[PATCH] ntp: prescale time_offset
[deliverable/linux.git] / kernel / time / ntp.c
CommitLineData
4c7ee8de 1/*
2 * linux/kernel/time/ntp.c
3 *
4 * NTP state machine interfaces and logic.
5 *
6 * This code was mainly moved from kernel/timer.c and kernel/time.c
7 * Please see those files for relevant copyright info and historical
8 * changelogs.
9 */
10
11#include <linux/mm.h>
12#include <linux/time.h>
13#include <linux/timex.h>
14
15#include <asm/div64.h>
16#include <asm/timex.h>
17
b0ee7556
RZ
18/*
19 * Timekeeping variables
20 */
21unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
22unsigned long tick_nsec; /* ACTHZ period (nsec) */
23static u64 tick_length, tick_length_base;
24
4c7ee8de 25/* Don't completely fail for HZ > 500. */
26int tickadj = 500/HZ ? : 1; /* microsecs */
27
28/*
29 * phase-lock loop variables
30 */
31/* TIME_ERROR prevents overwriting the CMOS clock */
32int time_state = TIME_OK; /* clock synchronization status */
33int time_status = STA_UNSYNC; /* clock status bits */
3d3675cc 34long time_offset; /* time adjustment (ns) */
4c7ee8de 35long time_constant = 2; /* pll time constant */
36long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
37long time_precision = 1; /* clock precision (us) */
38long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
39long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
dc6a43e4 40long time_freq; /* frequency offset (scaled ppm)*/
4c7ee8de 41long time_reftime; /* time at last adjustment (s) */
42long time_adjust;
43long time_next_adjust;
44
b0ee7556
RZ
45/**
46 * ntp_clear - Clears the NTP state variables
47 *
48 * Must be called while holding a write on the xtime_lock
49 */
50void ntp_clear(void)
51{
52 time_adjust = 0; /* stop active adjtime() */
53 time_status |= STA_UNSYNC;
54 time_maxerror = NTP_PHASE_LIMIT;
55 time_esterror = NTP_PHASE_LIMIT;
56
57 ntp_update_frequency();
58
59 tick_length = tick_length_base;
3d3675cc 60 time_offset = 0;
b0ee7556
RZ
61}
62
63#define CLOCK_TICK_OVERFLOW (LATCH * HZ - CLOCK_TICK_RATE)
64#define CLOCK_TICK_ADJUST (((s64)CLOCK_TICK_OVERFLOW * NSEC_PER_SEC) / (s64)CLOCK_TICK_RATE)
65
66void ntp_update_frequency(void)
67{
68 tick_length_base = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) << TICK_LENGTH_SHIFT;
69 tick_length_base += (s64)CLOCK_TICK_ADJUST << TICK_LENGTH_SHIFT;
dc6a43e4 70 tick_length_base += ((s64)time_freq * NSEC_PER_USEC) << (TICK_LENGTH_SHIFT - SHIFT_USEC);
b0ee7556
RZ
71
72 do_div(tick_length_base, HZ);
73
74 tick_nsec = tick_length_base >> TICK_LENGTH_SHIFT;
75}
76
4c7ee8de 77/*
78 * this routine handles the overflow of the microsecond field
79 *
80 * The tricky bits of code to handle the accurate clock support
81 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
82 * They were originally developed for SUN and DEC kernels.
83 * All the kudos should go to Dave for this stuff.
84 */
85void second_overflow(void)
86{
3d3675cc 87 long time_adj;
4c7ee8de 88
89 /* Bump the maxerror field */
90 time_maxerror += time_tolerance >> SHIFT_USEC;
91 if (time_maxerror > NTP_PHASE_LIMIT) {
92 time_maxerror = NTP_PHASE_LIMIT;
93 time_status |= STA_UNSYNC;
94 }
95
96 /*
97 * Leap second processing. If in leap-insert state at the end of the
98 * day, the system clock is set back one second; if in leap-delete
99 * state, the system clock is set ahead one second. The microtime()
100 * routine or external clock driver will insure that reported time is
101 * always monotonic. The ugly divides should be replaced.
