Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[deliverable/linux.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b 12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
d43c36dc 17#include <linux/sched.h>
e1a85b2c 18#include <linux/syscore_ops.h>
8524070b 19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
75c5158f 23#include <linux/stop_machine.h>
e0b306fe 24#include <linux/pvclock_gtod.h>
52f5684c 25#include <linux/compiler.h>
8524070b 26
eb93e4d9 27#include "tick-internal.h"
aa6f9c59 28#include "ntp_internal.h"
5c83545f 29#include "timekeeping_internal.h"
155ec602 30
04397fe9
DV
31#define TK_CLEAR_NTP (1 << 0)
32#define TK_MIRROR (1 << 1)
780427f0 33#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 34
3fdb14fd
TG
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42} tk_core ____cacheline_aligned;
43
9a7a71b1 44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 45static struct timekeeper shadow_timekeeper;
155ec602 46
4396e058
TG
47/**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59};
60
61static struct tk_fast tk_fast_mono ____cacheline_aligned;
f09cb9a1 62static struct tk_fast tk_fast_raw ____cacheline_aligned;
4396e058 63
8fcce546
JS
64/* flag for if timekeeping is suspended */
65int __read_mostly timekeeping_suspended;
66
1e75fa8b
JS
67static inline void tk_normalize_xtime(struct timekeeper *tk)
68{
876e7881
PZ
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1e75fa8b
JS
71 tk->xtime_sec++;
72 }
73}
74
c905fae4
TG
75static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76{
77 struct timespec64 ts;
78
79 ts.tv_sec = tk->xtime_sec;
876e7881 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
c905fae4
TG
81 return ts;
82}
83
7d489d15 84static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
85{
86 tk->xtime_sec = ts->tv_sec;
876e7881 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
1e75fa8b
JS
88}
89
7d489d15 90static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
91{
92 tk->xtime_sec += ts->tv_sec;
876e7881 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
784ffcbb 94 tk_normalize_xtime(tk);
1e75fa8b 95}
8fcce546 96
7d489d15 97static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 98{
7d489d15 99 struct timespec64 tmp;
6d0ef903
JS
100
101 /*
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
104 */
7d489d15 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 106 -tk->wall_to_monotonic.tv_nsec);
7d489d15 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
6d0ef903 108 tk->wall_to_monotonic = wtm;
7d489d15
JS
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
112}
113
47da70d3 114static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 115{
47da70d3 116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
117}
118
3c17ad19 119#ifdef CONFIG_DEBUG_TIMEKEEPING
4ca22c26 120#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
4ca22c26 121
3c17ad19
JS
122static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123{
124
876e7881
PZ
125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 const char *name = tk->tkr_mono.clock->name;
3c17ad19
JS
127
128 if (offset > max_cycles) {
a558cd02 129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
3c17ad19 130 offset, name, max_cycles);
a558cd02 131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
3c17ad19
JS
132 } else {
133 if (offset > (max_cycles >> 1)) {
134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135 offset, name, max_cycles >> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 }
138 }
4ca22c26 139
57d05a93
JS
140 if (tk->underflow_seen) {
141 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 145 tk->last_warning = jiffies;
4ca22c26 146 }
57d05a93 147 tk->underflow_seen = 0;
4ca22c26
JS
148 }
149
57d05a93
JS
150 if (tk->overflow_seen) {
151 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 155 tk->last_warning = jiffies;
4ca22c26 156 }
57d05a93 157 tk->overflow_seen = 0;
4ca22c26 158 }
3c17ad19 159}
a558cd02
JS
160
161static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162{
57d05a93 163 struct timekeeper *tk = &tk_core.timekeeper;
4ca22c26
JS
164 cycle_t now, last, mask, max, delta;
165 unsigned int seq;
a558cd02 166
4ca22c26
JS
167 /*
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
173 */
174 do {
175 seq = read_seqcount_begin(&tk_core.seq);
176 now = tkr->read(tkr->clock);
177 last = tkr->cycle_last;
178 mask = tkr->mask;
179 max = tkr->clock->max_cycles;
180 } while (read_seqcount_retry(&tk_core.seq, seq));
a558cd02 181
4ca22c26 182 delta = clocksource_delta(now, last, mask);
a558cd02 183
057b87e3
JS
184 /*
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
187 */
4ca22c26 188 if (unlikely((~delta & mask) < (mask >> 3))) {
57d05a93 189 tk->underflow_seen = 1;
057b87e3 190 delta = 0;
4ca22c26 191 }
057b87e3 192
a558cd02 193 /* Cap delta value to the max_cycles values to avoid mult overflows */
4ca22c26 194 if (unlikely(delta > max)) {
57d05a93 195 tk->overflow_seen = 1;
a558cd02 196 delta = tkr->clock->max_cycles;
4ca22c26 197 }
a558cd02
JS
198
199 return delta;
200}
3c17ad19
JS
201#else
202static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203{
204}
a558cd02
JS
205static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206{
207 cycle_t cycle_now, delta;
208
209 /* read clocksource */
210 cycle_now = tkr->read(tkr->clock);
211
212 /* calculate the delta since the last update_wall_time */
213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215 return delta;
216}
3c17ad19
JS
217#endif
218
155ec602 219/**
d26e4fe0 220 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 221 *
d26e4fe0 222 * @tk: The target timekeeper to setup.
155ec602
MS
223 * @clock: Pointer to clocksource.
224 *
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
227 *
228 * Unless you're the timekeeping code, you should not be using this!
229 */
f726a697 230static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602
MS
231{
232 cycle_t interval;
a386b5af 233 u64 tmp, ntpinterval;
1e75fa8b 234 struct clocksource *old_clock;
155ec602 235
876e7881
PZ
236 old_clock = tk->tkr_mono.clock;
237 tk->tkr_mono.clock = clock;
238 tk->tkr_mono.read = clock->read;
239 tk->tkr_mono.mask = clock->mask;
240 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
155ec602 241
4a4ad80d
PZ
242 tk->tkr_raw.clock = clock;
243 tk->tkr_raw.read = clock->read;
244 tk->tkr_raw.mask = clock->mask;
245 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
246
155ec602
MS
247 /* Do the ns -> cycle conversion first, using original mult */
248 tmp = NTP_INTERVAL_LENGTH;
249 tmp <<= clock->shift;
a386b5af 250 ntpinterval = tmp;
0a544198
MS
251 tmp += clock->mult/2;
252 do_div(tmp, clock->mult);
155ec602
MS
253 if (tmp == 0)
254 tmp = 1;
255
256 interval = (cycle_t) tmp;
f726a697 257 tk->cycle_interval = interval;
155ec602
MS
258
259 /* Go back from cycles -> shifted ns */
f726a697
JS
260 tk->xtime_interval = (u64) interval * clock->mult;
261 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
262 tk->raw_interval =
0a544198 263 ((u64) interval * clock->mult) >> clock->shift;
155ec602 264
1e75fa8b
JS
265 /* if changing clocks, convert xtime_nsec shift units */
266 if (old_clock) {
267 int shift_change = clock->shift - old_clock->shift;
268 if (shift_change < 0)
876e7881 269 tk->tkr_mono.xtime_nsec >>= -shift_change;
1e75fa8b 270 else
876e7881 271 tk->tkr_mono.xtime_nsec <<= shift_change;
1e75fa8b 272 }
4a4ad80d
PZ
273 tk->tkr_raw.xtime_nsec = 0;
274
876e7881 275 tk->tkr_mono.shift = clock->shift;
4a4ad80d 276 tk->tkr_raw.shift = clock->shift;
155ec602 277
f726a697
JS
278 tk->ntp_error = 0;
279 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 280 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
281
282 /*
283 * The timekeeper keeps its own mult values for the currently
284 * active clocksource. These value will be adjusted via NTP
285 * to counteract clock drifting.
286 */
876e7881 287 tk->tkr_mono.mult = clock->mult;
4a4ad80d 288 tk->tkr_raw.mult = clock->mult;
dc491596 289 tk->ntp_err_mult = 0;
155ec602 290}
8524070b 291
2ba2a305 292/* Timekeeper helper functions. */
7b1f6207
SW
293
294#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
295static u32 default_arch_gettimeoffset(void) { return 0; }
296u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 297#else
e06fde37 298static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
299#endif
300
0e5ac3a8 301static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 302{
a558cd02 303 cycle_t delta;
1e75fa8b 304 s64 nsec;
2ba2a305 305
a558cd02 306 delta = timekeeping_get_delta(tkr);
2ba2a305 307
0e5ac3a8
TG
308 nsec = delta * tkr->mult + tkr->xtime_nsec;
309 nsec >>= tkr->shift;
f2a5a085 310
7b1f6207 311 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 312 return nsec + arch_gettimeoffset();
2ba2a305
MS
313}
314
4396e058
TG
315/**
316 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
affe3e85 317 * @tkr: Timekeeping readout base from which we take the update
4396e058
TG
318 *
319 * We want to use this from any context including NMI and tracing /
320 * instrumenting the timekeeping code itself.
