Merge branch 'x86/ras' into x86/core, to fix conflicts
[deliverable/linux.git] / kernel / time / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32 46#include <linux/sched.h>
cf4aebc2 47#include <linux/sched/sysctl.h>
8bd75c77 48#include <linux/sched/rt.h>
aab03e05 49#include <linux/sched/deadline.h>
eea08f32 50#include <linux/timer.h>
b0f8c44f 51#include <linux/freezer.h>
c0a31329
TG
52
53#include <asm/uaccess.h>
54
c6a2a177
XG
55#include <trace/events/timer.h>
56
c1797baf 57#include "tick-internal.h"
8b094cd0 58
c0a31329
TG
59/*
60 * The timer bases:
7978672c 61 *
e06383db
JS
62 * There are more clockids then hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 66 */
54cdfdb4 67DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 68{
3c8aa39d 69
84cc8fd2 70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 71 .clock_base =
c0a31329 72 {
3c8aa39d 73 {
ab8177bc
TG
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
3c8aa39d 76 .get_time = &ktime_get,
54cdfdb4 77 .resolution = KTIME_LOW_RES,
3c8aa39d 78 },
68fa61c0
TG
79 {
80 .index = HRTIMER_BASE_REALTIME,
81 .clockid = CLOCK_REALTIME,
82 .get_time = &ktime_get_real,
83 .resolution = KTIME_LOW_RES,
84 },
70a08cca 85 {
ab8177bc
TG
86 .index = HRTIMER_BASE_BOOTTIME,
87 .clockid = CLOCK_BOOTTIME,
70a08cca
JS
88 .get_time = &ktime_get_boottime,
89 .resolution = KTIME_LOW_RES,
90 },
90adda98
JS
91 {
92 .index = HRTIMER_BASE_TAI,
93 .clockid = CLOCK_TAI,
94 .get_time = &ktime_get_clocktai,
95 .resolution = KTIME_LOW_RES,
96 },
3c8aa39d 97 }
c0a31329
TG
98};
99
942c3c5c 100static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
ce31332d
TG
101 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
102 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
103 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 104 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 105};
e06383db
JS
106
107static inline int hrtimer_clockid_to_base(clockid_t clock_id)
108{
109 return hrtimer_clock_to_base_table[clock_id];
110}
111
112
92127c7a
TG
113/*
114 * Get the coarse grained time at the softirq based on xtime and
115 * wall_to_monotonic.
116 */
3c8aa39d 117static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a 118{
76f41088
JS
119 ktime_t xtim, mono, boot, tai;
120 ktime_t off_real, off_boot, off_tai;
92127c7a 121
76f41088
JS
122 mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai);
123 boot = ktime_add(mono, off_boot);
124 xtim = ktime_add(mono, off_real);
2d926c15 125 tai = ktime_add(mono, off_tai);
92127c7a 126
e06383db 127 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
70a08cca
JS
128 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
129 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
76f41088 130 base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai;
92127c7a
TG
131}
132
c0a31329
TG
133/*
134 * Functions and macros which are different for UP/SMP systems are kept in a
135 * single place
136 */
137#ifdef CONFIG_SMP
138
c0a31329
TG
139/*
140 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
141 * means that all timers which are tied to this base via timer->base are
142 * locked, and the base itself is locked too.
143 *
144 * So __run_timers/migrate_timers can safely modify all timers which could
145 * be found on the lists/queues.
146 *
147 * When the timer's base is locked, and the timer removed from list, it is
148 * possible to set timer->base = NULL and drop the lock: the timer remains
149 * locked.
150 */
3c8aa39d
TG
151static
152struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
153 unsigned long *flags)
c0a31329 154{
3c8aa39d 155 struct hrtimer_clock_base *base;
c0a31329
TG
156
157 for (;;) {
158 base = timer->base;
159 if (likely(base != NULL)) {
ecb49d1a 160 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
161 if (likely(base == timer->base))
162 return base;
163 /* The timer has migrated to another CPU: */
ecb49d1a 164 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
165 }
166 cpu_relax();
167 }
168}
169
6ff7041d
TG
170/*
171 * With HIGHRES=y we do not migrate the timer when it is expiring
172 * before the next event on the target cpu because we cannot reprogram
173 * the target cpu hardware and we would cause it to fire late.
174 *
175 * Called with cpu_base->lock of target cpu held.
176 */
177static int
178hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
179{
180#ifdef CONFIG_HIGH_RES_TIMERS
181 ktime_t expires;
182
183 if (!new_base->cpu_base->hres_active)
184 return 0;
185
186 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
187 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
188#else
189 return 0;
190#endif
191}
192
c0a31329
TG
193/*
194 * Switch the timer base to the current CPU when possible.
195 */
3c8aa39d 196static inline struct hrtimer_clock_base *
597d0275
AB
197switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
198 int pinned)
c0a31329 199{
3c8aa39d
TG
200 struct hrtimer_clock_base *new_base;
201 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d 202 int this_cpu = smp_processor_id();
6201b4d6 203 int cpu = get_nohz_timer_target(pinned);
ab8177bc 204 int basenum = base->index;
c0a31329 205
eea08f32
AB
206again:
207 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
e06383db 208 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
209
210 if (base != new_base) {
211 /*
6ff7041d 212 * We are trying to move timer to new_base.
c0a31329
TG
213 * However we can't change timer's base while it is running,
214 * so we keep it on the same CPU. No hassle vs. reprogramming
215 * the event source in the high resolution case. The softirq
216 * code will take care of this when the timer function has
217 * completed. There is no conflict as we hold the lock until
218 * the timer is enqueued.