102 */
103 switch (time_state) {
104 case TIME_OK:
105 if (time_status & STA_INS)
106 time_state = TIME_INS;
107 else if (time_status & STA_DEL)
108 time_state = TIME_DEL;
109 break;
110 case TIME_INS:
111 if (xtime.tv_sec % 86400 == 0) {
112 xtime.tv_sec--;
113 wall_to_monotonic.tv_sec++;
114 /*
115 * The timer interpolator will make time change
116 * gradually instead of an immediate jump by one second
117 */
118 time_interpolator_update(-NSEC_PER_SEC);
119 time_state = TIME_OOP;
120 clock_was_set();
121 printk(KERN_NOTICE "Clock: inserting leap second "
122 "23:59:60 UTC\n");
123 }
124 break;
125 case TIME_DEL:
126 if ((xtime.tv_sec + 1) % 86400 == 0) {
127 xtime.tv_sec++;
128 wall_to_monotonic.tv_sec--;
129 /*
130 * Use of time interpolator for a gradual change of
131 * time
132 */
133 time_interpolator_update(NSEC_PER_SEC);
134 time_state = TIME_WAIT;
135 clock_was_set();
136 printk(KERN_NOTICE "Clock: deleting leap second "
137 "23:59:59 UTC\n");
138 }
139 break;
140 case TIME_OOP:
141 time_state = TIME_WAIT;
142 break;
143 case TIME_WAIT:
144 if (!(time_status & (STA_INS | STA_DEL)))
145 time_state = TIME_OK;
146 }
147
148 /*
149 * Compute the phase adjustment for the next second. In PLL mode, the
150 * offset is reduced by a fixed factor times the time constant. In FLL
151 * mode the offset is used directly. In either mode, the maximum phase
152 * adjustment for each second is clamped so as to spread the adjustment
153 * over not more than the number of seconds between updates.
154 */
b0ee7556 155 tick_length = tick_length_base;
3d3675cc
RZ
156 time_adj = time_offset;
157 if (!(time_status & STA_FLL))
158 time_adj = shift_right(time_adj, SHIFT_KG + time_constant);
159 time_adj = min(time_adj, -((MAXPHASE / HZ) << SHIFT_UPDATE) / MINSEC);
160 time_adj = max(time_adj, ((MAXPHASE / HZ) << SHIFT_UPDATE) / MINSEC);
161 time_offset -= time_adj;
162 tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE);
4c7ee8de 163}
164
165/*
166 * Returns how many microseconds we need to add to xtime this tick
167 * in doing an adjustment requested with adjtime.
168 */
169static long adjtime_adjustment(void)
170{
171 long time_adjust_step;
172
173 time_adjust_step = time_adjust;
174 if (time_adjust_step) {
175 /*
176 * We are doing an adjtime thing. Prepare time_adjust_step to
177 * be within bounds. Note that a positive time_adjust means we
178 * want the clock to run faster.
179 *
180 * Limit the amount of the step to be in the range
181 * -tickadj .. +tickadj
182 */
183 time_adjust_step = min(time_adjust_step, (long)tickadj);
184 time_adjust_step = max(time_adjust_step, (long)-tickadj);
185 }
186 return time_adjust_step;
187}
188
189/* in the NTP reference this is called "hardclock()" */
190void update_ntp_one_tick(void)
191{
192 long time_adjust_step;
193
194 time_adjust_step = adjtime_adjustment();
195 if (time_adjust_step)
196 /* Reduce by this step the amount of time left */
197 time_adjust -= time_adjust_step;
198
199 /* Changes by adjtime() do not take effect till next tick. */
200 if (time_next_adjust != 0) {
201 time_adjust = time_next_adjust;
202 time_next_adjust = 0;
203 }
204}
205
206/*
207 * Return how long ticks are at the moment, that is, how much time
208 * update_wall_time_one_tick will add to xtime next time we call it
209 * (assuming no calls to do_adjtimex in the meantime).
210 * The return value is in fixed-point nanoseconds shifted by the
211 * specified number of bits to the right of the binary point.
212 * This function has no side-effects.
213 */
214u64 current_tick_length(void)
215{
4c7ee8de 216 u64 ret;
217
218 /* calculate the finest interval NTP will allow.
4c7ee8de 219 */
b0ee7556
RZ
220 ret = tick_length;
221 ret += (u64)(adjtime_adjustment() * 1000) << TICK_LENGTH_SHIFT;
4c7ee8de 222
223 return ret;
224}
225
226
227void __attribute__ ((weak)) notify_arch_cmos_timer(void)
228{
229 return;
230}
231
232/* adjtimex mainly allows reading (and writing, if superuser) of
233 * kernel time-keeping variables. used by xntpd.
