram(base, 0);
685 raw_spin_unlock(&base->lock);
686}
b12a03ce 687
54cdfdb4
TG
688/*
689 * Switch to high resolution mode
690 */
75e3b37d 691static void hrtimer_switch_to_hres(void)
54cdfdb4 692{
c6eb3f70 693 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
694
695 if (tick_init_highres()) {
820de5c3 696 printk(KERN_WARNING "Could not switch to high resolution "
c6eb3f70 697 "mode on CPU %d\n", base->cpu);
54cdfdb4
TG
698 }
699 base->hres_active = 1;
398ca17f 700 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
701
702 tick_setup_sched_timer();
54cdfdb4
TG
703 /* "Retrigger" the interrupt to get things going */
704 retrigger_next_event(NULL);
54cdfdb4
TG
705}
706
5ec2481b
TG
707static void clock_was_set_work(struct work_struct *work)
708{
709 clock_was_set();
710}
711
712static DECLARE_WORK(hrtimer_work, clock_was_set_work);
713
f55a6faa 714/*
5ec2481b
TG
715 * Called from timekeeping and resume code to reprogramm the hrtimer
716 * interrupt device on all cpus.
f55a6faa
JS
717 */
718void clock_was_set_delayed(void)
719{
5ec2481b 720 schedule_work(&hrtimer_work);
f55a6faa
JS
721}
722
54cdfdb4
TG
723#else
724
e19ffe8b 725static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
54cdfdb4
TG
726static inline int hrtimer_hres_active(void) { return 0; }
727static inline int hrtimer_is_hres_enabled(void) { return 0; }
75e3b37d 728static inline void hrtimer_switch_to_hres(void) { }
7403f41f
AC
729static inline void
730hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
9e1e01dd
VK
731static inline int hrtimer_reprogram(struct hrtimer *timer,
732 struct hrtimer_clock_base *base)
54cdfdb4
TG
733{
734 return 0;
735}
54cdfdb4 736static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
9ec26907 737static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
738
739#endif /* CONFIG_HIGH_RES_TIMERS */
740
b12a03ce
TG
741/*
742 * Clock realtime was set
743 *
744 * Change the offset of the realtime clock vs. the monotonic
745 * clock.
746 *
747 * We might have to reprogram the high resolution timer interrupt. On
748 * SMP we call the architecture specific code to retrigger _all_ high
749 * resolution timer interrupts. On UP we just disable interrupts and
750 * call the high resolution interrupt code.
751 */
752void clock_was_set(void)
753{
90ff1f30 754#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
755 /* Retrigger the CPU local events everywhere */
756 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
757#endif
758 timerfd_clock_was_set();
b12a03ce
TG
759}
760
761/*
762 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
763 * interrupt on all online CPUs. However, all other CPUs will be
764 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 765 * must be deferred.
b12a03ce
TG
766 */
767void hrtimers_resume(void)
768{
769 WARN_ONCE(!irqs_disabled(),
770 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
771
5ec2481b 772 /* Retrigger on the local CPU */
b12a03ce 773 retrigger_next_event(NULL);
5ec2481b
TG
774 /* And schedule a retrigger for all others */
775 clock_was_set_delayed();
b12a03ce
TG
776}
777
5f201907 778static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
82f67cd9 779{
5f201907 780#ifdef CONFIG_TIMER_STATS
82f67cd9
IM
781 if (timer->start_site)
782 return;
5f201907 783 timer->start_site = __builtin_return_address(0);
82f67cd9
IM
784 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
785 timer->start_pid = current->pid;
5f201907
HC
786#endif
787}
788
789static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
790{
791#ifdef CONFIG_TIMER_STATS
792 timer->start_site = NULL;
793#endif
82f67cd9 794}
5f201907
HC
795
796static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
797{
798#ifdef CONFIG_TIMER_STATS
799 if (likely(!timer_stats_active))
800 return;
801 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
802 timer->function, timer->start_comm, 0);
82f67cd9 803#endif
5f201907 804}
82f67cd9 805
c0a31329 806/*
6506f2aa 807 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
808 */
809static inline
810void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
811{
ecb49d1a 812 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
813}
814
815/**
816 * hrtimer_forward - forward the timer expiry
c0a31329 817 * @timer: hrtimer to forward
44f21475 818 * @now: forward past this time
c0a31329
TG
819 * @interval: the interval to forward
820 *
821 * Forward the timer expiry so it will expire in the future.
8dca6f33 822 * Returns the number of overruns.
91e5a217
TG
823 *
824 * Can be safely called from the callback function of @timer. If
825 * called from other contexts @timer must neither be enqueued nor
826 * running the callback and the caller needs to take care of
827 * serialization.