219 */
54cdfdb4 220 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
221 return base;
222
223 /* See the comment in lock_timer_base() */
224 timer->base = NULL;
ecb49d1a
TG
225 raw_spin_unlock(&base->cpu_base->lock);
226 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 227
6ff7041d
TG
228 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
229 cpu = this_cpu;
ecb49d1a
TG
230 raw_spin_unlock(&new_base->cpu_base->lock);
231 raw_spin_lock(&base->cpu_base->lock);
6ff7041d
TG
232 timer->base = base;
233 goto again;
eea08f32 234 }
c0a31329 235 timer->base = new_base;
012a45e3
LM
236 } else {
237 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
238 cpu = this_cpu;
239 goto again;
240 }
c0a31329
TG
241 }
242 return new_base;
243}
244
245#else /* CONFIG_SMP */
246
3c8aa39d 247static inline struct hrtimer_clock_base *
c0a31329
TG
248lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
249{
3c8aa39d 250 struct hrtimer_clock_base *base = timer->base;
c0a31329 251
ecb49d1a 252 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
253
254 return base;
255}
256
eea08f32 257# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
258
259#endif /* !CONFIG_SMP */
260
261/*
262 * Functions for the union type storage format of ktime_t which are
263 * too large for inlining:
264 */
265#if BITS_PER_LONG < 64
c0a31329
TG
266/*
267 * Divide a ktime value by a nanosecond value
268 */
f7bcb70e 269s64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 270{
c0a31329 271 int sft = 0;
f7bcb70e
JS
272 s64 dclc;
273 u64 tmp;
c0a31329 274
900cfa46 275 dclc = ktime_to_ns(kt);
f7bcb70e
JS
276 tmp = dclc < 0 ? -dclc : dclc;
277
c0a31329
TG
278 /* Make sure the divisor is less than 2^32: */
279 while (div >> 32) {
280 sft++;
281 div >>= 1;
282 }
f7bcb70e
JS
283 tmp >>= sft;
284 do_div(tmp, (unsigned long) div);
285 return dclc < 0 ? -tmp : tmp;
c0a31329 286}
8b618628 287EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
288#endif /* BITS_PER_LONG >= 64 */
289
5a7780e7
TG
290/*
291 * Add two ktime values and do a safety check for overflow:
292 */
293ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
294{
295 ktime_t res = ktime_add(lhs, rhs);
296
297 /*
298 * We use KTIME_SEC_MAX here, the maximum timeout which we can
299 * return to user space in a timespec:
300 */
301 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
302 res = ktime_set(KTIME_SEC_MAX, 0);
303
304 return res;
305}
306
8daa21e6
AB
307EXPORT_SYMBOL_GPL(ktime_add_safe);
308
237fc6e7
TG
309#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
310
311static struct debug_obj_descr hrtimer_debug_descr;
312
99777288
SG
313static void *hrtimer_debug_hint(void *addr)
314{
315 return ((struct hrtimer *) addr)->function;
316}
317
237fc6e7
TG
318/*
319 * fixup_init is called when:
320 * - an active object is initialized
321 */
322static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
323{
324 struct hrtimer *timer = addr;
325
326 switch (state) {
327 case ODEBUG_STATE_ACTIVE:
328 hrtimer_cancel(timer);
329 debug_object_init(timer, &hrtimer_debug_descr);
330 return 1;
331 default:
332 return 0;
333 }
334}
335
336/*
337 * fixup_activate is called when:
338 * - an active object is activated
339 * - an unknown object is activated (might be a statically initialized object)
340 */
341static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
342{
343 switch (state) {
344
345 case ODEBUG_STATE_NOTAVAILABLE:
346 WARN_ON_ONCE(1);
347 return 0;
348
349 case ODEBUG_STATE_ACTIVE:
350 WARN_ON(1);
351
352 default:
353 return 0;
354 }
355}
356
357/*
358 * fixup_free is called when:
359 * - an active object is freed
360 */
361static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
362{
363 struct hrtimer *timer = addr;
364
365 switch (state) {
366 case ODEBUG_STATE_ACTIVE:
367 hrtimer_cancel(timer);
368 debug_object_free(timer, &hrtimer_debug_descr);
369 return 1;
370 default:
371 return 0;
372 }
373}
374
375static struct debug_obj_descr hrtimer_debug_descr = {
376 .name = "hrtimer",
99777288 377 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
378 .fixup_init = hrtimer_fixup_init,
379 .fixup_activate = hrtimer_fixup_activate,
380 .fixup_free = hrtimer_fixup_free,
381};
382
383static inline void debug_hrtimer_init(struct hrtimer *timer)
384{
385 debug_object_init(timer, &hrtimer_debug_descr);
386}
387
388static inline void debug_hrtimer_activate(struct hrtimer *timer)
389{
390 debug_object_activate(timer, &hrtimer_debug_descr);
391}
392
393static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
394{
395 debug_object_deactivate(timer, &hrtimer_debug_descr);
396}
397
398static inline void debug_hrtimer_free(struct hrtimer *timer)
399{
400 debug_object_free(timer, &hrtimer_debug_descr);
401}
402
403static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
404 enum hrtimer_mode mode);
405
406void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
407 enum hrtimer_mode mode)
408{
409 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
410 __hrtimer_init(timer, clock_id, mode);
411}
2bc481cf 412EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
413
414void destroy_hrtimer_on_stack(struct hrtimer *timer)
415{
416 debug_object_free(timer, &hrtimer_debug_descr);
417}
418
419#else
420static inline void debug_hrtimer_init(struct hrtimer *timer) { }
421static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
422static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
423#endif
424
c6a2a177
XG
425static inline void
426debug_init(struct hrtimer *timer, clockid_t clockid,
427 enum hrtimer_mode mode)
428{
429 debug_hrtimer_init(timer);
430 trace_hrtimer_init(timer, clockid, mode);
431}
432
433static inline void debug_activate(struct hrtimer *timer)
434{
435 debug_hrtimer_activate(timer);
436 trace_hrtimer_start(timer);
437}
438
439static inline void debug_deactivate(struct hrtimer *timer)
440{
441 debug_hrtimer_deactivate(timer);
442 trace_hrtimer_cancel(timer);
443}
444
9bc74919 445#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
4ebbda52 446static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
9bc74919
TG
447{
448 struct hrtimer_clock_base *base = cpu_base->clock_base;
449 ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
450 int i;
451
452 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
453 struct timerqueue_node *next;
454 struct hrtimer *timer;
455
456 next = timerqueue_getnext(&base->active);
457 if (!next)
458 continue;
459
460 timer = container_of(next, struct hrtimer, node);
461 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
462 if (expires.tv64 < expires_next.tv64)
463 expires_next = expires;
464 }
465 /*
466 * clock_was_set() might have changed base->offset of any of
467 * the clock bases so the result might be negative. Fix it up
468 * to prevent a false positive in clockevents_program_event().
469 */
470 if (expires_next.tv64 < 0)
471 expires_next.tv64 = 0;
472 return expires_next;
473}
474#endif
475
54cdfdb4
TG
476/* High resolution timer related functions */
477#ifdef CONFIG_HIGH_RES_TIMERS
478
479/*
480 * High resolution timer enabled ?
481 */
482static int hrtimer_hres_enabled __read_mostly = 1;
483
484/*
485 * Enable / Disable high resolution mode
486 */
487static int __init setup_hrtimer_hres(char *str)
488{
489 if (!strcmp(str, "off"))
490 hrtimer_hres_enabled = 0;
491 else if (!strcmp(str, "on"))
492 hrtimer_hres_enabled = 1;
493 else
494 return 0;
495 return 1;
496}
497
498__setup("highres=", setup_hrtimer_hres);
499
500/*
501 * hrtimer_high_res_enabled - query, if the highres mode is enabled
502 */
503static inline int hrtimer_is_hres_enabled(void)
504{
505 return hrtimer_hres_enabled;
506}
507
508/*
509 * Is the high resolution mode active ?
510 */
511static inline int hrtimer_hres_active(void)
512{
909ea964 513 return __this_cpu_read(hrtimer_bases.hres_active);
54cdfdb4
TG
514}
515
516/*
517 * Reprogram the event source with checking both queues for the
518 * next event
519 * Called with interrupts disabled and base->lock held
520 */
7403f41f
AC
521static void
522hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 523{
9bc74919 524 ktime_t expires_next = __hrtimer_get_next_event(cpu_base);
54cdfdb4 525
7403f41f
AC
526 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
527 return;
528
529 cpu_base->expires_next.tv64 = expires_next.tv64;
530
6c6c0d5a
SH
531 /*
532 * If a hang was detected in the last timer interrupt then we
533 * leave the hang delay active in the hardware. We want the
534 * system to make progress. That also prevents the following
535 * scenario:
536 * T1 expires 50ms from now
537 * T2 expires 5s from now
538 *
539 * T1 is removed, so this code is called and would reprogram
540 * the hardware to 5s from now. Any hrtimer_start after that
541 * will not reprogram the hardware due to hang_detected being
542 * set. So we'd effectivly block all timers until the T2 event
543 * fires.
