sched: deadline: Use hrtimer_start()
[deliverable/linux.git] / kernel / time / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32 46#include <linux/sched.h>
cf4aebc2 47#include <linux/sched/sysctl.h>
8bd75c77 48#include <linux/sched/rt.h>
aab03e05 49#include <linux/sched/deadline.h>
eea08f32 50#include <linux/timer.h>
b0f8c44f 51#include <linux/freezer.h>
c0a31329
TG
52
53#include <asm/uaccess.h>
54
c6a2a177
XG
55#include <trace/events/timer.h>
56
c1797baf 57#include "tick-internal.h"
8b094cd0 58
c0a31329
TG
59/*
60 * The timer bases:
7978672c 61 *
e06383db
JS
62 * There are more clockids then hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 66 */
54cdfdb4 67DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 68{
84cc8fd2 69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 70 .clock_base =
c0a31329 71 {
3c8aa39d 72 {
ab8177bc
TG
73 .index = HRTIMER_BASE_MONOTONIC,
74 .clockid = CLOCK_MONOTONIC,
3c8aa39d 75 .get_time = &ktime_get,
3c8aa39d 76 },
68fa61c0
TG
77 {
78 .index = HRTIMER_BASE_REALTIME,
79 .clockid = CLOCK_REALTIME,
80 .get_time = &ktime_get_real,
68fa61c0 81 },
70a08cca 82 {
ab8177bc
TG
83 .index = HRTIMER_BASE_BOOTTIME,
84 .clockid = CLOCK_BOOTTIME,
70a08cca 85 .get_time = &ktime_get_boottime,
70a08cca 86 },
90adda98
JS
87 {
88 .index = HRTIMER_BASE_TAI,
89 .clockid = CLOCK_TAI,
90 .get_time = &ktime_get_clocktai,
90adda98 91 },
3c8aa39d 92 }
c0a31329
TG
93};
94
942c3c5c 95static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
ce31332d
TG
96 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
97 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
98 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 99 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 100};
e06383db
JS
101
102static inline int hrtimer_clockid_to_base(clockid_t clock_id)
103{
104 return hrtimer_clock_to_base_table[clock_id];
105}
106
c0a31329
TG
107/*
108 * Functions and macros which are different for UP/SMP systems are kept in a
109 * single place
110 */
111#ifdef CONFIG_SMP
112
c0a31329
TG
113/*
114 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
115 * means that all timers which are tied to this base via timer->base are
116 * locked, and the base itself is locked too.
117 *
118 * So __run_timers/migrate_timers can safely modify all timers which could
119 * be found on the lists/queues.
120 *
121 * When the timer's base is locked, and the timer removed from list, it is
122 * possible to set timer->base = NULL and drop the lock: the timer remains
123 * locked.
124 */
3c8aa39d
TG
125static
126struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
127 unsigned long *flags)
c0a31329 128{
3c8aa39d 129 struct hrtimer_clock_base *base;
c0a31329
TG
130
131 for (;;) {
132 base = timer->base;
133 if (likely(base != NULL)) {
ecb49d1a 134 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
135 if (likely(base == timer->base))
136 return base;
137 /* The timer has migrated to another CPU: */
ecb49d1a 138 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
139 }
140 cpu_relax();
141 }
142}
143
6ff7041d
TG
144/*
145 * With HIGHRES=y we do not migrate the timer when it is expiring
146 * before the next event on the target cpu because we cannot reprogram
147 * the target cpu hardware and we would cause it to fire late.
148 *
149 * Called with cpu_base->lock of target cpu held.
150 */
151static int
152hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
153{
154#ifdef CONFIG_HIGH_RES_TIMERS
155 ktime_t expires;
156
157 if (!new_base->cpu_base->hres_active)
158 return 0;
159
160 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
161 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
162#else
163 return 0;
164#endif
165}
166
c0a31329
TG
167/*
168 * Switch the timer base to the current CPU when possible.
169 */
3c8aa39d 170static inline struct hrtimer_clock_base *
597d0275
AB
171switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
172 int pinned)
c0a31329 173{
3c8aa39d
TG
174 struct hrtimer_clock_base *new_base;
175 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d 176 int this_cpu = smp_processor_id();
6201b4d6 177 int cpu = get_nohz_timer_target(pinned);
ab8177bc 178 int basenum = base->index;
c0a31329 179
eea08f32
AB
180again:
181 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
e06383db 182 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
183
184 if (base != new_base) {
185 /*
6ff7041d 186 * We are trying to move timer to new_base.
c0a31329
TG
187 * However we can't change timer's base while it is running,
188 * so we keep it on the same CPU. No hassle vs. reprogramming
189 * the event source in the high resolution case. The softirq
190 * code will take care of this when the timer function has
191 * completed. There is no conflict as we hold the lock until
192 * the timer is enqueued.
193 */
54cdfdb4 194 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
195 return base;
196
197 /* See the comment in lock_timer_base() */
198 timer->base = NULL;
ecb49d1a
TG
199 raw_spin_unlock(&base->cpu_base->lock);
200 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 201
6ff7041d
TG
202 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
203 cpu = this_cpu;
ecb49d1a
TG
204 raw_spin_unlock(&new_base->cpu_base->lock);
205 raw_spin_lock(&base->cpu_base->lock);
6ff7041d
TG
206 timer->base = base;
207 goto again;
eea08f32 208 }
c0a31329 209 timer->base = new_base;
012a45e3
LM
210 } else {
211 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
212 cpu = this_cpu;
213 goto again;
214 }
c0a31329
TG
215 }
216 return new_base;
217}
218
219#else /* CONFIG_SMP */
220
3c8aa39d 221static inline struct hrtimer_clock_base *
c0a31329
TG
222lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
223{
3c8aa39d 224 struct hrtimer_clock_base *base = timer->base;
c0a31329 225
ecb49d1a 226 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
227
228 return base;
229}
230
eea08f32 231# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
232
233#endif /* !CONFIG_SMP */
234
235/*
236 * Functions for the union type storage format of ktime_t which are
237 * too large for inlining:
238 */
239#if BITS_PER_LONG < 64
c0a31329
TG
240/*
241 * Divide a ktime value by a nanosecond value
242 */
8b618628 243u64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 244{
900cfa46 245 u64 dclc;
c0a31329
TG
246 int sft = 0;
247
900cfa46 248 dclc = ktime_to_ns(kt);
c0a31329
TG
249 /* Make sure the divisor is less than 2^32: */
250 while (div >> 32) {
251 sft++;
252 div >>= 1;
253 }
254 dclc >>= sft;
255 do_div(dclc, (unsigned long) div);
256
4d672e7a 257 return dclc;
c0a31329 258}
8b618628 259EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
260#endif /* BITS_PER_LONG >= 64 */