828 *
829 * Note: This only updates the timer expiry value and does not requeue
830 * the timer.
c0a31329 831 */
4d672e7a 832u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 833{
4d672e7a 834 u64 orun = 1;
44f21475 835 ktime_t delta;
c0a31329 836
cc584b21 837 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
838
839 if (delta.tv64 < 0)
840 return 0;
841
5de2755c
PZ
842 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
843 return 0;
844
398ca17f
TG
845 if (interval.tv64 < hrtimer_resolution)
846 interval.tv64 = hrtimer_resolution;
c9db4fa1 847
c0a31329 848 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 849 s64 incr = ktime_to_ns(interval);
c0a31329
TG
850
851 orun = ktime_divns(delta, incr);
cc584b21
AV
852 hrtimer_add_expires_ns(timer, incr * orun);
853 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
854 return orun;
855 /*
856 * This (and the ktime_add() below) is the
857 * correction for exact:
858 */
859 orun++;
860 }
cc584b21 861 hrtimer_add_expires(timer, interval);
c0a31329
TG
862
863 return orun;
864}
6bdb6b62 865EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
866
867/*
868 * enqueue_hrtimer - internal function to (re)start a timer
869 *
870 * The timer is inserted in expiry order. Insertion into the
871 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
872 *
873 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 874 */
a6037b61
PZ
875static int enqueue_hrtimer(struct hrtimer *timer,
876 struct hrtimer_clock_base *base)
c0a31329 877{
c6a2a177 878 debug_activate(timer);
237fc6e7 879
ab8177bc 880 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 881
887d9dc9 882 timer->state = HRTIMER_STATE_ENQUEUED;
a6037b61 883
b97f44c9 884 return timerqueue_add(&base->active, &timer->node);
288867ec 885}
c0a31329
TG
886
887/*
888 * __remove_hrtimer - internal function to remove a timer
889 *
890 * Caller must hold the base lock.
54cdfdb4
TG
891 *
892 * High resolution timer mode reprograms the clock event device when the
893 * timer is the one which expires next. The caller can disable this by setting
894 * reprogram to zero. This is useful, when the context does a reprogramming
895 * anyway (e.g. timer interrupt)
c0a31329 896 */
3c8aa39d 897static void __remove_hrtimer(struct hrtimer *timer,
303e967f 898 struct hrtimer_clock_base *base,
54cdfdb4 899 unsigned long newstate, int reprogram)
c0a31329 900{
e19ffe8b 901 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
895bdfa7 902 unsigned int state = timer->state;
e19ffe8b 903
895bdfa7
TG
904 timer->state = newstate;
905 if (!(state & HRTIMER_STATE_ENQUEUED))
906 return;
7403f41f 907
b97f44c9 908 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 909 cpu_base->active_bases &= ~(1 << base->index);
7403f41f 910
7403f41f 911#ifdef CONFIG_HIGH_RES_TIMERS
895bdfa7
TG
912 /*
913 * Note: If reprogram is false we do not update
914 * cpu_base->next_timer. This happens when we remove the first
915 * timer on a remote cpu. No harm as we never dereference
916 * cpu_base->next_timer. So the worst thing what can happen is
917 * an superflous call to hrtimer_force_reprogram() on the
918 * remote cpu later on if the same timer gets enqueued again.
919 */
920 if (reprogram && timer == cpu_base->next_timer)
921 hrtimer_force_reprogram(cpu_base, 1);
7403f41f 922#endif
c0a31329
TG
923}
924
925/*
926 * remove hrtimer, called with base lock held
927 */
928static inline int
8edfb036 929remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
c0a31329 930{
303e967f 931 if (hrtimer_is_queued(timer)) {
8edfb036 932 unsigned long state = timer->state;
54cdfdb4
TG
933 int reprogram;
934
935 /*
936 * Remove the timer and force reprogramming when high
937 * resolution mode is active and the timer is on the current
938 * CPU. If we remove a timer on another CPU, reprogramming is
939 * skipped. The interrupt event on this CPU is fired and
940 * reprogramming happens in the interrupt handler. This is a
941 * rare case and less expensive than a smp call.
942 */
c6a2a177 943 debug_deactivate(timer);
82f67cd9 944 timer_stats_hrtimer_clear_start_info(timer);
dc5df73b 945 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
8edfb036 946
887d9dc9
PZ
947 if (!restart)
948 state = HRTIMER_STATE_INACTIVE;
949
f13d4f97 950 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
951 return 1;
952 }
953 return 0;
954}
955
58f1f803
TG
956/**
957 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
958 * @timer: the timer to be added
959 * @tim: expiry time
960 * @delta_ns: "slack" range for the timer
961 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
962 * relative (HRTIMER_MODE_REL)
58f1f803 963 */
61699e13
TG
964void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
965 unsigned long delta_ns, const enum hrtimer_mode mode)
c0a31329 966{
3c8aa39d 967 struct hrtimer_clock_base *base, *new_base;
c0a31329 968 unsigned long flags;
61699e13 969 int leftmost;
c0a31329
TG
970
971 base = lock_hrtimer_base(timer, &flags);
972
973 /* Remove an active timer from the queue: */
8edfb036 974 remove_hrtimer(timer, base, true);
c0a31329 975
597d0275 976 if (mode & HRTIMER_MODE_REL) {
84ea7fe3 977 tim = ktime_add_safe(tim, base->get_time());
06027bdd
IM
978 /*
979 * CONFIG_TIME_LOW_RES is a temporary way for architectures
980 * to signal that they simply return xtime in
981 * do_gettimeoffset(). In this case we want to round up by
982 * resolution when starting a relative timer, to avoid short
983 * timeouts. This will go away with the GTOD framework.