544 */
545 if (cpu_base->hang_detected)
546 return;
547
54cdfdb4
TG
548 if (cpu_base->expires_next.tv64 != KTIME_MAX)
549 tick_program_event(cpu_base->expires_next, 1);
550}
551
552/*
553 * Shared reprogramming for clock_realtime and clock_monotonic
554 *
555 * When a timer is enqueued and expires earlier than the already enqueued
556 * timers, we have to check, whether it expires earlier than the timer for
557 * which the clock event device was armed.
558 *
9e1e01dd
VK
559 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
560 * and no expiry check happens. The timer gets enqueued into the rbtree. The
561 * reprogramming and expiry check is done in the hrtimer_interrupt or in the
562 * softirq.
563 *
54cdfdb4
TG
564 * Called with interrupts disabled and base->cpu_base.lock held
565 */
566static int hrtimer_reprogram(struct hrtimer *timer,
567 struct hrtimer_clock_base *base)
568{
dc5df73b 569 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
cc584b21 570 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
571 int res;
572
cc584b21 573 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 574
54cdfdb4
TG
575 /*
576 * When the callback is running, we do not reprogram the clock event
577 * device. The timer callback is either running on a different CPU or
3a4fa0a2 578 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
579 * reprogramming is handled either by the softirq, which called the
580 * callback or at the end of the hrtimer_interrupt.
581 */
582 if (hrtimer_callback_running(timer))
583 return 0;
584
63070a79
TG
585 /*
586 * CLOCK_REALTIME timer might be requested with an absolute
587 * expiry time which is less than base->offset. Nothing wrong
588 * about that, just avoid to call into the tick code, which
589 * has now objections against negative expiry values.
590 */
591 if (expires.tv64 < 0)
592 return -ETIME;
593
41d2e494
TG
594 if (expires.tv64 >= cpu_base->expires_next.tv64)
595 return 0;
596
9bc74919
TG
597 /*
598 * When the target cpu of the timer is currently executing
599 * hrtimer_interrupt(), then we do not touch the clock event
600 * device. hrtimer_interrupt() will reevaluate all clock bases
601 * before reprogramming the device.
602 */
603 if (cpu_base->in_hrtirq)
604 return 0;
605
41d2e494
TG
606 /*
607 * If a hang was detected in the last timer interrupt then we
608 * do not schedule a timer which is earlier than the expiry
609 * which we enforced in the hang detection. We want the system
610 * to make progress.
611 */
612 if (cpu_base->hang_detected)
54cdfdb4
TG
613 return 0;
614
615 /*
616 * Clockevents returns -ETIME, when the event was in the past.
617 */
618 res = tick_program_event(expires, 0);
619 if (!IS_ERR_VALUE(res))
41d2e494 620 cpu_base->expires_next = expires;
54cdfdb4
TG
621 return res;
622}
623
54cdfdb4
TG
624/*
625 * Initialize the high resolution related parts of cpu_base
626 */
627static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
628{
629 base->expires_next.tv64 = KTIME_MAX;
630 base->hres_active = 0;
54cdfdb4
TG
631}
632
5baefd6d
JS
633static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
634{
635 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
636 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
90adda98 637 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
5baefd6d 638
76f41088 639 return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai);
5baefd6d
JS
640}
641
9ec26907
TG
642/*
643 * Retrigger next event is called after clock was set
644 *
645 * Called with interrupts disabled via on_each_cpu()
646 */
647static void retrigger_next_event(void *arg)
648{
dc5df73b 649 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907
TG
650
651 if (!hrtimer_hres_active())
652 return;
653
9ec26907 654 raw_spin_lock(&base->lock);
5baefd6d 655 hrtimer_update_base(base);
9ec26907
TG
656 hrtimer_force_reprogram(base, 0);
657 raw_spin_unlock(&base->lock);
658}
b12a03ce 659
54cdfdb4
TG
660/*
661 * Switch to high resolution mode
662 */
f8953856 663static int hrtimer_switch_to_hres(void)
54cdfdb4 664{
b12a03ce 665 int i, cpu = smp_processor_id();
820de5c3 666 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
667 unsigned long flags;
668
669 if (base->hres_active)
f8953856 670 return 1;
54cdfdb4
TG
671
672 local_irq_save(flags);
673
674 if (tick_init_highres()) {
675 local_irq_restore(flags);
820de5c3
IM
676 printk(KERN_WARNING "Could not switch to high resolution "
677 "mode on CPU %d\n", cpu);
f8953856 678 return 0;
54cdfdb4
TG
679 }
680 base->hres_active = 1;
b12a03ce
TG
681 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
682 base->clock_base[i].resolution = KTIME_HIGH_RES;
54cdfdb4
TG
683
684 tick_setup_sched_timer();
54cdfdb4
TG
685 /* "Retrigger" the interrupt to get things going */
686 retrigger_next_event(NULL);
687 local_irq_restore(flags);
f8953856 688 return 1;
54cdfdb4
TG
689}
690
5ec2481b
TG
691static void clock_was_set_work(struct work_struct *work)
692{
693 clock_was_set();
694}
695
696static DECLARE_WORK(hrtimer_work, clock_was_set_work);
697
f55a6faa 698/*
5ec2481b
TG
699 * Called from timekeeping and resume code to reprogramm the hrtimer
700 * interrupt device on all cpus.
f55a6faa
JS
701 */
702void clock_was_set_delayed(void)
703{
5ec2481b 704 schedule_work(&hrtimer_work);
f55a6faa
JS
705}
706
54cdfdb4
TG
707#else
708
709static inline int hrtimer_hres_active(void) { return 0; }
710static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 711static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
712static inline void
713hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
9e1e01dd
VK
714static inline int hrtimer_reprogram(struct hrtimer *timer,
715 struct hrtimer_clock_base *base)
54cdfdb4
TG
716{
717 return 0;
718}
54cdfdb4 719static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
9ec26907 720static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
721
722#endif /* CONFIG_HIGH_RES_TIMERS */
723
b12a03ce
TG
724/*
725 * Clock realtime was set
726 *
727 * Change the offset of the realtime clock vs. the monotonic
728 * clock.
729 *
730 * We might have to reprogram the high resolution timer interrupt. On
731 * SMP we call the architecture specific code to retrigger _all_ high
732 * resolution timer interrupts. On UP we just disable interrupts and
733 * call the high resolution interrupt code.
734 */
735void clock_was_set(void)
736{
90ff1f30 737#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
738 /* Retrigger the CPU local events everywhere */
739 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
740#endif
741 timerfd_clock_was_set();
b12a03ce
TG
742}
743
744/*
745 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
746 * interrupt on all online CPUs. However, all other CPUs will be
747 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 748 * must be deferred.
b12a03ce
TG
749 */
750void hrtimers_resume(void)
751{
752 WARN_ONCE(!irqs_disabled(),
753 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
754
5ec2481b 755 /* Retrigger on the local CPU */
b12a03ce 756 retrigger_next_event(NULL);
5ec2481b
TG
757 /* And schedule a retrigger for all others */
758 clock_was_set_delayed();
b12a03ce
TG
759}
760
5f201907 761static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
82f67cd9 762{
5f201907 763#ifdef CONFIG_TIMER_STATS
82f67cd9
IM
764 if (timer->start_site)
765 return;
5f201907 766 timer->start_site = __builtin_return_address(0);
82f67cd9
IM
767 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
768 timer->start_pid = current->pid;
5f201907
HC
769#endif
770}
771
772static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
773{
774#ifdef CONFIG_TIMER_STATS
775 timer->start_site = NULL;
776#endif
82f67cd9 777}
5f201907
HC
778
779static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
780{
781#ifdef CONFIG_TIMER_STATS
782 if (likely(!timer_stats_active))
783 return;
784 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
785 timer->function, timer->start_comm, 0);
82f67cd9 786#endif
5f201907 787}
82f67cd9 788
c0a31329 789/*
6506f2aa 790 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
791 */
792static inline
793void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
794{
ecb49d1a 795 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
796}
797
798/**
799 * hrtimer_forward - forward the timer expiry
c0a31329 800 * @timer: hrtimer to forward
44f21475 801 * @now: forward past this time
c0a31329
TG
802 * @interval: the interval to forward
803 *
804 * Forward the timer expiry so it will expire in the future.
