seqlock: livelock fix
[deliverable/linux.git] / kernel / time / tick-sched.c
CommitLineData
79bf2bb3
TG
1/*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
b10db7f0 12 * Distribute under GPLv2.
79bf2bb3
TG
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
17#include <linux/interrupt.h>
18#include <linux/kernel_stat.h>
19#include <linux/percpu.h>
20#include <linux/profile.h>
21#include <linux/sched.h>
22#include <linux/tick.h>
23
9e203bcc
DM
24#include <asm/irq_regs.h>
25
79bf2bb3
TG
26#include "tick-internal.h"
27
28/*
29 * Per cpu nohz control structure
30 */
31static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32
33/*
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
35 */
36static ktime_t last_jiffies_update;
37
289f480a
IM
38struct tick_sched *tick_get_tick_sched(int cpu)
39{
40 return &per_cpu(tick_cpu_sched, cpu);
41}
42
79bf2bb3
TG
43/*
44 * Must be called with interrupts disabled !
45 */
46static void tick_do_update_jiffies64(ktime_t now)
47{
48 unsigned long ticks = 0;
49 ktime_t delta;
50
51 /* Reevalute with xtime_lock held */
52 write_seqlock(&xtime_lock);
53
54 delta = ktime_sub(now, last_jiffies_update);
55 if (delta.tv64 >= tick_period.tv64) {
56
57 delta = ktime_sub(delta, tick_period);
58 last_jiffies_update = ktime_add(last_jiffies_update,
59 tick_period);
60
61 /* Slow path for long timeouts */
62 if (unlikely(delta.tv64 >= tick_period.tv64)) {
63 s64 incr = ktime_to_ns(tick_period);
64
65 ticks = ktime_divns(delta, incr);
66
67 last_jiffies_update = ktime_add_ns(last_jiffies_update,
68 incr * ticks);
69 }
70 do_timer(++ticks);
71 }
72 write_sequnlock(&xtime_lock);
73}
74
75/*
76 * Initialize and return retrieve the jiffies update.
77 */
78static ktime_t tick_init_jiffy_update(void)
79{
80 ktime_t period;
81
82 write_seqlock(&xtime_lock);
83 /* Did we start the jiffies update yet ? */
84 if (last_jiffies_update.tv64 == 0)
85 last_jiffies_update = tick_next_period;
86 period = last_jiffies_update;
87 write_sequnlock(&xtime_lock);
88 return period;
89}
90
91/*
92 * NOHZ - aka dynamic tick functionality
93 */
94#ifdef CONFIG_NO_HZ
95/*
96 * NO HZ enabled ?
97 */
98static int tick_nohz_enabled __read_mostly = 1;
99
100/*
101 * Enable / Disable tickless mode
102 */
103static int __init setup_tick_nohz(char *str)
104{
105 if (!strcmp(str, "off"))
106 tick_nohz_enabled = 0;
107 else if (!strcmp(str, "on"))
108 tick_nohz_enabled = 1;
109 else
110 return 0;
111 return 1;
112}
113
114__setup("nohz=", setup_tick_nohz);
115
116/**
117 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
118 *
119 * Called from interrupt entry when the CPU was idle
120 *
121 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
122 * must be updated. Otherwise an interrupt handler could use a stale jiffy
123 * value. We do this unconditionally on any cpu, as we don't know whether the
124 * cpu, which has the update task assigned is in a long sleep.
125 */
126void tick_nohz_update_jiffies(void)
127{
128 int cpu = smp_processor_id();
129 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
130 unsigned long flags;
131 ktime_t now;
132
133 if (!ts->tick_stopped)
134 return;
135
d3938204
TG
136 touch_softlockup_watchdog();
137
79bf2bb3
TG
138 cpu_clear(cpu, nohz_cpu_mask);
139 now = ktime_get();
5df7fa1c 140 ts->idle_waketime = now;
79bf2bb3
TG
141
142 local_irq_save(flags);
143 tick_do_update_jiffies64(now);
144 local_irq_restore(flags);
145}
146
6378ddb5
VP
147void tick_nohz_stop_idle(int cpu)
148{
149 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
150
151 if (ts->idle_active) {
152 ktime_t now, delta;
153 now = ktime_get();
154 delta = ktime_sub(now, ts->idle_entrytime);
155 ts->idle_lastupdate = now;
156 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
157 ts->idle_active = 0;
158 }
159}
160
903b8a8d 161static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
6378ddb5 162{
6378ddb5
VP
163 ktime_t now, delta;
164
165 now = ktime_get();
166 if (ts->idle_active) {
167 delta = ktime_sub(now, ts->idle_entrytime);
168 ts->idle_lastupdate = now;
169 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
170 }
171 ts->idle_entrytime = now;
172 ts->idle_active = 1;
173 return now;
174}
175
176u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
177{
178 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
179
180 *last_update_time = ktime_to_us(ts->idle_lastupdate);
181 return ktime_to_us(ts->idle_sleeptime);
182}
183
79bf2bb3
TG
184/**
185 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
186 *
187 * When the next event is more than a tick into the future, stop the idle tick
188 * Called either from the idle loop or from irq_exit() when an idle period was
189 * just interrupted by an interrupt which did not cause a reschedule.