984 */
985#ifdef CONFIG_TIME_LOW_RES
398ca17f 986 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
06027bdd
IM
987#endif
988 }
237fc6e7 989
da8f2e17 990 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 991
84ea7fe3
VK
992 /* Switch the timer base, if necessary: */
993 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
994
82f67cd9
IM
995 timer_stats_hrtimer_set_start_info(timer);
996
a6037b61 997 leftmost = enqueue_hrtimer(timer, new_base);
61699e13
TG
998 if (!leftmost)
999 goto unlock;
49a2a075
VK
1000
1001 if (!hrtimer_is_hres_active(timer)) {
1002 /*
1003 * Kick to reschedule the next tick to handle the new timer
1004 * on dynticks target.
1005 */
683be13a
TG
1006 if (new_base->cpu_base->nohz_active)
1007 wake_up_nohz_cpu(new_base->cpu_base->cpu);
c6eb3f70
TG
1008 } else {
1009 hrtimer_reprogram(timer, new_base);
b22affe0 1010 }
61699e13 1011unlock:
c0a31329 1012 unlock_hrtimer_base(timer, &flags);
7f1e2ca9 1013}
da8f2e17
AV
1014EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1015
c0a31329
TG
1016/**
1017 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1018 * @timer: hrtimer to stop
1019 *
1020 * Returns:
1021 * 0 when the timer was not active
1022 * 1 when the timer was active
1023 * -1 when the timer is currently excuting the callback function and
fa9799e3 1024 * cannot be stopped
c0a31329
TG
1025 */
1026int hrtimer_try_to_cancel(struct hrtimer *timer)
1027{
3c8aa39d 1028 struct hrtimer_clock_base *base;
c0a31329
TG
1029 unsigned long flags;
1030 int ret = -1;
1031
19d9f422
TG
1032 /*
1033 * Check lockless first. If the timer is not active (neither
1034 * enqueued nor running the callback, nothing to do here. The
1035 * base lock does not serialize against a concurrent enqueue,
1036 * so we can avoid taking it.
1037 */
1038 if (!hrtimer_active(timer))
1039 return 0;
1040
c0a31329
TG
1041 base = lock_hrtimer_base(timer, &flags);
1042
303e967f 1043 if (!hrtimer_callback_running(timer))
8edfb036 1044 ret = remove_hrtimer(timer, base, false);
c0a31329
TG
1045
1046 unlock_hrtimer_base(timer, &flags);
1047
1048 return ret;
1049
1050}
8d16b764 1051EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1052
1053/**
1054 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1055 * @timer: the timer to be cancelled
1056 *
1057 * Returns:
1058 * 0 when the timer was not active
1059 * 1 when the timer was active
1060 */
1061int hrtimer_cancel(struct hrtimer *timer)
1062{
1063 for (;;) {
1064 int ret = hrtimer_try_to_cancel(timer);
1065
1066 if (ret >= 0)
1067 return ret;
5ef37b19 1068 cpu_relax();
c0a31329
TG
1069 }
1070}
8d16b764 1071EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1072
1073/**
1074 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1075 * @timer: the timer to read
1076 */
1077ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1078{
c0a31329
TG
1079 unsigned long flags;
1080 ktime_t rem;
1081
b3bd3de6 1082 lock_hrtimer_base(timer, &flags);
cc584b21 1083 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1084 unlock_hrtimer_base(timer, &flags);
1085
1086 return rem;
1087}
8d16b764 1088EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1089
3451d024 1090#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1091/**
1092 * hrtimer_get_next_event - get the time until next expiry event
1093 *
c1ad348b 1094 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1095 */
c1ad348b 1096u64 hrtimer_get_next_event(void)
69239749 1097{
dc5df73b 1098 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1099 u64 expires = KTIME_MAX;
69239749 1100 unsigned long flags;
69239749 1101
ecb49d1a 1102 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1103
e19ffe8b 1104 if (!__hrtimer_hres_active(cpu_base))
c1ad348b 1105 expires = __hrtimer_get_next_event(cpu_base).tv64;
3c8aa39d 1106
ecb49d1a 1107 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1108
c1ad348b 1109 return expires;
69239749
TL
1110}
1111#endif
1112
237fc6e7
TG
1113static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1114 enum hrtimer_mode mode)
c0a31329 1115{
3c8aa39d 1116 struct hrtimer_cpu_base *cpu_base;
e06383db 1117 int base;
c0a31329 1118
7978672c
GA
1119 memset(timer, 0, sizeof(struct hrtimer));
1120
22127e93 1121 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1122
c9cb2e3d 1123 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1124 clock_id = CLOCK_MONOTONIC;
1125
e06383db
JS
1126 base = hrtimer_clockid_to_base(clock_id);
1127 timer->base = &cpu_base->clock_base[base];
998adc3d 1128 timerqueue_init(&timer->node);
82f67cd9
IM
1129
1130#ifdef CONFIG_TIMER_STATS
1131 timer->start_site = NULL;
1132 timer->start_pid = -1;
1133 memset(timer->start_comm, 0, TASK_COMM_LEN);
1134#endif
c0a31329 1135}
237fc6e7
TG
1136
1137/**
1138 * hrtimer_init - initialize a timer to the given clock
1139 * @timer: the timer to be initialized
1140 * @clock_id: the clock to be used
1141 * @mode: timer mode abs/rel
1142 */
1143void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1144 enum hrtimer_mode mode)
1145{
c6a2a177 1146 debug_init(timer, clock_id, mode);
237fc6e7
TG
1147 __hrtimer_init(timer, clock_id, mode);
1148}
8d16b764 1149EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1150
887d9dc9
PZ
1151/*
1152 * A timer is active, when it is enqueued into the rbtree or the
1153 * callback function is running or it's in the state of being migrated
1154 * to another cpu.
