Merge tag 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzik...
[deliverable/linux.git] / kernel / time / ntp.c
CommitLineData
4c7ee8de 1/*
4c7ee8de 2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
aa0ac365 8#include <linux/capability.h>
7dffa3c6 9#include <linux/clocksource.h>
eb3f938f 10#include <linux/workqueue.h>
53bbfa9e
IM
11#include <linux/hrtimer.h>
12#include <linux/jiffies.h>
13#include <linux/math64.h>
14#include <linux/timex.h>
15#include <linux/time.h>
16#include <linux/mm.h>
025b40ab 17#include <linux/module.h>
4c7ee8de 18
e2830b5c
TH
19#include "tick-internal.h"
20
b0ee7556 21/*
53bbfa9e 22 * NTP timekeeping variables:
b0ee7556 23 */
b0ee7556 24
bd331268
JS
25DEFINE_SPINLOCK(ntp_lock);
26
27
53bbfa9e
IM
28/* USER_HZ period (usecs): */
29unsigned long tick_usec = TICK_USEC;
30
31/* ACTHZ period (nsecs): */
32unsigned long tick_nsec;
7dffa3c6 33
ea7cf49a 34static u64 tick_length;
53bbfa9e
IM
35static u64 tick_length_base;
36
bbd12676 37#define MAX_TICKADJ 500LL /* usecs */
53bbfa9e 38#define MAX_TICKADJ_SCALED \
bbd12676 39 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
4c7ee8de 40
41/*
42 * phase-lock loop variables
43 */
53bbfa9e
IM
44
45/*
46 * clock synchronization status
47 *
48 * (TIME_ERROR prevents overwriting the CMOS clock)
49 */
50static int time_state = TIME_OK;
51
52/* clock status bits: */
8357929e 53static int time_status = STA_UNSYNC;
53bbfa9e
IM
54
55/* TAI offset (secs): */
56static long time_tai;
57
58/* time adjustment (nsecs): */
59static s64 time_offset;
60
61/* pll time constant: */
62static long time_constant = 2;
63
64/* maximum error (usecs): */
1f5b8f8a 65static long time_maxerror = NTP_PHASE_LIMIT;
53bbfa9e
IM
66
67/* estimated error (usecs): */
1f5b8f8a 68static long time_esterror = NTP_PHASE_LIMIT;
53bbfa9e
IM
69
70/* frequency offset (scaled nsecs/secs): */
71static s64 time_freq;
72
73/* time at last adjustment (secs): */
74static long time_reftime;
75
e1292ba1 76static long time_adjust;
53bbfa9e 77
069569e0
IM
78/* constant (boot-param configurable) NTP tick adjustment (upscaled) */
79static s64 ntp_tick_adj;
53bbfa9e 80
025b40ab
AG
81#ifdef CONFIG_NTP_PPS
82
83/*
84 * The following variables are used when a pulse-per-second (PPS) signal
85 * is available. They establish the engineering parameters of the clock
86 * discipline loop when controlled by the PPS signal.
87 */
88#define PPS_VALID 10 /* PPS signal watchdog max (s) */
89#define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
90#define PPS_INTMIN 2 /* min freq interval (s) (shift) */
91#define PPS_INTMAX 8 /* max freq interval (s) (shift) */
92#define PPS_INTCOUNT 4 /* number of consecutive good intervals to
93 increase pps_shift or consecutive bad
94 intervals to decrease it */
95#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
96
97static int pps_valid; /* signal watchdog counter */
98static long pps_tf[3]; /* phase median filter */
99static long pps_jitter; /* current jitter (ns) */
100static struct timespec pps_fbase; /* beginning of the last freq interval */
101static int pps_shift; /* current interval duration (s) (shift) */
102static int pps_intcnt; /* interval counter */
103static s64 pps_freq; /* frequency offset (scaled ns/s) */
104static long pps_stabil; /* current stability (scaled ns/s) */
105
106/*
107 * PPS signal quality monitors
108 */
109static long pps_calcnt; /* calibration intervals */
110static long pps_jitcnt; /* jitter limit exceeded */
111static long pps_stbcnt; /* stability limit exceeded */
112static long pps_errcnt; /* calibration errors */
113
114
115/* PPS kernel consumer compensates the whole phase error immediately.