190 */
191void tick_nohz_stop_sched_tick(void)
192{
193 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
194 struct tick_sched *ts;
6378ddb5 195 ktime_t last_update, expires, now;
4f86d3a8 196 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
79bf2bb3
TG
197 int cpu;
198
199 local_irq_save(flags);
200
201 cpu = smp_processor_id();
202 ts = &per_cpu(tick_cpu_sched, cpu);
903b8a8d 203 now = tick_nohz_start_idle(ts);
79bf2bb3 204
5e41d0d6
TG
205 /*
206 * If this cpu is offline and it is the one which updates
207 * jiffies, then give up the assignment and let it be taken by
208 * the cpu which runs the tick timer next. If we don't drop
209 * this here the jiffies might be stale and do_timer() never
210 * invoked.
211 */
212 if (unlikely(!cpu_online(cpu))) {
213 if (cpu == tick_do_timer_cpu)
214 tick_do_timer_cpu = -1;
215 }
216
79bf2bb3
TG
217 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
218 goto end;
219
220 if (need_resched())
221 goto end;
222
35282316
TG
223 if (unlikely(local_softirq_pending())) {
224 static int ratelimit;
225
226 if (ratelimit < 10) {
227 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
228 local_softirq_pending());
229 ratelimit++;
230 }
231 }
79bf2bb3 232
79bf2bb3 233 ts->idle_calls++;
79bf2bb3
TG
234 /* Read jiffies and the time when jiffies were updated last */
235 do {
236 seq = read_seqbegin(&xtime_lock);
237 last_update = last_jiffies_update;
238 last_jiffies = jiffies;
239 } while (read_seqretry(&xtime_lock, seq));
240
241 /* Get the next timer wheel timer */
242 next_jiffies = get_next_timer_interrupt(last_jiffies);
243 delta_jiffies = next_jiffies - last_jiffies;
244
6ba9b346
IM
245 if (rcu_needs_cpu(cpu))
246 delta_jiffies = 1;
79bf2bb3
TG
247 /*
248 * Do not stop the tick, if we are only one off
249 * or if the cpu is required for rcu
250 */
6ba9b346 251 if (!ts->tick_stopped && delta_jiffies == 1)
79bf2bb3
TG
252 goto out;
253
254 /* Schedule the tick, if we are at least one jiffie off */
255 if ((long)delta_jiffies >= 1) {
256
6ba9b346 257 if (delta_jiffies > 1)
79bf2bb3
TG
258 cpu_set(cpu, nohz_cpu_mask);
259 /*
260 * nohz_stop_sched_tick can be called several times before
261 * the nohz_restart_sched_tick is called. This happens when
262 * interrupts arrive which do not cause a reschedule. In the
263 * first call we save the current tick time, so we can restart
264 * the scheduler tick in nohz_restart_sched_tick.
265 */
266 if (!ts->tick_stopped) {
46cb4b7c
SS
267 if (select_nohz_load_balancer(1)) {
268 /*
269 * sched tick not stopped!
270 */
271 cpu_clear(cpu, nohz_cpu_mask);
272 goto out;
273 }
274
79bf2bb3
TG
275 ts->idle_tick = ts->sched_timer.expires;
276 ts->tick_stopped = 1;
277 ts->idle_jiffies = last_jiffies;
2232c2d8 278 rcu_enter_nohz();
79bf2bb3 279 }
d3ed7824
TG
280
281 /*
282 * If this cpu is the one which updates jiffies, then
283 * give up the assignment and let it be taken by the
284 * cpu which runs the tick timer next, which might be
285 * this cpu as well. If we don't drop this here the
286 * jiffies might be stale and do_timer() never
287 * invoked.
