Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[deliverable/linux.git] / kernel / time / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
6fa6c3b1 12 *
1da177e4 13 * 1993-09-02 Philip Gladstone
0a0fca9d 14 * Created file with time related functions from sched/core.c and adjtimex()
1da177e4
LT
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
9984de1a 30#include <linux/export.h>
1da177e4 31#include <linux/timex.h>
c59ede7b 32#include <linux/capability.h>
189374ae 33#include <linux/timekeeper_internal.h>
1da177e4 34#include <linux/errno.h>
1da177e4
LT
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
71abb3af 38#include <linux/math64.h>
e3d5a27d 39#include <linux/ptrace.h>
1da177e4
LT
40
41#include <asm/uaccess.h>
42#include <asm/unistd.h>
43
bdc80787 44#include "timeconst.h"
8b094cd0 45#include "timekeeping.h"
bdc80787 46
6fa6c3b1 47/*
1da177e4
LT
48 * The timezone where the local system is located. Used as a default by some
49 * programs who obtain this value by using gettimeofday.
50 */
51struct timezone sys_tz;
52
53EXPORT_SYMBOL(sys_tz);
54
55#ifdef __ARCH_WANT_SYS_TIME
56
57/*
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday(). Is this for backwards compatibility? If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
62 */
58fd3aa2 63SYSCALL_DEFINE1(time, time_t __user *, tloc)
1da177e4 64{
f20bf612 65 time_t i = get_seconds();
1da177e4
LT
66
67 if (tloc) {
20082208 68 if (put_user(i,tloc))
e3d5a27d 69 return -EFAULT;
1da177e4 70 }
e3d5a27d 71 force_successful_syscall_return();
1da177e4
LT
72 return i;
73}
74
75/*
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday(). Is this for backwards compatibility? If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
80 */
6fa6c3b1 81
58fd3aa2 82SYSCALL_DEFINE1(stime, time_t __user *, tptr)
1da177e4
LT
83{
84 struct timespec tv;
85 int err;
86
87 if (get_user(tv.tv_sec, tptr))
88 return -EFAULT;
89
90 tv.tv_nsec = 0;
91
92 err = security_settime(&tv, NULL);
93 if (err)
94 return err;
95
96 do_settimeofday(&tv);
97 return 0;
98}
99
100#endif /* __ARCH_WANT_SYS_TIME */
101
58fd3aa2
HC
102SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 struct timezone __user *, tz)
1da177e4
LT
104{
105 if (likely(tv != NULL)) {
106 struct timeval ktv;
107 do_gettimeofday(&ktv);
108 if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 return -EFAULT;
110 }
111 if (unlikely(tz != NULL)) {
112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 return -EFAULT;
114 }
115 return 0;
116}
117
84e345e4
PB
118/*
119 * Indicates if there is an offset between the system clock and the hardware
120 * clock/persistent clock/rtc.
121 */
122int persistent_clock_is_local;
123
1da177e4
LT
124/*
125 * Adjust the time obtained from the CMOS to be UTC time instead of
126 * local time.
6fa6c3b1 127 *
1da177e4
LT
128 * This is ugly, but preferable to the alternatives. Otherwise we
129 * would either need to write a program to do it in /etc/rc (and risk
6fa6c3b1 130 * confusion if the program gets run more than once; it would also be
1da177e4
LT
131 * hard to make the program warp the clock precisely n hours) or
132 * compile in the timezone information into the kernel. Bad, bad....
133 *
bdc80787 134 * - TYT, 1992-01-01
1da177e4
LT
135 *
136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
137 * as real UNIX machines always do it. This avoids all headaches about
138 * daylight saving times and warping kernel clocks.
139 */
77933d72 140static inline void warp_clock(void)
1da177e4 141{
c30bd099
DZ
142 if (sys_tz.tz_minuteswest != 0) {
143 struct timespec adjust;
bd45b7a3 144
84e345e4 145 persistent_clock_is_local = 1;
7859e404
JS
146 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 adjust.tv_nsec = 0;
148 timekeeping_inject_offset(&adjust);
c30bd099 149 }
1da177e4
LT
150}
151
152/*
153 * In case for some reason the CMOS clock has not already been running
154 * in UTC, but in some local time: The first time we set the timezone,
155 * we will warp the clock so that it is ticking UTC time instead of
156 * local time. Presumably, if someone is setting the timezone then we
157 * are running in an environment where the programs understand about
158 * timezones. This should be done at boot time in the /etc/rc script,
159 * as soon as possible, so that the clock can be set right. Otherwise,
160 * various programs will get confused when the clock gets warped.