c0a31329 1155 *
887d9dc9 1156 * It is important for this function to not return a false negative.
c0a31329 1157 */
887d9dc9 1158bool hrtimer_active(const struct hrtimer *timer)
c0a31329 1159{
3c8aa39d 1160 struct hrtimer_cpu_base *cpu_base;
887d9dc9 1161 unsigned int seq;
c0a31329 1162
887d9dc9
PZ
1163 do {
1164 cpu_base = READ_ONCE(timer->base->cpu_base);
1165 seq = raw_read_seqcount_begin(&cpu_base->seq);
c0a31329 1166
887d9dc9
PZ
1167 if (timer->state != HRTIMER_STATE_INACTIVE ||
1168 cpu_base->running == timer)
1169 return true;
1170
1171 } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1172 cpu_base != READ_ONCE(timer->base->cpu_base));
1173
1174 return false;
c0a31329 1175}
887d9dc9 1176EXPORT_SYMBOL_GPL(hrtimer_active);
c0a31329 1177
887d9dc9
PZ
1178/*
1179 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1180 * distinct sections:
1181 *
1182 * - queued: the timer is queued
1183 * - callback: the timer is being ran
1184 * - post: the timer is inactive or (re)queued
1185 *
1186 * On the read side we ensure we observe timer->state and cpu_base->running
1187 * from the same section, if anything changed while we looked at it, we retry.
1188 * This includes timer->base changing because sequence numbers alone are
1189 * insufficient for that.
1190 *
1191 * The sequence numbers are required because otherwise we could still observe
1192 * a false negative if the read side got smeared over multiple consequtive
1193 * __run_hrtimer() invocations.
1194 */
1195
21d6d52a
TG
1196static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1197 struct hrtimer_clock_base *base,
1198 struct hrtimer *timer, ktime_t *now)
d3d74453 1199{
d3d74453
PZ
1200 enum hrtimer_restart (*fn)(struct hrtimer *);
1201 int restart;
1202
887d9dc9 1203 lockdep_assert_held(&cpu_base->lock);
ca109491 1204
c6a2a177 1205 debug_deactivate(timer);
887d9dc9
PZ
1206 cpu_base->running = timer;
1207
1208 /*
1209 * Separate the ->running assignment from the ->state assignment.
1210 *
1211 * As with a regular write barrier, this ensures the read side in
1212 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1213 * timer->state == INACTIVE.
1214 */
1215 raw_write_seqcount_barrier(&cpu_base->seq);
1216
1217 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
d3d74453 1218 timer_stats_account_hrtimer(timer);
d3d74453 1219 fn = timer->function;
ca109491
PZ
1220
1221 /*
1222 * Because we run timers from hardirq context, there is no chance
1223 * they get migrated to another cpu, therefore its safe to unlock
1224 * the timer base.
1225 */
ecb49d1a 1226 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1227 trace_hrtimer_expire_entry(timer, now);
ca109491 1228 restart = fn(timer);
c6a2a177 1229 trace_hrtimer_expire_exit(timer);
ecb49d1a 1230 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1231
1232 /*
887d9dc9 1233 * Note: We clear the running state after enqueue_hrtimer and
e3f1d883
TG
1234 * we do not reprogramm the event hardware. Happens either in
1235 * hrtimer_start_range_ns() or in hrtimer_interrupt()
5de2755c
PZ
1236 *
1237 * Note: Because we dropped the cpu_base->lock above,
1238 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1239 * for us already.
d3d74453 1240 */
5de2755c
PZ
1241 if (restart != HRTIMER_NORESTART &&
1242 !(timer->state & HRTIMER_STATE_ENQUEUED))
a6037b61 1243 enqueue_hrtimer(timer, base);
f13d4f97 1244
887d9dc9
PZ
1245 /*
1246 * Separate the ->running assignment from the ->state assignment.
