mn10300: Switch do_timer() to xtimer_update()
[deliverable/linux.git] / kernel / time / ntp.c
CommitLineData
4c7ee8de 1/*
4c7ee8de 2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
aa0ac365 8#include <linux/capability.h>
7dffa3c6 9#include <linux/clocksource.h>
eb3f938f 10#include <linux/workqueue.h>
53bbfa9e
IM
11#include <linux/hrtimer.h>
12#include <linux/jiffies.h>
13#include <linux/math64.h>
14#include <linux/timex.h>
15#include <linux/time.h>
16#include <linux/mm.h>
025b40ab 17#include <linux/module.h>
4c7ee8de 18
e2830b5c
TH
19#include "tick-internal.h"
20
b0ee7556 21/*
53bbfa9e 22 * NTP timekeeping variables:
b0ee7556 23 */
b0ee7556 24
53bbfa9e
IM
25/* USER_HZ period (usecs): */
26unsigned long tick_usec = TICK_USEC;
27
28/* ACTHZ period (nsecs): */
29unsigned long tick_nsec;
7dffa3c6 30
53bbfa9e
IM
31u64 tick_length;
32static u64 tick_length_base;
33
34static struct hrtimer leap_timer;
35
bbd12676 36#define MAX_TICKADJ 500LL /* usecs */
53bbfa9e 37#define MAX_TICKADJ_SCALED \
bbd12676 38 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
4c7ee8de 39
40/*
41 * phase-lock loop variables
42 */
53bbfa9e
IM
43
44/*
45 * clock synchronization status
46 *
47 * (TIME_ERROR prevents overwriting the CMOS clock)
48 */
49static int time_state = TIME_OK;
50
51/* clock status bits: */
52int time_status = STA_UNSYNC;
53
54/* TAI offset (secs): */
55static long time_tai;
56
57/* time adjustment (nsecs): */
58static s64 time_offset;
59
60/* pll time constant: */
61static long time_constant = 2;
62
63/* maximum error (usecs): */
1f5b8f8a 64static long time_maxerror = NTP_PHASE_LIMIT;
53bbfa9e
IM
65
66/* estimated error (usecs): */
1f5b8f8a 67static long time_esterror = NTP_PHASE_LIMIT;
53bbfa9e
IM
68
69/* frequency offset (scaled nsecs/secs): */
70static s64 time_freq;
71
72/* time at last adjustment (secs): */
73static long time_reftime;
74
e1292ba1 75static long time_adjust;
53bbfa9e 76
069569e0
IM
77/* constant (boot-param configurable) NTP tick adjustment (upscaled) */
78static s64 ntp_tick_adj;
53bbfa9e 79
025b40ab
AG
80#ifdef CONFIG_NTP_PPS
81
82/*
83 * The following variables are used when a pulse-per-second (PPS) signal
84 * is available. They establish the engineering parameters of the clock
85 * discipline loop when controlled by the PPS signal.
86 */
87#define PPS_VALID 10 /* PPS signal watchdog max (s) */
88#define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
89#define PPS_INTMIN 2 /* min freq interval (s) (shift) */
90#define PPS_INTMAX 8 /* max freq interval (s) (shift) */
91#define PPS_INTCOUNT 4 /* number of consecutive good intervals to
92 increase pps_shift or consecutive bad
93 intervals to decrease it */
94#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
95
96static int pps_valid; /* signal watchdog counter */
97static long pps_tf[3]; /* phase median filter */
98static long pps_jitter; /* current jitter (ns) */
99static struct timespec pps_fbase; /* beginning of the last freq interval */
100static int pps_shift; /* current interval duration (s) (shift) */
101static int pps_intcnt; /* interval counter */
102static s64 pps_freq; /* frequency offset (scaled ns/s) */
103static long pps_stabil; /* current stability (scaled ns/s) */
104
105/*
106 * PPS signal quality monitors
107 */
108static long pps_calcnt; /* calibration intervals */
109static long pps_jitcnt; /* jitter limit exceeded */
110static long pps_stbcnt; /* stability limit exceeded */
111static long pps_errcnt; /* calibration errors */
112
113
114/* PPS kernel consumer compensates the whole phase error immediately.