116 * Otherwise, reduce the offset by a fixed factor times the time constant.
117 */
118static inline s64 ntp_offset_chunk(s64 offset)
119{
120 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
121 return offset;
122 else
123 return shift_right(offset, SHIFT_PLL + time_constant);
124}
125
126static inline void pps_reset_freq_interval(void)
127{
128 /* the PPS calibration interval may end
129 surprisingly early */
130 pps_shift = PPS_INTMIN;
131 pps_intcnt = 0;
132}
133
134/**
135 * pps_clear - Clears the PPS state variables
136 *
bd331268 137 * Must be called while holding a write on the ntp_lock
025b40ab
AG
138 */
139static inline void pps_clear(void)
140{
141 pps_reset_freq_interval();
142 pps_tf[0] = 0;
143 pps_tf[1] = 0;
144 pps_tf[2] = 0;
145 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
146 pps_freq = 0;
147}
148
149/* Decrease pps_valid to indicate that another second has passed since
150 * the last PPS signal. When it reaches 0, indicate that PPS signal is
151 * missing.
152 *
bd331268 153 * Must be called while holding a write on the ntp_lock
025b40ab
AG
154 */
155static inline void pps_dec_valid(void)
156{
157 if (pps_valid > 0)
158 pps_valid--;
159 else {
160 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
161 STA_PPSWANDER | STA_PPSERROR);
162 pps_clear();
163 }
164}
165
166static inline void pps_set_freq(s64 freq)
167{
168 pps_freq = freq;
169}
170
171static inline int is_error_status(int status)
172{
173 return (time_status & (STA_UNSYNC|STA_CLOCKERR))
174 /* PPS signal lost when either PPS time or
175 * PPS frequency synchronization requested
176 */
177 || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
178 && !(time_status & STA_PPSSIGNAL))
179 /* PPS jitter exceeded when
180 * PPS time synchronization requested */
181 || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
182 == (STA_PPSTIME|STA_PPSJITTER))
183 /* PPS wander exceeded or calibration error when
184 * PPS frequency synchronization requested
185 */
186 || ((time_status & STA_PPSFREQ)
187 && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
188}
189
190static inline void pps_fill_timex(struct timex *txc)
191{
192 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
193 PPM_SCALE_INV, NTP_SCALE_SHIFT);
194 txc->jitter = pps_jitter;
195 if (!(time_status & STA_NANO))
196 txc->jitter /= NSEC_PER_USEC;
197 txc->shift = pps_shift;
198 txc->stabil = pps_stabil;
199 txc->jitcnt = pps_jitcnt;
200 txc->calcnt = pps_calcnt;
201 txc->errcnt = pps_errcnt;
202 txc->stbcnt = pps_stbcnt;
203}
204
205#else /* !CONFIG_NTP_PPS */
206
207static inline s64 ntp_offset_chunk(s64 offset)
208{
209 return shift_right(offset, SHIFT_PLL + time_constant);
210}
211
212static inline void pps_reset_freq_interval(void) {}
213static inline void pps_clear(void) {}
214static inline void pps_dec_valid(void) {}
215static inline void pps_set_freq(s64 freq) {}
216
217static inline int is_error_status(int status)
218{
219 return status & (STA_UNSYNC|STA_CLOCKERR);
220}
221
222static inline void pps_fill_timex(struct timex *txc)
223{
224 /* PPS is not implemented, so these are zero */
225 txc->ppsfreq = 0;
226 txc->jitter = 0;
227 txc->shift = 0;
228 txc->stabil = 0;
229 txc->jitcnt = 0;
230 txc->calcnt = 0;
231 txc->errcnt = 0;
232 txc->stbcnt = 0;
233}
234
235#endif /* CONFIG_NTP_PPS */
236
8357929e
JS
237
238/**
239 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
240 *
241 */
242static inline int ntp_synced(void)
243{
244 return !(time_status & STA_UNSYNC);
245}
246
247
53bbfa9e
IM
248/*
249 * NTP methods:
250 */
4c7ee8de 251
9ce616aa
IM
252/*
253 * Update (tick_length, tick_length_base, tick_nsec), based
254 * on (tick_usec, ntp_tick_adj, time_freq):
255 */
70bc42f9
AB
256static void ntp_update_frequency(void)