161 */
162
1e6d7679 163int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
1da177e4
LT
164{
165 static int firsttime = 1;
166 int error = 0;
167
951069e3 168 if (tv && !timespec_valid(tv))
718bcceb
TG
169 return -EINVAL;
170
1da177e4
LT
171 error = security_settime(tv, tz);
172 if (error)
173 return error;
174
175 if (tz) {
1da177e4 176 sys_tz = *tz;
2c622148 177 update_vsyscall_tz();
1da177e4
LT
178 if (firsttime) {
179 firsttime = 0;
180 if (!tv)
181 warp_clock();
182 }
183 }
184 if (tv)
1da177e4 185 return do_settimeofday(tv);
1da177e4
LT
186 return 0;
187}
188
58fd3aa2
HC
189SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
190 struct timezone __user *, tz)
1da177e4
LT
191{
192 struct timeval user_tv;
193 struct timespec new_ts;
194 struct timezone new_tz;
195
196 if (tv) {
197 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
198 return -EFAULT;
6ada1fc0
SL
199
200 if (!timeval_valid(&user_tv))
201 return -EINVAL;
202
1da177e4
LT
203 new_ts.tv_sec = user_tv.tv_sec;
204 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
205 }
206 if (tz) {
207 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
208 return -EFAULT;
209 }
210
211 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
212}
213
58fd3aa2 214SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
1da177e4
LT
215{
216 struct timex txc; /* Local copy of parameter */
217 int ret;
218
219 /* Copy the user data space into the kernel copy
220 * structure. But bear in mind that the structures
221 * may change
222 */
223 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
224 return -EFAULT;
225 ret = do_adjtimex(&txc);
226 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
227}
228
1da177e4
LT
229/**
230 * current_fs_time - Return FS time
231 * @sb: Superblock.
232 *
8ba8e95e 233 * Return the current time truncated to the time granularity supported by
1da177e4
LT
234 * the fs.
235 */
236struct timespec current_fs_time(struct super_block *sb)
237{
238 struct timespec now = current_kernel_time();
239 return timespec_trunc(now, sb->s_time_gran);
240}
241EXPORT_SYMBOL(current_fs_time);
242
753e9c5c
ED
243/*
244 * Convert jiffies to milliseconds and back.
245 *
246 * Avoid unnecessary multiplications/divisions in the
247 * two most common HZ cases:
248 */
af3b5628 249unsigned int jiffies_to_msecs(const unsigned long j)
753e9c5c
ED
250{
251#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
252 return (MSEC_PER_SEC / HZ) * j;
253#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
254 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
255#else
bdc80787 256# if BITS_PER_LONG == 32
b9095fd8 257 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
bdc80787
PA
258# else
259 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
260# endif
753e9c5c
ED
261#endif
262}
263EXPORT_SYMBOL(jiffies_to_msecs);
264
af3b5628 265unsigned int jiffies_to_usecs(const unsigned long j)
753e9c5c
ED
266{
267#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
268 return (USEC_PER_SEC / HZ) * j;
269#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
270 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
271#else
bdc80787 272# if BITS_PER_LONG == 32
b9095fd8 273 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
bdc80787
PA
274# else
275 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
276# endif
753e9c5c
ED
277#endif
278}
279EXPORT_SYMBOL(jiffies_to_usecs);
280
1da177e4 281/**
8ba8e95e 282 * timespec_trunc - Truncate timespec to a granularity
1da177e4 283 * @t: Timespec
8ba8e95e 284 * @gran: Granularity in ns.
1da177e4 285 *
8ba8e95e 286 * Truncate a timespec to a granularity. gran must be smaller than a second.
1da177e4
LT
287 * Always rounds down.