115 * Otherwise, reduce the offset by a fixed factor times the time constant.
116 */
117static inline s64 ntp_offset_chunk(s64 offset)
118{
119 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
120 return offset;
121 else
122 return shift_right(offset, SHIFT_PLL + time_constant);
123}
124
125static inline void pps_reset_freq_interval(void)
126{
127 /* the PPS calibration interval may end
128 surprisingly early */
129 pps_shift = PPS_INTMIN;
130 pps_intcnt = 0;
131}
132
133/**
134 * pps_clear - Clears the PPS state variables
135 *
136 * Must be called while holding a write on the xtime_lock
137 */
138static inline void pps_clear(void)
139{
140 pps_reset_freq_interval();
141 pps_tf[0] = 0;
142 pps_tf[1] = 0;
143 pps_tf[2] = 0;
144 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
145 pps_freq = 0;
146}
147
148/* Decrease pps_valid to indicate that another second has passed since
149 * the last PPS signal. When it reaches 0, indicate that PPS signal is
150 * missing.
151 *
152 * Must be called while holding a write on the xtime_lock
153 */
154static inline void pps_dec_valid(void)
155{
156 if (pps_valid > 0)
157 pps_valid--;
158 else {
159 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
160 STA_PPSWANDER | STA_PPSERROR);
161 pps_clear();
162 }
163}
164
165static inline void pps_set_freq(s64 freq)
166{
167 pps_freq = freq;
168}
169
170static inline int is_error_status(int status)
171{
172 return (time_status & (STA_UNSYNC|STA_CLOCKERR))
173 /* PPS signal lost when either PPS time or
174 * PPS frequency synchronization requested
175 */
176 || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
177 && !(time_status & STA_PPSSIGNAL))
178 /* PPS jitter exceeded when
179 * PPS time synchronization requested */
180 || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
181 == (STA_PPSTIME|STA_PPSJITTER))
182 /* PPS wander exceeded or calibration error when
183 * PPS frequency synchronization requested
184 */
185 || ((time_status & STA_PPSFREQ)
186 && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
187}
188
189static inline void pps_fill_timex(struct timex *txc)
190{
191 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
192 PPM_SCALE_INV, NTP_SCALE_SHIFT);
193 txc->jitter = pps_jitter;
194 if (!(time_status & STA_NANO))
195 txc->jitter /= NSEC_PER_USEC;
196 txc->shift = pps_shift;
197 txc->stabil = pps_stabil;
198 txc->jitcnt = pps_jitcnt;
199 txc->calcnt = pps_calcnt;
200 txc->errcnt = pps_errcnt;
201 txc->stbcnt = pps_stbcnt;
202}
203
204#else /* !CONFIG_NTP_PPS */
205
206static inline s64 ntp_offset_chunk(s64 offset)
207{
208 return shift_right(offset, SHIFT_PLL + time_constant);
209}
210
211static inline void pps_reset_freq_interval(void) {}
212static inline void pps_clear(void) {}
213static inline void pps_dec_valid(void) {}
214static inline void pps_set_freq(s64 freq) {}
215
216static inline int is_error_status(int status)
217{
218 return status & (STA_UNSYNC|STA_CLOCKERR);
219}
220
221static inline void pps_fill_timex(struct timex *txc)
222{
223 /* PPS is not implemented, so these are zero */
224 txc->ppsfreq = 0;
225 txc->jitter = 0;
226 txc->shift = 0;
227 txc->stabil = 0;
228 txc->jitcnt = 0;
229 txc->calcnt = 0;
230 txc->errcnt = 0;
231 txc->stbcnt = 0;
232}
233
234#endif /* CONFIG_NTP_PPS */
235
53bbfa9e
IM
236/*
237 * NTP methods:
238 */
4c7ee8de 239
9ce616aa
IM
240/*
241 * Update (tick_length, tick_length_base, tick_nsec), based
