time: Provide y2038 safe timekeeping_inject_sleeptime() replacement
[deliverable/linux.git] / kernel / time / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
6fa6c3b1 12 *
1da177e4 13 * 1993-09-02 Philip Gladstone
0a0fca9d 14 * Created file with time related functions from sched/core.c and adjtimex()
1da177e4
LT
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
9984de1a 30#include <linux/export.h>
1da177e4 31#include <linux/timex.h>
c59ede7b 32#include <linux/capability.h>
189374ae 33#include <linux/timekeeper_internal.h>
1da177e4 34#include <linux/errno.h>
1da177e4
LT
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
71abb3af 38#include <linux/math64.h>
e3d5a27d 39#include <linux/ptrace.h>
1da177e4
LT
40
41#include <asm/uaccess.h>
42#include <asm/unistd.h>
43
bdc80787 44#include "timeconst.h"
8b094cd0 45#include "timekeeping.h"
bdc80787 46
6fa6c3b1 47/*
1da177e4
LT
48 * The timezone where the local system is located. Used as a default by some
49 * programs who obtain this value by using gettimeofday.
50 */
51struct timezone sys_tz;
52
53EXPORT_SYMBOL(sys_tz);
54
55#ifdef __ARCH_WANT_SYS_TIME
56
57/*
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday(). Is this for backwards compatibility? If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
62 */
58fd3aa2 63SYSCALL_DEFINE1(time, time_t __user *, tloc)
1da177e4 64{
f20bf612 65 time_t i = get_seconds();
1da177e4
LT
66
67 if (tloc) {
20082208 68 if (put_user(i,tloc))
e3d5a27d 69 return -EFAULT;
1da177e4 70 }
e3d5a27d 71 force_successful_syscall_return();
1da177e4
LT
72 return i;
73}
74
75/*
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday(). Is this for backwards compatibility? If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
80 */
6fa6c3b1 81
58fd3aa2 82SYSCALL_DEFINE1(stime, time_t __user *, tptr)
1da177e4
LT
83{
84 struct timespec tv;
85 int err;
86
87 if (get_user(tv.tv_sec, tptr))
88 return -EFAULT;
89
90 tv.tv_nsec = 0;
91
92 err = security_settime(&tv, NULL);
93 if (err)
94 return err;
95
96 do_settimeofday(&tv);
97 return 0;
98}
99
100#endif /* __ARCH_WANT_SYS_TIME */
101
58fd3aa2
HC
102SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 struct timezone __user *, tz)
1da177e4
LT
104{
105 if (likely(tv != NULL)) {
106 struct timeval ktv;
107 do_gettimeofday(&ktv);
108 if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 return -EFAULT;
110 }
111 if (unlikely(tz != NULL)) {
112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 return -EFAULT;
114 }
115 return 0;
116}
117
84e345e4
PB
118/*
119 * Indicates if there is an offset between the system clock and the hardware
120 * clock/persistent clock/rtc.
121 */
122int persistent_clock_is_local;
123
1da177e4
LT
124/*
125 * Adjust the time obtained from the CMOS to be UTC time instead of
126 * local time.
6fa6c3b1 127 *
1da177e4
LT
128 * This is ugly, but preferable to the alternatives. Otherwise we
129 * would either need to write a program to do it in /etc/rc (and risk
6fa6c3b1 130 * confusion if the program gets run more than once; it would also be
1da177e4
LT
131 * hard to make the program warp the clock precisely n hours) or
132 * compile in the timezone information into the kernel. Bad, bad....
133 *
bdc80787 134 * - TYT, 1992-01-01
1da177e4
LT
135 *
136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
137 * as real UNIX machines always do it. This avoids all headaches about
138 * daylight saving times and warping kernel clocks.