257{
9ce616aa 258 u64 second_length;
bc26c31d 259 u64 new_base;
9ce616aa
IM
260
261 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
262 << NTP_SCALE_SHIFT;
263
069569e0 264 second_length += ntp_tick_adj;
9ce616aa 265 second_length += time_freq;
70bc42f9 266
9ce616aa 267 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
bc26c31d 268 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
fdcedf7b 269
270 /*
271 * Don't wait for the next second_overflow, apply
bc26c31d 272 * the change to the tick length immediately:
fdcedf7b 273 */
bc26c31d
IM
274 tick_length += new_base - tick_length_base;
275 tick_length_base = new_base;
70bc42f9
AB
276}
277
478b7aab 278static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
f939890b
IM
279{
280 time_status &= ~STA_MODE;
281
282 if (secs < MINSEC)
478b7aab 283 return 0;
f939890b
IM
284
285 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
478b7aab 286 return 0;
f939890b 287
f939890b
IM
288 time_status |= STA_MODE;
289
a078c6d0 290 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
f939890b
IM
291}
292
ee9851b2
RZ
293static void ntp_update_offset(long offset)
294{
ee9851b2 295 s64 freq_adj;
f939890b
IM
296 s64 offset64;
297 long secs;
ee9851b2
RZ
298
299 if (!(time_status & STA_PLL))
300 return;
301
eea83d89 302 if (!(time_status & STA_NANO))
9f14f669 303 offset *= NSEC_PER_USEC;
ee9851b2
RZ
304
305 /*
306 * Scale the phase adjustment and
307 * clamp to the operating range.
308 */
9f14f669
RZ
309 offset = min(offset, MAXPHASE);
310 offset = max(offset, -MAXPHASE);
ee9851b2
RZ
311
312 /*
313 * Select how the frequency is to be controlled
314 * and in which mode (PLL or FLL).
315 */
7e1b5847 316 secs = get_seconds() - time_reftime;
10dd31a7 317 if (unlikely(time_status & STA_FREQHOLD))
c7986acb
IM
318 secs = 0;
319
7e1b5847 320 time_reftime = get_seconds();
ee9851b2 321
f939890b 322 offset64 = offset;
8af3c153 323 freq_adj = ntp_update_offset_fll(offset64, secs);
f939890b 324
8af3c153
ML
325 /*
326 * Clamp update interval to reduce PLL gain with low
327 * sampling rate (e.g. intermittent network connection)
328 * to avoid instability.
329 */
330 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
331 secs = 1 << (SHIFT_PLL + 1 + time_constant);
332
333 freq_adj += (offset64 * secs) <<
334 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
f939890b
IM
335
336 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
337
338 time_freq = max(freq_adj, -MAXFREQ_SCALED);
339
340 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
ee9851b2
RZ
341}
342
b0ee7556
RZ
343/**
344 * ntp_clear - Clears the NTP state variables
b0ee7556
RZ
345 */
346void ntp_clear(void)
347{
bd331268
JS
348 unsigned long flags;
349
350 spin_lock_irqsave(&ntp_lock, flags);
351
53bbfa9e
IM
352 time_adjust = 0; /* stop active adjtime() */
353 time_status |= STA_UNSYNC;
354 time_maxerror = NTP_PHASE_LIMIT;
355 time_esterror = NTP_PHASE_LIMIT;
b0ee7556
RZ
356
357 ntp_update_frequency();
358
53bbfa9e
IM
359 tick_length = tick_length_base;
360 time_offset = 0;
025b40ab
AG
361
362 /* Clear PPS state variables */
363 pps_clear();
bd331268
JS
364 spin_unlock_irqrestore(&ntp_lock, flags);
365
b0ee7556
RZ
366}
367
ea7cf49a
JS
368
369u64 ntp_tick_length(void)
370{
bd331268
JS
371 unsigned long flags;
372 s64 ret;
373
374 spin_lock_irqsave(&ntp_lock, flags);
375 ret = tick_length;
376 spin_unlock_irqrestore(&ntp_lock, flags);
377 return ret;
ea7cf49a
JS
378}
379
380
4c7ee8de 381/*
6b43ae8a
JS
382 * this routine handles the overflow of the microsecond field
383 *
384 * The tricky bits of code to handle the accurate clock support
385 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
386 * They were originally developed for SUN and DEC kernels.