261
5a7780e7
TG
262/*
263 * Add two ktime values and do a safety check for overflow:
264 */
265ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
266{
267 ktime_t res = ktime_add(lhs, rhs);
268
269 /*
270 * We use KTIME_SEC_MAX here, the maximum timeout which we can
271 * return to user space in a timespec:
272 */
273 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
274 res = ktime_set(KTIME_SEC_MAX, 0);
275
276 return res;
277}
278
8daa21e6
AB
279EXPORT_SYMBOL_GPL(ktime_add_safe);
280
237fc6e7
TG
281#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
282
283static struct debug_obj_descr hrtimer_debug_descr;
284
99777288
SG
285static void *hrtimer_debug_hint(void *addr)
286{
287 return ((struct hrtimer *) addr)->function;
288}
289
237fc6e7
TG
290/*
291 * fixup_init is called when:
292 * - an active object is initialized
293 */
294static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
295{
296 struct hrtimer *timer = addr;
297
298 switch (state) {
299 case ODEBUG_STATE_ACTIVE:
300 hrtimer_cancel(timer);
301 debug_object_init(timer, &hrtimer_debug_descr);
302 return 1;
303 default:
304 return 0;
305 }
306}
307
308/*
309 * fixup_activate is called when:
310 * - an active object is activated
311 * - an unknown object is activated (might be a statically initialized object)
312 */
313static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
314{
315 switch (state) {
316
317 case ODEBUG_STATE_NOTAVAILABLE:
318 WARN_ON_ONCE(1);
319 return 0;
320
321 case ODEBUG_STATE_ACTIVE:
322 WARN_ON(1);
323
324 default:
325 return 0;
326 }
327}
328
329/*
330 * fixup_free is called when:
331 * - an active object is freed
332 */
333static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
334{
335 struct hrtimer *timer = addr;
336
337 switch (state) {
338 case ODEBUG_STATE_ACTIVE:
339 hrtimer_cancel(timer);
340 debug_object_free(timer, &hrtimer_debug_descr);
341 return 1;
342 default:
343 return 0;
344 }
345}
346
347static struct debug_obj_descr hrtimer_debug_descr = {
348 .name = "hrtimer",
99777288 349 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
350 .fixup_init = hrtimer_fixup_init,
351 .fixup_activate = hrtimer_fixup_activate,
352 .fixup_free = hrtimer_fixup_free,
353};
354
355static inline void debug_hrtimer_init(struct hrtimer *timer)
356{
357 debug_object_init(timer, &hrtimer_debug_descr);
358}
359
360static inline void debug_hrtimer_activate(struct hrtimer *timer)
361{
362 debug_object_activate(timer, &hrtimer_debug_descr);
363}
364
365static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
366{
367 debug_object_deactivate(timer, &hrtimer_debug_descr);
368}
369
370static inline void debug_hrtimer_free(struct hrtimer *timer)
371{
372 debug_object_free(timer, &hrtimer_debug_descr);
373}
374
375static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
376 enum hrtimer_mode mode);
377
378void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
379 enum hrtimer_mode mode)
380{
381 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
382 __hrtimer_init(timer, clock_id, mode);
383}
2bc481cf 384EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
385
386void destroy_hrtimer_on_stack(struct hrtimer *timer)
387{
388 debug_object_free(timer, &hrtimer_debug_descr);
389}
390
391#else
392static inline void debug_hrtimer_init(struct hrtimer *timer) { }
393static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
394static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
395#endif
396
c6a2a177
XG
397static inline void
398debug_init(struct hrtimer *timer, clockid_t clockid,
399 enum hrtimer_mode mode)
400{
401 debug_hrtimer_init(timer);
402 trace_hrtimer_init(timer, clockid, mode);
403}
404
405static inline void debug_activate(struct hrtimer *timer)
406{
407 debug_hrtimer_activate(timer);
408 trace_hrtimer_start(timer);
409}
410
411static inline void debug_deactivate(struct hrtimer *timer)
412{
413 debug_hrtimer_deactivate(timer);
414 trace_hrtimer_cancel(timer);
415}
416
9bc74919 417#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
895bdfa7
TG
418static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
419 struct hrtimer *timer)
420{
421#ifdef CONFIG_HIGH_RES_TIMERS
422 cpu_base->next_timer = timer;
423#endif
424}
425
4ebbda52 426static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
9bc74919
TG
427{
428 struct hrtimer_clock_base *base = cpu_base->clock_base;
429 ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
34aee88a 430 unsigned int active = cpu_base->active_bases;
9bc74919 431
895bdfa7 432 hrtimer_update_next_timer(cpu_base, NULL);
34aee88a 433 for (; active; base++, active >>= 1) {
9bc74919
TG
434 struct timerqueue_node *next;
435 struct hrtimer *timer;
436
34aee88a 437 if (!(active & 0x01))
9bc74919
TG
438 continue;
439
34aee88a 440 next = timerqueue_getnext(&base->active);
9bc74919
TG
441 timer = container_of(next, struct hrtimer, node);
442 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
895bdfa7 443 if (expires.tv64 < expires_next.tv64) {
9bc74919 444 expires_next = expires;
895bdfa7
TG
445 hrtimer_update_next_timer(cpu_base, timer);
446 }
9bc74919
TG
447 }
448 /*
449 * clock_was_set() might have changed base->offset of any of
450 * the clock bases so the result might be negative. Fix it up
451 * to prevent a false positive in clockevents_program_event().
452 */
453 if (expires_next.tv64 < 0)
454 expires_next.tv64 = 0;
455 return expires_next;
456}
457#endif
458
21d6d52a
TG
459static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
460{
461 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
462 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
463 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
464
868a3e91
TG
465 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
466 offs_real, offs_boot, offs_tai);
21d6d52a
TG
467}
468
54cdfdb4
TG
469/* High resolution timer related functions */
470#ifdef CONFIG_HIGH_RES_TIMERS
471
472/*
473 * High resolution timer enabled ?
474 */
475static int hrtimer_hres_enabled __read_mostly = 1;
398ca17f
TG
476unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
477EXPORT_SYMBOL_GPL(hrtimer_resolution);
54cdfdb4
TG
478
479/*
480 * Enable / Disable high resolution mode
481 */
482static int __init setup_hrtimer_hres(char *str)
483{
484 if (!strcmp(str, "off"))
485 hrtimer_hres_enabled = 0;
486 else if (!strcmp(str, "on"))
487 hrtimer_hres_enabled = 1;
488 else
489 return 0;
490 return 1;
491}
492
493__setup("highres=", setup_hrtimer_hres);
494
495/*
496 * hrtimer_high_res_enabled - query, if the highres mode is enabled
497 */
498static inline int hrtimer_is_hres_enabled(void)
499{
500 return hrtimer_hres_enabled;
501}
502
503/*
504 * Is the high resolution mode active ?