139 */
77933d72 140static inline void warp_clock(void)
1da177e4 141{
c30bd099
DZ
142 if (sys_tz.tz_minuteswest != 0) {
143 struct timespec adjust;
bd45b7a3 144
84e345e4 145 persistent_clock_is_local = 1;
7859e404
JS
146 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 adjust.tv_nsec = 0;
148 timekeeping_inject_offset(&adjust);
c30bd099 149 }
1da177e4
LT
150}
151
152/*
153 * In case for some reason the CMOS clock has not already been running
154 * in UTC, but in some local time: The first time we set the timezone,
155 * we will warp the clock so that it is ticking UTC time instead of
156 * local time. Presumably, if someone is setting the timezone then we
157 * are running in an environment where the programs understand about
158 * timezones. This should be done at boot time in the /etc/rc script,
159 * as soon as possible, so that the clock can be set right. Otherwise,
160 * various programs will get confused when the clock gets warped.
161 */
162
1e6d7679 163int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
1da177e4
LT
164{
165 static int firsttime = 1;
166 int error = 0;
167
951069e3 168 if (tv && !timespec_valid(tv))
718bcceb
TG
169 return -EINVAL;
170
1da177e4
LT
171 error = security_settime(tv, tz);
172 if (error)
173 return error;
174
175 if (tz) {
1da177e4 176 sys_tz = *tz;
2c622148 177 update_vsyscall_tz();
1da177e4
LT
178 if (firsttime) {
179 firsttime = 0;
180 if (!tv)
181 warp_clock();
182 }
183 }
184 if (tv)
1da177e4 185 return do_settimeofday(tv);
1da177e4
LT
186 return 0;
187}
188
58fd3aa2
HC
189SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
190 struct timezone __user *, tz)
1da177e4
LT
191{
192 struct timeval user_tv;
193 struct timespec new_ts;
194 struct timezone new_tz;
195
196 if (tv) {
197 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
198 return -EFAULT;
199 new_ts.tv_sec = user_tv.tv_sec;
200 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
201 }
202 if (tz) {
203 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
204 return -EFAULT;
205 }
206
207 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
208}
209
58fd3aa2 210SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
1da177e4
LT
211{
212 struct timex txc; /* Local copy of parameter */
213 int ret;
214
215 /* Copy the user data space into the kernel copy
216 * structure. But bear in mind that the structures
217 * may change
218 */
219 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
220 return -EFAULT;
221 ret = do_adjtimex(&txc);
222 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
223}
224
1da177e4
LT
225/**
226 * current_fs_time - Return FS time
227 * @sb: Superblock.
228 *
8ba8e95e 229 * Return the current time truncated to the time granularity supported by
1da177e4
LT
230 * the fs.
231 */
232struct timespec current_fs_time(struct super_block *sb)
233{
234 struct timespec now = current_kernel_time();
235 return timespec_trunc(now, sb->s_time_gran);
236}
237EXPORT_SYMBOL(current_fs_time);
238
753e9c5c
ED
239/*
240 * Convert jiffies to milliseconds and back.
241 *
242 * Avoid unnecessary multiplications/divisions in the
243 * two most common HZ cases:
244 */
af3b5628 245unsigned int jiffies_to_msecs(const unsigned long j)
753e9c5c
ED
246{
247#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
248 return (MSEC_PER_SEC / HZ) * j;
249#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
250 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
251#else
bdc80787 252# if BITS_PER_LONG == 32
b9095fd8 253 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
bdc80787
PA
254# else
255 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
256# endif
753e9c5c
ED
257#endif
258}
259EXPORT_SYMBOL(jiffies_to_msecs);
260
af3b5628 261unsigned int jiffies_to_usecs(const unsigned long j)
753e9c5c
ED
262{
263#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
264 return (USEC_PER_SEC / HZ) * j;
265#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
266 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
267#else
bdc80787 268# if BITS_PER_LONG == 32
b9095fd8 269 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
bdc80787
PA
270# else
271 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
272# endif
753e9c5c
ED
273#endif
274}
275EXPORT_SYMBOL(jiffies_to_usecs);
276
1da177e4 277/**
8ba8e95e 278 * timespec_trunc - Truncate timespec to a granularity
1da177e4 279 * @t: Timespec
8ba8e95e 280 * @gran: Granularity in ns.
1da177e4 281 *
8ba8e95e 282 * Truncate a timespec to a granularity. gran must be smaller than a second.
1da177e4
LT
283 * Always rounds down.