321 *
322 * So we handle this differently than the other timekeeping accessor
323 * functions which retry when the sequence count has changed. The
324 * update side does:
325 *
326 * smp_wmb(); <- Ensure that the last base[1] update is visible
327 * tkf->seq++;
328 * smp_wmb(); <- Ensure that the seqcount update is visible
affe3e85 329 * update(tkf->base[0], tkr);
4396e058
TG
330 * smp_wmb(); <- Ensure that the base[0] update is visible
331 * tkf->seq++;
332 * smp_wmb(); <- Ensure that the seqcount update is visible
affe3e85 333 * update(tkf->base[1], tkr);
4396e058
TG
334 *
335 * The reader side does:
336 *
337 * do {
338 * seq = tkf->seq;
339 * smp_rmb();
340 * idx = seq & 0x01;
341 * now = now(tkf->base[idx]);
342 * smp_rmb();
343 * } while (seq != tkf->seq)
344 *
345 * As long as we update base[0] readers are forced off to
346 * base[1]. Once base[0] is updated readers are redirected to base[0]
347 * and the base[1] update takes place.
348 *
349 * So if a NMI hits the update of base[0] then it will use base[1]
350 * which is still consistent. In the worst case this can result is a
351 * slightly wrong timestamp (a few nanoseconds). See
352 * @ktime_get_mono_fast_ns.
353 */
4498e746 354static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
4396e058 355{
4498e746 356 struct tk_read_base *base = tkf->base;
4396e058
TG
357
358 /* Force readers off to base[1] */
4498e746 359 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
360
361 /* Update base[0] */
affe3e85 362 memcpy(base, tkr, sizeof(*base));
4396e058
TG
363
364 /* Force readers back to base[0] */
4498e746 365 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
366
367 /* Update base[1] */
368 memcpy(base + 1, base, sizeof(*base));
369}
370
371/**
372 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
373 *
374 * This timestamp is not guaranteed to be monotonic across an update.
375 * The timestamp is calculated by:
376 *
377 * now = base_mono + clock_delta * slope
378 *
379 * So if the update lowers the slope, readers who are forced to the
380 * not yet updated second array are still using the old steeper slope.
381 *
382 * tmono
383 * ^
384 * | o n
385 * | o n
386 * | u
387 * | o
388 * |o
389 * |12345678---> reader order
390 *
391 * o = old slope
392 * u = update
393 * n = new slope
394 *
395 * So reader 6 will observe time going backwards versus reader 5.
396 *
397 * While other CPUs are likely to be able observe that, the only way
398 * for a CPU local observation is when an NMI hits in the middle of
399 * the update. Timestamps taken from that NMI context might be ahead
400 * of the following timestamps. Callers need to be aware of that and
401 * deal with it.
402 */
4498e746 403static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
4396e058
TG
404{
405 struct tk_read_base *tkr;
406 unsigned int seq;
407 u64 now;
408
409 do {
4498e746
PZ
410 seq = raw_read_seqcount(&tkf->seq);
411 tkr = tkf->base + (seq & 0x01);
876e7881 412 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
4498e746 413 } while (read_seqcount_retry(&tkf->seq, seq));
4396e058 414
4396e058
TG
415 return now;
416}
4498e746
PZ
417
418u64 ktime_get_mono_fast_ns(void)
419{
420 return __ktime_get_fast_ns(&tk_fast_mono);
421}
4396e058
TG
422EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
423
f09cb9a1
PZ
424u64 ktime_get_raw_fast_ns(void)
425{
426 return __ktime_get_fast_ns(&tk_fast_raw);
427}
428EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
429
060407ae
RW
430/* Suspend-time cycles value for halted fast timekeeper. */
431static cycle_t cycles_at_suspend;
432
433static cycle_t dummy_clock_read(struct clocksource *cs)
434{
435 return cycles_at_suspend;
436}
437
438/**
439 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
440 * @tk: Timekeeper to snapshot.
441 *
442 * It generally is unsafe to access the clocksource after timekeeping has been
443 * suspended, so take a snapshot of the readout base of @tk and use it as the
444 * fast timekeeper's readout base while suspended. It will return the same
445 * number of cycles every time until timekeeping is resumed at which time the
446 * proper readout base for the fast timekeeper will be restored automatically.
447 */
448static void halt_fast_timekeeper(struct timekeeper *tk)
449{
450 static struct tk_read_base tkr_dummy;
876e7881 451 struct tk_read_base *tkr = &tk->tkr_mono;
060407ae
RW
452
453 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
454 cycles_at_suspend = tkr->read(tkr->clock);
455 tkr_dummy.read = dummy_clock_read;
4498e746 456 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
f09cb9a1
PZ
457
458 tkr = &tk->tkr_raw;
459 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
460 tkr_dummy.read = dummy_clock_read;
461 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
060407ae
RW
462}
463
c905fae4
TG
464#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
465
466static inline void update_vsyscall(struct timekeeper *tk)
467{
0680eb1f 468 struct timespec xt, wm;
c905fae4 469
e2dff1ec 470 xt = timespec64_to_timespec(tk_xtime(tk));
0680eb1f 471 wm = timespec64_to_timespec(tk->wall_to_monotonic);
876e7881
PZ
472 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
473 tk->tkr_mono.cycle_last);
c905fae4
TG
474}
475
476static inline void old_vsyscall_fixup(struct timekeeper *tk)
477{
478 s64 remainder;
479
480 /*
481 * Store only full nanoseconds into xtime_nsec after rounding
482 * it up and add the remainder to the error difference.
483 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
484 * by truncating the remainder in vsyscalls. However, it causes
485 * additional work to be done in timekeeping_adjust(). Once
486 * the vsyscall implementations are converted to use xtime_nsec
487 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
488 * users are removed, this can be killed.
489 */
876e7881
PZ
490 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
491 tk->tkr_mono.xtime_nsec -= remainder;
492 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
c905fae4 493 tk->ntp_error += remainder << tk->ntp_error_shift;
876e7881 494 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
c905fae4
TG
495}
496#else
497#define old_vsyscall_fixup(tk)
498#endif
499
e0b306fe
MT
500static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
501
780427f0 502static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 503{
780427f0 504 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
505}
506
507/**
508 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
509 */
510int pvclock_gtod_register_notifier(struct notifier_block *nb)
511{
3fdb14fd 512 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
513 unsigned long flags;
514 int ret;
515
9a7a71b1 516 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 517 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 518 update_pvclock_gtod(tk, true);
9a7a71b1 519 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
520
521 return ret;
522}
523EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
524
525/**
526 * pvclock_gtod_unregister_notifier - unregister a pvclock
527 * timedata update listener
e0b306fe
MT
528 */
529int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
530{
e0b306fe
MT
531 unsigned long flags;
532 int ret;
533
9a7a71b1 534 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 535 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 536 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
537
538 return ret;
539}
540EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
541
833f32d7
JS
542/*
543 * tk_update_leap_state - helper to update the next_leap_ktime
544 */
545static inline void tk_update_leap_state(struct timekeeper *tk)
546{
547 tk->next_leap_ktime = ntp_get_next_leap();
548 if (tk->next_leap_ktime.tv64 != KTIME_MAX)
549 /* Convert to monotonic time */
550 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
551}
552
7c032df5
TG
553/*
554 * Update the ktime_t based scalar nsec members of the timekeeper
555 */
556static inline void tk_update_ktime_data(struct timekeeper *tk)
557{
9e3680b1
HS
558 u64 seconds;
559 u32 nsec;
7c032df5
TG
560
561 /*
562 * The xtime based monotonic readout is:
563 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
564 * The ktime based monotonic readout is:
565 * nsec = base_mono + now();
566 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
567 */
9e3680b1
HS
568 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
569 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
876e7881 570 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
f519b1a2
TG
571
572 /* Update the monotonic raw base */
4a4ad80d 573 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
9e3680b1
HS
574
575 /*
576 * The sum of the nanoseconds portions of xtime and
577 * wall_to_monotonic can be greater/equal one second. Take
578 * this into account before updating tk->ktime_sec.