505 */
e19ffe8b
TG
506static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
507{
508 return cpu_base->hres_active;
509}
510
54cdfdb4
TG
511static inline int hrtimer_hres_active(void)
512{
e19ffe8b 513 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
54cdfdb4
TG
514}
515
516/*
517 * Reprogram the event source with checking both queues for the
518 * next event
519 * Called with interrupts disabled and base->lock held
520 */
7403f41f
AC
521static void
522hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 523{
21d6d52a
TG
524 ktime_t expires_next;
525
526 if (!cpu_base->hres_active)
527 return;
528
529 expires_next = __hrtimer_get_next_event(cpu_base);
54cdfdb4 530
7403f41f
AC
531 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
532 return;
533
534 cpu_base->expires_next.tv64 = expires_next.tv64;
535
6c6c0d5a
SH
536 /*
537 * If a hang was detected in the last timer interrupt then we
538 * leave the hang delay active in the hardware. We want the
539 * system to make progress. That also prevents the following
540 * scenario:
541 * T1 expires 50ms from now
542 * T2 expires 5s from now
543 *
544 * T1 is removed, so this code is called and would reprogram
545 * the hardware to 5s from now. Any hrtimer_start after that
546 * will not reprogram the hardware due to hang_detected being
547 * set. So we'd effectivly block all timers until the T2 event
548 * fires.
549 */
550 if (cpu_base->hang_detected)
551 return;
552
54cdfdb4
TG
553 if (cpu_base->expires_next.tv64 != KTIME_MAX)
554 tick_program_event(cpu_base->expires_next, 1);
555}
556
557/*
54cdfdb4
TG
558 * When a timer is enqueued and expires earlier than the already enqueued
559 * timers, we have to check, whether it expires earlier than the timer for
560 * which the clock event device was armed.
561 *
562 * Called with interrupts disabled and base->cpu_base.lock held
563 */
c6eb3f70
TG
564static void hrtimer_reprogram(struct hrtimer *timer,
565 struct hrtimer_clock_base *base)
54cdfdb4 566{
dc5df73b 567 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
cc584b21 568 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4 569
cc584b21 570 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 571
54cdfdb4 572 /*
c6eb3f70
TG
573 * If the timer is not on the current cpu, we cannot reprogram
574 * the other cpus clock event device.
54cdfdb4 575 */
c6eb3f70
TG
576 if (base->cpu_base != cpu_base)
577 return;
578
579 /*
580 * If the hrtimer interrupt is running, then it will
581 * reevaluate the clock bases and reprogram the clock event
582 * device. The callbacks are always executed in hard interrupt
583 * context so we don't need an extra check for a running
584 * callback.
585 */
586 if (cpu_base->in_hrtirq)
587 return;
54cdfdb4 588
63070a79
TG
589 /*
590 * CLOCK_REALTIME timer might be requested with an absolute
c6eb3f70 591 * expiry time which is less than base->offset. Set it to 0.
63070a79
TG
592 */
593 if (expires.tv64 < 0)
c6eb3f70 594 expires.tv64 = 0;
63070a79 595
41d2e494 596 if (expires.tv64 >= cpu_base->expires_next.tv64)
c6eb3f70 597 return;
9bc74919 598
c6eb3f70 599 /* Update the pointer to the next expiring timer */
895bdfa7
TG
600 cpu_base->next_timer = timer;
601
41d2e494
TG
602 /*
603 * If a hang was detected in the last timer interrupt then we
604 * do not schedule a timer which is earlier than the expiry
605 * which we enforced in the hang detection. We want the system
606 * to make progress.
607 */
608 if (cpu_base->hang_detected)
c6eb3f70 609 return;
54cdfdb4
TG
610
611 /*
c6eb3f70
TG
612 * Program the timer hardware. We enforce the expiry for
613 * events which are already in the past.
54cdfdb4 614 */
c6eb3f70
TG
615 cpu_base->expires_next = expires;
616 tick_program_event(expires, 1);
54cdfdb4
TG
617}
618
54cdfdb4
TG
619/*
620 * Initialize the high resolution related parts of cpu_base
621 */
622static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
623{
624 base->expires_next.tv64 = KTIME_MAX;
625 base->hres_active = 0;
54cdfdb4
TG
626}
627
9ec26907
TG
628/*
629 * Retrigger next event is called after clock was set
630 *
631 * Called with interrupts disabled via on_each_cpu()
632 */
633static void retrigger_next_event(void *arg)
634{
dc5df73b 635 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 636
e19ffe8b 637 if (!base->hres_active)
9ec26907
TG
638 return;
639
9ec26907 640 raw_spin_lock(&base->lock);
5baefd6d 641 hrtimer_update_base(base);
9ec26907
TG
642 hrtimer_force_reprogram(base, 0);
643 raw_spin_unlock(&base->lock);
644}
b12a03ce 645
54cdfdb4
TG
646/*
647 * Switch to high resolution mode
648 */
f8953856 649static int hrtimer_switch_to_hres(void)
54cdfdb4 650{
c6eb3f70 651 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
652
653 if (tick_init_highres()) {
820de5c3 654 printk(KERN_WARNING "Could not switch to high resolution "
c6eb3f70 655 "mode on CPU %d\n", base->cpu);
f8953856 656 return 0;
54cdfdb4
TG
657 }
658 base->hres_active = 1;
398ca17f 659 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
660
661 tick_setup_sched_timer();
54cdfdb4
TG
662 /* "Retrigger" the interrupt to get things going */
663 retrigger_next_event(NULL);
f8953856 664 return 1;
54cdfdb4
TG
665}
666
5ec2481b
TG
667static void clock_was_set_work(struct work_struct *work)
668{
669 clock_was_set();
670}
671
672static DECLARE_WORK(hrtimer_work, clock_was_set_work);
673
f55a6faa 674/*
5ec2481b
TG
675 * Called from timekeeping and resume code to reprogramm the hrtimer
676 * interrupt device on all cpus.
f55a6faa
JS
677 */
678void clock_was_set_delayed(void)
679{
5ec2481b 680 schedule_work(&hrtimer_work);
f55a6faa
JS
681}
682
54cdfdb4
TG
683#else
684
e19ffe8b 685static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
54cdfdb4
TG
686static inline int hrtimer_hres_active(void) { return 0; }
687static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 688static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
689static inline void
690hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
9e1e01dd
VK
691static inline int hrtimer_reprogram(struct hrtimer *timer,
692 struct hrtimer_clock_base *base)
54cdfdb4
TG
693{
694 return 0;
695}
54cdfdb4 696static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
9ec26907 697static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
698
699#endif /* CONFIG_HIGH_RES_TIMERS */
700
b12a03ce
TG
701/*
702 * Clock realtime was set
703 *
704 * Change the offset of the realtime clock vs. the monotonic
705 * clock.
706 *
707 * We might have to reprogram the high resolution timer interrupt. On
708 * SMP we call the architecture specific code to retrigger _all_ high
709 * resolution timer interrupts. On UP we just disable interrupts and
710 * call the high resolution interrupt code.