284 *
285 * This function should be only used for timestamps returned by
286 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
3eb05676 287 * it doesn't handle the better resolution of the latter.
1da177e4
LT
288 */
289struct timespec timespec_trunc(struct timespec t, unsigned gran)
290{
291 /*
292 * Division is pretty slow so avoid it for common cases.
293 * Currently current_kernel_time() never returns better than
294 * jiffies resolution. Exploit that.
295 */
296 if (gran <= jiffies_to_usecs(1) * 1000) {
297 /* nothing */
298 } else if (gran == 1000000000) {
299 t.tv_nsec = 0;
300 } else {
301 t.tv_nsec -= t.tv_nsec % gran;
302 }
303 return t;
304}
305EXPORT_SYMBOL(timespec_trunc);
306
753be622
TG
307/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
308 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
309 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
310 *
311 * [For the Julian calendar (which was used in Russia before 1917,
312 * Britain & colonies before 1752, anywhere else before 1582,
313 * and is still in use by some communities) leave out the
314 * -year/100+year/400 terms, and add 10.]
315 *
316 * This algorithm was first published by Gauss (I think).
317 *
318 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
3eb05676 319 * machines where long is 32-bit! (However, as time_t is signed, we
753be622
TG
320 * will already get problems at other places on 2038-01-19 03:14:08)
321 */
322unsigned long
f4818900
IM
323mktime(const unsigned int year0, const unsigned int mon0,
324 const unsigned int day, const unsigned int hour,
325 const unsigned int min, const unsigned int sec)
753be622 326{
f4818900
IM
327 unsigned int mon = mon0, year = year0;
328
329 /* 1..12 -> 11,12,1..10 */
330 if (0 >= (int) (mon -= 2)) {
331 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
332 year -= 1;
333 }
334
335 return ((((unsigned long)
336 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
337 year*365 - 719499
338 )*24 + hour /* now have hours */
339 )*60 + min /* now have minutes */
340 )*60 + sec; /* finally seconds */
341}
342
199e7056
AM
343EXPORT_SYMBOL(mktime);
344
753be622
TG
345/**
346 * set_normalized_timespec - set timespec sec and nsec parts and normalize
347 *
348 * @ts: pointer to timespec variable to be set
349 * @sec: seconds to set
350 * @nsec: nanoseconds to set
351 *
352 * Set seconds and nanoseconds field of a timespec variable and
353 * normalize to the timespec storage format
354 *
355 * Note: The tv_nsec part is always in the range of
bdc80787 356 * 0 <= tv_nsec < NSEC_PER_SEC
753be622
TG
357 * For negative values only the tv_sec field is negative !
358 */
12e09337 359void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
753be622
TG
360{
361 while (nsec >= NSEC_PER_SEC) {
12e09337
TG
362 /*
363 * The following asm() prevents the compiler from
364 * optimising this loop into a modulo operation. See
365 * also __iter_div_u64_rem() in include/linux/time.h
366 */
367 asm("" : "+rm"(nsec));
753be622
TG
368 nsec -= NSEC_PER_SEC;
369 ++sec;
370 }
371 while (nsec < 0) {
12e09337 372 asm("" : "+rm"(nsec));
753be622
TG
373 nsec += NSEC_PER_SEC;
374 --sec;
375 }
376 ts->tv_sec = sec;
377 ts->tv_nsec = nsec;
378}
7c3f944e 379EXPORT_SYMBOL(set_normalized_timespec);
753be622 380
f8f46da3
TG
381/**
382 * ns_to_timespec - Convert nanoseconds to timespec
383 * @nsec: the nanoseconds value to be converted
384 *
385 * Returns the timespec representation of the nsec parameter.
386 */
df869b63 387struct timespec ns_to_timespec(const s64 nsec)
f8f46da3
TG
388{
389 struct timespec ts;
f8bd2258 390 s32 rem;
f8f46da3 391
88fc3897
GA
392 if (!nsec)
393 return (struct timespec) {0, 0};
394
f8bd2258
RZ
395 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
396 if (unlikely(rem < 0)) {
397 ts.tv_sec--;
398 rem += NSEC_PER_SEC;
399 }
400 ts.tv_nsec = rem;
f8f46da3
TG
401
402 return ts;
403}
85795d64 404EXPORT_SYMBOL(ns_to_timespec);
f8f46da3
TG
405
406/**
407 * ns_to_timeval - Convert nanoseconds to timeval
408 * @nsec: the nanoseconds value to be converted
409 *
410 * Returns the timeval representation of the nsec parameter.