387 * All the kudos should go to Dave for this stuff.
388 *
389 * Also handles leap second processing, and returns leap offset
4c7ee8de 390 */
6b43ae8a 391int second_overflow(unsigned long secs)
4c7ee8de 392{
6b43ae8a 393 s64 delta;
bd331268 394 int leap = 0;
6b43ae8a 395 unsigned long flags;
4c7ee8de 396
bd331268 397 spin_lock_irqsave(&ntp_lock, flags);
6b43ae8a
JS
398
399 /*
400 * Leap second processing. If in leap-insert state at the end of the
401 * day, the system clock is set back one second; if in leap-delete
402 * state, the system clock is set ahead one second.
403 */
4c7ee8de 404 switch (time_state) {
405 case TIME_OK:
6b43ae8a
JS
406 if (time_status & STA_INS)
407 time_state = TIME_INS;
408 else if (time_status & STA_DEL)
409 time_state = TIME_DEL;
4c7ee8de 410 break;
411 case TIME_INS:
6b43ae8a
JS
412 if (secs % 86400 == 0) {
413 leap = -1;
414 time_state = TIME_OOP;
415 printk(KERN_NOTICE
416 "Clock: inserting leap second 23:59:60 UTC\n");
417 }
4c7ee8de 418 break;
419 case TIME_DEL:
6b43ae8a
JS
420 if ((secs + 1) % 86400 == 0) {
421 leap = 1;
422 time_tai--;
423 time_state = TIME_WAIT;
424 printk(KERN_NOTICE
425 "Clock: deleting leap second 23:59:59 UTC\n");
426 }
4c7ee8de 427 break;
428 case TIME_OOP:
153b5d05 429 time_tai++;
4c7ee8de 430 time_state = TIME_WAIT;
6b43ae8a
JS
431 break;
432
4c7ee8de 433 case TIME_WAIT:
434 if (!(time_status & (STA_INS | STA_DEL)))
ee9851b2 435 time_state = TIME_OK;
7dffa3c6
RZ
436 break;
437 }
bd331268 438
7dffa3c6
RZ
439
440 /* Bump the maxerror field */
441 time_maxerror += MAXFREQ / NSEC_PER_USEC;
442 if (time_maxerror > NTP_PHASE_LIMIT) {
443 time_maxerror = NTP_PHASE_LIMIT;
444 time_status |= STA_UNSYNC;
4c7ee8de 445 }
446
025b40ab 447 /* Compute the phase adjustment for the next second */
39854fe8
IM
448 tick_length = tick_length_base;
449
025b40ab 450 delta = ntp_offset_chunk(time_offset);
39854fe8
IM
451 time_offset -= delta;
452 tick_length += delta;
4c7ee8de 453
025b40ab
AG
454 /* Check PPS signal */
455 pps_dec_valid();
456
3c972c24 457 if (!time_adjust)
bd331268 458 goto out;
3c972c24
IM
459
460 if (time_adjust > MAX_TICKADJ) {
461 time_adjust -= MAX_TICKADJ;
462 tick_length += MAX_TICKADJ_SCALED;
bd331268 463 goto out;
4c7ee8de 464 }
3c972c24
IM
465
466 if (time_adjust < -MAX_TICKADJ) {
467 time_adjust += MAX_TICKADJ;
468 tick_length -= MAX_TICKADJ_SCALED;
bd331268 469 goto out;
3c972c24
IM
470 }
471
472 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
473 << NTP_SCALE_SHIFT;
474 time_adjust = 0;
6b43ae8a
JS
475
476
477
bd331268
JS
478out:
479 spin_unlock_irqrestore(&ntp_lock, flags);
6b43ae8a
JS
480
481 return leap;
4c7ee8de 482}
483
82644459 484#ifdef CONFIG_GENERIC_CMOS_UPDATE
4c7ee8de 485
eb3f938f 486static void sync_cmos_clock(struct work_struct *work);
82644459 487
eb3f938f 488static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
82644459 489
eb3f938f 490static void sync_cmos_clock(struct work_struct *work)
82644459
TG
491{
492 struct timespec now, next;
493 int fail = 1;
494
495 /*
496 * If we have an externally synchronized Linux clock, then update
497 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
498 * called as close as possible to 500 ms before the new second starts.