288 */
289 if (cpu == tick_do_timer_cpu)
290 tick_do_timer_cpu = -1;
291
eaad084b
TG
292 ts->idle_sleeps++;
293
294 /*
295 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
296 * there is no timer pending or at least extremly far
297 * into the future (12 days for HZ=1000). In this case
298 * we simply stop the tick timer:
299 */
300 if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
301 ts->idle_expires.tv64 = KTIME_MAX;
302 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
303 hrtimer_cancel(&ts->sched_timer);
304 goto out;
305 }
306
79bf2bb3
TG
307 /*
308 * calculate the expiry time for the next timer wheel
309 * timer
310 */
311 expires = ktime_add_ns(last_update, tick_period.tv64 *
312 delta_jiffies);
313 ts->idle_expires = expires;
79bf2bb3
TG
314
315 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
316 hrtimer_start(&ts->sched_timer, expires,
317 HRTIMER_MODE_ABS);
318 /* Check, if the timer was already in the past */
319 if (hrtimer_active(&ts->sched_timer))
320 goto out;
4c9dc641 321 } else if (!tick_program_event(expires, 0))
79bf2bb3
TG
322 goto out;
323 /*
324 * We are past the event already. So we crossed a
325 * jiffie boundary. Update jiffies and raise the
326 * softirq.
327 */
328 tick_do_update_jiffies64(ktime_get());
329 cpu_clear(cpu, nohz_cpu_mask);
330 }
331 raise_softirq_irqoff(TIMER_SOFTIRQ);
332out:
333 ts->next_jiffies = next_jiffies;
334 ts->last_jiffies = last_jiffies;
4f86d3a8 335 ts->sleep_length = ktime_sub(dev->next_event, now);
79bf2bb3
TG
336end:
337 local_irq_restore(flags);
338}
339
4f86d3a8
LB
340/**
341 * tick_nohz_get_sleep_length - return the length of the current sleep
342 *
343 * Called from power state control code with interrupts disabled
344 */
345ktime_t tick_nohz_get_sleep_length(void)
346{
347 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
348
349 return ts->sleep_length;
350}
351
79bf2bb3 352/**
8dce39c2 353 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
79bf2bb3
TG
354 *
355 * Restart the idle tick when the CPU is woken up from idle
356 */
357void tick_nohz_restart_sched_tick(void)
358{
359 int cpu = smp_processor_id();
360 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
361 unsigned long ticks;
6378ddb5 362 ktime_t now;
79bf2bb3 363
6378ddb5
VP
364 local_irq_disable();
365 tick_nohz_stop_idle(cpu);
366
367 if (!ts->tick_stopped) {
368 local_irq_enable();
79bf2bb3 369 return;
6378ddb5 370 }
79bf2bb3 371
2232c2d8
SR
372 rcu_exit_nohz();
373
79bf2bb3 374 /* Update jiffies first */
46cb4b7c 375 select_nohz_load_balancer(0);
6378ddb5 376 now = ktime_get();
79bf2bb3
TG
377 tick_do_update_jiffies64(now);
378 cpu_clear(cpu, nohz_cpu_mask);
379
79bf2bb3
TG
380 /*
381 * We stopped the tick in idle. Update process times would miss the
382 * time we slept as update_process_times does only a 1 tick
383 * accounting. Enforce that this is accounted to idle !
384 */
385 ticks = jiffies - ts->idle_jiffies;
386 /*
387 * We might be one off. Do not randomly account a huge number of ticks!