1247 *
1248 * As with a regular write barrier, this ensures the read side in
1249 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1250 * timer->state == INACTIVE.
1251 */
1252 raw_write_seqcount_barrier(&cpu_base->seq);
f13d4f97 1253
887d9dc9
PZ
1254 WARN_ON_ONCE(cpu_base->running != timer);
1255 cpu_base->running = NULL;
d3d74453
PZ
1256}
1257
21d6d52a 1258static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
54cdfdb4 1259{
34aee88a
TG
1260 struct hrtimer_clock_base *base = cpu_base->clock_base;
1261 unsigned int active = cpu_base->active_bases;
6ff7041d 1262
34aee88a 1263 for (; active; base++, active >>= 1) {
998adc3d 1264 struct timerqueue_node *node;
ab8177bc
TG
1265 ktime_t basenow;
1266
34aee88a 1267 if (!(active & 0x01))
ab8177bc 1268 continue;
54cdfdb4 1269
54cdfdb4
TG
1270 basenow = ktime_add(now, base->offset);
1271
998adc3d 1272 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1273 struct hrtimer *timer;
1274
998adc3d 1275 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1276
654c8e0b
AV
1277 /*
1278 * The immediate goal for using the softexpires is
1279 * minimizing wakeups, not running timers at the
1280 * earliest interrupt after their soft expiration.
1281 * This allows us to avoid using a Priority Search
1282 * Tree, which can answer a stabbing querry for
1283 * overlapping intervals and instead use the simple
1284 * BST we already have.
1285 * We don't add extra wakeups by delaying timers that
1286 * are right-of a not yet expired timer, because that
1287 * timer will have to trigger a wakeup anyway.
1288 */
9bc74919 1289 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1290 break;
54cdfdb4 1291
21d6d52a 1292 __run_hrtimer(cpu_base, base, timer, &basenow);
54cdfdb4 1293 }
54cdfdb4 1294 }
21d6d52a
TG
1295}
1296
1297#ifdef CONFIG_HIGH_RES_TIMERS
1298
1299/*
1300 * High resolution timer interrupt
1301 * Called with interrupts disabled
1302 */
1303void hrtimer_interrupt(struct clock_event_device *dev)
1304{
1305 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1306 ktime_t expires_next, now, entry_time, delta;
1307 int retries = 0;
1308
1309 BUG_ON(!cpu_base->hres_active);
1310 cpu_base->nr_events++;
1311 dev->next_event.tv64 = KTIME_MAX;
1312
1313 raw_spin_lock(&cpu_base->lock);
1314 entry_time = now = hrtimer_update_base(cpu_base);
1315retry:
1316 cpu_base->in_hrtirq = 1;
1317 /*
1318 * We set expires_next to KTIME_MAX here with cpu_base->lock
1319 * held to prevent that a timer is enqueued in our queue via
1320 * the migration code. This does not affect enqueueing of
1321 * timers which run their callback and need to be requeued on
1322 * this CPU.
1323 */
1324 cpu_base->expires_next.tv64 = KTIME_MAX;
1325
1326 __hrtimer_run_queues(cpu_base, now);
1327
9bc74919
TG
1328 /* Reevaluate the clock bases for the next expiry */
1329 expires_next = __hrtimer_get_next_event(cpu_base);
6ff7041d
TG
1330 /*
1331 * Store the new expiry value so the migration code can verify
1332 * against it.
1333 */
54cdfdb4 1334 cpu_base->expires_next = expires_next;
9bc74919 1335 cpu_base->in_hrtirq = 0;
ecb49d1a 1336 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1337
1338 /* Reprogramming necessary ? */
d2540875 1339 if (!tick_program_event(expires_next, 0)) {
41d2e494
TG
1340 cpu_base->hang_detected = 0;
1341 return;
54cdfdb4 1342 }
41d2e494
TG
1343
1344 /*
1345 * The next timer was already expired due to:
1346 * - tracing
1347 * - long lasting callbacks
1348 * - being scheduled away when running in a VM
1349 *
1350 * We need to prevent that we loop forever in the hrtimer
1351 * interrupt routine. We give it 3 attempts to avoid
1352 * overreacting on some spurious event.
5baefd6d
JS
1353 *
1354 * Acquire base lock for updating the offsets and retrieving
1355 * the current time.
41d2e494 1356 */
196951e9 1357 raw_spin_lock(&cpu_base->lock);
5baefd6d 1358 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1359 cpu_base->nr_retries++;
1360 if (++retries < 3)
1361 goto retry;
1362 /*
1363 * Give the system a chance to do something else than looping
1364 * here. We stored the entry time, so we know exactly how long
1365 * we spent here. We schedule the next event this amount of
1366 * time away.