499 * This code is run on a timer. If the clock is set, that timer
500 * may not expire at the correct time. Thus, we adjust...
501 */
53bbfa9e 502 if (!ntp_synced()) {
82644459
TG
503 /*
504 * Not synced, exit, do not restart a timer (if one is
505 * running, let it run out).
506 */
507 return;
53bbfa9e 508 }
82644459
TG
509
510 getnstimeofday(&now);
fa6a1a55 511 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
82644459
TG
512 fail = update_persistent_clock(now);
513
4ff4b9e1 514 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
82644459
TG
515 if (next.tv_nsec <= 0)
516 next.tv_nsec += NSEC_PER_SEC;
517
518 if (!fail)
519 next.tv_sec = 659;
520 else
521 next.tv_sec = 0;
522
523 if (next.tv_nsec >= NSEC_PER_SEC) {
524 next.tv_sec++;
525 next.tv_nsec -= NSEC_PER_SEC;
526 }
eb3f938f 527 schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
82644459
TG
528}
529
530static void notify_cmos_timer(void)
4c7ee8de 531{
335dd858 532 schedule_delayed_work(&sync_cmos_work, 0);
4c7ee8de 533}
534
82644459
TG
535#else
536static inline void notify_cmos_timer(void) { }
537#endif
538
80f22571
IM
539
540/*
541 * Propagate a new txc->status value into the NTP state:
542 */
543static inline void process_adj_status(struct timex *txc, struct timespec *ts)
544{
80f22571
IM
545 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
546 time_state = TIME_OK;
547 time_status = STA_UNSYNC;
025b40ab
AG
548 /* restart PPS frequency calibration */
549 pps_reset_freq_interval();
80f22571 550 }
80f22571
IM
551
552 /*
553 * If we turn on PLL adjustments then reset the
554 * reference time to current time.
555 */
556 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
7e1b5847 557 time_reftime = get_seconds();
80f22571 558
a2a5ac86
JS
559 /* only set allowed bits */
560 time_status &= STA_RONLY;
80f22571
IM
561 time_status |= txc->status & ~STA_RONLY;
562
80f22571
IM
563}
564/*
565 * Called with the xtime lock held, so we can access and modify
566 * all the global NTP state:
567 */
568static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
569{
570 if (txc->modes & ADJ_STATUS)
571 process_adj_status(txc, ts);
572
573 if (txc->modes & ADJ_NANO)
574 time_status |= STA_NANO;
e9629165 575
80f22571
IM
576 if (txc->modes & ADJ_MICRO)
577 time_status &= ~STA_NANO;
578
579 if (txc->modes & ADJ_FREQUENCY) {
2b9d1496 580 time_freq = txc->freq * PPM_SCALE;
80f22571
IM
581 time_freq = min(time_freq, MAXFREQ_SCALED);
582 time_freq = max(time_freq, -MAXFREQ_SCALED);
025b40ab
AG
583 /* update pps_freq */
584 pps_set_freq(time_freq);
80f22571
IM
585 }
586
587 if (txc->modes & ADJ_MAXERROR)
588 time_maxerror = txc->maxerror;
e9629165 589
80f22571
IM
590 if (txc->modes & ADJ_ESTERROR)
591 time_esterror = txc->esterror;
592
593 if (txc->modes & ADJ_TIMECONST) {
594 time_constant = txc->constant;
595 if (!(time_status & STA_NANO))
596 time_constant += 4;
597 time_constant = min(time_constant, (long)MAXTC);
598 time_constant = max(time_constant, 0l);
599 }
600
601 if (txc->modes & ADJ_TAI && txc->constant > 0)
602 time_tai = txc->constant;
603
604 if (txc->modes & ADJ_OFFSET)
605 ntp_update_offset(txc->offset);
e9629165 606
80f22571
IM
607 if (txc->modes & ADJ_TICK)
608 tick_usec = txc->tick;
609
610 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
611 ntp_update_frequency();
612}
613
53bbfa9e
IM
614/*
615 * adjtimex mainly allows reading (and writing, if superuser) of
4c7ee8de 616 * kernel time-keeping variables. used by xntpd.