388 */
389 if (ticks && ticks < LONG_MAX) {
390 add_preempt_count(HARDIRQ_OFFSET);
391 account_system_time(current, HARDIRQ_OFFSET,
392 jiffies_to_cputime(ticks));
393 sub_preempt_count(HARDIRQ_OFFSET);
394 }
395
396 /*
397 * Cancel the scheduled timer and restore the tick
398 */
399 ts->tick_stopped = 0;
5df7fa1c 400 ts->idle_exittime = now;
79bf2bb3
TG
401 hrtimer_cancel(&ts->sched_timer);
402 ts->sched_timer.expires = ts->idle_tick;
403
404 while (1) {
405 /* Forward the time to expire in the future */
406 hrtimer_forward(&ts->sched_timer, now, tick_period);
407
408 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
409 hrtimer_start(&ts->sched_timer,
410 ts->sched_timer.expires,
411 HRTIMER_MODE_ABS);
412 /* Check, if the timer was already in the past */
413 if (hrtimer_active(&ts->sched_timer))
414 break;
415 } else {
416 if (!tick_program_event(ts->sched_timer.expires, 0))
417 break;
418 }
419 /* Update jiffies and reread time */
420 tick_do_update_jiffies64(now);
421 now = ktime_get();
422 }
423 local_irq_enable();
424}
425
426static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
427{
428 hrtimer_forward(&ts->sched_timer, now, tick_period);
429 return tick_program_event(ts->sched_timer.expires, 0);
430}
431
432/*
433 * The nohz low res interrupt handler
434 */
435static void tick_nohz_handler(struct clock_event_device *dev)
436{
437 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
438 struct pt_regs *regs = get_irq_regs();
d3ed7824 439 int cpu = smp_processor_id();
79bf2bb3
TG
440 ktime_t now = ktime_get();
441
442 dev->next_event.tv64 = KTIME_MAX;
443
d3ed7824
TG
444 /*
445 * Check if the do_timer duty was dropped. We don't care about
446 * concurrency: This happens only when the cpu in charge went
447 * into a long sleep. If two cpus happen to assign themself to
448 * this duty, then the jiffies update is still serialized by
449 * xtime_lock.
450 */
451 if (unlikely(tick_do_timer_cpu == -1))
452 tick_do_timer_cpu = cpu;
453
79bf2bb3 454 /* Check, if the jiffies need an update */
d3ed7824
TG
455 if (tick_do_timer_cpu == cpu)
456 tick_do_update_jiffies64(now);
79bf2bb3
TG
457
458 /*
459 * When we are idle and the tick is stopped, we have to touch
460 * the watchdog as we might not schedule for a really long
461 * time. This happens on complete idle SMP systems while
462 * waiting on the login prompt. We also increment the "start
463 * of idle" jiffy stamp so the idle accounting adjustment we
464 * do when we go busy again does not account too much ticks.
465 */
466 if (ts->tick_stopped) {
467 touch_softlockup_watchdog();
468 ts->idle_jiffies++;
469 }
470
471 update_process_times(user_mode(regs));
472 profile_tick(CPU_PROFILING);
473
474 /* Do not restart, when we are in the idle loop */
475 if (ts->tick_stopped)
476 return;
477
478 while (tick_nohz_reprogram(ts, now)) {
479 now = ktime_get();
480 tick_do_update_jiffies64(now);
481 }
482}
483
484/**
485 * tick_nohz_switch_to_nohz - switch to nohz mode
486 */
487static void tick_nohz_switch_to_nohz(void)
488{
489 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
490 ktime_t next;
491
492 if (!tick_nohz_enabled)
493 return;
494
495 local_irq_disable();
496 if (tick_switch_to_oneshot(tick_nohz_handler)) {
497 local_irq_enable();
498 return;
499 }
500
501 ts->nohz_mode = NOHZ_MODE_LOWRES;
502
503 /*
504 * Recycle the hrtimer in ts, so we can share the
505 * hrtimer_forward with the highres code.
506 */
507 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
508 /* Get the next period */
509 next = tick_init_jiffy_update();
510
511 for (;;) {
512 ts->sched_timer.expires = next;
513 if (!tick_program_event(next, 0))
514 break;
515 next = ktime_add(next, tick_period);
516 }
517 local_irq_enable();
518
519 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
520 smp_processor_id());
521}
522
523#else
524
525static inline void tick_nohz_switch_to_nohz(void) { }
526
527#endif /* NO_HZ */
528
529/*
530 * High resolution timer specific code
531 */
532#ifdef CONFIG_HIGH_RES_TIMERS
533/*
4c9dc641 534 * We rearm the timer until we get disabled by the idle code.
79bf2bb3
TG
535 * Called with interrupts disabled and timer->base->cpu_base->lock held.
536 */
537static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
538{
539 struct tick_sched *ts =
540 container_of(timer, struct tick_sched, sched_timer);
79bf2bb3
TG
541 struct pt_regs *regs = get_irq_regs();
542 ktime_t now = ktime_get();
d3ed7824
TG
543 int cpu = smp_processor_id();
544
545#ifdef CONFIG_NO_HZ
546 /*
547 * Check if the do_timer duty was dropped. We don't care about
548 * concurrency: This happens only when the cpu in charge went
549 * into a long sleep. If two cpus happen to assign themself to
550 * this duty, then the jiffies update is still serialized by
551 * xtime_lock.