1367 */
1368 cpu_base->nr_hangs++;
1369 cpu_base->hang_detected = 1;
196951e9 1370 raw_spin_unlock(&cpu_base->lock);
41d2e494 1371 delta = ktime_sub(now, entry_time);
a6ffebce
TG
1372 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1373 cpu_base->max_hang_time = (unsigned int) delta.tv64;
41d2e494
TG
1374 /*
1375 * Limit it to a sensible value as we enforce a longer
1376 * delay. Give the CPU at least 100ms to catch up.
1377 */
1378 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1379 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1380 else
1381 expires_next = ktime_add(now, delta);
1382 tick_program_event(expires_next, 1);
1383 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1384 ktime_to_ns(delta));
54cdfdb4
TG
1385}
1386
8bdec955
TG
1387/*
1388 * local version of hrtimer_peek_ahead_timers() called with interrupts
1389 * disabled.
1390 */
c6eb3f70 1391static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1392{
1393 struct tick_device *td;
1394
1395 if (!hrtimer_hres_active())
1396 return;
1397
22127e93 1398 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1399 if (td && td->evtdev)
1400 hrtimer_interrupt(td->evtdev);
1401}
1402
82c5b7b5
IM
1403#else /* CONFIG_HIGH_RES_TIMERS */
1404
1405static inline void __hrtimer_peek_ahead_timers(void) { }
1406
1407#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1408
d3d74453 1409/*
c6eb3f70 1410 * Called from run_local_timers in hardirq context every jiffy
d3d74453 1411 */
833883d9 1412void hrtimer_run_queues(void)
d3d74453 1413{
dc5df73b 1414 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
21d6d52a 1415 ktime_t now;
c0a31329 1416
e19ffe8b 1417 if (__hrtimer_hres_active(cpu_base))
d3d74453 1418 return;
54cdfdb4 1419
d3d74453 1420 /*
c6eb3f70
TG
1421 * This _is_ ugly: We have to check periodically, whether we
1422 * can switch to highres and / or nohz mode. The clocksource
1423 * switch happens with xtime_lock held. Notification from
1424 * there only sets the check bit in the tick_oneshot code,
1425 * otherwise we might deadlock vs. xtime_lock.
d3d74453 1426 */
c6eb3f70 1427 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
d3d74453 1428 hrtimer_switch_to_hres();
3055adda 1429 return;
833883d9 1430 }
c6eb3f70 1431
21d6d52a
TG
1432 raw_spin_lock(&cpu_base->lock);
1433 now = hrtimer_update_base(cpu_base);
1434 __hrtimer_run_queues(cpu_base, now);
1435 raw_spin_unlock(&cpu_base->lock);
c0a31329
TG
1436}
1437
10c94ec1
TG
1438/*
1439 * Sleep related functions:
1440 */
c9cb2e3d 1441static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1442{
1443 struct hrtimer_sleeper *t =
1444 container_of(timer, struct hrtimer_sleeper, timer);
1445 struct task_struct *task = t->task;
1446
1447 t->task = NULL;
1448 if (task)
1449 wake_up_process(task);
1450
1451 return HRTIMER_NORESTART;
1452}
1453
36c8b586 1454void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1455{
1456 sl->timer.function = hrtimer_wakeup;
1457 sl->task = task;
1458}
2bc481cf 1459EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1460
669d7868 1461static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1462{
669d7868 1463 hrtimer_init_sleeper(t, current);
10c94ec1 1464
432569bb
RZ
1465 do {
1466 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1467 hrtimer_start_expires(&t->timer, mode);
432569bb 1468
54cdfdb4 1469 if (likely(t->task))
b0f8c44f 1470 freezable_schedule();
432569bb 1471
669d7868 1472 hrtimer_cancel(&t->timer);
c9cb2e3d 1473 mode = HRTIMER_MODE_ABS;
669d7868
TG
1474
1475 } while (t->task && !signal_pending(current));
432569bb 1476
3588a085
PZ
1477 __set_current_state(TASK_RUNNING);
1478
669d7868 1479 return t->task == NULL;
10c94ec1
TG
1480}
1481
080344b9
ON
1482static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1483{
1484 struct timespec rmt;
1485 ktime_t rem;
1486
cc584b21 1487 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1488 if (rem.tv64 <= 0)
1489 return 0;
1490 rmt = ktime_to_timespec(rem);
1491
1492 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1493 return -EFAULT;
1494
1495 return 1;
1496}
1497
1711ef38 1498long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1499{
669d7868 1500 struct hrtimer_sleeper t;
080344b9 1501 struct timespec __user *rmtp;
237fc6e7 1502 int ret = 0;
10c94ec1 1503
ab8177bc 1504 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1505 HRTIMER_MODE_ABS);
cc584b21 1506 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1507
c9cb2e3d 1508 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1509 goto out;