8dca6f33 805 * Returns the number of overruns.
c0a31329 806 */
4d672e7a 807u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 808{
4d672e7a 809 u64 orun = 1;
44f21475 810 ktime_t delta;
c0a31329 811
cc584b21 812 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
813
814 if (delta.tv64 < 0)
815 return 0;
816
c9db4fa1
TG
817 if (interval.tv64 < timer->base->resolution.tv64)
818 interval.tv64 = timer->base->resolution.tv64;
819
c0a31329 820 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 821 s64 incr = ktime_to_ns(interval);
c0a31329
TG
822
823 orun = ktime_divns(delta, incr);
cc584b21
AV
824 hrtimer_add_expires_ns(timer, incr * orun);
825 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
826 return orun;
827 /*
828 * This (and the ktime_add() below) is the
829 * correction for exact:
830 */
831 orun++;
832 }
cc584b21 833 hrtimer_add_expires(timer, interval);
c0a31329
TG
834
835 return orun;
836}
6bdb6b62 837EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
838
839/*
840 * enqueue_hrtimer - internal function to (re)start a timer
841 *
842 * The timer is inserted in expiry order. Insertion into the
843 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
844 *
845 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 846 */
a6037b61
PZ
847static int enqueue_hrtimer(struct hrtimer *timer,
848 struct hrtimer_clock_base *base)
c0a31329 849{
c6a2a177 850 debug_activate(timer);
237fc6e7 851
998adc3d 852 timerqueue_add(&base->active, &timer->node);
ab8177bc 853 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 854
303e967f
TG
855 /*
856 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
857 * state of a possibly running callback.
858 */
859 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61 860
998adc3d 861 return (&timer->node == base->active.next);
288867ec 862}
c0a31329
TG
863
864/*
865 * __remove_hrtimer - internal function to remove a timer
866 *
867 * Caller must hold the base lock.
54cdfdb4
TG
868 *
869 * High resolution timer mode reprograms the clock event device when the
870 * timer is the one which expires next. The caller can disable this by setting
871 * reprogram to zero. This is useful, when the context does a reprogramming
872 * anyway (e.g. timer interrupt)
c0a31329 873 */
3c8aa39d 874static void __remove_hrtimer(struct hrtimer *timer,
303e967f 875 struct hrtimer_clock_base *base,
54cdfdb4 876 unsigned long newstate, int reprogram)
c0a31329 877{
27c9cd7e 878 struct timerqueue_node *next_timer;
7403f41f
AC
879 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
880 goto out;
881
27c9cd7e
JO
882 next_timer = timerqueue_getnext(&base->active);
883 timerqueue_del(&base->active, &timer->node);
884 if (&timer->node == next_timer) {
7403f41f
AC
885#ifdef CONFIG_HIGH_RES_TIMERS
886 /* Reprogram the clock event device. if enabled */
887 if (reprogram && hrtimer_hres_active()) {
888 ktime_t expires;
889
890 expires = ktime_sub(hrtimer_get_expires(timer),
891 base->offset);
892 if (base->cpu_base->expires_next.tv64 == expires.tv64)
893 hrtimer_force_reprogram(base->cpu_base, 1);
54cdfdb4 894 }
7403f41f 895#endif
54cdfdb4 896 }
ab8177bc
TG
897 if (!timerqueue_getnext(&base->active))
898 base->cpu_base->active_bases &= ~(1 << base->index);
7403f41f 899out:
303e967f 900 timer->state = newstate;
c0a31329
TG
901}
902
903/*
904 * remove hrtimer, called with base lock held
905 */
906static inline int
3c8aa39d 907remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 908{
303e967f 909 if (hrtimer_is_queued(timer)) {
f13d4f97 910 unsigned long state;
54cdfdb4
TG
911 int reprogram;
912
913 /*
914 * Remove the timer and force reprogramming when high
915 * resolution mode is active and the timer is on the current
916 * CPU. If we remove a timer on another CPU, reprogramming is
917 * skipped. The interrupt event on this CPU is fired and
918 * reprogramming happens in the interrupt handler. This is a
919 * rare case and less expensive than a smp call.
920 */
c6a2a177 921 debug_deactivate(timer);
82f67cd9 922 timer_stats_hrtimer_clear_start_info(timer);
dc5df73b 923 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
f13d4f97
SQ
924 /*
925 * We must preserve the CALLBACK state flag here,
926 * otherwise we could move the timer base in
927 * switch_hrtimer_base.
928 */
929 state = timer->state & HRTIMER_STATE_CALLBACK;
930 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
931 return 1;
932 }
933 return 0;
934}
935
7f1e2ca9
PZ
936int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
937 unsigned long delta_ns, const enum hrtimer_mode mode,
938 int wakeup)
c0a31329 939{
3c8aa39d 940 struct hrtimer_clock_base *base, *new_base;
c0a31329 941 unsigned long flags;
a6037b61 942 int ret, leftmost;
c0a31329
TG
943
944 base = lock_hrtimer_base(timer, &flags);
945
946 /* Remove an active timer from the queue: */
947 ret = remove_hrtimer(timer, base);
948
597d0275 949 if (mode & HRTIMER_MODE_REL) {
84ea7fe3 950 tim = ktime_add_safe(tim, base->get_time());
06027bdd
IM
951 /*
952 * CONFIG_TIME_LOW_RES is a temporary way for architectures
953 * to signal that they simply return xtime in
954 * do_gettimeoffset(). In this case we want to round up by
955 * resolution when starting a relative timer, to avoid short
956 * timeouts. This will go away with the GTOD framework.
957 */
958#ifdef CONFIG_TIME_LOW_RES
5a7780e7 959 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
960#endif
961 }
237fc6e7 962
da8f2e17 963 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 964
84ea7fe3
VK
965 /* Switch the timer base, if necessary: */
966 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
967
82f67cd9
IM
968 timer_stats_hrtimer_set_start_info(timer);
969
a6037b61
PZ
970 leftmost = enqueue_hrtimer(timer, new_base);
971
49a2a075
VK
972 if (!leftmost) {
973 unlock_hrtimer_base(timer, &flags);
974 return ret;
975 }
976
977 if (!hrtimer_is_hres_active(timer)) {
978 /*
979 * Kick to reschedule the next tick to handle the new timer
980 * on dynticks target.