411 */
df869b63 412struct timeval ns_to_timeval(const s64 nsec)
f8f46da3
TG
413{
414 struct timespec ts = ns_to_timespec(nsec);
415 struct timeval tv;
416
417 tv.tv_sec = ts.tv_sec;
418 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
419
420 return tv;
421}
b7aa0bf7 422EXPORT_SYMBOL(ns_to_timeval);
f8f46da3 423
49cd6f86
JS
424#if BITS_PER_LONG == 32
425/**
426 * set_normalized_timespec - set timespec sec and nsec parts and normalize
427 *
428 * @ts: pointer to timespec variable to be set
429 * @sec: seconds to set
430 * @nsec: nanoseconds to set
431 *
432 * Set seconds and nanoseconds field of a timespec variable and
433 * normalize to the timespec storage format
434 *
435 * Note: The tv_nsec part is always in the range of
436 * 0 <= tv_nsec < NSEC_PER_SEC
437 * For negative values only the tv_sec field is negative !
438 */
439void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
440{
441 while (nsec >= NSEC_PER_SEC) {
442 /*
443 * The following asm() prevents the compiler from
444 * optimising this loop into a modulo operation. See
445 * also __iter_div_u64_rem() in include/linux/time.h
446 */
447 asm("" : "+rm"(nsec));
448 nsec -= NSEC_PER_SEC;
449 ++sec;
450 }
451 while (nsec < 0) {
452 asm("" : "+rm"(nsec));
453 nsec += NSEC_PER_SEC;
454 --sec;
455 }
456 ts->tv_sec = sec;
457 ts->tv_nsec = nsec;
458}
459EXPORT_SYMBOL(set_normalized_timespec64);
460
461/**
462 * ns_to_timespec64 - Convert nanoseconds to timespec64
463 * @nsec: the nanoseconds value to be converted
464 *
465 * Returns the timespec64 representation of the nsec parameter.
466 */
467struct timespec64 ns_to_timespec64(const s64 nsec)
468{
469 struct timespec64 ts;
470 s32 rem;
471
472 if (!nsec)
473 return (struct timespec64) {0, 0};
474
475 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
476 if (unlikely(rem < 0)) {
477 ts.tv_sec--;
478 rem += NSEC_PER_SEC;
479 }
480 ts.tv_nsec = rem;
481
482 return ts;
483}
484EXPORT_SYMBOL(ns_to_timespec64);
485#endif
41cf5445
IM
486/*
487 * When we convert to jiffies then we interpret incoming values
488 * the following way:
489 *
490 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
491 *
492 * - 'too large' values [that would result in larger than
493 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
494 *
495 * - all other values are converted to jiffies by either multiplying
496 * the input value by a factor or dividing it with a factor
497 *
498 * We must also be careful about 32-bit overflows.
499 */
8b9365d7
IM
500unsigned long msecs_to_jiffies(const unsigned int m)
501{
41cf5445
IM
502 /*
503 * Negative value, means infinite timeout:
504 */
505 if ((int)m < 0)
8b9365d7 506 return MAX_JIFFY_OFFSET;
41cf5445 507
8b9365d7 508#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
41cf5445
IM
509 /*
510 * HZ is equal to or smaller than 1000, and 1000 is a nice
511 * round multiple of HZ, divide with the factor between them,
512 * but round upwards:
513 */
8b9365d7
IM
514 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
515#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
41cf5445
IM
516 /*
517 * HZ is larger than 1000, and HZ is a nice round multiple of
518 * 1000 - simply multiply with the factor between them.