10c94ec1 1510
029a07e0 1511 rmtp = restart->nanosleep.rmtp;
432569bb 1512 if (rmtp) {
237fc6e7 1513 ret = update_rmtp(&t.timer, rmtp);
080344b9 1514 if (ret <= 0)
237fc6e7 1515 goto out;
432569bb 1516 }
10c94ec1 1517
10c94ec1 1518 /* The other values in restart are already filled in */
237fc6e7
TG
1519 ret = -ERESTART_RESTARTBLOCK;
1520out:
1521 destroy_hrtimer_on_stack(&t.timer);
1522 return ret;
10c94ec1
TG
1523}
1524
080344b9 1525long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1526 const enum hrtimer_mode mode, const clockid_t clockid)
1527{
1528 struct restart_block *restart;
669d7868 1529 struct hrtimer_sleeper t;
237fc6e7 1530 int ret = 0;
3bd01206
AV
1531 unsigned long slack;
1532
1533 slack = current->timer_slack_ns;
aab03e05 1534 if (dl_task(current) || rt_task(current))
3bd01206 1535 slack = 0;
10c94ec1 1536
237fc6e7 1537 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1538 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1539 if (do_nanosleep(&t, mode))
237fc6e7 1540 goto out;
10c94ec1 1541
7978672c 1542 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1543 if (mode == HRTIMER_MODE_ABS) {
1544 ret = -ERESTARTNOHAND;
1545 goto out;
1546 }
10c94ec1 1547
432569bb 1548 if (rmtp) {
237fc6e7 1549 ret = update_rmtp(&t.timer, rmtp);
080344b9 1550 if (ret <= 0)
237fc6e7 1551 goto out;
432569bb 1552 }
10c94ec1 1553
f56141e3 1554 restart = &current->restart_block;
1711ef38 1555 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1556 restart->nanosleep.clockid = t.timer.base->clockid;
029a07e0 1557 restart->nanosleep.rmtp = rmtp;
cc584b21 1558 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1559
237fc6e7
TG
1560 ret = -ERESTART_RESTARTBLOCK;
1561out:
1562 destroy_hrtimer_on_stack(&t.timer);
1563 return ret;
10c94ec1
TG
1564}
1565
58fd3aa2
HC
1566SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1567 struct timespec __user *, rmtp)
6ba1b912 1568{
080344b9 1569 struct timespec tu;
6ba1b912
TG
1570
1571 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1572 return -EFAULT;
1573
1574 if (!timespec_valid(&tu))
1575 return -EINVAL;
1576
080344b9 1577 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1578}
1579
c0a31329
TG
1580/*
1581 * Functions related to boot-time initialization:
1582 */
0db0628d 1583static void init_hrtimers_cpu(int cpu)
c0a31329 1584{
3c8aa39d 1585 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1586 int i;
1587
998adc3d 1588 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1589 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1590 timerqueue_init_head(&cpu_base->clock_base[i].active);
1591 }
3c8aa39d 1592
cddd0248 1593 cpu_base->cpu = cpu;
54cdfdb4 1594 hrtimer_init_hres(cpu_base);
c0a31329
TG
1595}
1596
1597#ifdef CONFIG_HOTPLUG_CPU
1598
ca109491 1599static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1600 struct hrtimer_clock_base *new_base)
c0a31329
TG
1601{
1602 struct hrtimer *timer;
998adc3d 1603 struct timerqueue_node *node;
c0a31329 1604
998adc3d
JS
1605 while ((node = timerqueue_getnext(&old_base->active))) {
1606 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1607 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1608 debug_deactivate(timer);
b00c1a99
TG
1609
1610 /*
c04dca02 1611 * Mark it as ENQUEUED not INACTIVE otherwise the
b00c1a99
TG
1612 * timer could be seen as !active and just vanish away
1613 * under us on another CPU
1614 */
c04dca02 1615 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
c0a31329 1616 timer->base = new_base;
54cdfdb4 1617 /*
e3f1d883
TG
1618 * Enqueue the timers on the new cpu. This does not
1619 * reprogram the event device in case the timer
1620 * expires before the earliest on this CPU, but we run
1621 * hrtimer_interrupt after we migrated everything to
1622 * sort out already expired timers and reprogram the
1623 * event device.
54cdfdb4 1624 */
a6037b61 1625 enqueue_hrtimer(timer, new_base);
c0a31329
TG
1626 }
1627}
1628
d5fd43c4 1629static void migrate_hrtimers(int scpu)
c0a31329 1630{
3c8aa39d 1631 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1632 int i;
c0a31329 1633
37810659 1634 BUG_ON(cpu_online(scpu));
37810659 1635 tick_cancel_sched_timer(scpu);
731a55ba
TG
1636
1637 local_irq_disable();
1638 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 1639 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
1640 /*
1641 * The caller is globally serialized and nobody else
1642 * takes two locks at once, deadlock is not possible.