242 * on (tick_usec, ntp_tick_adj, time_freq):
243 */
70bc42f9
AB
244static void ntp_update_frequency(void)
245{
9ce616aa 246 u64 second_length;
bc26c31d 247 u64 new_base;
9ce616aa
IM
248
249 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
250 << NTP_SCALE_SHIFT;
251
069569e0 252 second_length += ntp_tick_adj;
9ce616aa 253 second_length += time_freq;
70bc42f9 254
9ce616aa 255 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
bc26c31d 256 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
fdcedf7b 257
258 /*
259 * Don't wait for the next second_overflow, apply
bc26c31d 260 * the change to the tick length immediately:
fdcedf7b 261 */
bc26c31d
IM
262 tick_length += new_base - tick_length_base;
263 tick_length_base = new_base;
70bc42f9
AB
264}
265
478b7aab 266static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
f939890b
IM
267{
268 time_status &= ~STA_MODE;
269
270 if (secs < MINSEC)
478b7aab 271 return 0;
f939890b
IM
272
273 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
478b7aab 274 return 0;
f939890b 275
f939890b
IM
276 time_status |= STA_MODE;
277
478b7aab 278 return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
f939890b
IM
279}
280
ee9851b2
RZ
281static void ntp_update_offset(long offset)
282{
ee9851b2 283 s64 freq_adj;
f939890b
IM
284 s64 offset64;
285 long secs;
ee9851b2
RZ
286
287 if (!(time_status & STA_PLL))
288 return;
289
eea83d89 290 if (!(time_status & STA_NANO))
9f14f669 291 offset *= NSEC_PER_USEC;
ee9851b2
RZ
292
293 /*
294 * Scale the phase adjustment and
295 * clamp to the operating range.
296 */
9f14f669
RZ
297 offset = min(offset, MAXPHASE);
298 offset = max(offset, -MAXPHASE);
ee9851b2
RZ
299
300 /*
301 * Select how the frequency is to be controlled
302 * and in which mode (PLL or FLL).
303 */
7e1b5847 304 secs = get_seconds() - time_reftime;
10dd31a7 305 if (unlikely(time_status & STA_FREQHOLD))
c7986acb
IM
306 secs = 0;
307
7e1b5847 308 time_reftime = get_seconds();
ee9851b2 309
f939890b 310 offset64 = offset;
8af3c153 311 freq_adj = ntp_update_offset_fll(offset64, secs);
f939890b 312
8af3c153
ML
313 /*
314 * Clamp update interval to reduce PLL gain with low
315 * sampling rate (e.g. intermittent network connection)
316 * to avoid instability.
317 */
318 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
319 secs = 1 << (SHIFT_PLL + 1 + time_constant);
320
321 freq_adj += (offset64 * secs) <<
322 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
f939890b
IM
323
324 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
325
326 time_freq = max(freq_adj, -MAXFREQ_SCALED);
327
328 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
ee9851b2
RZ
329}
330
b0ee7556
RZ
331/**
332 * ntp_clear - Clears the NTP state variables
333 *
334 * Must be called while holding a write on the xtime_lock
335 */
336void ntp_clear(void)
337{
53bbfa9e
IM
338 time_adjust = 0; /* stop active adjtime() */
339 time_status |= STA_UNSYNC;
340 time_maxerror = NTP_PHASE_LIMIT;
341 time_esterror = NTP_PHASE_LIMIT;
b0ee7556
RZ
342
343 ntp_update_frequency();
344
53bbfa9e
IM
345 tick_length = tick_length_base;
346 time_offset = 0;
025b40ab
AG
347
348 /* Clear PPS state variables */
349 pps_clear();
b0ee7556
RZ
350}
351
4c7ee8de 352/*
7dffa3c6
RZ
353 * Leap second processing. If in leap-insert state at the end of the
354 * day, the system clock is set back one second; if in leap-delete
355 * state, the system clock is set ahead one second.