519 *
520 * But first make sure the multiplication result cannot
521 * overflow:
522 */
523 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
524 return MAX_JIFFY_OFFSET;
525
8b9365d7
IM
526 return m * (HZ / MSEC_PER_SEC);
527#else
41cf5445
IM
528 /*
529 * Generic case - multiply, round and divide. But first
530 * check that if we are doing a net multiplication, that
bdc80787 531 * we wouldn't overflow:
41cf5445
IM
532 */
533 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
534 return MAX_JIFFY_OFFSET;
535
b9095fd8 536 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
bdc80787 537 >> MSEC_TO_HZ_SHR32;
8b9365d7
IM
538#endif
539}
540EXPORT_SYMBOL(msecs_to_jiffies);
541
542unsigned long usecs_to_jiffies(const unsigned int u)
543{
544 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
545 return MAX_JIFFY_OFFSET;
546#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
547 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
548#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
549 return u * (HZ / USEC_PER_SEC);
550#else
b9095fd8 551 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
bdc80787 552 >> USEC_TO_HZ_SHR32;
8b9365d7
IM
553#endif
554}
555EXPORT_SYMBOL(usecs_to_jiffies);
556
557/*
558 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
559 * that a remainder subtract here would not do the right thing as the
560 * resolution values don't fall on second boundries. I.e. the line:
561 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
d78c9300
AH
562 * Note that due to the small error in the multiplier here, this
563 * rounding is incorrect for sufficiently large values of tv_nsec, but
564 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
565 * OK.
8b9365d7
IM
566 *
567 * Rather, we just shift the bits off the right.
568 *
569 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
570 * value to a scaled second value.
571 */
d78c9300
AH
572static unsigned long
573__timespec_to_jiffies(unsigned long sec, long nsec)
8b9365d7 574{
d78c9300 575 nsec = nsec + TICK_NSEC - 1;
8b9365d7
IM
576
577 if (sec >= MAX_SEC_IN_JIFFIES){
578 sec = MAX_SEC_IN_JIFFIES;
579 nsec = 0;
580 }
581 return (((u64)sec * SEC_CONVERSION) +
582 (((u64)nsec * NSEC_CONVERSION) >>
583 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
584
585}
d78c9300
AH
586
587unsigned long
588timespec_to_jiffies(const struct timespec *value)
589{
590 return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
591}
592
8b9365d7
IM
593EXPORT_SYMBOL(timespec_to_jiffies);
594
595void
596jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
597{
598 /*
599 * Convert jiffies to nanoseconds and separate with
600 * one divide.
601 */
f8bd2258
RZ
602 u32 rem;
603 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
604 NSEC_PER_SEC, &rem);
605 value->tv_nsec = rem;
8b9365d7
IM
606}
607EXPORT_SYMBOL(jiffies_to_timespec);
608
d78c9300
AH
609/*
610 * We could use a similar algorithm to timespec_to_jiffies (with a
611 * different multiplier for usec instead of nsec). But this has a
612 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
613 * usec value, since it's not necessarily integral.
614 *
615 * We could instead round in the intermediate scaled representation
616 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
617 * perilous: the scaling introduces a small positive error, which
618 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
619 * units to the intermediate before shifting) leads to accidental
620 * overflow and overestimates.
8b9365d7 621 *
d78c9300
AH
622 * At the cost of one additional multiplication by a constant, just
623 * use the timespec implementation.
8b9365d7
IM
624 */
625unsigned long
626timeval_to_jiffies(const struct timeval *value)
627{
d78c9300
AH
628 return __timespec_to_jiffies(value->tv_sec,
629 value->tv_usec * NSEC_PER_USEC);
8b9365d7 630}
456a09dc 631EXPORT_SYMBOL(timeval_to_jiffies);
8b9365d7
IM
632
633void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
634{
635 /*
636 * Convert jiffies to nanoseconds and separate with
637 * one divide.
638 */
f8bd2258 639 u32 rem;
8b9365d7 640
f8bd2258
RZ
641 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
642 NSEC_PER_SEC, &rem);
643 value->tv_usec = rem / NSEC_PER_USEC;
8b9365d7 644}
456a09dc 645EXPORT_SYMBOL(jiffies_to_timeval);
8b9365d7
IM
646
647/*
648 * Convert jiffies/jiffies_64 to clock_t and back.