711 */
712void clock_was_set(void)
713{
90ff1f30 714#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
715 /* Retrigger the CPU local events everywhere */
716 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
717#endif
718 timerfd_clock_was_set();
b12a03ce
TG
719}
720
721/*
722 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
723 * interrupt on all online CPUs. However, all other CPUs will be
724 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 725 * must be deferred.
b12a03ce
TG
726 */
727void hrtimers_resume(void)
728{
729 WARN_ONCE(!irqs_disabled(),
730 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
731
5ec2481b 732 /* Retrigger on the local CPU */
b12a03ce 733 retrigger_next_event(NULL);
5ec2481b
TG
734 /* And schedule a retrigger for all others */
735 clock_was_set_delayed();
b12a03ce
TG
736}
737
5f201907 738static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
82f67cd9 739{
5f201907 740#ifdef CONFIG_TIMER_STATS
82f67cd9
IM
741 if (timer->start_site)
742 return;
5f201907 743 timer->start_site = __builtin_return_address(0);
82f67cd9
IM
744 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
745 timer->start_pid = current->pid;
5f201907
HC
746#endif
747}
748
749static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
750{
751#ifdef CONFIG_TIMER_STATS
752 timer->start_site = NULL;
753#endif
82f67cd9 754}
5f201907
HC
755
756static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
757{
758#ifdef CONFIG_TIMER_STATS
759 if (likely(!timer_stats_active))
760 return;
761 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
762 timer->function, timer->start_comm, 0);
82f67cd9 763#endif
5f201907 764}
82f67cd9 765
c0a31329 766/*
6506f2aa 767 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
768 */
769static inline
770void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
771{
ecb49d1a 772 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
773}
774
775/**
776 * hrtimer_forward - forward the timer expiry
c0a31329 777 * @timer: hrtimer to forward
44f21475 778 * @now: forward past this time
c0a31329
TG
779 * @interval: the interval to forward
780 *
781 * Forward the timer expiry so it will expire in the future.
8dca6f33 782 * Returns the number of overruns.
91e5a217
TG
783 *
784 * Can be safely called from the callback function of @timer. If
785 * called from other contexts @timer must neither be enqueued nor
786 * running the callback and the caller needs to take care of
787 * serialization.
788 *
789 * Note: This only updates the timer expiry value and does not requeue
790 * the timer.
c0a31329 791 */
4d672e7a 792u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 793{
4d672e7a 794 u64 orun = 1;
44f21475 795 ktime_t delta;
c0a31329 796
cc584b21 797 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
798
799 if (delta.tv64 < 0)
800 return 0;
801
398ca17f
TG
802 if (interval.tv64 < hrtimer_resolution)
803 interval.tv64 = hrtimer_resolution;
c9db4fa1 804
c0a31329 805 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 806 s64 incr = ktime_to_ns(interval);
c0a31329
TG
807
808 orun = ktime_divns(delta, incr);
cc584b21
AV
809 hrtimer_add_expires_ns(timer, incr * orun);
810 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
811 return orun;
812 /*
813 * This (and the ktime_add() below) is the
814 * correction for exact:
815 */
816 orun++;
817 }
cc584b21 818 hrtimer_add_expires(timer, interval);
c0a31329
TG
819
820 return orun;
821}
6bdb6b62 822EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
823
824/*
825 * enqueue_hrtimer - internal function to (re)start a timer
826 *
827 * The timer is inserted in expiry order. Insertion into the
828 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
829 *
830 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 831 */
a6037b61
PZ
832static int enqueue_hrtimer(struct hrtimer *timer,
833 struct hrtimer_clock_base *base)
c0a31329 834{
c6a2a177 835 debug_activate(timer);
237fc6e7 836
ab8177bc 837 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 838
303e967f
TG
839 /*
840 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
841 * state of a possibly running callback.
842 */
843 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61 844
b97f44c9 845 return timerqueue_add(&base->active, &timer->node);
288867ec 846}
c0a31329
TG
847
848/*
849 * __remove_hrtimer - internal function to remove a timer
850 *
851 * Caller must hold the base lock.
54cdfdb4
TG
852 *
853 * High resolution timer mode reprograms the clock event device when the
854 * timer is the one which expires next. The caller can disable this by setting
855 * reprogram to zero. This is useful, when the context does a reprogramming
856 * anyway (e.g. timer interrupt)
c0a31329 857 */
3c8aa39d 858static void __remove_hrtimer(struct hrtimer *timer,
303e967f 859 struct hrtimer_clock_base *base,
54cdfdb4 860 unsigned long newstate, int reprogram)
c0a31329 861{
e19ffe8b 862 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
895bdfa7 863 unsigned int state = timer->state;
e19ffe8b 864
895bdfa7
TG
865 timer->state = newstate;
866 if (!(state & HRTIMER_STATE_ENQUEUED))
867 return;
7403f41f 868
b97f44c9 869 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 870 cpu_base->active_bases &= ~(1 << base->index);
d9f0acde 871
7403f41f 872#ifdef CONFIG_HIGH_RES_TIMERS
895bdfa7
TG
873 /*
874 * Note: If reprogram is false we do not update
875 * cpu_base->next_timer. This happens when we remove the first
876 * timer on a remote cpu. No harm as we never dereference
877 * cpu_base->next_timer. So the worst thing what can happen is
878 * an superflous call to hrtimer_force_reprogram() on the
879 * remote cpu later on if the same timer gets enqueued again.
880 */
881 if (reprogram && timer == cpu_base->next_timer)
882 hrtimer_force_reprogram(cpu_base, 1);
7403f41f 883#endif
c0a31329
TG
884}
885
886/*
887 * remove hrtimer, called with base lock held
888 */
889static inline int
3c8aa39d 890remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 891{
303e967f 892 if (hrtimer_is_queued(timer)) {
f13d4f97 893 unsigned long state;
54cdfdb4
TG
894 int reprogram;
895
896 /*
897 * Remove the timer and force reprogramming when high
898 * resolution mode is active and the timer is on the current
899 * CPU. If we remove a timer on another CPU, reprogramming is
900 * skipped. The interrupt event on this CPU is fired and
901 * reprogramming happens in the interrupt handler. This is a
902 * rare case and less expensive than a smp call.
903 */
c6a2a177 904 debug_deactivate(timer);
82f67cd9 905 timer_stats_hrtimer_clear_start_info(timer);
dc5df73b 906 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
f13d4f97
SQ
907 /*
908 * We must preserve the CALLBACK state flag here,
909 * otherwise we could move the timer base in
910 * switch_hrtimer_base.