579 */
876e7881 580 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
9e3680b1
HS
581 if (nsec >= NSEC_PER_SEC)
582 seconds++;
583 tk->ktime_sec = seconds;
7c032df5
TG
584}
585
9a7a71b1 586/* must hold timekeeper_lock */
04397fe9 587static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 588{
04397fe9 589 if (action & TK_CLEAR_NTP) {
f726a697 590 tk->ntp_error = 0;
cc06268c
TG
591 ntp_clear();
592 }
48cdc135 593
833f32d7 594 tk_update_leap_state(tk);
7c032df5
TG
595 tk_update_ktime_data(tk);
596
9bf2419f
TG
597 update_vsyscall(tk);
598 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
599
4498e746 600 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
f09cb9a1 601 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
868a3e91
TG
602
603 if (action & TK_CLOCK_WAS_SET)
604 tk->clock_was_set_seq++;
d1518326
JS
605 /*
606 * The mirroring of the data to the shadow-timekeeper needs
607 * to happen last here to ensure we don't over-write the
608 * timekeeper structure on the next update with stale data
609 */
610 if (action & TK_MIRROR)
611 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
612 sizeof(tk_core.timekeeper));
cc06268c
TG
613}
614
8524070b 615/**
155ec602 616 * timekeeping_forward_now - update clock to the current time
8524070b 617 *
9a055117
RZ
618 * Forward the current clock to update its state since the last call to
619 * update_wall_time(). This is useful before significant clock changes,
620 * as it avoids having to deal with this time offset explicitly.
8524070b 621 */
f726a697 622static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 623{
876e7881 624 struct clocksource *clock = tk->tkr_mono.clock;
3a978377 625 cycle_t cycle_now, delta;
9a055117 626 s64 nsec;
8524070b 627
876e7881
PZ
628 cycle_now = tk->tkr_mono.read(clock);
629 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
630 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d 631 tk->tkr_raw.cycle_last = cycle_now;
8524070b 632
876e7881 633 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
7d27558c 634
7b1f6207 635 /* If arch requires, add in get_arch_timeoffset() */
876e7881 636 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
7d27558c 637
f726a697 638 tk_normalize_xtime(tk);
2d42244a 639
4a4ad80d 640 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
7d489d15 641 timespec64_add_ns(&tk->raw_time, nsec);
8524070b 642}
643
644/**
d6d29896 645 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b 646 * @ts: pointer to the timespec to be set
647 *
1e817fb6
KC
648 * Updates the time of day in the timespec.
649 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 650 */
d6d29896 651int __getnstimeofday64(struct timespec64 *ts)
8524070b 652{
3fdb14fd 653 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 654 unsigned long seq;
1e75fa8b 655 s64 nsecs = 0;
8524070b 656
657 do {
3fdb14fd 658 seq = read_seqcount_begin(&tk_core.seq);
8524070b 659
4e250fdd 660 ts->tv_sec = tk->xtime_sec;
876e7881 661 nsecs = timekeeping_get_ns(&tk->tkr_mono);
8524070b 662
3fdb14fd 663 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 664
ec145bab 665 ts->tv_nsec = 0;
d6d29896 666 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
667
668 /*
669 * Do not bail out early, in case there were callers still using
670 * the value, even in the face of the WARN_ON.
671 */
672 if (unlikely(timekeeping_suspended))
673 return -EAGAIN;
674 return 0;
675}
d6d29896 676EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
677
678/**
d6d29896 679 * getnstimeofday64 - Returns the time of day in a timespec64.
5322e4c2 680 * @ts: pointer to the timespec64 to be set
1e817fb6 681 *
5322e4c2 682 * Returns the time of day in a timespec64 (WARN if suspended).
1e817fb6 683 */
d6d29896 684void getnstimeofday64(struct timespec64 *ts)
1e817fb6 685{
d6d29896 686 WARN_ON(__getnstimeofday64(ts));
8524070b 687}
d6d29896 688EXPORT_SYMBOL(getnstimeofday64);
8524070b 689
951ed4d3
MS
690ktime_t ktime_get(void)
691{
3fdb14fd 692 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 693 unsigned int seq;
a016a5bd
TG
694 ktime_t base;
695 s64 nsecs;
951ed4d3
MS
696
697 WARN_ON(timekeeping_suspended);
698
699 do {
3fdb14fd 700 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
701 base = tk->tkr_mono.base;
702 nsecs = timekeeping_get_ns(&tk->tkr_mono);
951ed4d3 703
3fdb14fd 704 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 705
a016a5bd 706 return ktime_add_ns(base, nsecs);
951ed4d3
MS
707}
708EXPORT_SYMBOL_GPL(ktime_get);
709
6374f912
HG
710u32 ktime_get_resolution_ns(void)
711{
712 struct timekeeper *tk = &tk_core.timekeeper;
713 unsigned int seq;
714 u32 nsecs;
715
716 WARN_ON(timekeeping_suspended);
717
718 do {
719 seq = read_seqcount_begin(&tk_core.seq);
720 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
721 } while (read_seqcount_retry(&tk_core.seq, seq));
722
723 return nsecs;
724}
725EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
726
0077dc60
TG
727static ktime_t *offsets[TK_OFFS_MAX] = {
728 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
729 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
730 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
731};
732
733ktime_t ktime_get_with_offset(enum tk_offsets offs)
734{
735 struct timekeeper *tk = &tk_core.timekeeper;
736 unsigned int seq;
737 ktime_t base, *offset = offsets[offs];
738 s64 nsecs;
739
740 WARN_ON(timekeeping_suspended);
741
742 do {
743 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
744 base = ktime_add(tk->tkr_mono.base, *offset);
745 nsecs = timekeeping_get_ns(&tk->tkr_mono);
0077dc60
TG
746
747 } while (read_seqcount_retry(&tk_core.seq, seq));
748
749 return ktime_add_ns(base, nsecs);
750
751}
752EXPORT_SYMBOL_GPL(ktime_get_with_offset);
753
9a6b5197
TG
754/**
755 * ktime_mono_to_any() - convert mononotic time to any other time
756 * @tmono: time to convert.
757 * @offs: which offset to use
758 */
759ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
760{
761 ktime_t *offset = offsets[offs];
762 unsigned long seq;
763 ktime_t tconv;
764
765 do {
766 seq = read_seqcount_begin(&tk_core.seq);
767 tconv = ktime_add(tmono, *offset);
768 } while (read_seqcount_retry(&tk_core.seq, seq));
769
770 return tconv;
771}
772EXPORT_SYMBOL_GPL(ktime_mono_to_any);
773
f519b1a2
TG
774/**
775 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
776 */
777ktime_t ktime_get_raw(void)
778{
779 struct timekeeper *tk = &tk_core.timekeeper;
780 unsigned int seq;
781 ktime_t base;
782 s64 nsecs;
783
784 do {
785 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d
PZ
786 base = tk->tkr_raw.base;
787 nsecs = timekeeping_get_ns(&tk->tkr_raw);
f519b1a2
TG
788
789 } while (read_seqcount_retry(&tk_core.seq, seq));
790
791 return ktime_add_ns(base, nsecs);
792}
793EXPORT_SYMBOL_GPL(ktime_get_raw);
794
951ed4d3 795/**
d6d29896 796 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
797 * @ts: pointer to timespec variable
798 *
799 * The function calculates the monotonic clock from the realtime
800 * clock and the wall_to_monotonic offset and stores the result
5322e4c2 801 * in normalized timespec64 format in the variable pointed to by @ts.
951ed4d3 802 */
d6d29896 803void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 804{
3fdb14fd 805 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 806 struct timespec64 tomono;
ec145bab 807 s64 nsec;
951ed4d3 808 unsigned int seq;
951ed4d3
MS
809
810 WARN_ON(timekeeping_suspended);
811
812 do {
3fdb14fd 813 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 814 ts->tv_sec = tk->xtime_sec;
876e7881 815 nsec = timekeeping_get_ns(&tk->tkr_mono);
4e250fdd 816 tomono = tk->wall_to_monotonic;
951ed4d3 817
3fdb14fd 818 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 819
d6d29896
TG
820 ts->tv_sec += tomono.tv_sec;
821 ts->tv_nsec = 0;
822 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 823}
d6d29896 824EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 825
9e3680b1
HS
826/**
827 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
828 *
829 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
830 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
831 * works on both 32 and 64 bit systems. On 32 bit systems the readout
832 * covers ~136 years of uptime which should be enough to prevent
833 * premature wrap arounds.
834 */
835time64_t ktime_get_seconds(void)
836{
837 struct timekeeper *tk = &tk_core.timekeeper;
838
839 WARN_ON(timekeeping_suspended);
840 return tk->ktime_sec;
841}
842EXPORT_SYMBOL_GPL(ktime_get_seconds);
843
dbe7aa62
HS
844/**
845 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
846 *
847 * Returns the wall clock seconds since 1970. This replaces the
848 * get_seconds() interface which is not y2038 safe on 32bit systems.
849 *
850 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
851 * 32bit systems the access must be protected with the sequence
852 * counter to provide "atomic" access to the 64bit tk->xtime_sec
853 * value.
854 */
855time64_t ktime_get_real_seconds(void)
856{
857 struct timekeeper *tk = &tk_core.timekeeper;
858 time64_t seconds;
859 unsigned int seq;
860
861 if (IS_ENABLED(CONFIG_64BIT))
862 return tk->xtime_sec;
863
864 do {
865 seq = read_seqcount_begin(&tk_core.seq);
866 seconds = tk->xtime_sec;
867
868 } while (read_seqcount_retry(&tk_core.seq, seq));
869
870 return seconds;
871}
872EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
873
e2c18e49
AG
874#ifdef CONFIG_NTP_PPS
875
876/**
877 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
878 * @ts_raw: pointer to the timespec to be set to raw monotonic time
879 * @ts_real: pointer to the timespec to be set to the time of day
880 *
881 * This function reads both the time of day and raw monotonic time at the
882 * same time atomically and stores the resulting timestamps in timespec
883 * format.