649 */
cbbc719f 650clock_t jiffies_to_clock_t(unsigned long x)
8b9365d7
IM
651{
652#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a
DF
653# if HZ < USER_HZ
654 return x * (USER_HZ / HZ);
655# else
8b9365d7 656 return x / (HZ / USER_HZ);
6ffc787a 657# endif
8b9365d7 658#else
71abb3af 659 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
8b9365d7
IM
660#endif
661}
662EXPORT_SYMBOL(jiffies_to_clock_t);
663
664unsigned long clock_t_to_jiffies(unsigned long x)
665{
666#if (HZ % USER_HZ)==0
667 if (x >= ~0UL / (HZ / USER_HZ))
668 return ~0UL;
669 return x * (HZ / USER_HZ);
670#else
8b9365d7
IM
671 /* Don't worry about loss of precision here .. */
672 if (x >= ~0UL / HZ * USER_HZ)
673 return ~0UL;
674
675 /* .. but do try to contain it here */
71abb3af 676 return div_u64((u64)x * HZ, USER_HZ);
8b9365d7
IM
677#endif
678}
679EXPORT_SYMBOL(clock_t_to_jiffies);
680
681u64 jiffies_64_to_clock_t(u64 x)
682{
683#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a 684# if HZ < USER_HZ
71abb3af 685 x = div_u64(x * USER_HZ, HZ);
ec03d707 686# elif HZ > USER_HZ
71abb3af 687 x = div_u64(x, HZ / USER_HZ);
ec03d707
AM
688# else
689 /* Nothing to do */
6ffc787a 690# endif
8b9365d7
IM
691#else
692 /*
693 * There are better ways that don't overflow early,
694 * but even this doesn't overflow in hundreds of years
695 * in 64 bits, so..
696 */
71abb3af 697 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
8b9365d7
IM
698#endif
699 return x;
700}
8b9365d7
IM
701EXPORT_SYMBOL(jiffies_64_to_clock_t);
702
703u64 nsec_to_clock_t(u64 x)
704{
705#if (NSEC_PER_SEC % USER_HZ) == 0
71abb3af 706 return div_u64(x, NSEC_PER_SEC / USER_HZ);
8b9365d7 707#elif (USER_HZ % 512) == 0
71abb3af 708 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
8b9365d7
IM
709#else
710 /*
711 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
712 * overflow after 64.99 years.
713 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
714 */
71abb3af 715 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
8b9365d7 716#endif
8b9365d7
IM
717}
718
b7b20df9 719/**
a1dabb6b 720 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
b7b20df9
HS
721 *
722 * @n: nsecs in u64
723 *
724 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
725 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
726 * for scheduler, not for use in device drivers to calculate timeout value.
727 *
728 * note:
729 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
730 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
731 */
a1dabb6b 732u64 nsecs_to_jiffies64(u64 n)
b7b20df9
HS
733{
734#if (NSEC_PER_SEC % HZ) == 0
735 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
736 return div_u64(n, NSEC_PER_SEC / HZ);
737#elif (HZ % 512) == 0
738 /* overflow after 292 years if HZ = 1024 */
739 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
740#else
741 /*
742 * Generic case - optimized for cases where HZ is a multiple of 3.
743 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
744 */
745 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
746#endif
747}
748
a1dabb6b
VP
749/**
750 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
751 *
752 * @n: nsecs in u64
753 *
754 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
755 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
756 * for scheduler, not for use in device drivers to calculate timeout value.
757 *
758 * note:
759 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
760 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
761 */
762unsigned long nsecs_to_jiffies(u64 n)
763{
764 return (unsigned long)nsecs_to_jiffies64(n);
765}
d560fed6 766EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
a1dabb6b 767
df0cc053
TG
768/*
769 * Add two timespec values and do a safety check for overflow.
770 * It's assumed that both values are valid (>= 0)
771 */
772struct timespec timespec_add_safe(const struct timespec lhs,
773 const struct timespec rhs)
774{
775 struct timespec res;
776
777 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
778 lhs.tv_nsec + rhs.tv_nsec);
779
780 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
781 res.tv_sec = TIME_T_MAX;
782
783 return res;
784}
This page took 0.623816 seconds and 5 git commands to generate.