911 */
912 state = timer->state & HRTIMER_STATE_CALLBACK;
913 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
914 return 1;
915 }
916 return 0;
917}
918
7f1e2ca9
PZ
919int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
920 unsigned long delta_ns, const enum hrtimer_mode mode,
921 int wakeup)
c0a31329 922{
3c8aa39d 923 struct hrtimer_clock_base *base, *new_base;
c0a31329 924 unsigned long flags;
a6037b61 925 int ret, leftmost;
c0a31329
TG
926
927 base = lock_hrtimer_base(timer, &flags);
928
929 /* Remove an active timer from the queue: */
930 ret = remove_hrtimer(timer, base);
931
597d0275 932 if (mode & HRTIMER_MODE_REL) {
84ea7fe3 933 tim = ktime_add_safe(tim, base->get_time());
06027bdd
IM
934 /*
935 * CONFIG_TIME_LOW_RES is a temporary way for architectures
936 * to signal that they simply return xtime in
937 * do_gettimeoffset(). In this case we want to round up by
938 * resolution when starting a relative timer, to avoid short
939 * timeouts. This will go away with the GTOD framework.
940 */
941#ifdef CONFIG_TIME_LOW_RES
398ca17f 942 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
06027bdd
IM
943#endif
944 }
237fc6e7 945
da8f2e17 946 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 947
84ea7fe3
VK
948 /* Switch the timer base, if necessary: */
949 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
950
82f67cd9
IM
951 timer_stats_hrtimer_set_start_info(timer);
952
a6037b61
PZ
953 leftmost = enqueue_hrtimer(timer, new_base);
954
49a2a075
VK
955 if (!leftmost) {
956 unlock_hrtimer_base(timer, &flags);
957 return ret;
958 }
959
960 if (!hrtimer_is_hres_active(timer)) {
961 /*
962 * Kick to reschedule the next tick to handle the new timer
963 * on dynticks target.
964 */
965 wake_up_nohz_cpu(new_base->cpu_base->cpu);
c6eb3f70
TG
966 } else {
967 hrtimer_reprogram(timer, new_base);
b22affe0 968 }
c0a31329
TG
969
970 unlock_hrtimer_base(timer, &flags);
971
972 return ret;
973}
8588a2bb 974EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
7f1e2ca9
PZ
975
976/**
977 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
978 * @timer: the timer to be added
979 * @tim: expiry time
980 * @delta_ns: "slack" range for the timer
8ffbc7d9
DD
981 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
982 * relative (HRTIMER_MODE_REL)
7f1e2ca9
PZ
983 *
984 * Returns:
985 * 0 on success
986 * 1 when the timer was active
987 */
988int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
989 unsigned long delta_ns, const enum hrtimer_mode mode)
990{
991 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
992}
da8f2e17
AV
993EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
994
995/**
e1dd7bc5 996 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
997 * @timer: the timer to be added
998 * @tim: expiry time
8ffbc7d9
DD
999 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1000 * relative (HRTIMER_MODE_REL)
da8f2e17
AV
1001 *
1002 * Returns:
1003 * 0 on success
1004 * 1 when the timer was active
1005 */
1006int
1007hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1008{
7f1e2ca9 1009 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1010}
8d16b764 1011EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1012
da8f2e17 1013
c0a31329
TG
1014/**
1015 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1016 * @timer: hrtimer to stop
1017 *
1018 * Returns:
1019 * 0 when the timer was not active
1020 * 1 when the timer was active
1021 * -1 when the timer is currently excuting the callback function and
fa9799e3 1022 * cannot be stopped
c0a31329
TG
1023 */
1024int hrtimer_try_to_cancel(struct hrtimer *timer)
1025{
3c8aa39d 1026 struct hrtimer_clock_base *base;
c0a31329
TG
1027 unsigned long flags;
1028 int ret = -1;
1029
1030 base = lock_hrtimer_base(timer, &flags);
1031
303e967f 1032 if (!hrtimer_callback_running(timer))
c0a31329
TG
1033 ret = remove_hrtimer(timer, base);
1034
1035 unlock_hrtimer_base(timer, &flags);
1036
1037 return ret;
1038
1039}
8d16b764 1040EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1041
1042/**
1043 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1044 * @timer: the timer to be cancelled
1045 *
1046 * Returns:
1047 * 0 when the timer was not active
1048 * 1 when the timer was active
1049 */
1050int hrtimer_cancel(struct hrtimer *timer)
1051{
1052 for (;;) {
1053 int ret = hrtimer_try_to_cancel(timer);
1054
1055 if (ret >= 0)
1056 return ret;
5ef37b19 1057 cpu_relax();
c0a31329
TG
1058 }
1059}
8d16b764 1060EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1061
1062/**
1063 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1064 * @timer: the timer to read
1065 */
1066ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1067{
c0a31329
TG
1068 unsigned long flags;
1069 ktime_t rem;
1070
b3bd3de6 1071 lock_hrtimer_base(timer, &flags);
cc584b21 1072 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1073 unlock_hrtimer_base(timer, &flags);
1074
1075 return rem;
1076}
8d16b764 1077EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1078
3451d024 1079#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1080/**
1081 * hrtimer_get_next_event - get the time until next expiry event
1082 *
c1ad348b 1083 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1084 */
c1ad348b 1085u64 hrtimer_get_next_event(void)
69239749 1086{
dc5df73b 1087 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1088 u64 expires = KTIME_MAX;
69239749 1089 unsigned long flags;
69239749 1090
ecb49d1a 1091 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1092
e19ffe8b 1093 if (!__hrtimer_hres_active(cpu_base))
c1ad348b 1094 expires = __hrtimer_get_next_event(cpu_base).tv64;
3c8aa39d 1095
ecb49d1a 1096 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1097
c1ad348b 1098 return expires;
69239749
TL
1099}
1100#endif
1101
237fc6e7
TG
1102static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1103 enum hrtimer_mode mode)
c0a31329 1104{
3c8aa39d 1105 struct hrtimer_cpu_base *cpu_base;
e06383db 1106 int base;
c0a31329 1107
7978672c
GA
1108 memset(timer, 0, sizeof(struct hrtimer));
1109
22127e93 1110 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1111
c9cb2e3d 1112 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1113 clock_id = CLOCK_MONOTONIC;
1114
e06383db
JS
1115 base = hrtimer_clockid_to_base(clock_id);
1116 timer->base = &cpu_base->clock_base[base];
998adc3d 1117 timerqueue_init(&timer->node);
82f67cd9
IM
1118
1119#ifdef CONFIG_TIMER_STATS
1120 timer->start_site = NULL;
1121 timer->start_pid = -1;
1122 memset(timer->start_comm, 0, TASK_COMM_LEN);
1123#endif
c0a31329 1124}
237fc6e7
TG
1125
1126/**
1127 * hrtimer_init - initialize a timer to the given clock
1128 * @timer: the timer to be initialized
1129 * @clock_id: the clock to be used
1130 * @mode: timer mode abs/rel
1131 */
1132void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1133 enum hrtimer_mode mode)
1134{
c6a2a177 1135 debug_init(timer, clock_id, mode);
237fc6e7
TG
1136 __hrtimer_init(timer, clock_id, mode);
1137}
8d16b764 1138EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1139
21d6d52a
TG
1140static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1141 struct hrtimer_clock_base *base,
1142 struct hrtimer *timer, ktime_t *now)
d3d74453 1143{
d3d74453
PZ
1144 enum hrtimer_restart (*fn)(struct hrtimer *);
1145 int restart;
1146
ca109491
PZ
1147 WARN_ON(!irqs_disabled());
1148
c6a2a177 1149 debug_deactivate(timer);
d3d74453
PZ
1150 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1151 timer_stats_account_hrtimer(timer);
d3d74453 1152 fn = timer->function;
ca109491
PZ
1153
1154 /*
1155 * Because we run timers from hardirq context, there is no chance
1156 * they get migrated to another cpu, therefore its safe to unlock
1157 * the timer base.