981 */
982 wake_up_nohz_cpu(new_base->cpu_base->cpu);
dc5df73b 983 } else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) &&
9e1e01dd 984 hrtimer_reprogram(timer, new_base)) {
49a2a075
VK
985 /*
986 * Only allow reprogramming if the new base is on this CPU.
987 * (it might still be on another CPU if the timer was pending)
988 *
989 * XXX send_remote_softirq() ?
990 */
b22affe0
LS
991 if (wakeup) {
992 /*
993 * We need to drop cpu_base->lock to avoid a
994 * lock ordering issue vs. rq->lock.
995 */
996 raw_spin_unlock(&new_base->cpu_base->lock);
997 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
998 local_irq_restore(flags);
999 return ret;
1000 } else {
1001 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1002 }
1003 }
c0a31329
TG
1004
1005 unlock_hrtimer_base(timer, &flags);
1006
1007 return ret;
1008}
8588a2bb 1009EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
7f1e2ca9
PZ
1010
1011/**
1012 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1013 * @timer: the timer to be added
1014 * @tim: expiry time
1015 * @delta_ns: "slack" range for the timer
8ffbc7d9
DD
1016 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1017 * relative (HRTIMER_MODE_REL)
7f1e2ca9
PZ
1018 *
1019 * Returns:
1020 * 0 on success
1021 * 1 when the timer was active
1022 */
1023int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1024 unsigned long delta_ns, const enum hrtimer_mode mode)
1025{
1026 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1027}
da8f2e17
AV
1028EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1029
1030/**
e1dd7bc5 1031 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
1032 * @timer: the timer to be added
1033 * @tim: expiry time
8ffbc7d9
DD
1034 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1035 * relative (HRTIMER_MODE_REL)
da8f2e17
AV
1036 *
1037 * Returns:
1038 * 0 on success
1039 * 1 when the timer was active
1040 */
1041int
1042hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1043{
7f1e2ca9 1044 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1045}
8d16b764 1046EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1047
da8f2e17 1048
c0a31329
TG
1049/**
1050 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1051 * @timer: hrtimer to stop
1052 *
1053 * Returns:
1054 * 0 when the timer was not active
1055 * 1 when the timer was active
1056 * -1 when the timer is currently excuting the callback function and
fa9799e3 1057 * cannot be stopped
c0a31329
TG
1058 */
1059int hrtimer_try_to_cancel(struct hrtimer *timer)
1060{
3c8aa39d 1061 struct hrtimer_clock_base *base;
c0a31329
TG
1062 unsigned long flags;
1063 int ret = -1;
1064
1065 base = lock_hrtimer_base(timer, &flags);
1066
303e967f 1067 if (!hrtimer_callback_running(timer))
c0a31329
TG
1068 ret = remove_hrtimer(timer, base);
1069
1070 unlock_hrtimer_base(timer, &flags);
1071
1072 return ret;
1073
1074}
8d16b764 1075EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1076
1077/**
1078 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1079 * @timer: the timer to be cancelled
1080 *
1081 * Returns:
1082 * 0 when the timer was not active
1083 * 1 when the timer was active
1084 */
1085int hrtimer_cancel(struct hrtimer *timer)
1086{
1087 for (;;) {
1088 int ret = hrtimer_try_to_cancel(timer);
1089
1090 if (ret >= 0)
1091 return ret;
5ef37b19 1092 cpu_relax();
c0a31329
TG
1093 }
1094}
8d16b764 1095EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1096
1097/**
1098 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1099 * @timer: the timer to read
1100 */
1101ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1102{
c0a31329
TG
1103 unsigned long flags;
1104 ktime_t rem;
1105
b3bd3de6 1106 lock_hrtimer_base(timer, &flags);
cc584b21 1107 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1108 unlock_hrtimer_base(timer, &flags);
1109
1110 return rem;
1111}
8d16b764 1112EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1113
3451d024 1114#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1115/**
1116 * hrtimer_get_next_event - get the time until next expiry event
1117 *
1118 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1119 * is pending.
1120 */
1121ktime_t hrtimer_get_next_event(void)
1122{
dc5df73b 1123 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
9bc74919 1124 ktime_t mindelta = { .tv64 = KTIME_MAX };
69239749 1125 unsigned long flags;
69239749 1126
ecb49d1a 1127 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1128
9bc74919
TG
1129 if (!hrtimer_hres_active())
1130 mindelta = ktime_sub(__hrtimer_get_next_event(cpu_base),
1131 ktime_get());
3c8aa39d 1132
ecb49d1a 1133 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1134
69239749
TL
1135 if (mindelta.tv64 < 0)
1136 mindelta.tv64 = 0;
1137 return mindelta;
1138}
1139#endif
1140
237fc6e7
TG
1141static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1142 enum hrtimer_mode mode)
c0a31329 1143{
3c8aa39d 1144 struct hrtimer_cpu_base *cpu_base;
e06383db 1145 int base;
c0a31329 1146
7978672c
GA
1147 memset(timer, 0, sizeof(struct hrtimer));
1148
22127e93 1149 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1150
c9cb2e3d 1151 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1152 clock_id = CLOCK_MONOTONIC;
1153
e06383db
JS
1154 base = hrtimer_clockid_to_base(clock_id);
1155 timer->base = &cpu_base->clock_base[base];
998adc3d 1156 timerqueue_init(&timer->node);
82f67cd9
IM
1157
1158#ifdef CONFIG_TIMER_STATS
1159 timer->start_site = NULL;
1160 timer->start_pid = -1;
1161 memset(timer->start_comm, 0, TASK_COMM_LEN);
1162#endif
c0a31329 1163}
237fc6e7
TG
1164
1165/**
1166 * hrtimer_init - initialize a timer to the given clock
1167 * @timer: the timer to be initialized
1168 * @clock_id: the clock to be used
1169 * @mode: timer mode abs/rel
1170 */
1171void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1172 enum hrtimer_mode mode)
1173{
c6a2a177 1174 debug_init(timer, clock_id, mode);
237fc6e7
TG
1175 __hrtimer_init(timer, clock_id, mode);
1176}
8d16b764 1177EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1178
1179/**
1180 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1181 * @which_clock: which clock to query
1182 * @tp: pointer to timespec variable to store the resolution
1183 *
72fd4a35
RD
1184 * Store the resolution of the clock selected by @which_clock in the
1185 * variable pointed to by @tp.
c0a31329
TG
1186 */
1187int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1188{
3c8aa39d 1189 struct hrtimer_cpu_base *cpu_base;
e06383db 1190 int base = hrtimer_clockid_to_base(which_clock);
c0a31329 1191
22127e93 1192 cpu_base = raw_cpu_ptr(&hrtimer_bases);
e06383db 1193 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
c0a31329
TG
1194
1195 return 0;
1196}
8d16b764 1197EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1198
c6a2a177 1199static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
d3d74453
PZ
1200{
1201 struct hrtimer_clock_base *base = timer->base;
1202 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1203 enum hrtimer_restart (*fn)(struct hrtimer *);
1204 int restart;
1205
ca109491
PZ
1206 WARN_ON(!irqs_disabled());
1207
c6a2a177 1208 debug_deactivate(timer);
d3d74453
PZ
1209 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1210 timer_stats_account_hrtimer(timer);
d3d74453 1211 fn = timer->function;
ca109491
PZ
1212
1213 /*
1214 * Because we run timers from hardirq context, there is no chance
1215 * they get migrated to another cpu, therefore its safe to unlock
1216 * the timer base.