884 */
885void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
886{
3fdb14fd 887 struct timekeeper *tk = &tk_core.timekeeper;
e2c18e49
AG
888 unsigned long seq;
889 s64 nsecs_raw, nsecs_real;
890
891 WARN_ON_ONCE(timekeeping_suspended);
892
893 do {
3fdb14fd 894 seq = read_seqcount_begin(&tk_core.seq);
e2c18e49 895
7d489d15 896 *ts_raw = timespec64_to_timespec(tk->raw_time);
4e250fdd 897 ts_real->tv_sec = tk->xtime_sec;
1e75fa8b 898 ts_real->tv_nsec = 0;
e2c18e49 899
4a4ad80d 900 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw);
876e7881 901 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
e2c18e49 902
3fdb14fd 903 } while (read_seqcount_retry(&tk_core.seq, seq));
e2c18e49
AG
904
905 timespec_add_ns(ts_raw, nsecs_raw);
906 timespec_add_ns(ts_real, nsecs_real);
907}
908EXPORT_SYMBOL(getnstime_raw_and_real);
909
910#endif /* CONFIG_NTP_PPS */
911
8524070b 912/**
913 * do_gettimeofday - Returns the time of day in a timeval
914 * @tv: pointer to the timeval to be set
915 *
efd9ac86 916 * NOTE: Users should be converted to using getnstimeofday()
8524070b 917 */
918void do_gettimeofday(struct timeval *tv)
919{
d6d29896 920 struct timespec64 now;
8524070b 921
d6d29896 922 getnstimeofday64(&now);
8524070b 923 tv->tv_sec = now.tv_sec;
924 tv->tv_usec = now.tv_nsec/1000;
925}
8524070b 926EXPORT_SYMBOL(do_gettimeofday);
d239f49d 927
8524070b 928/**
21f7eca5 929 * do_settimeofday64 - Sets the time of day.
930 * @ts: pointer to the timespec64 variable containing the new time
8524070b 931 *
932 * Sets the time of day to the new time and update NTP and notify hrtimers
933 */
21f7eca5 934int do_settimeofday64(const struct timespec64 *ts)
8524070b 935{
3fdb14fd 936 struct timekeeper *tk = &tk_core.timekeeper;
21f7eca5 937 struct timespec64 ts_delta, xt;
92c1d3ed 938 unsigned long flags;
8524070b 939
21f7eca5 940 if (!timespec64_valid_strict(ts))
8524070b 941 return -EINVAL;
942
9a7a71b1 943 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 944 write_seqcount_begin(&tk_core.seq);
8524070b 945
4e250fdd 946 timekeeping_forward_now(tk);
9a055117 947
4e250fdd 948 xt = tk_xtime(tk);
21f7eca5 949 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
950 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1e75fa8b 951
7d489d15 952 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 953
21f7eca5 954 tk_set_xtime(tk, ts);
1e75fa8b 955
780427f0 956 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 957
3fdb14fd 958 write_seqcount_end(&tk_core.seq);
9a7a71b1 959 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 960
961 /* signal hrtimers about time change */
962 clock_was_set();
963
964 return 0;
965}
21f7eca5 966EXPORT_SYMBOL(do_settimeofday64);
8524070b 967
c528f7c6
JS
968/**
969 * timekeeping_inject_offset - Adds or subtracts from the current time.
970 * @tv: pointer to the timespec variable containing the offset
971 *
972 * Adds or subtracts an offset value from the current time.
973 */
974int timekeeping_inject_offset(struct timespec *ts)
975{
3fdb14fd 976 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 977 unsigned long flags;
7d489d15 978 struct timespec64 ts64, tmp;
4e8b1452 979 int ret = 0;
c528f7c6
JS
980
981 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
982 return -EINVAL;
983
7d489d15
JS
984 ts64 = timespec_to_timespec64(*ts);
985
9a7a71b1 986 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 987 write_seqcount_begin(&tk_core.seq);
c528f7c6 988
4e250fdd 989 timekeeping_forward_now(tk);
c528f7c6 990
4e8b1452 991 /* Make sure the proposed value is valid */
7d489d15
JS
992 tmp = timespec64_add(tk_xtime(tk), ts64);
993 if (!timespec64_valid_strict(&tmp)) {
4e8b1452
JS
994 ret = -EINVAL;
995 goto error;
996 }
1e75fa8b 997
7d489d15
JS
998 tk_xtime_add(tk, &ts64);
999 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
c528f7c6 1000
4e8b1452 1001error: /* even if we error out, we forwarded the time, so call update */
780427f0 1002 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 1003
3fdb14fd 1004 write_seqcount_end(&tk_core.seq);
9a7a71b1 1005 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
1006
1007 /* signal hrtimers about time change */
1008 clock_was_set();
1009
4e8b1452 1010 return ret;
c528f7c6
JS
1011}
1012EXPORT_SYMBOL(timekeeping_inject_offset);
1013
cc244dda
JS
1014
1015/**
1016 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1017 *
1018 */
1019s32 timekeeping_get_tai_offset(void)
1020{
3fdb14fd 1021 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
1022 unsigned int seq;
1023 s32 ret;
1024
1025 do {
3fdb14fd 1026 seq = read_seqcount_begin(&tk_core.seq);
cc244dda 1027 ret = tk->tai_offset;
3fdb14fd 1028 } while (read_seqcount_retry(&tk_core.seq, seq));
cc244dda
JS
1029
1030 return ret;
1031}
1032
1033/**
1034 * __timekeeping_set_tai_offset - Lock free worker function
1035 *
1036 */
dd5d70e8 1037static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
1038{
1039 tk->tai_offset = tai_offset;
04005f60 1040 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
1041}
1042
1043/**
1044 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1045 *
1046 */
1047void timekeeping_set_tai_offset(s32 tai_offset)
1048{
3fdb14fd 1049 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
1050 unsigned long flags;
1051
9a7a71b1 1052 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1053 write_seqcount_begin(&tk_core.seq);
cc244dda 1054 __timekeeping_set_tai_offset(tk, tai_offset);
f55c0760 1055 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1056 write_seqcount_end(&tk_core.seq);
9a7a71b1 1057 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
4e8f8b34 1058 clock_was_set();
cc244dda
JS
1059}
1060
8524070b 1061/**
1062 * change_clocksource - Swaps clocksources if a new one is available
1063 *
1064 * Accumulates current time interval and initializes new clocksource
1065 */
75c5158f 1066static int change_clocksource(void *data)
8524070b 1067{
3fdb14fd 1068 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 1069 struct clocksource *new, *old;
f695cf94 1070 unsigned long flags;
8524070b 1071
75c5158f 1072 new = (struct clocksource *) data;
8524070b 1073
9a7a71b1 1074 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1075 write_seqcount_begin(&tk_core.seq);
f695cf94 1076
4e250fdd 1077 timekeeping_forward_now(tk);
09ac369c
TG
1078 /*
1079 * If the cs is in module, get a module reference. Succeeds
1080 * for built-in code (owner == NULL) as well.
1081 */
1082 if (try_module_get(new->owner)) {
1083 if (!new->enable || new->enable(new) == 0) {
876e7881 1084 old = tk->tkr_mono.clock;
09ac369c
TG
1085 tk_setup_internals(tk, new);
1086 if (old->disable)
1087 old->disable(old);
1088 module_put(old->owner);
1089 } else {
1090 module_put(new->owner);
1091 }
75c5158f 1092 }
780427f0 1093 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 1094
3fdb14fd 1095 write_seqcount_end(&tk_core.seq);
9a7a71b1 1096 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 1097
75c5158f
MS
1098 return 0;
1099}
8524070b 1100
75c5158f
MS
1101/**
1102 * timekeeping_notify - Install a new clock source
1103 * @clock: pointer to the clock source
1104 *
1105 * This function is called from clocksource.c after a new, better clock
1106 * source has been registered. The caller holds the clocksource_mutex.