288 *
289 * This function should be only used for timestamps returned by
290 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
3eb05676 291 * it doesn't handle the better resolution of the latter.
1da177e4
LT
292 */
293struct timespec timespec_trunc(struct timespec t, unsigned gran)
294{
295 /*
296 * Division is pretty slow so avoid it for common cases.
297 * Currently current_kernel_time() never returns better than
298 * jiffies resolution. Exploit that.
299 */
300 if (gran <= jiffies_to_usecs(1) * 1000) {
301 /* nothing */
302 } else if (gran == 1000000000) {
303 t.tv_nsec = 0;
304 } else {
305 t.tv_nsec -= t.tv_nsec % gran;
306 }
307 return t;
308}
309EXPORT_SYMBOL(timespec_trunc);
310
90b6ce9c 311/*
312 * mktime64 - Converts date to seconds.
313 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
753be622
TG
314 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
315 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
316 *
317 * [For the Julian calendar (which was used in Russia before 1917,
318 * Britain & colonies before 1752, anywhere else before 1582,
319 * and is still in use by some communities) leave out the
320 * -year/100+year/400 terms, and add 10.]
321 *
322 * This algorithm was first published by Gauss (I think).
753be622 323 */
90b6ce9c 324time64_t mktime64(const unsigned int year0, const unsigned int mon0,
325 const unsigned int day, const unsigned int hour,
326 const unsigned int min, const unsigned int sec)
753be622 327{
f4818900
IM
328 unsigned int mon = mon0, year = year0;
329
330 /* 1..12 -> 11,12,1..10 */
331 if (0 >= (int) (mon -= 2)) {
332 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
333 year -= 1;
334 }
335
90b6ce9c 336 return ((((time64_t)
753be622
TG
337 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
338 year*365 - 719499
339 )*24 + hour /* now have hours */
340 )*60 + min /* now have minutes */
341 )*60 + sec; /* finally seconds */
342}
90b6ce9c 343EXPORT_SYMBOL(mktime64);
199e7056 344
753be622
TG
345/**
346 * set_normalized_timespec - set timespec sec and nsec parts and normalize
347 *
348 * @ts: pointer to timespec variable to be set
349 * @sec: seconds to set
350 * @nsec: nanoseconds to set
351 *
352 * Set seconds and nanoseconds field of a timespec variable and
353 * normalize to the timespec storage format
354 *
355 * Note: The tv_nsec part is always in the range of
bdc80787 356 * 0 <= tv_nsec < NSEC_PER_SEC
753be622
TG
357 * For negative values only the tv_sec field is negative !
358 */
12e09337 359void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
753be622
TG
360{
361 while (nsec >= NSEC_PER_SEC) {
12e09337
TG
362 /*
363 * The following asm() prevents the compiler from
364 * optimising this loop into a modulo operation. See
365 * also __iter_div_u64_rem() in include/linux/time.h
366 */
367 asm("" : "+rm"(nsec));
753be622
TG
368 nsec -= NSEC_PER_SEC;
369 ++sec;
370 }
371 while (nsec < 0) {
12e09337 372 asm("" : "+rm"(nsec));
753be622
TG
373 nsec += NSEC_PER_SEC;
374 --sec;
375 }
376 ts->tv_sec = sec;
377 ts->tv_nsec = nsec;
378}
7c3f944e 379EXPORT_SYMBOL(set_normalized_timespec);
753be622 380
f8f46da3
TG
381/**
382 * ns_to_timespec - Convert nanoseconds to timespec
383 * @nsec: the nanoseconds value to be converted
384 *
385 * Returns the timespec representation of the nsec parameter.
386 */
df869b63 387struct timespec ns_to_timespec(const s64 nsec)
f8f46da3
TG
388{
389 struct timespec ts;
f8bd2258 390 s32 rem;
f8f46da3 391
88fc3897
GA
392 if (!nsec)
393 return (struct timespec) {0, 0};
394
f8bd2258
RZ
395 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
396 if (unlikely(rem < 0)) {
397 ts.tv_sec--;
398 rem += NSEC_PER_SEC;
399 }
400 ts.tv_nsec = rem;
f8f46da3
TG
401
402 return ts;
403}
85795d64 404EXPORT_SYMBOL(ns_to_timespec);
f8f46da3
TG
405
406/**
407 * ns_to_timeval - Convert nanoseconds to timeval
408 * @nsec: the nanoseconds value to be converted
409 *
410 * Returns the timeval representation of the nsec parameter.