1158 */
ecb49d1a 1159 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1160 trace_hrtimer_expire_entry(timer, now);
ca109491 1161 restart = fn(timer);
c6a2a177 1162 trace_hrtimer_expire_exit(timer);
ecb49d1a 1163 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1164
1165 /*
e3f1d883
TG
1166 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1167 * we do not reprogramm the event hardware. Happens either in
1168 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1169 */
1170 if (restart != HRTIMER_NORESTART) {
1171 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1172 enqueue_hrtimer(timer, base);
d3d74453 1173 }
f13d4f97
SQ
1174
1175 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1176
d3d74453
PZ
1177 timer->state &= ~HRTIMER_STATE_CALLBACK;
1178}
1179
21d6d52a 1180static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
54cdfdb4 1181{
34aee88a
TG
1182 struct hrtimer_clock_base *base = cpu_base->clock_base;
1183 unsigned int active = cpu_base->active_bases;
6ff7041d 1184
34aee88a 1185 for (; active; base++, active >>= 1) {
998adc3d 1186 struct timerqueue_node *node;
ab8177bc
TG
1187 ktime_t basenow;
1188
34aee88a 1189 if (!(active & 0x01))
ab8177bc 1190 continue;
54cdfdb4 1191
54cdfdb4
TG
1192 basenow = ktime_add(now, base->offset);
1193
998adc3d 1194 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1195 struct hrtimer *timer;
1196
998adc3d 1197 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1198
654c8e0b
AV
1199 /*
1200 * The immediate goal for using the softexpires is
1201 * minimizing wakeups, not running timers at the
1202 * earliest interrupt after their soft expiration.
1203 * This allows us to avoid using a Priority Search
1204 * Tree, which can answer a stabbing querry for
1205 * overlapping intervals and instead use the simple
1206 * BST we already have.
1207 * We don't add extra wakeups by delaying timers that
1208 * are right-of a not yet expired timer, because that
1209 * timer will have to trigger a wakeup anyway.
1210 */
9bc74919 1211 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1212 break;
54cdfdb4 1213
21d6d52a 1214 __run_hrtimer(cpu_base, base, timer, &basenow);
54cdfdb4 1215 }
54cdfdb4 1216 }
21d6d52a
TG
1217}
1218
1219#ifdef CONFIG_HIGH_RES_TIMERS
1220
1221/*
1222 * High resolution timer interrupt
1223 * Called with interrupts disabled
1224 */
1225void hrtimer_interrupt(struct clock_event_device *dev)
1226{
1227 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1228 ktime_t expires_next, now, entry_time, delta;
1229 int retries = 0;
1230
1231 BUG_ON(!cpu_base->hres_active);
1232 cpu_base->nr_events++;
1233 dev->next_event.tv64 = KTIME_MAX;
1234
1235 raw_spin_lock(&cpu_base->lock);
1236 entry_time = now = hrtimer_update_base(cpu_base);
1237retry:
1238 cpu_base->in_hrtirq = 1;
1239 /*
1240 * We set expires_next to KTIME_MAX here with cpu_base->lock
1241 * held to prevent that a timer is enqueued in our queue via
1242 * the migration code. This does not affect enqueueing of
1243 * timers which run their callback and need to be requeued on
1244 * this CPU.
1245 */
1246 cpu_base->expires_next.tv64 = KTIME_MAX;
1247
1248 __hrtimer_run_queues(cpu_base, now);
1249
9bc74919
TG
1250 /* Reevaluate the clock bases for the next expiry */
1251 expires_next = __hrtimer_get_next_event(cpu_base);
6ff7041d
TG
1252 /*
1253 * Store the new expiry value so the migration code can verify
1254 * against it.
1255 */
54cdfdb4 1256 cpu_base->expires_next = expires_next;
9bc74919 1257 cpu_base->in_hrtirq = 0;
ecb49d1a 1258 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1259
1260 /* Reprogramming necessary ? */
41d2e494
TG
1261 if (expires_next.tv64 == KTIME_MAX ||
1262 !tick_program_event(expires_next, 0)) {
1263 cpu_base->hang_detected = 0;
1264 return;
54cdfdb4 1265 }
41d2e494
TG
1266
1267 /*
1268 * The next timer was already expired due to:
1269 * - tracing
1270 * - long lasting callbacks
1271 * - being scheduled away when running in a VM
1272 *
1273 * We need to prevent that we loop forever in the hrtimer
1274 * interrupt routine. We give it 3 attempts to avoid
1275 * overreacting on some spurious event.
5baefd6d
JS
1276 *
1277 * Acquire base lock for updating the offsets and retrieving
1278 * the current time.
41d2e494 1279 */
196951e9 1280 raw_spin_lock(&cpu_base->lock);
5baefd6d 1281 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1282 cpu_base->nr_retries++;
1283 if (++retries < 3)
1284 goto retry;
1285 /*
1286 * Give the system a chance to do something else than looping
1287 * here. We stored the entry time, so we know exactly how long
1288 * we spent here. We schedule the next event this amount of
1289 * time away.
1290 */
1291 cpu_base->nr_hangs++;
1292 cpu_base->hang_detected = 1;
196951e9 1293 raw_spin_unlock(&cpu_base->lock);
41d2e494 1294 delta = ktime_sub(now, entry_time);
a6ffebce
TG
1295 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1296 cpu_base->max_hang_time = (unsigned int) delta.tv64;
41d2e494
TG
1297 /*
1298 * Limit it to a sensible value as we enforce a longer
1299 * delay. Give the CPU at least 100ms to catch up.
1300 */
1301 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1302 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1303 else
1304 expires_next = ktime_add(now, delta);
1305 tick_program_event(expires_next, 1);
1306 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1307 ktime_to_ns(delta));
54cdfdb4
TG
1308}
1309
8bdec955
TG
1310/*
1311 * local version of hrtimer_peek_ahead_timers() called with interrupts
1312 * disabled.