1217 */
ecb49d1a 1218 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1219 trace_hrtimer_expire_entry(timer, now);
ca109491 1220 restart = fn(timer);
c6a2a177 1221 trace_hrtimer_expire_exit(timer);
ecb49d1a 1222 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1223
1224 /*
e3f1d883
TG
1225 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1226 * we do not reprogramm the event hardware. Happens either in
1227 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1228 */
1229 if (restart != HRTIMER_NORESTART) {
1230 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1231 enqueue_hrtimer(timer, base);
d3d74453 1232 }
f13d4f97
SQ
1233
1234 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1235
d3d74453
PZ
1236 timer->state &= ~HRTIMER_STATE_CALLBACK;
1237}
1238
54cdfdb4
TG
1239#ifdef CONFIG_HIGH_RES_TIMERS
1240
1241/*
1242 * High resolution timer interrupt
1243 * Called with interrupts disabled
1244 */
1245void hrtimer_interrupt(struct clock_event_device *dev)
1246{
dc5df73b 1247 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
41d2e494
TG
1248 ktime_t expires_next, now, entry_time, delta;
1249 int i, retries = 0;
54cdfdb4
TG
1250
1251 BUG_ON(!cpu_base->hres_active);
1252 cpu_base->nr_events++;
1253 dev->next_event.tv64 = KTIME_MAX;
1254
196951e9 1255 raw_spin_lock(&cpu_base->lock);
5baefd6d 1256 entry_time = now = hrtimer_update_base(cpu_base);
41d2e494 1257retry:
9bc74919 1258 cpu_base->in_hrtirq = 1;
6ff7041d
TG
1259 /*
1260 * We set expires_next to KTIME_MAX here with cpu_base->lock
1261 * held to prevent that a timer is enqueued in our queue via
1262 * the migration code. This does not affect enqueueing of
1263 * timers which run their callback and need to be requeued on
1264 * this CPU.
1265 */
1266 cpu_base->expires_next.tv64 = KTIME_MAX;
1267
54cdfdb4 1268 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ab8177bc 1269 struct hrtimer_clock_base *base;
998adc3d 1270 struct timerqueue_node *node;
ab8177bc
TG
1271 ktime_t basenow;
1272
1273 if (!(cpu_base->active_bases & (1 << i)))
1274 continue;
54cdfdb4 1275
ab8177bc 1276 base = cpu_base->clock_base + i;
54cdfdb4
TG
1277 basenow = ktime_add(now, base->offset);
1278
998adc3d 1279 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1280 struct hrtimer *timer;
1281
998adc3d 1282 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1283
654c8e0b
AV
1284 /*
1285 * The immediate goal for using the softexpires is
1286 * minimizing wakeups, not running timers at the
1287 * earliest interrupt after their soft expiration.
1288 * This allows us to avoid using a Priority Search
1289 * Tree, which can answer a stabbing querry for
1290 * overlapping intervals and instead use the simple
1291 * BST we already have.
1292 * We don't add extra wakeups by delaying timers that
1293 * are right-of a not yet expired timer, because that
1294 * timer will have to trigger a wakeup anyway.
1295 */
9bc74919 1296 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1297 break;
54cdfdb4 1298
c6a2a177 1299 __run_hrtimer(timer, &basenow);
54cdfdb4 1300 }
54cdfdb4 1301 }
9bc74919
TG
1302 /* Reevaluate the clock bases for the next expiry */
1303 expires_next = __hrtimer_get_next_event(cpu_base);
6ff7041d
TG
1304 /*
1305 * Store the new expiry value so the migration code can verify
1306 * against it.
1307 */
54cdfdb4 1308 cpu_base->expires_next = expires_next;
9bc74919 1309 cpu_base->in_hrtirq = 0;
ecb49d1a 1310 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1311
1312 /* Reprogramming necessary ? */
41d2e494
TG
1313 if (expires_next.tv64 == KTIME_MAX ||
1314 !tick_program_event(expires_next, 0)) {
1315 cpu_base->hang_detected = 0;
1316 return;
54cdfdb4 1317 }
41d2e494
TG
1318
1319 /*
1320 * The next timer was already expired due to:
1321 * - tracing
1322 * - long lasting callbacks
1323 * - being scheduled away when running in a VM
1324 *
1325 * We need to prevent that we loop forever in the hrtimer
1326 * interrupt routine. We give it 3 attempts to avoid
1327 * overreacting on some spurious event.
5baefd6d
JS
1328 *
1329 * Acquire base lock for updating the offsets and retrieving
1330 * the current time.
41d2e494 1331 */
196951e9 1332 raw_spin_lock(&cpu_base->lock);
5baefd6d 1333 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1334 cpu_base->nr_retries++;
1335 if (++retries < 3)
1336 goto retry;
1337 /*
1338 * Give the system a chance to do something else than looping
1339 * here. We stored the entry time, so we know exactly how long
1340 * we spent here. We schedule the next event this amount of
1341 * time away.
1342 */
1343 cpu_base->nr_hangs++;
1344 cpu_base->hang_detected = 1;
196951e9 1345 raw_spin_unlock(&cpu_base->lock);
41d2e494
TG
1346 delta = ktime_sub(now, entry_time);
1347 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1348 cpu_base->max_hang_time = delta;
1349 /*
1350 * Limit it to a sensible value as we enforce a longer
1351 * delay. Give the CPU at least 100ms to catch up.
1352 */
1353 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1354 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1355 else
1356 expires_next = ktime_add(now, delta);
1357 tick_program_event(expires_next, 1);
1358 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1359 ktime_to_ns(delta));
54cdfdb4
TG
1360}
1361
8bdec955
TG
1362/*
1363 * local version of hrtimer_peek_ahead_timers() called with interrupts
1364 * disabled.
1365 */
1366static void __hrtimer_peek_ahead_timers(void)
1367{
1368 struct tick_device *td;
1369
1370 if (!hrtimer_hres_active())
1371 return;
1372
22127e93 1373 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1374 if (td && td->evtdev)
1375 hrtimer_interrupt(td->evtdev);
1376}
1377
2e94d1f7
AV
1378/**
1379 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1380 *
1381 * hrtimer_peek_ahead_timers will peek at the timer queue of
1382 * the current cpu and check if there are any timers for which
1383 * the soft expires time has passed. If any such timers exist,
1384 * they are run immediately and then removed from the timer queue.
1385 *
1386 */
1387void hrtimer_peek_ahead_timers(void)
1388{
643bdf68 1389 unsigned long flags;
dc4304f7 1390
2e94d1f7 1391 local_irq_save(flags);
8bdec955 1392 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1393 local_irq_restore(flags);
1394}
1395
a6037b61
PZ
1396static void run_hrtimer_softirq(struct softirq_action *h)
1397{
1398 hrtimer_peek_ahead_timers();
1399}
1400
82c5b7b5
IM
1401#else /* CONFIG_HIGH_RES_TIMERS */
1402
1403static inline void __hrtimer_peek_ahead_timers(void) { }
1404
1405#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1406
d3d74453
PZ
1407/*
1408 * Called from timer softirq every jiffy, expire hrtimers:
1409 *
1410 * For HRT its the fall back code to run the softirq in the timer
1411 * softirq context in case the hrtimer initialization failed or has
1412 * not been done yet.