411 */
df869b63 412struct timeval ns_to_timeval(const s64 nsec)
f8f46da3
TG
413{
414 struct timespec ts = ns_to_timespec(nsec);
415 struct timeval tv;
416
417 tv.tv_sec = ts.tv_sec;
418 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
419
420 return tv;
421}
b7aa0bf7 422EXPORT_SYMBOL(ns_to_timeval);
f8f46da3 423
49cd6f86
JS
424#if BITS_PER_LONG == 32
425/**
426 * set_normalized_timespec - set timespec sec and nsec parts and normalize
427 *
428 * @ts: pointer to timespec variable to be set
429 * @sec: seconds to set
430 * @nsec: nanoseconds to set
431 *
432 * Set seconds and nanoseconds field of a timespec variable and
433 * normalize to the timespec storage format
434 *
435 * Note: The tv_nsec part is always in the range of
436 * 0 <= tv_nsec < NSEC_PER_SEC
437 * For negative values only the tv_sec field is negative !
438 */
439void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
440{
441 while (nsec >= NSEC_PER_SEC) {
442 /*
443 * The following asm() prevents the compiler from
444 * optimising this loop into a modulo operation. See
445 * also __iter_div_u64_rem() in include/linux/time.h
446 */
447 asm("" : "+rm"(nsec));
448 nsec -= NSEC_PER_SEC;
449 ++sec;
450 }
451 while (nsec < 0) {
452 asm("" : "+rm"(nsec));
453 nsec += NSEC_PER_SEC;
454 --sec;
455 }
456 ts->tv_sec = sec;
457 ts->tv_nsec = nsec;
458}
459EXPORT_SYMBOL(set_normalized_timespec64);
460
461/**
462 * ns_to_timespec64 - Convert nanoseconds to timespec64
463 * @nsec: the nanoseconds value to be converted
464 *
465 * Returns the timespec64 representation of the nsec parameter.
466 */
467struct timespec64 ns_to_timespec64(const s64 nsec)
468{
469 struct timespec64 ts;
470 s32 rem;
471
472 if (!nsec)
473 return (struct timespec64) {0, 0};
474
475 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
476 if (unlikely(rem < 0)) {
477 ts.tv_sec--;
478 rem += NSEC_PER_SEC;
479 }
480 ts.tv_nsec = rem;
481
482 return ts;
483}
484EXPORT_SYMBOL(ns_to_timespec64);
485#endif
41cf5445
IM
486/*
487 * When we convert to jiffies then we interpret incoming values
488 * the following way:
489 *
490 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
491 *
492 * - 'too large' values [that would result in larger than
493 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
494 *
495 * - all other values are converted to jiffies by either multiplying
496 * the input value by a factor or dividing it with a factor
497 *
498 * We must also be careful about 32-bit overflows.
499 */
8b9365d7
IM
500unsigned long msecs_to_jiffies(const unsigned int m)
501{
41cf5445
IM
502 /*
503 * Negative value, means infinite timeout:
504 */
505 if ((int)m < 0)
8b9365d7 506 return MAX_JIFFY_OFFSET;
41cf5445 507
8b9365d7 508#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
41cf5445
IM
509 /*
510 * HZ is equal to or smaller than 1000, and 1000 is a nice
511 * round multiple of HZ, divide with the factor between them,
512 * but round upwards:
513 */
8b9365d7
IM
514 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
515#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
41cf5445
IM
516 /*
517 * HZ is larger than 1000, and HZ is a nice round multiple of
518 * 1000 - simply multiply with the factor between them.