1313 */
c6eb3f70 1314static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1315{
1316 struct tick_device *td;
1317
1318 if (!hrtimer_hres_active())
1319 return;
1320
22127e93 1321 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1322 if (td && td->evtdev)
1323 hrtimer_interrupt(td->evtdev);
1324}
1325
82c5b7b5
IM
1326#else /* CONFIG_HIGH_RES_TIMERS */
1327
1328static inline void __hrtimer_peek_ahead_timers(void) { }
1329
1330#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1331
d3d74453 1332/*
c6eb3f70 1333 * Called from run_local_timers in hardirq context every jiffy
c0a31329 1334 */
833883d9 1335void hrtimer_run_queues(void)
c0a31329 1336{
dc5df73b 1337 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
21d6d52a 1338 ktime_t now;
c0a31329 1339
e19ffe8b 1340 if (__hrtimer_hres_active(cpu_base))
3055adda
DS
1341 return;
1342
c6eb3f70
TG
1343 /*
1344 * This _is_ ugly: We have to check periodically, whether we
1345 * can switch to highres and / or nohz mode. The clocksource
1346 * switch happens with xtime_lock held. Notification from
1347 * there only sets the check bit in the tick_oneshot code,
1348 * otherwise we might deadlock vs. xtime_lock.
1349 */
1350 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1351 hrtimer_switch_to_hres();
1352 return;
1353 }
1354
21d6d52a
TG
1355 raw_spin_lock(&cpu_base->lock);
1356 now = hrtimer_update_base(cpu_base);
1357 __hrtimer_run_queues(cpu_base, now);
1358 raw_spin_unlock(&cpu_base->lock);
c0a31329
TG
1359}
1360
10c94ec1
TG
1361/*
1362 * Sleep related functions:
1363 */
c9cb2e3d 1364static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1365{
1366 struct hrtimer_sleeper *t =
1367 container_of(timer, struct hrtimer_sleeper, timer);
1368 struct task_struct *task = t->task;
1369
1370 t->task = NULL;
1371 if (task)
1372 wake_up_process(task);
1373
1374 return HRTIMER_NORESTART;
1375}
1376
36c8b586 1377void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1378{
1379 sl->timer.function = hrtimer_wakeup;
1380 sl->task = task;
1381}
2bc481cf 1382EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1383
669d7868 1384static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1385{
669d7868 1386 hrtimer_init_sleeper(t, current);
10c94ec1 1387
432569bb
RZ
1388 do {
1389 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1390 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1391 if (!hrtimer_active(&t->timer))
1392 t->task = NULL;
432569bb 1393
54cdfdb4 1394 if (likely(t->task))
b0f8c44f 1395 freezable_schedule();
432569bb 1396
669d7868 1397 hrtimer_cancel(&t->timer);
c9cb2e3d 1398 mode = HRTIMER_MODE_ABS;
669d7868
TG
1399
1400 } while (t->task && !signal_pending(current));
432569bb 1401
3588a085
PZ
1402 __set_current_state(TASK_RUNNING);
1403
669d7868 1404 return t->task == NULL;
10c94ec1
TG
1405}
1406
080344b9
ON
1407static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1408{
1409 struct timespec rmt;
1410 ktime_t rem;
1411
cc584b21 1412 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1413 if (rem.tv64 <= 0)
1414 return 0;
1415 rmt = ktime_to_timespec(rem);
1416
1417 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1418 return -EFAULT;
1419
1420 return 1;
1421}
1422
1711ef38 1423long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1424{
669d7868 1425 struct hrtimer_sleeper t;
080344b9 1426 struct timespec __user *rmtp;
237fc6e7 1427 int ret = 0;
10c94ec1 1428
ab8177bc 1429 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1430 HRTIMER_MODE_ABS);
cc584b21 1431 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1432
c9cb2e3d 1433 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1434 goto out;
10c94ec1 1435
029a07e0 1436 rmtp = restart->nanosleep.rmtp;
432569bb 1437 if (rmtp) {
237fc6e7 1438 ret = update_rmtp(&t.timer, rmtp);
080344b9 1439 if (ret <= 0)
237fc6e7 1440 goto out;
432569bb 1441 }
10c94ec1 1442
10c94ec1 1443 /* The other values in restart are already filled in */
237fc6e7
TG
1444 ret = -ERESTART_RESTARTBLOCK;
1445out:
1446 destroy_hrtimer_on_stack(&t.timer);
1447 return ret;
10c94ec1
TG
1448}
1449
080344b9 1450long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1451 const enum hrtimer_mode mode, const clockid_t clockid)
1452{
1453 struct restart_block *restart;
669d7868 1454 struct hrtimer_sleeper t;
237fc6e7 1455 int ret = 0;
3bd01206
AV
1456 unsigned long slack;
1457
1458 slack = current->timer_slack_ns;
aab03e05 1459 if (dl_task(current) || rt_task(current))
3bd01206 1460 slack = 0;
10c94ec1 1461
237fc6e7 1462 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1463 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1464 if (do_nanosleep(&t, mode))
237fc6e7 1465 goto out;
10c94ec1 1466
7978672c 1467 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1468 if (mode == HRTIMER_MODE_ABS) {
1469 ret = -ERESTARTNOHAND;
1470 goto out;
1471 }
10c94ec1 1472
432569bb 1473 if (rmtp) {
237fc6e7 1474 ret = update_rmtp(&t.timer, rmtp);
080344b9 1475 if (ret <= 0)
237fc6e7 1476 goto out;
432569bb 1477 }
10c94ec1 1478
f56141e3 1479 restart = &current->restart_block;
1711ef38 1480 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1481 restart->nanosleep.clockid = t.timer.base->clockid;
029a07e0 1482 restart->nanosleep.rmtp = rmtp;
cc584b21 1483 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1484
237fc6e7
TG
1485 ret = -ERESTART_RESTARTBLOCK;
1486out:
1487 destroy_hrtimer_on_stack(&t.timer);
1488 return ret;
10c94ec1
TG
1489}
1490
58fd3aa2
HC
1491SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1492 struct timespec __user *, rmtp)
6ba1b912 1493{
080344b9 1494 struct timespec tu;
6ba1b912
TG
1495
1496 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1497 return -EFAULT;
1498
1499 if (!timespec_valid(&tu))
1500 return -EINVAL;
1501
080344b9 1502 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1503}
1504
c0a31329
TG
1505/*
1506 * Functions related to boot-time initialization:
1507 */
0db0628d 1508static void init_hrtimers_cpu(int cpu)
c0a31329 1509{
3c8aa39d 1510 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1511 int i;
1512
998adc3d 1513 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1514 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1515 timerqueue_init_head(&cpu_base->clock_base[i].active);
1516 }
3c8aa39d 1517
cddd0248 1518 cpu_base->cpu = cpu;
54cdfdb4 1519 hrtimer_init_hres(cpu_base);
c0a31329
TG
1520}
1521
1522#ifdef CONFIG_HOTPLUG_CPU
1523
ca109491 1524static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1525 struct hrtimer_clock_base *new_base)
c0a31329
TG
1526{
1527 struct hrtimer *timer;
998adc3d 1528 struct timerqueue_node *node;
c0a31329 1529
998adc3d
JS
1530 while ((node = timerqueue_getnext(&old_base->active))) {
1531 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1532 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1533 debug_deactivate(timer);
b00c1a99
TG
1534
1535 /*
1536 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1537 * timer could be seen as !active and just vanish away
1538 * under us on another CPU
1539 */
1540 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1541 timer->base = new_base;
54cdfdb4 1542 /*
e3f1d883
TG
1543 * Enqueue the timers on the new cpu. This does not
1544 * reprogram the event device in case the timer
1545 * expires before the earliest on this CPU, but we run
1546 * hrtimer_interrupt after we migrated everything to
1547 * sort out already expired timers and reprogram the
1548 * event device.