1413 */
1414void hrtimer_run_pending(void)
1415{
d3d74453
PZ
1416 if (hrtimer_hres_active())
1417 return;
54cdfdb4 1418
d3d74453
PZ
1419 /*
1420 * This _is_ ugly: We have to check in the softirq context,
1421 * whether we can switch to highres and / or nohz mode. The
1422 * clocksource switch happens in the timer interrupt with
1423 * xtime_lock held. Notification from there only sets the
1424 * check bit in the tick_oneshot code, otherwise we might
1425 * deadlock vs. xtime_lock.
1426 */
1427 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1428 hrtimer_switch_to_hres();
54cdfdb4
TG
1429}
1430
c0a31329 1431/*
d3d74453 1432 * Called from hardirq context every jiffy
c0a31329 1433 */
833883d9 1434void hrtimer_run_queues(void)
c0a31329 1435{
998adc3d 1436 struct timerqueue_node *node;
dc5df73b 1437 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
833883d9
DS
1438 struct hrtimer_clock_base *base;
1439 int index, gettime = 1;
c0a31329 1440
833883d9 1441 if (hrtimer_hres_active())
3055adda
DS
1442 return;
1443
833883d9
DS
1444 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1445 base = &cpu_base->clock_base[index];
b007c389 1446 if (!timerqueue_getnext(&base->active))
d3d74453 1447 continue;
833883d9 1448
d7cfb60c 1449 if (gettime) {
833883d9
DS
1450 hrtimer_get_softirq_time(cpu_base);
1451 gettime = 0;
b75f7a51 1452 }
d3d74453 1453
ecb49d1a 1454 raw_spin_lock(&cpu_base->lock);
c0a31329 1455
b007c389 1456 while ((node = timerqueue_getnext(&base->active))) {
833883d9 1457 struct hrtimer *timer;
54cdfdb4 1458
998adc3d 1459 timer = container_of(node, struct hrtimer, node);
cc584b21
AV
1460 if (base->softirq_time.tv64 <=
1461 hrtimer_get_expires_tv64(timer))
833883d9
DS
1462 break;
1463
c6a2a177 1464 __run_hrtimer(timer, &base->softirq_time);
833883d9 1465 }
ecb49d1a 1466 raw_spin_unlock(&cpu_base->lock);
833883d9 1467 }
c0a31329
TG
1468}
1469
10c94ec1
TG
1470/*
1471 * Sleep related functions:
1472 */
c9cb2e3d 1473static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1474{
1475 struct hrtimer_sleeper *t =
1476 container_of(timer, struct hrtimer_sleeper, timer);
1477 struct task_struct *task = t->task;
1478
1479 t->task = NULL;
1480 if (task)
1481 wake_up_process(task);
1482
1483 return HRTIMER_NORESTART;
1484}
1485
36c8b586 1486void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1487{
1488 sl->timer.function = hrtimer_wakeup;
1489 sl->task = task;
1490}
2bc481cf 1491EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1492
669d7868 1493static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1494{
669d7868 1495 hrtimer_init_sleeper(t, current);
10c94ec1 1496
432569bb
RZ
1497 do {
1498 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1499 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1500 if (!hrtimer_active(&t->timer))
1501 t->task = NULL;
432569bb 1502
54cdfdb4 1503 if (likely(t->task))
b0f8c44f 1504 freezable_schedule();
432569bb 1505
669d7868 1506 hrtimer_cancel(&t->timer);
c9cb2e3d 1507 mode = HRTIMER_MODE_ABS;
669d7868
TG
1508
1509 } while (t->task && !signal_pending(current));
432569bb 1510
3588a085
PZ
1511 __set_current_state(TASK_RUNNING);
1512
669d7868 1513 return t->task == NULL;
10c94ec1
TG
1514}
1515
080344b9
ON
1516static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1517{
1518 struct timespec rmt;
1519 ktime_t rem;
1520
cc584b21 1521 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1522 if (rem.tv64 <= 0)
1523 return 0;
1524 rmt = ktime_to_timespec(rem);
1525
1526 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1527 return -EFAULT;
1528
1529 return 1;
1530}
1531
1711ef38 1532long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1533{
669d7868 1534 struct hrtimer_sleeper t;
080344b9 1535 struct timespec __user *rmtp;
237fc6e7 1536 int ret = 0;
10c94ec1 1537
ab8177bc 1538 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1539 HRTIMER_MODE_ABS);
cc584b21 1540 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1541
c9cb2e3d 1542 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1543 goto out;
10c94ec1 1544
029a07e0 1545 rmtp = restart->nanosleep.rmtp;
432569bb 1546 if (rmtp) {
237fc6e7 1547 ret = update_rmtp(&t.timer, rmtp);
080344b9 1548 if (ret <= 0)
237fc6e7 1549 goto out;
432569bb 1550 }
10c94ec1 1551
10c94ec1 1552 /* The other values in restart are already filled in */
237fc6e7
TG
1553 ret = -ERESTART_RESTARTBLOCK;
1554out:
1555 destroy_hrtimer_on_stack(&t.timer);
1556 return ret;
10c94ec1
TG
1557}
1558
080344b9 1559long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1560 const enum hrtimer_mode mode, const clockid_t clockid)
1561{
1562 struct restart_block *restart;
669d7868 1563 struct hrtimer_sleeper t;
237fc6e7 1564 int ret = 0;
3bd01206
AV
1565 unsigned long slack;
1566
1567 slack = current->timer_slack_ns;
aab03e05 1568 if (dl_task(current) || rt_task(current))
3bd01206 1569 slack = 0;
10c94ec1 1570
237fc6e7 1571 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1572 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1573 if (do_nanosleep(&t, mode))
237fc6e7 1574 goto out;
10c94ec1 1575
7978672c 1576 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1577 if (mode == HRTIMER_MODE_ABS) {
1578 ret = -ERESTARTNOHAND;
1579 goto out;
1580 }
10c94ec1 1581
432569bb 1582 if (rmtp) {
237fc6e7 1583 ret = update_rmtp(&t.timer, rmtp);
080344b9 1584 if (ret <= 0)
237fc6e7 1585 goto out;
432569bb 1586 }
10c94ec1 1587
f56141e3 1588 restart = &current->restart_block;
1711ef38 1589 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1590 restart->nanosleep.clockid = t.timer.base->clockid;
029a07e0 1591 restart->nanosleep.rmtp = rmtp;
cc584b21 1592 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1593
237fc6e7
TG
1594 ret = -ERESTART_RESTARTBLOCK;
1595out:
1596 destroy_hrtimer_on_stack(&t.timer);
1597 return ret;
10c94ec1
TG
1598}
1599
58fd3aa2
HC
1600SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1601 struct timespec __user *, rmtp)
6ba1b912 1602{
080344b9 1603 struct timespec tu;
6ba1b912
TG
1604
1605 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1606 return -EFAULT;
1607
1608 if (!timespec_valid(&tu))
1609 return -EINVAL;
1610
080344b9 1611 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1612}
1613
c0a31329
TG
1614/*
1615 * Functions related to boot-time initialization:
1616 */
0db0628d 1617static void init_hrtimers_cpu(int cpu)
c0a31329 1618{
3c8aa39d 1619 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1620 int i;
1621
998adc3d 1622 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1623 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1624 timerqueue_init_head(&cpu_base->clock_base[i].active);
1625 }
3c8aa39d 1626
cddd0248 1627 cpu_base->cpu = cpu;
54cdfdb4 1628 hrtimer_init_hres(cpu_base);
c0a31329
TG
1629}
1630
1631#ifdef CONFIG_HOTPLUG_CPU
1632
ca109491 1633static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1634 struct hrtimer_clock_base *new_base)
c0a31329
TG
1635{
1636 struct hrtimer *timer;
998adc3d 1637 struct timerqueue_node *node;
c0a31329 1638
998adc3d
JS
1639 while ((node = timerqueue_getnext(&old_base->active))) {
1640 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1641 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1642 debug_deactivate(timer);
b00c1a99
TG
1643
1644 /*
1645 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1646 * timer could be seen as !active and just vanish away
1647 * under us on another CPU
1648 */
1649 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1650 timer->base = new_base;
54cdfdb4 1651 /*
e3f1d883
TG
1652 * Enqueue the timers on the new cpu. This does not
1653 * reprogram the event device in case the timer
1654 * expires before the earliest on this CPU, but we run
1655 * hrtimer_interrupt after we migrated everything to
1656 * sort out already expired timers and reprogram the
1657 * event device.