552 */
553 if (unlikely(tick_do_timer_cpu == -1))
554 tick_do_timer_cpu = cpu;
555#endif
79bf2bb3
TG
556
557 /* Check, if the jiffies need an update */
d3ed7824
TG
558 if (tick_do_timer_cpu == cpu)
559 tick_do_update_jiffies64(now);
79bf2bb3
TG
560
561 /*
562 * Do not call, when we are not in irq context and have
563 * no valid regs pointer
564 */
565 if (regs) {
566 /*
567 * When we are idle and the tick is stopped, we have to touch
568 * the watchdog as we might not schedule for a really long
569 * time. This happens on complete idle SMP systems while
570 * waiting on the login prompt. We also increment the "start of
571 * idle" jiffy stamp so the idle accounting adjustment we do
572 * when we go busy again does not account too much ticks.
573 */
574 if (ts->tick_stopped) {
575 touch_softlockup_watchdog();
576 ts->idle_jiffies++;
577 }
79bf2bb3
TG
578 update_process_times(user_mode(regs));
579 profile_tick(CPU_PROFILING);
79bf2bb3
TG
580 }
581
582 /* Do not restart, when we are in the idle loop */
583 if (ts->tick_stopped)
584 return HRTIMER_NORESTART;
585
586 hrtimer_forward(timer, now, tick_period);
587
588 return HRTIMER_RESTART;
589}
590
591/**
592 * tick_setup_sched_timer - setup the tick emulation timer
593 */
594void tick_setup_sched_timer(void)
595{
596 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
597 ktime_t now = ktime_get();
3704540b 598 u64 offset;
79bf2bb3
TG
599
600 /*
601 * Emulate tick processing via per-CPU hrtimers:
602 */
603 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
604 ts->sched_timer.function = tick_sched_timer;
605 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
606
3704540b 607 /* Get the next period (per cpu) */
79bf2bb3 608 ts->sched_timer.expires = tick_init_jiffy_update();
3704540b 609 offset = ktime_to_ns(tick_period) >> 1;
b2d9323d 610 do_div(offset, num_possible_cpus());
3704540b 611 offset *= smp_processor_id();
612 ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
79bf2bb3
TG
613
614 for (;;) {
615 hrtimer_forward(&ts->sched_timer, now, tick_period);
616 hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
617 HRTIMER_MODE_ABS);
618 /* Check, if the timer was already in the past */
619 if (hrtimer_active(&ts->sched_timer))
620 break;
621 now = ktime_get();
622 }
623
624#ifdef CONFIG_NO_HZ
625 if (tick_nohz_enabled)
626 ts->nohz_mode = NOHZ_MODE_HIGHRES;
627#endif
628}
629
630void tick_cancel_sched_timer(int cpu)
631{
632 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
633
634 if (ts->sched_timer.base)
635 hrtimer_cancel(&ts->sched_timer);
a7901766 636
79bf2bb3
TG
637 ts->nohz_mode = NOHZ_MODE_INACTIVE;
638}
639#endif /* HIGH_RES_TIMERS */
640
641/**
642 * Async notification about clocksource changes
643 */
644void tick_clock_notify(void)
645{
646 int cpu;
647
648 for_each_possible_cpu(cpu)
649 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
650}
651
652/*
653 * Async notification about clock event changes
654 */
655void tick_oneshot_notify(void)
656{
657 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
658
659 set_bit(0, &ts->check_clocks);
660}
661
662/**
663 * Check, if a change happened, which makes oneshot possible.
664 *
665 * Called cyclic from the hrtimer softirq (driven by the timer
666 * softirq) allow_nohz signals, that we can switch into low-res nohz
667 * mode, because high resolution timers are disabled (either compile
668 * or runtime).
669 */
670int tick_check_oneshot_change(int allow_nohz)
671{
672 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
673
674 if (!test_and_clear_bit(0, &ts->check_clocks))
675 return 0;
676
677 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
678 return 0;
679
cf4fc6cb 680 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
79bf2bb3
TG
681 return 0;
682
683 if (!allow_nohz)
684 return 1;
685
686 tick_nohz_switch_to_nohz();
687 return 0;
688}
This page took 0.213929 seconds and 5 git commands to generate.