617 */
618int do_adjtimex(struct timex *txc)
619{
eea83d89 620 struct timespec ts;
4c7ee8de 621 int result;
622
916c7a85
RZ
623 /* Validate the data before disabling interrupts */
624 if (txc->modes & ADJ_ADJTIME) {
eea83d89 625 /* singleshot must not be used with any other mode bits */
916c7a85 626 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
4c7ee8de 627 return -EINVAL;
916c7a85
RZ
628 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
629 !capable(CAP_SYS_TIME))
630 return -EPERM;
631 } else {
632 /* In order to modify anything, you gotta be super-user! */
633 if (txc->modes && !capable(CAP_SYS_TIME))
634 return -EPERM;
635
53bbfa9e
IM
636 /*
637 * if the quartz is off by more than 10% then
638 * something is VERY wrong!
639 */
916c7a85
RZ
640 if (txc->modes & ADJ_TICK &&
641 (txc->tick < 900000/USER_HZ ||
642 txc->tick > 1100000/USER_HZ))
e9629165 643 return -EINVAL;
52bfb360 644 }
4c7ee8de 645
094aa188
RC
646 if (txc->modes & ADJ_SETOFFSET) {
647 struct timespec delta;
094aa188
RC
648 delta.tv_sec = txc->time.tv_sec;
649 delta.tv_nsec = txc->time.tv_usec;
4352d9d4
RC
650 if (!capable(CAP_SYS_TIME))
651 return -EPERM;
094aa188
RC
652 if (!(txc->modes & ADJ_NANO))
653 delta.tv_nsec *= 1000;
db1c1cce
RC
654 result = timekeeping_inject_offset(&delta);
655 if (result)
656 return result;
094aa188
RC
657 }
658
7dffa3c6
RZ
659 getnstimeofday(&ts);
660
bd331268 661 spin_lock_irq(&ntp_lock);
4c7ee8de 662
916c7a85
RZ
663 if (txc->modes & ADJ_ADJTIME) {
664 long save_adjust = time_adjust;
665
666 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
667 /* adjtime() is independent from ntp_adjtime() */
668 time_adjust = txc->offset;
669 ntp_update_frequency();
670 }
671 txc->offset = save_adjust;
e9629165 672 } else {
ee9851b2 673
e9629165
IM
674 /* If there are input parameters, then process them: */
675 if (txc->modes)
676 process_adjtimex_modes(txc, &ts);
eea83d89 677
e9629165 678 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
916c7a85 679 NTP_SCALE_SHIFT);
e9629165
IM
680 if (!(time_status & STA_NANO))
681 txc->offset /= NSEC_PER_USEC;
682 }
916c7a85 683
eea83d89 684 result = time_state; /* mostly `TIME_OK' */
025b40ab
AG
685 /* check for errors */
686 if (is_error_status(time_status))
4c7ee8de 687 result = TIME_ERROR;
688
d40e944c 689 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
2b9d1496 690 PPM_SCALE_INV, NTP_SCALE_SHIFT);
4c7ee8de 691 txc->maxerror = time_maxerror;
692 txc->esterror = time_esterror;
693 txc->status = time_status;
694 txc->constant = time_constant;
70bc42f9 695 txc->precision = 1;
074b3b87 696 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
4c7ee8de 697 txc->tick = tick_usec;
153b5d05 698 txc->tai = time_tai;
4c7ee8de 699
025b40ab
AG
700 /* fill PPS status fields */
701 pps_fill_timex(txc);
e9629165 702
bd331268 703 spin_unlock_irq(&ntp_lock);
ee9851b2 704
eea83d89
RZ
705 txc->time.tv_sec = ts.tv_sec;
706 txc->time.tv_usec = ts.tv_nsec;
707 if (!(time_status & STA_NANO))
708 txc->time.tv_usec /= NSEC_PER_USEC;
ee9851b2 709
82644459 710 notify_cmos_timer();
ee9851b2
RZ
711
712 return result;
4c7ee8de 713}
10a398d0 714
025b40ab
AG
715#ifdef CONFIG_NTP_PPS
716
717/* actually struct pps_normtime is good old struct timespec, but it is
718 * semantically different (and it is the reason why it was invented):
719 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
720 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
721struct pps_normtime {
722 __kernel_time_t sec; /* seconds */
723 long nsec; /* nanoseconds */
724};
725
726/* normalize the timestamp so that nsec is in the
727 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
728static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
729{
730 struct pps_normtime norm = {
731 .sec = ts.tv_sec,
732 .nsec = ts.tv_nsec
733 };