4c7ee8de 356 */
7dffa3c6 357static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
4c7ee8de 358{
7dffa3c6 359 enum hrtimer_restart res = HRTIMER_NORESTART;
4c7ee8de 360
ca109491 361 write_seqlock(&xtime_lock);
4c7ee8de 362
4c7ee8de 363 switch (time_state) {
364 case TIME_OK:
4c7ee8de 365 break;
366 case TIME_INS:
31089c13 367 timekeeping_leap_insert(-1);
7dffa3c6 368 time_state = TIME_OOP;
53bbfa9e
IM
369 printk(KERN_NOTICE
370 "Clock: inserting leap second 23:59:60 UTC\n");
cc584b21 371 hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
7dffa3c6 372 res = HRTIMER_RESTART;
4c7ee8de 373 break;
374 case TIME_DEL:
31089c13 375 timekeeping_leap_insert(1);
7dffa3c6 376 time_tai--;
7dffa3c6 377 time_state = TIME_WAIT;
53bbfa9e
IM
378 printk(KERN_NOTICE
379 "Clock: deleting leap second 23:59:59 UTC\n");
4c7ee8de 380 break;
381 case TIME_OOP:
153b5d05 382 time_tai++;
4c7ee8de 383 time_state = TIME_WAIT;
7dffa3c6 384 /* fall through */
4c7ee8de 385 case TIME_WAIT:
386 if (!(time_status & (STA_INS | STA_DEL)))
ee9851b2 387 time_state = TIME_OK;
7dffa3c6
RZ
388 break;
389 }
7dffa3c6 390
ca109491 391 write_sequnlock(&xtime_lock);
7dffa3c6
RZ
392
393 return res;
394}
395
396/*
397 * this routine handles the overflow of the microsecond field
398 *
399 * The tricky bits of code to handle the accurate clock support
400 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
401 * They were originally developed for SUN and DEC kernels.
402 * All the kudos should go to Dave for this stuff.
403 */
404void second_overflow(void)
405{
39854fe8 406 s64 delta;
7dffa3c6
RZ
407
408 /* Bump the maxerror field */
409 time_maxerror += MAXFREQ / NSEC_PER_USEC;
410 if (time_maxerror > NTP_PHASE_LIMIT) {
411 time_maxerror = NTP_PHASE_LIMIT;
412 time_status |= STA_UNSYNC;
4c7ee8de 413 }
414
025b40ab 415 /* Compute the phase adjustment for the next second */
39854fe8
IM
416 tick_length = tick_length_base;
417
025b40ab 418 delta = ntp_offset_chunk(time_offset);
39854fe8
IM
419 time_offset -= delta;
420 tick_length += delta;
4c7ee8de 421
025b40ab
AG
422 /* Check PPS signal */
423 pps_dec_valid();
424
3c972c24
IM
425 if (!time_adjust)
426 return;
427
428 if (time_adjust > MAX_TICKADJ) {
429 time_adjust -= MAX_TICKADJ;
430 tick_length += MAX_TICKADJ_SCALED;
431 return;
4c7ee8de 432 }
3c972c24
IM
433
434 if (time_adjust < -MAX_TICKADJ) {
435 time_adjust += MAX_TICKADJ;
436 tick_length -= MAX_TICKADJ_SCALED;
437 return;
438 }
439
440 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
441 << NTP_SCALE_SHIFT;
442 time_adjust = 0;
4c7ee8de 443}
444
82644459 445#ifdef CONFIG_GENERIC_CMOS_UPDATE
4c7ee8de 446
82644459
TG
447/* Disable the cmos update - used by virtualization and embedded */
448int no_sync_cmos_clock __read_mostly;
449
eb3f938f 450static void sync_cmos_clock(struct work_struct *work);
82644459 451
eb3f938f 452static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
82644459 453
eb3f938f 454static void sync_cmos_clock(struct work_struct *work)
82644459
TG
455{
456 struct timespec now, next;
457 int fail = 1;
458
459 /*
460 * If we have an externally synchronized Linux clock, then update
461 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
462 * called as close as possible to 500 ms before the new second starts.
463 * This code is run on a timer. If the clock is set, that timer
464 * may not expire at the correct time. Thus, we adjust...
465 */
53bbfa9e 466 if (!ntp_synced()) {
82644459
TG
467 /*
468 * Not synced, exit, do not restart a timer (if one is
469 * running, let it run out).