54cdfdb4 1658 */
a6037b61 1659 enqueue_hrtimer(timer, new_base);
41e1022e 1660
b00c1a99
TG
1661 /* Clear the migration state bit */
1662 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1663 }
1664}
1665
d5fd43c4 1666static void migrate_hrtimers(int scpu)
c0a31329 1667{
3c8aa39d 1668 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1669 int i;
c0a31329 1670
37810659 1671 BUG_ON(cpu_online(scpu));
37810659 1672 tick_cancel_sched_timer(scpu);
731a55ba
TG
1673
1674 local_irq_disable();
1675 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 1676 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
1677 /*
1678 * The caller is globally serialized and nobody else
1679 * takes two locks at once, deadlock is not possible.
1680 */
ecb49d1a
TG
1681 raw_spin_lock(&new_base->lock);
1682 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1683
3c8aa39d 1684 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1685 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1686 &new_base->clock_base[i]);
c0a31329
TG
1687 }
1688
ecb49d1a
TG
1689 raw_spin_unlock(&old_base->lock);
1690 raw_spin_unlock(&new_base->lock);
37810659 1691
731a55ba
TG
1692 /* Check, if we got expired work to do */
1693 __hrtimer_peek_ahead_timers();
1694 local_irq_enable();
c0a31329 1695}
37810659 1696
c0a31329
TG
1697#endif /* CONFIG_HOTPLUG_CPU */
1698
0db0628d 1699static int hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1700 unsigned long action, void *hcpu)
1701{
b2e3c0ad 1702 int scpu = (long)hcpu;
c0a31329
TG
1703
1704 switch (action) {
1705
1706 case CPU_UP_PREPARE:
8bb78442 1707 case CPU_UP_PREPARE_FROZEN:
37810659 1708 init_hrtimers_cpu(scpu);
c0a31329
TG
1709 break;
1710
1711#ifdef CONFIG_HOTPLUG_CPU
1712 case CPU_DEAD:
8bb78442 1713 case CPU_DEAD_FROZEN:
d5fd43c4 1714 migrate_hrtimers(scpu);
c0a31329
TG
1715 break;
1716#endif
1717
1718 default:
1719 break;
1720 }
1721
1722 return NOTIFY_OK;
1723}
1724
0db0628d 1725static struct notifier_block hrtimers_nb = {
c0a31329
TG
1726 .notifier_call = hrtimer_cpu_notify,
1727};
1728
1729void __init hrtimers_init(void)
1730{
1731 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1732 (void *)(long)smp_processor_id());
1733 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1734#ifdef CONFIG_HIGH_RES_TIMERS
1735 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1736#endif
c0a31329
TG
1737}
1738
7bb67439 1739/**
351b3f7a 1740 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1741 * @expires: timeout value (ktime_t)
654c8e0b 1742 * @delta: slack in expires timeout (ktime_t)
7bb67439 1743 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1744 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1745 */
351b3f7a
CE
1746int __sched
1747schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1748 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1749{
1750 struct hrtimer_sleeper t;
1751
1752 /*
1753 * Optimize when a zero timeout value is given. It does not
1754 * matter whether this is an absolute or a relative time.
1755 */
1756 if (expires && !expires->tv64) {
1757 __set_current_state(TASK_RUNNING);
1758 return 0;
1759 }
1760
1761 /*
43b21013 1762 * A NULL parameter means "infinite"
7bb67439
AV
1763 */
1764 if (!expires) {
1765 schedule();
7bb67439
AV
1766 return -EINTR;
1767 }
1768
351b3f7a 1769 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1770 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1771
1772 hrtimer_init_sleeper(&t, current);
1773
cc584b21 1774 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1775 if (!hrtimer_active(&t.timer))
1776 t.task = NULL;
1777
1778 if (likely(t.task))
1779 schedule();
1780
1781 hrtimer_cancel(&t.timer);
1782 destroy_hrtimer_on_stack(&t.timer);
1783
1784 __set_current_state(TASK_RUNNING);
1785
1786 return !t.task ? 0 : -EINTR;
1787}
351b3f7a
CE
1788
1789/**
1790 * schedule_hrtimeout_range - sleep until timeout
1791 * @expires: timeout value (ktime_t)
1792 * @delta: slack in expires timeout (ktime_t)
1793 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1794 *
1795 * Make the current task sleep until the given expiry time has
1796 * elapsed. The routine will return immediately unless
1797 * the current task state has been set (see set_current_state()).
1798 *
1799 * The @delta argument gives the kernel the freedom to schedule the
1800 * actual wakeup to a time that is both power and performance friendly.
1801 * The kernel give the normal best effort behavior for "@expires+@delta",
1802 * but may decide to fire the timer earlier, but no earlier than @expires.
1803 *
1804 * You can set the task state as follows -
1805 *
1806 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1807 * pass before the routine returns.
1808 *
1809 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1810 * delivered to the current task.
1811 *
1812 * The current task state is guaranteed to be TASK_RUNNING when this
1813 * routine returns.
1814 *
1815 * Returns 0 when the timer has expired otherwise -EINTR
1816 */
1817int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1818 const enum hrtimer_mode mode)
1819{
1820 return schedule_hrtimeout_range_clock(expires, delta, mode,
1821 CLOCK_MONOTONIC);
1822}
654c8e0b
AV
1823EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1824
1825/**
1826 * schedule_hrtimeout - sleep until timeout
1827 * @expires: timeout value (ktime_t)
1828 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1829 *
1830 * Make the current task sleep until the given expiry time has
1831 * elapsed. The routine will return immediately unless
1832 * the current task state has been set (see set_current_state()).
1833 *
1834 * You can set the task state as follows -
1835 *
1836 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1837 * pass before the routine returns.
1838 *
1839 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1840 * delivered to the current task.
1841 *
1842 * The current task state is guaranteed to be TASK_RUNNING when this
1843 * routine returns.
1844 *
1845 * Returns 0 when the timer has expired otherwise -EINTR
1846 */
1847int __sched schedule_hrtimeout(ktime_t *expires,
1848 const enum hrtimer_mode mode)
1849{
1850 return schedule_hrtimeout_range(expires, 0, mode);
1851}
7bb67439 1852EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.721744 seconds and 5 git commands to generate.