519 *
520 * But first make sure the multiplication result cannot
521 * overflow:
522 */
523 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
524 return MAX_JIFFY_OFFSET;
525
8b9365d7
IM
526 return m * (HZ / MSEC_PER_SEC);
527#else
41cf5445
IM
528 /*
529 * Generic case - multiply, round and divide. But first
530 * check that if we are doing a net multiplication, that
bdc80787 531 * we wouldn't overflow:
41cf5445
IM
532 */
533 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
534 return MAX_JIFFY_OFFSET;
535
b9095fd8 536 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
bdc80787 537 >> MSEC_TO_HZ_SHR32;
8b9365d7
IM
538#endif
539}
540EXPORT_SYMBOL(msecs_to_jiffies);
541
542unsigned long usecs_to_jiffies(const unsigned int u)
543{
544 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
545 return MAX_JIFFY_OFFSET;
546#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
547 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
548#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
549 return u * (HZ / USEC_PER_SEC);
550#else
b9095fd8 551 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
bdc80787 552 >> USEC_TO_HZ_SHR32;
8b9365d7
IM
553#endif
554}
555EXPORT_SYMBOL(usecs_to_jiffies);
556
557/*
558 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
559 * that a remainder subtract here would not do the right thing as the
560 * resolution values don't fall on second boundries. I.e. the line:
561 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
d78c9300
AH
562 * Note that due to the small error in the multiplier here, this
563 * rounding is incorrect for sufficiently large values of tv_nsec, but
564 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
565 * OK.
8b9365d7
IM
566 *
567 * Rather, we just shift the bits off the right.
568 *
569 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
570 * value to a scaled second value.
571 */
d78c9300
AH
572static unsigned long
573__timespec_to_jiffies(unsigned long sec, long nsec)
8b9365d7 574{
d78c9300 575 nsec = nsec + TICK_NSEC - 1;
8b9365d7
IM
576
577 if (sec >= MAX_SEC_IN_JIFFIES){
578 sec = MAX_SEC_IN_JIFFIES;
579 nsec = 0;
580 }
581 return (((u64)sec * SEC_CONVERSION) +
582 (((u64)nsec * NSEC_CONVERSION) >>
583 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
584
585}
d78c9300
AH
586
587unsigned long
588timespec_to_jiffies(const struct timespec *value)
589{
590 return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
591}
592
8b9365d7
IM
593EXPORT_SYMBOL(timespec_to_jiffies);
594
595void
596jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
597{
598 /*
599 * Convert jiffies to nanoseconds and separate with
600 * one divide.
601 */
f8bd2258
RZ
602 u32 rem;
603 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
604 NSEC_PER_SEC, &rem);
605 value->tv_nsec = rem;
8b9365d7
IM
606}
607EXPORT_SYMBOL(jiffies_to_timespec);
608
d78c9300
AH
609/*
610 * We could use a similar algorithm to timespec_to_jiffies (with a
611 * different multiplier for usec instead of nsec). But this has a
612 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
613 * usec value, since it's not necessarily integral.
614 *
615 * We could instead round in the intermediate scaled representation
616 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
617 * perilous: the scaling introduces a small positive error, which
618 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
619 * units to the intermediate before shifting) leads to accidental
620 * overflow and overestimates.
8b9365d7 621 *
d78c9300
AH
622 * At the cost of one additional multiplication by a constant, just
623 * use the timespec implementation.
8b9365d7
IM
624 */
625unsigned long
626timeval_to_jiffies(const struct timeval *value)
627{
d78c9300
AH
628 return __timespec_to_jiffies(value->tv_sec,
629 value->tv_usec * NSEC_PER_USEC);
8b9365d7 630}
456a09dc 631EXPORT_SYMBOL(timeval_to_jiffies);
8b9365d7
IM
632
633void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
634{
635 /*
636 * Convert jiffies to nanoseconds and separate with
637 * one divide.
638 */
f8bd2258 639 u32 rem;
8b9365d7 640
f8bd2258
RZ
641 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
642 NSEC_PER_SEC, &rem);
643 value->tv_usec = rem / NSEC_PER_USEC;
8b9365d7 644}
456a09dc 645EXPORT_SYMBOL(jiffies_to_timeval);
8b9365d7
IM
646
647/*
648 * Convert jiffies/jiffies_64 to clock_t and back.