470 */
471 return;
53bbfa9e 472 }
82644459
TG
473
474 getnstimeofday(&now);
fa6a1a55 475 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
82644459
TG
476 fail = update_persistent_clock(now);
477
4ff4b9e1 478 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
82644459
TG
479 if (next.tv_nsec <= 0)
480 next.tv_nsec += NSEC_PER_SEC;
481
482 if (!fail)
483 next.tv_sec = 659;
484 else
485 next.tv_sec = 0;
486
487 if (next.tv_nsec >= NSEC_PER_SEC) {
488 next.tv_sec++;
489 next.tv_nsec -= NSEC_PER_SEC;
490 }
eb3f938f 491 schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
82644459
TG
492}
493
494static void notify_cmos_timer(void)
4c7ee8de 495{
298a5df4 496 if (!no_sync_cmos_clock)
eb3f938f 497 schedule_delayed_work(&sync_cmos_work, 0);
4c7ee8de 498}
499
82644459
TG
500#else
501static inline void notify_cmos_timer(void) { }
502#endif
503
e9629165
IM
504/*
505 * Start the leap seconds timer:
506 */
507static inline void ntp_start_leap_timer(struct timespec *ts)
508{
509 long now = ts->tv_sec;
510
511 if (time_status & STA_INS) {
512 time_state = TIME_INS;
513 now += 86400 - now % 86400;
514 hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
515
516 return;
517 }
518
519 if (time_status & STA_DEL) {
520 time_state = TIME_DEL;
521 now += 86400 - (now + 1) % 86400;
522 hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
523 }
524}
80f22571
IM
525
526/*
527 * Propagate a new txc->status value into the NTP state:
528 */
529static inline void process_adj_status(struct timex *txc, struct timespec *ts)
530{
80f22571
IM
531 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
532 time_state = TIME_OK;
533 time_status = STA_UNSYNC;
025b40ab
AG
534 /* restart PPS frequency calibration */
535 pps_reset_freq_interval();
80f22571 536 }
80f22571
IM
537
538 /*
539 * If we turn on PLL adjustments then reset the
540 * reference time to current time.
541 */
542 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
7e1b5847 543 time_reftime = get_seconds();
80f22571 544
a2a5ac86
JS
545 /* only set allowed bits */
546 time_status &= STA_RONLY;
80f22571
IM
547 time_status |= txc->status & ~STA_RONLY;
548
549 switch (time_state) {
550 case TIME_OK:
e9629165 551 ntp_start_leap_timer(ts);
80f22571
IM
552 break;
553 case TIME_INS:
554 case TIME_DEL:
555 time_state = TIME_OK;
e9629165 556 ntp_start_leap_timer(ts);
80f22571
IM
557 case TIME_WAIT:
558 if (!(time_status & (STA_INS | STA_DEL)))
559 time_state = TIME_OK;
560 break;
561 case TIME_OOP:
562 hrtimer_restart(&leap_timer);
563 break;
564 }
565}
566/*
567 * Called with the xtime lock held, so we can access and modify
568 * all the global NTP state:
569 */
570static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
571{
572 if (txc->modes & ADJ_STATUS)
573 process_adj_status(txc, ts);
574
575 if (txc->modes & ADJ_NANO)
576 time_status |= STA_NANO;
e9629165 577
80f22571
IM
578 if (txc->modes & ADJ_MICRO)
579 time_status &= ~STA_NANO;
580
581 if (txc->modes & ADJ_FREQUENCY) {
2b9d1496 582 time_freq = txc->freq * PPM_SCALE;
80f22571
IM
583 time_freq = min(time_freq, MAXFREQ_SCALED);
584 time_freq = max(time_freq, -MAXFREQ_SCALED);
025b40ab
AG
585 /* update pps_freq */
586 pps_set_freq(time_freq);
80f22571
IM
587 }
588
589 if (txc->modes & ADJ_MAXERROR)
590 time_maxerror = txc->maxerror;
e9629165 591
80f22571
IM
592 if (txc->modes & ADJ_ESTERROR)
593 time_esterror = txc->esterror;
594
595 if (txc->modes & ADJ_TIMECONST) {
596 time_constant = txc->constant;
597 if (!(time_status & STA_NANO))
598 time_constant += 4;
599 time_constant = min(time_constant, (long)MAXTC);
600 time_constant = max(time_constant, 0l);
601 }
602
603 if (txc->modes & ADJ_TAI && txc->constant > 0)
604 time_tai = txc->constant;
605
606 if (txc->modes & ADJ_OFFSET)
607 ntp_update_offset(txc->offset);
e9629165 608
80f22571
IM
609 if (txc->modes & ADJ_TICK)
610 tick_usec = txc->tick;
611
612 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
613 ntp_update_frequency();
614}
615
53bbfa9e
IM
616/*
617 * adjtimex mainly allows reading (and writing, if superuser) of
4c7ee8de 618 * kernel time-keeping variables. used by xntpd.