234 */
235int do_adjtimex(struct timex *txc)
236{
237 long ltemp, mtemp, save_adjust;
238 int result;
239
240 /* In order to modify anything, you gotta be super-user! */
241 if (txc->modes && !capable(CAP_SYS_TIME))
242 return -EPERM;
243
244 /* Now we validate the data before disabling interrupts */
245
246 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
247 /* singleshot must not be used with any other mode bits */
248 if (txc->modes != ADJ_OFFSET_SINGLESHOT)
249 return -EINVAL;
250
251 if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
252 /* adjustment Offset limited to +- .512 seconds */
253 if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
254 return -EINVAL;
255
256 /* if the quartz is off by more than 10% something is VERY wrong ! */
257 if (txc->modes & ADJ_TICK)
258 if (txc->tick < 900000/USER_HZ ||
259 txc->tick > 1100000/USER_HZ)
260 return -EINVAL;
261
262 write_seqlock_irq(&xtime_lock);
263 result = time_state; /* mostly `TIME_OK' */
264
265 /* Save for later - semantics of adjtime is to return old value */
266 save_adjust = time_next_adjust ? time_next_adjust : time_adjust;
267
268#if 0 /* STA_CLOCKERR is never set yet */
269 time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */
270#endif
271 /* If there are input parameters, then process them */
272 if (txc->modes)
273 {
274 if (txc->modes & ADJ_STATUS) /* only set allowed bits */
275 time_status = (txc->status & ~STA_RONLY) |
276 (time_status & STA_RONLY);
277
278 if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */
279 if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
280 result = -EINVAL;
281 goto leave;
282 }
283 time_freq = txc->freq;
284 }
285
286 if (txc->modes & ADJ_MAXERROR) {
287 if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
288 result = -EINVAL;
289 goto leave;
290 }
291 time_maxerror = txc->maxerror;
292 }
293
294 if (txc->modes & ADJ_ESTERROR) {
295 if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
296 result = -EINVAL;
297 goto leave;
298 }
299 time_esterror = txc->esterror;
300 }
301
302 if (txc->modes & ADJ_TIMECONST) { /* p. 24 */
303 if (txc->constant < 0) { /* NTP v4 uses values > 6 */
304 result = -EINVAL;
305 goto leave;
306 }
307 time_constant = txc->constant;
308 }
309
310 if (txc->modes & ADJ_OFFSET) { /* values checked earlier */
311 if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
312 /* adjtime() is independent from ntp_adjtime() */
313 if ((time_next_adjust = txc->offset) == 0)
314 time_adjust = 0;
315 }
316 else if (time_status & STA_PLL) {
317 ltemp = txc->offset;
318
319 /*
320 * Scale the phase adjustment and
321 * clamp to the operating range.
322 */
3d3675cc
RZ
323 time_offset = min(ltemp, MAXPHASE);
324 time_offset = max(time_offset, -MAXPHASE);
4c7ee8de 325
326 /*
327 * Select whether the frequency is to be controlled
328 * and in which mode (PLL or FLL). Clamp to the operating
329 * range. Ugly multiply/divide should be replaced someday.
330 */
331
332 if (time_status & STA_FREQHOLD || time_reftime == 0)
333 time_reftime = xtime.tv_sec;
334 mtemp = xtime.tv_sec - time_reftime;
335 time_reftime = xtime.tv_sec;
336 if (time_status & STA_FLL) {
337 if (mtemp >= MINSEC) {
3d3675cc 338 ltemp = ((time_offset << 12) / mtemp) << (SHIFT_USEC - 12);
4c7ee8de 339 time_freq += shift_right(ltemp, SHIFT_KH);
340 } else /* calibration interval too short (p. 12) */
341 result = TIME_ERROR;
342 } else { /* PLL mode */
343 if (mtemp < MAXSEC) {
344 ltemp *= mtemp;
345 time_freq += shift_right(ltemp,(time_constant +
346 time_constant +
347 SHIFT_KF - SHIFT_USEC));
348 } else /* calibration interval too long (p. 12) */
349 result = TIME_ERROR;
350 }
351 time_freq = min(time_freq, time_tolerance);
352 time_freq = max(time_freq, -time_tolerance);
3d3675cc 353 time_offset = (time_offset * NSEC_PER_USEC / HZ) << SHIFT_UPDATE;
4c7ee8de 354 } /* STA_PLL */
355 } /* txc->modes & ADJ_OFFSET */
b0ee7556 356 if (txc->modes & ADJ_TICK)
4c7ee8de 357 tick_usec = txc->tick;
b0ee7556 358
dc6a43e4 359 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
b0ee7556 360 ntp_update_frequency();
4c7ee8de 361 } /* txc->modes */
362leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0)
363 result = TIME_ERROR;
364
365 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
366 txc->offset = save_adjust;
3d3675cc
RZ
367 else
368 txc->offset = shift_right(time_offset, SHIFT_UPDATE) * HZ / 1000;
4c7ee8de 369 txc->freq = time_freq;
370 txc->maxerror = time_maxerror;
371 txc->esterror = time_esterror;
372 txc->status = time_status;
373 txc->constant = time_constant;
374 txc->precision = time_precision;
375 txc->tolerance = time_tolerance;
376 txc->tick = tick_usec;
377
378 /* PPS is not implemented, so these are zero */
379 txc->ppsfreq = 0;
380 txc->jitter = 0;
381 txc->shift = 0;
382 txc->stabil = 0;
383 txc->jitcnt = 0;
384 txc->calcnt = 0;
385 txc->errcnt = 0;
386 txc->stbcnt = 0;
387 write_sequnlock_irq(&xtime_lock);
388 do_gettimeofday(&txc->time);
389 notify_arch_cmos_timer();
390 return(result);
391}
This page took 0.043868 seconds and 5 git commands to generate.