734
735 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
736 norm.nsec -= NSEC_PER_SEC;
737 norm.sec++;
738 }
739
740 return norm;
741}
742
743/* get current phase correction and jitter */
744static inline long pps_phase_filter_get(long *jitter)
745{
746 *jitter = pps_tf[0] - pps_tf[1];
747 if (*jitter < 0)
748 *jitter = -*jitter;
749
750 /* TODO: test various filters */
751 return pps_tf[0];
752}
753
754/* add the sample to the phase filter */
755static inline void pps_phase_filter_add(long err)
756{
757 pps_tf[2] = pps_tf[1];
758 pps_tf[1] = pps_tf[0];
759 pps_tf[0] = err;
760}
761
762/* decrease frequency calibration interval length.
763 * It is halved after four consecutive unstable intervals.
764 */
765static inline void pps_dec_freq_interval(void)
766{
767 if (--pps_intcnt <= -PPS_INTCOUNT) {
768 pps_intcnt = -PPS_INTCOUNT;
769 if (pps_shift > PPS_INTMIN) {
770 pps_shift--;
771 pps_intcnt = 0;
772 }
773 }
774}
775
776/* increase frequency calibration interval length.
777 * It is doubled after four consecutive stable intervals.
778 */
779static inline void pps_inc_freq_interval(void)
780{
781 if (++pps_intcnt >= PPS_INTCOUNT) {
782 pps_intcnt = PPS_INTCOUNT;
783 if (pps_shift < PPS_INTMAX) {
784 pps_shift++;
785 pps_intcnt = 0;
786 }
787 }
788}
789
790/* update clock frequency based on MONOTONIC_RAW clock PPS signal
791 * timestamps
792 *
793 * At the end of the calibration interval the difference between the
794 * first and last MONOTONIC_RAW clock timestamps divided by the length
795 * of the interval becomes the frequency update. If the interval was
796 * too long, the data are discarded.
797 * Returns the difference between old and new frequency values.
798 */
799static long hardpps_update_freq(struct pps_normtime freq_norm)
800{
801 long delta, delta_mod;
802 s64 ftemp;
803
804 /* check if the frequency interval was too long */
805 if (freq_norm.sec > (2 << pps_shift)) {
806 time_status |= STA_PPSERROR;
807 pps_errcnt++;
808 pps_dec_freq_interval();
809 pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
810 freq_norm.sec);
811 return 0;
812 }
813
814 /* here the raw frequency offset and wander (stability) is
815 * calculated. If the wander is less than the wander threshold
816 * the interval is increased; otherwise it is decreased.
817 */
818 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
819 freq_norm.sec);
820 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
821 pps_freq = ftemp;
822 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
823 pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
824 time_status |= STA_PPSWANDER;
825 pps_stbcnt++;
826 pps_dec_freq_interval();
827 } else { /* good sample */
828 pps_inc_freq_interval();
829 }
830
831 /* the stability metric is calculated as the average of recent
832 * frequency changes, but is used only for performance
833 * monitoring
834 */
835 delta_mod = delta;
836 if (delta_mod < 0)
837 delta_mod = -delta_mod;
838 pps_stabil += (div_s64(((s64)delta_mod) <<
839 (NTP_SCALE_SHIFT - SHIFT_USEC),
840 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
841
842 /* if enabled, the system clock frequency is updated */
843 if ((time_status & STA_PPSFREQ) != 0 &&
844 (time_status & STA_FREQHOLD) == 0) {
845 time_freq = pps_freq;
846 ntp_update_frequency();
847 }
848
849 return delta;
850}
851
852/* correct REALTIME clock phase error against PPS signal */
853static void hardpps_update_phase(long error)
854{
855 long correction = -error;
856 long jitter;
857
858 /* add the sample to the median filter */
859 pps_phase_filter_add(correction);
860 correction = pps_phase_filter_get(&jitter);
861
862 /* Nominal jitter is due to PPS signal noise. If it exceeds the
863 * threshold, the sample is discarded; otherwise, if so enabled,
864 * the time offset is updated.