619 */
620int do_adjtimex(struct timex *txc)
621{
eea83d89 622 struct timespec ts;
4c7ee8de 623 int result;
624
916c7a85
RZ
625 /* Validate the data before disabling interrupts */
626 if (txc->modes & ADJ_ADJTIME) {
eea83d89 627 /* singleshot must not be used with any other mode bits */
916c7a85 628 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
4c7ee8de 629 return -EINVAL;
916c7a85
RZ
630 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
631 !capable(CAP_SYS_TIME))
632 return -EPERM;
633 } else {
634 /* In order to modify anything, you gotta be super-user! */
635 if (txc->modes && !capable(CAP_SYS_TIME))
636 return -EPERM;
637
53bbfa9e
IM
638 /*
639 * if the quartz is off by more than 10% then
640 * something is VERY wrong!
641 */
916c7a85
RZ
642 if (txc->modes & ADJ_TICK &&
643 (txc->tick < 900000/USER_HZ ||
644 txc->tick > 1100000/USER_HZ))
e9629165 645 return -EINVAL;
916c7a85
RZ
646
647 if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
648 hrtimer_cancel(&leap_timer);
52bfb360 649 }
4c7ee8de 650
094aa188
RC
651 if (txc->modes & ADJ_SETOFFSET) {
652 struct timespec delta;
653 if ((unsigned long)txc->time.tv_usec >= NSEC_PER_SEC)
654 return -EINVAL;
655 delta.tv_sec = txc->time.tv_sec;
656 delta.tv_nsec = txc->time.tv_usec;
657 if (!(txc->modes & ADJ_NANO))
658 delta.tv_nsec *= 1000;
659 timekeeping_inject_offset(&delta);
660 }
661
7dffa3c6
RZ
662 getnstimeofday(&ts);
663
4c7ee8de 664 write_seqlock_irq(&xtime_lock);
4c7ee8de 665
916c7a85
RZ
666 if (txc->modes & ADJ_ADJTIME) {
667 long save_adjust = time_adjust;
668
669 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
670 /* adjtime() is independent from ntp_adjtime() */
671 time_adjust = txc->offset;
672 ntp_update_frequency();
673 }
674 txc->offset = save_adjust;
e9629165 675 } else {
ee9851b2 676
e9629165
IM
677 /* If there are input parameters, then process them: */
678 if (txc->modes)
679 process_adjtimex_modes(txc, &ts);
eea83d89 680
e9629165 681 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
916c7a85 682 NTP_SCALE_SHIFT);
e9629165
IM
683 if (!(time_status & STA_NANO))
684 txc->offset /= NSEC_PER_USEC;
685 }
916c7a85 686
eea83d89 687 result = time_state; /* mostly `TIME_OK' */
025b40ab
AG
688 /* check for errors */
689 if (is_error_status(time_status))
4c7ee8de 690 result = TIME_ERROR;
691
d40e944c 692 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
2b9d1496 693 PPM_SCALE_INV, NTP_SCALE_SHIFT);
4c7ee8de 694 txc->maxerror = time_maxerror;
695 txc->esterror = time_esterror;
696 txc->status = time_status;
697 txc->constant = time_constant;
70bc42f9 698 txc->precision = 1;
074b3b87 699 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
4c7ee8de 700 txc->tick = tick_usec;
153b5d05 701 txc->tai = time_tai;
4c7ee8de 702
025b40ab
AG
703 /* fill PPS status fields */
704 pps_fill_timex(txc);
e9629165 705
4c7ee8de 706 write_sequnlock_irq(&xtime_lock);
ee9851b2 707
eea83d89
RZ
708 txc->time.tv_sec = ts.tv_sec;
709 txc->time.tv_usec = ts.tv_nsec;
710 if (!(time_status & STA_NANO))
711 txc->time.tv_usec /= NSEC_PER_USEC;
ee9851b2 712