1107 */
ba919d1c 1108int timekeeping_notify(struct clocksource *clock)
75c5158f 1109{
3fdb14fd 1110 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1111
876e7881 1112 if (tk->tkr_mono.clock == clock)
ba919d1c 1113 return 0;
75c5158f 1114 stop_machine(change_clocksource, clock, NULL);
8524070b 1115 tick_clock_notify();
876e7881 1116 return tk->tkr_mono.clock == clock ? 0 : -1;
8524070b 1117}
75c5158f 1118
2d42244a 1119/**
cdba2ec5
JS
1120 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1121 * @ts: pointer to the timespec64 to be set
2d42244a
JS
1122 *
1123 * Returns the raw monotonic time (completely un-modified by ntp)
1124 */
cdba2ec5 1125void getrawmonotonic64(struct timespec64 *ts)
2d42244a 1126{
3fdb14fd 1127 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1128 struct timespec64 ts64;
2d42244a
JS
1129 unsigned long seq;
1130 s64 nsecs;
2d42244a
JS
1131
1132 do {
3fdb14fd 1133 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d 1134 nsecs = timekeeping_get_ns(&tk->tkr_raw);
7d489d15 1135 ts64 = tk->raw_time;
2d42244a 1136
3fdb14fd 1137 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 1138
7d489d15 1139 timespec64_add_ns(&ts64, nsecs);
cdba2ec5 1140 *ts = ts64;
2d42244a 1141}
cdba2ec5
JS
1142EXPORT_SYMBOL(getrawmonotonic64);
1143
2d42244a 1144
8524070b 1145/**
cf4fc6cb 1146 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 1147 */
cf4fc6cb 1148int timekeeping_valid_for_hres(void)
8524070b 1149{
3fdb14fd 1150 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 1151 unsigned long seq;
1152 int ret;
1153
1154 do {
3fdb14fd 1155 seq = read_seqcount_begin(&tk_core.seq);
8524070b 1156
876e7881 1157 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 1158
3fdb14fd 1159 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 1160
1161 return ret;
1162}
1163
98962465
JH
1164/**
1165 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
1166 */
1167u64 timekeeping_max_deferment(void)
1168{
3fdb14fd 1169 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
1170 unsigned long seq;
1171 u64 ret;
42e71e81 1172
70471f2f 1173 do {
3fdb14fd 1174 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 1175
876e7881 1176 ret = tk->tkr_mono.clock->max_idle_ns;
70471f2f 1177
3fdb14fd 1178 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
1179
1180 return ret;
98962465
JH
1181}
1182
8524070b 1183/**
d4f587c6 1184 * read_persistent_clock - Return time from the persistent clock.
8524070b 1185 *
1186 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
1187 * Reads the time from the battery backed persistent clock.
1188 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 1189 *
1190 * XXX - Do be sure to remove it once all arches implement it.
1191 */
52f5684c 1192void __weak read_persistent_clock(struct timespec *ts)
8524070b 1193{
d4f587c6
MS
1194 ts->tv_sec = 0;
1195 ts->tv_nsec = 0;
8524070b 1196}
1197
2ee96632
XP
1198void __weak read_persistent_clock64(struct timespec64 *ts64)
1199{
1200 struct timespec ts;
1201
1202 read_persistent_clock(&ts);
1203 *ts64 = timespec_to_timespec64(ts);
1204}
1205
23970e38 1206/**
e83d0a41 1207 * read_boot_clock64 - Return time of the system start.
23970e38
MS
1208 *
1209 * Weak dummy function for arches that do not yet support it.
1210 * Function to read the exact time the system has been started.
e83d0a41 1211 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
23970e38
MS
1212 *
1213 * XXX - Do be sure to remove it once all arches implement it.
1214 */
e83d0a41 1215void __weak read_boot_clock64(struct timespec64 *ts)
23970e38
MS
1216{
1217 ts->tv_sec = 0;
1218 ts->tv_nsec = 0;
1219}
1220
0fa88cb4
XP
1221/* Flag for if timekeeping_resume() has injected sleeptime */
1222static bool sleeptime_injected;
1223
1224/* Flag for if there is a persistent clock on this platform */
1225static bool persistent_clock_exists;
1226
8524070b 1227/*
1228 * timekeeping_init - Initializes the clocksource and common timekeeping values
1229 */
1230void __init timekeeping_init(void)
1231{
3fdb14fd 1232 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 1233 struct clocksource *clock;
8524070b 1234 unsigned long flags;
7d489d15 1235 struct timespec64 now, boot, tmp;
31ade306 1236
2ee96632 1237 read_persistent_clock64(&now);
7d489d15 1238 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1239 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1240 " Check your CMOS/BIOS settings.\n");
1241 now.tv_sec = 0;
1242 now.tv_nsec = 0;
31ade306 1243 } else if (now.tv_sec || now.tv_nsec)
0fa88cb4 1244 persistent_clock_exists = true;
4e8b1452 1245
9a806ddb 1246 read_boot_clock64(&boot);
7d489d15 1247 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1248 pr_warn("WARNING: Boot clock returned invalid value!\n"
1249 " Check your CMOS/BIOS settings.\n");
1250 boot.tv_sec = 0;
1251 boot.tv_nsec = 0;
1252 }
8524070b 1253
9a7a71b1 1254 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1255 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1256 ntp_init();
1257
f1b82746 1258 clock = clocksource_default_clock();
a0f7d48b
MS
1259 if (clock->enable)
1260 clock->enable(clock);
4e250fdd 1261 tk_setup_internals(tk, clock);
8524070b 1262
4e250fdd
JS
1263 tk_set_xtime(tk, &now);
1264 tk->raw_time.tv_sec = 0;
1265 tk->raw_time.tv_nsec = 0;
1e75fa8b 1266 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1267 boot = tk_xtime(tk);
1e75fa8b 1268
7d489d15 1269 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1270 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1271
f111adfd 1272 timekeeping_update(tk, TK_MIRROR);
48cdc135 1273
3fdb14fd 1274 write_seqcount_end(&tk_core.seq);
9a7a71b1 1275 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1276}
1277
264bb3f7 1278/* time in seconds when suspend began for persistent clock */
7d489d15 1279static struct timespec64 timekeeping_suspend_time;
8524070b 1280
304529b1
JS
1281/**
1282 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1283 * @delta: pointer to a timespec delta value
1284 *
1285 * Takes a timespec offset measuring a suspend interval and properly
1286 * adds the sleep offset to the timekeeping variables.
1287 */
f726a697 1288static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1289 struct timespec64 *delta)
304529b1 1290{
7d489d15 1291 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1292 printk_deferred(KERN_WARNING
1293 "__timekeeping_inject_sleeptime: Invalid "
1294 "sleep delta value!\n");
cb5de2f8
JS
1295 return;
1296 }
f726a697 1297 tk_xtime_add(tk, delta);
7d489d15 1298 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1299 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1300 tk_debug_account_sleep_time(delta);
304529b1
JS
1301}
1302
7f298139 1303#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
0fa88cb4
XP
1304/**
1305 * We have three kinds of time sources to use for sleep time
1306 * injection, the preference order is:
1307 * 1) non-stop clocksource
1308 * 2) persistent clock (ie: RTC accessible when irqs are off)
1309 * 3) RTC
1310 *
1311 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1312 * If system has neither 1) nor 2), 3) will be used finally.
1313 *
1314 *
1315 * If timekeeping has injected sleeptime via either 1) or 2),
1316 * 3) becomes needless, so in this case we don't need to call
1317 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1318 * means.
1319 */
1320bool timekeeping_rtc_skipresume(void)
1321{
1322 return sleeptime_injected;
1323}
1324
1325/**
1326 * 1) can be determined whether to use or not only when doing
1327 * timekeeping_resume() which is invoked after rtc_suspend(),
1328 * so we can't skip rtc_suspend() surely if system has 1).
1329 *
1330 * But if system has 2), 2) will definitely be used, so in this
1331 * case we don't need to call rtc_suspend(), and this is what
1332 * timekeeping_rtc_skipsuspend() means.
1333 */
1334bool timekeeping_rtc_skipsuspend(void)
1335{
1336 return persistent_clock_exists;
1337}
1338
304529b1 1339/**
04d90890 1340 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1341 * @delta: pointer to a timespec64 delta value
304529b1 1342 *
2ee96632 1343 * This hook is for architectures that cannot support read_persistent_clock64
304529b1 1344 * because their RTC/persistent clock is only accessible when irqs are enabled.
0fa88cb4 1345 * and also don't have an effective nonstop clocksource.
304529b1
JS
1346 *
1347 * This function should only be called by rtc_resume(), and allows
1348 * a suspend offset to be injected into the timekeeping values.