865 */
866 if (jitter > (pps_jitter << PPS_POPCORN)) {
867 pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
868 jitter, (pps_jitter << PPS_POPCORN));
869 time_status |= STA_PPSJITTER;
870 pps_jitcnt++;
871 } else if (time_status & STA_PPSTIME) {
872 /* correct the time using the phase offset */
873 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
874 NTP_INTERVAL_FREQ);
875 /* cancel running adjtime() */
876 time_adjust = 0;
877 }
878 /* update jitter */
879 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
880}
881
882/*
883 * hardpps() - discipline CPU clock oscillator to external PPS signal
884 *
885 * This routine is called at each PPS signal arrival in order to
886 * discipline the CPU clock oscillator to the PPS signal. It takes two
887 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
888 * is used to correct clock phase error and the latter is used to
889 * correct the frequency.
890 *
891 * This code is based on David Mills's reference nanokernel
892 * implementation. It was mostly rewritten but keeps the same idea.
893 */
894void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
895{
896 struct pps_normtime pts_norm, freq_norm;
897 unsigned long flags;
898
899 pts_norm = pps_normalize_ts(*phase_ts);
900
bd331268 901 spin_lock_irqsave(&ntp_lock, flags);
025b40ab
AG
902
903 /* clear the error bits, they will be set again if needed */
904 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
905
906 /* indicate signal presence */
907 time_status |= STA_PPSSIGNAL;
908 pps_valid = PPS_VALID;
909
910 /* when called for the first time,
911 * just start the frequency interval */
912 if (unlikely(pps_fbase.tv_sec == 0)) {
913 pps_fbase = *raw_ts;
bd331268 914 spin_unlock_irqrestore(&ntp_lock, flags);
025b40ab
AG
915 return;
916 }
917
918 /* ok, now we have a base for frequency calculation */
919 freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
920
921 /* check that the signal is in the range
922 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
923 if ((freq_norm.sec == 0) ||
924 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
925 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
926 time_status |= STA_PPSJITTER;
927 /* restart the frequency calibration interval */
928 pps_fbase = *raw_ts;
bd331268 929 spin_unlock_irqrestore(&ntp_lock, flags);
025b40ab
AG
930 pr_err("hardpps: PPSJITTER: bad pulse\n");
931 return;
932 }
933
934 /* signal is ok */
935
936 /* check if the current frequency interval is finished */
937 if (freq_norm.sec >= (1 << pps_shift)) {
938 pps_calcnt++;
939 /* restart the frequency calibration interval */
940 pps_fbase = *raw_ts;
941 hardpps_update_freq(freq_norm);
942 }
943
944 hardpps_update_phase(pts_norm.nsec);
945
bd331268 946 spin_unlock_irqrestore(&ntp_lock, flags);
025b40ab
AG
947}
948EXPORT_SYMBOL(hardpps);
949
950#endif /* CONFIG_NTP_PPS */
951
10a398d0
RZ
952static int __init ntp_tick_adj_setup(char *str)
953{
954 ntp_tick_adj = simple_strtol(str, NULL, 0);
069569e0
IM
955 ntp_tick_adj <<= NTP_SCALE_SHIFT;
956
10a398d0
RZ
957 return 1;
958}
959
960__setup("ntp_tick_adj=", ntp_tick_adj_setup);
7dffa3c6
RZ
961
962void __init ntp_init(void)
963{
964 ntp_clear();
7dffa3c6 965}
This page took 0.545975 seconds and 5 git commands to generate.