1643 */
ecb49d1a
TG
1644 raw_spin_lock(&new_base->lock);
1645 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1646
3c8aa39d 1647 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1648 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1649 &new_base->clock_base[i]);
c0a31329
TG
1650 }
1651
ecb49d1a
TG
1652 raw_spin_unlock(&old_base->lock);
1653 raw_spin_unlock(&new_base->lock);
37810659 1654
731a55ba
TG
1655 /* Check, if we got expired work to do */
1656 __hrtimer_peek_ahead_timers();
1657 local_irq_enable();
c0a31329 1658}
37810659 1659
c0a31329
TG
1660#endif /* CONFIG_HOTPLUG_CPU */
1661
0db0628d 1662static int hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1663 unsigned long action, void *hcpu)
1664{
b2e3c0ad 1665 int scpu = (long)hcpu;
c0a31329
TG
1666
1667 switch (action) {
1668
1669 case CPU_UP_PREPARE:
8bb78442 1670 case CPU_UP_PREPARE_FROZEN:
37810659 1671 init_hrtimers_cpu(scpu);
c0a31329
TG
1672 break;
1673
1674#ifdef CONFIG_HOTPLUG_CPU
1675 case CPU_DEAD:
8bb78442 1676 case CPU_DEAD_FROZEN:
d5fd43c4 1677 migrate_hrtimers(scpu);
c0a31329
TG
1678 break;
1679#endif
1680
1681 default:
1682 break;
1683 }
1684
1685 return NOTIFY_OK;
1686}
1687
0db0628d 1688static struct notifier_block hrtimers_nb = {
c0a31329
TG
1689 .notifier_call = hrtimer_cpu_notify,
1690};
1691
1692void __init hrtimers_init(void)
1693{
1694 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1695 (void *)(long)smp_processor_id());
1696 register_cpu_notifier(&hrtimers_nb);
1697}
1698
7bb67439 1699/**
351b3f7a 1700 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1701 * @expires: timeout value (ktime_t)
654c8e0b 1702 * @delta: slack in expires timeout (ktime_t)
7bb67439 1703 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1704 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1705 */
351b3f7a
CE
1706int __sched
1707schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1708 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1709{
1710 struct hrtimer_sleeper t;
1711
1712 /*
1713 * Optimize when a zero timeout value is given. It does not
1714 * matter whether this is an absolute or a relative time.
1715 */
1716 if (expires && !expires->tv64) {
1717 __set_current_state(TASK_RUNNING);
1718 return 0;
1719 }
1720
1721 /*
43b21013 1722 * A NULL parameter means "infinite"
7bb67439
AV
1723 */
1724 if (!expires) {
1725 schedule();
7bb67439
AV
1726 return -EINTR;
1727 }
1728
351b3f7a 1729 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1730 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1731
1732 hrtimer_init_sleeper(&t, current);
1733
cc584b21 1734 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1735
1736 if (likely(t.task))
1737 schedule();
1738
1739 hrtimer_cancel(&t.timer);
1740 destroy_hrtimer_on_stack(&t.timer);
1741
1742 __set_current_state(TASK_RUNNING);
1743
1744 return !t.task ? 0 : -EINTR;
1745}
351b3f7a
CE
1746
1747/**
1748 * schedule_hrtimeout_range - sleep until timeout
1749 * @expires: timeout value (ktime_t)
1750 * @delta: slack in expires timeout (ktime_t)
1751 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1752 *
1753 * Make the current task sleep until the given expiry time has
1754 * elapsed. The routine will return immediately unless
1755 * the current task state has been set (see set_current_state()).
1756 *
1757 * The @delta argument gives the kernel the freedom to schedule the
1758 * actual wakeup to a time that is both power and performance friendly.
1759 * The kernel give the normal best effort behavior for "@expires+@delta",
1760 * but may decide to fire the timer earlier, but no earlier than @expires.
1761 *
1762 * You can set the task state as follows -
1763 *
1764 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1765 * pass before the routine returns.
1766 *
1767 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1768 * delivered to the current task.
1769 *
1770 * The current task state is guaranteed to be TASK_RUNNING when this
1771 * routine returns.
1772 *
1773 * Returns 0 when the timer has expired otherwise -EINTR
1774 */
1775int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1776 const enum hrtimer_mode mode)
1777{
1778 return schedule_hrtimeout_range_clock(expires, delta, mode,
1779 CLOCK_MONOTONIC);
1780}
654c8e0b
AV
1781EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1782
1783/**
1784 * schedule_hrtimeout - sleep until timeout
1785 * @expires: timeout value (ktime_t)
1786 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1787 *
1788 * Make the current task sleep until the given expiry time has
1789 * elapsed. The routine will return immediately unless
1790 * the current task state has been set (see set_current_state()).
1791 *
1792 * You can set the task state as follows -
1793 *
1794 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1795 * pass before the routine returns.
1796 *
1797 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1798 * delivered to the current task.
1799 *
1800 * The current task state is guaranteed to be TASK_RUNNING when this
1801 * routine returns.
1802 *
1803 * Returns 0 when the timer has expired otherwise -EINTR
1804 */
1805int __sched schedule_hrtimeout(ktime_t *expires,
1806 const enum hrtimer_mode mode)
1807{
1808 return schedule_hrtimeout_range(expires, 0, mode);
1809}
7bb67439 1810EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 1.105118 seconds and 5 git commands to generate.