649 */
cbbc719f 650clock_t jiffies_to_clock_t(unsigned long x)
8b9365d7
IM
651{
652#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a
DF
653# if HZ < USER_HZ
654 return x * (USER_HZ / HZ);
655# else
8b9365d7 656 return x / (HZ / USER_HZ);
6ffc787a 657# endif
8b9365d7 658#else
71abb3af 659 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
8b9365d7
IM
660#endif
661}
662EXPORT_SYMBOL(jiffies_to_clock_t);
663
664unsigned long clock_t_to_jiffies(unsigned long x)
665{
666#if (HZ % USER_HZ)==0
667 if (x >= ~0UL / (HZ / USER_HZ))
668 return ~0UL;
669 return x * (HZ / USER_HZ);
670#else
8b9365d7
IM
671 /* Don't worry about loss of precision here .. */
672 if (x >= ~0UL / HZ * USER_HZ)
673 return ~0UL;
674
675 /* .. but do try to contain it here */
71abb3af 676 return div_u64((u64)x * HZ, USER_HZ);
8b9365d7
IM
677#endif
678}
679EXPORT_SYMBOL(clock_t_to_jiffies);
680
681u64 jiffies_64_to_clock_t(u64 x)
682{
683#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a 684# if HZ < USER_HZ
71abb3af 685 x = div_u64(x * USER_HZ, HZ);
ec03d707 686# elif HZ > USER_HZ
71abb3af 687 x = div_u64(x, HZ / USER_HZ);
ec03d707
AM
688# else
689 /* Nothing to do */
6ffc787a 690# endif
8b9365d7
IM
691#else
692 /*
693 * There are better ways that don't overflow early,
694 * but even this doesn't overflow in hundreds of years
695 * in 64 bits, so..
696 */
71abb3af 697 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
8b9365d7
IM
698#endif
699 return x;
700}
8b9365d7
IM
701EXPORT_SYMBOL(jiffies_64_to_clock_t);
702
703u64 nsec_to_clock_t(u64 x)
704{
705#if (NSEC_PER_SEC % USER_HZ) == 0
71abb3af 706 return div_u64(x, NSEC_PER_SEC / USER_HZ);
8b9365d7 707#elif (USER_HZ % 512) == 0
71abb3af 708 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
8b9365d7
IM
709#else
710 /*
711 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
712 * overflow after 64.99 years.
713 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
714 */
71abb3af 715 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
8b9365d7 716#endif
8b9365d7
IM
717}
718
b7b20df9 719/**
a1dabb6b 720 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
b7b20df9
HS
721 *
722 * @n: nsecs in u64
723 *
724 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
725 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
726 * for scheduler, not for use in device drivers to calculate timeout value.
727 *
728 * note:
729 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
730 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
731 */
a1dabb6b 732u64 nsecs_to_jiffies64(u64 n)
b7b20df9
HS
733{
734#if (NSEC_PER_SEC % HZ) == 0
735 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
736 return div_u64(n, NSEC_PER_SEC / HZ);
737#elif (HZ % 512) == 0
738 /* overflow after 292 years if HZ = 1024 */
739 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
740#else
741 /*
742 * Generic case - optimized for cases where HZ is a multiple of 3.
743 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
744 */
745 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
746#endif
747}
7bd0e226 748EXPORT_SYMBOL(nsecs_to_jiffies64);
b7b20df9 749
a1dabb6b
VP
750/**
751 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
752 *
753 * @n: nsecs in u64
754 *
755 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
756 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
757 * for scheduler, not for use in device drivers to calculate timeout value.
758 *
759 * note:
760 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
761 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
762 */
763unsigned long nsecs_to_jiffies(u64 n)
764{
765 return (unsigned long)nsecs_to_jiffies64(n);
766}
d560fed6 767EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
a1dabb6b 768
df0cc053
TG
769/*
770 * Add two timespec values and do a safety check for overflow.
771 * It's assumed that both values are valid (>= 0)
772 */
773struct timespec timespec_add_safe(const struct timespec lhs,
774 const struct timespec rhs)
775{
776 struct timespec res;
777
778 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
779 lhs.tv_nsec + rhs.tv_nsec);
780
781 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
782 res.tv_sec = TIME_T_MAX;
783
784 return res;
785}
This page took 0.766612 seconds and 5 git commands to generate.