82644459 713 notify_cmos_timer();
ee9851b2
RZ
714
715 return result;
4c7ee8de 716}
10a398d0 717
025b40ab
AG
718#ifdef CONFIG_NTP_PPS
719
720/* actually struct pps_normtime is good old struct timespec, but it is
721 * semantically different (and it is the reason why it was invented):
722 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
723 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
724struct pps_normtime {
725 __kernel_time_t sec; /* seconds */
726 long nsec; /* nanoseconds */
727};
728
729/* normalize the timestamp so that nsec is in the
730 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
731static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
732{
733 struct pps_normtime norm = {
734 .sec = ts.tv_sec,
735 .nsec = ts.tv_nsec
736 };
737
738 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
739 norm.nsec -= NSEC_PER_SEC;
740 norm.sec++;
741 }
742
743 return norm;
744}
745
746/* get current phase correction and jitter */
747static inline long pps_phase_filter_get(long *jitter)
748{
749 *jitter = pps_tf[0] - pps_tf[1];
750 if (*jitter < 0)
751 *jitter = -*jitter;
752
753 /* TODO: test various filters */
754 return pps_tf[0];
755}
756
757/* add the sample to the phase filter */
758static inline void pps_phase_filter_add(long err)
759{
760 pps_tf[2] = pps_tf[1];
761 pps_tf[1] = pps_tf[0];
762 pps_tf[0] = err;
763}
764
765/* decrease frequency calibration interval length.
766 * It is halved after four consecutive unstable intervals.
767 */
768static inline void pps_dec_freq_interval(void)
769{
770 if (--pps_intcnt <= -PPS_INTCOUNT) {
771 pps_intcnt = -PPS_INTCOUNT;
772 if (pps_shift > PPS_INTMIN) {
773 pps_shift--;
774 pps_intcnt = 0;
775 }
776 }
777}
778
779/* increase frequency calibration interval length.
780 * It is doubled after four consecutive stable intervals.
781 */
782static inline void pps_inc_freq_interval(void)
783{
784 if (++pps_intcnt >= PPS_INTCOUNT) {
785 pps_intcnt = PPS_INTCOUNT;
786 if (pps_shift < PPS_INTMAX) {
787 pps_shift++;
788 pps_intcnt = 0;
789 }
790 }
791}
792
793/* update clock frequency based on MONOTONIC_RAW clock PPS signal
794 * timestamps
795 *
796 * At the end of the calibration interval the difference between the
797 * first and last MONOTONIC_RAW clock timestamps divided by the length
798 * of the interval becomes the frequency update. If the interval was
799 * too long, the data are discarded.
800 * Returns the difference between old and new frequency values.
801 */
802static long hardpps_update_freq(struct pps_normtime freq_norm)
803{
804 long delta, delta_mod;
805 s64 ftemp;
806
807 /* check if the frequency interval was too long */
808 if (freq_norm.sec > (2 << pps_shift)) {
809 time_status |= STA_PPSERROR;
810 pps_errcnt++;
811 pps_dec_freq_interval();
812 pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
813 freq_norm.sec);
814 return 0;
815 }
816
817 /* here the raw frequency offset and wander (stability) is
818 * calculated. If the wander is less than the wander threshold
819 * the interval is increased; otherwise it is decreased.