1349 */
04d90890 1350void timekeeping_inject_sleeptime64(struct timespec64 *delta)
304529b1 1351{
3fdb14fd 1352 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1353 unsigned long flags;
304529b1 1354
9a7a71b1 1355 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1356 write_seqcount_begin(&tk_core.seq);
70471f2f 1357
4e250fdd 1358 timekeeping_forward_now(tk);
304529b1 1359
04d90890 1360 __timekeeping_inject_sleeptime(tk, delta);
304529b1 1361
780427f0 1362 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1363
3fdb14fd 1364 write_seqcount_end(&tk_core.seq);
9a7a71b1 1365 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1366
1367 /* signal hrtimers about time change */
1368 clock_was_set();
1369}
7f298139 1370#endif
304529b1 1371
8524070b 1372/**
1373 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 1374 */
124cf911 1375void timekeeping_resume(void)
8524070b 1376{
3fdb14fd 1377 struct timekeeper *tk = &tk_core.timekeeper;
876e7881 1378 struct clocksource *clock = tk->tkr_mono.clock;
92c1d3ed 1379 unsigned long flags;
7d489d15 1380 struct timespec64 ts_new, ts_delta;
e445cf1c 1381 cycle_t cycle_now, cycle_delta;
d4f587c6 1382
0fa88cb4 1383 sleeptime_injected = false;
2ee96632 1384 read_persistent_clock64(&ts_new);
8524070b 1385
adc78e6b 1386 clockevents_resume();
d10ff3fb
TG
1387 clocksource_resume();
1388
9a7a71b1 1389 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1390 write_seqcount_begin(&tk_core.seq);
8524070b 1391
e445cf1c
FT
1392 /*
1393 * After system resumes, we need to calculate the suspended time and
1394 * compensate it for the OS time. There are 3 sources that could be
1395 * used: Nonstop clocksource during suspend, persistent clock and rtc
1396 * device.
1397 *
1398 * One specific platform may have 1 or 2 or all of them, and the
1399 * preference will be:
1400 * suspend-nonstop clocksource -> persistent clock -> rtc
1401 * The less preferred source will only be tried if there is no better
1402 * usable source. The rtc part is handled separately in rtc core code.
1403 */
876e7881 1404 cycle_now = tk->tkr_mono.read(clock);
e445cf1c 1405 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
876e7881 1406 cycle_now > tk->tkr_mono.cycle_last) {
e445cf1c
FT
1407 u64 num, max = ULLONG_MAX;
1408 u32 mult = clock->mult;
1409 u32 shift = clock->shift;
1410 s64 nsec = 0;
1411
876e7881
PZ
1412 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1413 tk->tkr_mono.mask);
e445cf1c
FT
1414
1415 /*
1416 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1417 * suspended time is too long. In that case we need do the
1418 * 64 bits math carefully
1419 */
1420 do_div(max, mult);
1421 if (cycle_delta > max) {
1422 num = div64_u64(cycle_delta, max);
1423 nsec = (((u64) max * mult) >> shift) * num;
1424 cycle_delta -= num * max;
1425 }
1426 nsec += ((u64) cycle_delta * mult) >> shift;
1427
7d489d15 1428 ts_delta = ns_to_timespec64(nsec);
0fa88cb4 1429 sleeptime_injected = true;
7d489d15
JS
1430 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1431 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
0fa88cb4 1432 sleeptime_injected = true;
8524070b 1433 }
e445cf1c 1434
0fa88cb4 1435 if (sleeptime_injected)
e445cf1c
FT
1436 __timekeeping_inject_sleeptime(tk, &ts_delta);
1437
1438 /* Re-base the last cycle value */
876e7881 1439 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d
PZ
1440 tk->tkr_raw.cycle_last = cycle_now;
1441
4e250fdd 1442 tk->ntp_error = 0;
8524070b 1443 timekeeping_suspended = 0;
780427f0 1444 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1445 write_seqcount_end(&tk_core.seq);
9a7a71b1 1446 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1447
1448 touch_softlockup_watchdog();
1449
4ffee521 1450 tick_resume();
b12a03ce 1451 hrtimers_resume();
8524070b 1452}
1453
124cf911 1454int timekeeping_suspend(void)
8524070b 1455{
3fdb14fd 1456 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1457 unsigned long flags;
7d489d15
JS
1458 struct timespec64 delta, delta_delta;
1459 static struct timespec64 old_delta;
8524070b 1460
2ee96632 1461 read_persistent_clock64(&timekeeping_suspend_time);
3be90950 1462
0d6bd995
ZM
1463 /*
1464 * On some systems the persistent_clock can not be detected at
1465 * timekeeping_init by its return value, so if we see a valid
1466 * value returned, update the persistent_clock_exists flag.
1467 */
1468 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
0fa88cb4 1469 persistent_clock_exists = true;
0d6bd995 1470
9a7a71b1 1471 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1472 write_seqcount_begin(&tk_core.seq);
4e250fdd 1473 timekeeping_forward_now(tk);
8524070b 1474 timekeeping_suspended = 1;
cb33217b 1475
0fa88cb4 1476 if (persistent_clock_exists) {
cb33217b 1477 /*
264bb3f7
XP
1478 * To avoid drift caused by repeated suspend/resumes,
1479 * which each can add ~1 second drift error,
1480 * try to compensate so the difference in system time
1481 * and persistent_clock time stays close to constant.
cb33217b 1482 */
264bb3f7
XP
1483 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1484 delta_delta = timespec64_sub(delta, old_delta);
1485 if (abs(delta_delta.tv_sec) >= 2) {
1486 /*
1487 * if delta_delta is too large, assume time correction
1488 * has occurred and set old_delta to the current delta.
1489 */
1490 old_delta = delta;
1491 } else {
1492 /* Otherwise try to adjust old_system to compensate */
1493 timekeeping_suspend_time =
1494 timespec64_add(timekeeping_suspend_time, delta_delta);
1495 }
cb33217b 1496 }
330a1617
JS
1497
1498 timekeeping_update(tk, TK_MIRROR);
060407ae 1499 halt_fast_timekeeper(tk);
3fdb14fd 1500 write_seqcount_end(&tk_core.seq);
9a7a71b1 1501 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1502
4ffee521 1503 tick_suspend();
c54a42b1 1504 clocksource_suspend();
adc78e6b 1505 clockevents_suspend();
8524070b 1506
1507 return 0;
1508}
1509
1510/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1511static struct syscore_ops timekeeping_syscore_ops = {
8524070b 1512 .resume = timekeeping_resume,
1513 .suspend = timekeeping_suspend,
8524070b 1514};
1515
e1a85b2c 1516static int __init timekeeping_init_ops(void)
8524070b 1517{
e1a85b2c
RW
1518 register_syscore_ops(&timekeeping_syscore_ops);
1519 return 0;
8524070b 1520}
e1a85b2c 1521device_initcall(timekeeping_init_ops);
8524070b 1522
1523/*
dc491596 1524 * Apply a multiplier adjustment to the timekeeper
8524070b 1525 */
dc491596
JS
1526static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1527 s64 offset,
1528 bool negative,
1529 int adj_scale)
8524070b 1530{
dc491596
JS
1531 s64 interval = tk->cycle_interval;
1532 s32 mult_adj = 1;
8524070b 1533
dc491596
JS
1534 if (negative) {
1535 mult_adj = -mult_adj;
1536 interval = -interval;
1537 offset = -offset;
1d17d174 1538 }
dc491596
JS
1539 mult_adj <<= adj_scale;
1540 interval <<= adj_scale;
1541 offset <<= adj_scale;
8524070b 1542
c2bc1111
JS
1543 /*
1544 * So the following can be confusing.
1545 *
dc491596 1546 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1547 *
dc491596 1548 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1549 * have been appropriately scaled so the math is the same.
1550 *
1551 * The basic idea here is that we're increasing the multiplier
1552 * by one, this causes the xtime_interval to be incremented by
1553 * one cycle_interval. This is because:
1554 * xtime_interval = cycle_interval * mult
1555 * So if mult is being incremented by one:
1556 * xtime_interval = cycle_interval * (mult + 1)
1557 * Its the same as:
1558 * xtime_interval = (cycle_interval * mult) + cycle_interval
1559 * Which can be shortened to:
1560 * xtime_interval += cycle_interval
1561 *
1562 * So offset stores the non-accumulated cycles. Thus the current
1563 * time (in shifted nanoseconds) is:
1564 * now = (offset * adj) + xtime_nsec
1565 * Now, even though we're adjusting the clock frequency, we have
1566 * to keep time consistent. In other words, we can't jump back
1567 * in time, and we also want to avoid jumping forward in time.
1568 *
1569 * So given the same offset value, we need the time to be the same
1570 * both before and after the freq adjustment.
1571 * now = (offset * adj_1) + xtime_nsec_1
1572 * now = (offset * adj_2) + xtime_nsec_2
1573 * So:
1574 * (offset * adj_1) + xtime_nsec_1 =
1575 * (offset * adj_2) + xtime_nsec_2
1576 * And we know:
1577 * adj_2 = adj_1 + 1
1578 * So:
1579 * (offset * adj_1) + xtime_nsec_1 =
1580 * (offset * (adj_1+1)) + xtime_nsec_2
1581 * (offset * adj_1) + xtime_nsec_1 =
1582 * (offset * adj_1) + offset + xtime_nsec_2
1583 * Canceling the sides:
1584 * xtime_nsec_1 = offset + xtime_nsec_2
1585 * Which gives us:
1586 * xtime_nsec_2 = xtime_nsec_1 - offset
1587 * Which simplfies to:
1588 * xtime_nsec -= offset
1589 *
1590 * XXX - TODO: Doc ntp_error calculation.