54cdfdb4 1549 */
a6037b61 1550 enqueue_hrtimer(timer, new_base);
41e1022e 1551
b00c1a99
TG
1552 /* Clear the migration state bit */
1553 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1554 }
1555}
1556
d5fd43c4 1557static void migrate_hrtimers(int scpu)
c0a31329 1558{
3c8aa39d 1559 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1560 int i;
c0a31329 1561
37810659 1562 BUG_ON(cpu_online(scpu));
37810659 1563 tick_cancel_sched_timer(scpu);
731a55ba
TG
1564
1565 local_irq_disable();
1566 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 1567 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
1568 /*
1569 * The caller is globally serialized and nobody else
1570 * takes two locks at once, deadlock is not possible.
1571 */
ecb49d1a
TG
1572 raw_spin_lock(&new_base->lock);
1573 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1574
3c8aa39d 1575 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1576 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1577 &new_base->clock_base[i]);
c0a31329
TG
1578 }
1579
ecb49d1a
TG
1580 raw_spin_unlock(&old_base->lock);
1581 raw_spin_unlock(&new_base->lock);
37810659 1582
731a55ba
TG
1583 /* Check, if we got expired work to do */
1584 __hrtimer_peek_ahead_timers();
1585 local_irq_enable();
c0a31329 1586}
37810659 1587
c0a31329
TG
1588#endif /* CONFIG_HOTPLUG_CPU */
1589
0db0628d 1590static int hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1591 unsigned long action, void *hcpu)
1592{
b2e3c0ad 1593 int scpu = (long)hcpu;
c0a31329
TG
1594
1595 switch (action) {
1596
1597 case CPU_UP_PREPARE:
8bb78442 1598 case CPU_UP_PREPARE_FROZEN:
37810659 1599 init_hrtimers_cpu(scpu);
c0a31329
TG
1600 break;
1601
1602#ifdef CONFIG_HOTPLUG_CPU
1603 case CPU_DEAD:
8bb78442 1604 case CPU_DEAD_FROZEN:
d5fd43c4 1605 migrate_hrtimers(scpu);
c0a31329
TG
1606 break;
1607#endif
1608
1609 default:
1610 break;
1611 }
1612
1613 return NOTIFY_OK;
1614}
1615
0db0628d 1616static struct notifier_block hrtimers_nb = {
c0a31329
TG
1617 .notifier_call = hrtimer_cpu_notify,
1618};
1619
1620void __init hrtimers_init(void)
1621{
1622 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1623 (void *)(long)smp_processor_id());
1624 register_cpu_notifier(&hrtimers_nb);
1625}
1626
7bb67439 1627/**
351b3f7a 1628 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1629 * @expires: timeout value (ktime_t)
654c8e0b 1630 * @delta: slack in expires timeout (ktime_t)
7bb67439 1631 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1632 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1633 */
351b3f7a
CE
1634int __sched
1635schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1636 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1637{
1638 struct hrtimer_sleeper t;
1639
1640 /*
1641 * Optimize when a zero timeout value is given. It does not
1642 * matter whether this is an absolute or a relative time.
1643 */
1644 if (expires && !expires->tv64) {
1645 __set_current_state(TASK_RUNNING);
1646 return 0;
1647 }
1648
1649 /*
43b21013 1650 * A NULL parameter means "infinite"
7bb67439
AV
1651 */
1652 if (!expires) {
1653 schedule();
7bb67439
AV
1654 return -EINTR;
1655 }
1656
351b3f7a 1657 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1658 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1659
1660 hrtimer_init_sleeper(&t, current);
1661
cc584b21 1662 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1663 if (!hrtimer_active(&t.timer))
1664 t.task = NULL;
1665
1666 if (likely(t.task))
1667 schedule();
1668
1669 hrtimer_cancel(&t.timer);
1670 destroy_hrtimer_on_stack(&t.timer);
1671
1672 __set_current_state(TASK_RUNNING);
1673
1674 return !t.task ? 0 : -EINTR;
1675}
351b3f7a
CE
1676
1677/**
1678 * schedule_hrtimeout_range - sleep until timeout
1679 * @expires: timeout value (ktime_t)
1680 * @delta: slack in expires timeout (ktime_t)
1681 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1682 *
1683 * Make the current task sleep until the given expiry time has
1684 * elapsed. The routine will return immediately unless
1685 * the current task state has been set (see set_current_state()).
1686 *
1687 * The @delta argument gives the kernel the freedom to schedule the
1688 * actual wakeup to a time that is both power and performance friendly.
1689 * The kernel give the normal best effort behavior for "@expires+@delta",
1690 * but may decide to fire the timer earlier, but no earlier than @expires.
1691 *
1692 * You can set the task state as follows -
1693 *
1694 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1695 * pass before the routine returns.
1696 *
1697 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1698 * delivered to the current task.
1699 *
1700 * The current task state is guaranteed to be TASK_RUNNING when this
1701 * routine returns.
1702 *
1703 * Returns 0 when the timer has expired otherwise -EINTR
1704 */
1705int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1706 const enum hrtimer_mode mode)
1707{
1708 return schedule_hrtimeout_range_clock(expires, delta, mode,
1709 CLOCK_MONOTONIC);
1710}
654c8e0b
AV
1711EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1712
1713/**
1714 * schedule_hrtimeout - sleep until timeout
1715 * @expires: timeout value (ktime_t)
1716 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1717 *
1718 * Make the current task sleep until the given expiry time has
1719 * elapsed. The routine will return immediately unless
1720 * the current task state has been set (see set_current_state()).
1721 *
1722 * You can set the task state as follows -
1723 *
1724 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1725 * pass before the routine returns.
1726 *
1727 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1728 * delivered to the current task.
1729 *
1730 * The current task state is guaranteed to be TASK_RUNNING when this
1731 * routine returns.
1732 *
1733 * Returns 0 when the timer has expired otherwise -EINTR
1734 */
1735int __sched schedule_hrtimeout(ktime_t *expires,
1736 const enum hrtimer_mode mode)
1737{
1738 return schedule_hrtimeout_range(expires, 0, mode);
1739}
7bb67439 1740EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.80106 seconds and 5 git commands to generate.