820 */
821 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
822 freq_norm.sec);
823 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
824 pps_freq = ftemp;
825 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
826 pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
827 time_status |= STA_PPSWANDER;
828 pps_stbcnt++;
829 pps_dec_freq_interval();
830 } else { /* good sample */
831 pps_inc_freq_interval();
832 }
833
834 /* the stability metric is calculated as the average of recent
835 * frequency changes, but is used only for performance
836 * monitoring
837 */
838 delta_mod = delta;
839 if (delta_mod < 0)
840 delta_mod = -delta_mod;
841 pps_stabil += (div_s64(((s64)delta_mod) <<
842 (NTP_SCALE_SHIFT - SHIFT_USEC),
843 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
844
845 /* if enabled, the system clock frequency is updated */
846 if ((time_status & STA_PPSFREQ) != 0 &&
847 (time_status & STA_FREQHOLD) == 0) {
848 time_freq = pps_freq;
849 ntp_update_frequency();
850 }
851
852 return delta;
853}
854
855/* correct REALTIME clock phase error against PPS signal */
856static void hardpps_update_phase(long error)
857{
858 long correction = -error;
859 long jitter;
860
861 /* add the sample to the median filter */
862 pps_phase_filter_add(correction);
863 correction = pps_phase_filter_get(&jitter);
864
865 /* Nominal jitter is due to PPS signal noise. If it exceeds the
866 * threshold, the sample is discarded; otherwise, if so enabled,
867 * the time offset is updated.
868 */
869 if (jitter > (pps_jitter << PPS_POPCORN)) {
870 pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
871 jitter, (pps_jitter << PPS_POPCORN));
872 time_status |= STA_PPSJITTER;
873 pps_jitcnt++;
874 } else if (time_status & STA_PPSTIME) {
875 /* correct the time using the phase offset */
876 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
877 NTP_INTERVAL_FREQ);
878 /* cancel running adjtime() */
879 time_adjust = 0;
880 }
881 /* update jitter */
882 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
883}
884
885/*
886 * hardpps() - discipline CPU clock oscillator to external PPS signal
887 *
888 * This routine is called at each PPS signal arrival in order to
889 * discipline the CPU clock oscillator to the PPS signal. It takes two
890 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
891 * is used to correct clock phase error and the latter is used to
892 * correct the frequency.
893 *
894 * This code is based on David Mills's reference nanokernel
895 * implementation. It was mostly rewritten but keeps the same idea.
896 */
897void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
898{
899 struct pps_normtime pts_norm, freq_norm;
900 unsigned long flags;
901
902 pts_norm = pps_normalize_ts(*phase_ts);
903
904 write_seqlock_irqsave(&xtime_lock, flags);
905
906 /* clear the error bits, they will be set again if needed */
907 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
908
909 /* indicate signal presence */
910 time_status |= STA_PPSSIGNAL;
911 pps_valid = PPS_VALID;
912
913 /* when called for the first time,
914 * just start the frequency interval */
915 if (unlikely(pps_fbase.tv_sec == 0)) {
916 pps_fbase = *raw_ts;
917 write_sequnlock_irqrestore(&xtime_lock, flags);
918 return;
919 }
920
921 /* ok, now we have a base for frequency calculation */
922 freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
923
924 /* check that the signal is in the range
925 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
926 if ((freq_norm.sec == 0) ||
927 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
928 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
929 time_status |= STA_PPSJITTER;
930 /* restart the frequency calibration interval */
931 pps_fbase = *raw_ts;
932 write_sequnlock_irqrestore(&xtime_lock, flags);
933 pr_err("hardpps: PPSJITTER: bad pulse\n");
934 return;
935 }
936
937 /* signal is ok */
938
939 /* check if the current frequency interval is finished */
940 if (freq_norm.sec >= (1 << pps_shift)) {
941 pps_calcnt++;
942 /* restart the frequency calibration interval */
943 pps_fbase = *raw_ts;
944 hardpps_update_freq(freq_norm);
945 }
946
947 hardpps_update_phase(pts_norm.nsec);
948
949 write_sequnlock_irqrestore(&xtime_lock, flags);
950}
951EXPORT_SYMBOL(hardpps);
952
953#endif /* CONFIG_NTP_PPS */
954
10a398d0
RZ
955static int __init ntp_tick_adj_setup(char *str)
956{
957 ntp_tick_adj = simple_strtol(str, NULL, 0);
069569e0
IM
958 ntp_tick_adj <<= NTP_SCALE_SHIFT;
959
10a398d0
RZ
960 return 1;
961}
962
963__setup("ntp_tick_adj=", ntp_tick_adj_setup);
7dffa3c6
RZ
964
965void __init ntp_init(void)
966{
967 ntp_clear();
968 hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
969 leap_timer.function = ntp_leap_second;
970}
This page took 0.411445 seconds and 5 git commands to generate.