1591 */
876e7881 1592 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
6067dc5a 1593 /* NTP adjustment caused clocksource mult overflow */
1594 WARN_ON_ONCE(1);
1595 return;
1596 }
1597
876e7881 1598 tk->tkr_mono.mult += mult_adj;
f726a697 1599 tk->xtime_interval += interval;
876e7881 1600 tk->tkr_mono.xtime_nsec -= offset;
f726a697 1601 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
dc491596
JS
1602}
1603
1604/*
1605 * Calculate the multiplier adjustment needed to match the frequency
1606 * specified by NTP
1607 */
1608static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1609 s64 offset)
1610{
1611 s64 interval = tk->cycle_interval;
1612 s64 xinterval = tk->xtime_interval;
1613 s64 tick_error;
1614 bool negative;
1615 u32 adj;
1616
1617 /* Remove any current error adj from freq calculation */
1618 if (tk->ntp_err_mult)
1619 xinterval -= tk->cycle_interval;
1620
375f45b5
JS
1621 tk->ntp_tick = ntp_tick_length();
1622
dc491596
JS
1623 /* Calculate current error per tick */
1624 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1625 tick_error -= (xinterval + tk->xtime_remainder);
1626
1627 /* Don't worry about correcting it if its small */
1628 if (likely((tick_error >= 0) && (tick_error <= interval)))
1629 return;
1630
1631 /* preserve the direction of correction */
1632 negative = (tick_error < 0);
1633
1634 /* Sort out the magnitude of the correction */
1635 tick_error = abs(tick_error);
1636 for (adj = 0; tick_error > interval; adj++)
1637 tick_error >>= 1;
1638
1639 /* scale the corrections */
1640 timekeeping_apply_adjustment(tk, offset, negative, adj);
1641}
1642
1643/*
1644 * Adjust the timekeeper's multiplier to the correct frequency
1645 * and also to reduce the accumulated error value.
1646 */
1647static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1648{
1649 /* Correct for the current frequency error */
1650 timekeeping_freqadjust(tk, offset);
1651
1652 /* Next make a small adjustment to fix any cumulative error */
1653 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1654 tk->ntp_err_mult = 1;
1655 timekeeping_apply_adjustment(tk, offset, 0, 0);
1656 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1657 /* Undo any existing error adjustment */
1658 timekeeping_apply_adjustment(tk, offset, 1, 0);
1659 tk->ntp_err_mult = 0;
1660 }
1661
876e7881
PZ
1662 if (unlikely(tk->tkr_mono.clock->maxadj &&
1663 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1664 > tk->tkr_mono.clock->maxadj))) {
dc491596
JS
1665 printk_once(KERN_WARNING
1666 "Adjusting %s more than 11%% (%ld vs %ld)\n",
876e7881
PZ
1667 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1668 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
dc491596 1669 }
2a8c0883
JS
1670
1671 /*
1672 * It may be possible that when we entered this function, xtime_nsec
1673 * was very small. Further, if we're slightly speeding the clocksource
1674 * in the code above, its possible the required corrective factor to
1675 * xtime_nsec could cause it to underflow.
1676 *
1677 * Now, since we already accumulated the second, cannot simply roll
1678 * the accumulated second back, since the NTP subsystem has been
1679 * notified via second_overflow. So instead we push xtime_nsec forward
1680 * by the amount we underflowed, and add that amount into the error.
1681 *
1682 * We'll correct this error next time through this function, when
1683 * xtime_nsec is not as small.
1684 */
876e7881
PZ
1685 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1686 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1687 tk->tkr_mono.xtime_nsec = 0;
f726a697 1688 tk->ntp_error += neg << tk->ntp_error_shift;
2a8c0883 1689 }
8524070b 1690}
1691
1f4f9487
JS
1692/**
1693 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1694 *
1695 * Helper function that accumulates a the nsecs greater then a second
1696 * from the xtime_nsec field to the xtime_secs field.
1697 * It also calls into the NTP code to handle leapsecond processing.
1698 *
1699 */
780427f0 1700static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1701{
876e7881 1702 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
5258d3f2 1703 unsigned int clock_set = 0;
1f4f9487 1704
876e7881 1705 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1f4f9487
JS
1706 int leap;
1707
876e7881 1708 tk->tkr_mono.xtime_nsec -= nsecps;
1f4f9487
JS
1709 tk->xtime_sec++;
1710
1711 /* Figure out if its a leap sec and apply if needed */
1712 leap = second_overflow(tk->xtime_sec);
6d0ef903 1713 if (unlikely(leap)) {
7d489d15 1714 struct timespec64 ts;
6d0ef903
JS
1715
1716 tk->xtime_sec += leap;
1f4f9487 1717
6d0ef903
JS
1718 ts.tv_sec = leap;
1719 ts.tv_nsec = 0;
1720 tk_set_wall_to_mono(tk,
7d489d15 1721 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1722
cc244dda
JS
1723 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1724
5258d3f2 1725 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1726 }
1f4f9487 1727 }
5258d3f2 1728 return clock_set;
1f4f9487
JS
1729}
1730
a092ff0f 1731/**
1732 * logarithmic_accumulation - shifted accumulation of cycles
1733 *
1734 * This functions accumulates a shifted interval of cycles into
1735 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1736 * loop.
1737 *
1738 * Returns the unconsumed cycles.
1739 */
f726a697 1740static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
5258d3f2
JS
1741 u32 shift,
1742 unsigned int *clock_set)
a092ff0f 1743{
23a9537a 1744 cycle_t interval = tk->cycle_interval << shift;
deda2e81 1745 u64 raw_nsecs;
a092ff0f 1746
f726a697 1747 /* If the offset is smaller then a shifted interval, do nothing */
23a9537a 1748 if (offset < interval)
a092ff0f 1749 return offset;
1750
1751 /* Accumulate one shifted interval */
23a9537a 1752 offset -= interval;
876e7881 1753 tk->tkr_mono.cycle_last += interval;
4a4ad80d 1754 tk->tkr_raw.cycle_last += interval;
a092ff0f 1755
876e7881 1756 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 1757 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 1758
deda2e81 1759 /* Accumulate raw time */
5b3900cd 1760 raw_nsecs = (u64)tk->raw_interval << shift;
f726a697 1761 raw_nsecs += tk->raw_time.tv_nsec;
c7dcf87a
JS
1762 if (raw_nsecs >= NSEC_PER_SEC) {
1763 u64 raw_secs = raw_nsecs;
1764 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
f726a697 1765 tk->raw_time.tv_sec += raw_secs;
a092ff0f 1766 }
f726a697 1767 tk->raw_time.tv_nsec = raw_nsecs;
a092ff0f 1768
1769 /* Accumulate error between NTP and clock interval */
375f45b5 1770 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
1771 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1772 (tk->ntp_error_shift + shift);
a092ff0f 1773
1774 return offset;
1775}
1776
8524070b 1777/**
1778 * update_wall_time - Uses the current clocksource to increment the wall time
1779 *
8524070b 1780 */
47a1b796 1781void update_wall_time(void)
8524070b 1782{
3fdb14fd 1783 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 1784 struct timekeeper *tk = &shadow_timekeeper;
8524070b 1785 cycle_t offset;
a092ff0f 1786 int shift = 0, maxshift;
5258d3f2 1787 unsigned int clock_set = 0;
70471f2f
JS
1788 unsigned long flags;
1789
9a7a71b1 1790 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b 1791
1792 /* Make sure we're fully resumed: */
1793 if (unlikely(timekeeping_suspended))
70471f2f 1794 goto out;
8524070b 1795
592913ec 1796#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 1797 offset = real_tk->cycle_interval;
592913ec 1798#else
876e7881
PZ
1799 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1800 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
8524070b 1801#endif
8524070b 1802
bf2ac312 1803 /* Check if there's really nothing to do */
48cdc135 1804 if (offset < real_tk->cycle_interval)
bf2ac312
JS
1805 goto out;
1806
3c17ad19
JS
1807 /* Do some additional sanity checking */
1808 timekeeping_check_update(real_tk, offset);
1809
a092ff0f 1810 /*
1811 * With NO_HZ we may have to accumulate many cycle_intervals
1812 * (think "ticks") worth of time at once. To do this efficiently,
1813 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 1814 * that is smaller than the offset. We then accumulate that
a092ff0f 1815 * chunk in one go, and then try to consume the next smaller
1816 * doubled multiple.
8524070b 1817 */
4e250fdd 1818 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 1819 shift = max(0, shift);
88b28adf 1820 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 1821 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 1822 shift = min(shift, maxshift);
4e250fdd 1823 while (offset >= tk->cycle_interval) {
5258d3f2
JS
1824 offset = logarithmic_accumulation(tk, offset, shift,
1825 &clock_set);
4e250fdd 1826 if (offset < tk->cycle_interval<<shift)
830ec045 1827 shift--;
8524070b 1828 }
1829
1830 /* correct the clock when NTP error is too big */
4e250fdd 1831 timekeeping_adjust(tk, offset);
8524070b 1832
6a867a39 1833 /*
92bb1fcf
JS
1834 * XXX This can be killed once everyone converts
1835 * to the new update_vsyscall.
1836 */
1837 old_vsyscall_fixup(tk);
8524070b 1838
6a867a39
JS
1839 /*
1840 * Finally, make sure that after the rounding
1e75fa8b 1841 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 1842 */
5258d3f2 1843 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 1844
3fdb14fd 1845 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
1846 /*
1847 * Update the real timekeeper.
1848 *
1849 * We could avoid this memcpy by switching pointers, but that
1850 * requires changes to all other timekeeper usage sites as
1851 * well, i.e. move the timekeeper pointer getter into the
1852 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 1853 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
1854 * updating.
1855 */
906c5557 1856 timekeeping_update(tk, clock_set);
48cdc135 1857 memcpy(real_tk, tk, sizeof(*tk));
906c5557 1858 /* The memcpy must come last. Do not put anything here! */
3fdb14fd 1859 write_seqcount_end(&tk_core.seq);
ca4523cd 1860out:
9a7a71b1 1861 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 1862 if (clock_set)
cab5e127
JS
1863 /* Have to call _delayed version, since in irq context*/
1864 clock_was_set_delayed();
8524070b 1865}
7c3f1a57
TJ
1866
1867/**
d08c0cdd
JS
1868 * getboottime64 - Return the real time of system boot.
1869 * @ts: pointer to the timespec64 to be set
7c3f1a57 1870 *
d08c0cdd 1871 * Returns the wall-time of boot in a timespec64.
7c3f1a57
TJ
1872 *
1873 * This is based on the wall_to_monotonic offset and the total suspend
1874 * time. Calls to settimeofday will affect the value returned (which
1875 * basically means that however wrong your real time clock is at boot time,
1876 * you get the right time here).
1877 */
d08c0cdd 1878void getboottime64(struct timespec64 *ts)
7c3f1a57 1879{
3fdb14fd 1880 struct timekeeper *tk = &tk_core.timekeeper;
02cba159
TG
1881 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1882
d08c0cdd 1883 *ts = ktime_to_timespec64(t);
7c3f1a57 1884}
d08c0cdd 1885EXPORT_SYMBOL_GPL(getboottime64);
7c3f1a57 1886
17c38b74 1887unsigned long get_seconds(void)
1888{
3fdb14fd 1889 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
1890
1891 return tk->xtime_sec;
17c38b74 1892}
1893EXPORT_SYMBOL(get_seconds);
1894
da15cfda 1895struct timespec __current_kernel_time(void)
1896{
3fdb14fd 1897 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1898
7d489d15 1899 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 1900}
17c38b74 1901
2c6b47de 1902struct timespec current_kernel_time(void)
1903{
3fdb14fd 1904 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1905 struct timespec64 now;
2c6b47de 1906 unsigned long seq;
1907
1908 do {
3fdb14fd 1909 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1910
4e250fdd 1911 now = tk_xtime(tk);
3fdb14fd 1912 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 1913
7d489d15 1914 return timespec64_to_timespec(now);
2c6b47de 1915}
2c6b47de 1916EXPORT_SYMBOL(current_kernel_time);
da15cfda 1917
334334b5 1918struct timespec64 get_monotonic_coarse64(void)
da15cfda 1919{
3fdb14fd 1920 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1921 struct timespec64 now, mono;
da15cfda 1922 unsigned long seq;
1923
1924 do {
3fdb14fd 1925 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1926
4e250fdd
JS
1927 now = tk_xtime(tk);
1928 mono = tk->wall_to_monotonic;
3fdb14fd 1929 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 1930
7d489d15 1931 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 1932 now.tv_nsec + mono.tv_nsec);
7d489d15 1933
334334b5 1934 return now;
da15cfda 1935}
871cf1e5
TH
1936
1937/*
d6ad4187 1938 * Must hold jiffies_lock
871cf1e5
TH
1939 */
1940void do_timer(unsigned long ticks)
1941{
1942 jiffies_64 += ticks;
871cf1e5
TH
1943 calc_global_load(ticks);
1944}
48cf76f7 1945
f6c06abf 1946/**
76f41088 1947 * ktime_get_update_offsets_now - hrtimer helper
868a3e91 1948 * @cwsseq: pointer to check and store the clock was set sequence number
f6c06abf
TG
1949 * @offs_real: pointer to storage for monotonic -> realtime offset
1950 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 1951 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf 1952 *
868a3e91
TG
1953 * Returns current monotonic time and updates the offsets if the
1954 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1955 * different.
1956 *
b7bc50e4 1957 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 1958 */
868a3e91
TG
1959ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
1960 ktime_t *offs_boot, ktime_t *offs_tai)
f6c06abf 1961{
3fdb14fd 1962 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 1963 unsigned int seq;
a37c0aad
TG
1964 ktime_t base;
1965 u64 nsecs;
f6c06abf
TG
1966
1967 do {
3fdb14fd 1968 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 1969
876e7881
PZ
1970 base = tk->tkr_mono.base;
1971 nsecs = timekeeping_get_ns(&tk->tkr_mono);
833f32d7
JS
1972 base = ktime_add_ns(base, nsecs);
1973
868a3e91
TG
1974 if (*cwsseq != tk->clock_was_set_seq) {
1975 *cwsseq = tk->clock_was_set_seq;
1976 *offs_real = tk->offs_real;
1977 *offs_boot = tk->offs_boot;
1978 *offs_tai = tk->offs_tai;
1979 }
833f32d7
JS
1980
1981 /* Handle leapsecond insertion adjustments */
1982 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
1983 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
1984
3fdb14fd 1985 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 1986
833f32d7 1987 return base;
f6c06abf 1988}
f6c06abf 1989
aa6f9c59
JS
1990/**
1991 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1992 */
1993int do_adjtimex(struct timex *txc)
1994{
3fdb14fd 1995 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 1996 unsigned long flags;
7d489d15 1997 struct timespec64 ts;
4e8f8b34 1998 s32 orig_tai, tai;
e4085693
JS
1999 int ret;
2000
2001 /* Validate the data before disabling interrupts */
2002 ret = ntp_validate_timex(txc);
2003 if (ret)
2004 return ret;
2005
cef90377
JS
2006 if (txc->modes & ADJ_SETOFFSET) {
2007 struct timespec delta;
2008 delta.tv_sec = txc->time.tv_sec;
2009 delta.tv_nsec = txc->time.tv_usec;
2010 if (!(txc->modes & ADJ_NANO))
2011 delta.tv_nsec *= 1000;
2012 ret = timekeeping_inject_offset(&delta);
2013 if (ret)
2014 return ret;
2015 }
2016
d6d29896 2017 getnstimeofday64(&ts);
87ace39b 2018
06c017fd 2019 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2020 write_seqcount_begin(&tk_core.seq);
06c017fd 2021
4e8f8b34 2022 orig_tai = tai = tk->tai_offset;
87ace39b 2023 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 2024
4e8f8b34
JS
2025 if (tai != orig_tai) {
2026 __timekeeping_set_tai_offset(tk, tai);
f55c0760 2027 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 2028 }
833f32d7
JS
2029 tk_update_leap_state(tk);
2030
3fdb14fd 2031 write_seqcount_end(&tk_core.seq);
06c017fd
JS
2032 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2033
6fdda9a9
JS
2034 if (tai != orig_tai)
2035 clock_was_set();
2036
7bd36014
JS
2037 ntp_notify_cmos_timer();
2038
87ace39b
JS
2039 return ret;
2040}
aa6f9c59
JS
2041
2042#ifdef CONFIG_NTP_PPS
2043/**
2044 * hardpps() - Accessor function to NTP __hardpps function
2045 */
2046void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2047{
06c017fd
JS
2048 unsigned long flags;
2049
2050 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2051 write_seqcount_begin(&tk_core.seq);
06c017fd 2052
aa6f9c59 2053 __hardpps(phase_ts, raw_ts);
06c017fd 2054
3fdb14fd 2055 write_seqcount_end(&tk_core.seq);
06c017fd 2056 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
2057}
2058EXPORT_SYMBOL(hardpps);
2059#endif
2060
f0af911a
TH
2061/**
2062 * xtime_update() - advances the timekeeping infrastructure
2063 * @ticks: number of ticks, that have elapsed since the last call.
2064 *
2065 * Must be called with interrupts disabled.
2066 */
2067void xtime_update(unsigned long ticks)
2068{
d6ad4187 2069 write_seqlock(&jiffies_lock);
f0af911a 2070 do_timer(ticks);
d6ad4187 2071 write_sequnlock(&jiffies_lock);
47a1b796 2072 update_wall_time();
f0af911a 2073}
This page took 1.247828 seconds and 5 git commands to generate.